THE DAVE SYSTEM USER'S MANUAL*

by

Ltoyd D. Fosdick
Carol Miesse Drey
Department of Computer Science
University of Colorado at Boulder
Boulder, Colorado 80309

#CU-CS-106-77 March, 1977

Manuscript typed by:
Dorothy Foerst

* This work was supported in part by the National
Science Foundation under Grant No. MCS75-09972.

Copyright (:) Department of Computer Science
University of Colorado, Boulder, Colorado
March 1977

I.

IT.

ITI.

IvV.

REFERENCES
APPENDIX A
APPENDIX B . .
APPENDIX C

THE DAVE SYSTEM USER's MANUAL
CONTENTS

INTRODUCTION .« .« v v v v v v v v e v e e e e e
1. Overview
2. Basic definitions. ,
| 3. Discussion of undefinition of a variable
4. Fundamental assumptions of DAVE.
USAGE.«
1. How to execute DAVE. e e e
2. How to interpret the DAVE output . . .
2.1 Overview. . . .«+ o . ..
2.2 QOutput prologue
2.3 Error diagnostics . . .
2.4 Warning diagnostics . .
2.5 Message diagnostics
2.6 Diagnostics o000 L.
INTERNAL STRUCTURE « « .« « o . ..
1. Major software components. e e e
2. Tables generated C e e e e e
3. File organization.
4, System dependencies.
5. Size alterations e e e e
5.1 Maximum data base size. . .
5.2 Other size limitations. .
6. Recovery o ..o 0
INSTALLATION e e e e e e e e

INTERNAL DIAGNOSTICS . . .

oooooo

Page

S N

Y 00O Oy O O O

1
43
. 119
. 128

. 130

. . 130
. . 134

. 144
. 146

. . 150

. 150
. 151
. 155

. . 156
.. 162

. 190

A1--A45

B1--B3
Cl

DAVE USER's MANUAL
Chapter I: INTRODUCTION

1. Overview

DAVE is a software tool for gathering information about global
data flow in FORTRAN programs, and for identifying the anomalous use
of data in these programs. In the usual terminology DAVE is charac-
terized as a static analysis tool, meaning that DAVE gathers informa-
tion about the subject program from scanning it as, for example, a
compiler would to construct the object code. DAVE does not require
any modification of the subject program, nor does it require any inter-
vention by the user during execution. Only some initial setting of
parameters which control the output is required.

The DAVE system has been described in an article in Software
Practice & Experience [1]. We will assume familiarity with this
reference. A survey article on the use of data flow analysis to de-
tect software errors has also appeared [2]. The philosophy of our
approach is described in this reference but the implementation details
are different.

This manual has four chapters in addition to the introduction.
Chapter 2 is of particular interest to the general user; Chapter 3 is
of interest to those who may wish to know some details of the inner
working of DAVE. Chapter 4 contains instructions for installing DAVE
on a computer, and Chapter 5 contains explanations of DAVE's internal
diagnostics.

This manual also contains in an appendix a complete 1isting of
output obtained from a DAVE run on a program designed to generate all
DAVE diagnostics. Although the circumstances of this DAVE execution
are exceptional, perusal of the output in this appendix should help
the reader gain a further understanding of the kinds of program con-
structs which will lead to certain diagnostic messages from DAVE.

2. Basic definitions

For ease of reference we 1ist these definitions in alphabetic
order. The words defined here have other meanings too; the intended
meaning should be clear from context.

available COMMON block: A COMMON block is said to be available to a
program unit if it is declared in the program unit or if it is

declared in some program unit which is an ancestor of it, as
defined by the call graph.

block: A FORTRAN statement, a sequence of FORTRAN statements or in the
case of a Tlogical IF, either of the two components of the logical
IF; e.qg.

IF(A.LT.B) C=D
— ! ~——
a block a block

In DAVE output blocks are numbered for reference purposes.

call graph: The graph structure representing the order in which program
units are invoked. The nodes are program units, and an edge (b,c)
represents the fact that execution of b may invoke subprogram c.

defined: A variable is said to be defined if it has a specific value ac-
cording to the FORTRAN standard; e.g. execution of the statement
A=B+C
assigns a specific value to A and thus at subsequent points in the
execution history A is defined until a point is reached where it
becomes undefined (see below).

executable path: A path is executable if there exists input data for the
program containing this path which would force execution of the
blocks in the order defined by the path.

input: A variable is said to be an input variable for a block, or a sub-
program, if execution of the block, or subprogram may require that
the variable be defined at the time of entry to the block or sub-
program; e.g. the variable C is an input variable for the block
A=C+1
and for the subprogram

SUBROUTINE EXAMPL(C,D)
IF(D.LT.0,0) RETURN
C=C+1

RETURN

END

output: A variable is said to be an output variable for a block, or
a subprogram, if execution of the block, or subprogram, may re-
sult in the assignment of a value to the variable and at the
time of exit from the block or subprogram the variable remains
defined as a consequence of the assignment; e.g. C is an out-
put variable for the block
C=C+1
and it is an output variable for the subprogram shown above 1in
the definition of input. In the second case notice that the
variable C will not be assigned a value if D<0, but it is an
output variable because it will be assigned a value if D>0.
path: A sequence of blocks bi,b].ﬂ,b1.+2,...,b1.+k in a program, such

that execution of bj may be followed by execution of bj+]'

program unit: Main program or subprogram.

referenced: Similar to input (éee above) and normally used when talk-
ing about the use of a variable in a single statement; thus we
say, C is referenced in the statement
A=C+1.

strict input: This phrase has the same meaning as input except the

underlined word "may" in the definition of input is replaced by
must; e.g. referring again to the definition of input, the variable
D is strict input for the subroutine EXAMPL, but C is not strict
input for this subroutine since there is a path through the sub-
routine which does not require a value of C.

strict output: This phrase has the same meaning as output except the

underlined word "may" in the definition of output is replaced by
must; e.g. in the subroutine below NUMB is strict output

SUBROUTINE COUNT (A,B,N,NUMB)

DIMENSION A(N)

NUMB=0

DO 10 K=1,N

IF(A(K).EQ.B) NUMB=NUMB+1
10 CONTINUE
RETURN

END

but in the subroutine EXAMPL (cf. definition of input) C is not
strict output since there is a path through the subroutine which
does not assign a value to C.

subject program: The program analyzed by DAVE.

3. Discussion of undefinition of a variable

DAVE, in accordance with ANS Fortran, assumes that upon entry to
a program unit, all local variables for the unit are undefined unless
initialized in a DATA statement. An undefined variable becomes defined
when a value is assigned to it. Once a variable is defined it can be-
come undefined in several ways. When a RETURN statement or a STOP
statement is reached all local variables for this program unit become
undefined. When a DO-loop is satisfied, the control variable for the
DO becomes undefined. When a local variable, initialized in a DATA
statement, is assigned a value by execution of some statement in the
program unit, then upon subsequent entry to the program unit the local
variable is undefined. When a COMMON variable is defined in a program
unit, it will become undefined upon exit from the unit if the variable's
COMMON bTock is not available to the calling program unit.

4. Fundamental assumptions of DAVE.

DAVE assumes that the subject program is a syntactically correct
ANS FORTRAN program. If the subject program does not satisfy this re-
quirement the results are unpredictable. Therefore it is essential
that the subject program be run through a good diagnostic compiler or
through a tool such as PFORT [4] which will detect ANS FORTRAN syntax
errors. A few deviations from ANS FORTRAN are permitted and are listed
in Appendix C.

In addition, for DAVE's analysis to be correct, there must be at
most one non-trivial connected component in the subject program's call
graph (where a trivial component is a graph consisting of one node) and
the non-trivial component is acyclic with a unique entry node.

1.

Chapter II: DAVE USAGE

How to execute DAVE

In the following discussion, we will assume that there is a pro-

cedure file called DAVE, set up when DAVE was installed (see Chapter

IV), which when called controls DAVE's execution. The necessary inputs
to DAVE are:

1.

