EXCEPTION FLOW ANALYSIS IN ADA
by
Deborah A. Baker
and

Stanley M. Sutton, Jr.

CU-CS-319-836 February, 1986

University of Colorado, Department of Computer Science Boulder, Colorado.

Abstract

This paper describes a technique for the analysis of the propagation and handling of
exceptions in Adal programs. Exception facilities in a programming language can serve
to enhance the reliability of programs written in the language. However, the Ada
exception handling facility is also capable of adding greatly to the complexity of large
Ada programs. Hence the need arises for tools and methods to aid in understanding

Ada programs that utilize the exception handling facility.

Exception flow analysis can assist in determining, for instance, which exception
handlers may handle the raising of an exception. The need for such analysis arises
because the handler for an exception is determined dynamically in Ada. Exception flow
analysis can also solve other problems related to the propagation of exceptions, such as
which exceptions would cause the program to crash and which exception handlers will
never be used. The algorithm that is used in exception flow analysis is based upon an

algorithm for analysis of intraprocedural data flow. An exception flow analysis tool is

under development.

Index Terms
Ada, data flow, exception flow, exception handling, reliability, software tools, static

analysis, testing and verification

1 . . . BN . ~ g
Ada is a registered trademark of the US Government, ADA Joint Program Office.

(8]

1. Introduction
This section presents the motivation behind static analysis, generally describes the

Ada exception facility, and presents the problem of exception flow analysis.

1.1. Static Analysis

The reliability of software systems continues to be a concern of software engineering.
zk;lecdotes concerning failures of software systems are legion [10]. Furthermore,
software systems are quite complex. A number of software validation techniques have
been developed that factor the complexity as well as find errors in software. Use of
these techniques can significantly raise one’s confidence that a software system is correct
[with respect to its specifications). Use of validation techniques is often most effective if
supported by automated tools that bear the burden of bookkeeping and otherwise

attend to tedious detail.

Static analysis is one type of software validation. Particular tools that perform static
analysis do not execute the software system that is the object of émalysis. Rather, some
mbdei of the program is studied. Static analysis techniques have been shown to be
useful because they can demonstrate the absence of classes of errors. A very simple
kind of static analysis is syntax analysis: a program is analyzed and either syntax errors

are found, or it is demonstrated that no syntax errors exist.

Another form of static analysis is data flow analysis [11. First studied in the context
of code optimization, data flow analyzers can detect the presence, or show the absence.

of such data flow anomalies as uninitialized variables and dead definitions of a variable,

1.2. The Ada Exception Facility

The exception facility in the Ada programming language 1] is a mechanism intended
to provide some programming support for dealing with various erroneous, unusual or
merely noteworthy situations, called ezceptions, which might occur during the execution
of an Ada program. Some exceptions are predefined in Ada; others may be defined by

users. An exception is raised when it occurs. The raising of an exception can happen

1. explicitly, via a raise statement,

2. as the result of an action that breaks some rule of the language, such as the
predefined exception NUMERIC ERROR being raised in response to an
attempt to divide by zero, or

3. as the result of being propagated from some other place in the program.

When an exception is raised during the execution of statements or the elaboration of
declarations, the execution or elaboration is abandoned. Certain components of Ada
programs, called frames., may have exception handlers. A frame is either a block
statement or the body of a subprogram, package, task, or generic unit. An exception
handler provides for some response to the exception to be made or some corrective
action to be taken. If an exception, z, is raised during the execution of statements in a
frame, control is transferred to the handler for = in that frame, if there is one. If an
exception z is raised during the execution of statements in a frame with no handler for
r, during the elaboration of declarations, or during the execution of the statements in
an exception handler. then the exception is propagated. A propagated exception is
raised again at the point to which it is propagated. This point, and hence the exception
handler that may be invoked in response to the exception, is determined dynamically

according to rules specified in the language definition 1. When an exception is raised

in po case does control return to the point where it was raised. The propagation of an
exception from a task body causes the task to become complete. The propagation of an
exception from a library package, or a subprogram that is the main program, causes

execution of the main program to be abandoned.

