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The promotion of high intellectual ability is of huge and increasing societal interest with 

accelerating technological advances. Distinct trajectories of structural brain development 

according to IQ score are hypothesized to reflect an extended sensitive period during childhood 

and early adolescence in individuals of higher IQ. A thorough explanation of this question 

requires a synthesis of individual differences research from behavior genetics and the knowledge 

of species-general hallmarks of normal development from developmental cognitive 

neuroscience; two fields that, for the most part, have proceeded independently. This dissertation 

investigates this question from several angles. First, developmental structural equation modeling 

is applied to longitudinal twin data to examine the typical patterns of continuity and change in 

genetic and environmental influences on intelligence between age 1 and 16, demonstrating a 

pattern of increasing heritability and decreasing shared environmental influence that is not 

qualitatively different in individuals of higher IQ. Study 2 uses a DeFries-Fulker regression 

framework in a large cross-sectional study of twins and a smaller longitudinal replication sample 

of twins, biological siblings and adoptive siblings to examine whether the change in the 

magnitude of genetic and environmental influences on IQ throughout development is consistent 

with a sensitive period in IQ development that is extended in individuals of higher IQ, treating 

score as a continuous predictor of environmental sensitivity. Study 3 seeks to demonstrate this 

pattern for a measurable environmental variable in a longitudinal sample of Phenylketonuria 
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patients, and to test causal models for individual differences in sensitive period length. Finally, 

Study 4 outlines motivation for and considerations in designing a computational model to 

examine the mechanistic role of neurobiological events underlying sensitive periods in 

determining outcome and why an extended sensitivity to the environment may be beneficial in 

the development of high intelligence. Results are supportive of an extended sensitive period for 

cognitive development in individuals of higher IQ that is driven by actualized intellectual 

capacity in late childhood. These findings may have implications for the search for genetic 

variants underlying individual differences in intelligence and successful interventions for 

promoting high cognitive ability. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Overview 

 

Higher-level reasoning skill is becoming ever more important in society. As noted by 

Hernstein & Murray (1994) in The Bell Curve, and by others (e.g. Gottfredson, 1997; Reich, 

1991) changes in our society are increasing the value of intellectually demanding occupations. 

The ascendance of the “systems analyst” (Reich, 1991) is projected to progressively increase 

with technological advance (Hunt, 1995a; cf. Hunt, 1995b). Promoting intellectual ability is 

therefore an important goal for society both now and in the future. From Baby Einstein to Brain 

Training video games, to the many column inches in the popular press and online dedicated to 

“how-to” instruction and prominent lay reporting of the science of IQ, increasing intelligence is 

of huge and broad interest in modern America. The overarching goal of this thesis is to examine 

causal factors underlying high intelligence, with a particular focus on how differences in general 

intelligence unfold developmentally. Understanding how the balance between genetic and 

environmental influences affect outcome generally and what factors specifically vary between 

individuals of differing ability is a crucial step in the goal of nurturing intellectual excellence and 

in designing better curricula for remedial and gifted programs. 

 

 

This Chapter will bring together previous literature from differential psychology, 

behavioral genetics and developmental cognitive science to argue that a synthesis of these 
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approaches can provide the most comprehensive understanding of the roots of inter-individual 

differences in intelligence and the factors that promote high intellectual ability. Previous 

conceptions of extremes of ability posit causal influences (both genetic and environmental) that 

are distinct from those evident within the normal range of ability and ignore the important role 

that co-activation between factors internal and external to the developing organism play. 

Conceptualizing development as a path to an eventual goal, as behavior genetics typically has, 

rather than as a dynamic process of incremental change according to immediate and shifting 

constraints both internal and external to the organism obscures the potential role of 

developmental trajectories in cognitive outcome.  

 

To build this argument I will first describe the phenotype of intelligence and what is 

known about causal influences throughout development for both the full range of ability and for 

high IQ in particular. I will then move to describing evidence from comparative studies and 

human cognitive neuroscience that demonstrates clear associations between prolonged 

trajectories of brain development and cognitive ability. This research points to the potential of a 

prolonged environmental sensitive period as a contributing factor to high IQ. After describing 

current theorizing on the concept of the sensitive period, I will examine how the predictions of 

changing genetic and environmental influences throughout development resulting from this 

theoretical framework compare to existing knowledge and explanatory frameworks in behavior 

genetics, identifying apparent inconsistencies between the two fields. I will end by outlining the 

methods by which the current thesis attempts to integrate these disparate approaches to examine 

1. whether the developmental trajectory of change in the genetic and environmental influences is 

consistent with the hypothesis of an extended sensitive period in the most intelligent and 2. To 
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start to address unanswered questions regarding the causal basis of such a pattern. 

 

 

1.2 Intelligence: The heritable phenotype 

 

General Intelligence (or g; Spearman, 1904) is typically measured by IQ (intelligence 

quotient) tests, the most popular of which are the Stanford-Binet (Terman & Merrill, 1973) and 

the Wechsler tests (e.g. Wechsler, 1991; 1997;1981), include many verbal and nonverbal subtests 

that are amalgamated into a single full-scale score. Ravens Progressive Matrices (Raven & 

Court, 2003) are also popular as a single, nonverbal and culture fair measure. It has been shown 

that the first unrotated principal component derived from scores of the subtests of these and any 

batteries of varied cognitive tasks typically explains around 50% of the variance and g scores are 

have been shown to be almost completely correlated between various different batteries 

(Johnson, Bouchard, Krueger, McGue & Gottesmen, 2003). g has been described as “a very 

general mental capacity that, among other things, involves the ability to reason, plan, solve 

problems, think abstractly, comprehend complex ideas, learn quickly, and learn from 

experience.” (Gottfredson, 1997 p. 13), although there isn’t an exact universally accepted 

definition (Sternberg & Detterman, 1986). It has been shown to be predictive of social and 

occupational status, educational and job performance, adult health and longevity throughout the 

range of ability in the general population (Gottfredson, 1997; Gottfredson & Deary, 2004; 

Neisser et al, 1996; Whalley & Deary, 2001). Although of notable predictive value from early 

childhood, IQ scores become increasingly stable across development (Deary, Whalley, Lemmon, 

Crawfod & Starr, 2000), during which time the structure of causal influence is changeable. 
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Inter-individual differences in g are the subject of a large and increasing body of 

etiological, especially behavioral genetic research. It is one of the most heritable traits known. 

Simultaneous consideration of family, adoption and twin data puts the estimate of variance 

explained by additive genetic differences (heritability) at around 50 percent (Chipuer, Rovine & 

Plomin, 1990; Loehlin, 1989). This figure has been replicated in countries as varied as America, 

United Kingdom, the Netherlands, Russia, Germany, Japan and India (Plomin, DeFries, 

McClearn and McGuffin, 2001). However these estimates include data from both childhood and 

adulthood. Estimates from adult samples only are higher, perhaps up to 80 percent (Plomin and 

Spinath, 2004), although the figure appears to decrease in later life (Finkel, Pederson, McGue & 

McClearn, 1995). A recent study by Haworth and colleagues (Haworth et al, 2010) found a 

heritability of 66% for IQ in young adulthood in a sample of 3075 twin pairs from 6 separate 

samples collected in 4 countries. As will be discussed further below, the influence of genetics in 

childhood is smaller and increasing throughout development. This changing etiological pattern 

over the course of the lifespan is widely and consistently found - Jenson (1998) describes it as 

‘…among the most striking and strongly substantiated findings of behavioral genetics in recent 

years’ (p. 179).  

 

Although the quest to find individual genetic variants that contribute to intelligence has 

not been fruitful (and it is likely that almost all identified variants are in fact false positives; 

Chabris et al, in press), aggregate measures using many thousands of common genome-wide 

variants validate heritability estimates from family studies. A 2011 study by Deary, Visscher and 
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colleagues (Davies et al, 2011) found that 40-50% of the covariation in g scores between 

unrelated individuals could be predicted from pairwise genetic relationship, estimated from 

almost 550,000 single nucleotide polymorphisms (SNPs). The additive effect of many individual 

variants of small effect was demonstrated by the linear relationship between chromosome size 

and proportion of g variance explained. A partially overlapping sample used a bivariate 

extension of same method to estimate the genetic correlation between g in childhood (age 11) 

and old age at .62 (Deary et al, 2012).  

 

 

1.3 Developmental changes in IQ etiology 

 

That the magnitude of genetic and environmental influence on intelligence is changeable 

during development has been known since the 1940s (Skodak & Skeels,1949). Heritability 

increases and the influence of the environment shared by family members (the shared 

environment) decreases between infancy and adulthood, and this pattern has been replicated in 

many samples (Bartels, Rietveld, Van Baal, & Boomsma, 2002; Boomsma & Molenaar, 1987; 

Bouchard & McGue, 1981; Cardon, Fulker, DeFries & Plomin, 1992; Cherny & Cardon, 1994; 

Eaves, Long, & Heath, 1986; Fulker, Cherny, & Cardon, 1993; Humphreys & Davey, 1988; 

McGue, Bouchard, Iacono & Lykken, 1993). Haworth et al (2010) recently replicated this 

finding using a cross-sectional sample of almost 11,000 twin pairs of varying ages from 4-34.  It 

was found that heritability increased linearly from 41% in childhood to 66% in adulthood, and 

the influence of the shared environment decreased accordingly. Non-shared environmental 

influences remained largely steady in magnitude at 23%.  
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Several studies have gone further, analyzing not only the differing magnitudes of genetic 

and environmental influences throughout development, but also the patterns of continuity and 

change in the underlying genetic and environmental constructs. Petrill et al (2004) examined 

scores from biological and adoptive siblings in the Colorado Adoption Project (CAP) at ages one 

through sixteen and found that the best-fitting structural equation model included an additive 

genetic factor influencing scores at all ages, no shared environment and only age-specific non-

shared (individual-specific) environmental factors. Similar results were obtained from looking at 

combined data from the CAP and the Longitudinal Twin Study (LTS) by Bishop, Cherny, 

Corley, Plomin, DeFries and Hewitt (2003) from ages one to ten. Individual –specific (non-

shared) environment contributed to phenotypic continuity from age seven through age-to-age 

transmission and to change (innovation) throughout development. Shared family environment 

contributed exclusively to continuity through an age-wide common factor and additive genetic 

influences were accounted for by age-to-age transmission (continuity) and, less prominently, by 

innovations (change) up to age nine. The conflicting results with regard to the shared 

environment in these studies may be accounted for by the use of only siblings in the CAP sample 

and the addition of twins in the Bishop et al sample, since twins share environments to a greater 

extent by virtue of being the same age.  

Similar results have also been reported from the Twins Early Development Sample 

(TEDS) a large community sample collected in the UK. Spinath, Ronald, Harlaar, Price and 

Plomin (2003) found evidence for only modest genetic effects and large shared environmental 

effects at ages two, three and four, Davis, Arden and Plomin (2008) analyzed scores from ages 

seven, nine and ten, demonstrating that continuity was due to genetic and shared environmental 
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factors. Both genetic and shared environmental influences also contributed to differences 

between ages, however. Non-shared environment contributed almost entirely to differences. 

There was a high genetic correlation across age, test composition, and method of administration. 

Additionally, genetic influences were stronger and shared environmental factors more modest 

than in the earlier childhood study. Davis, Haworth & Plomin (2009) found that a cross-age 

genetic correlation of .57 and a shared environmental correlation of .65 between early and 

middle childhood. 

 

It is clear from the above discussion that, for individual differences in intelligence, 

genetic and shared environmental influences contribute mostly to stability, whereas non-shared 

environment contributes mostly to change over development. Additionally, genetic contributions 

to IQ increase across development, due at least in part to new genetic variants becoming 

important, while shared environmental influences decrease.  

 

 

1.4 High intelligence. 

 

Although a causal relationship can never be demonstrated in observational studies, the 

gold standard for the demonstration of a predictive relationship comes from prospective 

longitudinal study. Such studies demonstrate a strong relationship between early high IQ and 

later educational and occupational achievement. The most famous and earliest demonstration of 

this pattern comes from Terman’s Stanford study (Shurkin, 1992) but more recent data also 

comes from the Study of Mathematically Precocious Youth (SMPY), a 50-year longitudinal 
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study of more than 500 ‘gifted’ youths (Lubinski, 2009; Lubinski & Persson Benbow, 2006). 

Identified at age 12 by SAT results (high score on either Math or Verbal test), a SAT-M – SAT-

V composite for each participant was calculated for each participant. This composite has been 

demonstrated to be a good approximation of general intelligence (Frey & Detterman, 2004). A 

statistically significant relationship was found between score quartile and measures including 

percentage earning a doctorate, STEM publications, literary publications, patents and income in 

the 95% percentile for the general population. Achievements in all measures of extraordinary 

educational and occupational success were substantially higher than those found in the general 

population.  

IQ is therefore related to performance even within the higher echelons of scores (all 

participants had a score greater than 1 in 200 of the population, up to greater than 1 in 10,000), 

suggesting that extraordinary achievement is at least aided by extraordinary scores. It also 

suggests that it is not simply the covariation of IQ with measures of access to resources (e.g. 

SES) that underlie its relationship to outcome, since such measures would not be expected to 

distinguish individuals of extraordinarily high intellectual ability.  

 

1.5 Causal Influences on High IQ 

Compared to the attention IQ in the normal range and indeed mental retardation has 

received in the behavior genetics literature, the etiological basis of high intelligence is somewhat 

understudied. What research there is has tended to focus on whether different causal variables 

influence high ability. There are some reasons to expect this to be the case, both anecdotally and 

from psychometric study. “Einstein Syndrome” is a term used by Thomas Sowell in his 2001 
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book of the same name to describe exceptionally bright people who experience a developmental 

delay in acquiring speech. It is named after Albert Einstein but there are other famous examples 

(e.g. physicists Richard Feynman and Edward Teller).  Children displaying Einstein syndrome 

also show a number of other characteristics including a precocious ability to read, highly 

selective interests and unusual concentration or absorption. Sowell also presents evidence that 

bright late talkers have a high likelihood of having close relatives in “analytical occupations”.  

This abnormal ordering of cognitive development and potentially specific environment suggests 

particular causal factors for at least some high IQ individuals, although whether this is typical of 

high IQ children is doubtful. 

 

Another suggestive piece of evidence comes from studies of Spearman’s “law of 

diminishing returns” (SLODR; Spearman, 1927). As described by Spearman himself, this is a 

phenomena in which “The correlations [between different tests] always become smaller—

showing the influence of g on any ability to grow less—in just those classes of person which, on 

the whole, possess this g more abundantly. The rule is, then, that the more ‘energy’ [i.e., g] a 

person has available already, the less advantage accrues to his ability from further increments of 

it” (p. 219). There is mixed evidence of this phenomenon in psychometric studies (e.g. Deary, 

Egan, Gibson, Brand & Kellaghan, 1996; Hartman & Teasdale, 2004; Jensen, 2003). If SLODR 

is a true phenomonon one would expect additional causal influences to be operating at the top of 

the score distribution to explain the variance unaccounted for by g. 

 Additionally, intelligence test scores from children with high IQs show patterns that are 

not typical of the general population (Sweetland, Reina and Tatti, 2006; Wilkinson, 1993). Large 

verbal-performance discrepancies are seen in IQ scores, as well as more idiosyncratic subtest 
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score scatter. The majority of children tested in these studies were third graders, which suggests 

an early difference in the characteristics of high IQ.  

 

1.6 Behavior Genetic Studies of high IQ 

 

Twin studies examining differing magnitudes of genetic and environmental influence 

according to IQ score have shown confusing results. Detterman, Thompson and Plomin (1990) 

found higher heritability and less influence of common environment at lower ability levels in a 

small sample of twins, as did Bailey and Revelle (1991). However, Jensen (1987) found higher 

heritability at higher ability levels in a much larger sample. Thompson, Detterman & Plomin 

(1993), in an extension to their previous investigations, found no differences in heritability 

across ability level in another small sample, although they note a trend towards higher 

heritability in the upper ranges. The majority of studies examining whether differences between 

causal influences on high IQ and IQ in the normal range have not found any difference in 

children (Cherny, Cardon, Fulker & DeFries, 1992; Horn, Loehlin & Willerman, 1982; Ronald, 

Spinath & Plomin, 2002; Vogler & DeFries, 1983) or adults (Sundet, Eilertsen, Tambs & 

Magnus, 1994).  

 

A larger and more recent study by Haworth and colleagues (Haworth et al, 2009) 

examined the magnitude of genetic and environmental influences on IQ (defined as above the 

85% percentile of ability) in a community sample of over 11,000 twin pairs of age 6-71. It was 

found that genetic influences explained 50% of the variance in IQ scores, while shared 

environmental influences explained 28%. These figures are not significantly different from those 
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seen for the full range of ability in the same sample, although they show a trend for lower genetic 

and higher shared environmental influence. 

 

One study thus far has looked at trends in genetic and environmental influence in the 

development of high IQ. Petrill et al (1998) used data from the Longitudinal Twin Study sample 

at four ages during infancy. Using a cut-off of the ninetieth percentile to define high IQ, it was 

found that the heritability at each age was not different from that of the unselected sample. 

However, the proportion of shared genetic influence between ages was not compared to the rest 

of the sample. Additionally, the reliability of the measurement of infant IQ is relatively low 

meaning that a systematic effect is less likely to be found in infancy than in later 

childhood/adolescence. 

 

 

1.7 The importance of environmental experience 

 

As shown above, there is no consistent pattern of differing genetic and environmental 

influence in higher scoring individuals. Research thus far has, however, focused predominantly 

on whether different genetic and environmental influences operate at different levels of the 

spectrum of intellectual ability. The idea that trajectories of development may differ in their 

timing has been less examined. It is clear that developmental factors are crucial for cognitive 

ability. Nobody is “born” intelligent. Although genetic influences play a prominent role in the 

emergence of intellectual ability, it is self-evident that they can only be realized by incorporation 

of experience through interaction of the individual with their environment.  
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Acknowledgement of this process was evident in the literature as early as 1909 by 

Woltereck in his discussion of the “norm of reaction” (Woltereck (1909; 1928). The concept was 

clarified by Dobhansky in1955 to refer to the range of phenotypes produced by carriers of certain 

genotypes in all possible environments. Dobhansky (1955) was careful to specify that “Any 

height or weight or intelligence a person may have is [only] ‘intrinsic’ in the sense that the 

phenotype observed is the necessary outcome of the development brought about by a certain 

genotype in a certain succession of environments” (p.77). Gottesman (1963) articulated a more 

deterministic variation of this in his concept of the “reaction range”, which has been defined as 

"genes set the limits, but the environment determines where within those limits the phenotype 

will fall." (see Platt & Sanislow, 1988). The wealth of studies of gene-environment interactions 

in recent years is testament to the acceptance in behavior genetics that the effect of genetic 

variation is realized only by environmental exposure (e.g. Turkheimer, Haley, Waldron, 

D’Onofrio & Gottesmen, 2003; Caspi et al, 2002; Moffitt, 2005). 

 

1.8 The association between prolonged brain development and cognitive ability 

 

Any effect of the environment on cognitive ability will happen via brain plasticity and 

plasticity is highest when the brain is still developing. It is known that the human brain continues 

to develop postnatally well into early adulthood. For example, Petanjek et al (2011) 

demonstrated, using a sample of postmortem human prefrontal cortices aged from infancy to 91, 

that overproduction and remodeling of synaptic spines continues into the third decade of life. 

The largest changes happen earlier however - dendritic spine density increases during childhood 
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to a peak of is 2 to 3-fold adulthood levels before decreasing during puberty. This protracted 

period of brain maturation allows integration of environmental information into neural networks 

for longer, potentially promoting our uniquely human cognitive capacities. 

 

Evidence for the importance of prolonged development on cognitive ability can be seen 

from examination of differences between the brains of humans and our closest ancestors. A 

recent comparative gene expression study (Liu et al, 2012) demonstrated that the most prominent 

human-specific expression change compared to chimpanzees and macaques was in genes 

associated with synaptic functions. This was evident in the prefrontal cortex but not the 

cerebellum. Peak expression was shifted from <1 year in the chimps and macaques to 5 years in 

humans. It is additionally known that areas of the brain putatively related to IQ in humans (areas 

of frontal and parietal cortex; e.g. Woolgar et al, 2010) expand the most, mature more slowly and 

display the most cellular complexity when fully developed (Hill, Inder, Neil, Dierker, Harwell & 

Essen, 2010). This pattern is also seen in postmortem studies of synaptic density in the human 

brain (Huttenlocher, 1997). 

 

Patterns of synaptogenesis and synaptic pruning can be inferred from changes in cortical 

thickness in the brains of developing children. Cortical thickness is a measure derived using 

structural magnetic resonance imaging (MRI) referring to the combined thickness of the layers of 

the cerebral cortex. It is usually calculated as the local or average distance between the white 

matter surface and the pial surface, encompassing the grey matter. Although the relative change 

is small, cortical thickness shows a developmental pattern that maps onto those seen by direct 

measures of synaptic density. That is, cortical thickness increases throughout childhood and then 
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decreases in adolescence. Thickness stabilizes during early adulthood. (Sowell et al, 2004; 

Gogtay et al, 2004; Shaw et al, 2008).   

 

Cortical surface area follows a similar developmental pattern, although it has been less 

studied. The two determinants of cortical volume have independently genetic influences 

underlying inter-individual variability (Panizzon et al, 2009), although their similar 

developmental change (both in typical development and in developmental disorders; Shaw et al, 

2011; Shaw, Malek, Watson, Sharp, Evans & Greenstein, 2012) suggests that similar factors 

influence postnatal change. 

 

 

1.9 The relationship between cortical thickness and IQ: The importance of developmental timing 

 

 

In adults, cortical thickness is positively correlated with IQ in frontal and temporal areas 

of the brain. Nar et al (2007) found significant associations with bilaterally in prefrontal 

(Brodmann's areas [BAs] 10/11, 47) and posterior temporal cortices (BA 36/37) and proximal 

regions in a same of 65 adults. (Narr et al, 2007). These same regions have been functionally 

associated with IQ. Gläscher et al (2010) performed a comprehensive lesion mapping study of in 

which they compared intelligence of patients with lesion in a particular voxel with those that 

don’t have a lesion there. This method identifies cortical areas that have a causal relationship 

with intellectual ability.  
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This evidence suggests that synaptic density in areas of the brain that support intelligence 

is an important factor in determining individual differences and this finding has been 

subsequently replicated in several studies (Karama et al, 2009; Karama et al, 2011). Karama et al 

(2011) additionally demonstrated that adjusting for g score eliminated all associations between 

cortical thickness and scores on both the seven individual cognitive tests and three first-order 

factors representing cognitive domains. 

 

Comparing the relative timing of development between different cortical areas 

demonstrates that areas of cortex associated with intelligence tend to mature the latest. Shaw et 

al (2008), using a sample that ranged in age from 3 to 33 years, found that primary sensory areas 

attain peak cortical thickness first, followed by secondary and association areas. Higher order 

cognitive areas (associated with IQ) achieve peak thickness last. Given this pattern of 

development and the above-mentioned prolonged brain development in humans compared to 

other primates, one might expect there to be a relationship between prolonged developmental 

trajectories and later intelligence.  

