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ABSTRACT

A 1S grammar generalizes a context-free grammar in the following way:
a production A -~ a can be applied to a string uAv (to rewrite the designated
occurrence of A) provided that all letters from u belong to a fixed alpha-
bet X and all letters from v belong to a fixed alphabet Z (the alphabets
X and Z are independent of the production). It is proved that a language
is generated by a 1S grammar if and only if it is context-free: this solves

an open problem from the theory of selective substitution grammars [KRZ2].

KEYWORDS: Selective substitution grammars, one sequential grammars,
context-free languages.
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INTRODUCTION

The concept of a 1S grammar arose in a comparative study ((KR2]) of
sequential and parallel ways of rewriting. This study was carried out within
the theory of selective substitution grammars which provides a uniform frame-
work for the grammatically oriented formal language theory (see, e.g.,

(R], [RWI, [EMR], [KR1], [GKR1], [GKR2] and (K]). Within this framework

1S grammars form a generalization of Sequential rewriting (i.e. one symbol
per step). The generalization consists of adding one specification of allowed
left and right context sets of letters: an occurrence of a non-terminal in

a sentential form cannot be rewritten if to its left or to its right a

symbol appears which is not in the specified left or right, respectively,
context set (a forbidden symbol).

Note that when no symbols are forbidden as left or right context, one gets
the classical context-free way of rewriting.

The application of the context conditions is global: one set of re-
writable non-terminals is specified together with left and right context
sets which are independent of the productions to be used.

In a more local application of context conditions one specifies pairs
of left and right context sets for various sets of non-terminals: if a
letter from a given non-terminal set is to be rewritten, then its left-
right context pair is taken into consideration.

It is shown in [KR2] that even the slightest local use of such context
conditions increases the generative power of context-free grammars. However,
it is left open in [KR2] whether 1S grammars’are more powerful than context-
free grammars. In the present paper we prove that a language is generated

by a 1S grammar if and only if it is context-free.
Itisworth noticing that the role of forbidding context in rewriting

Systems was investigated in depth within formal language theory (see, e.g.,
lvdwy, L1, ™

» [P], [RvS] and [C1). Although the notion of a 1S grammar



came up within the theory of selective substitution grammars, it clearly
forms a very natural and perhaps the most basic way of adding forbidding
context to context-free grammars fitting very well into systematizing the
above mentioned line of research. In view of this our main result seems to
be rather surprising - until nowall "non-trivial" ways of adding forbidding
context to context-free grammars resulted in a (considerable) increase of
generating power.

The paper is organized as follows.

After the introduction of some basic terminology in Section 1, in
Section 2 a subclass of 1S grammars called special 1S grammars is introduced.
It is shown that every 1S language is a homomorphic image of the language
generated by a special 1S grammar. In Section 3 the successful derivations
in special 1S grammars are cqnsidered and it is demonstrated that for those
a "normal form" exists. Finally, by constructing (in Section 4) special 1S
grammars in which the successful derivations in "normal form" cannot get
"blocked", we are able to show that every language generated by a special
1S grammar is context-free. This implies that every 1S grammar génerates a

context-free language (Section 5).



1. BASIC DEFINITIONS

We assume the reader to be familiar with the basic concepts of formal

language theory as presented, e.g., in [S].

As far as selective substitution grammars are concerned the paper is self-
contained.

In order to fix our notation and terminology we recall some basic
notions now.

Let 7 be an alphabet. For a word w ¢ z%,]wi denotes its length and

alph(w) denotes the set of symbols occurring in w; A denotes the empty word.

For a language L ¢ z%, alph(L) = k*) alph(w).
b WéL 3
For a binary relation P c 2 x £ , we write rhs(P) = {w € 2 : (A,w) ¢ P,

for some A ¢ Z*}.
Two language generating devices are said to be equivalent, if the languages
they generate are equal.
We often identify notationally a singleton set with its element.
Let 2 and T be two (finite) alphabets. A mapping h from Z* into the set

of non-empty subsets of r* is called a finite substitution from 2 into T,

if, for all a ¢ z, h(a) is finite and, for all a ¢ 2 and w ¢ z*,

h(aw) = h(a)h(w). h is a homomorphism from 2 into r if, additionally, for

all a ¢z, h(a) is a singleton.

By FSUB(z,I) we denote the set of all finite substitutions from z into I' and
by HOM(z,T) the set of all homomorphisms from z into I' is denoted.

For L c 2" and h ¢ FSUB(z,T), h(L) denotes the set {h(w) : w el }.

A context-free (abbreviated CF) grammar is specified in the form

(Z»P,S,A), where 3 is its total alphabet, 4 ¢ 3 is its terminal alphabet,
S € 2\a is its axiom and P < (2\a} X 5 is its (finite) set of

For a context-free grammar G, its direct derivation relation and its

derivation relation are as usual denoted by = and z , respectively, and
G G



if no confusion arises by = and i, respectively.

In the general theory of rewriting systems it is often essential to pro-
vide productions also for terminal symbols. If one allows to rewrite also
terminal symbols in a context-free grammar then one gets an EOS system
(see, e.g., [KR1]).

It is easily seen that L(CF) = L(EOS), where L(CF) and L(EOS) denote
the families of languages generated by CF grammars and EOS systems, respec-
tively.

In the sequel we will assume that an infinite alphabet of symbols is
available. A1l symbols to be used are elements of the infinite alphabet
AU A, where A = {a : a ¢ A}, and A and A are disjoint. The bars appearing
above symbols have a special meaning: they indicate that the oriainal
svmbol is activated. A consists of non-activated Symbo]s only and hence A
consists of activated symbols only. For an arbitrary alphabet I c A, z

denotes {a : a € z}.

Definition 1.1. (1). A CF based 1S grammar is a construct (Z,P,S,A,X%?Z%),
where (2,P,S,a) is a context-free grammar, X,Z ¢ £ and Y ¢ Z\4a .

(2). An EOS based 1S grammar is a construct (Z,P,S,A,X*?Z*), where

{2,P,S,a) is an EOS system and X,Y,Z cz. o

For a Q based 1S grammar H = (z,P,S,A,X*YZ*), where G € {CF,EQS},

we refer to (z,P,S,4)as the base of H, denoted by base(H).

Definition 1.2, Let Q € {CF,E0S}. Let H = (3,P,S,4,X ¥Z )bea Q based
1S grammar.

For u,v ¢ z*, u directly derives v (in H), denoted by u = v (u = v,
H

1f no confusion is possible) if there exist

(1) up eX, AeYandu, €2z, and




(2) (A,w) ¢ P, such that u = ulqu and v = UpWu, .

%
By = (=) we denote the transitive and reflexive closure of = (=, respec-

H H
tively).
The language of H; denoted by L(H), is defined by
i J
L(H) = (W ea :S=w. 5
H

In [KR2] only EOS based 1S grammars are considered. In the present
paper, however our constructions involve CF based 1S grammars only. This is

Justified by the following straightforward Temma (see also [KR11).

Lemma 1.1. (1). For every CF based 1S grammar there exists (effectively)
an equivalent EOS based 1S grammar.
(2). For every EOS based 1S grammar there exists (effectively) an

equivalent CF based 1S grammar. o

In the remainder of this paper we will consider CF based 1S grammars

only and we will refer to them as 1S grammars.

The family of languages generated by 1S grammars is denoted by L(1S).
Next we introduce some notions and notations concerning 1S grammars.
that will be extensively used in the sequel.
Let H = (Z,P,S,A,XﬂVZ*) be a 1S grammar.
Then L, = Z\Z, R =L, NR, are

H H H H H
the set of left-blocking symbols (of H),

= Z\X and B

the set of right-blocking symbols (of H), and

the set of blocking symbols (of H), respectively.