There are many important and interesting issues that can be raised concerning the

design of exception facilities. Among these issues are:

1. static versus dynamic association of handlers for an exception with
operations that might raise the exception (this happens dynamically in Ada),

2. allowing the operation that raised an exception to resume, be retried or to
terminate (resumption is not allowed in Ada), and

3. the benefits of default handlers and parameters for handlers (Ada supports
neither default handlers nor parameters to exception handlers).

These issues have been addressed elsewhere [5, 7, 13]; a critique of the design of Ada is
not our purpose here. Our goal is to design and develop an Ada exception flow analysis

tool using existing data flow analysis techniques.

1.3. Exception Flow Analysis

Exception facilities in a programming language can serve to enhance the reliability of
programs written in that language [4]. However, extensive use of exception-related
facilities can greatly complicate large Ada programs. New tools and analysis techniques
are required enhance our ability to understand Ada programs that utilize exceptions and

exception handlers.

The propagation of exceptions is similar to the propagation of data values (this is
discussed in more detail in sections 2.1 and 2.2}, [t is because of this apparent

similarity that exception flow analysis was approached as a data flow problem. Data

flow analysis is well understood and accepted. By drawing a parallel between exception
flow analysis and data flow analysis, the results of research concerning data flow can be
applied to exception propagation (for example, complexity results concerning algorithms
do not need to be rederived). A general framework for static analysis is developed in

3]

Other work on the Ada exception facility has centered on specifications and
axiomatics. Programs annotated using Anna [9] can include specifications about
exception propagation. A propagation specification can take one of two forms: a
condition that will hold if a particular exception is propagated or a condition under
which an exception must be propagated. Axioms have been developed for the semantics
of raise statements as well as for the semantics of blocks that contain exception
handlers [8]. These axioms can be used in conjunction with assertions (such as those

i

expressible in Anna) to show, for example, that a particular exception will never occur.

v

Exception ,HPW analysis can provide answers to many questions concerning the
handling, raising and propagation of exceptions in Ada programs. The primary
information derived from exception flow analysis is where each exception is handled and
where it can be propagated from each place at which it can be raised. Other

information that can be derived from exception flow analvsis of a program includes

1. the exceptions that may be raised in, or propagated into. a given part of the
program,

2. the source of exceptions propagated into a given part of the program.

«

3. the user-defined exceptions that are never raised.

.
oo

. the exceptions that are handled in a given trame,

5. the exception handlers that are unnecessary because the handled exceptions
cannot be raised in, or propagated into, the frame of the handler,

6. the exceptions that are propagated from a given part of the program, either
because they are not handled, or are handled but then reraised,

7. the exceptions that may cause a task to become complete, and

8. the exceptions that may cause the execution of the program to be
abandoned.

While complete or partial answers to some of these questions can be found by a simple
textual scan of the program, the more difficult questions can only be answered by a

more sophisticated analysis such as flow analysis.

In light of the questions above, it can be seen that the objectives of data flow analysis
and exception flow analysis differ in part. Data flow analysis is directed toward the
discovery of anomalous conditions such as the use of a variable before it is defined or
the occurrence of two counsecutive definitions for a variable with»ut an intervening use.
Such conditions clearly represent'acmai or potential problems. Some of the conditions
that can be identified through exception flow analysis are also clearly anomalous. These
include user-defined exceptions that are never raised or handlers for exceptions that can
never occur in the frame of the handler. Other exception-related conditions are less
clearly anomalous. Many frames will not have handlers for all of the exceptions that
may occur in them, but such an absence is often not a problem. An exception may be
propagated into a number of contexts from a given context. but only certain
propagation paths may critically compromise the execution of the program. The overall
goal of exception flow analysis is to provide sufficient information to programmers to

enable them to identify conditions that may be important to them and to have

~1

confidence that they have not overlooked situations with which they ought to be

concerned.

