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Abstract

We describe a new stochastic global optimization algorithm that is oriented to-
wards solving large scale problems, and present the results of applying it to a class
of problems in molecular chemistry. Our new algorithm incorporates some full-
dimensional random sampling and local minimizations as in existing stochastic meth-
ods, but the keys to its success are two new phases that concentrate on selected small
dimensional subproblems of the overall problem. These phases constitute a major
portion of the computational effort of the new method, and represent a significant de-
parture from existing stochastic methods. Computational results on Lennard-Jones
problems show that the new method is considerably more successful than any other
method that has tried to solve these problems without using prior knowledge of the
solution structure in its algorithm, and that our method finds the presumptive global
minimizer in all cases with up to 90 variables as well as in some larger cases. On
the other hand, on most problems with over 100 variables, our method does not
find as good a solution as has been found by the best special purpose methods for
Lennard-Jones problems. This illustrates the inherent difficulty of large scale global
optimization.






1 Introduction

We describe a new stochastic global optimization algorithm, and its application to a
class of problems in molecular chemistry. The global optimization problem is to find the
lowest minimizer of a nonlinear function f in a domain D € R", where D is defined by
upper and lower bounds on each variable. It is assumed that the global minimizer lies
in the interior of D, and that the function f is twice continuously differentiable. The
application considered in this paper is determining the structure of clusters of atoms
whose potential energy is given by the sum of the pairwise interactions between atoms
using the Lennard-Jones potential energy function. Problems in determining molecular
structure lead to global optimization problems because the naturally occurring structure
minimizes, or nearly minimizes, the potential energy of the system, and because typically
such functions have very many local minimizers.

Because global optimization is a fairly young field, there exist many approaches to
solving global optimization problems, but generally these approaches only have been used
to solve small nonlinear problems, usually with 2-6 variables. Problems in molecular
chemistry that are of practical interest may involve hundreds or thousands of atoms in
three dimensional space; therefore it is important to develop methods that are capable of
solving large dimensional problems. We will present results for problems with up to 165
variables, which is at least an order of magnitude more than the number of parameters
generally used in the global optimization literature. More importantly, the techniques
we develop, which combine computations in the full parameter space with phases that
concentrate on small dimensional subproblems within the overall problem, are designed
to be applicable to a wide variety of structured large scale global optimization problems.

The new algorithm is related to the stochastic methods of [24]. These methods
combine random sampling over the domain space and local minimizations from selected
sample points. Stochastic methods appear to be at least as efficient as other general
global optimization methods in the comparisons reported in the literature, for example
in [25], and also possess some probabilistic guarantee of success. We found that they were
not able to solve the problems considered in this paper, however, nor even find reasonable
approximations to the global minimizer, even after very large amounts of computation.
This was basically due to the difficulty in dealing with a very large dimensional variable
space and very many local minimizers.

The key new approach that we use in our method is to incorporate phases of the algo-
rithm that focus on small dimensional subproblems within the overall large dimensional
problem. In the context of the Lennard-Jones problems, these phases consist of series
of steps that improve the positions of single atoms while the remainder of the molecular
configuration remains fixed. This approach first is used to significantly reduce the func-
tion values of selected sample points before choosing start points for local minimizations.
Second, this approach is used to generate improved local minimizers from the initial set
of local minimizers. This latter phase constitutes a major portion of the computational
effort of the calculations and represents a significant departure from previous stochastic
methods. Similar techniques could be applied to any partially separable global optimiza-
tion problem, although the criteria for selecting which subset of variables to choose for
the smail dimensional subproblems would be application dependent.



The remainder of the paper describes the new method, the molecular chemistry appli-
cation, and the computational results obtained with the new method on Lennard-Jones
problems. Section 2 discusses the Lennard-Jones molecular configuration problem. Sec-
tion 3 briefly describes other global optimization approaches. Section 4 first gives a brief
description of current stochastic methods, and explains why they proved unable to solve
the large scale problems we consider. It then describes the new method, focusing on
the new phases that concentrate on small dimensional subproblems. Section 5 presents
and interprets the test results of this new method on a set of Lennard-Jones problems.
Section 6 provides a brief summary and conclusions.