If a symbol is neither left-blocking, nor right-blocking (hence it is

in X 0 Z) we will refer to it as neutral (in H).

Example 1.1. Let H = (2,P,S,4,X TZ ) be defined in the following way.
Z = {S,A,B,C,a,b,c}.
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{(S,ABC),(A,AA),(A,a),(A,c),(B,b),(C,CA),(C,BCC),(C,a),(C,c)},

A = {a,b,c}, X = {a,b,A}, Y = {S,A,B,C} and Z = {c,b,C}.

Then LH = {S,A,B,a}, RH = {S,B,C,c} and BH ={S,B} .

Then S = ABC and in ABC, B is the only symbol tHat can be rewritten. Since
B is blocking it prohibits the rewriting of A and C.

ABC = AbC = Abc = AAbc.

In AAbc cnly the right-most A can be rewritten. Since A is left-blocking

it prohibits the rewriting of symbols occurring to its left.

Analogously in abZCC (derived via AbC = abC = abBCC = abZCC) only the Teft-
most occurrence of C can be rewritten, because C is right-blocking.

In AbCA (derived from AbC) no symbol can be rewritten because the right-

most A "blocks" AbC and C "blocks" this A.

Let w = T RRRL-IP for some a, €2 and 1= 1 <k, where k 2 0.
Then LoccH(w) =max({i : 1 =1 =k and a, ¢ (z\a) n LH} U {0})
and RoccH(w) =min({i : 1 =1=<k and a; ¢ (z\a) n Ryb U {k+1}),
Hence LoccH(w) denotes the right-most occurrence of a left-blocking non-
terminal symbol in w if any, otherwise LoccH(w) = 0, and RoccH(w) denotes
the left-most occurrence of a right-blocking non-terminal symbol in w if

any, otherwise Rocc = |wl+ 1.

()
Note that if RoccH(w) < LoccH(w), then w cannot be rewritten in H.

Whenever possible we will omit the subscript H from LoccH and RoccH

Example 1.1. (Gontinued.)

LoccH(A C) = 2= RoccH(ABC),
LoccH(Ab ) =1 and Rocc, (AbC) = 3.
LoccH(AAbc 2 and RoccH(AAbc) = 5.
Loce,, (ab®CC) = 0 and Rocc, (ab’Ce) = 4.

LOCCH(AbCA) = 4 and RoccH(AbCA) = 3 and AbCA is "blocked".



*

Let w ¢ 2%, Then contr”(w) = {U U € A* and w . = ut.
ase (H)

. b i
Notice that contr“(w) >{u:uep andw ; ut.

In particular contr”(S) = L(base(H)) o L(H).

A derivation D (in H) is a sequence D = (XO’Xl"“’Xn)’ where n = 0,

xO = S and X; € z“ for 0 <=1 = n, such that x; X for 0 =i = n-1.

j
For 0 = i = n-1 the pair (Xi’xi+l) is called a

i+l 2
the (i+1)-th) derivation

—~~C |

step (in D).
For 0 = i = n-1, Prod(D,i) denotes the production used in the (i+l)-th

derivation step in D and Rew(D,i) denotes the position of the symbol in X

j
that is rewritten in that step. Thus if, for some 0 = i = n-1, Prod (D,i) = (A,qa)

for some (A,a) € P and Res (D,i) = k, for some k = 1, then Xs = uAv and Xi1 ®
*
uav, where u,v € 2 and |uA| = k.

“*
D is successful, if xn €A .

For 0 =i = n, the words X, are said to appear in D.

Whenever a word appears in a derivation (in H) it is called a senten-

tial form (of H)

A non-terminal sentential form x of H is successful if there exists a

* i
W € A such that x = w.
H

Observe that if x is a successful non-terminal sentential form of H,

then x¢ X*Yzﬁ and hence LoccH(x) = RoccH(x).

If moreover x = uAv, for some u;v € Z* and A € 2\a, then {alph(u) N 4) < X.

and (alph(v) n a) ¢ Z. Consequently, for all w € L(H), w ¢ A (thni(P)Z ).

Example 1.1. (Continued).
Let D = (S,ABC,AbC,Abc,AAbc,Acbc,acbc). Then D is successful, (Abc,AAbc)

s the fourth derivation step in D, Rew(D,3) = 1 and Prod(D,3) = (A,AA).

The sentential form AAbc is successful, but Aabc and AbCA are not success-

ful sentential forms. )



i
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2. SPECIAL 1S GRAMMARS

In this section we show that every language in L(1S) is a homomorphic
image of a language generated by a 1S grammar that satisfies certain con-
ditions. To define this kind of 1S grammars we (re-)introduce the following
notions.

First we consider context-free grammars (they are the underlying

bases of 1S grammars).

Definition 2.1. Let G = (2,P,S,A) be a context-free grammar and let
A€z,
(1). A is reachable (in G), if there exist words a,p ¢ Z* such that

S 2 aAg,

(2). A is useful (in G), if either A = S or there exists a word

3 *
a € A such that A = «.

(3). G is reduced if all elements of Z are reachable and useful. o

The reader should note that this definition differs slightly from the
usual definition of a reduced context-free grammar in that we consider the
axiom always as useful, even if the generated language is empty.

Clearly in a 1S grammar all symbols appearing in a successful sen-

tential form are reachable and useful.

Definition 2.2. Let H = (2,P,S,4,X ¥ Z*) be a 1S grammar and let
(A,a) € P . (A,a) is safe (in H) if the following holds.
(1), If o ¢ A*,then, for all agsay € z% such thatcx=cnf12 either
a1ph(al)rtRH =9 or a1ph(a2) n LH = .
(2). If ¢ = ajaa,, for some a ¢ 4 and aj,a, ¢ 3, then a ¢ L, implies

that ay € A%, and a ¢ RH implies that a € A . o




.

Clearly, in a 1S grammar a production that is not safe is never

applied in a successful derivation.

Definition 2.3. A 1S grammar H = (z,P,S,4,X 7Z") is strongly reduced

if the following holds.
(1). base(H) is reduced,
(2). Y = z2\aA.

(3). A1l productions in P are safe. o

The following definition describes the construction of a strongly re-

duced 1S grammar from a given .1S grammar.

Definition 2.4. Let H = (2,P,S,a,X YZ ) be a 1S grammar. The strongly

reduced version of H is the 1S grammar (Zl’Pl’Sl’Al’X§V1Z*1) is constructed in

the following way.
(1). P = P\{(A,w):(A,w) € P and either A £ Y or (A,w) is not safe ip H}.
(2). Let G be the CF grammar (z,P',S,n).

Then 21 = {A €2 : A is useful and reachable in G} and Ay =4 n Zq-
(3). Py = {(AW):(Aw) € P' and A,w ¢ Zi}’ S; =S, X = X0z,
Y =(rn z) U {Sq} and Z; = 7N 2. o

Clearly the procedure given by Definition 2.4 is effective. Note
that the resulting 1S grammar may be quite "degenerated", e.9. of the form
({S}, 0 ,5S,0,5%).

The following lemma is an immediate consequence of the preceding

definitions and so we state it without a proof.

Lemma 2.1. If H is a 1S grammar and H' is its strongly reduced version,

then L(H) = L(H') and H' is strongly reduced. o




Now we are ready to define one of the main notions of this paper

and to prove an important intermediate result.