1.4. This Paper

The main part of the remainder of this paper is organized as follows: Section 2
discusses exception flow analysis as a form of static analysis, Section 3 presents the
exception flow analysis algorithm, and Section 4 discusses issues in the implementation

of an exception flow analysis tool based on the algorithm.

2. Exception Flow Analysis as a Form of Static Analysis

Exception flow analysis requires a graphical representation of Ada programs, but this
representation must be different from that used for data flow analysis. Once an
appropriate graphical representation for exception flow analysis is established, it is
possible to consider data flow problems that may be used as models for the exception

flow problems. The ltve variable data flow problem is the most appropriate model for

exception flow; its exception flow analog is the [1ve exception problem.

2.1. The Context Graph Model of Ada Programs

Intraprocedural data flow analysis is performed over a flow graph of the procedure (6.
Each node in the graph represents one or more statements that are always executed as a
group. A node has a single entry point at the first statement, and once a node is

entered all of the statements are executed in succession.

A flow graph is inappropriate for exception flow analysis because the raising of an
exception causes suspension of the normal flow of control. Exceptions are not

propagated through successive statements in the way that data values mav be

considered to be. Following the raising of an exception, control may pass to a very
different part of a program than that in which the exception was raised. Furthermore,
exceptions may be raised during the elaboration of declarations. Consequently it is
necessary for exception flow analysis to consider parts of programs that are irrelevant
for data flow analysis {e.g. declarative parts) and it is expedient for exception flow
analysis to ignore parts of programs that are relevant for data flow analysis (e.g. flow of
control within a sequence of statements). For these reasons it is also clear that

exception flow analysis is not an intraprocedural problem but is rather a global problem

to be solved over a whole program.

Intuitively, a graphical representation of an Ada program that will be useful for
exception flow analysis will model those aspects of the program that are interesting with
respect to the propagation of exceptions. Such a graph can be constructed by letting
the nodes represent those places in a program in which exceptions may be raised and
between which they may be propagated and by letting the edges represent possible
paths of propagation. The Ada Reference Manual [1] defines rules for the propagation
of exceptions from and to package declarations, package bodies, task declarations, task
bodies, subprogram bodies, block statements, and accept statements. We call these
portions of Ada programs ezcepiion contexts, or simply contezts. These contexts
comprise the types of nodes in the graphs used for exception flow analysis, which are
called context graphs. The rules that govern the paths of propagation of exceptions

between contexts depend upon the calling structure of the program and lexical

containment of contexts. These rules determine the edges in the context graph.

A context graph could be built for any context. We will restrict our attention,

however, to context graphs built for main programs (where main programs are

subprograms that are library units).

The formal definitions for a context graph are as follows:

A context is either a package declaration, package body, task declaration, task body,

subprogram body, block statement, or accept statement.

A context ¢, contains a context c, if

1. ¢, is a package declaration and ¢, is a package declaration or a task

1
declaration,

2

2. ¢, is a subprogram body, package body, task body or block statement and c,

is a package declaration, task declaration, package body, task body or a
block statement,

3. ¢, is an accept statement and c¢, is a block statement or an accept

statement, or

*

4. ¢, is a task body or a block statement and ¢, is an accept statement,

and if ¢, occurs at the outermost lexical level in ¢ .

A context ¢, calls a context ¢, if

Loe is a subprogram body, package body, task body, block statement or an
accept staftement, and ¢, is a subprogram body or an accept statement, or

4

2. ¢, Is a package declaration or a task declaration and ¢, is a subprogram
body

and if ¢, contains a subprogram call or task entry call of the subprogram or accept

statement represented by c, at the outermost lexical level within its sequence of

statements.

10

A context graph is a triple (S, N, E). S is the start node, representing the
environment. N is a set of nodes representing contexts. A node n is a member of N if

and only if one of the following conditions holds:

e n represents the main program,

o 1 represents a library package or subprogram that is included in a with
clause of the main program or in a with clause of some other context
represented in N, or

e n represents a context that is called or contained by some context in N.