The Fortran program to be analyzed. This may consist of a single
subprogram, a group of subprograms, or a main program and subpro-
grams, with the restrictions outlined in Chapter I, Section 4.
The 1imits on the size of the subject program are: a maximum

of 100 subprograms run through together, each of which has

no more than 500 blocks. All declarations are counted as one
block; otherwise each statement is a block, with logical IF's
counting as two blocks; comments and formats are excluded from the
count. Although the 1imit is 100 program units run together, the
larger the group, the more strain placed on all internal arrays
and overflow may occur. Detailed information on all size Timita-
tions appears in Chapter III, Section 5.

An options file. This allows the user to specify certain instruc-
tions for DAVE. The format is as follows:

Keyword Parameters Default Description
SI= ON OFF Simulation of unsatisfied ex-
OFF ternals. If SI=ON, missing sub-

programs will be simulated by
DAVE to permit analysis to con-
tinue. If SI=0FF and there are
unsatisfied externals, DAVE will
terminate analysis.

SU= di’d”""dm'dr OFF(i.e. Suppression of diagnostics, d,
J all diag- indicates a diagnostic number,

ALL E or ERRORS .) .
nostics d -d_ a range of diagnostic
ALL W or WARNINGS will be mor

étk M or MESSAGES printed)

numbers to be suppressed. The
use of ALL will suppress an
entire category. The parameters
may occur in any order.

The options may be expressed in any order, may be separated by blanks
or commas, and may extend over any number of records in the file.

The options file is read first during DAVE's execution so that if it

and the subject program are on cards, it must precede the subject program

and be separated from it by an end-of-file. If all defaults are de-
sired, the options file may be empty.

The method of calling the procedure file DAVE will depend upon
the particular installation. For example, on the CDC 6400 under
KRONOS 2.1, the following command is used:

CALL(DAVE(OPTIONS=filel,INPUT=fi1e2)
where filel
file2

i

options file

subject program

The maximum core required for any phase of DAVE's execution is
135000 octal words on the CDC 6400. An upper bound for the time re-
quirement is approximately 1 CPU sec./ line of subject program.

2. How to interpret the DAVE output.

2.1 Overview

Sections 2.1 through 2.5 in this chapter discuss the output
produced when DAVE completes execution of PHASE3 (standard termina-
tion). If execution is terminated by PHASEQ, there is a different
output format, which is discussed in Section 2.6.

In a normal DAVE run the first line of the output file will
read

DAVE LEVEL

where the dots stand for a level number which actually appears in
their place. At the time of this writing the Tevel number is 8.0.
After this 1ine the following message will appear

DAVE TERMINATION NORMAL

Next in order of appearance is a message describing the options
selected by the user on the data card. If the subject program had
missing subprograms and the user requested a simulation of the I/0
behavior then a note concerning this is printed before the 1ist of
user options specified.

The 1ist of user options specified is an echo of the values
(ON or OFF) assigned to the three parameters SI (simulate I/0 be-
havior for missing subprograms), RE (restart of previous run), SU

(suppress diagnostics). The RE option may be used only under
special circumstances; see Chapter III section 6 for a discussion
of the recovery capability.

If the DAVE run failed because of a fatal error, and thus did
not terminate normally, the following message appears in the out-
put file:

FATAL ERROR(S) -- DAVE ANALYSIS CANNOT CONTINUE

Diagnostic messages related to the fatal error(s) follow this. A
tabulation of possible error messages is presented later. We assume
now that the DAVE run termination is normal, and proceed with the
general description of the organization of the output file.

Next in order of appearance on the output file is the line:

DIAGNOSTIC SUMMARY -- PART 1

Following this line is a tabulation of the number of occurrences
of error diagnostics, warning diagnostics, and message diagnostics
issued for each of the program units of the subject program.

The next section on the output file begins with the Tine

DIAGNOSTIC SUMMARY -- PART 2

Following this line is a tabulation of the number of occurrences
of each diagnostic in the entire program.

After the diagnostic summaries there is a 1isting of the call
graph, headed by the line

CALL GRAPH

This is printed in a three column format. The first column contains
a list of all of the program units in the subject program. Asso-
ciated with each program unit, S, in column 1, there is a 1ist 1in
column 2 of those which call S, and there is a Tist in column 3 of
those which are called by S. The program units are listed in

column 1 in the order of their appearance in the program.

At this point the general, summary information printed by DAVE
comes to an end and the more detailed information concerning the
results of the analysis of each subprogram begins. The general
layout is as follows. There is a Tisting of each subprogram and
following the listing of the subprogram the error diagnostics,

warning diagnostics, and message diagnostics pertinent to that
subprogram are printed. The listing of the subprogram is annotated
on the left by block numbers. These block numbers are used to
reference paths and individual blocks in the diagnostics following
the subprogram. The various types of diagnostics are numbered for
easy reference: errors are numbered in the one hundreds; warnings
are numbered in the two hundreds; messages are numbered in the
three hundreds. There are twelve error diagnostics, thirty-seven
warning diagnostics, and four message diagnostics. As explained
earlier, the user can suppress the printing of any of these diag-
nostics by specifications on the data card.

2.2 Output Prologue
This 1is the first part of the DAVE output which under normal
conditions begins with the message:

DAVE TERMINATION NORMAL

Following this is a message regarding the options selected by the
user on the data card. A1l options selected by the user are Tisted
here (these options are discussed above in connection with the
options file (cf. p.5). If all default options are selected, then
this segment of the output appears as follows:

USER OPTIONS SPECIFIED THIS RUN
1. SIMULATE I/0 BEHAVIOR FOR MISSING SUBPROGRAMS (SI=OFF).
2. RE-START OF PREVIOUS RUN (RE=QFF).
3. SUPPRESS DIAGNOSTICS (SU=0FF).

If the user does want to simulate missing subprograms, uses the default
on the restart option, and suppresses diagnostics numbered 105, 202,
209, 303, 304, then this segment of the output will appear as follows:

USER OPTIONS SPECIFIED THIS RUN
1. SIMULATE 1I/0 BEHAVIOR FOR MISSING SUBPROGRAMS (SI=ON).
2. THIS IS NOT A RECOVERY RUN (RE=OFF).
3. SUPPRESS DIAGNOSTICS (SU=) 105 202 209 303 304

9

The 1ist of suppressed diagnostics is printed in order of increasing
number. If the user has SU=ALL E on the data card then an explicit
1isting of all error diagnostic numbefs is printed, rather than

ALL E and the same is true mutatis mutandis, for ALL W, ALL M.

When the option SI=ON is selected and there are missing subprograms,
the following note appears in this portion of the output immediately
above the Tist of user options:

NOTE -- FOR MISSING SUBPROGRAMS THE FOLLOWING I/0 BEHAVIOR
HAS BEEN SIMULATED.
A. FOR FUNCTION SUBPROGRAMS, THE FUNCTION NAME HAS
BEEN CLASSIFIED AS STRICT OUTPUT AND ALL ARGU-
MENTS AS STRICT INPUT, NON OUTPUT.
B. FOR SUBROUTINE SUBPROGRAMS, ALL ARGUMENTS HAVE
BEEN CLASSIFIED AS STRICT INPUT, NON OUTPUT.

A SIMULATED SUBPROGRAM IS ASSUMED TO USE NO COMMON
VARIABLES. THE NUMBER AND DIMENSIONS OF ITS DUMMY
ARGUMENTS HAVE BEEN INFERRED FROM THE FIRST INVO-
CATION OF THE SUBPROGRAM BY THE PROGRAM UNIT
INDICATED BELOW.

SIMULATED SUBPROGRAM CALLER

Since the intent of this option has already been discussed in the
previous section we will not repeat this discussion here.

10

An example of the printing of part 1 of a diagnostic summary

is shown below.