Definition 2.5. A 1S grammar G = (2,P,5,4,X ¥Z ) is special if the
following conditions are satisfied.
(C1) L(G)c (n\By) By(a\By)

(i.e., every word in L(G) contains exactly one occurrence of a blocking

#*

symbol).

(C2) For all a € rhs(P), if alph(a) N (Bg N a) # P, then a ¢ (BG n a)
(i.e., blocking terminal symbols are never introduced together with another
symbol).

(C3)XNnzZca

(i.e., there are no neutral non-terminal symbols in G).

(C4) S ¢ alph(rhs(P)) and, for all A € z\(a U {S}), for all v,w ¢ A),

contrG(
alph(v) = alph(w)
(i.e., S cannot be introduced during a derivation and all terminal words contribute

by a non-terminal differing from S consist of the same symbols).

(C5) For all alAaz € rhs(P), such that agsa, € z* and A € z\a, if

alph(contry(A)) n B, # @, then contry(a;) < X and contry(c,) < Z
(i.e., if a non-terminal symbol A can derive a blocking terminal symbol, then
A is introduced with left and right context that contribute only terminal
words which cannot block the rewriting of A or the rewriting of words
derivable from A).

(C6) G is strongly reduced

(i.e., G has no a priori useless productions or symbols). o

Theorem 2.1. For every 1S grammar H there exist. a special 1S grammar

G and a homomorphism h,such that h(L(G)) = L(H).



Proof. We will prove the theorem in five steps.

In the firgt step a 1S grammar G1 is constructed fromH and the homomorphism
h is defined for which h(L(Gl)) = L(H). G1 will satisfy (Cl) and (C2) from
Definition 2.5.

In the next steps we will construct the 1S grammars GZ,G3,G4 and G from
61,62,63 and G4, respectively, in such a way that gradually all conditions
from Definition 2.5 will be satisfied and the languages L(Gi),i =1,...,4
and L(G) will be the same.

Then G will be special and h(L(G))= L(H).

Let H = (2,P,5,4,X 7Z") be a 1S grammar.

#a %
(1) Let G1 = (Zl’Pl’Sl’Al’Xlel) be defined in the following way.

2y = 2UTUI, where T = {A : A € 2\6} and [I= {<w> :w € 4 and
(A,w) € P, for some A € Z\A} are new mutually disjoint alphabets.

Py = {(A,w) : (A,w) € P and if |w| = 2, then alph(w) N (AN BH) = QU

U {(A,wléwz) : (AswBw,) € P and B € 2\a} U {(A,<w>) :(A,w) € P and w ¢ b},
Sl = Sb
6= a0,

>
1]

L= XUGA DA €XN (2\8)),
YU{A:A€YN (2\)]} and

—-<
"

ZU{}&:AEZH(Z\A)}.

N
H

Clearly, L(Gl) - AﬁIAﬁ. Moreover, since Il ¢ ZMX U Zl)’ all elements
from 1T are blocking in Gl' In every successful derivation blocking terminals

can only be introduced in the last derivation step. Hence this is done
using a production of the form (A,<W>), where <w> €11 .

This implies that L(Gl) - (Al\BGl)*BGl (Al\BGl)eeand so Gy satisfies
(C1).

From the construction of P1 it follows that G1 satisfies (C2).

The homomorphism h ¢ HOM(AI,A) is defined by h(a) = a, for all a € &,



and h(<w>) = w, for all w ¢ A
That h(L(Gl)) = L(H) follows from the following observations.

Let (Sl,xl,...,xn) be a successful derivation in Gl‘ Then

(w(Sl),w(xl),...,w(xn)) is a successful derivation in H, where
o€ HOM(ZI,Z) is defined by

¥(A) = ¥(A) = A, for all A € z)\s, and

v(a) = h(a), for all a ¢ By

Hence h(L(Gl)) c L(H).

Let D = (xO = S,xl,...,xn) be a successful derivation in H. Then

X1 = UAv and x = uwv, for some u,v,w ¢ A, A€ 3\4 and (Aw) € P.

A derivation D = (XO’Xl"'

X ) in Gy with xg =S, X .1 = UAv and

;n = U<w>V, can be defined in inductively by "capping all ancestors of A".

This can be illustrated as follows.

i+l

n-1
\ n

=)

Figure 2.1.
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Then D is a successful derivation in G, and h(;n) = X

Hence L(H) < h(L(Gl)).

We conclude that h(L(Gl)) = L(H) and G, satisfies (C1) and (C2).

(I1) Let Gy = (25P,,S,48,5%,¥,7,) be defined in the following
way .
2o = 21\((Xl n Zl)\Al)LJFX U Ty where Ty = {A1] + A e (X1 n Zl)\Al} and
ry = {[A2] + A« (X1 n Zl)\Al} are two new mutually disjoint alphabets.
The homomorphism ¢ ¢ HOM(ZZ,ZI) is defined by
o(a) = a, for all a ¢ 24 n 2,5 and

o([A,i]) = A, for all A € (X, N Zy)\dy and i € {1,2}.

1
Q2 = Q1 U Q2, where Q = {(A,a) : A € Zy and (o(A),p(a)) € Pl} and
0p = L(IAL1,1AL21) 2 A € (X N 2N} U ((IA2D, 1AL10) = A€ (X N Z))\e b
If Sl € 2y, then 82 = S1 else Sy = [Sl,l]n by = 0.
Xp = (X M 2p) U Ty,
Yo = (Y, N Z,) U {[A,i] : A € Y WX, N Zy and 1 € {1,2}} and
Zy=(zp N 2,) UT,.

From the construction of G2 it follows that X2 n 22 < AZ' Hence G2
has only left-blocking and right-blocking non-terminal symbols and satis-
fies (C3) of Definition 2.5.

G2 satisfies (C2), because G1 satisfies (C2), the blocking symbols
of Gl and G2 are the same, Ql "corresponds" to P1 and no productions
violating (C2) have been included in QZ'

If L(Gl) = L(GZ)’ then 62 satisfies (Cl) because the blocking terminals
in G1 and G2 are the same.

That L(GZ) = L(Gl) can be seen as follows.

Let D = (xO = Sl,xl,...,xn) be a successful derivation in GZ' Clearly,
for every i € {0,...,n-1} such that Prod(D,i) ¢ Qp> @(x;) derives

®X:,1) in G;. For every i € {0,...,n-1} such that Prod(D,i) € Qps

¢(Xi) = w(xi+1). Let il,...,ik, k=1, be - in ascending order - the



:

-\

elements of {i : i ¢ {0,...,n-1} and Prod(D,i) ¢ Qq}. Then @(Xi ) =S

1
1
and (e(x: )s...o0(x; ),x_) is a derivation in G,.
K T 1
Hence L(GZ) - L(Gl)°
To show that L(Gl) - L(GZ) we proceed as follows.

Let D1 = (XO’X1’°"’Xn) be a successful derivation in Gl’ We construct
a successful derivation 02 = (yo,yl,,..,ym) in G2 and a monotonic function

& from {0,...,n} to {0,...,m} such that for all i ¢ {0,...,n},

w(yé(i)) = X, and LOCCGZ(yS(i)) < RoccG
We will define & and D2 inductively.

2(y6<1))~

We set §(0) = 0 and Yo = 52. Hence @(yé(o))::xo and

LOCCGZ(YS(O)) =< ROCCGZ(yé(O))'

Assume that & and D2 have been defined upto k and yé(k), for some
k € {0,...,n-1}.

Let Rew(D;,k) = p, for some 1 =p = ixk1 and let Prod(Dl,k) =
for some (A,a) € Pl’ Hence X = uAv and Xy 41 = Uav, for some u,v ¢ Zq

i
—
I
Q

such that |uA| = p. Then Y (k) = u'A'v'. with o(u') =u, o(A') = A and

e(v') = v.