E is a set of directed edges (n,, n,) where

sn, is S and n, represents the main program or n, represents a subprogram

or package that appears in a with clause (as above), or

o n, and n, are members of N and

o the context represented by n, contains the context represented by n,

0

or

o the context represented by n, calls the context represented by n,.

L

Generic units are not included in the set of contexts because generic instantiations can
be resolved into one of the other types of contexts; generic units are not discussed
further. Subprogram declarations are also not included in the set of contexts, even
though subprogram declarations may occur as library units in Ada programs. This is
because no exceptions may be raised by the elaboration of a subprogram declaration

and there are no rules in the language for propagation of exceptions into or from them.

p3

Some types of contexts are of particular interest. Package bodies, subprogram bodies,
task bodies, and block statements may include exception handlers (these contexts, along

with generic unit bodies. are called frames 1). Additionally, package declarations and

11

subprogram bodies may be library units; when an exception is propagated from a
library package or from the main subprogram the execution of the program is

abandoned.

The contexts that are also frames have a significant internal structure consisting of a
declarative part, a sequence of statements, and exception handlers (any of which may be
empty). Exceptions may be raised in or propagated into each of these parts. However,
only exceptions occurring in the sequence of statements of such a context may be
handled by an exception handler in the context. This complicates exception flow
analysis, and it may suggest that each of these parts should be treated as a separate
context. However, the point at which an exception occurs within a frame does not
affect the contexts to which the exception may be propagated; all exceptions raised
within a frame may be propagated to the same set of receiving contexts. For this

- reason frames are considered as individual contexts and are not subdivided.

2.2. Overview of Data Flow Problems

We have posed some questions about exception flow which we wish to treat as
questions of data flow. There are four basic types of data flow problem that can be
considered for exception flow analysis {6]. These are available expressions, reaching

definitions, very busy expressions, and live variables.

These four basic problems can be classified in various ways 3, 6. Oune classification is
bv the direction of propagation of information through the flow graph during analysis.
Available expressions and reaching definitions are fop-down problems in which the

analvsis progresses down the flow graph and the information for a given node is

12

determined by operations over its predecessors in the graph. Very busy expressions and
live variables are bottom-up problems in which analysis progresses up the flow graph
and the information for a given node is determined by operations over its successors.
Another classification is by the wav in which information is combined as it is
propagated from node to node. Available expressions and very busy expressions are set
intersection problems in which the set of values propagated into a node is determined
as the intersection of the sets of values propagated from its predecessors or successors,
respectively. Reaching definitions and live variables are set union problems in which
the set of values propagated into a node is determined as the union of the sets of values
propagated from its predecessors or successors, respectively. Additionally, the data flow
problems may be distinguished by the types of operations on which the solutions
depend. The two basic operations on variables are definitions and uses. A definition
is any operation on a variable that may modify its value. A use is any reference of a
variable that cannot modify its value. The reaching definitions and available
expressions problems are determined fundamentally by definitions, independent of uses,
whereas the very busy expressions and live variables problems depend fundamentally on

both definitions and uses.

To use data flow analysis results as a basis for exception flow analvsis, it must be
determined which type of problem is likely to provide the most help. Detailed analysis

s bevond the scope of this paper. However, their

of all of these types of problems
general characteristics provide a basis for selecting among them in light of the nature of
exception flow. In data flow analysis the definition of a variable is passed down the

flow graph. The references to a variable should follow its definition. that is. references

13

should occur below corresponding definitions in the flow graph. On the other hand, in
exception flow analysis the propagation of an exception is represented by values passed
up the context graph. The handling of an exception should occur subsequent to its
raising, but in this case, since an exception is propagated up the context graph, its
handler should occur above its raise. This suggests that a bottom-up analysis will be
useful. Furthermore, an exception propagated into a node from any of it successors will
affect the execution or elaboration of the context represented by that node. Thus, a
set-union analysis will probably be needed because a set-intersection analysis will be too
restrictive. Finally, the propagation of exceptions depends both on their raising and
handling, so a data flow problem that depends on just one type of operation will be an
inadequate model. The live variable problem is the only one of the four types of data
flow problem that meets all of these criteria: bottom up, set union, and two operations.
Detailed analysis of the other types of data flow problem confirms that they are less
useful than the live variable prqoblem for exception flow analysis 2/, and these other
problems will not be discuséed further. The live variable problem and its exception flow

analog are presented below.

