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Surovik, David Allen (Ph.D., Aerospace Engineering Sciences)

Autonomous Mission Design in Extreme Orbit Environments

Thesis directed by Prof. Daniel J. Scheeres

An algorithm for autonomous online mission design at asteroids, comets, and small moons is

developed to meet the novel challenges of their complex non-Keplerian orbit environments, which

render traditional methods inapplicable. The core concept of abstract reachability analysis, in which

a set of impulsive maneuvering options is mapped onto a space of high-level mission outcomes, is

applied to enable goal-oriented decision-making with robustness to uncertainty. These nuanced

analyses are efficiently computed by utilizing a heuristic-based adaptive sampling scheme that

either maximizes an objective function for autonomous planning or resolves details of interest for

preliminary analysis and general study. Illustrative examples reveal the chaotic nature of small

body systems through the structure of various families of reachable orbits, such as those that

facilitate close-range observation of targeted surface locations or achieve soft impact upon them.

In order to fulfill extensive sets of observation tasks, the single-maneuver design method is

implemented in a receding-horizon framework such that a complete mission is constructed on-the-

fly one piece at a time. Long-term performance and convergence are assured by augmenting the

objective function with a prospect heuristic, which approximates the likelihood that a reachable

end-state will benefit the subsequent planning horizon. When state and model uncertainty produce

larger trajectory deviations than were anticipated, the next control horizon is advanced to allow

for corrective action — a low-frequency form of feedback control. Through Monte Carlo analysis,

the planning algorithm is ultimately demonstrated to produce mission profiles that vary drastically

in their physical paths but nonetheless consistently complete all goals, suggesting a high degree of

flexibility. It is further shown that the objective function can be tuned to preferentially minimize

fuel cost or mission duration, as well as to optimize performance under different levels of uncertainty

by appropriately balancing the mitigation paradigms of robust planning and reactive execution.
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Chapter 1

Introduction

1.1 Motivation

Asteroids and comets pose numerous opportunities and threats that motivate their increasing

focus as space exploration destinations. Being composed of pristine material from the early ages of

the solar system, these small celestial bodies contain vital clues about the formation of the planets

and the origins of organic compounds and other necessary ingredients for life. Their stores of water,

precious metals, and other natural resources could alternatively be exploited for the development

of space infrastructure, such as refueling stations, or for use on Earth. Of more pressing concern is

the threat of impact posed by near-Earth objects, whose potential for devastation is evidenced by

the recent Chelyabinsk event, the Tunguska event, and extinction events in the fossil record.

Interest in these two classes of objects has thus far resulted in several planetary science

missions including flybys, impactors, rendezvous, touch-and-go sampling, and soft landing. The first

successful rendezvous with a small body was conducted by NASA’s NEAR-Shoemaker spacecraft

at asteroid Eros in 2000; the craft also executed a soft landing, though this was not part of the

designed science operations [1]. Material sampling was first achieved in 2005 by JAXA’s Hayabusa

spacecraft at asteroid 25143 Itokawa [2]. In 2011, NASA’s Dawn spacecraft rendezvoused with the

large asteroid 4 Vesta, beginning a protracted period of extensive study, and Roscosmos launched an

unsuccessful sample-return mission to the small Martian moon Phobos. The first comet rendezvous

and landing were achieved in 2014 by ESA’s Rosetta spacecraft and its lander Philae at Comet

67/P Churyumov-Gerasimenko (hereafter termed 67/P) [3].
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Sustained interest in these classes of objects is evidenced by JAXA’s recently-launched

Hayabusa 2 mission and NASA’s soon-to-launch OSIRIS-REx mission, both of which will con-

duct rendezvous and touch-and-go sampling at asteroids. The AIDA mission concept, a joint effort

between ESA and NASA that would entail rendezvous with a binary asteroid and assessment of

a kinetic impactor’s deflective capability, is currently undergoing extensive study [4]. Two of the

five semifinalist proposals for NASA’s 13th Discovery-class mission would visit asteroids, while a

third would survey the Solar System to discover as-yet unknown hazardous objects; several other

submitted proposals also targeted small bodies. Whether for the ultimate purpose of study, ex-

ploitation, or mitigation, missions to these objects would benefit greatly from an enhanced ability

to conduct operations at close proximity.

1.1.1 Conventional Methods

Traditional approaches to space mission design are rooted in Kepler’s discovery that orbiting

bodies travel along conic sections with the central gravitating body positioned at one focus. The

integrability of Keplerian motion allows for any orbital state to be immediately associated with

its conic section, an easily-described one-dimensional path through the six-dimensional orbit state

space. Of these unchanging orbits, which compose the entirity of possible ballistic motion, a small

number can then be selected and pieced together using impulsive thrust maneuvers to take a

spacecraft from one desired state to another.

In many scenarios, the difference between the actual dynamical environment and the ideal

Keplerian approximation — where the only force is that of a spherical or point-mass central body’s

gravity — is relatively small. For example, Earth’s polar radius and its equatorial radius differ by

only about 1%, and the gravitational pull of the moon is a dozen orders of magnitude lower than

that of the Earth for a geosynchronous satellite. For most Earth-orbiting missions, the shape and

orientation of the osculating conic changes only gradually and can be adequately accounted for via

linear perturbation methods and averaging theory. This further assures that a “safe” orbit, i.e., one

that does not impact the central body, will remain safe over a long time horizon and that all other
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states on the osculating conic will be closely approached in the near future. During preliminary

design of interplanetary missions a “patched conic” approach, where each leg of the journey is

modeled as a Keplerian problem with a different central body, can be applied effectively. These

approximations are sufficiently accurate such that a higher-fidelity solution appropriate for use in

an actual mission can later be obtained from a differential correction process.

1.1.2 Unconventional Aspects

However, missions geared to the close study of small celestial bodies such as asteroids and

comets face constant exposure to strong perturbations away from Keplerian motion, driven by

highly nonspherical gravity fields produced from irregular mass distributions as well as proportion-

ally significant effects of third-body gravitation and solar radiation pressure (SRP). These condi-

tions generally result in rapid divergence of true motion away from conic section approximations,

which are thus no longer an apt basis for even short-term trajectory prediction [5, 6]; as a result,

traditional mission design methods can no longer be applied effectively. No longer remaining near a

simple one-dimensional manifold, chaotic behavior arises that can lead the spacecraft across diverse

dynamical regimes in an unintuitive and highly nonperiodic manner. Combined with an associated

high sensitivity to error, this makes accurate long-term predictions impossible and introduces the

risk that off-nominal conditions could rapidly result in mission failure.

Consequently, past asteroid rendezvous missions NEAR-Shoemaker and Hayabusa were con-

ducted primarily in more distant orbits with longer stability horizons; forays into dangerous close-

proximity regimes for high-value operations were brief, exhaustively planned, and comparatively

fuel-intensive [2, 7]. Likewise, the lowest orbit radius of Rosetta during its nominal mission was

about five times larger than the max radius of the central body — close-study was the purview of

its lander, Philae, which was deployed on a high-energy landing trajectory in order to minimize the

influence of non-Keplerian forces. This mission paradigm of thorough and conservative prepara-

tion for a single critical task will be repeated in the approaching OSIRIS-REx mission for a single

touch-and-go sampling task [8].
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Unfortunately, despite the weak nominal accelerations present at small bodies, the fuel cost of

continually overpowering the natural dynamics to simplify trajectory design can become excessive

for longer-duration close-proximity operations [6, 9]. This motivates the leveraging of the natural

system dynamics in order to enable ambitious mission concepts, a prospect that would require

extensive tool development for accurately and rapidly exploring the complex mission design space

and identifying efficient and innovative trajectories [10]. Consequently, a need for advanced tra-

jectory design tools and GNC capabilities to meet the challenges of these complex and unintuitive

regimes is well-recognized [11]. As will be discussed later, this capability might have benefitted the

design of the deployment trajectory for the Philae lander, whose energetic touchdown resulted in a

large rebound and ultimate landing at an unfavorable distant location after energy dissipation and

anchoring systems failed.

1.1.3 Modern Trends

Due to the high cost and latency of remotely operating an interplanetary mission from Earth,

an autonomous online implementation of such design techniques is highly desirable [12]. Prob-

lems encountered by the Hayabusa mission illustrate the drawbacks of insufficiently developed

autonomous capabilities — its touch-and-go sampling operation met limited success, returning far

less material than planned, while an unexpected interaction between autonomous and human-issued

commands resulted in the deployed science package MINERVA escaping the system rather than

landing as intended [2, 13]. Improved autonomy could help prevent such mishaps while alleviating

much of the the frequent operational demands upon interplanetary communication systems and hu-

man navigators. Additionally, improved mission returns could be obtained by enabling expedient

pursuit of unforeseen scientific opportunities in an “agile science” paradigm [14].

Perhaps most fundamentally, heightened autonomy could bolster abilities to mitigate rapid

error growth in a timely and effective manner, a prospect reflected by the growing trend toward

computational techniques for guidance and control. By replacing feedback control policies that track

a reference trajectory with more algorithmic procedures that re-solve the trajectory design problem
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online, unprecedented performance and capability can be achieved. Such computational guidance

techniques have recently been formulated for astrodynamics applications such as aerocapture [15,

16], powered descent [17, 18], and station keeping [19].

1.2 Academic Context

Several academic fields have developed techniques and explored applications that have deep

connections to the problem of autonomous small body mission design. In nonlinear control, poli-

cies are formulated for tracking reference trajectories in systems with complicated dynamics and

uncertainty, often with provable guarantees of stability and convergence as well as optimality with

regards to a prescribed weighting of costs. More general problem definitions are addressed in

robotics and AI planning, where paths are sought through configuration space representations in

order to identify a suitable reference trajectory for a controller to follow. Goal states may also

be more abstractly defined, and assessments of performance are frequently conducted empirically

rather than mathematically, by necessity.

In astrodynamics and dynamical systems theory, the inherent dynamical structures within

certain non-Keplerian systems have received extensive study along with development of techniques

for their exploitation, though small body systems have thus far received less such attention and

are not as conducive to highly generalizable results due to the large variety of irregular shapes that

occur. Analysis techniques for these problems have also been applied that focus on outcomes with

complicated relationships to the physical state in order to inform preliminary system analysis and

trade-space mission design decisions.

However, these various ingredients have never before been synthesized into the type of tool

that is presented in this dissertation. This section will examine relevant contributions from each

related field in order to identify the aspects of the problem that can be addressed with adaptations

of, or ideas from, existing work.
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1.2.1 Receding Horizon Control

After a sufficient level of complexity is reached, many control problems are simply infeasibly

large to solve in their entirety during online execution — the control sequence necessary for reaching

the reference state might be inordinately complicated, the time span over which control is required

might be long or unbounded, and computations must be frequently re-evaluated to mitigate dynamic

disturbances and state uncertainty. A common recourse to these obstacles is to instead solve a

temporally truncated version of the problem, optimally closing the distance to the desired state

over a limited time span. This approach to reducing complexity is known as receding horizon

control (RHC) or model predictive control.

Beyond its origins for regulatory control in the process industry, the advent of affordable

and capable microprocessors has resulted in RHC rapidly gaining attention as an approach for

controlling fast and sensitive dynamical systems [20]. Examples include highly dynamic planning

problems in complex flow fields, namely those experienced by autonomous underwater and aerial

vehicles due to complex ocean currents, winds, and thermal updrafts [21, 22]. It is also being studied

as a tool for related high-sensitivity astrodynamics applications such as low-thrust interplanetary

mission design [23], proximity operations [24], and control of swarms of spacecraft [25].

Naturally, its applicability to sensitive systems also makes RHC effective for mitigating high

levels of error and nondeterminism — a trait that has been leveraged for robust spacecraft ren-

dezvous [26] and robust nonlinear control in general [27]. The approximately impulsive nature of

chemical rocket propulsion further increases the applicability of RHC to the small body spacecraft

control problem by naturally creating discrete control horizons; longer horizons, i.e., less frequent

maneuvers, would increase the reachability of objectives in proportion to the size of the control do-

main. Such a paradigm would leverage the system’s unique natural dynamics rather than constantly

expending operational effort to overpower them.
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1.2.2 Robotics and AI Planning

Many fundamental aspects of vehicle motion planning stem from applications of autonomous

ground and air vehicles that involve spatiotemporally consistent system dynamics. In these rela-

tively simple scenarios, two positions can be linked by a straight line and statically defined goals and

obstacles can be charted on a “roadmap”, allowing for the path planning problem to be discretized

as a graph of connections between waypoints. Favorable paths through the configuration space

may then be identified using any of a wide variety of graph-search methods such as A∗ or sampling

schemes like Rapid Random Trees before applying trajectory smoothing to satisfy nonholonomic

and differential constraints in the full, continuous system [28, 29].

More tenuous and complicated scenarios often call for application of the receding-horizon

concept to the path planning problem. For ground vehicles operating in dynamic and uncertain

environments, receding-horizon planning can be used to manage the growth of error in the predicted

movement of obstacles by routinely re-planning safe motion over a limited time span [30, 31].

It has also been applied to mitigate computational complexity arising from time-varying logical

specifications such as compliance with traffic laws and other context-dependent constraints on

system behavior [32].

Another useful tool in controlling complex systems is abstraction, where cumbersome details

are simplified or otherwise hidden away in a system representation such that high-level objectives

may be pursued more directly. This has proved useful for regulating economic output measures,

rather than state variables, in RHC for industrial processes [33]. By taking a broad view of the

problem, abstraction also removes arbitrary distinctions between different solutions, thus reducing

the solution set and simplifying the search problem. This benefit is evident in the path planning

of robot swarms, where a specified size or centroid of the swarm could be attained by a broad

family of individual position combinations and robot permutations [34]. In the highly-connected

configuration space of a small body orbiter, abstraction could prove an apt idea for sidestepping

arbitrary decisions such as sequencing and direction of motion during pursuit of multiple objectives.
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Abstraction can also benefit path planning applications by hiding the dynamically complex

intermediary details in a special representation of the problem, thus reducing computational burden.

For example, by classifying thermal updrafts in a roadmap-like representation of a wind field,

soaring UAVs may successfully leverage graph or tree search methods to pursue goal states [35] or

information gathering objectives [36] more effectively than is possible with a higher-detail, shorter-

horizon planning method.

1.2.3 Non-Keplerian Mission Design

Inherent to orbit mechanics is a spatio-dynamic relationship that is strong relative to the

availability of control energy in most circumstances. In other words, uncontrolled motion can lead

to a wide variety of system configurations and typically serves as an important component of the

path planning problem. Mission design for strongly non-Keplerian systems such as the much-studied

circular restricted three-body problem (CR3BP) thus frequently hinges upon accurate knowledge

of natural periodic orbits that sparsely populate the phase space — these structures are the most

feasible resource for planning long-term motion. Given this knowledge, transfers from one body

to another at low control costs can be formulated by exploiting the intersections of the stable and

unstable manifolds eminating from initial and final periodic orbits [37, 38] or of the low-thrust-

reachable sets stemming from those manifolds instead [39].

Automated techniques have been extensively used for preliminary design of certain classes of

missions in non-Keplerian systems, such as gravity assist flyby sequences for interplanetary missions

obtained via Monte Carlo tree search [40] and genetic algorithms [41]. The latter technique has

also briefly been investigated for small body mission design under some simplifying assumptions

[42]. More elaborate low-energy transfer sequences can be found via search algorithms designed

specifically for the well-characterized CR3BP, leveraging either analytically-based rules of thumb

[43] or a precomputed database of orbits and manifold intersections, which can be modeled as

waypoints and connections in a graph search [44]. This strategy has also been modified for realtime

implementation by more coarsely discretizing the database of connections between state space
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regions, which serves in tandem with a heuristic to ease the computational cost of searching for a

solution, and then refining the resultant transfer sequence to higher fidelity via differential correction

[45].

All of these applications, however, require separate tools or knowledge solving each individual

leg of the problem, i.e., either precomputed solutions to sub-problems or lots of computing resources

(time or power) for solving them. Moreover, they are formulated to target specific final states or

orbits, which does not readily accomodate the aforementioned process of abstraction for defining

high-level objectives. This could potentially be achieved by pairing the graph-based method with a

framework for associating periodic orbits with higher-level goals, but this problem itself would be

highly nontrivial, would not account for phasing requirements, and might be hindered by limited

existence of such orbits close to the body surface. Thus, although automation of mission design is

demonstrated, the specific methodologies might not translate effectively to the problem of close-

proximity operations at small bodies.

1.2.4 Design-Space Mapping and Analysis

Exhaustive design-space analysis has long been common recourse to design questions with

non-integrable relationships between parameters and costs/objectives. Key decisions can be repre-

sented by a “map” between a small number of design variables and one or more associated output

measures. When visualized, this data product can greatly facilitate human comprehension for

high-level cost/benefit analysis and other insights about the nature of the system.

As nominal trajectories are conventionally designed in full long before a space exploration

mission is even launched, this computationally intensive approach has frequently been applied to

astrodynamics problems. Perhaps the best known example is the “porkchop plot”, which relates

two highly influential mission variables — the dates at which the origin is departed and at which

the target is reached — to the energy costs necessary for completing an orbit transfer, which are

obtained by Lambert’s method or another solution technique. However, design-space mapping is

also useful for informing many other decisions. In the three-body problem, “periapse maps” chart
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the physical locations of close passes achieved by families of low-energy trajectories that pass near

one of the bodies [6], which is useful for applications such as ballistic landing on binary asteroids

[46]. Alternately, low-energy transfers from one body to another can be designed by parameterizing

the domain in terms of the arrival conditions at a target periodic orbit and checking the backward-

propagated periapse altitude at the departure body [37]. Mapping can also illuminate other system

properties such as stability and divergence [47, 48, 49] and even transport rates between nearly-

invariant sets, e.g., regarding the asteroid population in the Sun-Jupiter system [50].

Conceptually simple but analytically intractible outcomes such as impact and escape have

also been charted for subsets of initial conditions in the CR3BP [51]. By defining this subset

purely in terms of velocity, this analysis has been used to represent reachable outcomes for a

spacecraft at a specific initial state with the ability to execute a single impulsive maneuver [52].

Reachability analysis has previously received relatively little use in astrodynamics, as it is most

appropriate for more temporally-constrained scenarios rather than preliminary design. However,

mathematical studies of reachability under Keplerian dynamics have been conducted for informing

certain operations for missions that are already underway. These have included missile interception

[53], fuel-limited rendezvous and conjunction avoidance [54, 55, 56], and object correlation with

unobserved maneuvers under general dynamics [57].

While exhaustive and computationally burdensome grid-based sampling is the norm for map-

ping nonintegrable design spaces, several of the aforementioned examples have sought to reduce this

cost with tools such as adaptive mesh refinement and clustering [48, 49, 50, 52]. Indeed, sampling-

based approaches to robot motion planning could be viewed as numerically efficient reachability

analysis tools [28, 58, 59], albeit applied directly to the configuration space in most cases. This

suggests that existing automated search techniques could be useful in the context of design-space

analysis for orbital trajectory design.
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1.3 Contributions and Outline

Thesis Statement: In order to achieve sets of abstract mission objectives at strongly
non-Keplerian small-body systems with uncertainty, tools and concepts from
AI and robotic motion planning are leveraged to conduct efficient automated
search and analysis of the abstract reachability map for designing individual
spacecraft maneuvers sequentially in a receding-horizon scheme.

1.3.1 Research Overview

Trajectory design is in essence re-posed as a control problem in which the reference to be

tracked is the output of multiple layers of abstraction — the system is a mission that must be driven

from “incomplete” to “complete”. The plant consists of a robust predictive model that translates

prospective control inputs into conservative estimates of high-level outcomes under characteristic

uncertainty levels. Because of the non-analytic nature of the model, the control law is computa-

tional, consisting of a heuristic search method applied to the abstract reachability map that relates

the full control domain to a decision variable. This law selects and implements a single impulsive

control input that is predicted to produce preferable behavior over a limited time horizon; however,

this short-term progress is also balanced against heuristic-assessed long-term prospects in order to

improve convergence to mission completion and reduce net costs.

1.3.2 Expanded Reachability Concept

Reachability maps have recently been applied to chart properties such as divergence rates and

safety status in the CR3BP [51, 60, 48]. In order to produce a more comprehensive analysis suitable

for informing mission operations, the approach is expanded in this dissertation and associated

publications [61, 62] to also include more general mission outcomes including goal fulfillment and

performance measures that govern automated planning. Further, divergence rates are combined

with initial uncertainty levels to ultimately provide thresholds of robustness to error, in terms of

safety and goal outcomes alike. These increasingly abstract outputs are described in Chapter 2

along with an appropriate selection of small-body mission scenarios and their physical dynamics.
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A formal description of the reachability map concept is given in Chapter 3; control domains

in both 2D and 3D, some of which include a timing parameter, are also detailed along with ways

of effectively visualizing the data for use in preliminary mission design or in the development and

calibration of online planners. To tie the reachability concept back to the well-trodden territory

of two-body orbit dynamics, analytical reachability solutions are derived and plotted for some

outcomes under Keplerian motion about a finite spherical body. Lastly, fundamental similarities

and differences between the characteristics of Keplerian and non-Keplerian maps are illustrated.

1.3.3 Partitioning and Searching Maps

The basic anatomy of the numerical reachability analysis method applied in this dissertation

is inherited from one of the aforementioned studies of the CR3BP. This previously applied technique

approximated the continuous map by sampling discrete points from the domain and constructing

a mesh to allow inference of results across finite areas. For numerical efficiency, this mesh was

adaptively refined by successively conducting additional sampling at regions identified by a heuristic

as most relevant to the desired data product. By applying a mesh element area-based heuristic, an

uneven sample of initial conditions was produced such that final conditions had a roughly uniform

distribution [48]; impact and escape regions were later delineated by instead using mesh edge-based

heuristics [60, 52].