Let (A',a') be a production in P, such that ¢(a') = o and such that

Locc, (a') = Rocc, (a'). Since D, is a successful derivation in G,, (A,a)
G2 G2 1 1

is a safe production and hence a production (A',a') as described exists.

Note that A' ¢ Y2.

We distinguish the following cases.

i

(1). u' ¢ XZ and v' € Z..

In this case Ys(k) = u'Alv g ua

[AS]

. We set Ys(k)+l ~ u'a'v'and

6(k+1) = 5(k) + 1. Then (P(yﬁ(;+]_>)= (P(U'CI'V') = uaVv = Xk+1 and

LOCCGZ(yé(k+1)) = ROCCGZ(yé(k+l))'

(yO""’yé(k) , y&(k+l)) is a derivation in G,.
(2). u' £ Xy 00 v' £ Z,.

(2.1). u' ¢ X2 .

Since o(u') = u and u ¢ X;, u' contains at least one symbol from ry.
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Since LOCCGZ(yé(k))E ROCCGZ(y§(k))’ it follows that A' ¢ 22 and, since

| - s [ ® - - 1 1 -
o(v') = v with v ¢ Zl’ v' o€ ZZ“ Moreover, u UILA1,2JU2LA2,2?»‘-U3LA8,23U3+1,

i #
; ]

for some u; € Xl’ Upseneslyyg € (Al n (X1 n Zl)) and LAi,L} €Ty for
1=1=2¢.
Then we define uj, 1 =3=¢ as follows

o oua 1 1 1 1 . 1
uj ulLAl’l- u2...ujLAj,1] uj+1LAj+1’2— uj+2'°'u3LAZ’2"u£+l .
Let y@(k)+j = ujA vt, for 1 23 < 2.
Then Y5 (k)+j-1 Z Y5 (k)+5, for 1 = J = 2. Moreover, Ys(k)+s uiA'v' and

2
y@(k)+c Z upatv', where @(ug) = u.
2

We set &(k+1) = &(k) + 2 +1 and Ys(kel) ~ upa'v'.

t

Hence o(¥g(a1)) = Xee1))

and Loceg Vg (ke1)) = Roceg, s (ke1))- Yoo Y5 (k) Ys(k)+1> Ys(k)+o Yo (k1))
is a derivation in G2. This reasoning is illustrated in Figure 2.2.
(2.11) The case that v' £ Z; is symmetric to (2.1) and can be treated ana-
Togously.

Now, let m = &(n). Then @(ym) = X, and (yo,yl,...,ym) is a successful
derivation in GZ'

Hence L(Gl) - L(GZ)'

This implies that L(GZ) = L(Gl) and that G, satisfies (Cl).

We conclude that 62 satisfies (C1),(C2) and (C3), and L(GZ) = L(Gl)‘

(I11). Let Gy = (23,P3,S3,A3,X§?3Z§) be defined in the following way.
2y = {IAT] + A€ 2o\0, and T ¢ A} U {S3hUsg, where 45 = 4, and S is a
new symbol.

The homomorphism o ¢ HOM(Z3\{53},22) is defined by

o(a) = a, for all a ¢ B3> and

o({A,T1) = A, for all A € z,\8, and T ¢ 4.

The finite substitution T € FSUB(Z3\{S3},A2) is defined by

t(a) = a, for all a € a5, and

T(A,T}) = T, for all A € Z,\A, and T ¢ 4,.




R SV

3= ((S3:[S,:T1) = Tcaph U {(Aw) A€ za\ag, we 5., (0(A),0(W)) € P,

and T(A) = alph(t(w))}.

.

-1

X3 = P (XZ),

Vs =p'1(Y2) U {S5} and
-1

Z3 = p (22)

Note that, for [A,T! with A € z,\4, and T ¢ 4,, T "promises” what terminal
symbols will be contributed by [A,T].
Firstly we prove that L(G3) = L(G
Let (53,x1,°..,xn) be a successful derivation in G3. Then p(xl) = 52
and p(Xn) = X From the construction of Gy it follows immediately that
(p(xl),a..,p(xn)) is a derivation in GZ'

Thus L(G,) ¢ L(GZ)'

3) <
To prove the converse inclusion we proceed as follows.

Let D = (XO’XI"'°’Xn) be a successful derivation in G,.

= X_. Henc X )= x_.
Then we set X n e of n) N

Assume that for some k ¢ {1,...,n}, ;k,a..,;n have been defined in such a

~

way that ;. = X.,k = Jj<n, and ;. = X. ., K<Jj<=n-1.

G
3 R
Let Prod(D,k-1) =(A,a) for some (A,a) ¢ P Hence Xy

AAA

uav, for some

A A A

Usa,v € 35 such that o(a) =aand Rew(D,k-1)=/u] + 1. Let T = alph(<(c)).
Then ([A,T1,a) € P,.
Let x,_; = UulA,Tlv. Hence p(X 1) = Xy and x, 53 Xy
Then (53,x0,x1,...,xn) is a derivation in Gj.

Thus L(G3) > L(GZ)

Together with the above we have L(G3) = L(GZ)°

From the construction of P, it follows that S; £ a]ph(gﬁg(P3)).
Moreover, clearly for every B ¢ 23> where B = [A,T!, for some A ¢ 22\A2

and T ¢ 4, CfweT :alph(w) =T} .

R contrS;B)
Hence G3 satisfies (C4).

That 62 also satisfies (Cl), (C2) and (C3) can be shown using the fol-

Towing obcervations .



X0
(1). X3 n by = X2 n bys 23 n by = 22 n bos L(GZ) = L(G3) and G2 satisfies

(Cl). Hence (Cl) holds for Gs.

(2). From the construction of P, from P, and arguments similar to the above,

it follows that G, satisfies (C2).

1

-1 -1 -
(3). X3 N Iy =0 (XZ) N o (22) =0 (X, N 22) < b and hence (C3) holds

2

for G3.

We conclude that G3 satisfies (Cl), (C2), (C3) and (C4), and

L(65) = L(G,).

(1v) Let G4 = (24,P4,S4,A4,XZV4ZZ) be defined in the following way.

24 = 239 34 = 339 A4 = AB, X4 = X3, Y4 = Y3, 24 = Z3 and

g *
Py = P3\(ChagAay) o A €08, contr33(a1) Z Xy or contr33(a2) ¢ 23},
* *
where 8= {A: A € 2.\(8, U {83}) and contrG3(A) c A3BG3A3}.

Since G4 results from G3 by removing productions from P3 we have

L(6;) € L(Gy).

We will prove the converse inclusion by showing that no production from

P3\P4 can be used in a successful derivation in G3.

Let x and y be sentential forms of G3 such that x = y wusing a production

G
3 &
from P3\P4. Hence x = uCy and y = ualAazv, for some u,v € 23, C,A ¢ 5 and

(C, oy Aay) ¢ Py\Py.

1
Then every w ¢ contr33(y) is of the form ulaislbﬁzaévl, where uq € contrGg(u),
a% € contrG3(ai), i= 1,2,g1b52 € contrG3(A), where b is a blocking terminal
and vy € contrG3(v).

Observe that, since G3 satisfies (C4), for all A ¢ I3 B and T ¢ Ags whenever

* #
a £ T , for some a € contrG3(A), then, for all p ¢ contrSB(A),B £ T .