DIAGNOSTIC SUMMARY -- PART 1

FREQUENCY

SUBPROGRAM ERRORS WARNINGS MESSAGES

——— - —— — —— D e pu— L T —

SYSMAIN 24 48
BLKDATA
E101 2
SUB103 1
SUB302 1
SUB105
SUB106 1
SUB208 2
w201
SUB215
SUB
FUN 1
FSIM
SUBSIM

DO H s R DD U1 U
FHERERERFHHENDRFNDND O

11

The interpretation of this is rather obvious. Reading across a
1ine of this table we find the number of error diagnostics, warning
diagnostics, and message diagnostics for the subprogram (or main
program SYSMAIN or block data BLKDATA) named in the first column

of the Tine. To illustrate, in this example the DAVE analysis of
the subprogram E101T resulted in two error diagnostics, five warn-
ing diagnostics, and one message diagnostic.

12

An example of the printing of part 2 of a diagnostic summary
is shown below.

DIAGNOSTIC SUMMARY -- PART 2

ERRORS WARNINGS MESSAGES

IDENT.NO. FREQUENCY IDENT.NO. FREQUENCY IDENT.NO. FREQUENCY

101
102
103
104
105
106
107
108
109
110
111
112

201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237

301 2
302 2
303 3
304 14

O NNBENNODNDN RN

-

bt
B O = NN = N = bt b b b RN b = b b DO UT N B = W = R b U

13

Here again the interpretation is fairly obvious. Under the head-
ing ERRORS there is a listing of the frequency of occurrence of
each error diagnostic detected by DAVE in the subject program. In
this example all error diagnostics were generated by DAVE at least
once. Similar remarks apply to the columns headed WARNINGS and
MESSAGES. In this example we see that warning diagnostic 201
occurred once, that message diagnostic 301 occurred twice, etc.

The two examples shown here, DIAGNOSTIC SUMMARY -- PART 1 and
DIAGNOSTIC SUMMARY -- PART 2, are part of the same DAVE output
(shown in entirety in Appendix A). Note that the corresponding
column sums in PART 1 and PART 2 agree, there being a total of

32 errors, 77 warnings, and 21 messages according to column sums

in PART 1 and in PART 2. We reiterate that even when diagnostics
are suppressed they will still appear as counted in these summaries.
In PART 2 if diagnostic 230 had been suppressed, then in the print-
ing of this summary the identification number 230 would have been
marked by an asterisk (viz. 230*). 1In this case, the following
note also would appear in the Tisting:

*DENOTES A SUPPRESSED DIAGNOSTIC WHICH WILL NOT APPEAR IN THE LISTING.

14

An example of the printing of a call graph appears below.

CALL GRAPH
SUBPROGRAM CALLED BY CALLS
SYSMAIN E101
SUB103
SUB105
SUB106
SUB208
w201
SUB215
SUB
FSIM
SUBSIM
E101 SYSMAIN
SUB106
SUB103 SYSMAIN SUB302
SUB302 SUB103 SUB106
SUB105 SYSMAIN SUB106
SUB106 SYSMAIN E101
SUB302
SUB105
SUB208 SYSMAIN
w201 SYSMAIN
SUB215 SYSMAIN
SUB SYSMAIN
FUN
FSIM SYSMAIN

SUBSIM SYSMAIN

15

16

2.3 Error Diagnostics

First, a word about notation used in all diagnostics. In order
to make identifiers stand out in the diagnostics they appear in
"brackets"; for example, the identifier D218 will appear in a DAVE
diagnostic as ---*D218*--. Paths of control flow through a program
are specified by block numbers. For example, the path specified by
8 9 10 vrefers to a path in which control passes from block 8, to
block 9, to block 10. The path specified by 1 - 6 8 refers to a
path in which control passes from block 1 to block 6 through con-
secutively numbered blocks (i.e. 2 3 4 5) and then to block 8.

Generally speaking an error diagnostic refers to a situation
which DAVE detects that is very likely, but not certain, to result
in an error when the subject program executes. For example, we in-
clude among errors those situations in which execution of the subject
program will always cause a reference to an uninitialized variable.
A program containing such an error would execute caorrectly if the
user intended the initial value to be zero and the system under which
the program executes always initializes the store to zero, but it
would not execute correctly under a different system protocel.

Most error diagnostics refer to an anomalous use of data on
all paths to some block. If the anomalous use occurs only on some,
but not all, paths then a corresponding warning diagnostic instead
of an error diagnostic is printed; for example, compare diagnostics
106 and 206. This distinction is connected with our inability to
recognize executable paths. We attempt to deal with it as follows.
We assume that every block can be reached on some executable path;
hence if an anomalous use of data occurs on every path to the block,
it must occur on an executable path. On the other hand, if the
anomalous use occurs only on some paths to a block then it might
only occur on non-executable paths. It is for this reason that we
often let an anomalous use on all paths cause an error diagnostic
while an anomalous use on some paths only causes a warning diagnos-
tic. Some anomalous uses are judged to be less likely to represent
errors than others and may cause warning diagnostics even when they
occur on all paths; for example, see diagnostic 222.

When there is an error message and a corresponding warning
message, the numbering of the diagnostics reflects the correspond-

17

ence; e.g. 101 and 201 correspond, 102 and 202 correspond, etc.

There are twelve error diagnostics, numbered 101, 102, ...,
112. They are discussed below in numerical order. In the DAVE
output these diagnostics are printed immediately after the Tisting
of the program unit to which they refer. Errors can result from
certain combinations of circumstances that occur, or fail to accur,
at different points in a program. A diagnostic is associated with
one of these points and if the other point or points occur in other
program units then the diagnostic is printed for the program unit
closest to the root of the call graph.

18

101 DESCRIPTION *X]Q] **

This diagnostic can only appear with a function subprogram. It
appears when DAVE detects an attempt to reference an undefined vari-
able on every path through the subprogram and the variable's name is
the name of the function subprogram.

19
*F]Q] ** EXAMPLE **]07**

Program segment

BLOCK SOURCE
1 FUNCTION FUNA(X,Y)
2 DO 10 J =1,50
3 FUNA = FUNA + X + Y
4 10 CONTINUE
0 C .
0 C .
0 C .
5 RETURN
1 END

Diagnostic
%% 101 ** FUNCTION NAME ---*FUNA*-- IS REFERENCED BEFORE BEING ASSIGNED

A VALUE ON ALL PATHS.

ONE SUCH PATH, INDICATED BY BLOCK NUMBERS, IS
1 2 3

20

**] 02 ** DESCRIPTION *FHE]02%*

This diagnostic can only appear with a function subprogram. It
appears if the function name is never assigned a value.

21

R]02% EXAMPLE *H] 02%*

Program segment

BLOCK SOURCE
1 FUNCTION FUNB(X,Y)
2 po 10 J = 1,50
3 Y = X+ Y
4 10 CONTINUE
5 RETURN
1 END

Diagnostic

**%]1(02 ** FUNCTION NAME ---*FUNB*-- IS NEVER ASSIGNED A VALUE.

22

k]03 DESCRIPTION **]Q3**

This diagnostic is associated with a subprogram call. It appears
if an actual argument in the subprogram call is a constant or an ex-
pression (excepting the trivial case where the expression is just a
variable) and the following is true: on every path in the called sub-
program the dummy argument corresponding to this actual argument 1is
assigned a value.