 

This pattern was indeed found by Shaw and colleagues (2006). Using data from 307 

children and adolescents, 58% of which had at least two scans, rate of change of cortical 

thickness in 40,962 vertices were measured and tested for an association with full-scale IQ. 

Developmental trajectory in large areas of the PFC was associated with IQ. To explore the 

interaction further, the same was split into 3 groups: Average (mean IQ 100), high (mean IQ 

114) and Superior (mean IQ 120) IQ. Large areas of PFC including bilateral superior frontal gyri 

(expending into medial PFC), OFC and middle frontal gyrus showed IQ-related differential 
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developmental trajectories. In other areas the relationship was left-latererized. These included 

middle frontal gyrus, inferior temporal gyrus and angular gyrus. Many of these areas overlap 

with those in which cortical thickness was previously seen to be associated with IQ, including 

the relatively circumscribed temporal area. Individuals of superior IQ showed a pattern of 

prolonged thickening in these areas, followed by a later-starting and more rapid period of 

thinning.  In addition, there was a age-dependent relationship between cortical thickness and IQ 

in these areas, with early negative correlations becoming positive in late childhood before 

diminishing and disappearing in adolescence/early adulthood. 

 

1.10 Why is prolonged development beneficial?: The extended sensitive period hypothesis 

 

 

This converging evidence of an association between prolonged cortical development and 

high intelligence raises questions of utility and causality. Why is an extended period of cortical 

thickening beneficial and what are the factors underlying the timing of development?  

Specifically, with respect to the latter, does a propensity towards higher IQ promote prolonged 

synaptogenesis or does prolonged synaptogenesis (perhaps via experientially-mediated 

processes) promote increased cognitive ability? Shaw et al (2006) suggest that “…the prolonged 

phase of prefrontal cortical gain in the most intelligent might afford an even more extended 

‘critical’ period for the development of high-level cognitive cortical circuits.” This hypothesis 

makes a number of assumptions. First it posits a defined critical period or (less deterministically) 

a sensitive period early in development within which neural networks underlying intelligence are 

particularly sensitive to environment input. Secondly, it posits that individuals’ that develop 
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higher IQ are more sensitive to the environment for longer into development. Finally, it makes a 

tacit causality assumption: Higher IQ is presumed to be a result of prolonged environmental 

sensitivity, rather than early tendency towards high intelligence promoting environmental 

engagement and reactivity. The following discussion will outline the characteristics of critical 

and sensitive periods, and current thinking on factors influencing their duration.    

Knudsen (2004) describes a sensitive period as a broad term for when an organism is 

unusually sensitive to the effects of experience on the brain. They are expressed in behavior but 

are in fact a property of neural circuits. Knudsen proposes a distinction between the concept of a 

critical period (as posited by Shaw and colleagues) and sensitive periods, with a critical period 

referring to a special case that results in irreversible changes in brain function e.g. imprinting or 

ocular dominance. However, Thomas and Johnson (2008) present evidence that critical periods 

are not as sharply timed and reversible as first thought, giving imprinting in chicks as an example 

where plasticity is extendable in the absence of appropriate sensory stimulation and reversible 

under certain circumstances (cf. Bolhuis, 1991). This has also been observed for ocular 

dominance plasticity, in which dark rearing can prolong critical period sensitivity (e.g. Cynader, 

1983) and enriched environments can reopen critical periods (Baroncelli et al, 2010). It has been 

additionally shown that enriched environments can counteract the effects of dark rearing on 

visual acuity and critical period closure (Bartoletti, Medini, Berardi & Maffei, 2004). Enriched 

environments have been shown to affect other brain areas, apparently in the order of normal 

development (Cancedda, Putignano, Sale, Viegi, Berardi & Maffei, 2004) and different types of 

enriched environments have been shown to have different effects (Lambert, Fernandez & Frick, 

2005). 
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 This evidence is consistent with the idea that, instead of being clock-like, built-in or 

predetermined stages, sensitive periods may instead be a natural consequence of fundamental 

brain development (Michel & Tyler 2005). Thus, we should expect the variability in onset/ offset 

(timing) evident in their study and would not expect to observe (or need to posit) specific 

mechanisms underlying their progression.  Such variations would be expected to be observed not 

just in timing of sensitive periods for different cognitive processes within an individual, but in 

timing of developmental processes between developing brains with differing genetic make-up 

and environmental experience. The environment in brain development includes not only 

experience with the external world but also how the environment is perceived and processed. It is 

therefore likely that later developing cognitive functions can be influenced by earlier developing 

systems in terms of both developmental timing and outcome. Indeed, plasticity tends to reduce in 

low-level sensory systems before it reduces in high-level cognitive systems, suggesting that 

sensitive periods for higher functions result from integration from other lower-level systems 

(Huttenlocher, 2002). For example, there is evidence that components of language show 

differential sensitive periods (Neville, 2006; Wartenburger, Heekeren, Abutalebi, Cappa, 

Villringer & Perani, 2003; Werker & Tees, 2005). Plasticity may show earlier reductions for 

phonology and syntax than it does for lexical-semantics, in which there may in fact be no age-

related change.  

 

Such considerations are important in understanding sensitive periods for intelligence as 

intelligence is a cognitive process of integrating experience to form flexible and abstract 

representations, which can be applied to unique problems. This process of abstraction may 

appear inconsistent with the process of progressive specialization seen in brain development for 
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lower-level functions (Mareschal, Sirois, Westermann & Johnson, 2007) but, as noted by 

Johnson and Munakata (2005), it is likely that once complementary computational routes have 

been achieved in the specialization of networks underlying lower-level processes, mechanisms 

for overall integration are required to map knowledge across, for example, modes of sensory 

input. 

 

1.11 Factors affecting sensitive period length 

 

Although it is intuitively clear that extended incorporation of experience into neural 

networks is beneficial for the kind of generalizable representations that contribute to high 

intelligence, understanding how this may arise requires consideration of the factors that underlie 

the marked reduction in plasticity that characterizes the end of a sensitive period. 

 

Thomas & Johnson (2008) identified three general classes of explanation that have been 

proposed for the termination of sensitive periods: 1. termination of plasticity, 2. self-termination 

of learning and 3. stabilization of constraints on plasticity. The first option posits “fossilization” 

of existing connectivity patterns via endogenous factors with a fixed time course. This process 

would be consistent with the idea that delayed expression of these endogenous factors underlies 

the extended sensitive period in individuals of higher IQ in an experience-independent fashion. 

The second refers to how processes of learning may themselves lead to neurobiological changes 

that restrict further plasticity. There are several processes that could contribute to this including: 

Competition for computational resources from previous learning; entrenchment, which puts the 

system in a non-optimal state for acquiring radically new representations; and assimilation, in 
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which the representational context of existing knowledge reduces the ability to recognize and 

respond to environmental change. This explanation is consistent with an effect of the 

environment and the neural response to it in guiding the progression of sensitive periods.  

 

The final class of explanation refers to the stabilization of the constraints on plasticity, 

without a reduction in the underlying neurobiological sensitivity to environmental change. This 

explanation again gives a prominent role to environmental quality in reducing plasticity but also 

allows for an active role of the individual in the process. Children may interact with their 

environments differentially depending on either genetic propensity or representations build from 

existing experience. For example, individuals who develop increased intellectual ability show 

faster habituation in infancy (e.g. Kavsek, 2004). There is some evidence from both humans and 

mouse models that this relationship is intimately associated with propensity for exploration 

(Bornstein & Sigman, 1986; Matzel et al, 2003). It is possible, therefore, that high IQ individuals 

may prolong their own environmental sensitivity by responding differentially to their 

environments or indeed seeking out novel experiences. These ideas correspond closely to the 

constructivist approach of Piaget (1955) and others who have argued for a proactive role of the 

child in the acquisition of knowledge, and particularly the neuroconconstructivist framework 

(Mareschal et al, 2007; Westermann, Mareschal, Johnson, Sirois, Spratling & Johnson, 2007) 

which stresses the importance of mutually induced changes at the neural and cognitive levels of 

description and interactions between constraints both intrinsic and extrinsic to the organism. 

Knudsen (2004) has also noted that heightened levels of attention may prolong sensitive periods. 

 

The above discussion points to an integral role for experience in not only guiding changes 
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throughout a sensitive period but in affecting their timing. However, as we have seen above, 

genetic variation has a large and increasing role in individual differences in intelligence 

throughout development. The difficulty of explaining the role of genetics in a fundamentally 

experience-driven account of development has not been ignored (see e.g. Mareschal et al, 2007). 

In line with the interactive nature of the environmental, neural and cognitive constraints already 

mentioned, several theorists have conceptualized genetic influences themselves as fundamentally 

interactive and dynamic throughout development. Oyama (2002) rejects the notion of 

preformative effects of genetics and stresses the inherently reactive nature of genetic influence. 

She describes evidence that the cell’s genetic program contains not information for its own 

regulation but “…an indeterminate process in time, whose regulation depends on conditions”. 

This conception of genetic variation as another element of the linkage between biological 

processes and extraorganistic factors fits very well with Gottfried’s (2002) notion of probabilistic 

epigenesis. Under this bidirectional view of structure-function relationships, development is 

fundamentally a result of coaction of influences at the environmental, behavioral, neural and 

genetic level. Gottfried stresses that genes produce proteins, not fully developed features, which 

necessitates incorporation of other developmental influences. Protein synthesis is known to be 

regulated by neural activity (e.g. Wolf & Linden, 2012). This line of thinking is consistent with 

the idea that gene expression, like environmental exposure, can contribute not just to the 

maintenance of developmental change, but importantly to its facilitation and induction. 

 

 

1.12 Behavior genetics and the extended sensitive period hypothesis 
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Behavior genetics is a perfect way to test whether predictions resulting from 

developmental models of cognitive function described above are evident in developmental 

changes in the continuity and change in genetic and environmental influences, but such analysis 

has been lacking thus far. In fact, ideas about the emergence of cognitive function from 

developmental science (which tends to focus on species typical progressions) and those of 

developmental change in behavioral genetics (a field that focuses on explaining individual 

differences in outcome within organisms of the same species) have progressed somewhat 

independently.  

 

Developmental increases in heritability and decreases in the influence of the environment 

have been attributed to continuous sources of influence throughout development, most 

prominently gene-environment correlation and genetic amplification.  Genetic amplification 

refers to the increasing, “snowball” effect of a constant set of genetic variants throughout 

development due to cumulative information processing demands (Plomin, 1987). Gene-

environment correlation (rGE), on the other hand, refers to the relationship between genetic 

propensity and the environment that the individual experiences. (Plomin, DeFries & Loehlin, 

1977). Two subtypes of rGE could contribute to increases in heritability during development: 

Evocative rGE, in which children provoke differential reactions from others according to their 

genetic propensity; and active rGE, in which the individual gains increasing scope to shape their 

own environment throughout development, again guided by genetic propensity.  

 

Both accounts concentrate on continuity in genetic influence, which proceeds in a 

unidirectional fashion, and neither explanation clearly posits a change in environmental 
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sensitivity, instead conceptualizing development as a progressive realization of genetic potential. 

One paper (Eaves et al, 1986) has discussed increases in ostensibly unitary constructs and the 

potential influence on outcome. They reference the possible influence of  “individual differences 

in the speed and pattern of development” (p. 144) and how they might contribute to 

misspecifications in models of family resemblance. These issues are discussed with reference to 

height and blood pressure and cognitive ability, but are arguably compounded in the latter case. 

Although flagged as a potential important source of variation by Eaves et al (1986), individual 

differences in the developmental trajectories of genetic and environmental influence have not 

been examined thus far.  

 

1.13 Outstanding questions and dissertation outline 

 

Since the overarching goal is to understand factors contributing to high IQ, the following 

studies are particularly focused on whether there is an extended period of sensitivity to the 

environment in individuals of high IQ and what factors contribute to this. This thesis aims to 

integrate methodology from developmental behavior genetics, clinical genetics and biologically 

motivated neural network modeling to address 3 major questions.  

1. Is there evidence for a prolonged influence of the environment in individuals of higher 

IQ in a manner consistent with an extended sensitive period for intellectual development? 

2. Are any observed individual differences in sensitive period length related to genetic 

predisposition or does high intelligence itself prolong environmental sensitivity? 

3. How do typical neurobiological changes during development support the cognitive 

changes that underlie the emergence of adult intelligence and the characteristics of 
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sensitive periods? How does this inform the question of why an extended sensitive period 

is beneficial to cognitive development? 

 

 

These questions are addressed via four experimental studies as follows: 

 

Chapter two presents data from a longitudinal twin sample to examine the pattern of 

continuity and change in genetic and environmental influence throughout development on high 

IQ and on IQ in the full range. Structural equation models are fit to scores in the sample as a 

whole and the best-fitting model was compared that for high IQ treated as a discrete phenotype. 

It is found that the model for the whole population provides a satisfactory fit for high IQ defined 

as the 85% percentile of population scores, indicating that there are not distinct genetic or 

environmental influences on high IQ and that the developmental pattern as a whole does not 

widely differ. This is evidence that high IQ is part of a normal distribution of causal influences 

rather than a distinct phenotype. 

 

Chapter three extends this work, explicitly testing whether, as hypothesized by Shaw et al 

(2006) and described above, intellectual ability may be associated with a prolonged pattern of 

childhood causal influence in higher scoring individuals. Extensions of DeFries-Fulker 

regression analysis (a special case of linear regression using pairs of related individuals) are 

employed to analyze IQ scores in a cross-sectional sample of around 11,000 twin pairs and a 

smaller longitudinal sample of twins, biological siblings and adoptive siblings. Results are 

consistent with the existence of a sensitive period in IQ development that is extended in 
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individuals of higher IQ. This finding does not appear to be an artifact of confounding effects 

and is not easily accommodated by existing theories of the increase in heritability over childhood 

and adolescence.  

 

Chapter 4 uses a longitudinal sample of individuals with the single-gene recessive 

disorder PKU to examine whether this extended environmental sensitivity can be observed, not 

only in aggregate, but also in a single measurable environmental variable. Sufferers cannot 

metabolize dietary phenylalanine (Phe), which builds up in the brain affecting development. If 

untreated (by a Phe-restricted diet) it causes severe mental retardation. However, even in treated 

individuals it has been demonstrated that the levels of Phe in the diet and the age at which dietary 

restriction is lost do affect outcome in IQ.  

The relationship between Phe level and reduction in IQ at different stages of development 

is therefore an informative measure of environmental sensitivity in PKU sufferers and a 

potentially strong test of whether sensitivity is extended in higher IQ individuals. This sample 

can further address the question of the direction of causation in the relationship between IQ score 

and the length of the sensitive period. It is unclear from the study in Chapter 3 whether 

individuals that end up with a higher IQ are genetically predisposed to have an extended 

sensitivity to the environment or whether having a higher cognitive ability during development 

extends the influence of the environment longer into development. By comparing the predictive 

power of the individual’s own IQ to the predictive power of the scores of their siblings or parents 

(a genetic “potential” score) it is possible to test whether level of IQ during development is a 

feedback variable in extending environmental sensitivity or if environmental sensitivity is 

determined by genetic influences indexed by genetic propensity. 
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Chapter 5 examines the mechanism by which changes in the brain might lead to 

development of intelligence and increases in heritability. The benefit of computational models 

for exploring and explaining mechanistic processes underlying sensitive periods in general and 

development of cognitive ability in particular has been highlighted by Thomas & Johnson (2005; 

2008) and this approach is utilized to examine how individual differences in developmental 

changes could support varying maturational trajectories. Specifically, a biologically–based 

connectionist model of a simple cognitive process (representation of simple lines that are 

presented as combination inputs) is modeled and the level of neural inhibition is increased 

throughout learning to simulate normative changes in the brain throughout development. The 

effect of the timing of this change on performance, plasticity to changes in the input environment 

and on trajectory of change in “synaptic density” will be examined in the model. Additionally, 

different schedules of adjusting the level of inhibition will be examined, including basing rate of 

change on ongoing model activity to examine which method fits the data best.  

 

Finally, chapter 6 examines what the results of these studies reveal in answer to the 

overarching research questions and how this improves understanding of the factors that promote 

high IQ. Implications of these results are discussed in terms of future directions for research in 

intelligence and the search for genetic and environmental that are associated with increased IQ. 

Finally, the utility of these results for guiding interventions aimed at promoting intelligence in at-

risk or gifted children, and the population more generally is discussed.  
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CHAPTER 2: THE DEVELOPMENTAL ETIOLOGY OF HIGH IQ 

 

Abstract 

 

 The genetic and environmental trends in IQ development were assessed in 483 same-sex 

twin pairs in the Colorado Longitudinal Twin Study using maximum-likelihood model-fitting 

analysis. The twins were assessed periodically from ages 1 to 16. Results show a decreasing 

influence of shared environment and an increasing influence of heritability across development, 

with large and increasing age to age stability of genetic influences. Non-shared environment 

contributes almost exclusively to age to age change. Similar analyses were conducted 

designating the top 15% of the sample as having high IQ at each age. The developmental 

etiology of high IQ did not significantly differ from that found for the continuous measure in this 

relatively novel analysis. These results demonstrate relatively early stability in etiological 

influences on IQ and have potential implications for gene-finding efforts, suggesting that 

samples selected for high IQ can be used to find genetic variation that will be applicable to the 

full range of the IQ distribution, although conclusive demonstration that the same genes are 

indeed involved was beyond the scope of this study. 
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Introduction 

 There is an extensive literature relating to the etiological basis of IQ and its development. 

However, the question of whether the levels of individual differences in IQ correspond to 

differing etiological trends is less well studied. The current investigation is the first extended 

longitudinal study of cognitive development in the upper end of the IQ distribution, using an 

etiologically informative sample (The Colorado Longitudinal Twin Study). We additionally 

address cognitive development from infancy to late adolescence across the full distribution of 

ability. 

Numerous studies have shown that the genetic and environmental influences on 

intelligence change from age to age. This phenomenon was first noticed in a small adoption 

study by Skodak and Skeels in 1949. Since then, research using data from both twins and 

adoptive children has focused on the resulting pattern of increased heritability and decreased 

shared environmental effects with age and found it to be robust and widespread (Bartels, 

Rietveld, Van Baal, & Boomsma, 2002; Boomsma & Molenaar, 1987; Bouchard & McGue, 

1981; Cardon, Fulker, DeFries and Plomin, 1992; Cherny & Cardon, 1994; Eaves, Long, & 

Heath, 1986; Fulker, Cherny, & Cardon, 1993; Humphreys & Davey, 1988; McGue, Bouchard, 

Iacono & Lykken, 1993). 

Petrill et al. (2004) used data from siblings who participated in the Colorado Adoption 

Project (CAP) at ages one through sixteen to examine these factors further. Results showed 

positive correlations between intelligence scores at all ages except between age one and ages 

nine and twelve, and a pattern of higher correlations between intelligence scores closer together 

in time. The best-fitting model included a common additive genetic factor, no shared 

environment and only time-specific non-shared environmental factors. Similar results were 
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obtained from looking at combined data from the CAP and the Longitudinal Twin Study 

(including non-twin siblings) using the same multivariate model by Bishop, Cherny, Corley, 

Plomin, DeFries and Hewitt (2003) from ages one to ten. Non-shared environment contributed to 

continuity from age seven through age-to-age transmission and to change (innovation) 

throughout development. Further, shared environment contributed exclusively to continuity 

through a common factor and additive genetic factors were accounted for by age-to-age 

transmission and by innovations up to age nine. 

Results of behavioral genetic analyses have been reported from ages two to ten from the 

Twins Early Development Study (TEDS) - a sample of over 11,000 pairs of MZ and DZ twins 

recruited in the UK between 1994 and 1996. Spinath, Ronald, Harlaar, Price and Plomin (2003) 

extracted the first principal component from cognitive tasks given to the participants at ages two, 

three and four, finding evidence for only modest genetic influence, and a large effect of shared 

environment. Davis, Arden and Plomin (2008) used the same method at ages seven, nine and ten, 

demonstrating that continuity was due to genetic and shared environmental factors. Both genetic 

and shared environmental influences also contributed to differences between ages and methods. 

Non-shared environment contributed almost entirely to differences. There was a high genetic 

correlation across age, test composition, and method of administration. Additionally, genetic 

influences were stronger and shared environmental factors more modest than in earlier 

childhood. 

It is clear from the above discussion that genetic and shared environmental influences can 

be concluded to contribute mostly to stability, whereas non-shared environment contributes 

mostly to change across ages. Additionally, genetic contributions to IQ increase across 

development, while shared environmental influences decrease. One aim of the current study was 
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to extend this research by fitting the simultaneous common factor, simplex and unique factor 

model in a systematic age-to-age twin sample to provide a more comprehensive analysis of 

developmental trends from infancy through late adolescence. 

The second aim of the current study was to examine whether the factors outlined above 

apply equally across the distribution of intelligence scores, specifically to the upper levels of 

ability. Does the available evidence suggest a similar effect for high IQ individuals? Cherny, 

Cardon, Fulker and DeFries (1992) used an extension of the DeFries-Fulker multiple regression 

methodology and found no evidence for either linear or quadratic influences of level of cognitive 

ability on heritability or shared environmental effects in the Longitudinal Twin Study at ages 

one, two or three. This replicated the results of Horn, Loehlin and Willerman (1982) in the Texas 

Adoption Project and Vogler and DeFries (1983) in the Hawaii Family Study of Cognition. 

Sundet, Eilertsen, Tambs &  Magnus (1994) found no evidence for differential heritability across 

the spectrum of ability in a sample of over 3000 Norwegian male young adults. 

 A more recent study by Ronald, Spinath and Plomin (2002) compared the pattern of 

etiological influences found for the full ability distribution found for a sample of 1943 preschool 

twin pairs to those found in a series of DF extremes analyses using increasingly stringent 

thresholds for proband status from the top 15 to the top 2.5 percent of the sample. Results 

indicated that genetic influences accounted for 20% of the variance, shared environmental 

factors accounted for over 70% of the variance, with around 10% attributable to unique 

environment. This pattern of etiology did not differ according to ability level. This study once 

again suggests that high cognitive ability is the quantitative extreme of the genetic factors 

influencing the full ability distribution, in children as well as adults. 

 



 

 31 

 

Other studies have found a differential heritability estimate depending on level of 

cognitive ability, but with conflicting results. Specifically, Detterman, Thompson and Plomin 

(1990) found higher heritability and less influence of common environment at lower ability 

levels in a small sample of twins, as did Bailey and Revelle (1991). However, Jensen (1987) 

found higher heritability at higher ability levels in a much larger sample by examining the mean 

weighted correlations between intrapair sums and absolute differences in MZ versus DZ twins. 

Thompson, Detterman & Plomin (1993), in an extension to their previous investigations found 

no differences in heritability across ability level in another small sample from the Western Twin 

Project, although they note a trend towards higher heritability in the upper ranges.  