Hence ai £ Xg or aé ¢ Zg and so w cannot be in L(G3) which is a subset of
(X3 N A3)“BG3(Z3 nag) .
Thus no derivation in G3 that uses a production from P3:\P4 is successful.

Hence L(G3) c L(G4).




21
G3 satisfies (Cl) through (C4) and G4 results from G3 by removing

the productions that violate (C5) - hence G, satisfies (C1) through (C5).
We conclude that G4 satisfies (Cl), (C2), (C3), (C4) and (C5), and

L(6,) = L(Gy).

(V) Let G be the strongly reduced version of 64. Then G and the
homomorphism h (defined in (I)) satisfy the statement of the theorem because,

by Lemma 2.1, L(G) = L(G4) and hence L(G) = L(G,), and L(G;) = h(L(G)).

1) 1)

G is strongly reduced.
Gy satisfies (Cl) through (C5) and since G results from 64 by removing
useless symbols and productions, G also satisfies (Cl) through (C5).

We conclude that G is special and h(L(G)) = L(H). o
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3. CENTRAL DERIVATIONS IN SPECIAL 1S GRAMMARS

°

In this section we concentrate on (successful) derivations in special
1S grammars. In particular we will show that a "normal form" (a fixed stra-
tegy) for successful derivations exists.

We need the following terminology and notation.

Let G = (Z,P,S,A,X*VZ*) be a special 1S grammar.

If A € 2\A is such that algh(gggng(A)) N BG # P then we call A a central
symbol (of G). By C(G) we denote the set of central symbols of G.

Let u be a sentential form of G. Then u contains at most one occurrence of a
central symbol. If u contains exactly one occurrence of a central symbol,

then we say that u is a central sentential form (of G).

If u is a central sentential form of G then we denote bycents(u) the unique

central symbol in uand by OccG(u) its position in u. Hence if u = ulAuZ, for

*
some Uy,U, € (2\C(G)) and A ¢ C(G), then centa(u) = A and Occ.(u) = IulA\.

G

Whenever G is.clear from the context we omit the subscript G.
Since G is special all non-terminals of G are either in LG or in RG

(or in both). Hence to rewrite a successful sentential form u one has at

most two options:

Either one rewrites the right-most left-blocking non-terminal in u (if any)

or one rewrites the left-most right-blocking non-terminal in u (if any).

Notice that since either Locc(u) = 1 or Rocc(u) = Jul, at least onc of

these situations occurs and that it may be that Locc(u) = Rocc(u) (a

blocking symbol). |

We will describe a strategy, how to make a choice between Locc(u) and Rocc(u),

in the case one has two options. This strategy depends on the central sym-

bol in the current sentential form.

Observe that whenever u is a non-central sentential form of G, then there

exists no v ¢ z* such that u = v (u is blocked).
G




Definition 3.1. (1). Let u be a central sentential form of G. Then the

designated occurrence in u, denoted DesG(u), is defined by

0

LoccG(u), if RoccG(u) > |ul,

LoccG(u), if 1< LoccG(u) < RoccG(u) < OccG(u) = |ul,
& RoccG(u), if LoccG(u) <1,
g Rocen(u), if 1 = Occg(u) = Loce(u) = RoccG(u) < Jul.

(2). Let D = (XO’Xl"°"Xn)’ n =0, be a derivation in G. For 0 = i = n-1,

the derivation step (xi,x1+1) is central if Rew(D,i) = DeSG(X1>‘ D is a cen-

tral derivation (in G) if, for all 0 = i < n-1, (x.,x.

; 1+1) is central. o

We will write Des(u) rather than DesG(u), whenever G is clear from the

context.

Hence in a central derivation step the designated occurrence is rewitten,

(1). the right-most left-blocking non-terminal if
(1.i) no right-blocking non-terminals are present, or
(1.i1) the central symbol 1is right-blocking;

(2). the Teft-most right-blocking non-terminal if
(2.9) no left-blocking non-terminals are present, or
(2.i1) the central symbol is left-blocking.

Observe that if the sentential form contains a blocking non-terminal,
then the right-most left-blocking and left-most right-blocking non-terminals
are the same.

That the central derivations are derivations in a "normal form" and
that one can consider central derivations only in special 1S grammars is

proved as follows.

Theorem 3.1. Let G be a special 1S grammar. For every w ¢ L(G) there

exists a central derivation of w in G.



D

N

Proof. Let G = (Z,P,S,A,X%VZ*). For a derivation D in G, v(D)
denotes the number of non-central derivation steps in D.
Let w ¢ L(G) and let Dw be a derivation of w such that
= min {v(D) : D is a derivation of w in G}. We will prove by contra-

diction that v(Dw) = 0. Hence, we assume that v(Dw) > 0.

Let DW = (xO,xl,...,xn), where X; €2 for 1 =1 =n, X = S and

X, = w. Let iO ¢ {1,...,n-1} be the smallest i such that the derivation

step (xi,x1+1) in D is non-central.
If cent(xio) GBG,then cent(xio) is rewritten in (Xio’xi0+1)' This would
imply that (Xi S X +1) is central. A contradiction. Hence cent(xi ) € XU Z
0 0 0
and since G is special, this implies that cent(x. ) ¢ (X\Z) U(Z\X).

;
0
Let us assume that cent(xi ) € X\Z (the other case is symmetric and
0
can be dealt with analogously). Since cent(x., ) ¢ L.\R. and (x: ,x; ;)
— G'G ) 1O+1
non-central, it follows that Rocc(x. )= |x. |, Locc(x, ) # Rocc(x; ) and
'0 '0 '0 '0
Rew(D,iO) = Locc(x, ). Let r = Rocc(x, ) and k = |x, |; hence 1 <r =k.
'0 '0 0
Let oy =-a;...a,_; and By = a....a,, vhere a, € 2, for 1 =1 =k,

is

and such that XiO = QOBO'
Hence D = (xO,xl,...,xio_l,aOBO,alBl,...,anq), where q = n-i, and, for
0=1=q,af, =x* 1and for 0= i = g-1:

(1) if Rew(D i +1)>,!a11, then o, = a. ., and B, = B, and

0 i+l G

. N - -
(2) if Rew(D,»iy+1) _gail, then @, =a , . and B = B, ;.

Let I ={i :0=1i=g-1and Rew(D ,ij+i)> Iai]} and
J={i:0=1=gq-1and Rew(D_,iy*i) = |“1|}° Note that I N J = @.

Let il,...,ip be the elements of I in ascending order and let jl””’js

be the elements of J in ascending order. Hence p,s = 1 and p+s = q,

. = apns Ps = Bps @ = A , for 1 =14 =s-1, a;, =a and B, =B, ,
for 0= j<=p-landB, =8B .
1p q

We Set D = (Xosxla-.o sxio_lsqoﬁilgo.- ,GOB_ipaG.OBq,(Lj ZBq,- ) (IJSBC‘,(IC'BQJ' ’

We claim that D' is a derivation of w in G and v(D') = v(D ) -1.

»
The situation can be illustrated as follows.
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First we recall that anq =

Next we consider Dw“
oh

Rocc(aoﬁo) = |a0| + 1. Hence ag € X". This implies that,

i

Rocc(x. )

'
for 0 = j = p-1, QOB“J = GOBiJ+1 and aOBip = aOBq, Recall furthermore
that Occ(aOBO) = Locc(a OBO < [aof Since G is special this implies that

24

contrG(BO) ¢ 7" and in particular that B Z . Hence, for 0 =i < s-1,
. = q, and a. = .
angq aJi_*_qu aJqu anq
This proves that D' is a derivation of w in G.
It remains to show that v(D') = v(DW)-l.
) in D'.Since a8

(1) Consider the step (aOle,aoﬁi = agBp and

2 1
Rocc(aoﬁo) > ’aol + 1, all non-terminals in B are right-blocking. Hence
it is the first non-terminal symbol of BO that is rewritten in this step.
Since Occ(aOBO) = Locc(aOBO) = !ao} » 1t follows that this step in D' is

central.