23

] Q3** EXAMPLE **]Q3**

Program segment

BLOCK SOURCE
1 SUBROUTINE ASUB(R,S)
2 X =1.0
3 CALL BSUB(X,3.0,2.0)
0 C .
0 C .
0 ¢C .
4 RETURN
1 END

BLOCK SOURCE
1 SUBROUTINE BSUB(A,B,C)
2 B=A+C
3 RETURN
1 END

Diagnostic (printéd after subroutine ASUB)

**v 103 *=*

BLOCK NO. 3 '

AN ACTUAL ARGUMENT IS AN EXPRESSION OR CONSTANT, YET THE

CORRESPONDING DUMMY ARGUMENT IS ASSIGNED A VALUE ON ALL PATHS.
CALLING SUBPROGRAM CALLED SUBPROGRAM |

~—~*ASUB*~~ ~--*BSUB*--
ARGUMENT REAL e *BF e e

POSITION 2 2

24
**104 %% ‘ DESCRIPTION **] Q4% *
This diagnostic is associated with a subprogram call. It appears

if the number of actual arguments in the subprogram call and the number
of dummy arguments in the called subprogram are unequal.

25

]04 EXAMPLE **E]04%*

Program segment

BLOCK SOURCE
1 SUBROUTINE CSUB(R,S)
0 C .
0 C
0 ¢C .
2 CALL DSUB(X,Y,Z)
0 C .
0 ¢C
0 C .
3 RETURN
1 END
BLOCK SOURCE
1 SUBROUTINE DSUB(A,B)
0 ¢C .
0 C
0 C .
2 RETURN
1 END

Diagnostic (printed after subroutine CSUB)

** 104 ** BLOCK NO. 2

THE NUMBER OF DUMMY ARGUMENTS IN CALLED SUBPROGRAM ;;F*DSUB*—-
DOES NOT AGREE WITH THE NUMBER OF ACTUAL ARGUMENTS SUPPLIED
BY CALLING SUBPROGRAM =---*CSUB*--,

26

]Q5 DESCRIPTION **]Q5**

This diagnostic is associated with a subprogram call. It appears
if both of the following are true: an actual argument in the call is
an external procedure name; the corresponding dummy argument in the
called procedure is referenced, as if it were a simple variable, on
every path.

27

**¥105%* EXAMPLE **105%*

Program segment

BLOCK SOURCE
1 SUBROUTINE ESUB(R,S)
1 EXTERNAL FUN
0 C
0 C
0 C .
2 CALL FSUB(X,Y, FUN)
0 C .
0 C
0 C .
3 RETURN
1 END
BLOCK SOURCE
1 SUBROUTINE FSUB(A,B,C)
2 A =B+ C
3 RETURN
1

END

Didgnostic (printed after subroutine ESUB)

*% 105 %%

BLOCK NO. 2

AN ACTUAL ARGUMENT IS A PROCEDURE DECLARED EXTERNAL, YET THE
CORRESPONDING DUMMY ARGUMENT IS REFERENCED AS A VARIABLE
ON ALL PATHS.

CALLING SUBPROGRAM CALLED SUBPROGRAM
~-=—*ESUB* -~ —-——kPSUB*~-
ARGUMENT ek PUN* ——— SRS Tor. S
POSITION 3 3

28

] 0p DESCRIPTION **F106**

This diagnostic is associated with a subprogram call. It appears
if both of the following are true: an actual argument in the call is
an external procedure name; the corresponding dummy argument in the
called procedure 1is assigned a value, as if it were a simple variable,

on every path.

29

106 EXAMPLE **106%**

Program segment

BLOCK SOURCE

1 SUBROUTINE GSUB(R,S)
1 EXTERNAL FUN
0 ¢
0 C
0 ¢C .
2 CALL HSUB(X,Y, FUN)
0 ¢C .
0 C
0 C .
3 RETURN
1 END
BLOCK SOURCE
1 SUBROUTINE HSUB(A,B,C)
2 C=A+B
3 RETURN
1 END

Diagnostic (printed after subroutine GSUB)

*%k 106 **

BLOCK NO. 2
AN ACTUAL ARGUMENT IS A PROCEDURE DECLARED EXTERNAL, YET THE
CORRESPONDING DUMMY ARGUMENT, USED AS A VARIABLE, IS ASSIGNED
A VALUE ON ALL PATHS.
CALLING SUBPROGRAM CALLED SUBPROGRAM
~-—*GSUB* -~ —==*HSUB*~-~
ARGUMENT === FPUN¥*——~ ——m kK m
POSITION 3 3

30
**] Q7 ** DESCRIPTION **] Q7 %%
This diagnostic is associated with a subprogram and the use of a

COMMON variable in the subprogram. It appears if a dummy argument
for the subprogram and a COMMON variable have the same identifier.

31
*x] Q7 ** EXAMPLE *X] Q7 **

Program segment

BLOCK SOURCE

SUBROUTINE ISUB(ABS,X)
COMMON Y,ABS

RETURN

HNOO O M
OXP NP

END
Diagnostic
**% 107 ** THE NAME ---*ABS*-~-- IS USED TO REPRESENT BOTH A DUMMY

ARGUMENT AND A COMMON VARIABLE IN THIS SUBPROGRAM.

32

]08 DESCRIPTION **]Q8**

This diagnostic is associated with a subprogram call. It appears
if a dummy argument is bound to a COMMON variable because of the sub-
program call and execution of the subprogram always causes an assign-
ment of a value to the variable.

33

108 EXAMPLE *x] Qg **

Program segment

BLOCK SOURCE
1 SUBROUTINE JSUB(R,S)
1 COMMON A,B,C
0 C .

0 C

0 C .

2 CALL KSUB(C,D,E)
0 ¢C .

0 ¢C

0 ¢C .

3 RETURN

1 END

BLOCK SOURCE
1 SUBROUTINE KSUB(T,U,V)
1 COMMON F,G,H
2 T =T + 1
0 C
0 C
0 ¢C .

3 RETURN
1 END

Diagnostic (printed after subroutine JSUB)

% 108 ** BLOCK NO. 2
A SUBPROGRAM REFERENCE CAUSES DUMMY ARGUMENT ——-——*T%————
TO BECOME ASSOCIATED WITH A COMMON VARIABLE IN THE CALLED
SUBPROGRAM. =—~=-*T¥*-—-— IS ASSIGNED A VALUE ON ALL PATHS.
CALLING SUBPROGRAM CALLED SUBPROGRAM
——=*JSUB*~~ ~—=*KSUB*~~
ARGUMENT il S 3 L T

COMMON VARIABLE e e KK e SN 3 < £

34
]Q9 DESCRIPTION **]09**

This diagnostic is associated with a main program and the use of
a COMMON variable. It appears if on every path in the main program an
undefined variable is referenced. The reference of the undefined
variable might occur within a procedure called directly or indirectly
by the main program.

35

*F] Q9+ EXAMPLE **]09**

Program segment

BLOCK SOURCE

C--MAIN PROGRAM

COMMON /LAB/ J1,J2
X =1.0

CALL SUB(X,Y)

[eXeXe!

STOP
END

b OOO WNHO

BLOCK SOURCE

BLOCK DATA

COMMON /LAB/ K1,K2
DATA K1/3/

END

e

BLOCK SOURCE

SUBROUTINE SUB(A,B)
- COMMON /LAB/ L1,L2
IF (L2 .LT. 2)
$ RETURN

eNeXe!

RETURN
END

s O OO WNDH -

Diagnostic (printed after main program)

kk 109 **

NOTE 1

COMMON VARIABLE ----*%J2%--— IN COMMON BLOCK =-=—=*LAB*-—~ IS
REFERENCED ON ALL PATHS IN THE MAIN PROGRAM, YET IT HAS NOT.

PREVIOUSLY BEEN ASSIGNED A VALUE, NOR HAS IT BEEN INITIALIZED
IN BLOCK DATA. (SEE NOTE 1)

ALTHOUGH DETECTED IN THIS SUBPROGRAM, THE CAUSE FOR THIS
DIAGNOSTIC MAY HAVE OCCURRED AT A DEEPER LEVEL OF SUBPROGRAM
REFERENCES AND BEEN PROPAGATED UP TO THIS ONE.