Conflicting results are evident in this field, showing the need for a large-scale 

investigation of this question. Additionally, two descriptive studies examining intelligence test 

scores from ‘gifted’ children with IQs of 120 and above (Wilkinson, 1993) and 130 plus 

(Sweetland, Reina and Tatti (2006) show patterns that are not typical of the general population. 

Large verbal-performance discrepancies are seen in IQ scores, as well as more idiosyncratic 

subtest score scatter. The majority of children tested in these studies were third graders, which 

suggests an early difference in the characteristics of high IQ. The different characteristics of the 

phenotype in the upper range suggest at least the possibility of different etiological factors. 

Regardless of similarity or differences in etiological influences on high ability at a 

specific age compared to those of the rest of the distribution, it is possible that the developmental 

model of stability and change of causative factors in development may vary depending on ability 

level. This is a theory that has some intuitive merit. For example, the existence of child prodigies 

suggests that, in some cases at least, high ability children reach their potential earlier, with less 

influence of structured educational resources, than other children. This could suggest an earlier 
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and stronger influence of stable genetic factors in childhood. On the other hand, some 

historically renowned geniuses did not stand out early in life, suggesting a quite different pattern 

of influence. It is possible that for such children, specific genetic influences come into play later 

in development, which may be related to g or to other characteristics, such as creativity or 

motivation. In this case, one may expect genetic influences on stability of high IQ to be the same 

as in the general population, with a strong possibility of age-specific genetic or environmental 

factors. 

One other study, to the authors’ knowledge, has examined longitudinal trends in the 

development of high IQ. Petrill et al (1998) used data from the Longitudinal Twin Study sample 

in infancy- 14, 20, 24 and 36 months. Using a cut-off of the ninetieth percentile and conducting 

DeFries-Fulker extremes analysis, it was found that the heritability of high IQ at each age was 

not different from that of the unselected sample. However, the sample used was small and the 

age-to-age analyses, indicating significant shared genetic influence only between the 24 and 36 

month time points, were not compared to those of the unselected sample. Additionally, the 

reliability of the measurement of early childhood IQ is lower than that at later time points, 

meaning that a systematic effect is less likely to be found in infancy than in later 

childhood/adolescence. 

One issue that arises from previous studies using truncated samples is the criterion used 

for selection. Previous research presented here use various approaches, but the criterion chosen 

for our analyses was to select as being of high IQ those twins in our community sample that 

scored above the 85th percentile in IQ. This criterion was applied on an age-by-age basis, so 

different individuals can fulfill the criterion at each age. Using this value as a threshold enabled a 

good balance between selection on the trait of interest and keeping the sample large enough to 
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maintain statistical power. It is also in accordance with the selection criteria used in the meta-

analysis presented in this special journal issue, allowing the reader greater scope to compare 

results across studies. 

 

Methods and Materials 

 

Sample and Procedure 

Twins participating in the Longitudinal Twin Study (LTS; Rhea et al, 2006) served as our 

sample for the current analyses.  The LTS is an ongoing, prospective study of behavioral 

development conducted at the Institute for Behavioral Genetics (IBG; University of Colorado, 

Boulder). A total of 483 families participated and included 966 individual twins (240 male-male 

twin pairs and 243 female-female twin pairs).  Those twins who were of the same sex and lived 

within 300 kilometers of the University were recruited by IBG between 1985 and 1991. At the time 

of enrollment into LTS, the average age of mothers and fathers was 29.65 and 31.65 years of age, 

respectively.  Over 95% of these parents had completed high school, 50% of whom subsequently 

completed two or more years of college (Rhea et al, 2006). Self-reported ethnicity of the families 

participating in LTS was primarily Caucasian (>95%), with the remaining 5% of the sample 

consisting of African-American, Hispanic-American, and/or Native American. Twin zygosity status 

was determined using observer ratings and, subsequently, 12 molecular genetic markers as described 

elsewhere (Haberstick et al, 2004). The analysis presented here uses IQ information collected from 

the twins at seven time points from age about 1 year to age 16 years. 

 We obtained written consent from parents prior to their children’s participation in the LTS, 

and/or parental or individual assent/consent (as appropriate) at each testing session. The Human 
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Research Committee of the University of Colorado at Boulder approved the study protocols. 

 

Measures 

 IQ scores at ages 1 and 2 were calculated using the mental development component of the 

Bayley Scales of Infant Development (BSID; Bayley, 1969). The Stanford-Binet Intelligence Scale 

(Terman & Merrill, 1973) was administered at ages 3 and 4. These tests were administered in the 

twins’ homes by separate examiners. Intelligence at age 7 was measured in person using the 

Wechsler Intelligence Scale for Children-Revised (WISC-R; Wechsler, 1974), at age 12 also by the 

WISC-III ((Wechsler, 1991) and at age 16 using the Wechsler Adult Intelligence Scale-III (WAISIII; 

Wechsler, 1997). 

 

Analyses 

Means, standard deviations, and ANOVA results as a function of zygosity and gender and 

their interaction were calculated using SPSS (Version 16.2, SPSS, 2005) using one randomly 

selected member of each twin pair. Estimates of the skewness and kurtosis were calculated to 

determine whether IQ scores at each age were normally distributed. Prior to model-fitting analyses, 

the IQ scores were standardized within age and across zygosity and sex. Four individuals (2 pairs of 

twins) were excluded from the analysis and the subsequent genetic modeling due to unknown 

zygosity. 

 

Genetic modeling 

Univariate genetic modeling 
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 Genetic contributions included the summed influences of many genes acting additively (A) and 

non-additively (referred to as ‘dominance’, D) in their effects. Environmental effects included those 

sources that are shared by both siblings of a pair and serve to make them more similar (C) and non-

shared unique environmental effects (E) that include influences of child-specific experiences with 

their environment and measurement error. As MZ twins share 100% of their genes, while DZ twins 

share on average 50% of their genes identical by descent, quantitative genetic analyses of twin data 

assumes that: (1) MZ twins correlate perfectly for all A contributions to attention problems while DZ 

twins correlate 0.50, (2) an MZ twin correlation of 1.0 and a DZ twin correlation of 0.25 for D 

effects, (3) and that siblings experience the effects of shared environments equally regardless of 

zygosity status and are therefore correlated 1.0.  

 The magnitude of latent genetic and environmental influences on observed variation can be 

inferred from the extent MZ and DZ twin pairs correlate. If only additive genetic effects were 

involved in making a pair of twins similar, it is expected that the DZ twin correlation would be one-

half that of the MZ twin correlation. Shared environmental influences are implicated when the 

correlation between DZ twins is more than one-half that between MZ twins. Conversely, when the 

correlation between DZ twins is less than one-half that between MZ twins, non-additive genetic 

effects are implicated. With MZ and DZ twin pairs reared in the same home, estimates of non-

additive genetic and shared environmental contributions to observed variation are confounded and so 

only one, but not both, of these can be estimated in a given model (Jinks and Fulker, 1970).  

 Variation in IQ is assumed to be a function of two or more latent variables: A, E and either D or C. 

This baseline model is refined by equating the contribution of one or more latent variables to zero 

and testing the difference in model fit. In same-sex twin pairs, gender differences in the magnitude 

of genetic and environmental effects are tested by estimating the fit of a model that allows the latent 
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influences for boys and girls to differ and comparing its fit with one that constrained them to be 

equal. However, as variances for male and female twins were found to be equal at each age, and the 

covariances were also found to be equal across gender, these factors were not considered in the 

genetic analyses.  

Univariate analyses were conducted the IQ data at each age. This analysis was additionally 

conducted on factor scores derived from a latent IQ factor constructed from the last three ages, using 

the program MPlus (Muthén & Muthén, 1998) to test the generalization of our results to individuals 

that scored consistently high on IQ. It was decided to use this measure rather than an aggregate over 

the full range of ages as the pattern of etiology has been shown to change substantially across early 

development, whereas the influences on IQ from age seven onwards are relatively stable. 

 

 

 

Developmental genetic modeling 

We adopted the repeated-measures design shown in Figure 1 to estimate the extent that genetic and 

environmental influences contributed to the correlation of IQ across multiple years (Eaves et al, 

1986). This approach partitions the genetic and environmental variances at each age and the 

covariances across all ages into influences that can be common to all ages, age-specific, and 

transmitted forward into later ages. Common genetic effects are denoted as ac, age-specific genetic 

effects as as, and age-to-age or transmitted genetic effects as j. Non-shared environmental influences 

are denoted as ec, es, and k, respectively, with similar parameters for the shared environmental 

influences (not shown in the Figure.) Stability is conceptualized as resulting from two different 

processes. The first postulates that a common latent factor influences IQ  at all ages through paths ac 
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and ec. The second postulates that genetic and environmental influences on earlier ages persist or are 

transmitted forward to subsequent ages through paths j and k. Because of their similarity to well 

known psychometric models, we refer to the model for the first process as the common factor model 

and the second as the simplex model (Boomsma and Molenaar, 1987; Joreskog, 1970). From our 

developmental model we obtained the genetic and environmental correlations that indexed the extent 

earlier influences overlapped with later ones.   
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Figure 1. Developmental model. Ac, Common genetic influences, As, Age-specific genetic 

influences; J, Age-to-age genetic influences; E, environmental influences; Ec, Common 

environmental influences; Es, Age-specific environmental influences; K; Age-to-age environmental 

influences; IQ, IQ score at each age. 
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 Genetic models were fit to standardized age-scaled scores, using the raw maximum-likelihood 

estimation option in Mx. The significance of model parameters was evaluated by a comparison of 

twice the log-likelihood (-2LL) for models with or without the parameters, with the difference 

distributed as a chi-square and the degrees of freedom being equal to the difference between the 

number of parameters estimated. A non-significant difference chi-square between the two models 

indicates that the parameters dropped from the more parsimonious model were not significantly 

different from zero. Classes of models were compared on the basis of the Akaike Information 

Criterion (AIC; Akaike, 1987), calculated by subtracting twice the difference in the degrees of 

freedom (2·∆df) from the difference chi-square (∆χ2) between any particular model and the fullest, 

i.e. least parsimonious model, considered. The AIC indexes the extent that a given model offers the 

most parsimonious, but adequate, explanation of the data.  

 

 

Threshold models 

The model-fitting analyses for the top 15 percent of the distribution of IQ scores proceeded 

in largely the same fashion as those for the full distribution. A threshold of 1.036, the z-score 

corresponding to the 85th percentile of a normal distribution was set, and the data file on which this 

analysis was made was ordinal, with ‘1’s representing a twin whose score passed this threshold, and 

a ‘0’ for a twin that did not. This criterion was applied to each age separately, so an individual could 

reach the threshold at one age, but not at others.  The aggregate univariate analysis differed in this 

respect, as the individuals that were above the eighty-fifth percentile on average across the last three 

ages were labeled high IQ. Differences between the best-fitting models for the full IQ range and the 

high IQ range was tested for by compaing the fit of a freely estimated threshold model to one in 
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which the parameters were fixed to those derived from the continuous analysis. The developmental 

model was conducted by comparing the best-fitting model from the threshold analysis in which the 

parameters were freely estimated to the same model in which the parameter values were fixed to 

those from the continuous analysis. This analysis assumes a similar structure of etiological 

influences on the development of high IQ to the rest of the distribution, while giving a measure of 

whether the relative importance of certain etiological factors is different for highly intelligent 

individuals. 

 

Results 

 

Table 1 shows the mean IQs and the standard deviation around them for each age in the full 

sample.  The mean age, standard deviation and range is also shown. The ANOVA results using data 

from one randomly picked twin from each pair demonstrates no significant effect of zygosity on IQ 

score at any age. There are sex effects on IQ observed at four ages, but the effect sizes are very 

small, and there are no a priori reasons to expect such an effect. No interactions of zygosity by sex 

effects are observed. Skewness and kurtosis at each age are within acceptable limits to assume a 

normal distribution of IQ scores at each age.  
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Table 1: M
eans (standard deviations) for age and IQ

 at each age, A
N

O
V

A
 results for IQ

 by age and zygosity and skew
ness and 

kurtosis results for one random
ly selected m

em
ber of each tw

in pair 
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ean A

ge in 
years (SD

) 
and R
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N
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ale 
(N

) 
Fem

ale 
(N

) 
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ean 
IQ

 (SD
) 

Skew
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(SE
) 

K
urtosis 
(SE

) 

 
A

N
O

V
A

 
 

Z
ygosity 

Sex 
Z

ygosity*Sex 
O

ne Y
ear 

1.17 (0.07) 
1.00-1.33 

M
Z 

D
Z 

 
445 

 
438 

 
104.56 
(13.80) 

 
-0.31 
(0.08) 

 
0.92 

(0.16) 

 
p= 0.5 
η

2= 0.002 

 
p= 0.04 
η

2= 0.017 

 
p= 0.81 
η

2< 0.001 
494 

393 

T
w

o Y
ears 

2.04 (0.06) 
1.92-2.25 

M
Z 

D
Z 

 
403 

 
392 

 
107.44 
(18.82) 

 
0.07 

(0.09) 

 
-0.38 
(0.17) 

 
p= 0.4 
η

2= 0.003 

 
p< 0.01 
η

2= 0.097 

 
p= 0.45 
η

2= 0.002 
433 

366 

T
hree Y

ears 
3.04 (0.07) 

2.83-3.5 

M
Z 

D
Z 

 
370 

 
390 

 
103.22 
(17.50) 

 
-0.06 
(0.09) 

 
0.08 

(0.18) 

 
p= 0.3 
η

2= 0.005 

 
P< 0.01 
η

2= 0.076 

 
p= 0.66 
η

2= 0.001 
410 

352 

Four Y
ears 

4.01 (0.04) 
3.92-4.08 
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Z 

D
Z 

 
387 

 
367 

 
103.77 
(14.12) 

 
0.12 

(0.09) 

 
0.55 

(0.18) 

 
p= 0.5 
η

2= 0.002 

 
p= <0.01 
η

2= 0.028 

 
p= 0.42 
η

2= 0.003 
405 

351 

Seven Y
ears 

7.39 (0.36) 
6.67-8.42 

M
Z 

D
Z 

 
412 

 
408 

 
106.33 
(13.40) 

 
-0.24 
(0.09) 

 
0.57 

(0.17) 

 
p= 0.16 
η

2= 0.008 

 
p= 0.76 
η

2< 0.001 

 
p= 0.55 
η

2= 0.001 
444 
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T
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ears 

12.43 (0.37) 
11.33-14.00 
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Z 

 
370 

 
382 

 
103.21 
(12.86) 

 
-0.01 
(0.09) 

 
-0.39 
(0.18) 

 
P= 0.78 
η

2 < 
0.001 

 
p= 0.74 
η

2< 0.001 

 
p= 0.45 
η

2= 0.002 
390 

364 
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ears 

16.55 (0.76) 
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Z 
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102.20 
(11.47) 

 
0.21 

(0.09) 

 
0.22 

(0.17) 

 
p= 0.38 
η

2= 0.003 

 
p= 0.59 
η

2= 0.001 

 
p= 0.62 
η

2= 0.001 
427 
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Table 2. Within-pair and Cross-age correlations for Monozygotic and 
Dizygotic twins. † 
 
        
  Twin 2   

        
Twin 1 Age 1 Age 2 Age 3 Age 4 Age 7 Age 

12 
Age 
16 

MZ 
Age 1 .58 .39 .22 .24 .29 .18 .17 
Age 2  .82 .66 .59 .52 .38 .38 
Age 3   .70 .69 .48 .51 .34 
Age 4    .76 .60 .53 .47 
Age 7     .81 .71 .69 
Age 12      .85 .80 
Age 16       .84 

DZ 
Age 1 .39 .27 .15 .12 .01 -.02 .01 
Age 2  .63 .44 .48 .41 .31 .25 
Age 3   .51 .45 .41 .34 .31 
Age 4    .50 .39 .33 .30 
Age 7     .59 .50 .45 
Age 12      .48 .40 
Age 16       .51 
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Cross-twin, cross- age correlations 

 As can be seen in Table 2, the cross-twin correlations at all ages are higher for monozygotic 

than for dizygotic twins, considering the entire distribution, indicating some genetic influence at 

each age. The cross-age twin correlations are larger for closer ages than for those that are further 

away in time, suggesting at least some influence of age-to-age transmission effects. The approximate 

heritability estimates from simply doubling the difference between the MZ and DZ correlations 

range from a low of .38 at age 1 to a high of .74 at age 12. 

 

Univariate continuous model-fitting analyses 

  

 Table 3 presents the continuous univariate analyses for the full sample distribution of IQ 

scores. The fit of the ACE models was compared to a saturated phenotypic model. As can be seen, 

the amount of variance in the sample attributable to additive genetic variance (A) increases from .3-

.4 at earlier ages to just above .7 at later ages. The pattern is reversed for shared environmental (C) 

variance, reducing from its highest value of .46 at age 2 to just above .1 at ages 12 and 16. Non-

shared environmental variance (E) does decrease somewhat over age, but not to the same extent. It 

should be noted that these E estimates include measurement error. As different tests were used at 

different ages, it is possible that the reliabilities varied, which would change the proportion of error. 

Examining the chi-square difference tests (Δχ2)and the Akaike Information Criteria (AIC) for the 

sub-models at each age, it appears that the full ACE model is the best-fitting at all ages, as the AIC 

estimate never reaches below -1, even when the Δχ2 indicates that the drop in fit is non-significant. It 

could be argued, however, that an AE model fits the best at ages 12 and 16. The aggregate IQ 

measure of ages 7, 12 and 16 also indicates that the ACE model provides the best fit to the data. 
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AGGREGATE MEASURE 

AGGREGATE MEASURE 
ACE   0.63(0.40 to 0.79)       0.18 (0.02 to 0.39)        0.18 (0.16 to 0.25)     53.2      3       .000       47.2  
AE         0.80 (0.76 to 0.84)              …                          0.20 (0.16 to 0.24)     4.58      1      0.03         2.58 
CE                     …                     0.65 (0.58 to 0.70)       0.36 (0.30 to 0.42)     41.7      1       .000        39.7 

 

Table 3. Results of Univariate Model Fitting of IQ Scores at Seven Ages.  
 
 
 
Model 

 
Additive Genetic 

Variance 

Shared 
Environmental 

Variance 

Non-Shared 
Environmental 

Variance 

 
 

∆χ2 

 
 
∆df 

 
 

P 

 
 

AIC 
AGE 1 

ACE † 0.40 (0.14 to 0.64) 0.18 (0.00 to 0.41) 0.42 (0.35 to 0.50) 1.18 3 .758 -5.18 
AE 0.59 (0.52 to 0.66) … 0.41 (0.34 to 0.48) 2.11 1 .146 0.11 
CE … 0.49  (0.42 to 0.56) 0.51 (0.44 to 0.58) 9.22 1 .002 7.22 
        

AGE 2 
ACE † 0.36 (0.21 to 0.54) 0.46 (0.28 to 0.60) 0.19 (0.15 to 0.23) 8.33 3 0.04 2.33 
AE  0.82 (0.78 to 0.85) … 0.18 (0.15 to 0.22) 18.7 1 .000 16.7 
CE … 0.73  (0.69 to 0.78) 0.27 (0.22 to 0.31) 23.1 1 .000 21.1 
        

AGE 3 
ACE † 0.30 (0.08 to 0.54) 0.39 (0.16 to 0.57) 0.32 (0.26 to 0.39) 3.04 3 0.39 -3.04 
AE  0.70 (0.63 to 0.75) … 0.30 (0.25 to 0.37) 9.69 1 .002 7.69 
CE … 0.62  (0.55 to 0.68) 0.38 (0.32 to 0.45) 7.34 1 .007 5.35 
        

AGE 4 
ACE † 0.51 (0.30 to 0.75) 0.26 (0.03 to 0.45) 0.23 (0.19 to 0.29) 6.80 3 0.08 0.80 
AE 0.77 (0.72 to 0.81) … 0.23 (0.19 to 0.28) 4.20 1 0.03 2.70 
CE … 0.65  (0.59 to 0.70) 0.35 (0.30 to 0.41) 25.9 1 .000 23.9 
        

AGE 7 
ACE † 0.48 (0.32 to 0.68) 0.34 (0.15 to 0.49) 0.18 (0.15 to 0.22) 5.55 3 .136 -1.55 
AE  0.82 (0.78 to 0.85) … 0.18 (0.15 to 0.22) 10.6 1 .001 8.56 
CE … 0.71  (0.65 to 0.75) 0.29 (0.25 to 0.35) 37.7 1 .000 35.7 
        

AGE 12 
ACE  0.73 (0.53 to 0.87) 0.12 (0.00 to 0.31) 0.15 (0.12 to 0.19) 9.81 3 .020 3.81 
AE  0.85 (0.81 to 0.88) … 0.15 (0.12 to 0.19) 1.09 1 0.30 -0.91 
CE … 0.67  (0.61 to 0.72) 0.33 (0.28 to 0.39) 68.8 1 .000 66.8 
        

AGE 16 
ACE  0.71 (0.52 to 0.87) 0.14 (0.00 to 0.32) 0.15 (0.13 to 0.19) 12.2 3 .007 6.24 
AE  0.85 (0.81 to 0.87) … 0.15 (0.13 to 0.19) 1.63 1 0.20 -0.36 
CE … 0.67  (0.62 to 0.72) 0.33 (0.28 to 0.38) 71.1 1 .000 69.1 
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Table 4a.  Model fit statistics for developmental models of IQ. † 
 
       

  Model specification     
  Model fit statistics  

 
Model 

Common 
Factor 

Age-to-Age 
Transmissi

on 

Age-
Specific 

 
-2LL 

 
Df 

 
∆χ² 

 
∆df 

 
p 

 
AIC 

       
1. ‡ A,C,E A,C,E A,C,E 11758.30 5564 18.90 24 .76 -29.10 
2. A,E A,C,E A,C,E 11761.59 5571 3.29 7 .86 -10.71 
3. C,E A,C,E A,C,E 11763.41 5571 5.11 7 .65 -8.89 
4. A,C A,C,E A,C,E 11787.01 5571 28.72 7 .00 14.7 
5. -- A,C,E A,C,E 11809.24 5585 50.94 21 .00 8.94 
6. A,C,E A,E A,C,E 11763.33 5570 5.03 6 .54 -6.97 
7. A,C,E C,E A,C,E 11783.01 5570 24.71 6 .00 12.7 
8. A,C,E A,C A,C,E 11763.33 5570 5.03 6 .54 -6.97 
9 A,C,E, -- A,C,E 11837.11 5582 78.81 18 .00 42.8 

10. C,E A A,C,E 11772.31 5583 14.01 19 .78 -23.9 
11. C A A,C,E 11758.30 5591 83.10 27 .00 29.1 
12. E A A,C,E 11811.66 5590 53.37 26 .00 1.37 

       
           Bolded indicates the best-fitting developmental model.  
           † Genetic analyses were performed using z-scored continuous IQ scores.  
           ‡ Baseline developmental model vs. Saturated Model (Genetic Cholesky) 

Abbreviations: A, additive genetic effects; C, shared environmental effects; E, non-shared                                                                
environmental effects; AIC, Akaike Information Criteria. 
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Developmental continuous model-fitting analyses 

 

Table 4a presents the model fit statistics for the developmental model shown in Figure 1 

when applied to the full sample. As can be seen, the best-fitting model includes C and E common 

factors, an A age-to-age transmission factor, and A, C and E innovations at each age. This model 

gives very little reduction in fit, while reducing complexity substantially when compared to the full 

model. The parameter estimates yielded by the full model are presented in Figure 2, and the best- 

model by AIC, with parameter estimates, is presented in Figure 3. 