(2) Consider a step (a051 ’aOBi ) in D', for some 2 < j < p where

j+1
Bi = Bq, and assume that this step is non-central. We will show that
p+l .
the step (aijﬁij’ ai.+1Bij+l) in Dw is also non-central.

Since cent(aOBi ) € Lgs it follows that OCC(GOBi ) = faOJ. Since the rewrit-
j J
ing takes place 1in Bi and the step under consideration is non-central,
J
it follows that Locc(anB; ) > [aO], Rocc(apB, ) = ;aOBijl and the right-
most left-blocking symbol is rewritten. Hence Locc(qi By ) > gy
o j
Rocc(a; B <1!a B; | and in the step (a; B: ,a; .,B; ,,) in D the right-
. +1
J J J 13 13 1J 1J+1 1J+ W
most left-blocking symbol is rewritten.
This implies that this step is not central in Dw'

(3) Consider a step (a; 8 ,a. B.) in D', for some 1 < i < s, where

J q J1+1 g
as = a4 and assume that th1s step is non-central. We will show that the
s+1
step (a; B; »a B . . _
3;73; J]+1 1+1) in Dw is also non-central.
Since Bq ¢ A it follows that if cent(aj Bq) € Lg then Rocc(aj Bq) = 1aj.y

i i i
and the right-most left-blocking symbol in a5 is rewritten, and if
i



EQEE(GJ.Bq) € Rg then Locc(aj Bq) > 1 and the left-most right-blocking symbol
i i
in a; s rewritten in (a, B ,a. B ).
I Ji 9 i+l
Then (a. B: , a; B.
Jidi Jie1 it
(1), (2).and (3) together imply that the number of non-central steps

) is non-central, because Rew(Dw,ji) = Rew(D',iO+p+i).

in the first,(io+1) derivation steps of DW and D' are 1 and 0 respectively; in the

last n—io—l steps each non-central step in D' corresponds to a distinct non-
central step in Dw” Hence v(D') = v(Dw)—l, which contradicts the minimality
of v(DW).

Thus for every w ¢ L(G) there exists a central derivation of w in L(G)

which proves the theorem. o



4, SPECIAL 1S GRAMMARS GENERATE CONTEXT-FREE LANGUAGES

In this section we consider an arbitrary but fixed, special 1S grammar
G = (Z,P,S,A,X*YZ*) and its central derivations. We will show that only a
“finite memory" is needed to prevent unsuccessfulness /blocking) of central
derivations. By building in this finite memory an equivalent special 1S
grammar is constructed from G, in which all central derivations are suc-
cessful. Then it can be shown that L(G) is context-free.

First we identify the situations in which a central derivation gets
blocked.

Let (A,a) € P, for some A ¢ 2\ A and a ¢ z*,

(A,a) is a left-blocking production if alph(a) N (2\Z) # 0,

(A,a) is a right-blocking production if alph(a) N (a\X) # @ and

(A,a) is a blocking production if it is both left- and right-blocking.

Observe that whenever a left-(right-) blocking production is used to
rewrite a sentential from, then the non-terminals that occur to the left
(right) of the rewritten occurrence cannot be rewritten anymore.

Hence in order not to block a central derivation, whenever a left-(right-)
blocking production is applied to a sentential form w, the left (right)
description of w should be terminal. We define two functions on the set of
central sentential forms of G, that describe the left and the right context

of the designated occurrences in sentential forms. These functions 2d and

rd respectively have as their codomain the set {t,nt}, where t stands for
terminal and nt for non-terminal.

Let w be a central sentential form of G. Let u , v ¢ Z* and A €2\ A
be such that w = uAv and Des(w) = |uA|. Then
td(w) =y t if u ¢ A*,
nt otherwise,
rd(w) =Ji£ if v ¢ A*,

nt otherwise.




=4

Let D = (XO’Xl""’xn) be a central derivation in G. For 0 = k = n-1,
we call (xk;xk+l) careful if
whenever Prod(D,k) is left-blocking, then gg(xk) = t and
whenever Prod(D,k) is right-blocking, then EE(Xk) = t.
D is careful if, for all 0 = k = n-1, (Xk’xk+1) is careful.
Lemma 4.1. Let D = (XO’X1’°""xn) be a central derivation. If X0 € hn,

then D is careful.
Proof. Obvious. o
Hence if a central derivation is not careful it will never "lead to success".
On the other hand all central derivations that get blocked (in a non-

trivial way), are not careful. This is shown in the following lemma.

Lemma 4.2. Let D = (XO’XI"""Xn)’ n>0, be a central derivation in G,

such that X0 f_A*. If there exists no y such that (xo,xl,...,xn,y) is a
central derivation then either

(1) n
(2) n

Oand P =9 , or

v

1 and D is not careful.

Proof. (1) n = 0.

In this case D =(S). G is strongly reduced. Hence, if
P# @, then P N (sz*) # P. Since S € Y, this implies that S 2 a, for some
a € Z* and (S,a) € P. Then, obviously, (S,a) is a central derivation.
This is a contradiction and so P = .

(2) n=1.
Hence P # @ and for all non-terminal symbols productions are available.
We distinguish the following two cases.

(2.1) There exists no y such that Xq B Y-
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Consider the central derivation step (Xn-l’xn) in D. Let x ;= xAz, with |xAl=

*
Des (x_ 1), X, = xaz, for some x € X , z € Z* and (A,a) € P.(A,a)isa safe production.

n-1
Hence if a £ &, then o ¢ X YZ and so X, € X'YZ". This implies that there

exists a y ¢ z* such that Xp = Y- This contradicts our assumption.
s G
Hence a € o . If A £ C(G), then either Occ(x ;) < Ix| or Oce(x,_1) > [xA].

If Oce(x,_1) = [x], then a ¢ Z*(condition (C5) from Definition 2.5). Moreover,

X = uBv, for some u ¢ x*, B ezx\aand v € (XN a) . Since Occ(xn_l) = |uB!,

v e (Zn XN aA) . Hence X, = xaZ = uBvaz, with u ¢ x* and vaz ¢ Z°. This implies

that there exists a y ¢ 5" such that Xy =Y This contradicts our assumption.
G
Similarly one can prove that the case Occ(x ;) > |xA| leads to a contradiction.

Hence A ¢ C(G). This implies that a € (BG N a) and (A,a) is a blocking production.

Since Xn £ A, either 8d(xn_l) = nt or rd(xn_l) = nt. Hence <Xn-1’xn) is not

a careful derivation step and so D is not careful.

(2.17) There exists a y such that X B Y
Hence Xn is a central sentential form.- Since X, can not be rewritten in the
central way, X contains a left-blocking non-terminal and a right-b1ockiﬁg
non-terminal, wﬁfch are not the same. (Otherwise there is only one way of
rewriting x, which then is automatically the central way.) Hence 1 =< Locc(xn)

< Rocc(xn) = |x,| and either

1]

(I) Des (xn) Locc(xn) and cent(xn) € R. or

G
Rocc(xn) and cent(xn) € LG.

(I1)Des (xn)
We consider case(I).