2  The Lennard-Jones Molecular Configuration Problem

The molecular configuration problem is the problem of finding the structure or relative
positions of a cluster of atoms that minimizes the potential energy of the structure.
In the experiments described in this paper, we consider clusters of N atoms in three
dimensional space acting under a Lennard-Jones potential. These are problems that
have often been used as model problems by the molecular chemistry community. They
model the interaction of identical, spherically symmetric particles such as inert gases,
and more importantly, their key features are indicative of certain interactions in more
complex molecules. For a more detailed discussion of the Lennard-Jones problem and its
applications, see e.g. [15].

Lennard-Jones problems assume that the potential energy of the molecule is given by
the sum of the pairwise interactions between atoms, with these interactions being Van
der Waals forces given by the Lennard-Jones 6-12 potential. That is, if we define the
position of the molecule by

= (21,22,...,ZTN)

where z; is a three dimensional vector denoting the coordinates of the i** atom, then the
potential energy function is

N -1
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where d;; is the Euclidean distance between z; and z;. In this formulation, the pairwise
equilibrium distance is scaled to one and the pairwise minimum energy is scaled to -1.

The potential energy function (2.1) has numerous local minima, including many whose
energy value is near that of the global minimum. For example, when N = 13, it is
known that the number of local minima is 988, and Hoare has conjectured that the
general number of local minimizers for an N-atom Lennard-Jones cluster is O(e™”) ([15]).
Thus finding the minimum potential energy configuration of a Lennard-Jones cluster is
a challenging global optimization problem.

In [23], upper bounds on the minimum potential energy for Lennard-Jones clusters
of size 13 < N < 147 have been presented. The method used to find these structures
makes heavy use of the known approximate solution structure of optimal Lennard-Jones
clusters, by utilizing a discrete lattice based search over multilayer icosahedral struc-
tures to generate starting configurations for local minimizations. [20] has reproduced the



Northby results, and found upper bounds for clusters of up to N = 1000, using a parallel
version of the same lattice based search algorithm. The prior knowledge of the solution
structure that both these methods utilize heavily is not expected to be available for many
other large scale problems, including many other molecular configuration problems. In
contrast, our method does not employ any knowledge about the solution to the problem
in its algorithm. Instead, we introduce a general purpose large scale global optimization
method that only makes use of the partially separable nature of the problem, a charac-
teristic that is present in many large scale problems. This approach may be particularly
useful in cases where no a priori knowledge of the solution is available.

3 Global Optimization Methods

Many approaches have been investigated for solving global optimization problems. For
the general case where f(z) can be any continuously differentiable nonlinear function,
approaches that have been developed include trajectory methods (e.g. [?, 4]), deflation
and tunneling methods (e.g. [11, 19]), interval arithmetic methods (e.g. [13]), piecewise
approximation methods (e.g. [28]), genetic algorithms (e.g. [3, 16]), simulating annealing
methods (e.g. [18]), and stochastic methods (e.g. [24]). Our approach is related to
stochastic methods, which are described in Section 4.1. An excellent survey of global
optimization methods for general nonlinear functions is contained in [25].

Recently, several global optimization techniques have been applied to various Lennard-
Jones problems in two and three dimensional space. These include a new packet anneal-
ing method described in [27], a discrete descent technique discussed in [8], the tunneling
method [2], and a convex decomposition method [21]. In addition, [17] conducted a com-
parison of simulated annealing, genetic algorithms and the Nelder Mead simplex method
on two-dimensional Lennard-Jones problems, and suggested that for larger problems, a
combination of simulated annealing and genetic algorithms may be effective. To our
knowledge, none of these global optimization techniques have succeeded in consistently
finding structures with energies as low as those found by the methods mentioned in the
preceding section that utilize geometric, problem specific knowledge of the solution as
a crucial component of the algorithm, even for problems with 10-20 atoms. Thus, it
appears that the challenge of adapting a general purpose global optimization method to
solve these problems as successfully as the methods that take advantage of the known
geometries solution is a serious one. This is the challenge addressed in the remainder of
this paper.

4 The New Large-Scale Stochastic Global Optimization
Method

Our new method incorporates the basic features, sampling and local minimizations, of
existing stochastic methods, but it is only able to solve large-scale problems because it
also incorporates new phases that focus on small dimensional subproblems. The new
phases constitute a significant departure from previous stochastic methods and account
for a significant portion of the computational effort of the new method. In Section



4.1 we review existing stochastic methods and indicate why they proved ineapable of
finding solutions, or even near-solutions, to Lennard-Jones problems after large amounts
of computation. Section 4.2 describes our new method in the context of Lennard-Jones
problems and also explains how it can be applied to other large scale, partially separable
problems.