 

 Extensive age-to-age additive genetic transmission effects can be seen at all ages. In fact, 

transmission is so high from ages 7-12 and 12-16, that the simplex model is indistinguishable from a 

common factor. However, we included just a simplex model rather than a common factor at later 

ages for parsimony. There are also moderate to high levels of specific genetic influences at each age, 

even the highest ages, suggesting that the etiology of individual differences in cognitive 

development isn't completely stable even at 16 years of age. Loadings on the common environmental 

factor are steady and moderately high at all ages, and innovation shared environmental effects are 

low, suggesting that the same aspects of the family environment are important at all ages. One 

exception to this is the higher C innovation at age 1. The common non-shared environmental factor 

in the model contributes only modestly to developmental stability and primarily after age 7. This is 

consistent with real individual environmental influences on IQ for school age children that could 

include biological factors, such as poor health, or psychological or educational influences. We 

should remember that circumstances that have large effects for individual children, but that occur 

relatively infrequently among the population, will contribute only modestly to overall variance.  



 

 47 

 

Age-specific E effects are at a consistent level over time. One conclusion that can be drawn from this 

model and from the univariate analyses is that parameter estimates from ages 7 onwards are 

remarkably stable. This suggests that the importance of different kinds of causal influences on 

intelligence does not change much once children have attained school age. 
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Figure 2. Standardized parameter estimates for baseline developmental model of IQ scores at seven 

ages during childhood and adolescence. A, additive genetic effects; AC, common additive genetic 

effects; C, shared environmental effects; CC, common shared environmental effects; E, non-shared 

or individual specific environmental effects; EC, common non-shared environmental effects. 

Parameter estimates whose 95% confidence intervals did not include zero are bolded. 
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Figure 3. Best-fitting developmental model of IQ scores at seven ages during childhood and 

adolescence. A, additive genetic effects; C, shared environmental effects; CC, common shared 

environmental effects; E, non-shared or individual specific environmental effects; EC,  

common non-shared environmental effects. Parameter estimates whose 95% confidence  

intervals did not include zero are bolded. 
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Table 4b presents the total variance components for additive genetic, shared environment and 

non-shared environmental factors. These largely reflect the patterns observed in the univariate 

analyses of increasing genetic and decreasing environmental effects across development. It is 

reassuring that these estimates replicate those of the univariate analyses, and this lends credence to 

the results of the developmental model-fitting. Table 4b also presents age-to-age genetic and non-

shared environment correlations. The shared environmental correlation approaches 1 at each age 

after age one because of the common factor and the low level of age-specific innovations after this 

time point. The genetic correlations demonstrate the increasing similarity of genetic influences over 

time that was seen in the larger transmission effects for ages 7 -16. The correlations are, however, 

high across age groups, signifying that the same genetic effects are evident from infancy to late 

adolescence, but that these influences increase in importance across development.  
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Table 4b.  Variance Component Estimates and Correlations for the Best-Fitting 
Developmental Model of IQ at seven ages during childhood and adolescence. 
 
           
  Variance Components †   Correlations ‡  
           

 
 

Age 

 
Additive 
Genetic 

Variance 

 
Shared 

Environmental 
Variance 

 
Non-Shared 

Environmental 
Variance 

 
 

1 

 
 

2 

 
 

3 

 
 

4 

 
 

7 

 
 

12 

 
 

16 

           
1 0.37 (0.12 to 

0.61) 
0.20 (0.01 to 

0.42) 
0.43 (0.35 to 

0.51) 
1.0 .73 .45 .39 .23 .21 .20 

2 0.35 (0.21 to 
0.52) 

0.46 (0.29 to 
0.60) 

0.19 (0.15 to 
0.23) 

.48 1.0 .62 .54 .32 .29 .27 

3 0.31 (0.16 to 
0.47) 

0.39 (0.24 to 
0.54) 

0.30 (0.25 to 
0.36) 

.49 .97 1.0 .88 .52 .47 .44 

4 0.43 (0.27 to 
0.57) 

0.33 (0.20 to 
0.48) 

0.24 (0.19 to 
0.29) 

.49 .97 .99 1.0 .59 .54 .51 

7 0.52 (0.37 to 
0.66) 

0.31 (0.17 to 
0.45) 

0.17 (0.14 to 
0.20) 

.47 .93 .96 .96 1.0 .91 .86 

12 0.64 (0.53 to 
0.75) 

0.22 (0.10 to 
0.33) 

0.14 (0.12 to 
0.18) 

.46 .91 .94 .94 .91 1.0 .94 

16 0.66 (0.53 to 
0.76) 

0.19 (0.09 to 
0.32) 

0.15 (0.12 to 
0.19) 

.48 .95 .98 .98 .94 .93 1.0 

           
* Parameter estimates are standardized. 
† 95% Confidence intervals in parentheses.  
‡ Genetic correlations are above the leading diagonal, shared environmental correlations below. Because  
the non-shared environmental correlations ranged between 0.01 and .10 for early ages with later ages, they  
are not shown. Increases in the non-shared environmental correlations were observed between ages 12 and  
16, however, and ranged between 0.20 and .034.  
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Univariate High IQ model-fitting analyses 

The threshold was set at 1.036 - the z-score corresponding to the 85th percentile of the normal 

distribution. The full-model results were variable, demonstrating the large drop in power from 

dichotomizing the data at this relatively high threshold and the resulting difficulty in estimating all 

parameters. Comparison of the freely estimated to the fixed-parameter models did not demonstrate a 

decrement of fit for any of the models from fixing the A C and E parameters to those from the 

continuous models. This result is concluded from insignificant chi-square values and small, largely 

negative AIC values. Due to the power reduction, the results from these analyses are arguably 

inconclusive, but are strongly suggestive of the presence of similar proportions of genetic and 

environmental influences at the top 15th percentile of the distribution and those found in the full 

range. 

 

Developmental high IQ model-fitting analyses 

 Fitting the full model with all parameters freely estimated gave a -2LL of 3785.70 for 

df=5571. The extra seven degrees of freedom observed in this model compared to the same model 

estimated for the continuous data (Model 1 in Table 4) correspond to the constraining of the 

phenotypic variance to one at each age. The fit of the best continuous developmental model (Model 

10 in Table 4: A transmission, C and E common factor and ACE innovations) to the high IQ, in 

which the parameters were freely estimated, yielded a -2 log- likelihood (-2LL) value of 3798.90 

with 5590 degrees of freedom (df). The difference chi-square was 23.35, p =.222 and AIC = -14.65. 

Fixing all the parameter values to those estimated for the continuous data gives a -2LL value of 

3818.21 with 5631 df. The comparison of these fit measures gives a Δχ2(41)=19.31, p=0.998, and 

AIC = -87.49 This means that, assuming the same structure of etiological influences for high IQ and 
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normally distributed IQ, there is no significant difference between the parameters estimated for the 

continuous distribution and those estimated dichotomizing the distribution for high IQ.. 

 

 

Discussion 

 

The model-fitting analyses herein demonstrate developmental trends across the full 

spectrum of ability that largely accord with those found previously (Bishop et al, 2003; Davis et 

al, 2008; Petrill et al, 2004; Spinath et al, 2003). Specifically, the common shared environment 

factor was found to contribute to age-to-age continuity, although its influence on variance in 

intelligence was almost none from age twelve onwards. Genetic factors were also found to 

largely contribute to continuity, but the higher correlations for assessments closer together in 

time mean that the simplex transmission model fits the additive genetic factors best. Non-shared 

environmental factors contribute mainly to changes across development, although there is some 

age-to-age correlation of non-shared environmental effects, particularly at later time points. The 

great similarity of the pattern of contributing factors from between ages twelve and sixteen, and 

even from age seven suggests that that the etiology of individual differences in intelligence 

development is highly stable by early adolescence. Genetic influences increase in importance 

throughout development, and shared environmental influences decrease in importance. 

 The analysis additionally suggests that there is not only no difference between the 

proportion of variance attributable to genetic and environmental influence at each age for high 

ability individuals and the rest of the distribution, but also that the pattern of transmission, 

common and genetic factors from age-to-age is extremely similar for individuals scoring above 
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the 85th percentile at each age and that of the full normal distribution. This result is consistent 

with the hypothesis that the etiological influences contributing to the development of high 

intelligence are the same as those contributing to individual differences in the full range, but a 

conclusive demonstration of this were not possible in this study. 

 

Validity of Results 

 The continuous developmental results relating to the full distribution can be fully 

accepted as the power with this sample is sufficiently high and the confidence intervals are 

correspondingly narrow. However, power decreases with the use of threshold models, up to 10 

times with a 10 percent threshold (Neale, Eaves & Kendler, 1994). This power increases with the 

use of multiple measures over time (Schmitz, Cherny & Fulker, 1998), but is definitely reduced 

from the continuous case, also indicated by the wide confidence intervals around the estimates in 

the threshold model parameters. It is possible, therefore, that some correlational patterns were 

missed in the threshold models. However, the trend towards the same best-fitting model as the 

full distribution is a convincing and interesting finding.  

 The sample used in this study gives it strength as it is a longitudinal sample with a range 

of assessment periods fully representative of the course of intelligence development. The 

analysis is also novel in the field as it allows modeling of developmental trends in high IQ and 

direct comparison of the fit of this model to that found for the full distribution of ability. 

 As Petrill et al (1998) used the early data from the LTS, it is reassuring that a similar 

result was found using a different methodology and a less stringent threshold (85th as opposed to 

90th percentile) for high IQ selection. This holds for both the univariate and the cross-age 

analyses. As mentioned earlier, Petrill et al (1998) is the only previous longitudinal and 
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etiologically informative study of high IQ. Others have presented cross-sectional analyses, and 

the current study supports those that find no difference in the relative importance of genetic, 

shared environmental and unique environmental influences (Cheney, et al, 1992; Horn et al, 

1982; Ronald et al, 2002; Sundet et al, 1994; Vogler & DeFries, 1983). It also largely supports 

the specific values found, in an age-specific fashion, with the exception of the considerably 

higher shared environment effects found for preschool cognitive ability by Ronald et al (2002). 

These results come from a variety of twin and family studies, indicating that the finding is 

representative of the population, at least in the United States. 

 Detterman et al (1990) and Bailey and Revelle (1991) found increased heritability in the 

lower range of the ability distribution. The current investigation cannot address this issue. One 

study that found higher heritability for higher ability levels was that of Jensen (1987). The 

method used in this study, of correlating absolute difference scores with total twin scores on IQ 

tests, and comparing this correlation in MZ and DZ twins is quite different to that used here and 

could potentially pick up more subtle ability-related differences- especially if these differences 

are gradual and cumulative and IQ gets higher. However, one would still expect that that this 

cumulative effect would still be seen when a comparison was made between an upper cut-off and 

the general population. 

 The descriptive pattern of a greater verbal-performance discrepancy in ‘gifted’ children 

observed by Wilkinson (1993) and Sweetland et al (2006) was not addressed in our analyses. 

However, if correct, it does not appear to result in differential causal factors in either kind or 

proportion. It could be explained by less reliable measurement at the higher level of ability, or 

environmental, rather than heritable factors could account for the differences between 

performance and verbal IQ. This would accord with Cattell’s (1971) idea of Fluid and 
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Crystallized intelligence. Under this hypothesis, verbal subtests in the Wechsler intelligence tests 

tap the crystallized aspect and performance subtests tap the fluid aspect of intelligence. It is 

hypothesized that crystallized intelligence is more amenable to the influences of the 

environment, and so the same aspects of the environment could account for individual 

differences along this dimension. This could also be the aspect of intelligence that is acted upon 

by gene-environment correlation, allowing a greater performance discrepancy between these 

factors at higher ability levels. This hypothesis is supported by the fact that the average verbal 

intelligence score is somewhat higher than the average performance intelligence score in the 

Wilkinson (1993) and Sweetland et al (2006) samples. 

  

Implications 

 The results of this study have clear implications for gene-finding efforts in the area of 

intelligence. As it appears that the magnitude and possibly nature, of genetic influences on 

intelligence are the same for higher and average  ability levels, linkage and association studies do 

not have to concentrate on a specific ability level when looking for genes associated with 

intelligence. It is likely that higher IQs result from the cumulative impact of many genes each 

individually increasing IQ by some small amount. If so, molecular genetics findings from high 

IQ individuals will be applicable to the rest of the population. As using extreme samples gives 

increased power in the search for specific genetic influences, this is an important finding and is 

indicative of a high utility in the use of high IQ individuals in gene finding efforts. Of course, the 

advantage of such an approach must be counter-balanced by the difficulty in ascertaining 

extreme samples and the resulting lack of power mentioned above. 
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 There are also implications of the results of this study that relate to the environment. It 

seems that environmental influences also have similar magnitudes of impact at the higher end of 

the distribution.  Thus it is unlikely that there are dramatic environmental influences that only 

highly intelligent children experience, and more likely that development of high cognitive ability 

comes from quantitatively better engagement with or access to, available educational materials. 

It is also clear that shared environmental influences are reduced after the age of seven, although 

several factors could contribute to this pattern. 

Limitations and Further Research 

The selection criteria used in the current study allowed a different subset of individuals to 

be included in the high IQ subsample at each age. This approach has limitations relating to 

sample uniformity across ages. Just fifteen percent of the sample who were above threshold at 

one year of age was above threshold at age sixteen, and a mere three participants met criteria at 

all ages. The pattern is improved when age seven to age sixteen threshold maintenance is 

examined; half of the participants above threshold at age seven maintained threshold status at age 

sixteen. This pattern reflects the strong similarity of influences on developmental from age seven 

onwards. There is some consistency, however. Those of greater than average intelligence at age 

one are 1.74 times more likely to meet threshold criteria at age sixteen. Further, those that are 

one s.d. above the mean at age one are 3.95 times more likely to reach threshold IQ levels at age 

sixteen. This issue was addressed to some extent with the aggregate univariate analysis of the IQ 

scores from the last three ages, although this was only a univariate analysis, yielding no 

information on developmental trends. Given the age to age differences observed, our future 

research will examine the etiological influences underlying the developmental trajectory to high 

adult IQ. 
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The 85th percentile was chosen to maintain power to detect possible differential causal 

influences at the higher level of ability. However, it could be argued that this is an insufficiently 

high selection criterion for high IQ, masking possible ability-related etiological effects. 

However, for a high cut-off to be viable, a much larger sample would be required to retain 

adequate power. Also, as mentioned earlier, our results accord with those using samples using 

more stringent selection, as well as those using fully continuous methods. It would, however, be 

interesting to see if our results replicate in a larger sample with more extreme selection. .  

 

 Overall, these analyses demonstrate a dynamic pattern of genetic and environmental 

influences across development that confirms and extends that of previous studies. Additionally, 

these findings are equally applicable to individuals with high IQ and those in the normal range.  

This finding has implications for gene-finding and for the search for specific environmental 

influences on the development of intelligence. 
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CHAPTER 3: THE NATURE AND NURTURE OF HIGH IQ:  AN EXTENDED SENSITIVE 

PERIOD FOR INTELLECTUAL DEVELOPMENT? 

 

 

Abstract 

IQ predicts many measures of life success, as well as trajectories of brain development. 

Prolonged cortical thickening observed in individuals with higher IQ might reflect an extended 

period of synaptogenesis and high environmental sensitivity or plasticity.  We tested this 

hypothesis by examining the timing of changes in the magnitude of genetic and environmental 

influences on IQ as a function of IQ score. We find that individuals with higher IQ show high 

environmental influence on IQ into adolescence (resembling younger children), whereas 

individuals with lower IQ show high heritability of IQ in adolescence (resembling adults), 

consistent with an extended sensitive period for intellectual development in more intelligent 

individuals.  These patterns hold across a cross-sectional sample of almost 11,000 twin pairs, and 

a longitudinal sample of twins, biological siblings, and adoptive siblings.   
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Introduction 

 

Adult IQ is a measure of cognitive ability that is predictive of social and occupational 

status, educational and job performance, adult health and longevity (Gottfredson, 1997; Neisser 

et al, 1996; Whalley & Deary, 2001). Individuals with IQ scores at the high end of the 

distribution show distinct timing of postnatal structural changes in cortical regions known to 

support intelligence, which has been posited to reflect an extended “sensitive period” (Shaw et 

al, 2006).  Specifically, change in cortical thickness in frontal and temporal regions is cubic 

during development, with initial thickening in childhood, followed by thinning in late 

childhood/adolescence that levels out in young adulthood (see also Shaw et al, 2008), matching 

the patterns of synaptogenesis and pruning observed in postmortem prefrontal tissue (Petanjek et 

al, 2011). Individuals of superior IQ (compared to average and high) show more intense and 

prolonged cortical thickening, followed by more rapid thinning.  This distinct trajectory may 

reflect prolonged synaptogenesis and an extended sensitive period, during which the brain is 

particularly responsive to environmental input (Shaw et al, 2006). 

Further evidence for a link between cortical thickness and IQ comes from the finding that 

common genes influence change in cortical thickness and IQ in adulthood (Brans et al., 2010).  

In addition, IQ and cortical thickness show similar patterns of change across development in the 

magnitude of genetic and environmental influences.  Specifically, the heritability (magnitude of 

genetic influence) of IQ and the heritability of cortical thickness in brain regions associated with 

IQ both increase during childhood and adolescence, while environmental influences decrease in 

importance (Haworth et al., 2010; Bartels, Rietveld, Van Baal & Boomsma, 2002; Brant, 

Haberstick, Corley, Wadsworth, DeFries & Hewitt,, 2009; Lenroot et al, 2009).  
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These results are suggestive of an extended sensitive period for IQ development: cortical 

thickening, which is associated with IQ, occurs over an extended period for individuals with 

higher IQ, corresponding to prolonged sensitivity to the environment.   These results are only 

suggestive, however, because changes in brain development do not necessarily correspond to 

changes in sensitivity to the environment.  There is no direct evidence for individual differences 

in the length of a sensitive period for IQ.  

We provide an empirical test of the extended sensitive-period hypothesis of high IQ, by 

examining changes in the magnitude of genetic and environmental influence on individual 

differences in IQ scores throughout development. As noted above, the magnitude of 

environmental influences on IQ decreases across development.We test whether these decreases 

in environmental influence occur later in development for individuals with higher IQ, consistent 

with a prolonged sensitivity to the environment.  We focus on influences of the shared family 

environment rather than individual-specific environment, because the developmental change in 

environmental influence on intelligence is mainly driven by a reduction in influence of the 

shared family environment. Additionally, the shared family environment should arguably be the 

driving force behind experiential influence on IQ, because shared family environmental 

influences are highly correlated across different ages such that their effects can accumulate 

across development, while individual-specific environmental factors tend to be more age-specific 

and include measurement error  (Brant et al, 2009).   

  

  We use a cross-sectional sample of 11,000 twin pairs aged from 4 -71 years, and a 

smaller longitudinal replication sample of twins, biological siblings and adoptive siblings tested 

from ages 1 to 16.  Previously published investigations using the datasets examined here have 



 

 62 

 

tested for differences between high IQ and IQ in the normal range. Although no difference was 

reported  in the etiology of individual differences (Haworth et al, 2009; cross-sectional GHCA 

sample) nor in their trajectories of developmental change  (Brant et al, 2009; Longitudinal Twin 

Sample), these investigations discretized IQ rather than examining continuous trends, and did not  

test  whether the relationship between IQ score and heritiability/environmentality was specific to 

adolescence. Here we test this hypothesis explicitly. We predict that environmental influences 

should remain high for longer in higher IQ individuals, and that genetic influences conversely 

should remain lower for longer. IQ score should therefore be associated with magnitude of 

genetic and environmental influence in adolescence (but not in childhood or adulthood, where 

regardless of IQ, environmental influences should be high or genetic influences should be high, 

respectively). 

 

Method 

 

Participants and Measures:  

Participants for the initial cross-sectional analysis were 10,897 monozygotic (MZ; identical) and 

dizygotic (DZ; fraternal) twin pairs amalgamated from the 6 institutions in four different 

countries (USA, UK, The Netherlands and Australia) that constitute the Genetics of High 

Cognitive Ability Consortium (GHCA). Zygosity was determined in almost all cases by analysis 

of DNA microsatellites, blood group polymorphisms or other genetic variants, The sample is 

described in detail elsewhere (Haworth et al, 2010) and is summarized in Table 1.  

The longitudinal sample included MZ and DZ twins from the Colorado Logitudinal Twin 

Study (LTS) and adoptive and biological sibling pairs from the Colorado Adoption Project 
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(CAP), two prospective community studies of behavioral development at the Institute for 

Behavioral Genetics (IBG; University of Colorado at Boulder). A total of 483 same-sex twin 

pairs have participated in the LTS study, ascertained from local birth records (264 MZ and 219 

DZ)*. Twin zygosity status was determined using 12 molecular genetic markers as described 

elsewhere (Haberstick and Smolen, 2004). In the CAP, families with an adoptive child and 

matched community families were ascertained in infancy.  If siblings were born or adopted into 

the families they were included in the study. For many families, more than one sibling pair per 

family was available. The current analysis used the sib pair with complete IQ data at the most 

ages. The final sample consisted of 185 biological sibling pairs and 184 adoptive sibling pairs. 

Of these, 64 biological pairs were available only at age 16 and the same was true for 75 adoptive 

pairs. For more details on the samples see Rhea, Gross, Haberstick and Corley, 2006 (LTS) and 

DeFries, Plomin and Fulker, 1994 (CAP). The IQ tests administered at each of the seven 

measured ages are outlined in Table 2. The scores were standardized within age and across 

samples to maintain the slightly higher mean scores in the CAP. 

Twin Methodology:  

Extensions of DeFries-Fulker regression, a special case of linear regression for deriving genetic 

and environmental components of variance in pairs of related individuals, were employed. 

DeFries-Fulker regression (for details see Cherny, Cardon, Fulker & DeFries, 1992) predicts the 

score of one member of a sibling pair from the score of the other, the coefficient of relationship - 

which takes a value of 1.0 for MZ twins (100% genetic sharing), 0.5 for DZ twins  and biological 

siblings (50% genetically related on average) and 0.0 for adoptive siblings (who are not 

genetically related) -  and the interaction between these two variables.  When the data is 

                                                
*"This"total"exceeds"that"reported"in"cross2sectional"sample,"which"included"only"twins"that"
had"an"IQ"score"measured"at"age"7"or"above."
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standardized, as it is here, this regression yields direct estimates of the heritability (h2) of the 

measured trait and proportional influence of the family-wide environment (c2) on differences 

between individuals in the sampled population. The influence of individual-specific 

environments (e2) can be derived by subtraction. 