2.3. The Live Variable Problem
The solution to the live variable problem is a set of variables (those that are live) for
each node in the flow graph. These sets may be computed for the top or bottom of

each node: only the bottom sets are of interest here.

Formally, a variable v is [ive at the bottom of a node ¢ if and only if there is a
definirion-free path from ¢ to a use of v in some node j below 1 in the flow graph 6.

The solution sets of variables are contained in the array LVBOT, where LVBOTI(I) is

14

the set of variables that are live at node 1. The solution depends on two additional
arrays of sets, PRESERVED and XUSES. PRESERVED(i) is the set of variable
definitions that reach node ¢ and that are not killed in node 1 by redefinition of the
variables; these are the definitions that are passed through the node. XUSES(i) is the
set of variables that are used at node i without first being redefined; this is the set of
variables whose uses are exposed to definitions at nodes along paths entering 7 from
above. The set of successors of node i is denoted by succ(i). The solution to the live

variable problem is the smallest set satisfying the equation:

LVBOT(i) = U o yycoq [LYBOT() N PRESERVED(j)) U XUSES())| (1)

(where LVBOT(i) is empty if ¢ has no successors).

2.4. The Live Exception Problem

Thé live ezception problem is an exception flow problem that is analogous to the live-
variable data-flow problem. To draw an analogy between data flow and exception flow
it is necessary to establish some correspondence between the definition and use of
variables and the raising and handling of exceptions. Because the solution to the
LVBOT problem depends directly on both definitiéns and uses, it is straightforward to
formulate an analogous exception flow problem that depends on both raises and
handles. Let LEBOT be the name of the problem in which handles correspond to
definitions and raises correspond to uses. Then PRESERVED has as its analog
NOTHANDLED, where NOTHANDLED(i) is the set of exceptions that are propagated
into node ¢ and that are not killed by a handler in node i; these are the exceptions that
are propagated through the node. Similarly. XUSES has as its analog XRAISES, where
XRAISES(i) is the set of exceptions that are raised in node : without being handled.

This is the set of exceptions whose raises are exposed to handlers along paths entering ¢

15

from above. This gives the equation
(2)

LEBOT(i) = U (LEBOT(j) N NOTHANDLED(j)) U XRAISES(j)|

j € succfi)

(where LEBOT(1) is empty if ¢ has no successors).

LEBOT(i) thus represents those exceptions which are not handled after they are raised
below node 7; in other words, for each exception z in LEBOT(i), there is a handler-free

path from some raise of r at a node below 1 in the context graph to node 1.

These definitions and equation (2) are not the most intuitive way to view exception
flow analysis. In particular, XRAISES, although directly analogous to XUSES, is not a
very natural concept. It partitions the exceptions raised in a context into two classes
based on a characteristic of the context which is unrelated to the exception raising (i.e.

whether those exceptions are handled or not).

A more intuitive definition of the live exception problem is the following:

LEBOT() = U, ((LEBOT(j) U RAISED(j)) N NOTHANDLED(j)], (3)

€ suce(i)

I

where RAISED(i) represents the set of exceptions that are raised in node i and
LEBOT(i) and NOTHANDLED(i) are as previously defined. Distributing N over U in

equation (3) gives

LEBOT(i) = U .

€ suce(i)

(LEBOT(j) N NOTHANDLED(j)) U (4)
(RAISED(j) N NOTHANDLED(j))].

Notice that
RAISED(i) N NOTHANDLED(1) = XRAISES({i). (5)

St

Equation (5) shows that equations (2), (3) and (4) are equivalent definitions of

LEBOT. We will use equation (3) in our algorithm as it seems to us to be the most

intuitive.