A full description of this component and the numerous improvements and extensions relative

to the preexisting incarnation are given in Chapter 4 and publications [61, 63]. Runtimes were

first drastically improved by a fresh and careful implementation of the method via a combination

of C++ and Matlab, allowing 3D analyses to be conducted at usefully high resolutions under rea-

sonable compute times. Increased sophistication of the heuristic refinement process was developed

to facilitate efficiency not only for the previous application of partitioning maps for visualization,

but also for alternate usage in rapidly locating the maximum of an objective function during online

planning. This was achieved through volume-wise weight renormalization of the simplex set along

with the leveraging of concepts such as gradient climbing and simulated annealing.
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1.3.4 Applications of Single-Horizon Analysis

Enabled by the efficient search and partitioning techniques, diverse types of reachability

analyses are conducted in Chapter 5 to illustrate potential applications, also represented in pub-

lications [61, 64]. These include close-range observations; landing prospects in terms of location,

speed, and impact angle; and attainment of periodic motion for routine observations or holding

patterns. Of additional interest are time-parameterized planning domains as well as phase space

divergence/chaoticity rates, paramount for predicting error growth.

1.3.5 Receding-Horizon Framework

Completion of extensive goal sets generally requires sequences of many spacecraft maneuvers,

each individually designed with the tools discussed above. However, a naive receding-horizon

control law that only considers short-term outcomes could converge unreasonably slowly and impair

long-term performance. Chapter 6 relates work done in publications [63, 65, 66] to address these

pitfalls by constructing a decision function that balances short-term achievements against long-term

prospects, which are represented by a heuristic that operates on control-horizon end states similarly

to “cost-to-go” functions that are commonly used to ensure stability and convergence in nonlinear

control. Formulating effective heuristics is eased by the high level of phase-space connectivity,

which allows diverse regions to be accessed and large swathes of outcomes to be achieved under a

single control input.

In complement to the degree of robustness ensured by the single-horizon planning process,

uncertainty mitigation is bolstered by a “reactivity” paradigm. When the online estimated value

of deviation exceeds the degree of robustness of the nominal trajectory, the algorithm reacts by

implementing another control input ahead of schedule. This receding-horizon scheme amounts in

essence to low-frequency closed-loop tracking of a manifold defined by abstract goals.
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1.3.6 System Analysis

Properties, behaviors, and performance of the autonomously controlled system are analyzed

in Chapter 7 and publications [66, 67]. These traits are first assessed in terms of variation in the

physical system and the mission requirements to reveal a transition from determinism to stochastic-

ity as the plant becomes increasingly complex. The uncertainty mitigation paradigms of robustness

and reactivity are then compared, along with variation of the level of error itself to help reveal the

limits of the automated planner. Finally, alternate formulations of the decision function are used

to demonstrate the increased performance and reliability provided by prospect heuristics as well as

the capacity to reduce total mission cost in terms of fuel and duration.

1.3.7 Project Summary

After prescription of appropriately formulated mission scenarios, implementation of the tra-

jectory planning scheme comprises two categories of tasks. The conceptual framework corresponds

to a set of diverse software tools whose development and synthesis had to be undertaken in a com-

putationally efficient manner. With this foundation in place, the assurance of high-quality mission

solutions hinges upon careful design of heuristics both for increasing the effectiveness of the reach-

ability search within each control horizon and for modifying the decision function in a manner that

bolsters long-term performance. The successes, limitations, and future avenues of inquiry resulting

from this research effort are detailed in Chapter 8 to conclude the dissertation.

1.3.8 Contribution Summary

The ultimate contribution of this dissertation is the synthesis of a diverse set of tools and

concepts into a unified approach to mission design and online mitigation of error. Viability of

this method stems from the synergistic interactions of its constituent parts in the specific context

of the intended application, whereas each on its own might appear untenable. For example, the

receding-horizon planner converges in large part thanks to the high degree of connectivity of goal

regions via uncontrolled motion through the phase space, which is attributable to the combination
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of non-Keplerian orbit dynamics with the abstraction of goal definitions; RHC planning would

appear less sensible as a method of reaching a pre-defined science orbit or trajectory. The control

scheme of intermittent, impulsive maneuvers was simultaneously sufficient for taking full advantage

of this connectivity — thanks to the low cost of imparting proportionally large effects at low-mass

bodies — and low-dimensional enough to counterbalance the complexity of the dynamics and make

the computational demands of sampling-based reachability analysis surprisingly feasible.

As further development continues for more conventional small body operational strategies

such as hovering [68, 69, 70] and stabilizing frozen orbits [71, 72], it is intended that the reachability-

based receding-horizon planning method presented here and in publications [61, 62, 63, 64, 65,

66, 67] provides an initial demonstration of an alternative approach to mission design and online

execution for efficiently fulfilling ambitious science objectives in these challenging systems.



Chapter 2

Predictive Model

Central to the sampling-based planning scheme is a predictive model that, provided a control

input, can be numerically propagated to determine the outcome in terms of high-level mission objec-

tives and requirements. The model consists of three different stages that each handle conceptually

distinct questions about the system behavior:

(1) Where does the spacecraft travel through physical space?

(2) What are the mission-level consequences of the trajectory?

(3) How favorable or unfavorable are those consequences?

The first question is answered by the physical dynamics of the system and the second by the mission

formulation; the answer to the third is not prescribed but rather must be designed. Each model

stage will be detailed in the following three sections.

2.1 Physical System

First and foremost, the physical dynamics of the system are of pivotal importance given that

the control philosophy applied is to leverage natural motion rather than laboriously overpower it.

After normalizing by its mass, the evolution of the spacecraft’s position r = (x, y, z) and velocity ṙ

are described in terms of a set of accelerations ai.

r̈ (r, ṙ, t) =
∑

ai (r, ṙ, t) (2.1)
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Explicit dependence upon time, i.e., non-autonomous dynamics, is necessary when modeling non-

synchronous forces such as solar radiation pressure and general third body gravitation.

2.1.1 Reference Frame

In general, most forces, science objectives, and safety constraints depend on the body-relative

state of the spacecraft. Expressions for these values are then most naturally expressed in a body-

fixed frame. As is an accurate approximation for the considerable majority of small body systems

[6, 73], the frame applied here reflects a minimum-energy rotation state, where the body has

constant angular velocity ω = ωẑ oriented about its axis of greatest inertia. This frame rotation is

accounted for by centripetal and coriolis accelerations, combined into a single acceleration term:

aframe =− ω × (ω × r)− 2ω × ṙ (2.2)

2.1.2 Full Body Gravity

Other than in the case of planetary satellites, non-Keplerian motion near small bodies gen-

erally arises most strongly and with the most nuance from the body’s irregular gravity field. This

acceleration depends not only on the gravitational parameter µ and the distance to the body’s

center of mass, but also heavily upon its mass distribution and relative orientation. Traditionally,

spherical harmonic expansions are the most common approach to modeling irregular gravity; how-

ever, this infinite series approximation is only convergent for orbit radii that are larger than that

of the body’s highest peak. Accordingly, two alternate closed-form descriptions are used to allow

accurate results during close-proximity operations.

2.1.2.1 Triaxial Ellipsoid

As the simpler of the two alternatives, the uniform-density triaxial ellipsoid model requires

only three additional parameters beyond the standard gravitational parameter µ: the ellipsoid’s

principal radii α, β, and γ. This can be used to model a highly elongated body, but nonetheless

implies symmetry about three planes. Such an approximation is sufficiently accurate for early-stage
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design at roughly ellipsoidal bodies such as Phobos and 1999 KW4 Alpha/Beta, but is a poor match

for others like “dog bone” shaped asteroid Kleopatra and sharp-angled asteroid Golevka. Contact

binaries like 67/P can be somewhat closely approximated as two ellipsoids; others like Itokawa

would suffer larger errors due to the proportion of mass in the “neck” region, the contact point

between the two distinct lobes.

The triaxial-ellipsoid gravitational potential Utriax (r;α, β, γ), acceleration atriax = ∇Utriax,

and Jacobian ∇2Utriax can all expressed in closed form by elliptic integrals, which can be evaluated

for any location external to the body surface via a standard numerical recipe [6, 74]; further details

may be found in Appendix A.1. Altogether, the triaxial model is sufficient for the purpose of

demonstrating the relationship between highly nonspherical mass distribution and non-Keplerian

dynamics at a fundamental level without incurring large computational expenses.

2.1.2.2 Polyhedron

Far greater accuracy and generality can be achieved by instead using a uniform-density

polyhedron as the shape model, making it invaluable for thorough preliminary design as well as

for online planning at non-ellipsoidal bodies. This model describes a closed body surface using a

set of triangular facets, generally derived from sets of photographs of the object from many angles.

The gravitational potential Upoly (r;Pν), acceleration apoly = ∇Upoly, and its Jacobian ∇2Upoly are

computed from a polyhedral shape model Pν defined by a set of ν vertices and 2ν − 4 faces under

an assumption of constant density and total gravitational parameter µ [6]; further details may be

found in Appendix A.2.

However, as numerical operations must be performed for each individual polyhedron element,

the computational burden becomes much higher than that of the triaxial ellipsoid model at reso-

lutions ν that are large enough to provide a useful level of accuracy. Other potential shortcomings

include the assumption of homogeneous density — likely untrue especially for rubble pile asteroids

— and the proliferation of parameters making dynamic estimation infeasible.
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2.1.3 Third Bodies and SRP

The influence of tidal accelerations a3B from the parent body ranges from significant for

near-Earth asteroids to dominant for close-orbiting planetary satellites, and is given in terms of the

primary’s gravitational parameter µ3B and body-frame position r3B by

a3B(r, t) =− µ3B

(
r− r3B

|r− r3B|3
+

r3B

|r3B|3
)

(2.3)

For tidally locked natural satellites, the mean motion n of the orbit about the primary body is

synchronous with the rotation rate and r3B is constant. Otherwise, r3B(t) is found by applying

the rotation matrix CBO (t) to the value r3B,O as defined in the frame of the central body’s orbit

about the third body.

r3B (t) =CBO ([ω − nẑ] t) r3B,O (2.4)

Similarly, the matrix CBN (t) rotates the inertial Sun-pointing vector r̂S,N , which is approx-

imated as constant over time scales of interest, into its body-frame expression r̂S(t) for use in the

statement of the acceleration due to SRP aSRP (t). This term’s magnitude aSRP , which depends

on spacecraft characteristics and the distance to the Sun, is significant at small near-Earth aster-

oids and may be approximated as constant if the spacecraft is assumed to keep its solar arrays

Sun-pointing as often as possible.

r̂S(t) =CBN (ωt) r̂S,N (2.5)

aSRP (t) =− aSRP r̂S(t) (2.6)

2.2 Abstract Outcomes

The second stage of the model interprets the physical motion through phase space in terms

of mission-level outcomes y. These values reflect compliance with sets of operational bounds for

safety, practicality, and science activities, along with other intermediary measures that may be used

as ingredients in the objective function governing autonomous decision-making. Each element yi
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can be either real-valued or Boolean, and can depend on the time history x̃(t) of the state via, e.g.,

an integrated value or a maximum taken over some time span.

2.2.1 Safety Constraints

Crucially, impact of the central body must be avoided unless it is part of a prescribed science

activity. This Boolean failure criteria, Impact, is detected by checking whether the spacecraft

position is interior to the central body B.

Impact = (r ∈ B) (2.7)

=


(
x2

α2 + y2

β2 + z2

γ2
≤ 1
)

if B = B (α, β, γ)(
∇2U (r) == 4π

)
if B = B (P)

(2.8)

For a real-valued indicator of impact risk, the altitude is also tracked:

ρB = min ρ (x,B) (2.9)

This denotes the shortest range to any point on the triaxial ellipsoid or polyhedron B.

Though not strictly critical from a safety perspective, it is generally practical to remain

relatively close to the central body so that the science objectives are kept within reach. A second

Boolean failure criteria introduced to reflect this is termed Escape; however, it does not correspond

to escape in the Keplerian sense since it cannot be determined a priori whether a trajectory will

return to the body vicinity in finite time. Instead, a simple orbit radius bound resc is enforced:

Escape =
(
r · r > r2

esc

)
(2.10)

This usefully allows motion to be permitted for short durations in regimes that could conceptually

be classified as escaping, e.g., beyond Phobos’ Hill sphere, which lies quite close to the body surface.

Conversely, orbits that appear bounded over long time spans but stray far from the central body

before returning can be excluded as impractical.



21

2.2.2 Objectives

Counter to the Boolean failure criteria above, which must always evaluate to false, objectives

are posed as real-valued variables yi to be maximized. Three categories of objectives are studied,

the first two of which represent commonly desired science activities while the third serves as an

extension of an operational tactic more traditionally studied for non-Keplerian missions.

2.2.2.1 Close-Range Imaging

For the bulk of the study of the autonomous planning algorithm, goal fulfillment is modeled

as the accumulated time spent satisfying geometric and phasing conditions prescribed for imaging

points of interest (POI) Ri on the body surface. Each i’th observation task — multiple tasks may

share a target — is defined as the simultaneous fulfillment of upper (a+) and lower (a−) bounds

of several measures a (x; Ri) for a duration ∆tg. These comprise the spacecraft’s target-relative

range ρi, co-elevation θi, azimuth ϕi, and solar phase angle ψi, all of which are computed from the

target-relative position ρi = r−Ri as

ρi (t) =
√
ρi (t) · ρi (t) (2.11)

θi (t) = cos−1 (ρ̂i (t) · ûi) (2.12)

ϕi (t) = tan−1

[
ρ̂i (t) · êi
ρ̂i (t) · n̂i

]
(2.13)

ψi (t) = cos−1 (ρ̂i (t) · ρ̂s (t)) (2.14)

where (ê, n̂, û)i are the east-north-up basis vectors of the target’s local frame.

For successful observations to occur, all observation sub-measure bounds must be satisfied

simultaneously, i.e.,

Imageablei =
(
a− < a (t) < a+

)
∀ a ∈ {ρ, θ, ϕ, ψ}i (2.15)

This must be sustained for a duration ∆tg, after which point the observation task is considered
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complete. The completion status is integrated from completion rate

ġi (r, t) =


1/∆tg,i if Imageablei and (gi < 1)

0 otherwise

(2.16)

such that gi ∈ [0, 1]. Total progress across all observation tasks is tracked using g =
∑ng

i=1 gi, such

that g ∈ [0, ng], with g == ng as the criterion for mission completion.

2.2.2.2 Landing

A second science objective is also considered: ballistic deployment of science payloads to

the body surface, in which case the control domain represents impulses imparted to the released

payload instead of to the main spacecraft. In this scenario, Impact is a required condition rather

than a failure criterion.

Beyond merely reaching the body surface, a number of additional considerations are modeled

to predict the payload landing accuracy and performance. The distance ρk of the impact location

rimp from the k’th desired landing location Rk can be checked, e.g., to enforce compliance with

some maximum bound ρmax.

ρk =‖rimp −Rk‖ (2.17)

The body-frame impact speed vimp and the angle γk between the impact direction and the target’s

surface-normal direction n̂k are also likely to be of interest:

vimp =‖ṙimp‖ (2.18)

γk = cos−1 (n̂k · ṙimp/vimp) (2.19)

Generically, a goal function might then consist of any sort of combination of these values

gk =gk (ρk, vimp, γk; ρk,max) (2.20)

When producing a data product for a human planner more information might be retained by using,

for example, gk = 1/ (1 + wρ min |ρk|) and considering vimp and γk separately.
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2.2.2.3 Periodic Motion

Either as part of a periodic science operation — such as observation of time-varying surface

phenomena — or as a safe holding pattern during which to conduct extended communications or

deliberation, periodic orbital motion may be another desirable objective. Quantifying how nearly

periodic a reachable trajectory is begins by defining a plane with normal vector n̂ computed as the

in-track direction of the initial condition.

n̂0 = (r̂0 × v̂0)× r̂0

This plane, illustrated in Figure 2.1, contains both the initial position (the 0’th crossing) and the

origin while also maximizing the transverse component of the initial velocity. Subsequent crossings

of the plane are detected by tracking the quantity

c(t) = r(t) · n̂0 (2.21)

d1

d2
0

1

2

Figure 2.1: Poincare map of a sampled orbit; the minimum distance d between crossings can be
used as a measure of how nearly periodic the orbit is.

The event c(t2) > 0 > c(t1) indicates that a crossing, c(t∗) = 0, occurs in the positive

direction at some intermediate time t∗ ∈ (t1, t2). By interpolation or bisectional search, a nearly
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exact crossing state x∗j = x (t∗) and corresponding crossing distance dj = ‖x∗j − x0‖ are obtained

for each j′th occurrence of the crossing condition. The orbit xi(t)’s measure of periodicity is finally

computed as

g =
1

1 + min {dj}

2.2.3 Intermediary Measures

Beyond the direct specifications of mission success, many additional useful quantities can be

derived from the phase-space state and trajectory for use in the planning process. Variables b ∈ B

for assessing future reachability prospects could be as simple as orbit radius r = |r|, osculating

Keplerian elements, or Jacobi energy J .

Furthermore, error growth can be predicted by tracking divergence rates along a sampled

trajectory, while near-misses of favorable outcomes can be quantified to better inform heuristic

search of the reachability map.

2.2.3.1 Divergence and Robustness

Trajectory-relative deviations are linearly approximated from the state transition matrix

Φ, numerically propagated along with the trajectory itself. Its integrand is the Jacobian matrix

representing the sensitivity of the force model f to changes in x. For either an elliptical or a

polyhedral gravity model, this is easily obtained as a side-product of force computations with little

additional effort [6].

Φ(t; t0) =

∫ t

t0

df

dx

∣∣∣
x(τ)

dτ =

 φrr(t) φrv(t)

φvr(t) φvv(t)

 (2.22)

Using submatrices of Φ, the linearized position deviation time series Λ (t) is expressed in terms of

initial condition deviations:

Λ(t) =φrr(t; t0)δr(t0) + φrv(t; t0)δv(t0) (2.23)
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The worst-case deviation magnitude Λ possible under initial position and velocity deviation mag-

nitudes σr and σv is then obtained using the maximum eigenvalues of the submatrices:

Λ(t) =λmax (φrr(t))σr + λmax (φrv(t))σv (2.24)

One use of deviation measurements is simply to distinguish between regions where errors grow

rapidly (or cheap maneuvers can cause large orbit changes) and those where they do not.

By leveraging the abstraction-based problem formulation, the information can alternately be

translated directly into a worst-case effect on outcomes of interest. This is done by first introducing

a parameterizable robustness margin d. A simple, constant definition d (t) = ζ is used as a base-

line for comparison with the more motivated, time-varying definition d (t) = ηΛ (t) that implies

robustness to η standard deviations of error. The worst possible influence of a position deviation d

upon objective fulfillment is then represented by reducing the acceptable bounds (a+, a−) of each

objective sub-measure a ∈ A accordingly, relative to the midpoint value a∗ = (a+ + a−) /2

a± = a∗ ±∆da (2.25)

where the expression ∆da relates a sub-measure’s deviation to a position deviation of magnitude

d. For observation sub-measures, this espression takes the following forms:

∆dρ =∆ρ− d (2.26)

∆dθ =∆θ − d/
(
ρ∗ −∆dρ

)
(2.27)

∆dϕ =∆ϕ− d/
[(
ρ∗ −∆dρ

)
sin
(
θ∗ −∆dθ

)]
(2.28)

∆dψ =∆ψ − 2 sin−1 (d/ (2ρ)) (2.29)

These values are subsituted into Eq. 2.32 to shrink the acceptable sub-measure value range as

functionally plotted in Figure 2.2 and visualized in the mission scenario illustrations of Section 2.3

for purely spatial measures. Similarly, the reaction criterion for d-robust planning can be stated as

Danger (r, d) =
(
ρB (r)− d < ρ−B

)
(2.30)
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with a cushion parameter ρ−B introduced to accommodate uncertainty in the model of the body

surface.

Finally, an additional criterion is introduced based upon a simple threshold of predicted

deviation:

Expire = (d > dmax) (2.31)

As the effects of deviations on abstract outcomes are already accounted for above, this criterion will

be used merely to improve computational efficiency by terminating some propagations early. For

example, setting dmax to be the smallest dimension of any goal region saves the effort of computing

motion beyond the time at which robust goal fulfillment becomes impossible.

2.2.3.2 Gradients of Intermediary Measures

Generally, science objectives and failure criteria are ultimately interpreted in a Boolean sense

— impact either did or did not occur and observation requirements either were or were not fulfilled.

While this is appropriate for classifying a single trajectory, it ignores underlying information that

could be useful during informed sampling of the continuous design space of possible trajectories.

Exploiting this continuous structure could be especially vital when control sets that achieve a given

objective are very small relative to the size of the control domain.

To achieve this, a real-valued measure qa ∈ [0, 1] of the quality of the spacecraft state in

terms of a generic observation sub-measure a is constructed. This function of the actual deviation

δ(a) = |a − a∗| is parameterized by the midpoint value a∗, the allowable deviation ∆da shrunken

by the robustness margin, and a new parameter that greatly broadens the set of control inputs for

which nonzero outputs are attained: the extended deviation ∇a.

qa(t) =



1 if δa(t) < ∆a

δa(t)−∆a
∇a−∆a if ∆a < δa(t) < ∇a

0 if δa(t) > ∇a

(2.32)
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The continuous nature of this quality function will play a pivotal role in aiding an efficient search

of the reachable set of decision values, i.e., scores. Figure 2.2 shows how the shape of qa(a) is

influenced by mission requirements (a+, a−) and design parameters ζ or η and ∇a. In all cases, ∇a

a

a∗

qa

1

∇a

δa
0

∆da ∆a

Figure 2.2: Metric quality function defined by mission requirements and planner design parameters.

is set to maximally extend the gradient, i.e., ∇ρ = resc and ∇a = 180◦ for all angular quantities.

Completion of an objective requires all its component measures to satisfy their prescribed

bounds simultaneously. This criterion is scalarized as the overall quality measure

q =
1

#A

(∑
a∈A

q
eq
a

)1/eq

(2.33)

such that q = 1 ⇐⇒ qa = 1 ∀ a ∈ A regardless of the choice of eq, another search design parameter

which merely distorts the slope of q(A) in the regime q < 1.

The value q is assessed for each of the ng observation tasks and a scalar measure Q ∈ [0, 1], the

instantaneous maximum amount by which any objective’s quality measure exceeds its completion

status, is used as an overall indicator of chances for goal completion.