4.1 Existing Stochastic Methods and their Limitations

The global optimization approach described in this paper is related to the stochastic
methods of [24] and the parallel variants of [6] and [30, 29], so it is useful to briefly review
those here. The basic structure of these stochastic methods is an iteration that consists
of three phases. First random sample points are generated in the problem domain, then
these are compared with each other and a subset of them are selected as start points
for local minimizations, and finally local minimizations are performed from these start
points. At the end of this three step iteration, a decision is made whether to terminate the
algorithm or perform another iteration, based on the stopping criteria. As the algorithm
proceeds, sample points in the current iteration are added to the sample points from all
previous iterations, so that the start point selection phase has more information to base
its selection upon. When the algorithm terminates, the global minimizer is considered to
be the local minimizer with the lowest function value. Rinnooy Kan and Timmer have
shown that if start points are chosen according to rules mentioned below, and the local
minimization process has certain reasonable properties, then with probability one this
type of procedure will find the global minimizer after doing a finite (though possibly very
large) amount of work [24].

Several lower level features of these methods are important to our new method as
well. In the sampling phase, a “cutoff level” may be employed such that any sample
points generated whose function value falls above the cutoff level are discarded and not
considered as possible start points for local minimizations. This does not affect the
theoretical properties of the algorithm, but significantly improves the efficiency of the
start point selection phase in practice. In the start point selection phase, a sample point
is selected as a start point for a local minimization if it has the lowest function value of all
other sample points or previously found local minimizers within the “critical distance”
from it. The critical distance is a function of the number of sample points generated
each iteration, the iteration number, and the Lebesque measure of the feasible region,
and is crucially related to the probabilistic properties of the method. Finally, in our
implementations of global optimization methods, the local minimizations are performed
using the BFGS method of the UNCMIN package [26].

It is useful to include a brief outline of this procedure for the subsequent discussion
and for comparison with our new method. This is presented in Algorithm 4.1 below.

Over the last several years, we have developed parallel variants of stochastic global
optimization methods that have been implemented on networks of workstations used as
an MIMD computer, as well as an Intel iPSC/2 hypercube ([6]). In order to parallelize
the work performed by these methods, the feasible domain is divided up among the
processors and sampling is done separately in each subdomain for phase 1. Phase 2 is
also done within separate subdomains on the individual processors, but potential start



Algorithm 4.1 — Framework of a Standard Stochastic Global Optimization
Algorithm

Given f: R™ — R, feasible region D

For each iteration:

1. Sampling : Generate the coordinates of the new random sample points in the feasible
region, and evaluate f(z) at each new sample point. Discard all sample points whose
function value is below the global “cutoff level”.

2. Start Point Selection : Select a subset of the sample points to be start points for
local minimizations. (A sample point is selected to be a start point if it has the
lowest function value of all sample points within the “critical distance” from it.)

3. Local Minimizations : Perform a local minimization from each start point selected
in step 2.

4. Decide whether to stop : If the stopping criteria has been met, regard the lowest
local minimizer found as the global minimizer, otherwise repeat steps 1-4.

points that are close to the border of a subdomain must be handled differently to insure
that neighboring subregions will not end up selecting start points which would lead to
duplicate local searches. Start points for local searches are then collected centrally and
assigned to processors as they become available. Similar techniques will be utilized in
certain portions of the parallel implementation of our new method.

Recently, we have also developed sequential and parallel versions of stochastic meth-
ods that utilize adaptive decisions to target sampling and local minimizations to regions
of the parameter space that appear to be the most productive in terms of producing points
with relatively low function values ([30, 29]). The parallel versions of these methods also
incorporate asynchronous features and new scheduling algorithms. The parallel adaptive
global optimization algorithm will be utilized as a subroutine in the small subproblem
global optimization phase of our new method.