The solution to the live exception problem (LEBOT) provides the information
necessary to answer many of the questions about exception flow. The solution sets
include all exceptions that may be raised or propagated into a node. The solution sets
do not include exceptions that are not defined for the successors of a node.
Additionally, the solution sets include any exception for which there is a handler-free
path from the point of the raise into the node, regardless of the number of such paths
or the occurrence of handlers along other paths. (These two criteria, although obviously
necessary, are not met by the exception flow analogs of most of the other data flow
problems [2]). The sources of exceptions propagated into a node are easy to record. By
comparing information about the exceptions propagated into a node with information
on which exceptions are raised, handled, and reraised in the node, it is possible to
determine which exceptions are propagated from the node. By computing this
information for the main subprogram and for library packages is possible to identify the
exceptions that may cause the, execution of the program to be abandoned. By
comparing the handlers in a node with the exceptions that may actually be propagated
into or raised in the node it is simple to determine unnecessary handlers. The live

exception problem is thus the central problem of exception flow analysis.

3. The Exception Flow Analysis Algorithm

An existing general-purpose data flow algorithm for live variable analysis (6!

was
adapted for our exception flow analysis problem. There are several classes of algorithms
for solving the live variable problem. A round robin algorithm, in which information is

propagated until stabilization is reached, is relatively easy to code, and with such an

algorithm it is not necessary to be concerned with the reducibility of the graph. For

s

17

these reasons this algorithm was adapted for exception flow analysis despite the fact it
is G(mg) in the worst case (where n is the number of nodes, or contexts, in the graph).
Other algorithms, with better worst case behavior, could be adapted to improve the

performance of the exception flow analyzer.

The results are presented in a bit vector framework. In the bit vector framework the
solution sets are computed using arrays of bit vectors to represent sets of the
appropriate type. Each array contains one bit vector for each node in the flow graph.

Exception flow analysis can also be presented in the more general semi-lattice theoretic

framework 3.

In Figures 3-1 and 3-2, the exception flow analysis algorithm is presented. It is
written in Ada. The algorithm was adapted from the round robin live variable analysis
algorithm presented in [6/. The adaptations include substitution of a context graph for
a flow graph, solving an equivalent equation (as explained in section 2.4), and renaming
variablés to reflect the change in focus. Nodes of the graph are repeatedly visited in
post order until a pass through the nodes has dcéurred in which no information is

propagated.

There is, of course, more to the exception flow analyzer than the code shown in
Figures 3-1 and 3-2. There are packages that define abstract data types for BitVector,
ListOfContexts, ContextGraph and Context. There is the building of the context graph
(and intermediate structures) and the computation of NOTHANDLED and RAISED.
There is a report generator that derives, from LEBOT, answers to many questions

concerning exception propagation and handling as discussed in section L.3.

18

procedure efa (NOTHANDLED, RAISED: in ExceptilonVector;
C: in ContextGraph;
NumberQfContexts: in posltive;
LEBOT: out ExceptilonVector) is
-- LEBOT, NOTHANDLED and RAISED are defined in section 2.4;
-- C 1s the context graph to be examined;
-—- NumberQfContexts indicates the number of contexts 1in ;
-- LEBOT 1s computed in thils procedure;

-— Assumptions:

- an ordering of the contexts from ! to NumberOfContexts 1in
- post order exists and 1s represented 1n the ContextGraph;
-= allasing has been resolved;

-— Notes on types:

-~ BiltVector 1s defined as array(l..NumberOfExceptions) of boolean;

-~ ExceptlonVector is defined as array(l..NumberOfContexts) of BitVector;
-- nodes 1in ListOfContexts and ContextGraph are of type Context;

-- BitVector operatlons: zero, bv_and, bv_or;

-—- ListOfContexts operations: Head, Next;

-- ContextGraph operatlon: Successors;

- Successors takes a context graph and an lndex positiocn

- of a context in that graph as parameters and returns

- ‘a list of contexts that are successors Lo that context;
-— Context operatlon: NodeNumber;