Q(t) =
ng

max
i=1
{max(qi(t)− gi(t), 0)} (2.34)

High maxima of Q(t) imply that a trajectory closely approaches the goal region for a task that

has not yet been completed. By computing these maxima over segments preceeding or following

prospective arc end time t, with th as the time horizon to which the trajectory was propagated,

two other useful series are produced:

←−
Q(t) = max

τ∈(t0,t)
Q(τ) ,

−→
Q(t) = max

τ∈(t,th)
Q(τ) (2.35)
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A large value of missed quality
←−
Q(t) therefore suggests that a small difference in the imparted

∆v could place the spacecraft on a trajectory that fully satisfies objective constraints. Conversely,

a large prospective quality
−→
Q(t) reflects that the forthcoming planning cycle may afford chances

for objective completion via some qi == 1, which implies the criterion Imageablei. However, the

extended phase space field Q (x, t) may have many maxima below unity; i.e., the selection of ∆v

to attain q == 1 is a non-convex problem.

2.3 Test Cases

A series of increasingly challenging test cases have been used throughout the development of

the planning algorithm, most of which correspond to actual small bodies that have been targeted by

robotic exploration missions: the near-Earth asteroid Itokawa, Mars’ small, low-orbiting planetary

satellite Phobos, and the short-period comet 67/P Churyumov-Gerasimenko. Itokawa, the target

of the only completed asteroid sample-return mission to date, presents a highly triaxial shape

and low mass, such that the influence of SRP is significant. Phobos, conversely, is less triaxial

and much more massive, with dominant perturbations instead caused by the tidal forces of its low-

altitude orbit about Mars. Combined with scientific interest, its extreme dynamical properties have

motivated studies of various classes of trajectories for manned or unmanned exploration missions

[9, 75]. Comet 67/P is a contact binary with an especially unusual shape exhibiting a large amount

of concavity; near perihelion, this body produced significant outgassing, however this force category

was not included in the analysis.

The basic physical properties of these bodies are listed in Table 2.1 along with relative

measures of non-Keplerian influences and the search domain bounds used to generate illustrative

reachability maps. The SRP acceleration and the spin rate are given in terms of the minimum

surface gravitational acceleration gα = |g (αx̂) | and the critical spin rate ω∗ =
√
gα/α that would

cause centripetal shedding of mass under the absence of cohesive forces and external influences.

Standard reachable domain designation reflects a reference orbit radius of twice the mean central

body radius R̄ = (αβγ)1/3, a maximum maneuver magnitude corresponding to the Keplerian escape
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velocity, and a prediction time horizon of 2.5 times the osculating circular orbit period associated

with the reference orbit radius.

Table 2.1: Dynamical model parameter values

Itokawa Phobos 67/P

Principal axes† 0.54× 0.29× 0.21 27× 22× 18 4.1× 3.3× 1.8 km
2.6× 2.3× 1.8 km

Density 1.9 1.9 0.47 g/cm3

Spin period 12.1 7.65 12.4 hr
Third body 3B Sun Mars Sun

Axis ratios† α : β : γ 2.6 : 1.4 : 1 1.5 : 1.2 : 1 2.3 : 1.8 : 1 γ
1.4 : 1.3 : 1 γ

Spin rate ω 0.29 0.36 0.28 ω∗
3B gravitation µP 5.6× 1019 6.0× 107 2.0× 1017 µ

3B distance |d| 8.3× 108 850 1.1× 108 R
3B mean motion n negligible 1 negligible ω
SRP acceleration aS 0.026‡ negligible negligible gα

Domain size ∆vmax 0.092 9.0 variable m/s
Time horizon t 18 17 Expire hr

† Values for 67/P reflect two distinct lobes; model uses polyhedral shape.
‡ Approximate value for the Hayabusa spacecraft at perihelion

Mission scenarios are formulated by combining the above physical models with sets of ob-

jectives from the categories outlined in Section 2.2.2 — close-range observations, deployment of

payloads to target sites, and repetition of motion. These test cases are summarized in Table 2.2

below.

Scenarios Ito-Easy and Pho-Easy are plotted in Figure 2.3. Large conical observation zones

are designated for five points of interest, with bounds consisting only of maximum viewing distances

comparable to the central body mean radius and minimal viewing co-elevations in the range of

25◦ < θ− < 40◦. Long imaging durations ∆tg are also used for these tasks, with the end effect of

producing smooth variation of g over large regions of the search domain to produce reachability

maps that clearly illustrate the abstract reachability concept.

The sequence of cases Sphere, Half-Ito, and Ito-Hard are designed to reveal the ultimate im-

pact of non-Keplerian dynamics on the behavior of the complete receding-horizon planner. These
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Table 2.2: Test Case Mission Scenarios

Scenario Dynamics Objectives Figure

Generic α:β:γ ellipsoid w/ 3B observation, periodicity not shown
Ito-Easy Itokawa easy observation set 2.3

Pho-Easy Phobos easy observation set 2.3
Sphere 1:1:1 ellipsoid observation clusters 2.4

Half-Ito 1.64:1.12:1 ellipsoid observation clusters not shown
Ito-Hard Itokawa observation clusters 2.4

Pho-Hard Phobos hard observation set 2.4
67/P-Obs 67/P observation clusters 2.5

67/P-Land 67/P deployment set 2.6

Figure 2.3: Easy observation sets for Ito-Easy and Pho-Easy test cases.
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effects are isolated by defining the observation tasks consistently in terms of target latitude, longi-

tude, and surface normal. Figure 2.4 shows the Sphere and Ito-Hard scenarios, with much smaller

observation distances of about R̄/4. Four tasks are assigned per surface target location: one from

within θ+ = 20◦ of the surface normal, and three from between θ− = 30◦ and θ+ = 60◦ with

additional azimuthal constraints producing evenly spaced 60◦ segments. Lighting geometry bounds

ψ± that translate to an acceptable phasing window that lasts 20% of the rotational period are op-

tionally included as well. Observation sub-measure requirements must be simultaneously satisfied

for a span of ∆tg = 2 minutes. This figure also shows the test case Pho-Hard, with slightly larger

(a) (b) (c)

Figure 2.4: Clustered observation sets for (a) Sphere and (b) Ito-Hard test cases; Half-Ito, not
pictured, correspons to an intermediary state of elongation. (c) Pho-Hard test case.

observation regions, increased imaging durations of 7 minutes, and 20% to 30% phasing windows.

The case 67/P-Obs is shown in Figure 2.5; observation targets correspond to three of the

candidate landing sites considered by for ESA’s Philae lander, namely the actual target Site J on

the smaller lobe of the comet, the backup Site C on the perimeter of the larger lobe, and an earlier

candidate Site A on the inner surface of the larger lobe. Other than a scaling up of ρ±, observation

task clusters for each site are generated identically to those of the case Ito-Hard, including phasing

requirements; this affords close views with moderate shadows to best reveal surface features. The

figure shows both the high-resolution ν = 2500 polyhedron used as a truth model and the low-

resolution ν = 64 polyhedron used for fast online planning. Shrunken observation zones in the
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second subfigure demonstrate the difference of ∆da under a significant robustness margin d.

Finally, Figure 2.6 illustrates the payload deployment test case 67/P-Land. Three landing

sites are selected to provide diverse challenges in deployment trajectory design:

• Site J, the location targeted for Philae’s deployment in the Rosetta mission, lies on the

“head” of the comet; local geometry is convex at coarse resolution, and the surface normal

direction n̂J is roughly parallel with the site’s large-magnitude position vector RJ .

• Site C, the runner-up candidate site for Philae, lies on the opposite lobe at a similar dis-

tance from the center of mass. However, its surface normal n̂C is more nearly perpendicular

to its position vector RC .

• Site N, which was not a candidate site in the Rosetta mission, is located on the northern

half of the comet’s “neck”. Highly convex local geometry makes it difficult to reach, while

its close proximity to the center of mass implies higher impact velocities.

Impact distance from each target is bounded to be no greater than ρmax = 150 m for a successful

landing, combined with an impact angle restriction of γmax = 30◦.
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(a) (b)

Figure 2.5: Body and goal region geometries for (a) “truth” polyhedron with nominal objective
measure ranges ∆a and (b) low-resolution prediction polyhedron with reduced objective measure
ranges ∆da.

Figure 2.6: Two views of the three surface locations targeted for payload depoyment.



Chapter 3

Abstract Reachability

Abstract reachability analysis poses this central question: what mission-level outcomes can

be accomplished under the given control authority? The main ingredients of such an analysis are a

description of the control method, a definition of “mission-level outcomes”, and a causal relationship

that links the two. Under natural motion, this relationship is readily described via the development

of the predictive model in Chapter 2.

This chapter will begin by detailing an appropriate control paradigm that easily accommo-

dates a reachability analysis approach based upon natural, ballistic motion. Variations on the

implementation of this control method will then be described in order to allow the examination

of trade-offs between the dimensionality and parameterization of the reachability search problem

relative to its computational burden and the overall performance of the planning algorithm. Be-

ginning with the analytically solvable Kepler problem, example reachability maps will be derived

and illustrated for increasingly abstract mission-level outcomes. Finally, numerically computed

maps for non-Keplerian systems under finite time horizons will be contrasted against the simple

Keplerian examples to illustrate the characteristics and challenges of sampling-based planning in

the targeted problem.

3.1 Control Scheme

Reachability stems directly from the form and bounds of a control parameter u(t) present in

the system’s dynamics. Due to the nonintegrable nature of the small body mission problem, the
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results of a continuous domain of control inputs cannot be determined analytically. Time-varying

u(t), such as the continuous force of a low-thrust engine with unconstrained slewing, would further

exacerbate the curse of dimensionality in the search of the mission design space Fortunately, a

highly discretized control strategy — intermittent execution of impulsive-thrust maneuvers — is

conventional and appropriate for small body exploration missions. This drastically reduces the size

of the control space to a degree that it becomes feasible to search numerically. Several characteristics

of these systems justify the intermittent impulse approach, foremost the low speeds of even close-

proximity orbits due to weak gravitational fields. The Keplerian circular orbit speed at two mean

radii about asteroid Eros is about 5 m/s; for comet 67/P the equivalent value is less than 50 cm/s

and for asteroid Itokawa it is less than 10 cm/s. This allows drastic changes to the spacecraft’s

orbital path to be imparted at fuel costs that are miniscule compared to the cost of reaching and

rendezvousing with the body, typically several km/s.

Such weak gravitational fields may also bring to mind alternate control strategies; however,

these carry with them other downsides. A frequent-impulse scheme, i.e., hovering or otherwise

merely overpowering the natural motion of the system, could prove appropriate for focused short

term operations but would become fuel-prohibitive relatively quickly. In some scenarios, plume

impingement upon the body surface could also become a factor. A low-thrust control scheme,

conversely, might simply lack the thrust levels to respond decisively to rapid error growth, in

addition to increasing the complexity of the planning problem. Both of these strategies could also

complicate the spacecraft’s ability to simultaneously operate science subsystems, particularly due to

associated pointing constraints. Furthermore, undue noise would be introduced into the process of

orbit determination and system parameter estimation. In light of these drawbacks, the intermittent

impulse scheme is identified as both the most practical to implement and the most straightforward

to study with reachability analysis.
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3.2 Outcome Mapping

Given a control scheme, reachability analysis next requires a mapping from control inputs to

elements of the outcome space. The impulsive control scheme described above provides a direct

correspondence between control inputs and initial conditions. Thus, the first stage of the mapping

is the operation of the natural physical dynamics F , i.e., integration under the force model of Eq.

2.1, upon the attained initial conditions x0 = x (t0) to output a trajectory through phase space,

x̃(t; t0), with tilde denoting that the variable includes trajectory history since epoch t0. For brevity,

this epoch will frequently be omitted from notation.

F : (t0,x0) −→ x̃(t) (3.1)

x̃(t) = {x (τ)}t0≤τ≤t (3.2)

The second mapping stage then utilizes the mission specifications G, composed of equations

from Section 2.2, to evaluate the physical trajectory in terms of abstract quantities of interest,

which are collected in the outcome vector y.

G : x̃ (t) −→ y (t) (3.3)

These abstract outcomes may include any measurement or quantity of interest that isn’t merely a

state/configuration of the system, including time-integrated quantities that depend not only on a

trajectory’s current state but also its history.

Outcome states y then reveal the mission-level trade space for decision-making. Such an

information product can be used by a mission designer during preliminary analysis and is analogous

to certain approaches and analyses that have received attention in the past. Most well-known, “pork

chop” plots relate two design variables — departure and arrival dates — to the minimal fuel cost

of an orbit transfer to a targeted state, e.g., via Lambert’s method. A variant of this approach has

also been studied for designing low-energy transfers from the Earth to the Moon, with alternative

design parameterizations of the departure state and a broader set of output measures including

travel time and injection altitude [37]. Other authors have selected Cartesian subspaces to obtain
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broad pictures of stability [47] and impact [51] in the CR3BP, both quantities being of interest for

the autonomous planning algorithm.

Finally, for autonomous planning, the outcomes y need to be appropriately interpreted by

scalar objective functions for each type of decision to be made. This is done with the planner

H, producing a score vector s whose contents are essentially second-order outcomes of the control

input.

H : y (t) −→ s (t) (3.4)

Individual score values si will be described during discussion of the planner’s design in Chapter 6

— the scalar score notation s and scalar usage of the term “score” will refer to the decision function

and its value for a given input. Lastly, the score vector time series s(t) is reduced to an individual

score state s′ via a timing process T that acts to maximize the decision variable across time.

(
s′; t′

)
= max

t
s (t) (3.5)

s′ = s
(
t′
)

(3.6)

Altogether, the predictive model that relates initial states (translatable directly from control inputs)

to decisions is structured as

(t0,x0)
F−→ x̃(t)

G−→ y(t)
H−→ s(t)

T−→
(
t′, s′

)
(3.7)

This model can thus be composed as a single mapping M , or a time-reduced map M ′ that reflects

each input’s best possible outcome.

M =H ◦G ◦ F (3.8)

M ′ =T ◦M (3.9)

M ′ : (t0,x0) −→
(
t′, s′

)
(3.10)

3.3 Reachable Domains

Given time-dependence in some quantities of interest, such as solar phasing, the entirety of

possible system configurations is described by the extended phase space (T ,X ). Thus, the complete
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realm of possible outcomes is obtained from G ◦ F : (T ,X ) −→ Y(t), where y ∈ Y. For the 3DOF

nonautonomous systems of interest, this initial condition space has dim (T × X ) = 7.

In order to reduce the problem description to a computationally feasible level and aid accessi-

bility to human interpretation, a lower-dimensional subset of possible initial conditions is used. As

is appropriate for online planning, these reduced planning domains D ⊂ (T ,X ) reflect the initial

conditions that are reachable from a nominal state using the available control set U . Then, the

mapping processes M ′ can conceptually be applied to relate the admissible controls to full sets

of reachable trajectories X̃ , sets of attainable mission results Y and scores S and finally the best

attainable scores S ′.

(U ; t0,x0)
F−→ X̃ (t)

G−→ Y(t)
H−→ S(t)

T−→
(
T ′,S ′

)
(3.11)

M ′ : (U ; t0,x0) −→
(
T ′,S ′

)
(3.12)

Here, T ′ represents the set of final epochs that maximize the decision score s. The steps of the

continuous-set mapping process are illustrated in Figure 3.1 assuming a control domain Usph to be

described next.
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G H
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(t, r,v)k
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(t, r,v)k+1

ŝs

ŝh

Figure 3.1: Illustration of the mapping process from an initial domain, defined by the state (t0,x0)
and the control set Usph, through the space of abstract outcomes and ultimately to scores that
govern automated decisions.
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3.3.1 Planning Domains

As previously discussed, control authority consists of the selection of some impulsive thrust

maneuver ∆v to execute at some time ∆t defined relative to the initial epoch. Beginning from a

broad definition of admissible control sets,

∆t ∈ ∆T = (0,∆tmax) (3.13)

∆v ∈ ∆V =
{

∆v ∈ R3
∣∣ ∆v ·∆v ≤ ∆v2

max

}
(3.14)

a first cut is made to define the control domain and full reachable domain from a given nominal

trajectory x(t) as

Ufull = ∆T ×∆V (3.15)

Dfull (Ufull; x (t)) = (t0 + ∆T , r (t0 + ∆T ) ,v (t0 + ∆T ) + ∆V) (3.16)

However, because Ufull is still large with dim (Ufull) = 4, additional pruning of the design

space is necessary in order to further reduce its dimensionality. Two options are considered for

defining an online planning domain Usub ⊂ Ufull with dim (Usub) = 3, a level of dimensionality that

will be demonstrated as numerically manageable in later results.

First, by selecting ∆t = 0, the spherical velocity-space control domain Usph and reachable

domain Dsph = (r0,v0 + ∆V) are defined. Usph will be the most extensively used domain in later

online planning analyses, with timing decisions handled instead by the process T . However, an

alternate search domain Ucyl = (∆T ,∆V⊥ (n̂)) will also be tested to explore the utility of the

temporal degree of freedom, instead sacrificing one degree of freedom within the velocity domain

defined by the vector n̂.

∆V⊥ (n̂) =
{

∆v ∈ ∆V
∣∣ ∆v · n̂ = 0

}
(3.17)

A useful convention is to parameterize n̂ in the radial, in-track, cross-track (RIC) frame such that

n̂ ∈
{

R̂, Î, Ĉ
}
, R =r, C =r× v, Î =Ĉ× R̂ (3.18)

which introduces dependence of n̂ upon x(t).
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3.3.2 Visualization Domains

Further dimensional reduction can be useful for visualization, whether by using a domain

Udisk = ∆V⊥ (n̂) or Ushell = ∆V◦ (v), with

∆V◦ (v) =
{

∆v ∈ ∆V
∣∣ ∆v ·∆v = v2

}
(3.19)

defining a spherical shell in velocity space — a level set of fuel cost. For this object, the Mollweide

equal-area map projection can be used.

Finally, 3D domains such as Usph and Ucyl can be visualized with standard perspective-based

projection. In general, this merely results in a view of the outer surface of the domain, but interior

details can be accessed by only plotting subdomains Uchunk based upon Boolean filtering rules that

operate on the outcome set.

Uchunk
(
Y ′; Filter

)
=
{
u ∈ U

∣∣ Filter
(
y′ (u)

)}
(3.20)

For example, setting Filter = Impact would return only those regions of the control domain whose

constituent inputs u result in satisfation of the Impact criterion.

3.4 Keplerian Analysis

As a stepping stone to understanding the structure of reachability maps for non-Keplerian

systems, results under Keplerian mechanics are investigated first. For many useful properties

and outcomes, the structure of these maps is fixed and represents an infinite time horizon. The

plots of this section are all obtained analytically — closed-form expressions for level curves of

various properties in the initial velocity space are all derived in Appendix B. Analyses reflect planar

maneuvering prospects at a finite spherical central body with radius R and an initial spacecraft

orbit radius r; velocity is normalized such that when oriented perpendicular to the initial radius,

unity speed produces a circular orbit.
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3.4.1 Keplerian Element Level Sets

Because Keplerian elements remain constant in pure two-body motion, single-impulse reach-

able orbits can be fully described by analytically mapping from initial velocities to these elements.

Figure 3.2 shows the straightforward relationship between initial velocity and semimajor axis from

Eq. B.1 — because initial position cannot be instantaneously changed by controls, the orbit energy

and therefore the semimajor axis varies directly with the initial speed, producing concentric level

sets about the origin. Less trivial is the eccentricity, whose level curves (Eq. B.4) emanate from a
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Figure 3.2: Level curves of normalized semimajor axis and eccentricity within the normalized initial
velocity space.

pair of circular (e = 0) orbit points — prograde at (0, 1) and retrograde at (0,−1) — to a single

circle of radius
√

2, the family of parabolic orbits, centered about the origin. Eccentricity in the

hyperbolic regime grows rapidly as additional in-track velocity is added, and slowly with changes

in radial velocity.

As seen in Figure 3.3, level curves of argument of periapsis (Eq. B.5) emanate radially from

the circular orbit points, at which the quantity is undefined. The combination of this information

with the previous two plots reveals the relative costs and the degrees of independence for changing

different Keplerian elements from a given initial state.
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Figure 3.3: Level curves of argument of periapsis within the normalized initial velocity space.
Singular points at (0,1) and (0,-1) are prograde and retrograde circular orbits.

3.4.2 Safety Constraints

The safety terms outlined in Section 2.2.1 are easily related to Keplerian elements. Impact

occurs if and only if an orbit’s radius of periapsis is lower than the spherical central body radius

R, and escape occurs when eccentricity reaches unity or greater. Figure 3.4 shades in the regions

for each of these criteria; when overlap occurs, the failure criterion to occur first takes preference.

Bounds of impact sets are computed from Eq. B.6 and are parameterized by the ratio R/r, the

normalized proximity of the initial state to the central body. The second plot shows level curves

for speed and flight path angle at radius of impact R; these are obtained from Eqs. B.8 and B.7.

The two quantities are seen to vary mostly independently from each other except when the radial

component of the initial velocity is small.

3.4.3 Goal Rendezvous

Finally, the problem of transfering to target points above the central body is illustrated. Two

parameters set the location of the target in the inertial plane: β describes its radius while θ gives

the spacecraft-body-target angle. Families of successful transfers are plotted in Figure 3.5 for fixed
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Figure 3.4: Analytically-derived outcome maps under Keplerian dynamics. (a) Level curves of
grazing impact as a function of orbit radius normalized by body radius; shading interior to curves
indicates incident impact. (b) Level curves of impact velocity (blue lines) and impact angle (green
lines).

β, varied θ and vice versa. It can be seen that goal-fulfillment options are much broader if the

spacecraft is permitted to use trajectories that would later result in failure if no further actions

were taken. However, these results are difficult to extend to applications where the target is not

inertially fixed, as is the case for body-relative observations.