The sequential and parallel methods based upon Algorithm 4.1 have proven to be
effective on standard test problems where the number of parameters are very small,
usually two to six. In attempting to use these methods to solve Lennard-Jones problems
with more than about 25 parameters (and hundreds or thousands of local minimizers),
however, it became obvious that they would not be at all successful and that additional
techniques would be necessary. The first reason was that we found that even if very large
numbers of random sample points were generated, these sample points did not lead to
good start points for local minimizations. That is, virtually all the sample points had
relatively high function values, and the local minimizations from the start points selected
from these sample points were very expensive and not likely to lead to the lowest local



minimizers. This problem is due in part to the inherent difficulty of sampling:in a large
dimensional variable space, which makes it likely that any sample point will be far from
a local minimizer and a local minimization from it will be expensive. It is also due to
the fact that for most molecular configuration problems and many others, the function
values at most random sample points are considerably higher than the function value
at low minimizers, and are not indicative of whether the sample points are close to the
lowest minimizers.

Secondly, even after the problem of finding good sample and start points was ad-
dressed by incorporating the first set of small dimensional subproblem techniques that
we describe in Section 4.2, and some good local minimizers were found, it became clear
that the orientation of stochastic methods towards finding all the low local minimizers
would not lead to a computationally efficient method for locating the global minimizer
for problems with so many local minimizers. Instead, it seemed desirable to be able to
progress efficiently from low local minimizers to even lower local minimizers, rather than
to do the work of finding better minimizers by complete local minimizations from more
random sample points. Section 4.2 describes how the new method addresses both of the
challenges we have just described. Note that at least some of the problem characteristics
that lead to these challenges, namely the large number of variables, the very large number
of local minimizers, and the variation in function values over the domain, will be present
in any large scale global optimization problem.

4.2 New Features for Partially Separable Problems

The approach we have taken to generate a large-scale global optimization algorithm for
Lennard-Jones problems that will be applicable to many other large problems as well is
to use the “partially separable” property of the Lennard-Jones potential energy function
(2.1) at several key places in the algorithm. A partially separable function is a function
that is the sum of many terms, each of which involves only a small subset of parameters.
Partially separable problems have been studied extensively in local optimization (see e.g.
[12]), and it is felt that many large scale optimization problems have this form. For
this type of function, it is reasonable to expect that one could lower the function value
effectively by working globally with a small subset of variables at once, particularly if one
has first identified this subset of the variables as one that is contributing significantly to
the current function value. The techniques we now describe use this small subproblem
approach. We will present them in terms of the Lennard-Jones problem, but they can
be applied to a wide range of problems, especially to any large scale partially separable
function, although as we discuss at the end of this section, the identification of the
appropriate small subsets of the variables is application dependent.

Our new algorithm continues to incorporate some random sampling and local mini-
mizations in the full dimensional variable space as parts of the method. It also contains
two new phases that work on small dimensional subproblems. The first of these is used to
efficiently generate improved sample points from an initial set of random sample points,
before selecting the start points for full dimensional local minimizations. The second new
phase, which constitutes a major portion of the computational effort of the new method
and represents a significantly different approach from existing stochastic methods, effi-



ciently generates improved local minimizers from an initial set of local minimizers.

The algorithm starts by generating a moderate sized random sample of the function
over the full domain. Then the first new phase, the generation of improved sample points
through one-atom sampling, is applied. First, all but a small fraction of the sample points
with the lowest function values are discarded. Then each remaining sample point whose
function value is above some threshold value is then perturbed in the following manner.
The contribution of each atom in the sample point to the total function value of that
point is calculated, and the atom that contributes the most to the overall function value
is determined. This atom is then randomly resampled some number of times, and for
each new sample value of this atom, the function value of this molecular configuration
with the remaining atoms unchanged is calculated. The coordinates for the resampled
atom that result in the lowest function value are retained as the new values of these
variables within this sample point. If the function value of the modified sample point is
still above the threshold value, the process is repeated, i.e. a (new) single atom is selected,
resampled, and moved, until the threshold has been reached. The threshold value may be
varied slightly for each sample point, to ensure variation within the sample. From these
perturbed sample points, start points for local minimizations are selected as in phase 2
of Algorithm 4.1.