The addition of other variables into the regression equation, which are allowed to interact 

with the existing predictors, tests whether the magnitude of either h2 or c2 is changeable in the 

population according to the variables of interest. In the current study, we were interested in 

whether the magnitude of h2 or c2 for IQ is moderated by IQ score itself, so we added a quadratic 

ability term (the predicting siblings’ scores squared) and quadratic term x coefficient of 

relationahip interaction (Cherny et al, 1992). The significance of these interaction terms assesses 

whether there is a linear, contnuous relationship between IQ score and  c2  or h2 respectively.  

To directly test the extended-sensitive period hypothesis of high IQ, we were additionally 

interested in whether any effect of score on h2 or c2 was restricted to a certain age range. This 

was examined by estimating the coefficients for the quadratic score term separately at each 

measured age. In the cross-sectional GHCA sample, we were able to additionally test for 

signiificant differences between the magnitude of the ability-dependent terms at each age by 

adding an age covariate into the regression equation.  The sensitive period hypothesis predicts 

that there is only a relatioship between IQ score in adolescence (i.e. the coefficient for the age 

term should be zero at all other times.For this reason continuous  modeling of the effect of age 

was not possible and it was therefore decided to use discrete age categories,We split the sample 

into three age groups: childhood (4yrs to 12yrs; n pairs = 6044), adolescence (13-18yr; n pairs = 

4304) and adulthood (18yrs +;  n pairs = 549) and constructed orthogonal contrast codes based 

on these criteria: A linear code comparing the childhood and adulthood groups and a quadratic 
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code that compared these groups collectively to the adolescent group.  Since our hypothesis 

predicts the values of h2 and c2 to be dependent on IQ score only in adolescence (where higher 

scoring participants will have a child-like etiology and lower scorers will resemble adults), we 

expected that the three-way interactions between the quadratic age contrast code, ability and the 

h2 and c2 terms would be significant, while the equivalent terms for the linear age code would not 

be (as no interactions with ability are expected in either childhood or adulthood).  Although the 

appropriate bounderies between the age categories were somewhat ambiguous, the broad 

expected pattern was clear, so we chose childhood, adolescent and adulthood age boundries as 

typically defined. 

In the longitudinal sample, we added an extra covariate, age gap in days between the 

siblings in each pair, into the regression (0 for all twin pairs), and all results reported from this 

sample are from analyses including this as an interacting variable with the c2  and h2 terms and 

the ability-dependent terms. Since maximum sharing of the family environment occurs when 

siblings are the same age, and the groups in our sample differ systematically not only by genetic 

relatedness but also by average age gap (adoptive siblings being more disparate than biological 

siblings and biological siblings more than twins), it is prudent to account for this confounding 

variable in the analysis, so as not to overestimate the magnitude of the heritability estimates. 

For every analysis described, each pair appears twice in the data set, with the score of 

each member of a pair appearing once as a predictor and once as a dependent variable. This is 

routine in DeFries-Fulker regression using unselected samples because there is no a priori reason 

to favor a particular twin assignment. This procedure does, however, artificially narrow the 

standard errors derived from regression analysis (which assumes independence).  We addressed 

this by bootstrapping the regression estimates in the GHCA sample by resampling first at the 
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family level and then at the twin assignment level, and by following the robust standard error 

correction outlined by Kohler and Rodgers (2001) in the longitudinal follow-up, which accounts 

for the fact that observations are only independent at the level of the twin pair and not the 

individual observations. Further explanation and details of all analyses including the regression 

equations can be found in the supplementary materials.  

 

Results 

 

Cross-sectional analysis of the GHCA sample 

 After describing sample characteristics and the extent of genetic and environmental 

influence on IQ in the sample as a whole, we examine the moderation of these values by age.  As 

predicted by the extended sensitive period hypothesis, we find that the extent of genetic and 

environmental influence is dependent on IQ score, and this effect is limited to adolescence, and 

not present in either childhood or adulthood.   

 

Sample characteristics and sample-wide analysis 

 

 Table 1 outlines the size and mean age of the 6 subsamples, along with the different tests 

used to measure IQ. The mean age of the sample is 13.06 years (with a range between 4.33 and 

70.03 years). The mean age differs considerably between the subsamples, from 6 in the Western 

Reserve sample to almost 18 in the Netherlands twin register. There is also a considerable 

difference in the range between the samples, meaning that some age groups are primarily made 

up of particular samples. The proportion of pairs for each sub-sample and the total sample falling 
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into each of the three age groups is outlined in Table 1.  The IQ tests used differ between 

samples, reflecting age- appropriate, widely-used and validated tests. For the analyses shown 

here, after residualization for age and sex, the IQ scores were standardized within each study to 

maintain the subsample structure.  

 For the sample as a whole, the proportional heritability (h2) was .55 (95% CI .49-.61), 

influence of the family environment (c2)  .22 (95% CI .18-.26) and of the individual-specific 

environment (e2)  .23 (95% CI.16-.39). This finding closely matches the results found in the 

same sample using different methodology (structural equation modeling; Haworth et al, 2010). 

Examining the influence of IQ score on these parameters, there was a significant effect on c2 (β = 

.036, p  = .026), such that the influence of c2 increased as IQ score increased. There was a slight 

trend for a decrease in h2 as IQ score increased (β = -,027, bootstrapped  p= .187).  “Etiology” in 

the following section collectively refers to the estimates for c2 and h2.  As anticipated (for 

reasons outlined in the introduction), there were no detectable influences of IQ score on the 

magnitude of e2. For this reason we do not report results for this predictor beyond the sample-

wide value.   
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TABLE 1: Genetics of High Cognitive Ability Consortium Sample Characteristics 
Sample  Number of pairs  Mean Age 

(Range)  
IQ measure  

Ohio, USA: The 
Western Reserve 
Reading Project 

292 (121MZ, 171DZ) 6.07 (4.33-7.92)       
100% child 

Stanford Binet Intelligence Scale (short 
form). Summed and standardized for 
age and sex. 

United Kingdom: Twins 
Early Development 
Study (TEDS) 

 4061 (1529MZ, 
2532DZ) 

11.57 (10.08-
12.84)             
100% child 

Two WISC-III verbal subtests 
(information and vocabulary), WISC-
III picture completion, Ravens 
Standard and Advanced Progressive 
Matrices. Standarized and summed. 

Minnesota, USA: The 
Minnesota Center for 
Twin and Family 
Research (MCTFR) 

1870 (1187MZ, 683DZ) 13 (11-17)                               
51% child                                
49% adolescent           

Abbreviated WISC-R or WAIS-R as 
age-appropriate. 

Colorado, USA: 
Longitudinal Twin 
Study (LTS), Colorado 
Twin Study (CTS), 
Colorado Learning 
Disabilities Research 
Center (CLDRC) 

2863 (LTS=390, 
CTS=696, 
CLDRC=1777; 
1299MZ, 1564DZ). 

13.12 (6-25)                         
47% child                                      
45% aolescent                     
8% adult 

WISC-R, WISC-III, WAIS-III or 
WAIS-R (block design & vocab. only 
in CTS). 

Australia: The Twin 
Cognition Study 

853 (338MZ, 515DZ) 16.00 (15-22)                           
~100% adolescent             
<1% adult                

3 verbal and 2 performance subtests 
from the Multidimensional Aptitude 
Battery. 

Netherlands: The 
Netherlands Twin 
Register 

958 (437MZ, 521DZ) 17.99 (5.67-71.03)            
54% child                               
19% adolescent                    
27% adult 

Standard age-appropriate IQ tests (see 
Boomsma et al, 2008 for further 
details) 

Total Sample 10897 (4911MZ, 
5986DZ) 

13.06 (4.33-71.03)                   
55.5% child                             
39.5% adolescent                     
5% adulthood 

g scores standarized within each study 
after residualization for age and sex  

note: WISC-III = Wechsler Intellegence Scales for children -Third Edition; WISC-R =  Wechsler Intellegence 
Scales for children - Revised; WAIS-R = Wechsler Adult Intelligence Scale - Revised; WAIS-III = Wechsler Adult 
Intelligence Scale - Third Edition. 
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Age as a moderating variable 

 

 Separate analysis of the subsamples indicated variability in the strength of the 

relationship between IQ score and the causal influences on IQ, suggesting a moderation of this 

relationship by age. We therefore performed the regression analysis with age as an interacting 

variable, as described in the methods to test the age-dependence of the interaction between score 

and both heritability and family environmental effects described above. r. As expected there was 

no moderation by the linear age contrast on the score-etiology relationship (on separate analysis 

of the age groups, the score-etiology relationship in both childhood  (ages 4-12) and adulthood 

(age 18+) was not significantly different from zero). However, the quadratic contrast code, 

comparing the adolescent (age 12-18) group to the childhood and adulthood groups collectively, 

showed that the adolescent group had a larger association between IQ and both higher 

environmental influence and lower genetic influence, consistent with the extended sensitive 

period hypothesis.  Specifically, both the increase in c2 and the decrease in h2 as IQ score 

increased were significantly greater in adolescence (β = ,05, p=.04 and β = -.06, p = .04, 

respectively).  In adolescence, IQ score predicts the pattern of genetic influence (β = -.14, p < 

.001) and environmental influence (β = .12, p < .001), in a manner consistent with lower IQ 

individuals transitioning earlier to an adult-like pattern of these influences. 

 Analyses removing scores below the 5th and above the 95th percentile ruled out undue 

influence of extreme scores on the results. We also assessed whether any of these results differed 

according to the sex by repeating the analysis with non sex-residualized data and adding sex as 

an interacting variable.  Males have a slightly higher mean IQ in this sample (βsex = .061, p < 

.001). However, no significant interactions by sex were found. 
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Stage-like transitions in causal influences 

Figure 1 displays estimates for heritability and the influence of the shared family 

environment in the 4-12, 12-18 and 18+ year old participants separately estimated for the top and 

bottom half of the ability distribution (median split) at each age, to  visualizing the relationship 

between age, IQ score and the etiological influences on IQ1. It can be seen that the estimates of 

both c2 and h2 change with age, with the magnitude of shared environmental influence 

decreasing and genetic influence increasing between childhood and adulthood, consistent with 

previous results in this sample and others (see e.g. Haworth et al, 2010). The magnitude of these 

effects is largely equal across ability for the two groups, representing a consistent beginning and 

end point in developmental change irrespective of ability level. However, the timing of this 

transition is different for the two ability groups. For the lower ability group the period of 

maximum change occurs between childhood and adolescence, indexed by the steeper slope of the 

hashed lines between these two time points. There is largely no change between adolescence and 

adulthood, as reflected by the relatively flat hashed lines between these points. For the higher 

ability group, however, a reciprical relationship exists. In this group there is largely no change 

between childhood and adolescence (the solid lines between these points are again nearly flat), 

with the change in causal influence occurring between adolescence and adulthood. This pattern is 

indicative of a discrete shift in influence that occurs later in development for higher IQ 

individuals, and highlights adolescence as an important transitional stage.  This pattern further 

suggests that the gradual change in heritability from childhood to adulthood noted in other 

studies  may, in fact, represent a non-linear shift with ability-dependent timing. 

 

                                                
1"For"these"analyses,"a"sibling"pair"was"only"double"entered"if"both"siblings"met"the"score"
criteria.""
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Figure 1. Ability-related differences in causal influence were observed specifically during 

adolescence.  Notably, the lower-ability subjects underwent more age-related change before  

this point, as indicated by the sloped dotted lines (left side). In contrast, the higher-ability  

subjects underwent more age-related change after this point, as indicated by the sloped solid  

lines (right side). Note: High/Low IQ refers to subjects scoring above/below the median score  

at each age 
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Longitudinal sample: 

 Table 2 presents descriptive statistics for the longitudinal sample. The estimates of h2 and c2  for 

each of the seven testing ages (with age gap modeled) are presented in Table 3. The pattern of 

increasing genetic influence and decreasing influence of the shared environment corroborates 

that seen previously, rising from .42 at age one to .85 at age 16. The influence of the shared 

environment shows the opposite effect, reducing in importance from a high of .39 to a low of 

.01. Additionally, we confirmed the influence of IQ score on the estimates of these parameters in 

adolescence in the same direction as in the cross-sectional analysis (last two columns of Table 3). 

At age 16, the estimate of c2 increased as ability increased and h2 decreased in importance, with 

no significant influence of ability  at the earlier ages. We were, however, unable to test the 

sample in adulthood to confirm the transience of this effect.  

 

 

 

 

 

 

 

 

 

 



 

 73 

 

TABLE 2: Demographic and descriptive information for the LTS/CAP 
samples 
 

                

Age  n pairs LTS n pairs CAP 
mean age 

(sd) 
Test 

administered 
mean score 

(sd)   

1 yr 

342 
(245MZ,197DZ

) 
291 (150Bio., 

141Ad.) 1.12 (.09) BSMD 
106.86 
(13.83)   

2 yrs 
398 (215MZ, 

183DZ) 
270 (139Bio., 

131Ad.) 2.03 (.05) BSMD 
108.00 
(17.86)   

3 yrs 
381 (204MZ, 

177DZ) 
254 (130Bio. 124 

Ad.) 3.03 (.06) 
S. Binet Intell. 

Scale 
104.61 
(16.93)   

4 yrs 
378 (203MZ, 

175DZ) 
260 (134Bio., 

126Ad.) 4.01 (.03) 
S. Binet Intell. 

Scale 
105.73 
(13.94)   

7 yrs 
410 (222MZ, 

188DZ) 
262 (134Bio., 

128Ad.) 7.41 (.37) 
WISC-III; 
WISC-R 

108.66  
(13.43)   

12 
yrs 

377 (195MZ, 
182DZ) 

267 (137Bio., 
130Ad.) 12.45 (.38) 

WISC-III; 
WISC-R 

106.02 
(12.95)   

16 
yrs 

399 (213MZ, 
186DZ) 

352 (178Bio., 
174Ad.) 16.6 (1.02) 

WAIS-III; 
WAIS-R 

103.92 
(11.60)   

Full 
483 (264MZ, 

219DZ) 
384 (193Bio., 

191Ad.)         
note: MZ = monozygotic twin pairs; DZ = dizygotic twin pairs, Bio. = Biological sibships, Ad. = 
adoptive sibships (no genetic relationship); BSMD = Bayley Scales of Mental Development, S. Binet = 
Stanford Binet Intelligence Scale, WISC-III = Wechsler Inelligence Scale for Children - Third Edition; 
WISC-R = Wechsler Intelligence Scale for Children - Revised; WAIS-III = Wechsler Adult Intelligence 
Scale - Third Edition; WAIS-R = Wechsler Adult Intelligence Scale - Revised 
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TABLE 3: Heritability and shared environmental effects in the LTS/CAP combined sample 
when age gap between sibling pairs is modeled as an interacting variable, with 95% confidence 
intervals. Rightmost two columns report the moderating effect of ability score on these estimates.  
 

Age group  h² (95% c.i.s) c² (95% c.i.s) ability*h² (95% c.i.s) ability*c² (95% c.i.s) 
1 (n = 635 pairs) 0.42 (.12,.72)* 0.17 (-.07,.41) -0.03 (-.13,.08) 0 .00 (-.07,.06) 
2 (n = 583 pairs) 0.42 (.23,.62)* 0.39 (.21,.57)* -0.01 (-.12,.09) -0.03 (-.12, .07) 
3 (n = 556 pairs) 0.33 (-.02,.67) 0.35 (.08,.62)* -0.14 (-.36,.08) 0.05 (-.08, .18) 
4 (n = 561 pairs) 0.55 (.30,.79)* 0.21 (0.00,.43) -0.07 (-.17,.03) 0.01 (-.06,.08) 
7 (n = 601 pairs) 0.54 (.33,.75)* 0.28 (.09,.47)* -0.03 (-.10,.44) -0.01 (-.07,.04) 

12 (n = 571 pairs) 0.63 (.43,.82)* 0.20 (.02,.38)* -0.01 (-.29,.21) 0.04 (-.15,.23) 
16 (n =730 pairs)  0.85 (.67,1.03)* 0.01 (-.16,.19)        -0.08 (-.16,-.001)*    0.07 (.003, .14)* 

* = significant at P < .05 when s.e.s are corrected for non-independence due to double entry    
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Discussion 

 

We have presented evidence from two separate sets of data that supports the existence of 

a sensitive period in IQ development that is extended in individuals of higher IQ. Using a large-

cross-sectional dataset of twins, we found a shift in causal influences on IQ between childhood 

and adulthood, away from environmental and towards genetic influences. Moreover, we found 

that the period of child-like levels of environmental influence was prolonged in higher IQ 

individuals, while lower IQ individuals shifted earlier to an adult-like pattern, demonstrating that 

higher IQ is associated with a prolonged sensitive period. This result was replicated in a 

longitudinal sample of twin, biological and adoptive siblings. These results were found for the 

influence of the family-wide environment and not the individual specific  environment (including 

measurement error), consistent with predictions from  prior longitudinal behavior genetic 

research showing age related changes in the relative magnitude of the former but not the latter 

component of variance.  

 

Alternative explanations of these results can be ruled out (see supplementary materials 

for details of supporting analyses). First, assortative mating (the tendency for parents to resemble 

each other in cognitive ability) could artifactually increase the influence of the family-wide 

environment, and so could contribute to our results if assortative mating were higher in the 

parents of higher IQ individuals.  However, we find that higher IQ parents actually show less 

assortative mating; the difference between parental IQ scores is positively correlated with mean 

parental IQ score. Thus, assortative mating could only contribute to an underestimation of the 

strength of the results reported here. Second, if different traits were being measured at different 

IQ levels, and these traits differed in their extent of genetic and environmental influences, this 
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could give a false impression of a single trait that varied by IQ in the extent of genetic and 

environmental influences. However, principal component analyses showed that the same trait 

was measured across IQ levels.  Finally, genotype-environment interactions could contribute to 

our results, if the environmental variables were correlated with IQ, and estimates of 

environmental influence were greater for higher levels of the environmental variable.  We tested 

for gene-environment interactions with parental education and parental IQ in the LTS twins‘ age 

16 scores. However, no interaction was present for parental education, and heritability of IQ was 

higher at higher levels of parental IQ, which would cause underestimation of the interaction 

between the individual’s own score and their environmental sensitivity.  Moreover, all of these 

alternative explanations would face an additional challenge in explaining why the link between 

IQ and genetic and environmental influence changes across development.  

 

Our findings raise the question of why a prolonged sensitive period in IQ development 

might be associated with higher IQ. One possibility is that protracted development is beneficial 

for development of higher and uniquely human cognitive functions, such as those measured by 

IQ tests (Rougier et al., 2005). This pattern may be supported via genetic polymorphisms in 

higher IQ individuals which limit the rate of developmental cellular changes. Similar arguments 

have been made for prolonged immaturity being beneficial for other aspects of cognitive 

development (Bjorkland, 1997; Newport, 1990; Thompson-Schill, 2009). However, individuals 

with an eventual high IQ show this tendency from early in development (Deary, Whalley, 

Lemmon, Crawford & Starr, 2000), challenging the idea that prolonged immaturity alone leads 

to higher IQ. 

An alternative possibility is that having a higher IQ prolongs sensitivity to the 
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environment.  For example, heightened levels of attention and arousal, as one may find in 

individuals of higher IQ, may allow plasticity to occur later into development (Knudsen, 2004). 

Relatedly, individuals of higher IQ may be more open to experience, more likely to try things 

and change in response to experience, whereas lower IQ individuals are less motivated as they do 

not get as much positive feedback from learning experiences. However, this explanation is not 

without its own issues. The increase in genetic influence over development comes from both an 

increase in importance of existing genetic influences and addition of new genetic influences 

(Brant et al, 2009). If the extension of the sensitive period is a feedback process from increased 

cognitive ability, it is unclear how this feedback process would lead to a delay in the introduction 

of new genetic influences. 

 

The most prominent theory of developmental increases in heritability of IQ posits that 

individuals gain more scope throughout development to shape their own environments, based on 

their genetic propensities (active gene-environment correlation), which causes an increase in 

genetic influence over time (e.g. Haworth et al, 2010). Our results challenge this explanation as 

they show a later increase in heritability for individuals of higher IQ. To explain these results in 

the context of active gene-environment correlations, one would need to posit, counterintuitively, 

that higher IQ individuals seek out environments concordant with their genetic propensities later 

in development than lower IQ individuals.2 

 

                                                
2"The"reason"for"developmental"increases"in"heritability"of"IQ"thus"remains"unclear"and"is"
debated"in"the"field"(Plomin,"1986;"Plomin,"DeFries"&"Loehlin,"1977).""While"resolving"that"
debate"is"beyond"the"scope"of"the"current"work,"our"key"contribution"is"in"showing"for"the"
first"time"that"the"timing"of"the"decline"in"the"magnitude"of"environmental"influence"
depends"upon"IQ,"consistent"with"the"extended"sensitive"period"hypothesis."""
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Our results suggest that, like cortical thickness, other brain-related measures (such as 

functional connectivity, synaptic density, and characteristics of neurotransmitter systems) will 

show differing relationships to IQ across development, and that the timing of this change will be 

dependent on IQ score. This indicates an important new direction in the search for biological and 

cognitive markers of IQ, and in the study of the genetic variation and developmental processes 

underlying individual differences in cognitive ability. 
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CHAPTER 4: INDIVIDUAL DIFFERENCES IN THE INTELLECTUAL EFFECTS OF 

PHENYLKETONURIA?: TESTING HYPOTHESES OF NORMATIVE DEVELOPMENT 

 

Abstract 

 

Prior research has suggested that there is a sensitive period in intellectual development 

that is extended in individuals of higher IQ. This study tested whether such a pattern was evident 

in a measurable phenotype with a potentially large effect on IQ, using a longitudinal sample of 

early-treated individuals with Phenylketonuria (PKU). PKU is an inborn metabolic disorder in 

which dietary phenylalanine cannot be metabolized and has a detrimental effect on IQ. We first 

investigated whether blood phenylalanine concentration is additive on other genetic and 

environmental influences by assessing IQ differences in the sample based on both parental IQ 

and lifetime Phe level. This analysis demonstrated that Phe concentration has largely the same 

effect on IQ regardless of genetic propensity, but that individuals with higher expected IQ do 

indeed score higher at all ages, regardless of blood phe concentration. Secondly, we used mixed 

linear models to demonstrate that the trajectory of change in IQ in PKU sufferers is consistent 

with a limited environmental influence on IQ after the age of 12. However, this trajectory is 

dependent on the IQ of the individual in late childhood and individuals with higher actualized IQ 

show a decline in IQ for longer into development. This pattern is not evident when 

dichotomizing for genetic propensity (mid-parental IQ) suggesting that it is intellectual ability, 

not genetic propensity that influences the length of the sensitive period. 
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Introduction 

 

A critical period refers to a defined period of time in which certain environmental 

experiences must be present in order for typical development to occur. It is well established that 

there is a critical period in the development of primary sensory functions (e.g. Morishita & 

Hensch, 2008; Barkat; Polley & Hensch, 2011; Michel & Tyler, 2005) and research in recent 

years has examined whether the concept can be usefully extended to explain patterns of 

development in higher cognitive function.  It has long been hypothesized that a critical period or 

(more likely) a number of distinct critical periods exist for language (e.g. Lenneberg, 1967; 

Neville, 2006) but the concept has been extended to the development of executive function and 

intelligence also in recent years. (Garlick, 2002; Jacobs, Harvey & Anderson, 2007; Shaw et al, 

2006; 2008).  