3.5 Non-Keplerian Qualities

This section will present numerous examples of reachability maps for non-Keplerian systems

with the purpose of emphasizing fundamental qualitative differences caused by perturbations away

from Keplerian motion. In keeping with the focus upon the general dynamical phenomena of these

systems and the broad occurrence and meaning of structural complexity in their maps, precise

specifications of the problem setups are omitted. Safety outcomes will be the primary results

of interest as they are the most general and are sufficient for demonstrating most non-Keplerian

phenomena of concern; more objective-oriented analyses and discussions are contained in Chapter
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Figure 3.5: Analytical reachability of goal locations as a function of their angular displacement
and radius. Left: radius fixed, angle varied. Right: angle fixed, radius varied. Faded lines signify
occurrence of failure condition before attainment of goal.

5 following the discussion of map computation in Chapter 4.

3.5.1 Adding Perturbations

Because all trajectories in Keplerian systems are conic sections, equivalence between states

and conics was used in determining features of the Keplerian reachability map in the previous

section, whose features are valid for an infinite time horizon. However, trajectories in strongly per-

turbed systems are generally nonperiodic, and their propagation for numerical reachability sampling

can only be conducted over a finite time interval. Figure 3.6 compares a mathematically derived

map with a numerically generated one for the same finite-sphere Keplerian system. General struc-

ture appears identical, but the impact region of the numerical map is truncated in the positive

radial velocity direction due to its finite time horizon combined with the growth toward infinity of

the periods of outbound orbits as eccentricity approaches unity.

As nonsphericality is the dominant source of perturbations in low orbits for a large share of

small-body systems, an initial look at non-Keplerian map structure is produced in Figure 3.7 by
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Figure 3.6: Outcome maps for failure scenarios in the Kepler problem.

incrementing the triaxiality of a central body that is initially spherical and has uniform rotation.

A 3D view of Uchunk (Impact) is used to emphasize changes on the surface of the impact set.

Figure 3.7: Evolution of the impact set as the triaxiality of a spinning spherical central body is
incrementally increased.

After the first increment, the border of the set becomes wavy, but otherwise appears to

retain its simple gradient structure of time-to-impact. However, the second triaxiality increment

produces new impact families that are distinctly more brightly colored than neighboring families,

which indicates a considerably longer time-to-impact. The pattern becomes pronounced after a

third increment, with late-impacting families consistently growing from the lobes on one side of the

set. This is suggestive of resonance effects, where an early close pass (indicated by proximity on
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the map to early-impacting sets) causes a perturbation that results in impact at a later state. It

is concluded that the “waves” on the early-impacting sets are a first-order effect primarily caused

by the body rotating into or out of an orbit path, while late-impacting families are increasingly

attributable to gravitational perturbations throughout their lifetimes rather than body orientation

alone.

Next, synchronous third-body perturbations are incrementally added to this model to produce

the results of Figure 3.8. This reflects the environment of small planetary satellites; synchronicity

is appropriate because strong third-body gravitation generally results in tidal locking. Unlike the

Figure 3.8: Evolution of the impact set as the third body gravitation is incrementally increased at
a spinning triaxial central body.

influence of triaxiality, this perturbation appears to fundamentally alter the shape of even early-

impacting orbit families. Not shown, changes to the initial condition (t0,x0) also modify the effects

of both perturbations upon map structure.

Other important non-Keplerian qualities are better illustrated on 2D domains Udisk. In

Figure 3.9, the central body’s rotation rate is incremented simultaneously with its triaxiality and

the magnitude of third-body gravitation. Some of the resultant map features are very thin and

finely detailed, emphasizing the high sensitivity of important outcomes to small changes in initial

conditions. Additionally, the second perturbation increment produces a somewhat more complex

picture than the third — this implies that the combination of perturbations can interact in diverse

and unintuitive ways.
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Figure 3.9: Impact and escape sets for out-of-plane maneuvers by an orbiter of a rotating ellipsoid
as rotation rate, triaxiality, and third body perturbations are incremented simultaneously.

3.5.2 Extended Horizons

As mentioned before, a key difference between Keplerian and non-Keplerian reachability maps

is the effect of the time horizon; for generic initial conditions, infinite-time bounds on impact and

escape sets can be computed a priori only under Keplerian dynamics, where the periapse radius

and the eccentricity are both integrals of motion. At a non-spherical body, most trajectories are

nonperiodic and do not facilitate extrapolation of properties over infinite time, and there is no

longer a one-to-one correspondence between periapse radius and impact. One effective illustration

of this fundamental difference is actually the examination of an exception to the general rule. By

zooming in on the lower “arm” feature of the final map of Figure 3.9 while simultaneously increasing

the time horizon, the sequence of results shown in Figure 3.10 are generated. These maps illustrate

self-similarity oriented about the center point of the zoom, which retains “safe” status even over

Figure 3.10: Successive magnified views of the lower spiral arm feature from the final map of Figure
3.9 as the time horizon is extended.
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time horizons and zoom levels large enough to begin to introduce the numerical noise visible in

the final panel. At the same time, the surrounding red spiral continues to grow infinitely with

time, filling in more of the map and coming infinitessimaly close to the safe center point. By

propagating this point’s corresponding initial condition, shown in Figure 3.11, the meaning of these

features becomes imminently clear; the repeating spiral is centered around a periodic orbit, and the

dissimilar surounding context at the highest zoom level is because the condition does not begin on

the orbit but rather travels onto it along its stable manifold. Further, the interspersed white arms of

the spiral could indicate neighboring safe quasiperiodic orbits, with the unsafe gaps corresponding

to resonance conditions similar to those that cause Kirkwood’s gaps in the distribution of orbit

periods of main belt asteroids.

(a) (b)

Figure 3.11: Trajectory sampled from the center of Figure 3.10’s infinite spiral, shown in (a) body-
fixed frame and (b) inertial frame. The orbit arrives at a Lyapunov periodic orbit from along its
stable manifold.

More generally, most non-Keplerian reachability prospects do not correspond to periodic

orbits or stable manifolds. Figure 3.12 shows a broader picture of reachability under extended-

time analysis. The short-horizon result of subfigure (a) resembles the findings of Figure 3.7; the

Keplerian impact set is distorted with wavy lobes and attached late-impacting families. However,

increasing the time horizon by a factor of five fills in much of the safe zone with later occurrences of

impact and escape. The largest remaining families of safe orbits are either near the early-escaping
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(a) (b) (c)

Figure 3.12: Radial/in-track objective reachability map with (a) short time horizon and (b) long
time horizon for motion in the Ito-Easy test case. (c) magnifies a complex region of the long-horizon
result.

set, implying eccentricities just below unity and long orbit periods, or near the center point of

the map, which reflects an osculatingly circular orbit state. A zoomed view of this region reveals

concentric rings of impacting sets, suggesting very complex resonance phenomena.

3.5.3 Reachability From Sensitive Structures

The above reachability analyses were conducted from typical initial orbit states; however, far

more complex results can be obtained by beginning from special phase space structures. Figure

3.13 shows a Ushell reachability map for a state on the periodic orbit from 3.11, i.e., with all

initial states deviated by equal-magnitude velocity perturbations. Complex effects of resonances

are again apparent in the concentric sequences of impact families, whose interstitial safe regions

might correspond to quasiperiodic orbits with long-term stability.

Figure 3.14 shows a sequence of Udisk maps generated for a spacecraft at the L1 point of the

Mars-Phobos system. Reachability options appear more complex and diverse than any preceding

analysis with a comparable time horizon. This is in keeping with the nature of hyperbolic equilib-

rium points in conservative systems — along with their stable and unstable manifolds, these points

separate different regimes of phase space such that very small perturbations can drive the state in

vastly different directions.
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Figure 3.13: Reachability prospects in the immediate neighborhood of a periodic orbit.

Figure 3.14: Reachability prospects from the L1 point of the Mars-Phobos system. Each disk has a
different velocity magnitude in the normal direction, representing increasingly retrograde motion.



Chapter 4

Map Computation and Search

Although reachability analyses are naturally applicable to continuous control domains, re-

sults cannot be computed in continuous form for nonintegrable system models such as the small

body mission problem. This chapter will address the challenges of leveraging the reachability map

concept for preliminary analysis and online planning in the context of limited, discrete numerical

computations. After discussing the inference of information across continuous volumes based upon

knowledge of discrete points, an adaptive refinement method is introduced that boosts compu-

tational efficiency by focusing numerical sampling at useful locations. Then, the formulation of

heuristics that govern the bias of the sample distribution is explored in depth, including features

inspired by hill-climbing algorithms and simulated annealing. These tools are shown to produce

data products for either usage paradigm that vastly outperform a naive grid-search approach for

equivalent computational effort.

4.1 Discrete Approximation

Due to nonintegrability, the continuous-domain map M ′ (U) cannot be computed in its en-

tirety. Instead, numerical propagations of only a finite number N of discrete control points {ui} ∈ U

provide M ′ (ui) = s′i for i = 1, 2, . . . , N . Knowledge of the outcomes for this discrete sample can

then be used to infer continuous structure across the map.

Two types of strategy for making this inference are tesselation and triangulation. In tes-

selation, individual points define finite regions that collectively fill the the full domain without
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overlapping. Triangulation conversely uses n+ 1 sampled points to define vertices of n-dimensional

shapes called simplices, e.g., triangles for n = 2 and tetrahedra for n = 3, which likewise fill the

domain without any redundant coverage. This is selected as the preferred approach as it associates

a given test point with multiple sampled points, inherently providing a framework for interpolating

values that vary continuously.

4.1.1 Mesh Elements

The list of simplices, which when combined with the list of sampled points is termed the

“mesh”M = ({ui} , {Vj}), is computed via Delaunay triangulation in order to minimize the occur-

rence of sharp angles. Each simplex Vj consists of n+ 1 vertex IDs, i.e., Vj = (ij,1, ij,2, ij,3, ij,4) for

n = 3. The flow of a set of initial states resulting from one of these control-domain volume elements

under the physical dynamics F can be conceptualized as the propagation of a tube through phase

space. If certain properties are common between points that bound the element, they can thus be

inferred to also apply to points on the interior as the resulting trajectory must remain inside the

tube. Real-valued outcomes can also be interpolated based upon this logic.

However, such conclusions imply that outcomes are shared or similar because the propagated

paths closely neighbor each other. The validity of this assumption generally correlates inversely

to the size of the element; as the distance between two points increases, so does the likelihood

or magnitude of outcome dissimilarity. Average element size correlates with total sample count,

limiting the average accuracy of such inferences in proportion with the computational budget

for sample propagation. Depending on the desired application of the computed map, it may be

beneficial to increase resolution and therefore accuracy in specific regions at a cost of reduced

resolution/accuracy in the remainder of the map.

4.1.2 Resolving Features

For preliminary mission design and general system analysis, visualizations are needed that

illustrate the correspondence of u with various outcome values y (x̃) such as Boolean safety status
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or real-valued goal progression. As demonstrated in Chapter 3, these outcomes may be uniform

over large regions, e.g., where stability assures long-term safety for a broad family of trajectories,

or may vary quite finely due to resonance effects or exacting requirements for objective fulfillment.

Accurate perception of the big picture requires these features to be sufficiently resolved.

For Boolean outcomes, this means that the total volume of simplices meeting the Border

criterion should be minimal in proportion to the total volume of the domain, where

Border (V ; y) =
(
∃ (i1, i2) ∈ V

∣∣ y(ui,1) 6= y(ui,2)
)

(4.1)

In other words, indeterminate regions of the mesh should be made as small as possible. In the case

of real-valued outcomes, variance across a simplex should be consistent between all simplices in

order to map the value’s gradient with uniform accuracy.

Mean (V ; y) =
1

n

∑
i∈V

y(ui) (4.2)

Variance (V ; y) =
∑
i∈V

(y(ui)− Mean (V ; y))2 (4.3)

4.1.3 Objective Maximization

Conversely, an autonomously operating spacecraft need not concern itself with globally par-

titioning the map and resolving all features. Nor does each output y warrant individual attention;

trade-space decisions must be automated by constructing a single scalar decision function s (y).

What is then primarily important is to locate the maximum of this decision function across the

map as accurately as possible, i.e., minimizing the difference between the best sampled value s∗

and the true global maximum max s′ (D).

(s∗; u∗, t∗) = max
u∈M

s′ (u) (4.4)

This optimal point could potentially lie in a relatively uniform map region, and many complexly

structured regions in terms of some outputs y may be uniformly low scoring in terms of s; therefore,

a sample distribution that works well for one usage paradigm may be poorly suited to the other.
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4.2 Adaptive Mesh Refinement

The inhomogeneity of required sampling resolution for different uses motivates an informed

approach to the sampling process. Adaptive sampling has been used before in dynamically similar

settings [52, 76, 50] as well as more disparate applications such as finite element methods for flow

fields and structural analysis. The following section will detail the heuristic used to govern sample

refinement; here we will discuss the general process.

4.2.1 Initialization

Given no a priori knowledge of map features or the score field s (U), the first set of sampled

control inputs ui ∈ U is distributed either randomly or evenly. This sample of N0 points is then

numerically propagated until each result has reached a terminal condition – either failure or time-

out/expiry. The sample set ultimately maps through associated trajectories x̃i(t) ∈ X̃ (t) to mission

results yi(t) ∈ Y(t) and score trajectories s(t) ∈ S(t) which are lastly temporally reduced by the

map T and associated lifespans (s′, t′). Delaunay triangulation is then used to build this sample

set {ui} into an initial mesh M0 consisting of a small number of large volume elements Vj .

4.2.2 Sample Incrementation

The initial N0-sample mesh is sufficient for inferring map structure to a coarse level of accu-

racy. In each refinement iteration, additional samples are taken heterogeneously to preferentially

increase accuracy in certain areas, with the benefit of all previously attained information. The final

distribution of Nf total sample points therefore depends not only upon the sampling heuristic,

but also on the number of sampling cycles and their individual sizes. A higher iteration count

f permits the adaptive scheme to compound its benefits more frequently, but also requires more

computational overhead through the number of meshing operations. This demand may or may

not be significant relative to the total effort required for trajectory propagations, which scales only

with Nf and with the duration and sensitivity of individual trajectories.
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Compounding effects of the iteratively adapted sample distribution could serve to increasingly

localize further samples to smaller regions, which may in turn imply a need for fewer samples in

later cycles. A uniform sample increment Nk−Nk−1 = ∆N ∀ k may then not be the most effective

option. The sampling scheme is instead defined by four parameters: initial sample size N0, final

sample size Nf , iteration count f , and an additional setting eN such that

(Nf −N1) /f =
(
N

1/eN
k −N1/eN

k−1

)eN
(4.5)

Increments then become successively larger if eN > 1 or successively smaller with eN < 1.

4.2.3 Simplex-wise Subdivision

Inferences of map content in unsampled regions can be made using sets of m > 1 sampled

points. For example, in a 3D map (n = 3) interpolation/triangulation could be done on an edge

(m = 2), a triangular face (m = 3), or a tetrahedral simplex (m = 4). Full-dimension simplices

are used by the heuristic to allow interpolation of outcomes at any point in U without needing an

overly cumbersome scheme using m > n+ 1, such as splines. Furthermore, the total volume of M

remains roughly constant during the refinement process, unlike the ever-increasing total face area

or edge length — a fact that will be leveraged during heuristic formulation.

The search heuristic operates on the mesh to assign each j’th simplex a weight Wj based

upon the extent to which the numerically propagated results of its vertices indicate that it contains

relevant missing detail. Each simplex’s largest interior sphere is computed and its center and radius

are used to define a 3D normal distribution from which an additional maneuver is sampled each time

the simplex’s ID is drawn from a W -weighted random sample. This allows rapid gains in resolution

at high-value regions even under a single refinement iteration; the heuristic cannot “saturate” as

would occur in a random sampling scheme without replacement.

4.2.4 Iterative Refinement Algorithm

Adaptive mesh refinement can now be summarized as the following iterative procedure:
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(1) Construct series of cumulative sample sizes.

(2) Initialize mesh with uniform or random sample of control inputs.

(3) Execute refinement sequence for each sample increment.

(a) Propagate each new control input through the prediction model to determine its out-

comes and score.

(b) Using the full set of sampled points as vertices, triangulate a new mesh.

— Terminate loop if final sample size is achieved.

(c) Apply the search heuristic to weight each element based upon its properties.

(d) Conduct a weighted random sample of element IDs from within which to sample

additional control inputs.

Symbolically, this process is given in Algorithm 1 in further detail, assuming provided func-

tions DelaunayTri for Delaunay triangulation, Grid for conducting uniform initial sampling, and

SubDivide for selecting points within a simplex.

4.3 Heuristic Formulation

New sample points in the domain are selected first by selecting simplices from within the mesh,

and then sampling points within those simplices. In a uniformly gridded mesh, the weighted random

sampling could be conducted based upon simplex outcome properties alone, without any undesired

influences present. However, the adaptive refinement process necessarily produces simplices with

variation in their size and shape. When subdividing a simplex by sampling a point within it, points

in larger simplices thus have less likelihood of being sampled, making the two-stage point-sampling

process different from sampling a continuous domain. This effect can be normalized by by beginning

the heuristic with a volume weighting term:

W =vol(V ) (. . .) (4.6)
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Algorithm 1: Iterative refinement of mesh approximating a reachability map.

1 function ReachMap (t0,x0,U ,M ′,W (V ));
Input : Initial state (t0,x0), control domain U , model M ′, search heuristic W (V )

Output: Mesh Mf =
(
{ui}1:Nf

, {Vj}1:(2Nf−4)

)
with results {t′i,x′i,y′i, s′i}1:Nf

// recall that nfaces = 2nvertices − 4

2 (N1, N2, . . . , Nf )
Eq.4.5←−−−− (f, eN ); // series of cumulative sample sizes

3 M0 ← DelaunayTri (Grid (N0,U)); // uniform initial mesh

4 N−1 ← 0;
5 for k = 0, 1, 2, . . . , f do

6 {t′i,x′i,y′i, s′i}(Nk−1,Nk] ←M ′
(
{ui}(Nk−1,Nk] ; t0,x0

)
; // propagate each new input

7 Mk ← DelaunayTri {ui}1:Nk
; // update mesh

8 if k == f then
9 break;

10 end
11 {Wj}1:(2Nk−4) ←W {Vj}1:(2Nk−4); // assign weights via heuristic

12 IDs←WeightedSample {Vj ,Wj}1:(2Nk−4); // weighted random sample

13 {ui}(Nk,Nk+1] ← SubDivide {Vj}IDs; // subdivide sampled simplices

14 end

If the simplex subdivision process contains no biases of its own (all interior points equally likely

to be sampled), then the above weighting function would generate a flat probability distribution

across the continuous domain — all points would have equal likelihood.

The next step is to design additional factors that introduce useful biases. Before considering

outputs of interest, we note that the temporal horizon, i.e., t′ (U) can also vary considerably across

the domain and even within small regions. Longer trajectory durations provide more opportunity

for nearby paths to diverge and for interesting information to exist in the middle. Looking more

closely at such regions thus aids the heuristic in locating finely-detailed structure in general, which

might have otherwise been overlooked.

W =vol(V )

(
mean
i∈V

{
t′i − t0

})
(. . .) (4.7)

Finally, a factor is needed to apply sampling bias to regions that produce outcomes of interest.

As the exact form of this term will be discussed in turn for each the two map usage paradigms, the

full heuristic given below states it generically as a function S of the outcomes of the vertices of the
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simplex.

W =vol(V )

(
mean
i∈V

{
t′i − t0

})
S (y(V ))(...) (4.8)

4.3.1 Simulated Annealing

With a search heuristic in place, successive incarnations of the mesh may be anticipated to

transition from coarse and evenly sampled atM0, with no correlation between sample distribution

and outcome information, to a more complex and structured Mf . This final mesh should consist

of a few large elements with short-lived trajectories and uninteresting contents (large vol(V ), small

S) and many more small elements resolving relevant details achieved on long-lived paths (small

vol(V ), large S).

During this transition, the heuristic sampling scheme can be expected to function more

effectively each iteration since it has more information at its disposal. Two mechanisms can be

used to efficiently leverage this principal to gradually transition from a global search across all of U

to localized searches in regions with nearly globally maximal scores. First, setting eN < 1 metes out

smaller and smaller sampling increments ∆Nk, thus being more proportional to the ever-decreasing

volume of remaining areas where additional search effort might be expected to reveal a new global

known maximum.

To complement the reduction of sample increment with a reduction of search scope, the

simplex score S is exponentiated with a function eS that increases as the search proceeds.

W =vol(V )

(
mean
i∈V

{
t′i − t0

})
S (y(V ))eS(Nk/Nf) (4.9)

This progressively amplifies the bias toward those remaining high-scoring areas in a manner closely

related to simulated annealing. Figure 4.1 shows the changing relationship between simplex score S

and sampling probability W under the influence of the exponent eS as refinement progress increases,

using a formulation

eS (Nk) =2(8Nk/Nf) (4.10)
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Figure 4.1: Inceasing bias toward high-scoring regions as refinement progression factor Nk/Nf

increases from 0 to 1, shown as transition from blue to red probability distributions.

4.3.2 Partitioning and Smoothing for Visualization

For preliminary mission design and analysis, visualizations are needed that illustrate the

correspondence of u with various outcome values y (x̃) such as safety status, goal progression, or

other informative measurements. In this case, the function S (V ) can be designed to increase in

proportion to the variation of specified elements of y across a given simplex Vj , as measured in Eq.

4.3 or Eq. 4.1 for Booleans,

Svis (V ) =Border (V ; Impact) + κVariance (V ; g) (4.11)

where the weight κ can be designed to adjust the relative importance of each simplex property and

normalize by the global maximum variance, i.e., with a divisor maxV ∈M Variance (V ; g).

Figure 4.2 shows the increased clarity of features on the U → Y reachability map that can be

attained at a fixed sample count by applying the heuristic weighting function W with the simplex

scoring scheme Svis. Similar improvement is seen in a different category of visualization in Figure

4.3.
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(a) Naive mesh refinement scheme

(b) Heuristic mesh refinement scheme

Figure 4.2: Alternative partitioning methods applied at equal resolution to map outcomes on a
Ushell domain, projected onto the plane.
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(a) Naive mesh refinement scheme (b) Heuristic mesh refinement scheme

Figure 4.3: Alternative partitioning methods applied at equal resolution to compute a
Uchunk (Impact) domain.