- NodeNumber tvakes a context as 1its parameter and returns

- the index positlion of that context;

-- packages defining these types must appear in with and use clauses;

newLE: BltVector;

change: boolean;

succ: ListOfContexts;

k: 1 .. NumberQfContexts;

Figure 3-1: Ada program for exception flow analysis, part 1

4. Implementation Issues

Exception flow analvsis is simpler than data flow analysis in some respects. Data flow
analvsis is complicated by the use of pointers and arrays in programs because the
objects referenced by these constructs are determined dynamically and cannot be

evaluated staticallv. [n Ada there are no exception access types and no arrays of

19

begin
-- 1initlalization
for § In 1..NumberOfContexts loop
-- initially, no exceptions are in the set represented by LEBOT;
LEBOT(}) := zero;
end loop;
change := true;

-- propagate informatlion by visiting the contexts 1n C 1in post order
- untll a pass through the contexts 1s made with no i1nformation
- propagation;
while change loop

change := false;

-- post order visit
for j in reverse 1..NumberOfContexts loop
newLE := zero;

-- the successors of a context are those contexts that
- it calls or contalins;

succ := Successors(C, 1):

while succ /= null loop

k := NodeNumber (Head (succ));
newLE := bv_or(newLE, bv_and(
bv_or (LEBOT(kx), RAISED(k)), NOTHANDLED(k}));

suce := Next(succ);

end loop;

if newLE /= LEROT(]) then
LEBOT(}) := newLE;
change := true;

end if;

end loop;
end loop;

end efa;

Figure 3-2: Ada program for exception flow analysis. part 2

exceptions 1. On the other hand. Ada
(and of task access types); these present
The problems with task access tvpes are

task type declaration and one context for

allows rask access tvpes and arrays of tasks
problems not inherent in data flow analysis.

P

addressed by allocating one context for each

each occurrence of a new operator for a task.

Analysis is simplified by the fact that exceptions are defined by task type rather than
task object, so that all tasks of a given type raise the same exceptions (note that these
exceptions may be propagated from an accept statement within the task even though
they may not be propagated from the task itself). Furthermore, if an exception is
raised during the activation of a task, the task becomes complete and the exception
TASKING ERROR is raised at the point of activation, regardless of the type or
identity of the task. Thus, it is not necessary to discriminate among task objects of the

same type.

We have made a number of assumptions during the design of the prototype exception
flow analysis tool. These assumptions include simplifications, but they are nevertheless

pessimistic about the raising of exceptions. The more important assumptions include:

1. The predefined exceptions can be raised at any point in any Ada program.
This is clearly pessimistic as, for instance, an Ada program that does not use
the tasking facility will never raise TASKING ERROR.

2. Optimizing compilers will have no effects on the raising, propagation, and
handling of exceptions except possibly to reduce the number of points at
which exceptions may be raised 1]. While the effects of optimizing
compilers are not considered in the prototype analyzer, this assumption
produces a conservative analysis.

3. No exception checks are suppressed.

o

. All program paths are executable. It is possible with data flow analysis to
identify program paths that are not executable and then eliminate those
paths from analysis, but the prototype will not do this.

5. Generic units are not analyzed. Generic instantiations can be analvzed, but

thev are assumed to be already resolved into subprograms or packages, as
appropriate.

With respect to these assumprtions, exception flow analysis can be made more precise

in several ways. These are discussed in the next section.

Much of the information about a context that is needed in exception flow analysis
does not depend on the program in which the context appears. This includes
information that can be determined solely from a context itself or from the contexts
that it contains. To avoid recomputation of this information we construct context
graphs in two phases. First, the program-independent information is calculated and
collected in contarnment trees. Context graphs are then constructed by combining
containment trees using program-dependent information about the calling structure of
the program. Containment trees may be saved in a library for use in building context

graphs for multiple program configurations.

5. Conclusions
This paper has discussed a new form of static analysis: exception flow analysis. By
making an analogy between data flow and exception propagation, it has been possible to

adapt the results of research into data flow problems and data flow algorithms.