In our experience, the modified sampling procedure not only leads to a quick, large
reduction in function values of the sample points (for example for 55 atoms, from function
values of 43 to 909 to function values of -20 to 0 in two to eight one-atom moves), but
the perturbed sample points also lead to much better start points for local minimizations
than the original sample points would have. That is, the local minimizations from the
start points produced from the perturbed sample require fewer iterations, and generally
result in minimizers with lower function values, than minimizations from start points
from the original sample. These lower minimizers in turn generally decrease the cost and
improve the results of subsequent steps of the algorithm. In addition, the cost of the
entire sample modification process is very low and is easily outweighed by the savings.
For the Lennard-Jones function (2.1). the cost of sampling on one atom is + times the
cost of sampling in the full space, and the cost of re-evaluating the overall energy of
the configuration when one atom is perturbed is % times the cost of evaluating (2.1) in
general. (The selection of the atom that contributes most to the energy just requires
a simple bookkeeping operation, and its cost is insignificant because it is performed so
infrequently.) The benefit of this phase, and the second small subproblem phase, to the
efficiency and success of the algorithm appear to increase significantly as the number of
variables increases.

The second small dimensional subproblem phase that we have added improves the
function values of already low local minimizers through one-atom global optimizations.
A set of local minimizers is initially produced by full dimensional local minimizations
from the start points selected from the perturbed sample points. The k minimizers
with the lowest function values are then passed on to this new phase of the algorithm,
which proceeds as follows. The best local minimizer that has not yet been used in
this phase is chosen, and the energy contribution of each atom in the configuration is
computed. The atom that contributes the most to the total function value is chosen
for improvement, as was done in the sample point improvement phase. (The atom that



is second worst may sometimes be selected instead.) The key difference between this
phase and the sample point improvement phase is that then, rather than just sampling
on the selected atom, a complete global optimization algorithm is applied to find the best
new positions for the selected atom within the existing configuration of the remainder
of the molecule. Generally these new positions for this atom lead to configurations that
are close to, but not exactly, local minimizers for the entire molecule. Therefore a full
dimensional local minimization algorithm is then applied to “polish” the few best of these
new configurations. (We chose the few best rather than just the best because we have
found that sometimes the best polished solution does not come from the best unpolished
solution.) These new full-dimensional local minimizers are then merged with those found
previously, and the process just described — select lowest minimizer, select atom from it,
one-atom global optimization, full-dimensional local minimization polishes - is repeated
a fixed number of times.

This procedure has been very effective in locating improved local minimizers, in cases
where simply doing more sampling and local minimizations in the full dimensional vari-
able space was not productive. The cost of this phase is also low in relation to its benefit.
Even though a global optimization routine is used as a subproblem, it is not very expen-
sive because there are only three variables in the subproblem, and because each function
(and gradient) evaluation costs only % of a full function (or gradient) evaluation as ex-
plained above. Furthermore, we utilize the adaptive global optimization routine of [30]
to make this the solution of this global optimization subproblem even more efficient. The
subsequent local minimizations in the full parameter space generally require very few
iterations and so they, too, are inexpensive.

The framework for the new global optimization algorithm for solving Lennard-Jones
problems is outlined in Algorithm 4.2 below. We note that the reason that we say that-
the local minimizer improvement phase of Step 5 represents a departure in philosophy
from standard stochastic methods is that it is deterministic in nature, at least in its high
level formulation. In fact it solves the small subproblem by a global optimization routine
that in our implementation is stochastic, but for such small problems the results of this
routine may realistically be hoped to be deterministic, i.e. all the lowest minimizers
should be found. To retain the probabilistic guarantees of success of standard stochastic
methods, we would have to iterate on the entire Step 1-5 sequence, but we do not do this
in our current implementation because the number of local minimizers is so large that
satisfying the conditions for such guarantees would be impractical.

Algorithm 4.2 has been described as a sequential method, although in practice we
have run it in parallel on a small network of Sun workstations for added efficiency. The
details of the parallelization are only marginally relevant to this paper. Briefly, we have
parallelized steps 1-4 in a fairly routine manner, subdividing the domain to parallelize
steps 1-3 and collecting and allocating the local minimizations to parallelize step 4.
In addition, we have used the parallel adaptive global optimization routine of [30] to
parallelize the small dimensional global optimization in step 5, but for now we have run
the remainder of step 5 sequentially.

Finally, we note that the approach to global optimization that we have described in
this section will generalize to any partially separable function (although we do not claim
that it will necessarily be effective in all cases). The determination of which subset of



Algorithm 4.2 — Framework of the Large-Scale Global Optimization
Algorithm for Lennard-Jones Problems

Given f: R™ — R, feasible region D

1.