In this case X, = aAgBy, with a,y ¢ 2*, g € A* ~and A,B € z\a, and Locc(xn) = |aAl
and Rocc(xn) = |cABB|. Since X, can be rewritten, but not in the central way,

afAR € X* and vy € Z*° Moreover, B € Z\X and so B ¢ X*\Z*, ji.e. B= BleZ’ for some
By € A*,BZ € (AﬂZ)* and b ¢ A\Z. Observe, that since all productions are safe,

this occurrence of b is introduced using a production of the form (A',ubv) where

* *
u€a and v € (z\{b}) .



Let j = max{i:0si=n-1, Rew(D,i)siaAﬁlb}}. Hence xj = aAB3A'5 and Prod(D,j) =
(Alubv), as above, where BaU=g4 and & ¢ z*.
Hence Prod(D,j) is left-blocking and fﬁ(xj) = nt.

This implies that (Xj’xj+1) is not careful.

Case II can be treated analogously. o

Consequently, central derivations can be prolonged in the central way as
long as the designated occurrences "know" about their context and "act"
accordingly.

We will show that only a finite memory is needed for this knowledge.

We need the following notions.

Let D = (XO’Xl"’°’xn)’ n = 0, be a central derivation in G, such
that X is a central sentential form. Let, for 1 < k = n, X = akAkBk’
for some a By € 2* and Ak € Z\A,‘where {akAkJ= EEE(Xk)°
Then, for 1 = k = n,
Intro(D,k) = Jmax{j : O

(;éx{j : 0=

1A
1A

- |
kl, i(IJ-} kE

k-1, [B1=(B |} if A € R

i <iay [} if A € L,

IA

G
Observe that Intro(D,k) describes in which derivation step in D the

designated occurrence in Xy has been introduced.

This can be illustrated as follows.

AkéLG:
J

= Intro( D,k)

blocked by Ak

a = a.u
J



Ak € RG:
j

= Intro(D,k)

j+l

blocked by Ak

Figure 4.1.

Let k and j be such that j = Intro(D,k), 0 = j <k =n. Let u, v ¢ z*
be such that Prod(D,j) = (Aj,uAkv) and oy = aju if Ak € LG and
By = VBJ if Ak € RG’
Then prefintro (D,k) = u and postintro(D,k) =v.

Hence prefintro(D,k) and postintro(D,k) describe with what left and right,
respectively, context the designated occurrence in X has been introduced.
| If Des(xk) < Occ(xk), for some 0 = k < n, then ﬁg(xk) = nt and, since
G is special, the step (Xk’xk+l) will be careful (Condition (C5) of Defini-
tion 2.5).

Analogously, if Des(xk) > Occ(xk), then_gg(xk) = nt and (Xk’xk+1) is
careful.

The following lemma shows that for the remaining situations it suffices
to know about the introduction of Des(xk).
Lemma 4.3. There exist functions FL and FR, such that for every central

derivation D = (xo,xl,...,xn) in G, for every i,j € {0,....,n-1} such that

i = Intro(D,j), Xj = aAB, for some a,B ¢ 2* and A € z\4, where Des(xj) =|aAl,



1]

A

gg(xj) FL(ég(xi), prefintro(D, j),A) if Des (x;) Occ(x;), and

~
i

FR(gg(xi), postintro(D, J),A) if Des(xj) > Occ(xj).

Proof .Let FL and FR be defined in the following way.

*
For x € {t,nt}, we z and E € 2\4,

FL(x,w,E) _Jrif B¢ RG\LG, .
tifE ¢ LG’ x=tand w e p,
nt otherwise,

and

Fo(X,w,E) =.{§'if E € Lo\Rg s .

it if E ¢ RG, x =tandwean,

nt otherwise .
Let D,i,J and Xj be as in the statement of the lemma and let Prod(D,i) =
*
(A',uAv), for some u,v € 2 and A' € 2\a, such that u = prefintro(D,j) and

*
v = postintro(D,j). Hence x;, =yA'&and x, ; = yuAvé for some v,5 € I .

Moreover

if A e LG\RG, then vu = «

if A ¢ RG\LG’ then vs = g, and

if A e LG N RG’ then j = i+l, yu = ¢ andv s = B.

If Des(xj) < Occ(xj), then

i A € RAL 0and so a € & .

il

o\leo then Locc(xj)

If Des(xj) > Occ(xj), then

*
if A€ LG\RG, then Rocc(xj) = \xj]+1 and so g € A .
Hence if Des(xj) s'Occ(xj), then
E'if A ¢ RG\L >

* *
3d(xj) = E_1f A € LG’ y €06 and u €4,
nt otherwise,

hence gg(xj) = FL(ég(Xi)’ u, A).

Similarly, it follows that if Des(xj) > Occ(xj), then [Q(xj) = F (rd(xi),v,A).m

R\——



* _ *
From G we construct the 1S grammar Gy= (zl,Pl,Sl,Al,X1 Y1 Zl) in the

following way.
21= AU [-,TT U (+sTs-] U [Ty-]. Here [.,T],[*,I',:] and [I,-] are mutually

disjoint alphabets also disjoint with z, defined as follows. For x,y ¢ (t,nt},

T = {IGATA € (2Na) \ C(G)Y, (x,F,y] = {[x,A,y] + A € C(G)} and [I,y] =
{0 Ayl + Ae(2\a) \ C(G)} are mutually disjoint and[-,r] = [t,I}U nt,r,
{"T’D} = U [X,T,y] and
X, Y€
{t,nt}
Era] = [FaE] U [F,ﬂ}_}.
S1 = LE,S,E} and Al = A,
P1 is defined in the following way. For w= (A,a) € P with A £ C(G) and
*
a = alAlaz...anAnan+1;for somen = 0, Apseeespg €0 and Al""’An € Z\4,
we define [x,m]and [r,x], x € {t,nt}, as follows.
*
[x,m] = @ if x = nt and SO RRR ) £ 7,
*
[myx] = @ if x = nt and SRR £ X,
otherwise [x,m] = {([x,A], al[xl,Alj az...an[xn,An]an+1): for 1 =4 =n,

X5 = FL(X’a1A1°"ai-lAi-lai’A1>}

and

fmyx] = {([A,x], al[Al,xl]aZ...a (A ,x ]an+1): for 1 =i <sn, x, =

n“'n’"n i
FR(X’ai+1Ai+1'"anAnan+l’An)}'
For n=(A,a) € P, with A ¢ C(G) and a € A N B, we define [x,m,y], x,y, € {t,nt},

as follows.

3]

[x,m.y] = @ if x = nt or y = nt, and

[t,m,t]

(([t.A,t],a)}.

For m = (A,aCB) € P, with A,C ¢ C(G), « = alAIGZ"'anAnan+l and B=B18182 e

*
BmBmBm+1’ for some n,m > 0, al"“”an+1’Bl""’Bm+1 €A,

Al""’An’Bl""’Bm € (z2\a) \ C(G), we define [x,m,yl , X,y € {t,nt} as follows.



B if x

]
it

[x,m,Y]

*
nt and ayeea £ 7,

1
il

*
nt and Bl"'6m+l £ X,

pify

otherwise [X,m,y| = {([x,A,y],al[xl,Al]az...an[xn,An]an+1[xn+1,C,y0]

X,m,Y]

Bl{Bl’y1}32°"BmEBm’ym]Bm+1): for 1 =i =n, x, = FL<X’G1A1'"ai—lAi-lai’Ai)’

Xarl = FL (X,a,C),yo = FR()’aBaC)a for 1 =1 =m, i = FR(y’Bi+1Bi+l°"BmBmBm+1’Bi)}°
vowwe set P = NS (O 061U (R xD)
celtant} (A<
A £C(G)
U U ey
yeltnt} (A,a)eP
A€C(G)

Let p € HOM(Zl,Z) be such that

p (a) = a, for all a € 4,

w ([X,A]) =w ([A,x]) = A, for all A € (2\a)\C(G) and x € {t,nt},
p ([x,A,y]) = A, for all A € C(G) and x,y € {f,nt}.