 

It appears that, instead of being distinctly timed or “fixed”, critical periods may instead 

be variable in the timing of their onset, length and offset and appear to be precipitated, extended 

and even reopened by certain environmental or molecular manipulations (e.g. Bellone & 

Lüscher, 2012; Ciucci, Putignana, Baroncelli, Landi, Berardi & Maffei, 2007; Zhou, Panizzutti, 

de Villers-Sidani, Madeira & Merzenich, 2011). For this reason, the less deterministic term 

“sensitive period” has been adopted and will be used throughout this paper. 

 

Various neurobiological, functional and structural changes have been observed with the 

closing of sensitive periods in the visual cortex. Such changes are likely to be cortex-wide 

(although varying in their relative importance or the extent of their expression) and therefore 
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open the distinct possibility that periods of enhanced plasticity operating for functions supported 

by other parts of the cortex share the same substrates.  It additionally opens the possibility that 

the progression of these periods would mirror the progression of these changes in the brain, 

which moves broadly from posterior to anterior regions. There is much evidence that areas of the 

cortex that have been demonstrated to be involved in intelligence go through these 

developmental changes last. This has been demonstrated by examining the process of 

synaptogenesis and synaptic pruning in postmortem brain tissue and changes in cortical thickness 

using structural MRI in developing children, adolescents and young adults. It opens the 

possibility that variations in the timing of the sensitive period might have an effect on outcome. 

This is likely particularly the case for associative functions like intelligence (IQ). Initial evidence 

for this comes from Shaw and colleagues (2006), demonstrating a prolonged period of 

synaptogenesis proceeded by a more vigorous period of pruning that extends later into early 

adulthood in individuals of superior IQ compared to those of high or average intelligence. 

 

 

Recent work in our lab has used twin-modeling techniques to examine whether the 

population-wide linear increase in heritability and decrease in the influence of the family-wide 

environment, widely reported for intelligence throughout childhood and adolescence is 

consistent with the existence of a defined sensitive period in intellectual development that is 

extended in individuals of higher IQ (Brant et al, under revision). We found, using a sample of 

almost 11,000 monozygotic and dizygotic twin pairs cross-sectionally measured at varying ages 

between 4 and 71 years, that the transition in the relative importance of genetic and 

environmental influences on intelligence between childhood and adulthood is more discrete that 
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previously reported, with a prolonged “child-like” pattern of enhanced environmental influence 

in individuals of higher IQ and an earlier shift towards the increased genetic influence that is 

characteristic of adulthood is observed in lower IQ individuals.  This result was replicated in a 

longitudinal sample of twin, biological and adoptive siblings. 

 

 

Our data contribute to the emerging pattern from developmental psychology and 

neurobiology that 1. There exists a sensitive period in the development of intelligence and 2. 

This sensitive period is extended in individuals of higher IQ. A stronger demonstration of this 

result would be to examine whether a single measurable variable that would be to examine the 

pattern of influence on IQ of a distinct environmental variable throughout development, in 

contrast to the aggregate measure of latent environmental influence employed in classical 

behavioral genetic study designs. This is currently a fool’s errand in population samples as no 

environmental variable with a known influence on IQ is precisely measureable enough or varies 

sufficiently throughout development in the normal range to allow for age-dependent impact on 

intellectual ability to be assessed. 

 

A couple of previous studies have examined whether age of the child influences or limits 

the effects of environmental or physical trauma. Jacobs et al (2007) examined the influence of 

focal frontal lobe lesions acquired at different ages during childhood on intelligence and 

executive function outcomes as compared to matched controls. Although their sample size was 

small, they found some evidence that the negative effect of the lesion on executive function is 

lowest in middle childhood and highest when it occurs prenatally or after age 10. There was a 



 

 83 

 

trend towards the same pattern for IQ. Additionally, executive function deficits were more 

general following prenatal lesions, but more specific and adult-like after age 10. The authors 

interpret their results as supporting the existence of separate critical periods for different 

executive functions depending on the their association with different parts of the frontal cortex.  

Nelson and colleagues (e.g. Nelson, Zeanah, Fox, Marshall, Smyke & Guthrie, 2007; 

Vanderwert, Marshall, Nelson, Zeanah & Fox, 2010) have examined the effects of severe neglect 

in institutionalized Romanian children and the influence of being removed to supportive foster 

care on later cognitive and neural development. They find that intervention prior to 24 months is 

associated with better cognitive outcome and recovery of EEG activity. 

 

We examine the influence of developmental phenylalanine levels on intelligence in a 

longitudinal sample of individuals with phenylketonuria (PKU) to extend this work by 

examining patterns of environmental effects on IQ throughout development according to IQ 

score. PKU is an inborn Mendelian metabolic disorder in which sufferers are unable to 

metabolize phenylalanine due to a mutation in the gene coding for the hepatic enzyme 

phenylalanine hydroxylase (PAH; Scriver & Kaufman, 2001). Elevated blood Phe level from a 

free diet causes a number of issues including severe mental retardation, seizures, physical 

deformity and restricted growth. These symptoms are a rarity now due to newborn screening and 

early adoption of phe-restricted diets, but suboptimal outcomes are still observed in diet-treated 

individuals (Enns, Koch, Brumm, Blakely, Suter & Jurecki, 2010), including cognitive deficits 

compared to siblings or matched controls. With regard to intelligence, a meta-analysis has shown 

around a 2-4 point reduction in IQ for each 100µmol/ml increase in lifetime phenylalanine level 

(Waisbren et al, 2007) and there is evidence that both age at diet initiation, blood phe levels and 
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age at loss of dietary restriction (Channon, Goodman, Zlotowitz, Mockler & Lee, 2007; Koch et 

al, 2002). Other deficits in attention and executive function have also been observed (e.g. 

Diamond, 2002; Huijbregts, de Sonneville, Licht, van Spronsen, Verkerk & Sergeant, 2002; 

,Leuzzi, et al, 2004). 

 

This large effect of an environmental variable (phe level) on intellectual outcome even on 

early well-controlled diets, coupled with the fact that phe level is accurately measurable and 

variable throughout development (individuals typically lose dietary control sometime before 

adolescence) allows for longitudinal study of the developmental trajectory of change in IQ in 

relation to phe level and the age at which there is no further decline in intelligence. There is 

some evidence that the change in sensitivity of cognitive processes to phe level in PKU is related 

to timing of sensitive periods. For example, the effect of phe level on visual acuity is high in the 

neonatal period and steeply declines thereafter, with effects observed 13 years later (Diamond, 

2002), while the relationship of current phe level to IQ persists until age 8 or 10 with highly 

reduced or no effect after that time (Fisch et al, 1995; Smith et al, 1991). More research is 

needed on the effect of phenylalanine level in adulthood, however.  There is some evidence that 

there is some neurological effect of phe level in adulthood that is reversible with resumed dietary 

restriction (Thompson, Tillotson, Smith, Kendall, Moore & Brenton, 1993).    

 

  Along with bolstering the empirical evidence for a sensitive period in intellectual 

development, the cognitive data available on the families of the participants in our sample allow 

us to test conflicting hypotheses about the causal bases of individual differences in sensitive 

period length and why it is extended in individuals of higher IQ. As discussed in Brant et al 
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(under revision), it is possible that there is a genetic predisposition towards the delay of 

neurobiological changes that mark the end of the sensitive period promotes higher IQ. On the 

other hand, having a higher IQ may increase or prolong sensitivity to the environment. There are 

empirical and theoretical points in favor of both explanations and we can test both hypotheses by 

testing for differences in trajectories of change in IQ score depending on either genetic score 

(measured by mid-parent score) or actualized score at the age at which one would expect a 

transition from the sensitive period. 

 

 

It has long been assumed that the negative effects of elevated phe in PKU are additive on 

top of existing genetic and environmental influences on intelligence in the general population, 

but this assumption has not yet been explicitly tested. This would mean that mid-parent and 

sibling IQ should predict IQ score at all ages. Additionally, it should be seen that the effect of 

phenylalanine level should be equivalent no matter the parental IQ score, meaning that the 

difference between scores for high versus low lifetime phenylalanine level should be equal for 

high vs low parental IQ (although potentially changeable for longer into development in the high 

parental IQ case as described above).   

 

We find that our data is indeed consistent with an additive effect of phenylalanine on 

genetic background. Linear mixed models additionally suggest that developmental trajectories of 

change in IQ score are consistent with an extended sensitive period in higher IQ individuals,  

stemming from actualized IQ score rather than genetic propensity.  
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Method 

 

Participants and Study Design: The United States Collaborative Study of children with 

phenylketonuria (PKUCS) was a prospective longitudinal study of children diagnosed early with 

classic PKU and placed on a phe-restricted diet. Participants were recruited from 19 treatment 

centers in United States and the study was conducted at these sites between 1967 and 1983. Of 

the infants identified, 167 met the challenge criteria for PKU and 133 remained active after 6 

years, 125 up to 10 years and 98 were followed up to age 12. Children were randomized from 

birth until 6 years to maintain Phe concentrations in the strict (60-329 µmol) or moderate (330-

600 µ mol range). At 6 years of age they were randomized to either stay on a Phe-restricted diet 

(ideally under 720 µmol) or terminate dietary therapy. Parents of many of the children rejected 

randomization (24% at age 6, 35% at age 10) but continued in study regardless. The majority of 

the participants discontinued the diet during adolescence. After a 15-year interval, as many 

subjects as possible were located and recruited for evaluation, leading to 70 original subjects 

participating in the follow-up study.  

 

A large battery of physical, health, demographic, and cognitive data (along with 

neuroimaging of some participants in adulthood) was collected on individuals at intervals 

throughout the study and at adult follow-up (for further information see Azen, Koch, Friedman, 

Wenz and Fishler (1996) and Azen, Koch & Friedman (1991), and Koch et al (2002) for the 

adult measures). For the current study the variables of interest were: Age first treated in days; 

mother’s and father’s highest years of education; Hollingshead Socioeconomic status 

(Hollingshead, 1975); Mother’s and Father’s IQ (measured using the Wechsler Adult 
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Intelligence Scale; Wechsler, 1958); and age-appropriate IQ tests at ages 4,6,7,8,10,12 and adult 

(see table 1 for details).  IQ of one sibling was also examined using the WISC (Wechsler, 1949) 

where possible.  

Blood Phe level was monitored weekly during the first year of life and monthly after that. 

Assessments were made every three months after diet discontinuation. Median Phe level for a 6-

month period was calculated for each child. For this study, these 6-month median values were 

averaged for the periods between intelligence measurements and used as the phe level modeled 

at each age. For the adult follow-up Blood Phe concentration was assessed at one to several 

times during adulthood and Phe levels were aggregated in age bins from 12-18y.o., 18-24 y.o. 

and 24-30 y.o. Most participants had just one measurement, but several had 2 or three 

measurements. For this study we averaged these scores to give one adult value for blood Phe 

concentration. 

Parental IQ and parental education were aggregated for this study (a mean was calculated 

or the value for a single parent if only one was available).  

 

Statistical Analysis: The analysis of this data had two goals. To establish that the effect of 

phenylalanine level on intellectual ability in PKU is additive on polygenic background, we 

examined correlations between adult IQ and both sibling and mid-parental IQ. We then 

examined average intelligence scores participants at each age for participants at each of the 

measured ages with that of the siblings. Mid-parent IQ is the most accurate measure of the 

genetic “potential” in the offspring and is used here to predict the score of the participants in the 

PKUCS sample had they not suffered the negative effects of high Phe on intellectual ability. The 

sibling IQ serves as a matched control for the subject’s scores. 
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The second goal of our analysis was to model the decrease in IQ score over time and 

assess whether this change (particularly towards the end of development) interacts with either 

genetic propensity (mid-parent IQ) or actualized IQ at the point at which no further decrement on 

IQ from an uncontrolled diet would be expected. To do this we performed linear mixed-model 

regression analysis on the IQ scores, which allows multiple measurements per person to be 

included and within-individual variation to be controlled. It additionally allows individuals with 

missing values to be included in the analysis. Polynomial models for age effects were examined 

and a cubic model was found to fit the data best. We tested whether the relationship between IQ 

and age was dependent upon mid-parental IQ or IQ score of the subjects at age 10. Both these 

variables were tested as categorical contrast codes, using the mean score as a distinction between 

high and low scores. Along with age and the IQ metrics described, we also modeled age at first 

treatment, parental education level and parental SES, although parental education and parental 

SES were subsequently dropped, as they were not predictive over and above mid-parent IQ 

(which was included in all models). Blood Phe concentration at each age, calculated as described 

above, was also modeled and allowed to interact with age. (This interaction was significant for 

linear age).  These variables were all modeled as fixed effects and random intercepts and slopes 

for age were both found to be significant sources of variance. Age was centered at 6 so that the 

intercept reflected initial values; parental IQ, phe and age at first treatment were mean-deviated. 

Auto-correlated within-subject errors were also modeled. The analysis was conducted using the 

nlme  package in R (Fox, 2002).  

 

 



 

 89 

 

Results 

 

Table 1 displays descriptive statistics for IQ score at each age and average phe 

concentration in the developmental period immediately before each age.  Several patterns are 

clear from this data. Firstly, there is a general pattern for IQ to decline through development to 

adulthood. Secondly, the estimates for IQ at age 4 are unexpectedly low. It is known that the 

1972 Stanford-Binet norm procedure gave low estimates of IQ compared to other assessment 

measures (Thompson, 2006). Age 4 scores were therefore excluded from subsequent analysis to 

more accurately model the rest of the age-related change in IQ.
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It can also be seen that average mid-parent IQ and sibling IQ are very similar with similar 

standard deviations, while the mean IQ for the probands is around 9 points lower with larger 

standard deviations, suggesting that excess phenylalanine has a significant negative effect on 

intelligence and the variability in phe concentration in the sample is an additional source of 

variation on top of the typical genetic and environmental influences on intelligence. It appears 

that the majority of the negative effect of Phe occurred before age 4. Age at first treatment is a 

marginally significant predictor of intelligence, which partially accounts for this. Finally, it can 

be seen that average phe concentration increased over time, reflecting cumulative loss of dietary 

control in the sample and increasing variability in dietary adherence.  

 

The correlation between sibling and mid-parental IQ in this sample is .68 (95% c.i. = .52-

.79) and between proband adult IQ and mid-parental IQ is .53 (95% c.i. = .32-.69). This suggests 

that mid-parent IQ is more predictive of sibling IQ, although the correlation for proband IQ is 

still large. This again suggests that the same genetic and environmental influences are operating 

in the siblings and controls, along with another unrelated source of variability. Phe level has a 

low to moderate correlation with parental IQ, meaning that much of the variability in phe is 

random with respect to parental IQ. 

 

Figure 1 plots mean IQs at each age calculated according to a mean split on IQ and high 

or low lifetime phe concentration. Lifetime phe is coded high or low if it is above or below 900 

µmol. This value was chosen as it is a regularly used distinction in the previous literature on 

PKU and is the lower-bound of diagnostic phe concentration for moderate PKU. 
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Figure 1: Mean Proband IQ at each measured age according to predicted  

IQ and lifetime Phe concentration (above/below 900 µmol/liter). 
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As suggested above, higher parental IQ translates to a higher IQ at all ages in the proband 

sample. It can also be seen that phe concentration has an effect on mean IQ both at the beginning 

of the assessment period and throughout. The trajectory of change is largely the same between 

low and high predicted IQ and low and high phe concentration (although the decrement is lower 

in those with an overall better-controlled diet). This pattern is strongly suggestive of the effect of 

phe being an extra environmental contributor to intellectual ability in PKU sufferers that acts 

proportionally with respect to existing complex genetic (and likely environmental) influences 

that operate in unaffected individuals. For comparison, the values for high/low mid-parental IQ 

are 111.9 and 100.5 respectively, this difference (11.4 points) is slightly less than that in PKU 

sample in adulthood (15.7) but equivalent to that at age 10 (10).  

 

In examining whether evidence of a sensitive period is detectable in the data, it isn’t 

immediately clear in this sample that the influence of Phe stops at any particular age.  

 

Linear Mixed Models 

 

Fitting linear mixed models as described earlier in Methods demonstrated a cubic effect 

of age on IQ in our sample. We found a significant interaction between dichotomized IQ at age 

10 and both the linear and the quadratic age terms in the model (β = 1.52, p = .002 and β = -.06, 

p = .003 respectively) and a similar result (with larger effect sizes) is found for age 12 IQ (β = 

2.35, p = .02, β = -.1, p = .01 respectively). Such an interaction was not observed for parental IQ 

(ps > .9). To examine these patterns further, we plotted the fitted values from these regressions 

according to the actualized IQ variables (high/low IQ at age 10 and high/low IQ at age 12) 
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Figures 2 and 3 present the fitted values or these models.  It can be seen that the patterns are 

identical and it is likely that the significance of age 10 IQ comes from its high correlation with 

age 12 (r = .87). For those with lower actualized IQ, IQ declined increasingly between ages 6 and 

12 before leveling out between age 12 and adulthood. Individuals displaying higher actualized 

IQ on the other hand displayed an initial gain in IQ until age 8, followed by a decline that 

persists until the adulthood measurements (decline between age 12 and adulthood = 2 IQ points). 

Figure 4 graphs the fitted values in a model that omits these interactions. Decline in IQ score is 

seen between ages of 7 and 12, which levels out after age 12. Across all of these models the net 

loss of IQ throughout the developmental period studies is 5 points. 
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Figure 2: Fitted values for linear mixed model of age changes in IQ including actualized IQ at age 

10 as a dichotomized interacting variable. 
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Figure 3: Fitted values for linear mixed model of age changes in IQ including actualized IQ at age 

12 as a dichotomized interacting variable 
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Figure 4: Fitted values for linear mixed model with no modeled IQ-age interaction 
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Discussion 

 

This study has utilized a sample of individuals with PKU, a naturally occurring clinical 

disorder in which a single accurately measurable environmental measure has a large effect on IQ, 

to test hypotheses about the existence and nature of sensitive periods in intellectual development. 

We first established that blood phenylalanine concentration had a detrimental effect on IQ that 

acted additively on genetic and environmental influences that operate in unaffected individuals. 

We additionally found that the influence of excess Phe was largely identical no matter the 

genetic “potential” of the probands. These observations are important as they demonstrate that 

the developmental processes that underlie intellectual growth in PKU sufferers are similar to 

those acting in the general population and that observations made in this sample with respect to 

developmental changes in environmental sensitivity can inform us about normative 

developmental processes. 

 

The trajectory of change in IQ from age 6 to adulthood was modeled and a cubic 

trajectory was found to best fit the data. There was an increasing decline in IQ until age 12, with 

no further decline occurring between age 12 and adulthood for the sample as a whole. This 

pattern is consistent with the existence of a sensitive period for the influence of PKU on 

intellectual ability, and for environmental influence on IQ more generally, in with line our earlier 

findings using behavioral genetic methodology on community samples (Brant et al, under 

revision) and with results in developmental neuroscience (e.g. Shaw et al, 2006). 
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We also examined whether this sensitive period was extended in individuals with either a 

genetic potential for high intellectual ability or who actually expressed higher IQ at the point in 

development where the closing of the sensitive period is typically seen. Testing the predictability 

of these two metrics allowed us to additionally test causal factors underlying individual 

differences in the length of sensitive periods.  We found no difference in trajectories of change 

for IQ depending on genetic potential measured by mid-parental IQ. We did, however, find 

significant differences in the trajectories of change according to actualized IQ score at age 10 

and at age 12, the pattern being the same for both ages but pronounced when age 12 was the 

metric used. Since the correlation between IQ at age 10 and IQ at age 12 is high (.87) it is likely 

that the interaction is being driven by the age 12 predictor and the significant interaction at age 

10 is due to age 10 score being a strong predictor of age 12 score. 

 

Specifically, we found that, compared to the higher IQ group, the group that showed a 

lower actualized IQ showed a steeper decline in score during development, which leveled out at 

age 12 and remained stable between age 12 and adulthood. This pattern closely resembled that 

for the full distribution of ability. Individuals with higher actualized IQ, on the other hand, 

showed a later, shallower decline that continued through to adulthood. This is a direct 

demonstration that, as predicted, there is an extended sensitivity to the environment in 

individuals of higher IQ and additionally suggests that this extension is driven by online IQ 

instead of being determined early on by inherited propensity, suggesting that having a higher IQ 

increases one’s sensitivity to the environment, rather than length of environmental sensitivity 

being genetically determined. As suggested by Knudsen (2004) heightened attention, as one 

might find in individuals of higher IQ, could allow plasticity to occur later in development. On a 
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related note, individuals of higher IQ may be more open to experience, more likely to try things 

and change in response to experience, whereas lower IQ individuals are less motivated as they do 

not get as much positive feedback from learning experiences. This result should be replicated in 

independent samples and further research is necessary to determine how feedback from increased 

cognitive ability would extend the sensitive period and delay the neurobiological changes that 

contribute to its closing.  

 

 

The causal factors behind the cognitive deficits in PKU are not well understood but three 

main factors are thought to contribute to functional and structural neurological effects: Overt 

neurotoxic effects of excess phenylalanine; competition between phe and tyrosine and 

tryptophan for transport proteins at the blood-brain barrier; and diminished protein synthesis in 

the PKU brain. Observations in support of this come from in vitro neuronal cultures and a mouse 

model of PKU, along with examination of treated and untreated human PKU brains, both 

postmortem and via structural imaging. Several of these overlap with normative changes during 

development, as will be discussed below. 

 

Examination of the brains of untreated phenylalanine patients demonstrates severe 

impairments of brain architecture and retardation of maturation, including abnormal, myelination 

patterns, cell density and organization. Abnormalities in dendritic arborization and reductions in 

synaptic density have also been observed (Bauman & Kemper, 1982).   
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Application of phenylalanine to in vitro neuronal cultures has been used to more closely 

examine developmental effects. Primary cortical neurons treated in vitro with phenylalanine 

showed only a small increase in synaptic density between 12 and 21 days in vitro compared to 

the exuberant increase seen in untreated controls, suggesting a negative effect on synaptogenesis 

(Hörster et al, 2006).  Ding et al (2008) have demonstrated using magnetic resonance imaging 

(MRI) that, although morphologically normal, the brains of treated PKU patients show increased 

cell packing density. 

 

Perturbations in glutamatergic synaptic transmission have been demonstrated with 

application of Phe in ranges seen in the PKU brain, particularly in the make-up of NMDA and 

AMPA receptors. As reviewed by tyuk, Glushakov, Sumners, Laipis, Dennis & Seubert (2005), 

studies in their lab demonstrate that overall glutamatergic transmission is significantly depressed 

by a combination of pre and post-synaptic actions. Experiments using forebrain tissue from 

heterozygous and homozygous (PKU) mice demonstrate that expression of NMDA receptor 

subunit NR2A is significantly increased and NR2B decreased in hyperphenylalanininemic 

homozygotes compared to the heterozygotes. Expression of AMPA receptor subunits Glu1 and 

Glu2/3 is also increased.  