36

]]0 DESCRIPTION *X]TQ**

This diagnostic is associated with a subprogram and the use of
a COMMON variable. It appears if on every path in the subprogram an
undefined variable is referenced. The reference of the undefined
variable might occur within a procedure called directly or indirectly
by the subprogram.

37
R1T0 EXAMPLE xR 0**

Program segment
BLOCK SOURCE

C--MAIN PROGRAM
X=1.0
CALL ASUB(X,Y)

STOP

HB OO WNND
oNoNe!

END

BLOCK SOURCE
1 BLOCK DATA
1 COMMON /LAB/K1,K2
1 DATA K1/3/
1 END V

BLOCK SOURCE
1 SUBROUTINE ASUB(A,B)
1 COMMON /LAB/ L1,L2
2 CALL BSUB(A)
0 C)
0 C
0 C)
3 RETURN

B END

'BLOCK SOURCE
1 SUBROUTINE BSUB (%)
1 COMMON /LAB/ M1, M2
2 IF (M2 .LT. 2)
3 $ RETURN
0 ¢ i
0 C
0 C)
4 RETURN
1 END

Diagnostic (printed after main program)

%% 110 *%* COMMON VARIABLE --—--*[2%-—- IS REFERENCED ON ALL PATHS IN
CALLED SUBPROGRAM ---*ASUB*--, YET IS NOT INITIALIZED. IT
DOES NOT APPEAR IN BLOCK DATA, AND ITS COMMON BLOCK ---*LAB*---
IS NOT AVAILABLE TO CALLING SUBPROGRAM —-*SYSMAIN*-. (SEE
NOTE 1)

NOTE 1

ALTHOUGH DETECTED IN THIS'SUBPROGRAM, THE CAUSE FOR THIS
DIAGNOSTIC MAY HAVE OCCURRED AT A~EEEPER LEVEL OF SUBPROGRAM
REFERENCES AND BEEN PROPAGATED UP TO THIS ONE .

38

FH]]T** DESCRIPTION kel B Bl

This diagnostic is associated with the control variable of a DO
loop. It appears if en all paths from the closing statement of the DO
loop the control variable is referenced and between the closing state-
ment and the reference there is no definition of the variable. (The
control variable is undefined when the DO Toop is satisfied and an
exit is made from the closing statement of the DO loop.)

39
K] 1] %% | EXAMPLE k]]9

Program segment
BLOCK SOURCE

C :
C--MAIN PROGRAM

C
C
C

DO 10 K = 1,20

10 CONTINUE

HOOOWNOoOOoOONOOOOO
Q00

20 X = A(K)

C .
C

C .

- END
Diagnostic
** 111 ** CONTROL VARIABLE —-=—=—*K¥—mu—o BECOMES UNDEFINED UPON SATISFACTION
OF ITS DO LOOP AT BLOCK NO. 8, YET IS REFERENCED ON ALL

PATHS THEREAFTER.

ONE SUCH PATH, INDICATED BY BLOCK NUMBERS, IS
8 .9

40

X]2% DESCRIPTION *HR 2%

This diagnostic is associated with the use of a local variable in
a main program or subprogram. It appears if the local variable is
referenced and on all paths from the entry point to the point of
reference it is undefined. The reference might occur within a sub-
program called directly or indirectly from this program unit.

41

FFT12%% EXAMPLE *E]] 2%*

Program segment

BLOCK 50OURCE

SUBROUTINE MSUB(X,Y)
IF (K .LT. 0)
$ X=X +Y

-

RETURN

=& OOOWNKH
oNSN@!

END
Diagnostic
*% 112 ** LOCAL VARIABLE ---=%*K*-——— TS REFERENCED BEFORE BEING ASSIGNED

A VALUE ON ALL PATHS.

ONE SUCH PATH, INDICATED BY BLOCK NUMBERS, IS
1 2

42

43

2.4 Warning Diagnostics

There are thirty-seven different warning diagnostics. They
are discussed below in numerical order. In the DAVE output these
diagnostics are printed immediately after the Tisting of the
program unit to which they refer. They are printed after the

error diagnostics.

44

207 ** DESCRIPTION *KR20T

This diagnostic can only appear with a function subprogram. It
appears when DAVE detects an attempt to reference an undefined vari-
able on some, but not all, paths through the subprogram and the vari-
able's name is the name of the function subprogram.

45

k2071 EXAMPLE k207 **

Program segment

BLOCK SOURCE
1 FUNCTION FUNC(X,Y)
2 IF (X .LT. Y)
3 $ GO TO 10
4 FUNC = 0.0
5 RETURN
6 10 DO 20 J = 1,50
7 FUNC = FUNC + X + Y
3 20 CONTINUE
0 C
0 C
0 ¢C .
9 RETURN
1 END
Diagnostic
*% 201 ** FUNCTION NAME ---*FUNC*-- IS REFERENCED BEFORE BEING

ASSIGNED A VALUE ON SOME PATHS.
ONE SUCH PATH, INDICATED BY BLOCK NUMBERS, IS
1 2 3 6 7

46

**202%* DESCRIPTION **202%*

This diagnostic can only appear with a function subprogram. It
appears if the function name is undefined on some but not all paths to
a RETURN statement. Normally this means that the function name is not
always assigned a value on the path but it could appear if the name is
assigned a value and then is undefined.

47
**202%* EXAMPLE ' **202%*

Program segment

BLOCK | SOURCE

FUNCTION FUND(X,Y)
IF (X .LT. Y)
S FUND

Y =Y +

10 CONTINUE
RETURN
END

= o U W N

Diagnostic

*% 202 ** FUNCTION NAME ---*FUND*-- IS NOT ASSIGNED A VALUE ON SOME PATHS.

48

203 DESCRIPTION **203%*

This diagnostic is associated with a subprogram call. It appears
if an actual argument in the subprogram call is a constant or an ex-
pression (excepting the trivial case where the expression is just a
variable) and the following is true: on some, but not all, paths in
the called subprogram the dummy argument corresponding to this actual
argument is assigned a value.

49
k203 EXAMPLE **203**

Program segment

BLOCK SOURCE

SUBROUTINE NSUB(R,S)
X =1.0
CALL OSUB(X,3.0,2.0)

RETURN
END

OO O WN
QOO0

BLOCK ' SOURCE

SUBROUTINE OSUB(A,B,C)
IF (A .GT. B)

S B=A4+C

A=A+C

RETURN

END

O W DN

Diagnostic (printed after subroutine NSUB)

** 203 ** BLOCK NO. 3
AN ACTUAL ARGUMENT IS AN EXPRESSION OR CONSTANT, YET THE
CORRESPONDING DUMMY ARGUMENT IS ASSIGNED A VALUE ON SOME PATHS.
CALLING SUBPROGRAM CALLED SUBPROGRAM '
—-==*NSUB#*—~ —-==%0OSUB*-~
ARGUMENT REAL e S
POSITION 2 2

50
**204 ** DESCRIPTION **204%*

This diagnostic is associated with a subprogram call. It appears
if an actual argument in the call is an expression, but not just a
variable, and the corresponding dummy argument in the called subprogram
is never referenced.

204

51

EXAMPLE *kD ()4 H*

Program segment

BLOCK SOURCE

C--MAIN PROGRAM

CALL BSUB(X,X+Y,2)

NONONS! OO0

STOP
END

U COOOOOO

BLOCK SOURCE

SUBROUTINE BSUB(A,B,C)
IF (C .LT. 0.0)

$ C = -C

A=A+ C

RETURN

END

O W N

Diagnostic (printed after main program)

*% 204 **

BLOCK NO. 4
AN ACTUAL ARGUMENT IS AN EXPRESSION OR CONSTANT, YET THE
CORRESPONDING DUMMY ARGUMENT IS NEVER REFERENCED. ;
‘ CALLING SUBPROGRAM CALLED SUBPROGRAM
-*SYSMAIN*- —-—-—*BSUB*-~
ARGUMENT EXPRESSION e A PBE e
POSITION 2 2

52

**%205%* DESCRIPTION **205%*

This diagnostic is associated with a subprogram call. It appears
if both of the following are true: an actual argument in the call is
an external procedure name; the corresponding dummy argument in the
called procedure is referenced as if it were a simple variable on some,
but not all, paths.