Sampling in Full Domain : Randomly generafe the coordinates of the sample
points in the region D, and evaluate f(z) at each new sample point. Discard all
sample points whose function value is below a global “cutoff level”.

. One-atom Sampling Improvement : For each remaining sample point : While

the energy of the sample point is above the threshold value, Repeat:

o Select the atom that contributes most to the energy function value
e Randomly sample on the location of the selected atom

¢ Replace this atom in the sample point with the new sample coordinates that
give the lowest energy value.

. Start Point Selection : Select a subset of the improved sample points from step

2 to be start points for local minimizations.

. Full-Dimensional Local Minimizations : Perform a local minimization from

each start point selected in step 3. Collect some number of the best of these
minimizers for improvement in Step 5.

. Improvement of Local Minimizers : For some number of iterations:

e I'rom the list of full-dimensional local minimizers, select the local minimizer
with the lowest energy value that has not yet been modified in this phase.

e Select the atom that contributes the most (or second most) to the energy
function value, and was not moved in the previous iteration.

¢ Apply a global optimization algorithm to this configuration with only this
atom as a variable.

¢ Apply alocal minimization procedure, using all the atoms as variables, to the
lowest configuration(s) that resulted from the one-atom global optimization.

e Merge the new lowest configurations into the existing list of local minimizers.




variables should be selected for the small dimensional subproblems will be application
dependent, however. In particular, note that for the Lennard-Jones problem, we do
not select one variable, but an entire atom consisting of three variables, for the small
dimensional subproblems. This is because an atom is the natural unit of granularity for
this problem, since each term in the energy function that involves one coordinate of a
given atom involves the other two coordinates as well. While it might be possible for a
code to automatically determine the correct subproblem granularity for general partially
separable functions, we do not pursue this issue for now, assuming instead that the code
would be modified to incorporate the correct small subproblem granularity structure for
the particular class of applications. We briefly mention another instance of this choice of
small subproblem granularity in Section 6.

5 Test Results

We have applied Algorithm 4.2 to the Lennard-Jones molecular configuration problem
(2.1), with the number of atoms ranging from 5 to 55 (i.e. 15 to 165 variables). The
following algorithmic parameters were used in the algorithm. 4000 sample points were
generated in Step 1, and the best 40 of those were perturbed in Step 2. The threshold
levels used in Step 2 varied for different problems sizes, and within each problem size,
to ensure variability of start points, ranging from -1.0 to -20.0. Each atom selected in
Step 2 was randomly sampled 100 times. At most 40 full dimensional minimizations
were performed in Step 4, and the best 6 local minimizers were passed on to Step 5.
Step 5 was performed for 20 iterations, where each iteration involves one complete one-
atom global optimization. At the end of the one-atom global optimization, the four
lowest configurations that resulted from the global optimization were polished using full
dimensional local minimization. The algorithm was run on a network of five Sun 4
workstations, and was parallelized as summarized at the end of Section 4.1.

Tables 5.1a and 5.1b below give the results of these experiments. The third column
gives the lowest energy value found by our algorithm, and the last column gives the lowest
energy value for the problem that has been found by any method. All these lowest values
have been found by the special purpose algorithms of [23] and [20], and sometimes, for
smaller problems, by some other methods as well [15]. In order to assess the importance
of step 5 (the improvement phase for local minimizers), the second column shows the
best energy value found by Algorithm 4.2 through step 4.

These results show that Algorithm 4.2 finds the known lowest energy value for all
problems with 5 through 30 atoms, but for the larger problems (31 - 55), it only finds the
presumptive minimum energy value in three cases (N = 33, 35, and 38). The results also
show that for every problem with more than 16 atoms, step 5 of the algorithm produces
at least some improvement, and without this step, the known solutions for problems with
greater than 16 atoms would not have been found.