 

PET studies show a reduced uptake of F-DOPA at the blood-brain barrier and reduced 

levels of tyrosine are seen postmortem in untreated PKU brains. Reduced concentration of 

catecholamines (including dopamine), serotonin and their metabolites are found in the CSF of 

PKU patients. Dopamine deficits are thought to be related to prefrontal deficits in PKU, although 

it is unclear whether the deficits come from tyrosine deficits per se or reduced production of 
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tyrosine hydroxylase caused by excess phe levels (Groot, Hoeksema, Blau, Reijngoud & von 

Spronsen, 2010; Martynyuk, van Spronsen & Van de Zee, 2010). Disorders of myelination, 

appear to be due to hypomyelination in untreated patients, but increased water content of myelin 

in early treated patients. These deficits appear to be reversible with adherence to a low phe diet 

(Anderson & Leuzzi, 2010).  

 

Several of these neurological alterations relate to changes that occur during normal 

development. It is known that there is a period of exuberant synaptogenesis in childhood of 

variable length depending on cortical area (Huttenlocher, 1997; Petanjek et al, 2011; Shaw et al, 

2006). It is known that the proportion of AMPA receptor subunits Glu2 increases during 

development, reduces the permeability of AMPA receptors to calcium (Kumar, Bacci, Kharzia & 

Huguenard, 2002). The ratio of NR2A to NR2B NMDA receptor subunits also increases through 

development and the varying receptor make-up is thought to contribute to patterns of 

synaptogenesis and synapse stabilization (Gambrill & Barria, 2011).  There is evidence of 

changes in dopamine tone during adolescence, relative to childhood or adulthood (Wahlstrom, 

White & Luciana, 2010). Finally, there is a linear increase in myelination throughout 

development, well into the third decade of life (Westlye et al, 2010), which is thought to partially 

mediate network refinement during adolescence (Hagmann et al, 2010).  This overlap between 

PKU related brain alterations and normative changes is further evidence of the additive effect of 

excess phenylalanine in reducing IQ on top of existing genetic and environmental influences on 

intellectual ability, perturbing cumulative changes that contribute to positive outcomes. It 

additionally suggests that the closing of the sensitive period would limit the effects of excess phe 

on IQ, which the results of this study demonstrate. 
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 A potential issue with the analysis presented here is that of regression to the mean. Since 

the sample is dichotomized for actualized IQ at ages 10 and 12, extreme high and low scores at 

these ages are expected to be followed by scores that are closer the mean score (a lower 

subsequent score in the higher IQ case and a higher score in the lower IQ case). There are three 

factors that argue against this as the explanation for our results. Firstly, while the score for higher 

IQ individuals goes down on average, the same is not the case for lower IQ individuals. 

Secondly, whether choosing on age 10 IQ or age 12 IQ the same trajectory is seen, which would 

not be expected if regression to the mean was driving the results. Finally, as age is modeled as a 

random variable this should account for within-level variation and mitigate against the effects of 

regression to the mean appearing the coefficients of the fixed effects.  

 

 

 One limitation of the current study is the lack of measured IQ between the age of 12 and 

adulthood. This means that the strongest conclusion we can draw is that the period of sensitivity 

of intellectual ability to the environment in higher IQ individuals ends at some point in 

adolescence. Further research is needed to assess sensitivity at intervening ages to narrow down 

the transitionary age. 
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CHAPTER 5: TOWARDS A COMPUTATIONAL MODEL OF THE PROCESSES 

UNDERLYING INDIVIDUAL DIFFERENCES IN INTELLECTUAL DEVELOPMENT 

 

Introduction 

 

Studies 1-4 in this thesis have focused on examining empirical evidence for a sensitive 

period for intellectual development that is extended in individuals of higher IQ. The collective 

evidence, though not definitive, is indeed supportive of such a pattern and suggests that 

actualized intellectual ability in later childhood is an important factor in extending the sensitive 

period. What has not been addressed thus far is how neurobiological changes during 

development contribute towards the emergence of a sensitive period and its close and why an 

extended sensitive period may be beneficial in the development of high IQ.  This is a challenging 

endeavor and requires integration over several levels of analysis: lower level neurobiological 

functional changes, patterns of developmental structural change (the patterns of synaptogenesis 

and pruning observed by Huttenlocher & Dabholkar [1997] and others and reflected in the 

structural MRI studies of Shaw and colleagues [2006;2008]), sensitivity of the system to 

environmental change and effects of cognitive change on ultimate performance. It additionally 

requires identification of potential sources of individual differences and an exposition of their 

biological and cognitive effects.  
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Neural network models, particularly connectionist models are a important and useful tool 

to examine developmental phenomena at a systems level and provide insights into mechanistic 

processes tying together brain and cognitive development (Munakata & McClelland, 2003; 

Thomas & Johnson, 2006; Thomas & Karmiloff-Smith, 2003; Westermnn, Sirois, Shultz & 

Mareschal, 2006). Models allow one both direct control over the conditions under which learning 

proceeds and unrivaled capacity to observe processes of cognition and network behavior 

resulting from these conditions. These factors, in combination, allow detailed exploration of the 

necessary and sufficient conditions for the emergence of the phenomena of interest in a fashion 

that follows observed developmental trajectories. It additionally allows one to gain new insights 

into how such a pattern emerges and generate new hypotheses for empirical research to falsify 

the model. As noted by Thomas & Johnson (2006): “Implementation forces clarity, reveals 

hidden assumptions and generates new candidate explanations and testable hypotheses”.  

 

 

One important decision that must be made when building a model is whether to rely on a 

static architecture and observe cognitive change resulting from the change in connection strength 

between nodes in the model as the network learns, or to implement structural change during 

learning - this latter technique has been named Connectionist Developmental Cognitive 

Neuroscience (CDCN; Westermann et al, 2008). Structural changes have been implemented 

using “generative” or “constructivist” models in which new units are added according to an 

algorithm (ordinarily units are added when network performance asymptotes; e.g. Fahlman & 

Lebiere, 1990; Baluja & Fahlman, 1994). The modeling of maturational change in activity 

dynamics within developing networks (resulting from changes in e.g. neurotransmitter systems 
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or receptor function) has been less of a focus of research, although it is known that such changes 

occur during development, as will be discussed below in the rationale for our own developmental 

model.  

 

These two different approaches to developmental neural network modeling reflect two 

different conceptualizations of the developmental process, which are reflected in previous 

attempts to model the processes underlying sensitive periods in brain and cognitive development. 

As described by Thomas & Karmiloff-Smith (2003), a static architecture (stable number of 

processing units, connectivity and learning algorithm) in which development is taken to consist 

of changes in connection strengths between units as a result of experiential exposure (repeated 

training on the task of interest) reflect the inherent assumption that learning and development are 

qualitatively analogous. Generative models, on the other hand, assume that weight changes 

resulting from learning are insufficient to model developmental trajectories and alterations in 

network architecture are therefore necessary.  

 

Thomas & Johnson (2006; 2008) describe three broad explanations for reductions in 

plasticity that accompany the end of sensitive periods and how previous computational models 

have simulated sensitive period effects in several cognitive domains:  

Self-terminating learning is consistent with the development as learning framework described 

above and was demonstrated by O’Reilly & Johnson (1994). Their model of imprinting in chicks 

demonstrates that extended exposure to one set of stimuli can prevent learning about new inputs, 

successfully capturing the critical period characteristics of this infant behavior. Stabilization of 

constraints can refer to stabilization in inputs or a change in the organism that prevents new 
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inputs from being interpreted as different (e.g. due to representations developed from prior 

environmental exposure). McClelland, Thomas, McCandliss & Fiess (1999) demonstrated that 

the loss of distinction between /r/ and /l/ in native Japanese speakers can be the result of 

exposure to insufficiently distinct early experiences of the phonemes resulting in overlapping 

activation patterns that limit subsequent learning. Finally, implementing endogenous 

maturational changes acknowledges the potential importance of these modifications in observed 

developmental patterns. This was implemented by Thomas & Karmiloff-Smith (2002) by 

pruning a percentage of connections with low strength after an initial period of learning. This 

modification proved to be an important factor in the ability of their model to simulate patterns of 

acquisition of the English past tense and age effects in recovery from damage. This imposed 

change in connectivity was also shown to interact with model characteristics reflecting the 

above-mentioned learning effects in limiting plasticity in static networks, along with competition 

for computational resources.  

 

A further consideration is how to model individual differences. The initial parameter 

settings in models in terms of initial connection strengths, characteristics of the learning 

algorithm and the activation function of neurons are variable and set by the modeler at the 

beginning of training.  Manipulating any of these features will potentially lead to individual 

differences in network behavior, plasticity and performance. Adding endogenous maturational 

changes to a model adds another source of individual differences, namely the rate of endogenous 

change. For example, in the Thomas & Karmiloff-Smith past tense model, either the probability 

of pruning or the threshold for low connection strength could be systematically varied.  
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Taking these computational considerations into account, as well as the specific cognitive 

considerations in constructing a developmental model of the domain general capacity of 

intelligence and the extant literature on the neurobiological changes that underlie and accompany 

sensitive or critical period plasticity, we have designed a model framework to investigate 

relationship between maturational events, structural and cognitive change and behavioral 

outcome. The key decisions that need to be made are outlined as well as our decisions on how to 

tackle these questions. We end with a summary of results so far and a plan for further research. 

 

Considerations in a modeling framework for intellectual development  

 

What is the most appropriate task to simulate the development of intelligence 

 

Choosing a model to simulate the development of intelligence differs slightly from the 

typical aims of connectionist models, which concentrate on modeling a specific task. For the 

purposes of our investigation, we were interested in modeling a basic characteristic of cognitive 

processing that underlies the varied cognitive tasks that make up an IQ test. An additional 

consideration was the fact that individual differences in IQ, although variable throughout 

development, show some significant early stability (Deary, Whalley, Lemmon, Crawford & 

Starr, 2000), suggesting that an early emerging cognitive function is an important determining 

factor in later intellectual ability.  
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Our chosen task requires pulling out statistical regularities in the inputs from the training 

environment using a Hebbian, self-organizing form of learning. It is known that efficient infant 

habituation (Kavsek, 2004), recognition memory (McCall & Carriger, 1993) and representational 

competence (Rose, Feldman, Jankowski & Van Rossem, in press) is related to IQ, suggesting 

that the ability to detect statistical regularities in the environment is an early and enduring 

component of intelligence. One important feature of intelligence is the domain general nature, 

which may seen inconsistent with progressive task specialization of typical connectionist models. 

However, if one conceptualizes intelligence as integration across varying modes of sensory input 

(Johnson and Munakata, 2005) and inputs to our self-organizing model as pre-processed inputs 

from sensory areas, the model can be thought one of integration and flexible abstract 

representations. 

 

The model is illustrated in Figure 1 (adapted from O’Reilly & Munakata, 2000). It is a 

simple feed-forward 2 layer network: A 5x5 unit input layer and an interconnected 5x4 hidden 

layer.  There is no output and therefore no overt performance metric. The Inputs to the network 

consist of vertical and horizontal lines (see Figure 2, panel a.), which are presented two at a time 

during training. We inject random noise into the inputs to simulate the fact that statistical 

regularities in inputs to the brain are presented in the context of other, irrelevant input (This is 

also necessary for other important aspects of the model, see below). Each network starts with 

randomized connection strength (weights) between the input and hidden units and learns via self-

organizing learning. As every line is presented in combination with every other line, the network 

is exposed to the full range of co-occurrences within the model environment. The objective is to 

extract the underlying statistical regularity that these lines exist as reliable collections of pixels, 



 

 110 

 

and to encode the environment in terms of the lines, instead of individual pixels. Performance is 

assessed by the distinctness of representations in the hidden layer assessed via a testing (non-

learning) phase at the end of each training epoch in which the network is presented with each 

line individually.  As the network is exposed to the environment and adjusts its weights 

accordingly, it should develop representations for each line that are increasingly distinct. 

Examining a matrix of pairwise distances between the hidden activation patterns assesses the 

distinctness of representations and both a sum of the distances across the hidden layer and a 

count of the number of line representations that are unique (applying a threshold for distance to 

be considered unique) are calculated.  
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Figure 1: Model Architecture  
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a. b. 

Figure 2: Model Inputs. a. Initial environment of horizontal and vertical lines and b. new 

uncorrelated environment presented after a variable number of epochs to assess plasticity to the 

environment. Stimuli are presented 2 at a time in all combinations during training and one at a time 

during testing to assess the distinctness of hidden layer representations. 
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What metric in the model is an appropriate proxy for cortical thickness? 

 

In order to assess whether the structural changes in the model throughout development 

match those seen during typical development and whether individual differences in sensitivity 

and performance coincide with patterns of developmental structural change, we examined a 

proxy measure of cortical thickness in the model. Change in cortical thickness over development 

coincides with and is thought to reflect an initial period of exuberant synaptogenesis followed by 

pruning (Huttenlocher, 1997; Shaw et al, 2008; Petanjek et al, 2011). This increase is followed 

by a decrease in synaptic connections to be thought of as analogous to connection strength in our 

model. Figure 3 presents example results from our model for sum of weights and median of 

weights by epoch. When inhibitory competition is initially low and random noise is injected into 

the training inputs we see that for the median weight at each age shows an initial increase before 

decreasing and slightly and the asymptote-ing (which may be due to the lack of explicit pruning 

in our model). The sum of all the weights displays the same increase but asymptotes rather than 

decreases. Both the random noise and the initially low inhibitory competition are necessary for 

this pattern to be displayed. 
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a.                                                                       b. 

 

Figure 3: Patterns of change in a. the sum of connection strengths and b. the median connection 

strength in the model to examine proxy measures of cortical thickness.
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What individual differences are likely involved and how should these be modeled?: 

Inhibition/Excitation Balance 

 
 

Evidence suggests that several changing neurobiological factors show developmental 

change in expression in a way that is related to critical period plasticity: They are changeable 

throughout development; absence maintains juvenile levels of plasticity; absence of appropriate 

experience prevents the changes and altering expression can reinstate critical period plasticity. 

Much of this evidence comes from examining critical period plasticity in primary visual areas, 

particularly V1, but it is likely that this processes apply more generally throughout cortex . These 

include changes in NoGo receptor expression (McGee, Yang, Fischer, Daw & Strittmatter, 

2005), increases in cholinergic function (Hensch, 2004), perineuronal nets (particularly CSPGs; 

Pizzorusso, Medini, Berardi, Chierzi & Fawcett, 2002) and the subunit composition of NMDA 

receptors (Gambrill & Barria, 2010; Hensch, 2005) 

 
 

There is converging evidence that the most important plasticity-limiting functional result 

of these maturational changes is an increase in the inhibition-excitation balance (Hensch, 2005). 

GABA switches from initial excitatory to mature inhibitory effects on neural transmission early 

in development in a self-controlled fashion (see Ben-Ari, 2002; Leitch, Coaker, Young, Mehta & 

Sernagor, 2005), and then increases throughout development (Cui, Wang, Wang & Xiang, 2010). 

There is a 2- to 3-fold increase in the number of GABAergic synapses in rodent visual cortex 

from eye opening to puberty (Chattopadhyaya et al., 2004, Huang et al., 1999, Morales, Choi & 

Kirkwood., 2002). Similar developmental increases have been documented in other sensory 

cortices and species (Gao, Newman, Wormington & Pallas, 1999, Micheva and Beaulieu, 1995).  
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This increase appears to be triggered by sensory experience (e.g. Chattopadhyaya et al., 

2004, Huang et al., 1999). Dark rearing rodents prevents the typical increase in inhibition 

(Morales et al, 2002) but critical period plasticity can be stimulated in the absence of visual 

experience, and in mice that lack the ability to produce GABA, by application of diazepam 

(GAD-65 knockout mice; Iwai, Fagiolini, Obata & Hensch, 2003). Critical period plasticity can 

be reinstated by reducing inhibitory activity either by environmental exposure or 

pharmacological reduction of inhibitory activity (Vetencourt et al, 2008; Zhou, Panizzutti, de 

Villers-Sidani, Madeira & Merzanich, 2011). For a detailed review of the evidence for the role of 

inhibition and the molecular and genetic pathways underlying this effect (particularly the 

relationship between BDNF, IGF—1 and GABA transmission) see Hensch (2005) & Maya-

Vetencourt & Origlia (2012). 

 

For this reason we have decided to examine the importance of increasing inhibition in 

sensitive period plasticity and test if it is sufficient in itself to account for the structural and 

behavioral patterns and the observed individual differences.  

Inhibitory competition is implemented in the network by the k-winner-takes-all (kwta) 

function. As shown in figure 4 (taken from O’Reilly, Munakata, Frank, Hazy & Contributors, 

2012), ktwa is an approximation of the effects of inhibition in restricting activation in a layer. 

The inhibitory conductance in the activation function (gI) is set for all units in the layer such that 

only the k most units can become active at one time. (for further details see O’Reilly et al, 2012). 

To simulate the increase in inhibition across development we start training with a high k 

(allowing many hidden units to become active at once) and then reduce it throughout training. 

Manipulating both initial level of inhibition and rate of increase simulates individual differences 
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in levels of inhibition. We plan to systematically vary these parameters and examine their effect 

on plasticity to the environment, change in “cortical thickness” and performance. 
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Figure 4: k-winner-takes-all approximation for inhibitory competition in the model (taken from 

O’Reilly et al 2012)
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What is the best method for examining environmental sensitivity? 

 

In order to examine the sensitivity of the network to environmental change throughout 

training, we will introduce new, uncorrelated stimuli (figure 2 panal b.) at varying points during 

training and examine the network’s ability to learn about the new environmental structure. To 

maximize the capability of the network to adapt to the new stimuli it is necessary that 1. It is 

uncorrelated with the original inputs and 2. The net input for each stimulus matches that in the 

original environment (Thomas & Johnson, 2006). 

 

This procedure involves training the model with the same initialized weights and 

switching to the new stimuli after different epochs of training to assess when the ability to learn 

the new stimuli is lost or reduced. Comparing this result to the pattern of cortical change and 

performance (distance between hidden representations) from complete training on the original 

stimuli allows examination of the full relationship between individual differences in inhibitory 

development, structural change and behavioral outcome.  

 

This procedure requires automation to allow 1. The same initial random weights to be run 

several times with different parameters and stimuli 2.  New stimuli to be introduced at varying 

stages of training. 3.  Results to be collected and collated for each network and 4. The initial 

level of inhibition and rate of increase to be systematically varied.  

 

 
Future directions 
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So far we have found that reducing inhibition more slowly appears to result in more 

distinct hidden layer representations, but whether the patterns of cortical thickness change and 

environmental sensitivity are consistent with this pattern remains to be seen.  

 

Future work in this vein would conduct the systematic modeling and analyses outlined 

above and start to examine the change in the representational properties of the model throughout 

development to generate hypotheses about why the pattern of increase in inhibition and the 

resulting structural patterns are beneficial for cognitive development. Other parameters in the 

model would be examined to test for the specificity of this effect to changes to inhibitory 

neurotransmission. The effect of other observed developmental neurobiological changes such as 

changes in response to excitatory activity and cholinergic neurotransmission would also be 

examined to assess their importance in cognitive development. Should the change in inhibitory 

transmission be dependent on changes in these factors, for example? Finally, should differing 

experiences be the mediator of functional change and differing sensitive period length (after the 

results from chapter 4 suggest)? If so, how do we simulate individual differences in experience? 

These are all exciting questions for future research. 
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CHAPTER 6: SUMMARY AND CONCLUSIONS 

 
 

6.1 Introduction 

 

This thesis has sought to examine genetic and environmental influences on intelligence, 

particularly high intelligence and to consider the contribution of variation in the developmental 

trajectories of change in genetic and environmental influence might contribute to positive 

intellectual outcomes. The extant behavior genetics literature largely explains the increase in 

heritability of intelligence throughout development (and the corresponding decrease in the 

magnitude of the influence of the shared family environment) by reference to an increasing 

influence of active gene-environment correlation and no qualitative differences between the 

influences on high IQ and IQ in the normal range. Evidence from developmental neuroscience is, 

however, indicative of a sensitive period in intellectual development that is extended in 

individuals of higher IQ. This thesis aims to integrate theory and methods from behavior genetics 

and cognitive neuroscience to answer the following questions: 

 

1. Is there evidence for a prolonged influence of the environment in individuals of higher 

IQ in a manner consistent with an extended sensitive period for intellectual development? 

2. Are any observed individual differences in sensitive period length related to genetic 

predisposition or does high intelligence itself prolong environmental sensitivity? 

3. How do typical neurobiological changes during development support the cognitive 

changes that underlie the emergence of adult intelligence and the characteristics of 
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sensitive periods? How does this inform the question of why an extended sensitive period 

is beneficial to cognitive development? 

 

6.2 Empirical Findings 

 

The main empirical findings were summarized in chapters 2-5. This section will synthesize 

these findings in order to answer the main research questions. 

 

1. Is there evidence for a prolonged influence of the environment in individuals of higher IQ 

in a manner consistent with an extended sensitive period for intellectual development? 

a. The influence of the family environment is prolonged in individuals of higher IQ in 

a pattern that is consistent with an extended sensitive period. 

b. The decline in IQ score throughout development observed in Phenylketonuria 

sufferers levels off in late childhood but is extended in individuals of higher IQ. 

2. Are any observed individual differences in sensitive period length related to genetic 

predisposition or does high intelligence itself prolong environmental sensitivity? 

a. The length of the sensitive period in intellectual development is related to actualized 

IQ in late childhood rather than a genetic “predicted” score based on mid-parent IQ. 

3. How do typical neurobiological changes during development support the cognitive 

changes that underlie the emergence of adult intelligence and the characteristics of 

sensitive periods? How does this inform the question of why an extended sensitive period 

is beneficial to cognitive development? 

a. The extant neuroscience literature suggests that change in the excitation/inhibition 
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balance is instrumental in controlling sensitive period plasticity. A computational model 

was proposed to examine the relationship between length of environmental sensitivity, 

changes in cortical thickness and intellectual outcome, initially examining whether 

increases in inhibition are sufficient to explain the relationship between these 3 factors.  

  

6.3 Theoretical Implications 

 

Our results are supportive of the extended sensitive period hypothesis of Shaw and 

colleagues (2006; 2008).  This is a potentially important finding in that it ties together results 

from individual differences psychology (particularly behavior genetics) and those from 

developmental science in ways that have not typically been attempted before. It also pieces 

together what may seem somewhat conflicting findings in the respective fields: that intelligence 

is a trait that requires learning about the world and develops cumulatively on the one hand, and 

on the other hand that there is a large genetic component to intelligence. These apparently 

paradoxical factors can be squared if one posits a sensitive period for brain organization, which 

is limited, by neurobiological changes and expression of new genetic influences. This focus on 

synaptic changes and neural plasticity as the basis of intelligence also gives a framework within 

which to conceptualize the genetic influences on IQ that are observable from the beginning of 

development: Plasticity requires protein expression, inter-individual variation in which will be 

supported by genetic variation and will accumulate in effect throughout development.  