4.3.3 Gradient Ascent for Online Planning

In many cases, goal fulfillment regions in the reachability map may be small enough that

the initial mesh M0 provides no indication of their existence. This is particularly true when N0 is

very small, as may necessarily be the case during autonomous operations. It is then insufficient to

construct S to merely recognize goal fulfillment — the search must be biased toward such regions

even if they are not represented in the sample set. To accomplish this, additional information is

needed about a trajectory’s proximity to a goal region in terms of its governing sub-measure set A.

Specifically, the value
←−
Q from Eq. 2.35 indicates the best quality achieved for any remaining goal

over the sample trajectory’s lifespan.

A level curve of
←−
Q (U) is shown in Figure 4.4 for a representative domain along with some

small interior regions where
←−
Q = 1 allows for goal progression, illustrating the need for gradient

augmentation in the search heuristic. Note that the choice of design parameter eq in Eq. 2.33,

essentially the p-norm applied to the set of observation sub-measure qualities, distorts the field

←−
Q (U).

Gradient ascent can thus be introduced to the search for maxima of s′, the decision function
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designed in Chapter 6 with dependency upon g and by extension upon {qa}, in the simplex score

function

Ssmax = max
i∈V

{
s′i +

←−
Q i

}
(4.12)

Figure 4.5 shows Monte Carlo mean results of heuristic search on a representative planning domain

under the Pho-Hard system model. Clearly, much larger values of s′ can rapidly be located by

heuristic search than is possible with a naive search. It furthermore is clear that the gradient

ascent component is responsible for a large share of these gains. An additional plot illustrates that

regions of high performance compose a vanishingly small fraction of the domain’s total volume.

This indicates that final gains in performance are very hard-won, and shows how the gradient

component smoothes out the search for these gains.
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Figure 4.4: Level curves of reachable quality Q(U) = 0.75 (light blue) and Q(U) = 1 (dark blue)
illustrating the structure exploited for augmenting the heuristic search with gradient ascent.

(a) (b)

Figure 4.5: (a) Runtime performance of numerical search for maxima of s′ (U), i.e., the best-
performing option in a control domain. (b) A quantitative assessment of the difficulty of the search
problem.



Chapter 5

Reachability Results

Using the tools of Chapter 4, reachability-based mission analysis can be efficiently conducted

in terms of the various outcomes and other measures detailed in Chapter 2. This chapter provides

several such analyses using a variety of planning domains, physical environments, and objective

types — a representative set of scenarios for demonstrating the utility of the maps for preliminary

design, human-in-the-loop planning, or for development and calibration of autonomous reachability-

based planning algorithms. These results complement those of Chapter 3, which were focused upon

the fundamental properties and structure of reachable sets rather than upon specific applications

of the concept.

5.1 Close-range Observations

5.1.1 Phobos - 3DOF Maneuvers

Test case Pho-Hard, the close-proximity imaging of target areas on the surface of Phobos, is

analyzed under a Usph-type control domain: the initial state and maneuver time are fixed, pointing

is unconstrained, and maneuver magnitude is upper-bounded. Figure 5.1 shows four different

subsets of the domain. Uchunk views of the impact and escape sets reveal that a large portion

of the planning domain produces failure scenarios by the end of the prediction horizon, leaving

relatively few options that remain safe for multiple revolutions — an unsurprising result given

previous analyses in the literature concerning stability within this system. A level set of the science

return measure encloses a comparatively small volume that exhibits complex structure; a view of
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all three outcome types on a Udisk subset reveals that these regions are situated in between early-

impacting families and are streaked through with late-impacting ones. The contents of the Ushell

(a) Impact (b) Escape

(c) Goal (d) All

Figure 5.1: Sub-regions Uchunk of the reachable outcome map where maneuvers result in (a) impact
of the body surface, (b) crossing of the escape boundary, (c) fulfillment of a decision score threshold
s∗. (d) Shows the contents of radial/in-track control domain Udisk = ∆V⊥(Ĉ), marked by a green
disk in subfigures (a) and (b).

domain marked by the green shell in Figure 5.1(c) are shown in a Mollweide projection in Figure
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5.2 for an alternative perspective.

Figure 5.2: Outcome map for a control domain Ushell = ∆V◦ (2.5 m/s) for Pho-Easy test case,
projected onto the plane. Domain correspons to green spherical shell of Figure 5.1(c).

5.1.2 Comet 67/P - Timed 2DOF Maneuvers

For a perspective on the temporal planning dimension, the 67/P test case is analyzed us-

ing Ucyl-type domains: maneuver time is selectable, and thrusts can only be aimed within the

in-track/cross-track plane. Three domains are mapped corresponding to polar, retrograde, and

prograde pre-maneuver trajectories given in Figure 5.3; results are plotted in Figures 5.4, 5.5, and

5.6.

In all cases, resonant effects are clearly observed by alternatingly colored swaths of u values

that correspond to impact of the two different lobes of 67/P. Furthermore, as the 2D sections

reveal and as intuition implies, impact scenarios are only observed when the in-track velocity is

decreased, while a sufficient increase uniformly results in escape. Goal fulfillment is not observed
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(a) Rotating frame (b) Inertial frame

Figure 5.3: Nominal trajectories x(t) at Comet 67/P used to relate a time-parameterized control
domain to the reachable domain Dcyl (Ucyl; x(t)) as in Eq. 3.16.

for operations in the equatorial plane as most goal regions are defined in the northern hemisphere.

In the polar orbit reachability set of Figure 5.4, the abundance of goal regions near the

extrema of the timing axis indicates that goal reachability is maximal when maneuvers are executed

above the south pole of the central body. This reflects the large degree of control over phasing that

can be achieved by rotating the orbit plane about the polar axis, combined with the fact that all

goals are defined north of the body’s equator. Similarly, the corkscrew shape of the impacting

sets further reflects the misalignment of the spacecraft orbit plane with the central body’s rotation

plane.

Conversely, the impact set for the retrograde orbit (Figure 5.5) shows fast periodicity along

the time axis, indicating that several orbits are completed in the body-fixed frame even though

only one is complete in the inertial frame — this also demonstrates the stability that results from

the rapid averaging-out of perturbing effects. The modulation of the goal set along this axis with

period one reflects the influence of the solar phasing requirement in the science specifications.

Lastly, the prograde orbit reachability map in 5.6 shows less regularity of structure due to
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(a) time/in-track/cross-track domain (b) time/in-track domain

Figure 5.4: Reachability maps from the polar orbit of Figure 5.3 using control domains with timing
components.

(a) time/in-track/cross-track domain (b) time/in-track domain

Figure 5.5: Reachability maps from the retrograde orbit of Figure 5.3 using control domains with
timing components. Green/white spectrum indicates relative stability.
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the strong non-periodicity of the nominal orbit, which occurs due to low-order resonance with the

body’s rotation. This map is also the most poorly resolved of the set due to the abundance of thin

families of failure-producing control inputs that appear as the radius of the nominal orbit grows,

illustrating variability in the difficulty of the search problem.

(a) time/in-track/cross-track domain (b) time/in-track domain

Figure 5.6: Reachability maps from the prograde orbit of Figure 5.3 using control domains with
timing components. Green/white spectrum indicates relative stability.

5.2 Divergence and Expiration

The linear error growth measure Λ (t) from Eq. 2.24 serves as a measure of divergence that

is roughly equivalent to the Fast Lyapunov Indicator. In Figure 5.7, the time-to-failure is plotted

on two reachable sets in the 67/P scenario with Expire of Eq. 2.31 included as a failure criterion;

the maximum positional divergence dmax is selected as the smallest radius of any observation

region. The prediction horizon was extended such that every trajectory eventually reached a failure

criterion; the search is thus complete in the temporal dimension with regards to goal progression.
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(a) Radial/cross-track domain, 135◦ inclined (b) vx/vy domain, above north pole

Figure 5.7: Time to failure plotted on two Udisk domains at comet 67/P using ∆V⊥(̂I) and ∆V⊥ (ẑ).
Inclusion of Expire condition illustrates divergence rates for trajectories that do not impact or
escape; color scales time of expiry from short (red) to long (blue).

For the first domain, which illustrates options for departing from an inclined retrograde orbit

as it crosses the equatorial plane, divergence rates vary drastically. Several islands of relatively

long-term stability dot a landscape that otherwise appears largely destabilized by resonant effects.

In the second domain, where maneuvers are executed from a point above the north pole, concentric

rings of alternating stability and instability indicate the effects of resonance with the body’s rotation

rate. Toward the interior of the domain, early failure by impact occurs with dependence on phasing

relative to the orientation of the central body.

5.3 Landing

Deployment of payloads to surface locations can be studied by analyzing additional properties

of the terminal state when Impact occurs. In Figure 5.8, the entire set of deployment impulses

that produce impact within 30 hours is plotted for test case 67/P-Land. Color brightness indicates

time-to-impact, the longest of which occurs when the payload is deployed away from the body
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but at an insufficient velocity for escape. The dark end of the trajectory family implies a strong

deployment impulse directed toward the body, quickly resulting in high-speed impact; it may be

inferred that a Ushell domain were produced for a very fast deployment speed, its cross section

through this family would appear as a silhouette of the body shape as seen from the deployment

position.

timp = 1 hr 

timp = 30 hr 

Figure 5.8: Subset of control domain that results in impact of the surface within the maximal pre-
diction horizon for deployment test case 67/P-Land. Brighter coloration indicates longer trajectory
lifespan.

Deployment impulses that produce successful landings compose a subset of the impact set;

these control-domain regions, plotted in Figure 5.9, can be denoted by

Uchunk (Impactk) =
{

∆vi
∣∣ ρk (t; ∆v,x0) ≤ ρmax with t < th

}
(5.1)

with k ∈ [J,C,N ] being the index of the landing target. Each site’s family exhibits a complex shape

that spirals in correspondence to the interplay of the central body’s rotation and the variability of

the deployment trajectory’s Jacobi energy. Performance measures can be seen to vary along the

length of these families, whose structure is increasingly fine and complex near the low-energy origin

of the control domain.
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vimp = 80 cm/s 

vimp = 40 cm/s 

(a) impact speed

γk = 0° 

γk = 30° 

(b) impact angle

Figure 5.9: Subsets of control domain corresponding to trajectory families that result in successful
deployment to one of the landing sites in scenario 67/P-Land. Coloring indicates variation of
performance measures.

5.4 Periodicity

Because periodic orbits are 1D manifolds of the 6D phase space, a 3D control domain is gen-

erally insufficient for transferring directly onto one. However, nearly-periodic orbits could provide

similar utility in the short-term and further GNC efforts could be spent to track a fully periodic

orbit if necessary. In Figure 5.10, the periodicity measure from Eq. 2.22 is plotted on a projected

Ushell domain for a Generic test case with a 4:2:1 ellipsoid; due to the limited time horizon, only

orbits that repeat within two or three revolutions are detected. Bands of nearly-periodic orbit

families encircle the main impact region, exhibiting occasional bifurcations. Intersections of these

families with impact regions demonstrate that periodic motion could possibly be leveraged for re-

peating very close-proximity passes, and conversely that the physical central body may drastically

reduce the existence of viable periodic orbits within the circumscribing sphere.

The Uchunk domain plotted in Figure 5.11 further demonstrates the occurrence of near-

periodicity in continuous families rather than in isolated occurrences, a consequence of Hamil-
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Figure 5.10: Mollweide projection of an orbit periodicity reachability map on a Ushell domain;
crosshair marks a control input for inserting into a nearly periodic orbit.

tonian dynamics. Also plotted is a periodic orbit obtained by differentally correcting the initial

state produced by the control input marked with a green crosshair. Figure 5.12 gives two additional

periodic orbits obtained by combining reachability analysis and differential correction. The adap-

tive mesh refinement scheme thus holds promise both for autonomous pattern-holding operations

and for greatly boosting the computational efficiency of an extensive offline brute-force search for

exploitable phase space structures.
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(a) (b)

Figure 5.11: (a) Nearly-periodic families in 3D reachable domain Uchunk (g > g∗). (b) Differentially
corrected periodic orbit obtained from reachable via the control input marked in Figure 5.10. Point
cloud propagation illustrates instability.

Figure 5.12: Two differentially-corrected periodic orbits obtained from initial guesses located via
reachability analysis. Point cloud propagation illustrates instability.



Chapter 6

Receding Horizon Planning

The analyses of Chapter 5 illustrated various types of short-term outcomes reachable with a

single control input. At the fingertips of a mission designer, these results facilitate the consideration

of trade-offs between many different costs, benefits, and risks. For example, sub-optimal progress

toward objectives might be accepted in order to save fuel, to reduce the growth rate of errors by

favoring more stable regimes, or to maintain larger margins of safety relative to failure scenarios.

However, such decisions take on additional consequences in the context of extensive mission

operations targeting large sets of objectives over many control horizons. It may at times be the case

that a cheap and high-achieving maneuver leaves the spacecraft in a situation that causes long-term

operations to become more burdensome, or conversely that another control option might achieve

little in the short-term but facilitate more rapid progress in later cycles. Furthermore, when key

science operations are relegated to relatively narrow time windows, the selection of the subsequent

maneuver epoch becomes a way of independently affecting future prospects without altering the

current maneuver and thus compromising progress during the current planning horizon. This choice

could be particularly influential through its capacity to facilitate phasing and orbit regime changes

in the next cycle through the selection of a particular radius or latitude.

Within the reachability map’s motivating context as part of a receding-horizon controller,

these preferences and trade-offs must be codified in a rule set (or abstract control law) that can be

imposed autonomously onboard the spacecraft for online planning. Only then can its benefits be

leveraged to perform a complete mission design — including many maneuvers to meet many goals
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— without human input and, moreover, with an ability to promptly execute design-level responses

to unforeseeable circumstances as they arise.

This chapter begins with a description of the receding-horizon problem and the hierarchy

of decisions that must be made autonomously to produce a solution. Complications caused by

dividing the problem into a series of control horizons are next discussed along with potential

remedies. The automated reachability analysis process is then re-visited in the context of the

decision hierarchy and the spacecraft’s operational constraints. Finally, the development of the RHC

scheme is completed by addressing the process by which planning epochs are selected, including

discussion of the “reactivity” paradigm of uncertainty mitigation.

6.1 Receding-Horizon Problem

For a multi-objective campaign, mission completion is defined as attainment of g (tf ) == ng,

where g is the sum of all ng objective completion fractions 0 ≤ gi ≤ 1 and the mission begins

at epoch t0 with g (t0) = 0. At each k’th planning epoch, the algorithm selects a control input

(∆tk,∆vk) ∈ Uk on the basis of the score sk+1 that it is predicted to produce at the associated

subsequent planning epoch tk+1.

A complete mission thus appears as a sequence of control inputs uk = (∆tk,∆vk), each of

which produces a ballistic arc x̃ (tk + ∆tk, tk+1 + ∆tk+1). Here, ∆tk is the difference between the

beginning of a previously scheduled maneuvering epoch and the actual maneuver time selected

during the k’th reachability analysis; tk are the planning epochs and tk + ∆tk are the maneuver

epochs. When Uk lacks a temporal component, e.g., by using Usph, then ∆tk = 0 and the two cate-

gories of epoch are equivalent. The solution sequence provides gK = ng while incurring cumulative

fuel expenditures and elapsed time over the K total planning horizons utilized. This reflects the

top-level objective of the planner:
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Primary Hierarchy Level

Purpose: Fulfill all operational goals without encountering failure criteria

Value: Mission score

sm(t) =

{
0 if Failure(t)

(1/ng)
∑ng

i=1 gi(t) otherwise
(6.1)

Preference: Minimize total costs
∑K−1

k=0 ∆vk and tK − t0.

Solution: Control input set {uk}0:K−1 giving sm(tK) = 1

By describing objectives as scalar functions, such as the mission score sm, choices can be made

unambiguous and conducted automatically. However, since selecting a maneuver to directly produce

sm = 1 is usually not possible, additional lower-level objective functions — other scores governing

intermediary actions — are necessary in service of that ultimate end. A hierarchical description of

the automated decisions is thus beneficial for organizing the various priorities, concerns, and other

details that become relevant at different stages of operation.

Three sub-tasks are utilized for achieving mission completion: the selection of individual

maneuvers, the distribution of reachability sample points, and the designation of future planning

epochs. In the dynamical description of the planner, the functions governing these decisions com-

pose the planner:

H : y(t)→ s(t) (6.2)

= [sm (y) , sh (y) , ss (y) , t∗ (ỹ)] (6.3)

The design problem then consists primarily of formulating the latter three of these functions effec-

tively.

6.2 Far-Sighted Planning

As will be elaborated upon in the following section, the maximum single-horizon reachable

objective increment ∆gk = gk − gk−1 for non-trivial mission scenarios and generic initial states

is much smaller than ng and quite possibly zero under many circumstances, creating the need

for multiple control horizons. The simplistic and short-sighted approach of selecting a maneuver
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purely on the basis of its resultant ∆g is found in practice to quickly reveal characteristic pitfalls

of receding horizon control: poor stability and convergence. This outcome is unsurprising given

the underlying dynamics and the disconnectedness of various goal regions through extended phase

space — the spacecraft might easily end up devoid of further prospects at the end of the control

horizon when making decisions in this way.

Aspects of long-term performance must then be taken into consideration somehow during the

short-term decision making process. In RHC, this is typically accomplished by including a “cost-

to-go” function in the objective that approximates the remaining control effort that will be needed

beyond the horizon. When system properties permit such functions to be defined to monotonically

decrease across configuration space as the reference state is approached, they can be incorporated

into control laws to provably provide stability, convergence, and optimality.

In the small body mission problem, the structure of the system does not facilitate such rigor-

ous guarantees, but nonetheless provides some characteristics that can be empirically demonstrated

to provide these properties in many realistic scenarios. Due to the semimonotonic nature of the

mission score sm, mission progress cannot be lost unless failure occurs. Avoidance of failure can be

assured by balancing safety margins against control authority and state estimation error levels and

utilizing the reactivity paradigm to be described in Section 6.5.2. Under these conditions, controller

stability can be empirically demonstrated.

Convergence of the receding-horizon planner to the completion state is a more nebulous

prospect but is greatly aided by the high degree of connectivity in the small body mission problem’s

configuration space: one or two control inputs are sufficient for reaching most orbit locations from

most other orbit locations via a wide variety of paths and phasings. After the spacecraft assesses

reachability options from a sufficiently broad set of locations in extended phase space, it should

eventually discover opportunities to reach all but the most obscure orbit regimes and therefore

any goals with feasible levels of connectivity. This process could, however, require inordinately

many planning cycles, motivating the definition of a timeout criterion to discard unnacceptably
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slow mission solutions.

Timeout = (sm (tk) > sm (tk−∆kmax)) (6.4)

While an accurate formulation of cost-to-go is not possible, the connectivity of various phase

space regions to goal regions can be roughly assessed via intuitively motivated measures as a way

of identifying favorable locations from which to execute maneuvers. The function evaluating this

property, deemed the prospect heuristic ph (x(t)), defines a state-space field such that its value

varies along each predicted trajectory and aids the selection of the arc termination epoch tk+1

for placing the spacecraft at a favorable location for achieving additional progress at low cost

during the subsequent planning cycle. It is formulated here as a weighted and exponentiated sum

of intermediary measures b from Section 2.2.3, evaluating properties such as Keplerian elements,

energy levels, divergence rates, and general body-relative geometry.

ph (x) =
∑
b∈Bh

wbqb
(
b; b+, b−

)eb (6.5)

Bh ⊆
{−→
Q, r, e, i, l, J, . . .

}
(6.6)

Secondary to the use of ph to improve convergence rates in terms of the number of planning

cycles, minimization of fuel usage ∆v and elapsed time ∆t is also appropriate to consider during

maneuver selection. A straightforward combination of these various concerns is used to define

the horizon score sh, synonymous with the decision score s used by the planner to decide upon a

maneuver to implement.

Secondary Hierarchy Level

Purpose: Balance short-term gains and long-term prospects against costs

Variable: Horizon score AKA decision score s ≡ sh

sh (t) =
∆g(t) + ph(t)

1 + wv∆v + wt∆t
(6.7)

Solution: Maneuver (tk,∆vk) that maximizes sh across sample set of M ′.

Decision design parameters are thus the cost weights (wv, wt), the weights and exponents {wb, eb}B
of the prospect heuristic ph, the exponent eq that modulates the character of extended phase-space
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gradients if
−→
Q ∈ B. Calibration of these parameters is a balancing act between short-term progress

and long-term performance and prospects. Effectiveness may only be determined empirically and

no conclusions can be drawn about the deficit relative to a globally optimal solution.

6.3 Reachability Constraints

As was seen in the previous section, phase-space connectivity is a vital property for enabling

efficient receding-horizon planning in the small body mission problem. Connectivity between an

initial condition set D (U ; x(t)) and a goal region Gi through ballistic motion is reflected by the size

of the intersection

F (x (∆T ) + (0,∆V) ; ∆tf ) ∩ Gi
(
t,
{
a+, a−

}
A

)
(6.8)

The right hand term represents the region of extended phase space that allows progress to be

accumulated for the i’th goal.

Gi =
{

(t,x) ∈ (T ,X )
∣∣ Imageablei (t,x)

}
(6.9)

This region, defined by Eq. 2.15, is sized by the sub-measure parameter ranges (a+, a−). It may

be finite even in the temporal dimension through time-varying parameters such as the observation

phasing angle ψ. More challenging goals with strict parameter bounds thus translate to lower

connectivity, and as goals are completed the likelihood of an initial condition being connected to

any incomplete goal decreases.