To our knowledge, these are the best results obtained {or these Lennard-Jones prob-
lems by any global optimization method that does not make use of the solution structure,
and they may be among the first reported successes by any general purpose global op-
timization method for problems of up to 100 variables. The results compare favorably
with those obtained for the Lennard-Jones problems by [15], where the solution structure

10



Table 5.1a: Experimental Results for LJ Problems

| # of Atoms | Min. after Step 4 | Min. from Alg. 4.2 | Best Known Min, |

5 -9.103852 -9.103852 -9.104

6 -12.712062 -12.712062 -12.712
7 -16.505384 -16.505384 -16.505
8 -19.821489 -19.821489 -19.822
9 -24.113360 -24.113360 -24.113
10 -27.479739 -28.422532 -28.420
11 -32.765970 -32.765970 -32.765
12 -37.967600 -37.967600 -37.967
13 -44.326801 -44.326801 -44.327
14 -47.845157 -47.845157 -47.845
15 -52.322627 -52.322627 -52.323
16 -56.815742 -56.815742 -56.816
17 -61.094499 -61.317995 -61.318
18 -66.284568 -66.530949 -66.531
19 -70.818708 -72.659782 -72.660
20 -75.094179 -77.177043 -77.177
21 -79.890928 -81.684571 -81.685
22 -85.214574 -86.809782 -86.810
23 -89.847243 -92.844472 -92.844
24 -95.184349 -97.348815 -97.349
25 -101.010521 -102.372663 -102.373
26 -105.432245 -108.315616 -108.316
27 -111.757532 -112.873584 -112.874
28 -116.216452 -117.822402 -117.822
29 -122.534706 -123.587371 -123.587
30 -126.201751 -128.286571 -128.287
31 -132.618957 -133.293822 -133.586
32 -135.782887 -138.823611 -139.636
33 -143.389903 -144.842719 -144.843
34 -148.366770 -149.010289 -150.045
35 -153.484883 -155.756643 -155.757
36 -157.444623 -159.881811 -161.825
37 -162.516048 -164.744147 -167.034
38 -170.659207 -173.134317 -173.134
39 -175.110320 -176.421266 -180.033
40 -179.464074 -180.962189 -185.250
41 -186.103672 -187.664377 -190.536
42 -192.282198 -194.327597 -196.278
43 -197.725819 -198.737089 -202.365
44 -202.145505 | -204.561112 -207.689
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Table 5.1b: Experimental Results for LJ Problems

L# of Atoms | Min. after Step 4 | Min. from Alg. 4.2 | Best Known Minj

45 -209.146837 -212.132580 -213.785
46 -212.999826 -216.691708 -220.680
47 -219.078345 -221.308952 -226.012
48 -224.513300 -228.674021 -232.200
49 -231.696610 -234.482267 -239.092
50 -237.010457 -238.244280 -244.550
51 -241.988986 -245.327151 -251.254
52 -246.584642 -253.403586 -258.230
33 -252.619036 -254.291490 -265.203
54 -257.621963 -259.917199 -272.209
55 -263.438099 -268.117183 -279.248

is heavily utilized, and by [27], where the solution structure is not utilized. The results
for over 30 atoms are not as good, however, as those in [23] and [20], except for three
problems. As mentioned in Section 2, the methods in [23] and [20] make extensive use
of the known lattice structure of the solution to Lennard-Jones problems, searching over
lattices with the appropriate structure and then using the best of these as start points for
local minimizations. On the one hand, it can be argued that these methods are not too
relevant in assessing the potential of our algorithm for more general classes of problems,
since the special purpose knowledge of the solution structure that they utilize heavily
may not have an analog in many other more practical cases, including many practical
molecular configuration problems. On the other hand, the results of these methods on the
Lennard-Jones problem demonstrate that we do not yet have a general purpose algorithm
that finds the global minimizer of large, difficult problems with any confidence, although
we may have some confidence that the method finds a reasonably low local minimizer
and represents a significant step towards the development of even more reliable methods.

Finally, in Table 5.2 we give an indication of the cost of our method on these problems.
We have not attempted to optimize our implementation with respect to efficiency, and
it is likely that both the numbers of function evaluations and the execution times could
be improved considerably. But this table should give at least a rough indication of
the computational effort. Regarding the function evaluations, recall that the one-atom
function evaluations cost ]—% times as much as an N-atom function evaluation. Thus the
cost of the one-atom function evaluations ranges from 10% to 28% of the cost of the
N-atom function evaluations for the problems with 20 or more atoms. The execution
times can only be interpreted very roughly, because while they were obtained using five
Sun 4 workstations, these machines were of four different models with differing speeds,
two were file servers that were also servicing other applications, and one key portion of
the algorithm, the local minimization in step 5, was not parallelized although it could be.
In addition, step 5 is partially sequential while steps 1-4 are entirely parallel, so the times
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Table 5.2: Costs for Lennard-Jones Problems using Algorithm 4.2