A prototype exception flew analyzer ("AXA" for Ada Exception Analyzer) is under
development at the University of Colcrado; It is this prototype that has been discussed
throughout this paper. [mprovements to this tool are planned. The improvements will
remove various sources of imprecision that produce overly pessimistic analyses. The
analyzer can be made more precise in several wavs. At least some of the predefined
exceptions can be eliminated from consideration for many contexts simply by noting the
kinds of expressions, statements and declarations in a context and discounting those

predefined exceptions that cannot be raised. Also, if the presence of a SUPPRESS

[N

pragma is noted, then a report on exception flow analysis may be appropriately
qualified concerning the corresponding predefined exception. Exception flow analysis
can be coupled with data flow analysis to avoid evaluation of program paths that are

unreachable.

Data flow analysis is used to improve the code of programs. These improvements can
take the form of optimizations by optimizing compilers as well as changes made by a
software engineer as the result of some analysis. For instance, when two definitions of a
variable are not separated by a use of that variable, the first definition can safely be
removed from the program (or, of course, this may indicate that the name of the
variable is misspelled or that a statement is missing). Exception flow analysis can
similarly be used to improve Ada programs. For instance, in a frame in which an
exception is neither raised nor propagated, there is no need for a handler for z. Also,

the definition of an exception z can be eliminated if z is never raised.

)

The optimizatida of exception floW analysis tool.s and the use of exception flow
analysis to optimize code generation are subjects for further research. Once a practical
exception flow analysis tool is available it will be possible to integrate exception flow
analysis in the software development process and to investigate the use of exception

facilities in large software systems.

Acknowledgments
Members of the Software Development Workshop at the University of Colorado,

Ginger Barnett and Erik Sorensen, participated in this research.

References

1. Reference Manual for the Ada Programming Language. U.S. Department of
Defense, ANS[/MIL-STD-1815A-1983, 1983.

2. Baker, Deborah A. and Sutton, Jr., Stanley M. Some Notes on Exception Flow
Analvsis. Technical Report CU-CS-320-86, University of Colorado, Department of
Computer Science, 1986.

3. Cousot, P. and Cousot, R. Abstract [nterpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. Principles
of Programming Languages [V, ACM, January, 1977, pp. 238-252.

4. Cristian, Flaviu. "Correct and Robust Programs". [EFEE Transactions on
Software Engineering SE-10, 2 (March 1984}, 163-174.

5. Goodenough, John B. "Exception Handling Issues and a Proposed Notation".
Communications of the ACM 18, 12 (December 1975), 633-696.

8. Hecht., Matthew S.. Flow Analysis of Computer Program. North-Holland, New -
York, 1977.

7. Liskov, Barbara H. and Snyder, Alan. “Exception Handling in CLU". [EEE
Transactions on Software Engineering SE-5, 6 (November 1979), 546-353.

8. Luckham, D. C., and Polak, W. "Ada Exception Handling: An Axiomatic
Approach". ACM Transactions on Prograrmming Languages and Systems 2, 2 (April
1980), 225-233.

9. Luckham, David, and von Henke, Friedrich W. "An Overview of Anna, a
Specification Language for Ada". [EEE Software 2, 2 (March 1985), 9-22.

10. Neumann, Peter G. "Letter from the Editor". Software Engineering Notes 10
(January, April, July, October 1985).

11. Osterweil, Leon J. Using Data Flow Tools in Software Engineering. [n Program
Flow Analysis Theory and Applications, Muchnick, 3. S., and Jones, N. D., Ed.,
Prentice-Hall, 1981.

12. Turba, Thomas N. "The Pascal Exception Handling Proposal®. Sigplan Notices

20, 8 {August 1985}, 93-98.

13. Yemini, S. and Berry, D. M. "A Modular Verifiable Exception-Handling
Mechanism™. ACM Transactions on Programming Languages and Systems 7, 2 [April
1985), 214-243.