The left hand term represents the phase space volume swept out by the initial condition set

during propagation via the system dynamics F , illustrating how reachability prospects additionally

depend upon the spacecraft’s initial state and allotted control authority, as well as the capabilities

of the predictive model in terms of time and accuracy. The sizing of ∆V is physically limited by fuel

availability, but also scales the size of the search problem along with its associated computational

burden. The size of the set of initial delays ∆T — the duration waited before executing some

∆v ∈ ∆V — has a similar toll on computing resources.
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The final parameter affecting the size of the connective intersection is the maximal propa-

gation duration ∆tf . Clearly, longer-duration motion allows for a more thorough covering of the

extended phase-space with a single impulse, as the image of the initial condition set sweeps out

additional volume. Practical constraints crucially limit the usage of arbitrarily long ballistic tra-

jectories, however — computational expense is roughly proportional to trajectory duration, and

reachability maps become much more complex in structure as the horizon increases, requiring higher

resolution sampling. Error growth also becomes problematic over long durations unless separate

closed-loop guidance is also applied. Thus, ∆tf must be limited in balance with the sizing of the

search domain.

Further temporal constraints arise from the nontrivial compute time necessary to execute the

control/planning law each cycle. An initial margin ∆tmin accounts for the fact that the planner

should not select a subsequent maneuver epoch that would arrive before its control input can be

determined, nor should it demand use of spacecraft systems for GNC overly frequently. When

considering uncertainty, this minimum interval may also be necessary for allowing state estimates

to converge to a reasonable level of accuracy. In complement, a second margin ∆tend is applied to

the end of the temporal planning domain to avoid pathological reachability prospects, e.g., undue

difficulty in avoiding a would-be impact scenario just beyond the end of the prediction horizon.

The interval of acceptable replanning epochs, which define the next planning epoch tk+1, can then

be stated as

∆T+1 = (∆tmin,∆tf −∆tend) (6.10)

For simplicity, ∆tend = ∆tmin is used in all cases.

All of these constraints define the context of the reachability search process detailed in Chap-

ter 4. The search heuristic itself can thus be conceived as the third level of the hierarchy of

automated decisions.
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Tertiary Hierarchy Level

Purpose: Sample the highest-scoring regions of the reachability map

Variable: Simplex score S (y (V )), e.g., Eqs. 4.11 and 4.12

Constraint: Modest total sample size and duration due to CPU limitations

Solution: Next sample set {ui}Nk:Nk+1
, biased toward regions of U producing high

sh values

The search score equation is a point-wise weighting represented in the simplex weighting function

of Eq. 4.12, which provides a simplex score for use in simplex-wise weighting.

Beyond compliance with physical limitations, design at this level then consists of appropri-

ately tailoring the search domain to increase likelihood of connectivity with goal regions without

becoming infeasibly large to search effectively with limited computing resources.

At very low-mass objects, where fuel is of little concern, regions within line-of-sight could be

reached quickly via high-energy paths. Phasing concerns aside, this could potentially allow rapid

mission completion through “ping-pong” sequences of approximately hyperbolic trajectories. For

generality of results, however, we neglect this reduction and instead focus on orbit regimes with

osculating eccentricity below unity

∆vmax (x) =
√

2µ/r (6.11)

This paradigm is also more amenable to accommodating the aforementioned temporal margins,

among other spacecraft operation constraints.

The maximal propagation duration ∆tf can be simply set as a constant or, alternatively, as

a function of each individual trajectory. For example, using the Expire criterion from Chapter 2,

∆tf (x̃) = min
{

∆t
∣∣ Expire(x̃(tk + ∆t))

}
(6.12)

This more motivated formulation provides more uniform representation of risk across the reacha-

bility map, as well as more uniform expenditure of propagation efforts — which tend to scale with

dynamical sensitivity.
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6.4 Epoch Designation

Given a full predicted trajectory x̃(t) resulting from some sampled control input, a time series

is obtained for each of the three score functions.

(∆tk,∆vk)
M−→ s(t) =

[
sm(t) sh(t) ss(t)

]T
(6.13)

However, each series must be reduced to a scalar to allow decision-making, and the subsequent

planning epoch tk+1 must somehow be designated. The bottom level of the decision hierarchy

meets these needs by translating from the continuous time domain t into discrete control epochs k.

For each sampled control input this policy T , which was first referred to in Eqs. 3.7–3.10 applies

the temporal reduction

(sm(t), sh(t), ss(t))
T−→
(
∆tk+1, s

′
m, s

′
h, s
′
s

)
(6.14)

as in Eqs. 3.5–3.6 using si = sh via the decision process at the bottom of the hierarchy:

Quarternary Hierarchy Level

Purpose: Determine best time at which to begin next planning cycle

Operation: Reduce score time series via T map

s′s = max
t
ss(t) (6.15)(

s′h; ∆tk+1

)
= max

∆t∈∆T+1

sh(tk + ∆t) (6.16)

s′m =sm (tk + ∆tk+1) (6.17)

Solution: Scalarized scores and planning epoch tk+1

A sampled trajectory may have an empty termination interval ∆T+1 if ∆tf < ∆tmin + ∆tend; in

this case, s′h = 0 is assigned.

6.5 Uncertainty Mitigation

Section 2.2.3.1 described a technique for modifying the predictive model to reflect the worst-

case outcome under linear growth of initial positional and velocity errors. As will be seen in

Chapter 7, it is ineffective and impractical to attempt to mitigate uncertainty solely by increasing
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the robustness of these predictions. To effectively complement robustness by handling the occasional

occurrence of larger-than-anticipated errors, the receding-horizon execution of robust plans includes

an ability to react to such deviations by expediting the next planning cycle.

6.5.1 Error Sources

Apart from the planner’s design parameters, the map from maneuver options to reachable

scores also relies upon the initial state and the definitions of the dynamical model and mission ob-

jectives; the expected horizon score of the trajectory can be parameterized as sh (u; x0,Pν , {a±}A).

However, under typical position and velocity errors with radial standard deviations σr and σv, the

true initial state differs from that used for maneuver design by:

x̂0 =x0 + δx (6.18)

δx ∈N 3
(
σr/
√

3
)
×N 3

(
σv/
√

3
)

(6.19)

with N denoting normal distributions.

Furthermore, the true flow across phase space differs from the predicted flow due to errors

in the dynamical model. This thesis considers only variation of the polyhedron shape Pν , while

presuming that the estimated gravitational parameter µ is accurate, and no attempt to directly

express deviations caused by incorrect Pν is made. Instead, operating under the assumptions that

the inaccuracies of a low-resolution shape model produce a roughly stochastic effect upon motion

deviation and that the true density distribution is uniform, mitigation of modeling errors is handled

via adjustment of the same parameters governing mitigation of state errors.

When operating under uncertainty, the actual goal attainment g (x0,∆v) may vary from

the expected value ĝ (x̂0,∆v), jeopardizing the planner’s ability to fulfill its ultimate purpose.

Accordingly, this deviation will be the central focus of the mitigation techniques.



85

6.5.2 Reactivity

When simulating the online mission design process, reachable trajectory predictions are prop-

agated using an estimated initial state and a polyhedral gravity model with low resolution ν̂. During

the execution phase in between planning cycles, the truth state is propagated with high model reso-

lution ν. State estimation error is simulated by adding noise δx from the probability distribution of

Eq. 6.19 to the true state x. Along with the nominal planned position r∗, this produces trajectory

estimate x̂(t), online surface-range estimate ρ̂P(t) and the estimated deviation magnitude δr̂(t).

x̂(t) =x(t) + δx (6.20)

ρ̂P(t) = min ρ(r̂(t),Pν̂) (6.21)

δr̂(t) =‖r∗(t)− r̂(t)‖ (6.22)

The reactivity paradigm uses the latter two derived values to trigger maneuver execution in advance

of the nominal control epoch t∗ determined by the original plan.

A safety divert epoch t∗div is determined as the first actionable time at which the robustness-

cushioned Danger criterion of Eq. 2.30 is violated.

t∗div = min
{
t ∈ (t0 + ∆tmin, t

∗)
∣∣ Danger (r̂(t), d (x̂(t)) ; ρP,min)

}
(6.23)

If this criterion does not occur, t∗div is an empty set and no divert reaction is triggered.

Alternately, a reaction is also warranted if δr̂ exceeds the tolerance d to which the robust goal-

fulfillment prediction remains valid. These correction maneuvers are triggered with a slightly more

complex logic dependent on the time tg at which the planned objective fulfillment is completed:

tg = arg min
t∈(t0,t∗)

g(t) == g(t∗) (6.24)

t∗corr = arg min
t∈(t0+∆tmin,tg)

δr̂(t) > d(t) (6.25)

If a deviation violation occurs before ∆tmin has elapsed, it is unavoidable, and if it occurs after

tg, it is inconsequential; violations that do not fall within this time span do not trigger a reaction.
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Ultimately, the applied maneuver epoch is

tk+1 = min {t∗, t∗div, t∗corr} (6.26)

such that tk+1 ∈ [t0 + ∆tmin, t
∗].

6.6 Complete Algorithm

After time series computation of s(t), decisions propagate in reverse order, ascending the hi-

erarchy. The bottom level translates sampled inputs into trajectories x̃(tk, tk+1) with time-reduced

scores s′; these govern additional sampling of the control domain; the sampled maneuver with the

highest horizon score s′h is implemented; and the process is repeated until the mission either fails

or finishes.

Algorithm 2: Receding-horizon mission planning

1 function RHMP
(
t0,x0,M, M̂,W (V ),U (x)

)
;

Input : Initial state (t0,x0), truth model M , erroneous model M̂ , search heuristic W (V ),
and domain generation rule U (x)

Output: Solution profile (x̃, ỹ, s̃)t,K
2 k = 0;
3 while not (Complete or Failure) do
4 Uk ← U (xk); // assign control domain

5 (M, {s′i, t′i})← ReachMap
(
tk, x̂k,Uk, M̂ ,W (V )

)
; // search with erroneous info

6 (s∗h,u
∗)k = max

u ∈M
s′h (u; tk,xk); // select top-performing maneuver

7 (x̃, ỹ, s̃)t+∆t,f ←M(tk,xk,u
∗
k; t
∗); // integrate with truth state, model

8 (x̂(t), ρ̂B(t), δr̂(t))
Eqs.6.19−6.22←−−−−−−−−

(
x̃∗, x̃; B̂, σr, σv

)
; // estimate deviation risks

9 tk+1
Eqs.6.23−6.26←−−−−−−−− (ρ̂B(t), δr̂(t)) ; // reactively set replanning epoch

10 (xk+1, x̂k+1)← (x (tk+1) , x̂ (tk+1)) ; // advance truth/estimated states to next

epoch

11 k ← k + 1; // advance epoch index

12 end

Inputs M and M̂ are implied to carry many parameters that may also be used outside of

the predictive model, such as the erroneous body model B̂ among others. The completion criterion

comes directly from the mission score while the failure criterion is composed of safety constraint
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violations and the timeout check.

Complete = (sm == 1) (6.27)

Failure = (Impact or Escape or Timeout) (6.28)

An error-free version of the algorithm is alternately shown in the diagram of Figure 6.1. The

function ReachMap in line 4, which comes from Algorithm 1, is represented within the dotted lines

of the diagram, where N is the running count of sampled control inputs and Nf is the desired final

sample size.

search heuristic

(t,x)prev

{∆v}

{ŝs, ŝh,g; t,x}

{ŝs; ∆v}

(g; t,x)ŝ∗
h

true

false
+ N == Nf

g == 1
truefalse

(t,x)(t,x)0

complete

{∆v}1:N0

{∆v}Nprev:Nnew

horizon level

control map
and timing

initialization

search
initialization

+

sample accumulation

Figure 6.1: Autonomous planning algorithm for small body mission problem, formulated as receding
horizon controller, assuming no uncertainty.



Chapter 7

Full-Mission Analysis

Given the receding-horizon planning framework developed in Chapter 6, this chapter will

present several analyses of the complete planning tool’s behavior and performance. Each uses a

small Monte Carlo solution set to account for nondeterministic components of each planner —

namely the weighted random sampling of mesh elements for subdivision — and random state error

in many cases.

The first analysis is focused upon the influence of the system upon the qualitative properties

and variability of solutions. Here, the configuration of the planner is held constant while the system

dynamics and mission requirements are altered. Next, state and model error are introduced and the

influence of the robustness parameter upon convergence and general behavior is checked. Finally,

the robustness parameter is fixed and two other aspects of the planner are varied: the importance

of the prospect heuristic is illustrated by disabling different components within it, and alternately

the cost weights in the decision function are adjusted to show that total fuel cost and total mission

duration can be traded off against each other.

7.1 Variation of the Problem

Qualitative evaluation of small body mission solutions generated by the autonomous planner

is difficult due to the vast difference between the dynamics and mission requirements as compared

to more conventional mission design problems. To facilitate an understanding of the complexity,

sensitivity, and variability of solutions in the small body problem, results are shown in this section
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for the sequence of problems Sphere, Half-Ito and Ito-Hard from Table 2.2, beginning with the

simple Sphere baseline paired with time-invariant objective constraints. This can be analogized

with the Keplerian reachability maps in Chapter 3 and the gradual increase in map structure as

perturbations were added and amplified.

Non-deterministic components of the planner are found to produce diverse solution paths

through the state space and goal space alike, implying high sensitivity of the planner regardless of

its ability to ultimately converge to the Complete state.

The prospect heuristic ph = qr
(
r; 2R̄

)
/2 was selected to encourage execution of maneuvers

at an orbit radius of two mean central body radii, but to value the satisfaction of this criterion

lower than the completion of a single goal. Fuel usage was penalized with wv = 1/10 and control

domains were generated with U (x) = Usph
(√

2µ/r
)

. Each combination of physical systems and

phasing constraint was simulated from an identical initial state for a Monte Carlo set of n = 100

trials using a heuristic search resolution of Nf = 5000 samples. Neither an increased trial count

of n = 200 nor an increased search resolution of Nf = 25000 were found to produce significant

differences in mean performance measures for a subset of test case scenarios checked to inform the

selection of nominal values.

7.1.1 Typical Mission Profiles

To qualitatively reveal the behavior of the planner under each setup, typical solutions are

first examined. One such physical-space profile for the unphased Sphere case is plotted in Figure

7.1. Here, under Keplerian dynamics and purely geometric objective constraints, even the weak

weighting of the cost ∆v in the decision function is sufficient to produce behavior reminiscent of

traditional mission design. Operations occur within a fixed inertial orbit plane — plane-changes

are expensive and should be avoided when possible — with only minor changes to orbit semimajor

axis for phasing. The mission is completed after seven control horizons.

As is evident in Figure 7.2, plane-changing maneuvers are occasionally selected by the plan-

ner when observation phasing constraints are added, despite the Keplerian dynamics. This is likely
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(a) Body frame (b) Inertial frame

Figure 7.1: Mission profile for Sphere system without observation phasing requirements. Diamonds
denote bounds of observation arcs.

attributable to the length of the time horizon employed; a highly inclined orbit at the correct radius

would eventually satisfy any goal at that radius, barring special cases of certain orbit periods com-

mensurate with the body rotation period. Nonetheless, these modifications of the orbit inclination

and radius are still relatively rare and the total maneuver count increases modestly to ten.

Orbital motion about the triaxial central body necessarily involves plane-changes even in

the absence of objective phasing constraints. As seen in mission profile of Figure 7.3, this occurs

naturally due to the non-Keplerian dynamics; cross-track maneuver components are again minimal

as in the unphased spherical case, and the maneuver count drops back to single digits.

Once phasing constraints are combined with the triaxial dynamical model, solutions become

highly complex as seen in Figure 7.4. A total of 17 maneuvers are required, and large variations

of the orbit plane occur over the course of the mission. Many of these are still attributable to

the natural dynamics rather than the control inputs; this demonstrates the planner’s adeptness at

leveraging, rather than merely overpowering, the unintuitive non-Keplerian natural motion.

Ultimately, the degree of complexity of the physical-space behavior is irrelevant as long as

the planner produces a goal-space trajectory from the “lower left” corner g = 0 to the “upper



91

(a) Body frame (b) Inertial frame

Figure 7.2: Mission profiles for Sphere system with observation phasing requirements. Diamonds
denote bounds of observation arcs.

(a) Body frame (b) Inertial frame

Figure 7.3: Mission profiles for Ito-Hard system without observation phasing requirements. Dia-
monds denote bounds of observation arcs.
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(a) Body frame (b) Inertial frame

Figure 7.4: Mission profiles for Ito-Hard system with observation phasing requirements. Diamonds
denote bounds of observation arcs.

right” corner g = 1. This can be inferred in all of the above examples by the passage of trajectories

through all geometric constraint regions in the body frame and the contemporaneous inertial-frame

orientation of the spacecraft on the Sun-side of the body when phasing requirements are imposed,

as revealed by the diamond markers.

7.1.2 Mission Profile Diversity

A central question about the mission design scheme is its level of determinism — the degree

to which chaoticity in the physical dynamics and complexity in the abstraction dynamics cause

sufficient sensitivity in the full dynamical map to produce distinct trajectories g̃ upon repeat runs

with identical initial conditions. An indicator of the diversity of a Monte Carlo set of n such

trajectories is formulated using the mission score sm ∈ [0, 1] as the independent variable and first

defining the difference trajectory for two missions i and j:

δgij (sm) = |gi (sm)− gj (sm)|1 (7.1)
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The solution diversity indicator is then defined as the average of all unique trajectory pair differences

δg (sm) =

(
2

ng

)(
2

n (n− 1)

) n∑
i=0

n∑
j=i+1

δgij (sm) (7.2)

where the additional normalization divisor ng/2 is the theoretical maximum solution diversity for

Monte Carlo sample size n→∞.

The solution diversity indicator, plotted in Figure 7.5(a) for each test case, illustrates that

more complex underlying dynamics produce a far richer set of potential solutions despite ultimate

convergence to the same desired end state. In scenarios without phasing requirements, the degree of

central body triaxiality exhibits a clear correlation with solution diversity. Introduction of phasing

requirements raises diversity across the board, with maximally diverse results occurring for the

phased Ito-Hard case. A reference diversity curve computed for a set of random walks through the

goal space, constrained only to monotonically increase sm to 1, approximates the upper bound of

the diversity indicator.
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Figure 7.5: Performance variation under each combination of Sphere, Half-Ito, and Ito-Hard systems
with unphased and phased observations. (a) Diversity in Monte Carlo sets of solution trajectories
through goal space. (b) Mean fuel expenditure for each Monte Carlo set.

Of secondary interest are trends in control energy expenditure, plotted in Figure 7.5(b).

These results show that both the complexity of the physical dynamics and the strictness of the

goal specifications are associated with additional demands in control energy. However, as the
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expenditure of ∆v was weighted only weakly in the decision function s to avoid complications with

very long-duration missions, the result is not directly indicative of the possible lower bounds of fuel

costs. What is primarily indicated is that for a non-spherical body, a fixed-altitude observation pass

is associated with a different orbit radius and orbit energy level depending upon the location of the

observation target point. Accessing multiple such points therefore requires traveling between more

diverse regimes of the physical state space than for the Keplerian equivalent of the same mission.

7.2 Uncertainty and Robustness

Next, state and model error are incorporated to compare and contrast uncertainty mitigation

strategies, i.e., varied values of ζ or η to preferentially rely more so on robustness or reactivity.

To isolate these effects, the 67/P-Obs problem is used in conjunction with a fixed formulation of

the decision function. The function uses prospect heuristic weights at wr = wl = w−→
Q
/2 = 1/4

for quality measures regulating the radius to 2R̄ and the latitude to −90◦ (see Figure 5.4 for

motivation), with an exponent e−→
Q

= 4 to de-weight less promising prospective quality values. Cost

weights are fixed at wv = ∆vmax/10 and wt = ∆tf,max/100. Mitigation behavior can be made

transparent by classifying each maneuver in terms of its motive and effectiveness. Four categories

of maneuver are defined:

Aimless: the full nominal path is traveled, but it does not achieve any objectives.

Safety Divert: an early maneuver was executed in reaction to occurrence of Danger.

Correction: an early maneuver was executed to correct deviation from an objective.

Goal Progress: the full nominal path is traveled, including completion of some objectives.

The synergistic behavior of the robustness paradigm and the reactivity paradigm is first

studied realistically-motivated levels of state error σr = 10 m, σv = 1 mm/s by adjusting the

threshold of robustness; reactive execution picks up as much slack as necessary when predictions

are insufficiently robust. Afterward, a low-robustness planner and a high-robustness planner are
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each tested under increasing levels of velocity uncertainty up to σv = 15 mm/s in order to represent

behavior under diminished navigation performance or at very small bodies where a fixed uncertainty

level would be proportionally more consequential. Effects of shape model error are also briefly

addressed, informing a design trade-off between the computational cost and error levels associated

with the choice of predictive model fidelity.

7.2.1 Monte Carlo Solution Set

Performance for each combination of planner parameterization and error level is assessed via a

Monte Carlo analysis of 50 mission trials, with variability originating both from random error values

and from random elements in the limited Nf = 1000-sample heuristic search of the reachability

map. The values set for safety requirements and control authority, i.e., ρ−P , ∆vmax, were sufficient to

prevent any occurrences of impact whatsoever despite a generous re-planning duration ∆tmin = 3.5

hr. Furthermore, the low control energy cost weighting wv resulted in little variation between the

mean results of total fuel costs in uncertain missions; cases with error averaged roughly 5 m/s,

dropping to 2 m/s when no state error was present. These highly feasible values justify the de-

emphasizing of this type of cost when calibrating the weights of the decision function. Computing

time averaged about 2.5 minutes per planning cycle and peaked below 4 minutes on a 3 GHz Intel

Xeon processor.

Given these outcomes, the primary indicator of performance is the total effort of applying

the online mission design scheme. Total maneuver counts are used to represent effort expended

by a planner since computational expense and fuel cost per planning cycle were not optimized or

tuned on a per-planner basis.

Some combinations of mitigation parameter values and error levels resulted in slow conver-

gence and inordinately extensive missions. These simulations were terminated early via Expire

with ∆kmax = 10. Planner effectiveness can then be inferred either from the average maneuver

count per solution or from the rate of occurrence of solution timeouts, with the implication that

timed-out runs would have eventually produced complete solutions with higher maneuver counts
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had they been allowed to continue.

7.2.2 Varying Mitigation Parameters

Performance is first assessed as a function of uncertainty mitigation parameters, i.e., constant

or divergence-scaled formulations of the anticipated deviation to which predictions are made robust.