53

205 EXAMPLE *k205%*

Program segment

BLOCK SOURCE
1 SUBROUTINE CSUB(R,S)
1 EXTERNAL FUN
0 C .
0 C
0 ¢ .
2 CALL DSUB(X,Y, FUN)
0 C .
0 C
0 ¢C .
3 RETURN
1 END
BLOCK SOURCE
1 SUBROUTINE DSUB(A,B,C).
2 IF(A .LT. B)
3 SA = B + C
4 B =B + C(3)
5 RETURN
1 END

Diagnostic (printed after subroutine CSUB)

%k 205 **

BLOCK NO. 2.
AN ACTUAL ARGUMENT IS A PROCEDURE DECLARED EXTERNAL, YET THE
CORRESPONDING DUMMY ARGUMENT IS REFERENCED AS A VARIABLE ON
SOME PATHS.
CALLING SUBPROGRAM CALLED SUBPROGRAM
-==*CSUB*~-~ == ¥DSUB* ——
ARGUMENT ==k FUN*-~— KK e
POSITION 3 3

54

*%206** DESCRIPTION **206%*

This diagnostic is associated with a subprogram call. It appears
if both of the following are true: an actual argument in the call is
an external procedure name; the corresponding dummy argument in the
called procedure is assigned a value as if it were a simple variable
on some, but not all, paths.

55

**206%* EXAMPLE **206%*

Program segment

BLOCK SOURCE
1 SUBROUTINE RSUB(R,S)
1 EXTERNAL FUN
0 C .
0 C
0 C .
2 CALL SSUB(X,Y, FUN)
0 C .
0 C
0 C .
3 RETURN
1 END
BLOCK SOURCE

SUBROUTINE SSUB(A,B,C)
IF (A .LT. B)
SC=A+B

RETURN

END

s W Do

Diagnostic (printed after subroutine RSUB)

** 206 ** BLOCK NO. 2

AN ACTUAL ARGUMENT IS A PROCEDURE DECLARED EXTERNAL, YET THE
CORRESPONDING DUMMY ARGUMENT, USED AS A VARIABLE, IS ASSIGNED
A VALUE ON SOME PATHS.
CALLING SUBPROGRAM CALLED SUBPROGRAM
~==*RSUB* -~ ~==*SSUB* -~
ARGUMENT ==K FUN*——- ————*CK e
POSITION 3 3

56

*HD ()7 % DESCRIPTION *xD()7*%

This diagnostic is associated with a subprogram. It appears if
a dummy argument in the subprogram declaration is never used.

57
207 ** EXAMPLE | **207

Program segment

BLOCK SOURCE
1 SUBROUTINE TSUB(X,I)
2 X=X+ 3.0
3 CALL SUB(X,J)
4 RETURN
1 END

Diagnostic

** 207 ** DUMMY ARGUMENT ====*I%*-——- TS5 NEVER USED.

58
208 DESCRIPTION *R208**

This diagnostic is associated with a subprogram call. It appears
if a dummy argument is bound to a COMMON variable because of the sub-
program call and execution of the subprogram causes an assignment of
a value to the variable on some, but not all, paths.

208

Program

59

EXAMPLE * %D ()Q**

segment

BLOCK SOURCE

SUBROUTINE USUB(R,S)
COMMON A,B,C

-

oEON®!

CALL VSUB(C,D,E)

-

ONOK®!

RETURN
END

-~ WO OONCOCO O

BLOCK SOURCE

SUBROUTINE VSUB(T,U,V)
COMMON F,G,H

IF (U .LT. V)

ST =T+ 1

RETURN

END

W N

Diagnostic (printed after subroutine USUB)

%k 208 **

BLOCK NO. 2
A SUBPROGRAM REFERENCE CAUSES DUMMY ARGUMENT =—=———*T*————
TO BECOME ASSOCIATED WITH A COMMON VARIABLE IN THE CALLED
SUBPROGRAM. ~—-=-=%T#%-—-—- TS ASSIGNED A VALUE ON SOME PATHS.
CALLING SUBPROGRAM CALLED SUBPROGRAM
———*USUB*~~ -—=*VSUB*--
ARGUMENT e N ST e KK e m

COMMON VARIABLE e KK e SRSV 1) & £ Zau—

60

209%* DESCRIPTION *k209

This diagnostic is associated with a main program and the use of
a COMMON variable. It appears if on some, but not all, paths in the
main program an undefined variable is referenced. The reference of
the undefined variable might occur within a procedure called directly
or indirectly by the main program.

61

H209% EXAMPLE **209**

Program segment

BLOCK SOURCE
0 C--MAIN PROGRAM
1 COMMON /LAB/ J1,J2
2 X = 1.0
3 CALL ASUB(X,Y)
0 C .
0 C
0 C .
1 END
BLOCK SOURCE
1 BLOCK DATA
1 COMMON /LAB/ K1,K2
1 DATA K1/3/
1 END
BLOCK SOURCE
1 SUBROUTINE ASUB(A,B) |
1 COMMON /LAB/ L1,L2
2 IF(L1 .LT. 1)
3 $ RETURN
4 Ll = L2-1
0 C .
0 C
0 C .
5 RETURN
1 END

Diagnostic (printed after main program)

k% D09 k%

NOTE 1

COMMON VARIABLE -~-=-=*J2%*-—~ IN COMMON BLOCK —-=-*[AB#*=-— IS
REFERENCED ON SOME PATHS IN THE MAIN PROGRAM, YET IT HAS NOT

PREVIOUSLY BEEN ASSIGNED A VALUE, NOR HAS IT BEEN INITIALIZED
IN BLOCK DATA. (SEE NOTE 1)

ALTHOUGH DETECTED IN THIS SUBPROGRAM, THE CAUSE FOR THIS
DIAGNOSTIC MAY HAVE OCCURRED AT A DEEPER LEVEL OF SUBPROGRAM
REFERENCES AND BEEN PROPAGATED UP TO THIS ONE.

62

2] 0 DESCRIPTION *HR210%*

This diagnostic is associated with a subprogram and the use of a
COMMON variable. It appears if on some, but not all, paths in a sub-
program an undefined variable is referenced. The reference of the
undefined variable might occur within a procedure called directly or
indirectly by the subprogram.

64

*R2]T** DESCRIPTION ke B Rkl

This diagnostic is associated with the control variable of a DO
loop. It appears if on some, but not all, paths from the closing
statement of the DO Toop the control variable 1s'referenced before
being defined. (The control variable is undefined when the DO loop

is satisfied and an exit is made from the closing statement of the DO
Toop.)

63

QT1Q EXAMPLE *XQ10**
Program segment
BLOCK SOURCE
0 C
0 C
0 C .
0 C--MAIN PROGRAM
4 Y = 1.0
5 CALL BSUB(Y,Z)
0 C .
0 C .
0 C .
6 STOP
1 END
BLOCK SOURCE
1 BLOCK DATA
1 COMMON /LB/ J1,J2
1 DATA J1/3/
1 END
BLOCK SOURCE
1 SUBROUTINE BSUB(A,B)
1 COMMON /LB/ L1,L2
2 CALL CSUB(A)
0 C .
0 C
0 C .
3 RETURN
1 END
BLOCK SOURCE
1 SUBROUTINE CSUB(Z)
1 COMMON /LB/ M1,M2
2 IF (M1 .LT. 1)
3 S RETURN
4 M1 = M2 - 1
0 C .
0 C .
0 C .
5 RETURN
1 END
Diagnostic (printed after main program)

*% 210 ** COMMON VARIABLE -—---—*[2%--- IS REFERENCED ON SOME PATHS IN
CALLED SUBPROGRAM =---*BSUB*--, YET IS NOT INITIALIZED.
IT DOES NOT APPEAR IN BLOCK DATA, AND ITS COMMON BLOCK
——em ¥ B¥——— TS NOT AVAILABLE TO CALLING SUBPROGRAM
~*SYSMAIN*-—, (SEE NOTE 1)

NOTE 1

ALTHOUGH DETECTED IN THIS SUBPROGRAM, THE CAUSE FOR THIS
DIAGNOSTIC MAY HAVE OCCURRED AT A DEEPER LEVEL OF

REFERENCES AND BEEN PROPAGATED UP TO THIS ONE.