  

Other researchers that have suggested a role for sensitive periods in the development of 

intelligence include Michael Thomas (e.g. Thomas & Johnson, 2008; Thomas & Karmiloff-
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Smith, 2003) and Dennis Garlick (2002; 2003), although this thesis is the first attempt to directly 

test this by examining environmental influence on intelligence throughout development. We 

additionally further theoretical thinking about the causal basis of individual differences in 

sensitive period length by providing preliminary evidence that high intelligence itself prolongs 

environmental sensitivity rather than genetic propensity providing a “blueprint” for rate of 

maturational change. This observation is consistent with theorizing by Knudsen (2004) that 

characteristics of the most intelligent, such as heightened attention may delay neurobiological 

changes that limit plasticity at the end of a sensitive period. 

 

The conclusion of this thesis stands in contrast to current thinking in behavior genetics on 

the reasons for the increase in the heritability of IQ during development. The most widely 

accepted explanation for this is active gene-environment correlation, in which individuals gain 

increasing scope to construct their own environments throughout development according to their 

genetic propensities. Although we do not rule this out as a contributing factor towards increasing 

heritability, there are several conflicts that our framework presents to this explanation. Firstly, as 

outlined in chapter 3, a prolonged influence of the shared environment in individuals of high IQ 

would necessitate that, counter-intuitively, more gifted individuals would seek out supportive 

environments later in development than less intelligent children. Secondly, it suggests a 

conceptual understanding of intelligence as a fixed capacity that is expressed throughout 

development via selection of an environmental niche, whereas the sensitive period framework 

suggests that intelligence emerges throughout development and that is malleable via plasticity to 

the environment. Finally, it suggests that heritability should increase gradually through 

development with gradually increasing self-structuring of the environment, whereas our data is 
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more consistent with a definite end to the scope of plasticity in adolescence, with more 

superficial and transient variation occurring after this point.  

 

 

 

6.4 Practical Implications 

 

Our work has practical implications in the search for intermediate cognitive phenotypes 

(endophenotypes) of intelligence and genetic variants that contribute to individual differences in 

intelligence. It additionally has the potential to aid in the design of environmental interventions 

and teaching strategies aimed at either promoting high intelligence or correcting intellectual 

deficits.  

 

 The delineation of developmental stages suggests that many brain measures will show a 

changeable association with IQ over development, suggesting that differing cognitive 

characteristics will be associated with individual differences in intelligence throughout childhood 

and adolescence. The computational model described in chapter 5 has exciting potential to 

inform this work by generating hypotheses on how maturational change affects the nature of 

representations and patterns of behavior.  That individual differences in the rate of maturational 

change are related to cognitive outcome additionally suggests that genetic variants coding for the 

substrates of important functional and structural changes will have a greater or lesser relationship 

to IQ depending on age of the sample. This difference will be even more pronounced if gene 

expression is examined. This suggests that examining the association of certain genes with 
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intelligence will be a more powerful method of identifying specific genetic variants, and existing 

knowledge of critical period changes could inform network-based analysis. Rates of maturational 

change in e.g. cortical thickness are additionally likely to be a promising phenotype to study 

instead of cross-sectional measures, pointing to the importance of longitudinal samples in 

molecular genetic studies of intelligence. 

 

  In considering implications of the findings presented here for the design of environmental 

interventions for promoting intelligence, our work points to several promising avenues, several 

of which have been previously discussed by Thomas & Knowland (2009).  Firstly it suggests 

that, contrary to popular thinking, intelligence is likely to be sensitive to environmental support 

well past early childhood up until adolescence. One caveat to this, however, is that teaching may 

be optimized towards certain skills at differing stages of development, paralleling the trajectory 

of maturational change in the brain. A related possibility, given the apparent benefit of a 

prolonged period of “immaturity” in brain development is that accelerated curricula for gifted 

children may not be the most effective way to foster intellectual excellence. The benefits of 

prolonged cortical and cognitive immaturity have been posited by several researchers (Bjorkland, 

1997; Newport, 1990; Thompson-Schill, 2009).  

 One final observation in relation to promoting high intelligence and alleviating 

intellectual deficit is that sensitive periods appear to be extendable or even reversible under 

certain conditions, both experiential and pharmacological, and our finding that high IQ itself 

appears to prolong environmental sensitivity. This suggests that particular pharmacological and 
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environmental interventions could be harnessed to improve cognitive ability even in adults (see 

Bardin, 2012; Baroncelli, Braschi, Spolidoro, Begenisic, Sale & Maffei, 2010). 

 Our work will also impact developmental and cognitive scientists more generally, by 

providing formal support for the existence of critical periods in the developmental trajectory of 

high-level cognition; critical periods have heretofore been demonstrated to exist only in lower-

level processes (such as sensory perception) and in language acquisition. There is some 

promising preliminary evidence that aberrations in the timing of sensitive period plasticity may 

be involved in disorders such as autism (LeBlanc & Fagiolini, 2011) and ADHD (Shaw et al, 

2007). More broadly, our findings are of importance to all those who are interested in the 

developmental origins of superior cognitive and reasoning abilities.   

 

6.5 Limitations 

 

 Some limitations of the studies presented herein should be acknowledged. We cannot 

unequivocally demonstrate that a sensitive period underlies our results. It is possible that other 

factors, such as dissipating influence of prior experience that is delayed in individuals of higher 

IQ explain our results rather than a limitation of plasticity at the end of a sensitive period per se. 

There is, however, no conceptual framework that would predict such an effect as far as we are 

aware. Secondly, it is not clear why the influence of the shared environment decreases at the end 

of the sensitive period (as observed in chapters 2 and 3). It may be expected that experience 

would get “locked in” at the end of a sensitive period, resulting in an enduring level of 
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environmental influence rather than the decrease we observe. This confusing data point is a 

lingering uncertainty to be addressed in future research.  

  Our data and analysis approach did not allow us to assess the exact age at which a 

sensitive period for intellectual development may typically end, given, for example, the gap in 

data points between age 12 and adulthood in the PKU sample utilized in chapter 4. Similarly the 

genetically informative data presented in chapter 3 only allowed us to conclude that the influence 

of the shared environment decreases at some point during adolescence, and that this shift occurs 

later for individuals of higher IQ. Future research with longitudinal samples in which more data 

points are available during adolescence into adulthood will allow a more precise examination of 

this aspect of our thesis. 

 Finally, we have yet to investigate whether increases in inhibition are sufficient to explain 

developmental changes in plasticity and the intermediate representational changes that relate 

neurobiological maturation to intellectual outcome. Elucidating the answers to these questions is 

an exciting prospect of our ongoing research plans.  

 

6.6 Conclusions 

 

 The problem of how brain maturation supports the emergence of cognitive abilities, 

particularly the uniquely human capacities tapped by IQ tests, is complex and spans several 

levels of analysis. The theoretical and empirical work presented herein contributes to efforts to 

attack this seemingly impenetrable research question by demonstrating how individual 

differences in behavioral outcome may be related to varying patterns of maturation. In doing so it 
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points to important directions in understanding the combined contributions of genetic and 

environmental influences to cognitive ability and disability and how such knowledge can be 

harnessed to develop strategies to understand and promote cognitive excellence.  
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APPENDIX I. SUPPLEMENTARY INFORMATION FOR CHAPTER 3 

 

Supplementary Appendix 1 

 

 Below is a fuller outline of the analysis techniques used in the main text, including the 

regression equations, bootstrap methods and correction of s.e. for  double entry of the data. 

 

Twin Methodology and DeFries-Fulker Regression: DeFries-Fulker regression analysis 

(LaBuda, DeFries and Fulker, 1986) uses monozygotic (MZ; genetically identical) and dizygotic 

(DZ or fraternal; sharing 50% of genetic variation on average) twin pairs, regressing twin two’s 

score (C) on twin one’s scores (P) and the coefficient of relationship (R; 1 for MZ and .5 for DZ 

pairs). A  third term estimating the interaction between the P  and R, yields direct estimates the 

heritability (proportion of sample variance accounted for by genetic influences; h2) and the 

proportion of variance accounted for by family-wide environmental influences (c2). All twin 

pairs were double-entered, with the twin assignment reversed in the second entry (i.e. twin 1 

becomes twin 2 and vice versa). In equation 1, β1 estimates c2 and β3  estimates h2  when the data 

are suitably transformed. K is a constant: 

 

                                                          C = β1P + β2R + β3PR  + K     (1)                                                   

Further extensions to this equation can test changes in the estimations of h2 and c2 

according to IQ score: 

C = β1P + β2R + β3PR  + β4P2 + β5P2R + K    (2) 
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In equation 2, β4 measures the linear relationship between twin 1’s IQ score and the 

predictability of twin 2’s IQ score from twin 1’s, independent of genetic relationship. This tests 

for the linear change in c2 as twin 1’s score increases. β5 measures how this variable differs as a 

function of the relationship between twin 1 and twin 2 and is the corresponding test for linear 

change in h2 (Cherny, Cardon, Fulker &DeFries, 1992). In the cross-sectional GHCA sample, we 

first applied equation 1 and 2 to the full sample collectively then extended the analysis to 

examine the effect of age on the estimates derived. The sample was split into 3 age groups, 

childhood ( aged 4-12; n pairs = 6044), adolescence (aged 12-18; n pairs = 4304) and adulthood ( 

ages 18+; n pairs = 549) and orthogonal linear and quadratic contrast codes (age_lin and 

age_quad) were constructed and allowed to interact with all the terms in equation 2. In such a 

regression, β9P2*age_lin and  β10P2R*age_lin  test for a difference between the child and adult 

age groups on the relationship between ability and the estimate of c2 and h2 respectively. β16 

P2*age_quad  and β17P2R*age_quad  compare the estimates for these groups collectively to 

those for the adolescent group .  Applying equation 2 separately for each age group provided 

estimates for the ability-dependent terms at each age. Additionally, splitting the sample into 6 

groups by median splitting each age group on IQ score and applying equation 1 separately for 

each of these subsamples gave estimates of c2 and h2 for the top and bottom halves of the ability 

distribution in each age goup separately. For this analysis pairs were only double entered if both 

twins met criteria for the ability cut-off. All reported p values for the GHCA sample are derived 

by bootstrapping the regression estimates in the following way: Twin pairs were sampled at 

random, with replacement, from a single entered dataset and twin assignment was randomized 

for each pair. All regressions described were performed on the resulting data and the coefficents 
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saved. This process was repeated 10,000 times. The standard deviations  of the resulting betas 

were used as s.e.s of the estimates and p values we derived  by centring the distribution around 

zero and calculating twice the proportion of the estimates that exceeded the observed value. 

In the longitudinal sample, the coefficient of relationship (R) took on the value of 1.0 for MZ and 

.5 for DZ twin pairs as before. For biological siblings the value of .5 for also used, as they are 

genetically as similar as DZ pairs. Adoptive sibling pairs took a value of 0.0, as they are not 

genetically related. An extra variable, the age gap between siblings in days (0 for all twin pairs), 

was added to equations 1 and 2 and allowed to interact with the estimates of c2 and h2: All 

reported parameters are derived from regressions with age gap included as a moderator. This  

better enabled comparison of estimates between this sample and the cross-sectional twin study 

presented above (the estimates for when age gap = 0 to be to most accurate estimate of the 

maximum effect of shared environmental factors, the influence of which will diminish as age gap 

increases). If this difference is not modeled the smaller age gap between all biologically related 

pairs compared to the adoptive siblings will overestimate heritability as the increased correlation, 

which can reasonably be attributed to both increased environmental sharing in the biological 

siblings and to genetic influence, will be attributed in the regression purely to genetic influence.  

Standard errors of the regression estimates are calculated using the method outlined by Koehler 

and Rodgers (Kohler & Rodgers, 2001) by altering the robust cluster command in STATA 

(StataCorp., 2007) to give robust standard errors using  n instead of n - k -1 as a multiplier (for 

details see http://www.ssc.upenn.edu/~hpkohler/data-and-

programs/twdfeff/twdfeffprograms.html#x1-130005). This method of calculation accounts for 

the fact that the double entered data are only independent at the level of the twin pair.  
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Supplementary Appendix 2 

 These supplementary materials outline the tests of validity performed on the LTS study 

sample in an attempt to ensure that the apparent prolonged critical period found in both our 

samples could not be readily explained by any confounding variables. 

Assortative mating in parents of the LTS twins: We tested for patterns of assortative mating 

for IQ in the parents of the LTS twins. Assortative mating increases between-family variability 

and therefore manifests as c2 in the twin design. If assortative mating was higher among higher 

IQ parents, then this would be a potential explanation for the increased c2 seen in higher IQ 

individuals at age 16. 

 Full-scale WISC-R  IQ scores were assessed in parents at the time of intake of the family 

into either the Twin Infant Project (TIP) or the Longitudinal Twin Study (between 3 and 14 

months post partum; the two studies were amalgamated to construct the current LTS). In the 

event that this information was given twice during this period, the responses were averaged 
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within parent. If information was available from just one parent, this value was used alone. In 

total, data was available for 400 fathers and 447 mothers, for a total of 399 families with 

complete parental information. The mean IQ score for mothers was 104.91 (sd = 12.37) and for 

fathers 107.50 (sd = 12.89). The correlation between parental scores was r(399) = .388, p < .001. 

This demonstrates a moderate amount of assortative mating for IQ in the parents of the LTS 

twins, which could account for some of the variance attributed to c2. In order to assess whether 

the extent of assortative mating was different depending on the ability level of the parents, we 

correlated mean parental IQ and absolute difference between parental scores. The average 

difference was 11.26 points (sd = 8.68). The correlation between mean parental score and the this 

difference score was r(399) = .155, p = .002. This suggests that assortative mating was 

significantly less strong as mean parental IQ score increased. For this reason, patterns of 

assortative mating cannot account for our results. 

Measurement variance in the IQ scale:    The second test we conducted was to examine the 

factor structure of the first unrotated principal component of the intercorrelations among the 

subtests of the WAIS-III assessed at age 16 in the LTS sample. If the factor structure differs 

according the ability level then it follows that the measure of full-scale IQ is actually measuring 

something different depending on the ability of the individual being assessed. This could 

potentially be a confounding factor in assessing differences in etiological influences depending 

on IQ score. This has been demonstrated inconsistently in tests of Spearman’s Law of 

Diminishing Returns(Spearman, 1927), which posits that “The correlations [between different 

tests] always become smaller—showing the influence of g on any ability to grow less—in just 

those classes of person which, on the whole, possess this g more abundantly. The rule is, then, 

that the more ‘energy’ [i.e., g] a person has available already, the less advantage accrues to his 



 

 159 

 

ability from further increments of it” (p. 219). To test this hypothesis we followed the methods 

outlined by Jensen (2003). First we extracted the first unrotated principal component from the 11 

subtests for the entre LTS sample measured at age 16 and then successively for those in the 

sample with IQs measured to be above and below 100 (the population average). Table S1 

demonstrates the factor loadings derived from this analysis as well as the proportion of variance 

explained. 

TABLE S1: Factor loadings for the 11 subtests of the WISC-III for the full sample and for the 
two ability subsamples 

Age 16 WAIS-III 
sub-test 

loading on first principal 
component 

Loading full-
scale IQ >100 

loading full-scale 
IQ < 100 

Vocabulary .84 .78 .81 
Similarities .71 .58 .65 
Arithmetic .71 .53 .52 
Digit Span .38 .09 .22 
Information .82 .77 .72 
Comprehension  .78 .68 .74 
Picture Completion .39 .06 .00 
Digit Symbol .42 .20 .17 
Block Design .65 .34 .19 
Picture Arrangement  .35 -.06 .07 
Object Assembly .52 .20 .13 
Variance explained 
by first principal 
component: 

38.80% 22.68% 23.37% 

 

 It can be seen that, although all the factor loadings across groups follow the same pattern, 

the loading and the variance explained are lower overall for the two truncated groups. This is due 

to the restricted range in the scores resulting from selecting on full-scale IQ score. To compare 

the factor structure between the two ability groups, we calculated the average intercorrelation for 

each group using Kaiser’s (1968) formula in which the eigenvalue of the first principal 

component -1 is divided by the number of variables -1 The values were .14 and .16 for above a 

below 100 respectively. We then used Fisher’s (1915) r-to-z transformation to test for a 
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significant difference between the two values. For this contrast z’ = -.20, p = .83. There is 

therefore no evidence that the proportion of variance captured by the principal component differs 

between ability levels. Additionally, the congruence coefficient between the factors for the two 

subsamples was found to be .99, demonstrating the extreme similarity between the factor 

loadings.  
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Gene x Environment Interactions: Finally we wanted to rule out unmeasured gene x measured 

environment interactions as an explanation for our results. Previous studies have shown that the 

heritability of IQ is moderated by both years of parental education and socioeconomic status 

(Rowe, Jacobson, Van den Oord, 1999; Turkheimer, Haley, Waldron, D’Onofrio& Gottesman, 

2003). In the LTS sample we were able to test the moderating effect of both parental education 

and parental IQ score on the etiology of age sixteen IQ (both are predictors of socio-economic 

status). The method of analysis used was the moderated paths variance components model 

outlined in Purcell (2002) (Figure S1). In traditional biometric models, variance is partitioned 

into proportion explained by additive genetic (a2), shared environmental (c2) and unique 

environmental influences (e2), modeling the expected covariance between twins. The moderated 

paths model adds a continuous moderation of these proportions by an environmental variable. 

The mean of the trait of also moderated by the environmental variable, which removes the shared 

variance between the moderator and the trait from the covariance model, meaning that any 

detected interaction will be between the moderator and variance specific to the trait. This 

removes any confounding effect of gene-environment correlations (shared genetic influences 

between the trait and the moderator).  In the resulting model the expected mean of the trait T in 
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twin i is µ + βMMi and the expected trait variance is Var(Ti ) = (a + βxMi )2 + (c + βYMi )2 + (e + 

βZMi )2. 

FIGURE S1: Path diagram for one twin in the GxE interaction model. a, c, e = unmoderated 

additive genetic, shared environmental and unique environmental influences. βx; βY and βZ = 

moderated components of a, c and e, respectively. βM = main effect of moderator; M = moderator; µ 

= grand mean. 

 

 Seven variables are therefore estimated in the model: the unmoderated components a,c 

and e, moderated components βx, βY and βZ and main effect βM. Parameters can be dropped 

successively from the model and -2 log likelihoods (-2LL) can be compared to that of the full 

model to determine the best-fitting model (the difference between the -2LL has a χ2 distribution 

with degrees of freedom being Δdf between the two models).  

 Years of education was self-reported by parents at the time of entry of the families into 

the study and information was available for both parents in the majority of families (n = 452). 

For some families, data for reported more than once at different times and in these cases the 
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mean of the two scores was used. To construct the variable used in our analyses maternal and 

paternal years of education was calculated, or if information was only available from one parent 

this one data point was used (n = 12). Resulting scores were standardized. Mean maternal years 

of education was 14.26 years (sd = 2.29) and paternal was 14.58 years (sd = 2.52).  Full-scale 

WISC-R scores were used as the moderating IQ variables (details above) which were also 

standardized. The correlation between twin one’s age 16 IQ and parental education was .40 and 

between twin one’s age 16 IQ and parental IQ was .51. Twin correlations above and below the 

median on parental IQ and parental years of education for both raw age 16 IQ scores and 

residuals from regressing the parental variables predictors on age 16 IQ. 

TABLE S2: MZ and DZ twin intra-class correlations for age 16 IQ in the LTS as a function of 
parental environmental variables, with and without residualization for shared variance between 
the two variables 

  parental 
education 

parental IQ parental education 
(residualized) 

parental IQ 
(residualized) 

cut-off MZ DZ MZ DZ MZ DZ MZ DZ 
above 
median 

0.82 0.43 0.78 0.41 0.8 0.39 0.74 0.4 

 
below 
median 

0.8 0.52 0.78 0.41 0.78 0.48 0.76 0.2 

total 
sample 

0.84 0.51 0.83 0.5 0.79 0.43 0.75 0.34 

 

Table S3 reports model fit statistics using parental education as a moderator of age 16 IQ 

etiology. It can be seen that the moderation of the estimates of a2, c2 and e2 by a parental 

education can be dropped from the model with no decrement in fit. The mean moderation, 

however, cannot be dropped.  The final model gives estimates of a2 = .72, c2 = .07 and e2 = .21.  
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TABLE S3: Model fit statistics for the moderation model of parental education on age 16 IQ 
etiology 
model -2LL df Δχ² Δdf p  AIC 

full ACE-

XYZ-M 

1831.7 392         

drop XYZ  1832.33   0.63 3 0.89 -5.373 

drop M 1911.97   80.97 1 <.001 78.973 

 

 Table S4 reports model fit statistics using parental IQ as a moderator of age 16 IQ. We 

found that moderation of c2 and e2 by parental IQ score could be dropped from the model 

without a decrement in fit, but moderation of the mean of age 16 IQ and moderation of a2 could 

not. The estimates for etiological influences as a function of standardized parental IQ score are 

displayed in figure S2. 

Table S4: Model fit statistics for the moderation model of parental IQ on age 16 IQ etiology 
model -2LL df Δχ² Δdf p  AIC 

full ACE-

XYZ-M 

1693.21 378         

drop XYZ  1706   12.79 3 <.001 6.793 

drop Y and Z 1693.61   0.4 2 0.818 -3.6 

drop M 1825.06   131.85 1 <.001 129.8 
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FIGURE S2: Etiological influences on age 16 IQ as a function of parental IQ score 

 

 It can be seen that the magnitude of additive genetic influences increases as parental IQ 

increases, with the relative influence of the unique family environment decreasing. When the 

shared variance between parental IQ and age 16 IQ is controlled for, there is no influence of the 

shared family environment at any level of parental education. Importantly, the influence of 

parental IQ on heritability is in the opposite direction to that of the cotwin’s IQ score, in which 

heritability decreases as score increases, and so cannot account for that result.  

 

References 

 Spearman, C.E., (1927). The abilities of man. Macmillan, London. 

Jensen, A.R., (2003). Regularities in Spearman’s law of diminishing returns, Intelligence  31, 95-

105. 



 

 166 

 

Kaiser, H. (1968). A measure of the average intercorrelation. Educational and Psychological 

Measurement, 28:245-247. 

Fisher, R.A. (1915). Frequency distribution of the values of the correlation coefficient in samples 

of an indefinitely large population. Biometrika, 10, 507–521. 

Rowe, D.C., Jacobson, K.C., Van den Oord, E.J.C.G., (1999). Genetic and environmental 

influences on vocabulary IQ: Parental education level as moderator. Child Development, 70, 

1151-1162. 

Turkheimer, E., Haley, A., Waldron, M., D’Onofrio, B. & Gottesman, I.I., (2003). Socioeconomic 

status modifies heritability of IQ in young children. Psychological Science, 14, 623-628. 

Purcell, S. (2002). Variance components model for gene-environment interaction in twin analysis. 

Twin Research and Human Genetics, 5, 554-571. 

 

 

 

 

 

 

 

 

 

 