Mission completion rates and maneuver counts are both plotted in Figure 7.6 for planners that use

varying levels of constant anticipated deviation d = ζ or dynamic anticipated deviation d = ηΛ. A

breakdown of the relative incidence of each category of maneuver is also given per planner. Middle-

ground levels of robustness are found to produce the highest success rates and lowest maneuver

counts for both types of planner. The η class of planners showed stronger performance overall, with

lower maneuver counts and perfect success rates for the parameter range 0.75 ≤ η ≤ 1.5.
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Figure 7.6: Planner performance and control behavior under a variety of error mitigation parame-
terizations.

Meanwhile, maneuver categorization clearly demonstrates the manner in which the uncer-

tainty mitigation parameters influence behavior. Low η or ζ imply low robustness in that the

nominal result can be lost under only a modest deviation from the planned course; low-robustness

planners consequently impart many more reactive control epochs. High-robustness planners are

seen to more consistently stick to the plan, but are less frequently able to formulate a plan that

completes objectives. At all levels of robustness, a higher incidence of “goal progress” maneuvers
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is seen for the η class of planners than the ζ class — a maximum of 60% as compared to 40% —

while the share of “aimless” maneuvers is roughly unchanged.

7.2.3 Mission Profiles

Despite the high degree of variability between solution profiles within any Monte Carlo trial

set, the general differences in character between alternate planner formulations can still be seen in

the physical mission profiles. Figure 7.7 shows examples of this for a high-robustness planner and

a low-robustness planner. Both planners produce successful missions; however, the more robust

planner mostly executes maneuvers in the region most highly valued by the prospect heuristic. The

less robust planner executes a similar number of maneuvers in this region, but must supplement

them with many additional reactive maneuvers en-route to objectives.

The time histories of Figure 7.8 provide further behavioral indicators. Vertical bars indicating

the timing of maneuvers show that the low-robustness planner almost always executes controls as

frequenty as allowed when it has an objective in sight. The more robust planner maintains an orbit

inclination at around 90◦, as is encouraged by the prospect heuristic; the other occasinally varies

into retrograde regimes. Both planners avoid prograde motion, likely due to the precarious effects

of orbit resonances.

7.2.4 Varying Uncertainty Level

To reveal the interaction of the degree of robustness with the degree of error, a low-robustness

η = 1/4 and a high-robustness η = 1 planner are compared in Figure 7.9 for several values of initial

velocity uncertainty. Also plotted are two datasets using σr = σv = 0, one of which additionally

uses ν̂ = ν, i.e., zero model error. These show that the planning scheme is extremely effective in the

absence of uncertainty, attaining progress with almost every control input, and that shape model

resolution reduction from 2500 vertices to 64 incurs only a minor performance penalty.

Counter to the initial result, a lower degree of robustness appears preferable under large state

uncertainty. Examination of Eq. 2.24 helps to reveal the cause of this phenomenon: increasing σv
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(a) Rotating, d = Λ (b) Inertial, d = Λ

(c) Rotating, d = Λ/4 (d) Inertial, d = Λ/4

Figure 7.7: Characteristic mission profiles generated with two different levels of robustness. Dia-
monds indicate imaging arcs; numbered circles indicate maneuvers.
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Figure 7.8: Evolution of several quantities in solution profiles generated using two different levels
of robustness. Vertical bars indicate control epochs and minimum replan times.
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Figure 7.9: Planner performance and control behavior under varying levels of velocity error. †no
model error.

has a similar negative effect upon robust reachability prospects to increasing η, so either way of

producing a large product ησv causes a dearth of opportunities for robust goal attainment. This is

also reflected in the heightened occurrence of “aimless” maneuvers for the η = 1 planner, similar

to the trend of Figure 7.6 under small σv and large η.

The high success rates of the low-robustness planner imply that sufficiently frequent correction

maneuvers can effectively mitigate very large errors so long as the planner continuously targets goal

progression, a behavior that is encouraged by the overconfidence that results from small anticipated

deviations.

7.3 Planner Design

Having established the influence of the physical system, the mission specifications, and the

interaction of uncertainty levels with mitigation paradigms, variation of the decision function of

Eq. 6.7 is finally addressed. This function is re-stated below with a prospect heuristic substituted

in that depends upon radius quality qr, latitude quality ql, and forward quality
−→
Q , all of which are

parameterized as in the previous example and evaluate to within the range [0, 1].

s (t) =
∆g (t) + wp

(
qr (t) + ql (t) + 2

−→
Q (t)4

)
1 + wv∆v + wt∆t (t)

(7.3)
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The prospect heuristic in the numerator and the direct influence of cost penalties in the denominator

are assessed separately.

Two approaches are taken to verify and tune the influence of the heuristic, with cost penalties

fixed at wv = 0.1/∆vmax and wt = 0.01∆vmax. First, wp = 0.01/ng is used and the three individual

components qr, ql, and
−→
Q are switched on or off. This data series, the first shown in Figure 7.10,

demonstrates the importance of all three components: when all are present, success rates are 98%

or higher, while the absence of any drops this number to the 90-95% range. When more than one

heuristic is absent, the success rate drops as low as 75%, and when both qr and ql are omitted,

no trial completes successfully. Average maneuver counts increase by a third when ql or
−→
Q are

not used, while total fuel cost rises by 15-20%. Omission of qa does not raise these costs but is

nonetheless influential upon success rate.

Secondly, with all three heuristic components present, the weight wp is increased. At wp >

1/(2ng), the heuristic’s influence begins to overpower that of the objective sufficiently to alter

the control choice ∆v, and the success rate plummets. At smaller wp values, performance is

seen to remain consistently favorable in all aspects except total mission duration, which increases

substantially likely as a result of its very mild cost weighting. It thus appears that the prospect

heuristic works best as a method of influencing maneuver timing tk+1 without significantly altering

the choice of ∆v. This arises from the independence of timing relative to results in terms of the fuel

cost, which is fixed for a trajectory’s entire duration, and the objective increment, which generally

is approximately a step function that effectively sets the lower bound of the time span upon which

the maximization of the prospect heuristic is conducted.

Three additional data series reveal the influence of cost weights wv and wt while the heuristic

weight is fixed at wp = 1/(4ng). Findings are entirely intuitive — at modest cost weights, perfect

success rates are achieved and fuel cost can be proportionally traded off against total duration.

When the influence of cost terms becomes too large, success rates suffer as too many opportunities

for progress are missed in favor of keeping short-term costs low. It is hypothesized that fuel costs

could be driven even lower if the timeout criterion were relaxed, while a similar result in terms of
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duration cost seems unlikely due to hard temporal bounds on objective reachability that arise from

both the sizing of the control domain and from solar phasing requirements.

(a) prospect heuristic weights (b) cost weights

Figure 7.10: Performance results for Monte Carlo mission simulation sets using varied decision
function parameters.



Chapter 8

Discussion

This final chapter is structured to interleave the specific findings of the dissertation with

commentary about their broader context and implications, leading to potential avenues of future

work and inquiry. Each section discusses one of the four major components of the research: the

predictive model, the reachability analysis, the receding-horizon scheme, and the uncertainty mit-

igation features. Subsections focus upon specific aspects of each component and strive to answer

three questions: what can be assessed from the available results, what assumptions and limitations

must be kept in mind, and what future steps might be taken to address those factors and extend

functionality? Lastly, a high-level summary of results and their contribution to the field is made in

conclusion.

8.1 Problem Specifications

Successful demonstration of the autonomous planning algorithm is in significant part at-

tributable to the manner in which the problem setup was posed in Chapter 2 and to the properties

inherent in the class of systems investigated. The combination of a sampling-based planning scheme

with a layer of objective abstraction allowed for both flexibility and complexity when generating

solutions, while the control strategy and physical dynamics synergized effectively to allow a high

degree of phase space connectivity that aided in achieving convergence and avoiding failure or

pathological behaviors. This mixture of highly generalizable concepts and tools with relatively un-

usual system traits thus makes it difficult to predict the extensibility of the approach to dissimilar
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problem domains; nevertheless, extrapolation to variations of the small body orbiter problem can

be drawn with some confidence.

8.1.1 Dynamics Modeling

The “black box” nature of the sampling-based tool readily accommodates many types of

physical forces that could be crucially influential in small body exploration scenarios but are not

amenable to mathematical analyses. In the test cases investigated, the primary example of this

was the nonanalytic gravitation of the irregularly shaped central bodies. Nonautonomous, i.e.,

time-parameterized, forces such as asynchronous SRP and third-body gravitation were also present

in some analyses.

By conducting a single pre-integration of natural system behavior, the predictive model could

readily incorporate non-principal rotation of the central body or even the complex motion of two

interacting irregular members of a binary system. Nonconservative forces such as drag from comet

outgassing plumes could be included and potentially even exploited to change the spacecraft’s

energy level without additional fuel cost. The predictive framework could also allow alternate

control schemes such as low thrust applied at a constant magnitude over finite durations, under

sufficiently simple time-parameterization of pointing.

This flexible paradigm is primarily limited by the computational complexity of the model

components rather than their mathematical properties. Other potential hindrances can ultimately

be related back to this fundamental resource. For example, the general smoothness of the utilized

force functions contributed to the applicability of the hill-climbing component in the reachability

set search heuristic; however, forces with stiff functional forms such as focused outgassing plumes

or SRP with shadowing could likely be accommodated with an increase of sampling resolution or

other enhancements to the search technique.
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8.1.2 Objective Modeling

By layering high-level objectives directly on top of physical behavior, the traditional mis-

sion design question of designing a target “science orbit” compatible with high-level objectives is

abstracted away in the predictive model, no longer distinct from the design of orbit transfers and

correction maneuvers. This reduces the human burden in mission design in terms of locating fea-

sible solutions as well as in assessing trade-offs between conflicting objectives — different science

tasks can be quantifiably balanced against asymmetric risks and costs through the formulation and

tuning of the decision function. Furthermore, it allows these high-level decisions to be made on-the-

fly in response to unforeseen opportunities in an environment that changes rapidly in proportion

to the time scales of interplanetary communication.

As with the modeling of physical dynamics, mission requirements and objectives could also be

made more comprehensive and sophisticated, limited only by computational feasibility. Violation

of constraints such as maintaining unobstructed line-of-sight with the Earth for communications

and with the Sun for solar power would manifest simply as additional non-permissible regions in

the control domain, along with the impact and escape sets. Alternate high-level mission goals could

include global imaging coverage or frequent and minimally-controlled traversal through particularly

sensitive regimes to estimate a high-fidelity system model for scientific analysis.

8.1.3 Phase Space Connectivity

The solubility of the small body orbiter problem via short-horizon sampling is facilitated by

the high degree of phase-space connectivity inherent to orbital systems, where motion is the norm,

stillness the exception, and attractors generally do not exist. Combining a proportionally large

amount of control authority with this rich natural motion affords a high degree of reachability in

close-proximity orbit regimes. As a result, challenging goal sets were found to be reliably fulfillable

using simple prospect heuristics that were not tailored to the goals with much specificity.

Greater density and accessibility of objective regions corresponds to broader opportunities
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for mission progress, allowing a planner to pick the least costly of multiple favorable paths. Ever

more ambitious goals, with more narrowly constrained parameters and closer proximity to the

body surface or other inadmissible regions, shrink the connectivity of objective-fulfilling trajectory

families with some of the more desirable general classes of orbits, e.g., those whose osculating

eccentricity remains low over extended time spans. This conversely decreases the ability to reach

goals and minimize costs, thus impeding performance of a planning scheme that lacks provably

convergent heuristics or higher-dimensional reachable sets such as would reflect prediction of multi-

maneuver sequences. A finite objective set, as was used in this study, also results in a narrowing

of prospects as missions progress and fewer objectives remain — indeed, most timeout occurrences

in the Monte Carlo analyses of Chapter 7 occurred after a considerable majority of objectives were

complete.

An alternative mission concept could involve the continuous uploading or onboard designa-

tion of new objectives, in which case steady-state planner performance could be evaluated at a

conistent level of objective reachability as expressed in Eq. 6.8. Furthermore, the automatic for-

mulation of more objective-specific prospect heuristics could serve as an improved substitute for

the preferable but computationally infeasible usage of multi-step reachability search. By defining a

“home manifold” orbit family associated with the prospect heuristic and assessing its connectivity

with individual objectives under practical energy bounds, mission feasibility under that prospect

heuristic might be judged a priori.

8.2 Reachability Search and Mapping

The core component of the planning algorithm — efficient numerical reachability analysis,

as detailed in Chapter 4 — is also a focal point for questions of feasibility and practicality for real-

world implementation. Beyond the computational cost of force and objective model evaluations,

which was discussed above, runtime efficiency of the planner also hinges upon the sizing of the

control domain to be searched and upon the specifics of how the search is executed. Individual

optimization of each of these aspects is crucial for minimizing usage of computing resources, in
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addition to the balancing of their allocation, e.g., trading off the size of the control domain covered

against the accuracy with which it is resolved.

8.2.1 Reachable Domain

For the most part, the search trials in this research effort have utilized large control domains

that could permit reversal of the direction of motion and access to a broad swath of osculatingly

bounded energy levels; results thus represent an upper bound on the contribution of the velocity-

space size of the domain to the computational burden of the search process. These large domains are

well within reason for typical spacecraft maneuvering capabilities at low-mass bodies, and are also

informative of other questions directly relating to the realities of the physical propulsion system,

e.g., revealing the risks of under-performing maneuvers by considering outcomes across the entire

range (0,∆v).

Converse to velocity-space bounds, the temporal bounds of predictions have a less clear

hard limit on their utility. While robustly-achievable outcomes naturally have a limited lifespan

via the Expire condition, this only reflects what can be achieved without corrective re-planning;

further-sighted predictions can still provide beneficial information through the prospect heuristic

and particularly the prospective quality
−→
Q . However, long propagations incur additional computa-

tional burden not only through the integration cost per sample but also by increasing the required

number of samples to resolve the ever more detailed map features that develop as the horizon

is extended. This is mitigated somewhat by the continual shrinking of safe regions, but would

nonetheless require an increase in the initial sample size in order to provide a sufficiently accu-

rate starting point for the adaptive refinement process. Domain sizing in terms of both maneuver

magnitude and propagation duration thus also relates directly to the effectiveness of the search

heuristic, which determines the additional ground that can be covered relative to an exhaustive

search of a smaller domain.

Further increases in efficiency might be attainable by using more custom-tailored domain

geometries or biased initial sample distributions based upon results of the Keplerian reachability
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analysis exercise of Section 3.4 and Appendix B, e.g., inversely proportional to the difference be-

tween the osculating periapse radius and the central body mean radius as a predictor of where

high complexity will appear. With sufficient boosts in domain specificity and heuristic efficiency,

it may even become feasible to search four-dimensional domains in real-time, i.e., timed 3DOF

maneuvers. Altogether, the trade-offs between domain pruning by a priori assumptions and the

generality/versatility of the planner is a crucial aspect to consider when optimizing computational

efficiency.

8.2.2 Refinement Scheme and Tuning

A key simplification for improving the refinement heuristic’s performance and reducing the

required amount of tuning was the shift from edge-wise subdivision to simplex-wise subdivision.

This both expanded the amount of information being utilized by the heuristic weighting function of

Eq. 4.9 and provided a straightforward way of removing bias from the conversion between a set of

mesh elements and the continuous control set. The de-biasing in terms of volume resulted in more

consistent behavior of subdivision weight distribution, which is essentially an approximation of the

objective function and is used for governing further sampling. After establishing this and addition-

ally allowing individual simplices to be sampled multiple times per refinement cycle, performance at

a fixed total sample size became far less sensitive to the sizing of the initial uninformed search and

to the number of refinement iterations. Tuning was then focused primarily on the objective-centric

factor of the weighting function and its exponent, which applied simulated annealing.

Despite these reductions, the number of influential parameters in the heuristic remains suffi-

ciently large to make tuning a challenge. Tuning for high performance becomes even more difficult

when attempting to design a highly generalizable heuristic — which is important as the struc-

ture and complexity of reachability maps varies drastically not only between different systems and

objectives but even between different initial conditions.

The tuning process could potentially be automated and optimized using a genetic algorithm

or other machine learning technique. It could also be altered to reduce total computational cost
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by adapting the model fidelity used in different predictions, i.e., using a coarse shape model during

initial search and later increasing the vertex count when sampling highly promising regions, perhaps

in tandem with the influence of simulated annealing. Further consistency in the subdivision process

might also be attained with a more systematic and distribution of sampled control points on the

interior of a simplex instead of a probabilistic one.

8.2.3 Implementation and Runtime

Altogether, the level of computational efficiency achieved suggests that the sampling-based

planning approach may indeed be feasible for onboard implementation — although plans using

detailed models may take several minutes to compute on consumer-grade hardware, they only need

to be generated once every few hours. Significant effort was dedicated to consistently reducing

runtimes throughout the duration of the project’s development, but considerably more efficient

implementations are no doubt possible, which could help to counteract the performance hit expected

from the reduced clock speeds of typical onboard processors. This uncharacteristically simulation-

heavy approach to mission design is furthermore in line with the trend to utilize more computational

power and algorithmic techniques in guidance, control, and automation.

It is nonetheless true that onboard computing power is highly limited on spaceflight-qualified

hardware and must be shared effectively between many subsystems in order to ensure mission

success. Necessary further reduction of the net usage by the planning algorithm may be be difficult,

and hard guarantees of convergence times are not possible for most intended applications, though

acceptable solutions are generally found early in the refinement process. Unavoidably large CPU

burden might potentially be accommodated simply by increasing the ∆tmin planning parameter to

guarantee more available time, but this would have a negative impact on reachability prospects by

rendering a larger set of options inadmissible.

Beyond improvements to the software implementation, large performance gains could poten-

tially be obtained by using field programmable gate arrays (FPGAs) or other customized hardware.

This approach would be amenable due to the various parallel aspects of the algorithm, such as the
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independent propagations of many different trajectories, the simplex-wise calculation of refinement

weights, and the facet-wise evaluation of polyhedral gravitation.

8.3 Receding Horizon Planning

The receding-horizon implementation (per Chapter 6) of abstraction-based decision-making

essentially re-poses a planning task as a control tracking problem for an abstract output state, whose

relationship with the physical state is hidden away in the predictive model and handled separately

by the reachability search method. Because the controller functions in a discrete manner, the

controlled system can be analyzed as a time-discrete system with the sequence of control epochs as

the independent variable. Description of various properties of the controlled system then becomes

a simpler matter.

8.3.1 Properties of Controlled System

Stability and convergence are standard properties of interest in control systems, and are often

demonstrated with rigorous mathematical proofs. In RHC, the notion of recursive feasibility is a

prerequisite for these; the controller must not take the system to a state at the current horizon

only to find during the next horizon that long-term reachability of the goal has been lost. The

abstraction-based planner is not amenable to rigorously proving these properties; however, intuitive

explanations can be found in support of their empirical demonstration. Recursive feasibility follows

naturally from the high degree of phase space connectivity, discussed in Section 8.1.3 — as long as

the spacecraft does not get into a situation from which it cannot recover, nearly the entire phase

space can be reached with a small number of control inputs. The utilized margins of error and

control authority were sufficient for avoiding a single failure scenario in the entirety of the Monte

Carlo simulation sets, thus achieving recursive feasibility and stability in practice. Convergence,

meanwhile, is not guaranteed but is demonstrated for several planner formulations by their success

rate results. Notably, the results of Section 7.1.2 imply that under sufficiently challenging predictive

models, all possible solution paths through the ng-cube goal space will be taken — this is suggestive
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of a sort of pseudo-ergodic motion on some manifold of physical space that intersects all goal regions.

Attainment of desired controller properties stemmed from effective tuning of a large set

of design parameters, such as those of the reachability mapping routine of Algorithm 1 and the

decision function of Eq. 6.7. It also depended upon mission specifications that constrain phase space

connectivity of observation regions: region size, quantity, and required accumulation time. Under

uncertainty, margins of safety impose further limitations on connectivity, particularly through the

minimum re-planning time. Thus, for general instantiations of the type of problem it is unlikely

to be rigorously provable that convergence will occur within a finite time span, and extensive

re-calibration of heuristic parameters might be required.

Far stronger reachability prospects would be afforded by a multi-horizon search, i.e., predict-

ing outcomes for sequences of two or more control inputs. However as this essentially exponentiates

the dimensionality of the control domain by the depth of the search, it is unlikely that a depth

of more than two 2DOF inputs could be made numerically feasible. Possibly by using rules to

expand only a small subset of samples to greater prediction depths, the additional CPU demands

would scale linearly rather than exponentially. A search paradigm of this sort would begin to bear

semblance to the highly influential method of Rapid Random Trees.

8.3.2 Decision Function

The prospect heuristic ph present in the decision function essentially reflects the mission de-

sign philosophy of the planner: should the spacecraft stay closer to the body, or further? Maneuver

frequently or infrequently? Choose stable or unstable paths? Orbit prograde, polar, or retrograde?

Although only a small glimpse of the full heuristic design space has been explored, there is already

compelling evidence that such heuristics are necessary for keeping the spacecraft on track to com-

plete its mission. Notably, the results of Section 7.3 suggest that these heuristics are most effective

when somewhat decoupled from the choice of maneuver. At low weighting wp � 1, the result

is that a maneuver is selected based upon maximization of objective progress and then the next

planning epoch is designated to minimize the cost-to-go by speeding up subsequent progress. The
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degree to which these decisions can be decoupled depends on the nature of the prospect heuristics;

e.g., the radius quality heuristic qa might be satisfied by very large classes of reachable trajectories

and thus not influence a choice between two maneuvers linked to that orbit family.

This degeneracy in the decision function could appear to be a double-edged sword; when

there is ambiguity about what the absolute best option is, i.e., maxima occur with finite volume,

then it is likelier for two separate trials to result in two different decisions. Some prescriptions

lead to more wildly varying results than others; for example, because nearly all trajectories cross

the x-y plane, use of a latitude heuristic with l∗ = 0◦ is likely to affect only timing and never

the choice of maneuver; this is not the case for l∗ = −90◦ since almost no trajectories cross the

polar axis. The possibilities for formulating prospect heuristics are endless, and so the results of

the completed investigations might not be indicative of the levels of high performance that may be

possible. Furthermore, the decision function interacts with the other components of the algorithm,

making the study of heuristics extremely difficult — for example, certain formulations might work

well only with very long prediction horizons; others may require recalibrating of the reachability

search due to their influence on the complexity of how the decision variable fluctuates across the

reachable domain.