SUBPROGRAM

65

*HR2 T ** EXAMPLE *R2T 1 **

Program segment

BLOCK. SQURCE

0 C--MAIN PROGRAM
0 C -~
0 C
0 C .

12 DO 100 I = 1,20
0 C .
0 C
0 C .

13 100 CONTINUE

14 IF (X .LT. Y)

15 $ STOP

16 X = A(I)
0 C .
0 C
0 C .
1 END

Diagnostic
*% 211 ** CONTROL VARIABRLE —--===%J%*—w-~ BECOMES UNDEFINED UPON SATISFACTION
OF ITS DO LOOP AT BLOCK NO. 13, YET IS REFERENCED ON SOME

PATHS THEREAFTER.
ONE SUCH PATH, INDICATED BY BLOCK NUMBERS, IS
13 14 16

66

%272% DESCRIPTION *XP] 2%*

This diagnostic is associated with the use of a local variable in
a main program or subprogram. It appears if the local variable is
referenced while undefined on some, but not all, paths from the entry
point. The reference might occur within a subprogram called directly
or indirectly from this program unit.

67

K2 2 %% EXAMPLE xR 2%

Program segment

BLOCK SOURCE
1 SUBROUTINE WSUB(X,Y)
2 K =1
3 IF (X .LT. Y)
4 $ CALL XSUB(J,K)
0 ¢C .
0 ¢C
0 C .
5 RETURN
1 END
BLOCK SOURCE
1 SUBROUTINE XSUB(L,M)
2 IF(M.GT.1)
3 $L=L+1
4 RETURN
1 END

Diagnostic (printed after subroutine WSUB)

¥ 212 ** LOCAL VARIABLE ----%*J*-——— IS REFERENCED BEFORE BEING
ASSIGNED A VALUE ON SOME PATHS.

ONE SUCH PATH, INDICATED BY BLOCK NUMBERS, IS
1 - 4

68
**2]3%* DESCRIPTION **D]3x*
This diagnostic is associated with a subprogram call. It appears

if the data type of an actual argument differs from the data type of
the corresponding dummy argument in the called subprogram.

69

*k213** EXAMPLE *x Q] 3x*

Program segment

BLOCK SOURCE
0 C--MAIN PROGRAM
17 B=1.0 ,
18 CALL ESUB(C,J)
0 C .
0 C
0 C .
19 STOP
1 END
BLOCK SOURCE

SUBROUTINE ESUB(X,Y)
X =Y + 1.0

RETURN
END

HwooONH
[eNeXP!

Diagnostic (printed after main program)

*% 213 ** BLOCK NO. 18 ,
CORRESPONDING ARGUMENTS HAVE DIFFERENT DATA TYPES.
CALLING SUBPROGRAM CALLED SUBPROGRAM

-*SYSMAIN* - ~——*ESUB*~~
ARGUMENT SN, ek Yk e
POSITION 2 2

DATA TYPE INTEGER REAL

70

k2T4% DESCRIPTION xR 4%

This diagnostic is associated with a subprogram call. It appears
if the data type of a COMMON variable in the calling program unit
differs from the data type of the corresponding COMMON variable in the
called subprogram.

71
xR 4 %% EXAMPLE *X2V4*x*

Program segment

BLOCK | SOURCE

SUBROUTINE DSUB (X,Y)
COMMON /BLK/J,K,F
L =1

Q00N

CALL ESUB(A,B)

QOO0

RETURN
END

HdOOOWTCOONHH

BLOCK . SOURCE

SUBROUTINE ESUB(C,D)
COMMON /BLK/ L,M,N
N =0

YO K®!

RETURN
END

=W OO ONM

Diagnostic (printed after subroutine DSUB)

** 214 ** CORRESPONDING COMMON VARIABLES IN CGMMON BTOCK‘——é*BLK*~—“
, HAVE DIFFERENT DATA TYPES.

CALLING SUBPROGRAM CALLED SUBPROGRAM

~——*DSUB*—~ ~=—*ESUB*~~
VARIABLE ————k Pk B N I —

DATA TYPE REAL ; INTEGER

72

%2] Hx DESCRIPTION *k2]5%*

This diagnostic is associated with a subprogram call. It appears
if an actual argument in the subprogram call has a dimension different
from that of the corresponding dummy argument in the called subprogram.

73

*K21 5% EXAMPLE *k215%*

Program segment

BLOCK SOURCE
0 C--MAIN PROGRAM
1 DIMENSION A(10,10)
0 C)
0 C
0 C .
2 CALL ASUB(A, B)
0 C
0 C
0 C)
1 END
BLOCK SOURCE

SUBROUTINE ASUB(C,D)
DIMENSION C(100)

RETURN
END

HNOOOHH
[OROKP!

Diagnostic (printed after main program)

** 215 ** BLOCK NO. 2
CORRESPONDING ARGUMENTS HAVE DIFFERENT DIMENSIONALITY.
CALLING SUBPROGRAM CALLED SUBPROGRAM

~*SYSMAIN* - -k AGUR*~—
ARGUMENT ——— K DK e SIS Yok Jevuppn
POSITION 1 1

DIMENSIONS 2 1

74

*Kk21 6% * DESCRIPTION **216%*

This diagnostic is associated with a subprogram call and a COMMON
variable. It appears if both of the following are true: on every path
in the called subprogram the last use of the COMMON variable is a
definition of it; the COMMON block for the variable is not available
to the calling subprogram.

75

2] 6 EXAMPLE **216**

Program segment

BLOCK SOURCE
0 C--MAIN PROGRAM
3 X = 1.0
4 CALL BSUB(X,Y)
0 C .
0 C
0 C .
1 END
BLOCK SOURCE
1 SUBROUTINE BSUB(C,D)
1 COMMON /BLOCK/ K
2 K =1
3 D=C+ 3.0
4 RETURN
1 END

Diagnostic (printed after main program)

** 216 ** COMMON VARIABLE ~---*K*-—--— IS ASSIGNED A VALUE ON ALL PATHS
IN CALLED SUBPROGRAM ---*BSUB*--, YET ITS COMMON BLOCK

-=*BLOCK*-- IS NOT AVAILABLE TO CALLING SUBPROGRAM —-*SYSMAIN*-.
HENCE, A COMPUTED VALUE WILL BE LOST. (SEE NOTE 1)

NOTE 1 ALTHOUGH DETECTED IN THIS SUBPROGRAM, THE CAUSE FOR THIS |
——— DIAGNOSTIC MAY HAVE OCCURRED AT A DEEPER LEVEL OF SUBPROGRAM
REFERENCES AND BEEN PROPAGATED UP TO THIS ONE.

76

*R217** DESCRIPTION ¥R T**

This diagnostic is associated with a subprogram call and a COMMON
variable. It appears if both of the following are true: on some, but
not all, paths in the called subprogram the last use of the COMMON
variable is a definition of it; the COMMON block containing this
COMMON variable is not available to the calling subprogram.