-1 -1 1(2)3

(X), Y; = w (Y) and Z; = u

X1=p,
Since G is special, Gl satisfies (Cl) through (C5) from Definition 2.5,
as can easily be checked.

Let G, be the strongly reduced version of Gl' Then G, satisfies all conditions

2
from Definition 2.5 (cf. step(V)in the proof of Theorem 2.1) and hence G, is

special.
Lemma 4.4. L(G) < L(Gz).

Proof. Let D =~(x0,x1,...,xn) be a successful central derivation in G.
. % -1
We show that there exist ygsyis.«.s¥_q €2 such that yi € (Xi)’ for
0<is<n-land D' = (yO’yl""’yn-l’xn) is a successful derivation in Gl‘
Since GZ is the strongly reduced version of Gl’ D' is also a successful

derivation in GZ’



Let, for 0 =i < n-1, X; = uiAivi’ for some UssVs ¢ 5 and Ai € Z\Ab,

such that Rew(D,i) = [uiAil; X, = U, _qav. g €4 witha € B..

Let Yq = [t,S,t] = Sl‘
Assume that for some k ¢ {0,...,n-1}, YooYy have been defined in such a
way that DQ = (yo,...,yk) is a derivation in Gl’ and, for 0 =i =k,

Des(Dy,i) = Rew(D,i), vy = wiAivi, with p(ui)=u;,u(Af) = A and u(vi) = v,

and

it

A% = [X’Ai] if Rew(D,1) < Occ(xi) with x

'gd(x]' ) H
£9<X1>’ and

A% = [A,x1if Rew(D,i) > Occ(xi) with x

Ab = DGALYD iF AL = cent(xi),with X = £§(xi) and y = rg(xi).

*

Consider the step (Xk’xk+l)° Let Prod(D,k) = (Ak,a), for some a € Z .
If k < n-1, then we proceed as follows.
(Xk’xk+l) is a careful derivation step (Lemma 4.1.) Hence if Eg(xk) = nt,

then alph(a) N (MA\Z) = P and if rd (x,) = nt, then alph(a) N (AX) = 9.

i)
This implies that P1 contains a unique production ( é,a') such that

“(AL) = Ak and p(a') = a. Then we set Vsl = u&a‘vé. Clearly “<yk):xk

and Yy E Yip1 With Des(DL+1,k) = Rew(D,k).
1 ' — ! -
Let Uk+1’vk+1 and Ak+1 ¢ 2 be such that u(u Uy 1) = Upypo p(vk+1) = iy
(A1) = A and Y1 T U1 Al Ve

Let J= Intro(D,k+1) and Prod(D,j) = (Aﬁ’BAk+1Y)’ with prefintro(D,k+1) =
and postintro(D,k+1) =

Since (x s X is careful, Prod(Dé Jj) = (Aj,B'Ak+1Y') with

J+1)

u(Aj) = Aj, w(B') = B, w(A,q) = A,y and u(y') = v, is unique. From the

construction of G1 it follows that

Ael = [ﬁg(xk+l),Ak+l] if Rew(D,k+l) < Occ(xy,q)>
Aeq = [Ak+1’.£9(xk+1)] if Rew(D,k+1) > Occ(xy ;) and
Abep = [ﬁg(xk+l),Ak+l, ﬁg(xk+1)] AL = cent(x,,q)-
If k =n-1, theny , =u J[t,A ;,tlv, ;5 and = a.
([g,An_l,tW a) ¢ P1 and SO Y12 X, Hence (yO,...,yn_l,xn) is a successful

Gy
derivation in Gl’ a
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Lemma 4.5. Let D = (XO’Xl"'°’Xn) be a central derivation in G2° Then

D = (“(XO)’“(Xl)"°"“<xn)) is a careful central derivation in G.

Proof. Immediate. o

Theorem 4.1. L(G) = L(Gz)o

Proof. Immediate from Lemma 4.4. and Lemma 4.5. o

The following lemma shows that unless P2 = @, no central derivations

in GZ can get unsuccessfully blocked.

Lemma 4.6. Let D = (xo,xl,...,xn) be a central derivation in G, such

that there exists noy ¢ z* for which (XnsXq,...,X_,y) is a central deri-
2 0°"1 n

vation in GZ‘
Then either n = 0 and P2 = or Xo ¢ A;.

Proof. (1). n = 0.
As in case (1) in the proof of Lemma 4.2 it follows that P2 = .

(2). n> 1. Hence P2 # @ and productions for all non-terminal symbols of
G, are available. From Lemma 4.5 it follows that (“(XO)’ u(Xl),..,,u(Xn))
is a careful central derivation in G. From Lemma 4.2 it follows that if

“(xn) 4 A*, then there exists a v 62]% such that (“<XO)’ p(xl),...,u(xn),v)

2%

is a central derivation in G. Hence X, = ahp, for some a ¢ X*,B €7 and
A ¢ Zo\bos such that Des(xn) =|aA|. Then there exists a word y ¢ ZZ such
that (xn,y) is a central derivation step in GZ‘ This is a contradiction.

Hence “(Xn) € Aes which implies that “(xn) = X, € b, o

Lemma 4.7. L(Gz) = L(base(Gz)).



Proof. For every 1S grammar H, L(H) < L(base(H)). Hence L(GZ) - L(base(GZ)).

It thus remains toshow that L(Egég(Gz)) c L(Gz).

Consider the context-free grammar 9339(62). It is well known that one can
adopt for context-free grammars any strategy to select in a sentential form
a non-terminal to rewrite. As long as this strategy does not lead to failures,
the language will not be changed. From Lemma 4.6 it follows that in_EEES(G2)
the central derivation strategy of picking out non-terminals does not fail
and if P, = @, then L(GZ) =P = L(gggg(GZ)).

Hence L(base(Gz)) c L(GZ)‘ o
Theorem 4.2. L(G) € L(CF).

Proof. By Theorem 4.1., L(G) = L(GZ) and Lemma 4.7 implies that
L(GZ) ¢ L(CF). Hence L(G) € L(CF). a



5. THE MAIN RESULT AND CONCLUSIONS

Now we can prove that all 1S grammars generate context-free languages only.

Theorem 5.1. L(1S) = L(CF).

Proof. That L(CF) c L(1S) is clear.

From Theorem 2.1 and Theorem 4.2 it follows that for every 1S grammar H there
exists a CF grammar G, and a homomorphism h such that L(H) = h(L(Gy)).
Since L(CF) is closed under homomorphisms, L(H) € L(CF).

Thus, L(1S) < L(CF). 0

Corollary 5.1. EveryEOS based 1S grammar generates a context-free

language. o

It is important to note at this point that all our constructions
(in particular in the proof of Theorem 2.1) have been effective. Given
a homomorphism h and a context-free grammar H1 one can also effectively
construct a context-free grammar H2 such that L<H2) = h(L(Hl))° As a

consequence we have the following.

Theorem 5.2. Given a (EQS based) 1S grammar G it is decidable, whether
or not
(1). L(G) is empty,
(2). L(G) is finite. o



-40-
Another consequence is the following.
Theorem‘5.3, For every (EOS based) 1S grammar there exists an equiva-

lent (EOS based) 1S grammar without erasing productions (A £ rhs(P),

where P is its set of productions). o
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