It is likely that custom-tailoring heuristics to specifc goals could be highly effective, e.g.,

by conducting backward-propagations from targets to identify regions from which they may be

easily reached. This approach would certainly need to simplify the identification of this backward-

reachable set by forward-propagated sample spacecraft paths in order to minimize its CPU cost.

More general heuristics that have not yet received significant testing are the pursuit or avoidance of

sensitive paths, a preference for certain Jacobi energy levels (which can be computed immediately

from initial conditions, potentially easing search speed via a priori knowledge), or a preference

for maximum change in phasing, i.e., true longitude. It might even be possible to retain a list of

previous states that provided unpursued opportunities for goal completion, and to return to those

states to once again get the unfulfilled objective in sight. Perhaps the most labor-intensive but

most promising approach to heuristic design would be to do slow, offline simulations in a full 4D
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search domain or even at multi-maneuver depth, pick the best solutions from those, and then apply

manifold learning techniques to design heuristics that would have identified the maneuver points

without the extra-dimensional knowledge.

8.4 Uncertainty Handling

Because of the high levels of state and model error and dynamical sensitivity characteristic

of small body environments, a basic handling of uncertainty was paramount for demonstrating the

potential of the autonomous planning algorithm. Results in Section 7.2 demonstrated that robust

predictions, as described in Section 2.2.3.1, and reactive execution, as formulated in Section 6.5.2,

were a versatile combination for negating varying levels of error.

8.4.1 Error Levels

Uncertainty mitigation results appeared highly promising for the types and levels of error

modeled; under appropriate planner settings, reasonable performance could be obtained under

uncharacteristically large state errors. It is implicated that the methods may then scale well to

bodies with other sizes and densities, where the proportional influence of state estimate errors

would have different consequences for uncertainty growth. Model error also appears possible to

address in the planning scheme — even the especially irregularly shaped Comet 67/P could be

modeled sufficiently accurately with a low-resolution polyhedron. The surprisingly small influence

of this shape modeling error can likely be attributed to its rather stochastic nature.

Reality could, however, vary from the test case scenario in ways that are not so easy to

extrapolate. Navigation errors may be smaller in proportion to nominal state values at larger bodies,

but there could also be significantly reduced control authority depending on the fuel limitations of

the mission. This would in turn reduce robust phase space connectivity and require more restrictive

safety margins in order to ensure recursive feasibility. At smaller bodies, the proportionally stronger

effects of navigation errors could begin to invalidate the assumption of linear error growth and

trigger reactive planning more frequently than is desirable. Lastly, far more detrimental varieties
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of model uncertainty might occur in real systems. Inhomogeneity of the central body’s mass

distribution is suspected to be likely in the case of rubble pile asteroids or porous comets, and could

produce more systematic error than an inexact representation of the surface shape that nonetheless

retains the correct center of mass. Some forces such as comet outgassing are also incredibly hard

to model accurately; these would either impede the effectiveness of robust plans or perhaps again

reduce connectivity by being labeled as keep-out zones out of necessity.

Constant improvement of navigation-related technologies, such as flash lidar, could do much

to reduce the level of uncertainty in these missions. Conversely, high uncertainty could at least

be leveraged as a computational advantage — reachability maps only need to be resolved to the

resolution at which the uncertainty ellipses of sampled points begin to overlap. To provide limited

robustness to model errors, the predicted deviation Λ could even be augmented with a third term

consisting of a sensitivity matrix relating the expected deviation due to uncertainty in a small

selection of model parameters.

8.4.2 Robustness Versus Reactivity

Appropriately balanced robustness and reactivity were found to produce high success rates

in batches of full mission trials, although the balancing had to be adjusted based upon the level

of state error present; higher error necessitates an increased reliance upon reactivity. Very low

robustness implies that the spacecraft will replan as soon as possible, while high robustness implies

replanning after it has reached the manifold defined by the prospect heuristic, thus aiding long-

term performance. As long as sufficient reachability prospects can be maintained, robustness is

prefarable to reactivity from an operational point of view: executing maneuvers at nominally

planned epochs, rather than reactively, affords more stringent control over the next cycle’s prospects

and potentially increases the predictability of planner behavior. Furthermore, infrequent maneuvers

translate to longer ballistic arcs, which provide better data for state and model estimation. This

would also reduce usage of limited onboard operational resources such as processing power and

pointing requirements, thus imposing less restriction on science instrument operations.
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Because reactivity essentially serves as a safety net to cope with the limitations of robustness,

the true hard bounds on spacecraft abilities come from its ability to react. This might be impeded

when frequent correction maneuvers cause runaway growth in the state estimate, or when plan

formulation time is too long relative to the error growth rate. More frequent use of computing

resources would also be required in this case, and computational search demands per maneuver

also increase — since the craft is essentially computing reachability of goals that it might be able

to attain with a couple more correction maneuvers along the way, higher resolutions and longer

propagation times are needed.

Reachability limitations in highly-robust plans might be alleviated through a re-balancing of

terms in the decision function, particularly the relative weighting of near-term reachability prospects

−→
Q and generic reachability prospects ph. This would blend the low maneuver frequency of robust

planning with the far-sightedness of reactive planning. Such a formulation might be most appro-

priate for smaller and less dense celestial bodies, where a given level of velocity error is larger in

proportion to orbital speeds, or for a spacecraft with decreased navigation abilities or imprecise

propulsion systems — scenarios where robustly reaching a goal with a single maneuver is very

unlikely. Finally, occurrences of unnecessary reactive re-planning might be avoided by more careful

utilization of divergence information. The goal-region-shrinking method of robust planning assumes

deviations are both in the worst-case direction and at the worst-case magnitude. However, during

online execution, single propagations of the continuously estimated trajectory could be checked to

verify whether the specific realization of uncertainty actually causes a miss of the target; if not, no

correction burn is necessary.

8.5 Summary and Conclusions

This dissertation has provided the development and proof-of-concept demonstration of a new

autonomous online mission design scheme based on abstraction of mission objectives and intended

to allow ambitious operations and increased science returns in challenging small body systems.

Feasibility aspects addressed included navigation and modeling errors, limited frequency of con-
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trol cycles, and computational cost: through adaptive mapping, abstract reachability analysis was

performed at a level of speed, detail, and sophistication indicative that realtime onboard imple-

mentation could be achievable. Prospect heuristics were demonstrated to serve as an equivalent

of cost-to-go functions that leveraged the phase space connectivity of orbital systems to make

receding-horizon planning an effective approach. All of these components working in concert were

shown to successfully and consistently generate mission profiles that fulfilled sets of challenging ob-

servation goals at very close proximity to highly irregular objects, while minimizing total duration

or fuel consumption and mitigating uncertainty. The rising trend of using increasingly sophisticated

computational and algorithmic approaches to provide previously unattainable abilities and levels of

performance in guidance and control of fast dynamic systems has thus been extended to the novel

scenario of small body mission design.
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Appendix A

Gravity Models

The two gravity models utilized in the predictive dynamical model are adapted directly from

[6].

A.1 Triaxial Ellipsoid

The ellipsoid’s principal radii α, β, and γ are stored in decreasing order in the set % =

{α, β, γ}. Two key quantities are first defined:

φ (r, u) =
x2

α2 + u
+

y2

β2 + u
+

z2

γ2 + u
− 1

∆(u) =
√

(α2 + u) (β2 + u) (γ2 + u)

Next, the value λ (r) is computed as the largest real root of φ (r, λ) = 0 via Newton-Raphson

iteration. Iteration counts needed for convergence are reduced by using prior time step’s results as

initial guesses.

The body-frame expressions for gravitational potential U and its first and second derivatives
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with respect to position elements are

U(r) = −3

4
µ

∫ ∞
λ(r)

φ (r, u)
du

∆(u)

Uri = −3

2
µri

∫ ∞
λ(r)

du(
%2
i + u

)
∆(u)

Uriri = −3

2
µ
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λ(r)

du(
%2
i + u

)
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+
3µr2
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i + λ

)2
∆ (λ)
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]
Urirj 6=i

= − 3µrirj(
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) (
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)
∆ (λ)

/[ x2

(α2 + λ)2 +
y2

(β2 + λ)2 +
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(γ2 + λ)2

]
Numerical implementation of the potential and its derivatives employs two algorithms from [74] to

calculate Carlson’s elliptic integrals of the first and second kinds, which have the respective forms

RF (a, b, c) =
1

2

∫ ∞
0

du√
(a+ u) (b+ u) (c+ u)

RD (a, b, c) =
3

2

∫ ∞
0

du

(c+ u)
√

(a+ u) (b+ u) (c+ u)

To convert the integral expressions of Uri into the form of RD, v = u−λ and dv = du are substituted

and a new set of arguments derived from the ellipsoid of axes are used

Uri = −µri
3

2

∫
���

�:∞
v(u=∞)

���
�: 0

v(u=λ)

dv(
%2
i + v + λ

)
∆ (v + λ)

%′i = %2
i + λ

Uri = −µriRD
(
%′j , %

′
k, %
′
i

)
The potential itself can be expressed in terms of RD and RF using the same substitution

U = −1

2
µ
[
x2RD

(
β′, γ′, α′

)
+ y2RD

(
γ′, α′, β′

)
+ z2RD

(
α′, β′, γ′

)
− 3RF

(
α′, β′, γ′

)]
And lastly, the Jacobian of the potential is computed using a vector c that scales the position by

the modified ellipsoid axes

c =

[
x
α′

y
β′

z
γ′

]T

∇2U = −


Ux/x 0 0

0 Uy/y 0

0 0 Uz/z

+
3µ

cT c
√
α′β′γ′

[
ccT

]
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A.2 Polyhedron

First, 3x3 projection matrices are defined for each edge e and face f using normal unit vectors

n̂; computations for edge matrices depend on the normals of both adjacent faces f and f ′.

Ee = n̂f n̂
f
e + n̂f ′n̂

f ′
e (A.1)

Ff = n̂f n̂f (A.2)

Because these matrices do not depend on the spacecraft position, they are precomputed and stored.

Gravitation evaluations during propagation begin with the computation of two scalar terms:

Le = ln
re1 + re2 + |re1 − re2|
re1 + re2 − |re1 − re2|

(A.3)

$f = 2 arctan
rf1 · r̃f2 · rf3

rf1 r
f
2 r
f
3 + rf1 rf2 · rf3 + rf2 rfe · rf1 + rf3 rf1 · rf2

(A.4)

The gravitational potential, acceleration, and Hessian are then obtained in terms of summations

across polyhedron elements:

U (r) =
Gσ
2

 ∑
e∈edges

re ·Ee · reLe −
∑

f∈faces

rf · Ff · rf$f

 (A.5)

∂U

∂r
= −Gσ

 ∑
e∈edges

Ee · reLe −
∑

f∈faces

Ff · rf$f

 (A.6)

∂2U

∂r2
= Gσ

 ∑
e∈edges

EeLe −
∑

f∈faces

Ff$f

 (A.7)

During this summation, the minimal range ρP is also checked. Additionally, the Laplacian is

computed for use in detecting impact

∇2U =− Gσ
∑

f∈faces

$f (A.8)

This quantity evaluates to 0 for positions exterior to the surface, or 4π for interior ones.



Appendix B

Keplerian Reachability

B.1 Keplerian element level sets

For repeated reachability-based maneuver planning, it is desired to map both the direct out-

comes of each maneuver as well as the dynamical characteristics of the associated orbit. For a

planar Keplerian system, only three parameters are required to describe the reached orbit: semi-

major axis a, eccentricity e, and argument of perigee ω. Orbit inclination and right ascension are

zero and undefined, respectively, while the true anomaly f at the time of the maneuver is redundant

with the description of ω relative to the x̂ direction.

By normalizing the standard two-body energy equation by 2/v2
lc, the kinetic energy of a

circular orbit at the initial radius r, we obtain an expression of the ratio between initial radius r

and semimajor axis a in terms of the normalized velocity magnitude ν.

E =
v2

2
− µ

r
= − µ

2a

E′ =ν2 − 2 = −r
a

r/a =2− ν2 (B.1)

The normalized semimajor axis depends only on velocity magnitude and not upon flight path angle.

Velocity-space level curves of a/r must therefore appear as concentric circles about the origin, with

values of 1/2 ≤ a/r < ∞ for 0 ≤ ν <
√

2, a/r = ∞ for ν =
√

2, and a/r < 0 for ν >
√

2.

By computing the velocity magnitudes that correspond to these ranges of a/r we obtain the level

curves plotted in Figure 3.2(a).
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First find the semilatus rectum (normalized by semimajor axis) with the help of Equation

B.1

p/a =H2/ (µa)

= (rv cos γ)2 / (µa)

=
(r
a

) r
µ
v2 cos2 γ

=
(
2− ν2

)
ν2 cos2 γ (B.2)

This leads directly to the eccentricity e

e =
√

1− p/a

=
√

1− (2− ν2) ν2 cos2 γ (B.3)

Level curves are obtained by solving for νx = ν sin γ in terms of νy = ν cos γ for a specified value

of e. These are plotted in Figure 3.2(b).

1− e2 =
(
2− ν2

)
ν2 cos2 γ

1− e2 =2ν2
y − ν2

xν
2
y − ν4

y

ν2
xν

2
y =2ν2

y − ν4
y + e2 − 1

νx =±
√

2− ν2
y + (e2 − 1) /ν2

y (B.4)

We first seek a simplified expression for the true anomaly f with the help of Eqs B.1 and

B.2.

r

a
=

p/a

1 + e cos f

1 + e cos f =
(p
a

) ∣∣ /(r
a

)
=
p

r

=
[(

2− ν2
)
ν2 cos2 γ

] / (
2− ν2

)
= ν2 cos2 γ (B.5)

Solving for the true anomaly requires use of inverse cosine, which has the same sign for a given

radius regardless of whether the state is outbound from periapse or inbound to periapse. This
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missing information can instead be gleaned from the sign of the flight path angle.

f =sgn (γ) cos−1

(
ν2 cos2 γ − 1

e

)
Since the initial state is located at position x̂, the argument of periapsis ω is simply the negative

of the initial state’s true anomaly. Level curves of ω are found from first solving Eq B.5 for

e =
(
ν2
y − 1

)
/ cos f and then plugging this value into Eq B.4 to obtain νx (−ω, νy). However ω only

appears in this expression as cos2 ω, which is ambiguous with three other angles:

cos2 ω = cos2 (−ω) = cos2 (π + ω) = cos2 (π − ω)

Curves generated for ω ∈ [0, 90◦] thus contained level curves for all four arguments; it was experi-

mentally determined that the corrected value ω′ ∈ [0, 360◦] could be described by:

ω′ =− sgn (νx) sgn (νy)ω + 180◦ (|νy| < 1)

Results are shown in Figure 3.3.

B.2 Impact

The two primary criteria for mission failure are escape from and impact of the central body.

Escape is straightforwardly detected via energy, corresponding to ν ≥
√

2 and having no dependence

on γ, as was found in the discussion of Section B.1. Development of the impact criterion is less

trivial.

Beginning from r/a = 1− e cosE, we relate the initial conditions to the periapsis radius rp,



129

where rp = r(E = 0) and ρ = rp/r.

1− e =rp/a

e2 = (1− rp/a)2

�1− (r/a) ν2 cos2 γ =�1− 2rp/a+ (rp/a)2

−��
�(r/a)ν2 cos2 γ =− 2ρ��

�(r/a) + ρ2 (r/a)��
�(r/a)

ν2 cos2 γ =2ρ− ρ2
(
2− ν2

)
=2ρ− 2ρ2 + ρ2ν2

From here, the constraint between ν and γ for given ρ can be easily expressed as a function of

either parameter in terms of the other:

ν2 =2

(
ρ− ρ2

cos2 γ − ρ2

)
cos2 γ =ρ2 +

2

ν2

(
ρ− ρ2

)
(B.6)

Alternatively, in terms of the velocity components vx along the radius vector and vy perpendicular

to it,

ν2
x =

ρ2v2
y + 2

(
ρ− ρ2

)
1− ρ2

ν2
y =

v2
x

(
1− ρ2

)
− 2

(
ρ− ρ2

)
ρ2

This constraint, which specifies a 1D subset of the 2D velocity space, corresponds to grazing impact

when rp is equal to the radius R of the finite-density central body.

As was seen with the level curves of argument of perigee, the term cos2 γ implies that when

γ satisfies the grazing impact constraint for a given pair of periapse radius and velocity magni-

tude, so will −γ, 180 + γ, and 180 − γ. These four values correspond to symmetries between

inbound/outbound orbit legs and prograde/retrograde orbits.

From the first version of Eq. B.6, we see that when γ = 0, the denominator is maximized

(since ρ < 1 for impact detection) and ν is minimized, providing the slowest possible grazing impact.

Increasing γ until cos2 γ = ρ causes ν2 − 2 = 0, which from Eq. B.1 can be seen to correspond to
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a parabolic orbit. Further increase implies hyperbolic orbits with grazing-impact. Finally, when

cos γ = ρ, the denominator reaches zero; this implies that the orbiter travels on a straight line

at infinite velocity to graze the central body at position R cos γx̂ ± R sin γŷ, completing a right

triangle with hypotenuse length r and opposing side length R.

Begin with the constraint on grazing trajectories, and introduce a constant I.

I = ν2 − 2

(
ρ− ρ2

cos2 γ − ρ2

)
(B.7)

Suppose that (ν, γ) are selected to satisfy I = 0, such that the trajectory grazes the surface. Then

consider if ν is decreased slightly; now, the normalized kinetic energy is reduced such that I < 0

and the perigee is slightly reduced to rp < R. Or, if cos γ is decreased toward its limiting value

of ρ, this increases the magnitude of the negative term and also causes I < 0; angular momentum

is removed from the system causing an increase in eccentricity. Conversely, increasing ν or cos γ

causes I > 0 and rp > R. I can thus be used as a measure of impact, where as values become

more negative the impacting orbits have lower and lower periapses.

A velocity-space map of grazing and incident impact is shown in Figure 3.4(a), where level

curves represent grazing impact for a specified value of ρ and the shaded interior region represents

incident impact for that value. Symmetry about the x axis reflects the equivalence of prograde and

retrograde orbits. The level curves are also symmetric about the y axis since the impact criterion

evaluates the conic of the executed maneuver, which can be reached on either its outbound or

inbound leg; to reflect the practical reality that we are only interested in forward-time reachability,

outbound trajectories on hyperbolae with rp ≤ R are marked as escaping rather than impacting.

B.3 Impact Properties

A few additional properties of impacting trajectories can be examined. To compute time-

to-impact, the mean anomaly M must be found with Kepler’s equation after first obtaining the

eccentric anomaly E. The sign of γ is used to determine whether motion is inbound or outbound
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from periapse.

r/a = (1− e cosE)

E = sgn (γ) cos−1

[
1

e

(
1− r

a

)]
M = E − e sinE

These equations can be used to find M for a generic initial state, or by multiplying the quantity r/a

by ρ and using sgn (γ) = −1 they provide Eimp and Mimp, which are zero for the case of grazing

impact. Time to impact is then

timp = mod (Mimp −M0, 2π) /n (any impact)

tper = mod (−M0, 2π) /n (grazing impact)

Due to the complications of Kepler’s equation, level curves of time to impact do not have a straight-

forward analyical expression; numerical results are shown in Figure 3.6(b).

The velocity at impact can be shown to be independent of the initial flight path angle, with

level curves occurring at fixed radii from the origin (though whether impact does in fact occur still

depends on the flight path angle per Eq. B.7).

R/a =ρr/a

= 2− ν2
imp =ρ

(
2− ν2

)
(B.8)

Impact angle can also be constrained in a manner similar to the grazing impact criterion, through

the use of Eqs. B.2 and B.8 and the constancy of p and a for a given conic.

(
2− ν2

)
ν2 cos2 γ =

(
2− ν2

imp

)
ν2
imp cos2 γimp

���
��(

2− ν2
)
ν2 cos2 γ =ρ���

��(
2− ν2

) [
2− ρ

(
2− ν2

)]
cos2 γimp

=2ρ cos2 γimp − 2ρ2 cos2 γimp + ρ2ν2 cos2 γimp

ν2 =2

(
ρ− ρ2

)
cos2 γimp

cos2 γ − ρ2 cos2 γimp

Level curves of these two properties are shown in Figure 3.4(b).
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B.4 Goal Rendezvous

As a simple model of the attainability of position-based mission objectives, reachability is

studied for goal points fixed in inertial space. Begin with the equations for the radii r of the initial

state and r1 of the goal position, which has angular displacement θ1 counterclockwise from the x

axis.

r =
p

1 + e cos f
r1 =

p

1 + e cos (f + θ1)

Define β1 = r/r1, the inverse normalized radius of the goal state.

β1 =
r

r1
=

1 + e cos (f + θ1)

1 + e cos f

β1 + β1e cos f =1 + e cos (f + θ1)

=1 + e cos f cos θ1 − e sin f sin θ1

The flight path angle can be introduced from

tan γ =
e sin f

1 + e cos f

Replacing the sine term, the constraint becomes

β1 + β1e cos f =1 + e cos f cos θ1 − [(1 + e cos f) tan γ] sin θ1

=1 + e cos f cos θ1 − tan γ sin θ1 − e cos f tan γ sin θ1

Collecting in terms of e cos f and substituting from the radius equation,

(β1 − cos θ1 + tan γ sin θ1) e cos f =1− β1 − tan γ sin θ1

e cos f =
p

r
− 1 =− tan γ sin θ1 + β1 − 1

tan γ sin θ1 + β1 − cos θ1

Substituting the earlier equation for p/r, we have

ν =± 1

cos γ

√
1− tan γ sin θ1 + β1 − 1

tan γ sin θ1 + β1 − cos θ1
(B.9)

Which tells us, for a given γ, what velocity magnitude we need in order to travel on the conic

containing the point (β1, θ1) . Level curves of this constraint are plotted in Figure 3.5.