Number | N-atom | l-atom Time Time Time
of function | function | in seconds | in seconds | in seconds
Atoms evals evals for for for
Steps 1-4 Step 5 Total Alg
5 7307 75306 21.0 129.8 150.8
10 12743 55852 90.4 136.8 227.2
15 14483 61859 251.8 173.4 425.2
20 18211 50780 479.0 227.1 706.1
25 21394 52250 658.1 399.8 1057.9
30 27429 71164 1410.4 720.6 2131.0
35 27381 80197 1783.3 690.9 2474.2
40 31932 80880 2151.2 1479.8 3631.1
45 33303 79980 2885.1 1130.3 4015.4
50 48104 | 137147 4679.3 3218.5 7897.8
55 52213 143441 5461.2 6838.8 12300

for step 5 are artificially large relative to the times for steps 1-4. Still, the execution time
statistics show that the new local minimizer improvement phase of the algorithm (Step
5), which was seen previously to play a major role in its effectiveness, also constitutes a
significant portion of its computational effort.

6 Summary and Future Research

The global optimization method discussed in this paper combines several new techniques
with some techniques from standard stochastic global optimization methods to enable it
to solve large scale problems effectively. The new techniques involve concentrating on
small dimensional subproblems in two new phases of the method, improvement of sample
points and improvement of local minimizers. For the Lennard-Jones problems, the small
dimensional subproblems involve one atom, generally the one that contributes the most
to the current energy function value. The sample point improvement phase perturbs
selected sample points one atom at a time to generate points with much lower function
values that will be better start points for local minimizations. The local minimizer im-
provement phase perturbs already low minimizers by selecting one atom and performing
a global optimization on it with the remainder of the configuration fixed, followed by
full-dimensional local minimization polishing steps of the best new configurations. This
phase, which departs significantly from the standard approach of stochastic methods
by taking a much more deterministic approach, constitutes a significant portion of the
computational effort of the new algorithm and often substantially improves the results
of the algorithm. The new method is designed to be applicable to any large, partially
separable problem, although the selection of the appropriate unit of granularity for the
small dimensional subproblems is application dependent.
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One goal of this research is eventually to solve practical, complex molecular configu-
ration problems involving hundreds or thousands of atoms, for example the configuration
of proteins or polymers. As a step in this direction, we have recently begun experiment-
ing with applying the techniques of this paper to clusters of water molecules. For this
problem, the appropriate small dimensional subproblem is a water molecule (9 variables)
as opposed to an atom (3 variables) for the Lennard-Jones problems. We are obtaining
promising results on this problem, but are learning that further techniques for improving
local minimizers are useful for more complex problems such as this one. We will report
on this work in a subsequent paper. How effective the approach of this paper is for other
classes of partially separable global optimization problems remains to be seen.

Another area of future research is making the approach of this paper more efficient.
Important opportunities include utilizing local minimization procedures that are espe-
cially oriented to the particular class of large scale problems in the application, and
adapting the algorithm to effectively utilize massively parallel computers. We have not
pursued these directions for the Lennard-Jones problems as these problems are only step-
ping stones to more realistic large scale problems. They are certain to become important
issues to address in the solution of larger and more practical problems, however.

A final comment is that it is clear from the results of Section 5 that the methods of this
paper currently find low local minimizers, but not necessarily the global minimizer, in a
reasonable amount of time on the computers we have used. In fact we have relinquished
the probabilistic guarantee of finding the global minimizer since we do not iterate on the
overall five step process, but doing so would not be expected to improve the practical
performance. Indeed, our computational experience suggests that it may be practically
intractable to find the global minimizer for many difficult large scale problems. However,
there are many approaches that might enhance the effectiveness of the type of method
discussed here. Efficient techniques that could find accurate lower bounds on the global
minimum function value such as those used on small problems in [21] would be extremely
useful. Also smoothing techniques like those described in [27] could improve performance.
Certainly it is probable that if we were to implement this kind of procedure on a powerful
supercomputer, we could find better solutions in a reasonable amount of time; thus the
issue of parallel implementations is likely to be important.
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