77

kK21 T** EXAMPLE kA WA

Program segment

BLOCK . SOURCE
0 C--MAIN PROGRAM
5 Y = 1.0
6 CALL CSUB(Y,7)
0 C .
0 C
0 C .
1 END
BLOCK SOURCE
1 SUBROUTINE CSUB(C,D)
1 COMMON /BLK/ K
2 CALL CCSUB(C)
3 D =2C + 3.0
4 RETURN
1 END
BLOCK SOURCE
1 SUBROUTINE CCSUB (E)
1 COMMON /BLK/ K
2 IF (E .LT. 0.0)
3 S K =1
4 RETURN
1 END

Diagnostic (printed after the main program)

Ck*x 217 **% COMMON VARIABLE ————*K*——~— IS ASSIGNED A VALUE ON SOME PATHS
IN CALLED SUBPROGRAM ---*CSUB*--, YET ITS COMMON BLOCK i
-==*BLK*--- IS NOT AVAILABLE TO CALLING SUBPROGRAM
-*SYSMAIN*-. HENCE, A COMPUTED VALUE MAY BE LOST. (SEE
NOTE 1) o :

NOTE 1 ALTHOUGH DETECTED IN THIS SUBPROGRAM THE CAUSE FOR THIS
———— DIAGNOSTIC MAY HAVE OCCURRED AT A DEEPER LEVEL OF SUBPROGRAM
REFERENCES AND BEEN PROPAGATED UP TO THIS ONE.

78

*Fh2]8** DESCRIPTION **218x*

This diagnostic is associated with a subprogram call and a
COMMON variable initialized in BLOCK DATA. It appears if both of the
following are true: on all paths in the called subprogram the last
use of the COMMON variable is a definition of it; the COMMON block
containing this COMMON variable is not available to the calling
subprogram.

79

218 EXAMPLE **278**

Program segment

BLOCK | SOURCE
0 C
0 C
0 C--MAIN PROGRAM
7 CALL DSUB(U,V)
0 C)
0 C
0C)
1 END
BLOCK SOURCE
1 BLOCK DATA
1 COMMON /BLOK/ K
1 DATA K/1/
1 END
BLOCK SOURCE
1 SUBROUTINE DSUB (A, B)
1 COMMON /BLOK/ K
2 K = K + 1
0 C
0 C
0 C i
3 RETURN
1 END

Diagnostic (printed after main program)

*% 218 ** COMMON VARIABLE —=-—=*K*-——- IS INITIALIZED IN BLOCK DATA.
IT IS ASSIGNED A VALUE ON ALL PATHS IN CALLED SUBPROGRAM !
-—-=-*DSUB*~-, YET ITS COMMON BLOCK ---*BLOK*-- IS NOT AVAILABLE
TO CALLING SUBPROGRAM -*SYSMAIN*-. HENCE, UNDEFINITION WILL
OCCUR UPON EXIT FROM ---*DSUB*--. (SEE NOTE 2)

NOTE 2 IF MESSAGE 301 CONCERNING THIS VARIABLE APPEARS IN THE
———— OUTPUT, IT MAY PROVIDE ADDITIONAL USEFUL INFORMATION
ABOUT THE DATA FLOW AMONG SUBPROGRAMS.

80

h2]9% DESCRIPTION *%219%*

This diagnostic is associated with a subprogram call and a COMMON
variable initialized in BLOCK DATA. It appears if both of the follow-
ing are true: on some, but not all, paths in the called subprogram
the Tast use of the COMMON variable is a definition of it; the COMMON
block containing this COMMON variable is not available to the calling
subprogram. This diagnostic is Tike 218 except it applies to some,
but not all, paths.

81

*H 2 gk EXAMPLES *%219%*

Program segment

BLOCK SOURCE

0 C
0 C--MAIN PROGRAM
8 CALL ESUB(U,V)
0 C
0 C
0 C .
9 STOP
1 END

BLOCK SOURCE
1 BLOCK DATA
1 COMMON /BLCK/ L
1 DATA L /1/
1 END

BLOCK SOURCE
1 SUBROUTINE ESUB(A, B)
1 COMMON /BLCK/ K
2 READ (5,100) A,B
3 IF (A .LT. B)
4 $ K=K+ 1
5 RETURN
0 100 FORMAT (2E10.0)
1 END

Diagnostic (printed after main program)

**% 219 ** COMMON VARIABLE ----*K*-—-— IS INITIALIZED IN BLOCK DATA.

IT IS ASSIGNED A VALUE ON SOME PATHS IN CALLED SUBPROGRAM

—-—-=-*ESUB*~--, YET ITS COMMON BLOCK ~---*BLCK*-- IS NOT AVAILABLE
TO CALLING SUBPROGRAM -*SYSMAIN*-. HENCE, UNDEFINITION MAY

OCCUR UPON EXIT FROM —---*ESUB*--. (SEE NOTE 2)

IF MESSAGE 301 CONCERNING THIS VARIABLE APPEARS IN THE
OUTPUT, IT MAY PROVIDE ADDITIONAL USEFUL INFORMATION
ABOUT THE DATA FLOW AMONG SUBPROGRAMS.

82

**220%* DESCRIPTION **220%*

This diagnostic is associated with the use of a local variable in
a subprogram. It appears if both of the following are true: the
local variable is initialized in a DATA statement; on every path in the
subprogram this local variable is assigned a value.

83

R220% EXAMPLE *KR220%*

Program segment

BLOCK SOURCE
1 SUBROUTINE HSUB(X,Y)
1 DATA K/0/
2 K=K+ 1
0 C .
0 C
0 C .
3 ' RETURN
1 END

Diagnostic
*% 220 ** [OCAL VARIARLE == R e INITIALIZED IN A DATA STATEMENT,

IS ASSIGNED A VALUE ON ALL PATHS. UNDEFINITION WILL OCCUR
UPON EXIT FROM THIS SUBPROGRAM. :

84

xR ** DESCRIPTION *kQ2] **

This diagnostic is associated with the use of a local variable
in a subprogram. It appears if both of the following are true: the
local variable is initialized in a DATA statement; on some, but not all,
paths in the subprogram this local variable is assigned a value. This
diagnostic is like 220 except it applies to some, but not all, paths.

85

*k221** EXAMPLE *FHR22] **

Program segment

BLOCK SOURCE
1 SUBROUTINE ISUB(X,Y)
1 DATA K/0/
2 IF (K .NE. 0)
3 $ RETURN
4 K =1
0 C
0 C
0 C .
5 RETURN
1 END

Diagnostic
*% 221 ** LOCAL VARIABLE ----*K*----, INITIALIZED IN A DATA STATEMENT,

IS ASSIGNED A VALUE ON SOME PATHS. UNDEFINITION MAY OCCUR
UPON EXIT FROM THIS SUBPROGRAM.

86

**P22%% DESCRIPTION *hP22%*

This diagnostic appears after a subprogram if some dummy argu-
ment for the subprogram is defined in a statement and on all paths

from the point of definition both of the following are true: there

is another definition of the dummy argument; between the two points
of definition there is no reference of the dummy argument.

87

HRP22% EXAMPLE *KRQ22%*

Program segment

BLOCK SOURCE

SUBROUTINE JSUB(X,Y)
X = 1.0

IF (Y .LT. 0.0)

SY =Y+ 1.0

X =Y %% 2

RETURN

END

O U WN

Diagnostic

** 222 ** DUMMY ARGUMENT —----*X*--——- IS ASSIGNED A VALUE IN BLOCK
NO. 2 AND IS ASSIGNED A VALUE THEREAFTER BEFORE BEING
REFERENCED, ON ALL PATHS.

ONE SUCH PATH, INDICATED BY BLOCK NUMBERS, IS
2 - 5

88
RP23% DESCRIPTION *HQ23%*

This diagnostic appears after a subprogram if some dummy argu-
ment for the subprogram is defined in a statement and both of the fol-
lowing are true on some, but not all paths, from the point of defini-
tion: (1) there is a second definition of the dummy argument; (2)
between the two points of definition there is no reference of the .
dummy argument. This diagnostic is 1ike 222 except it applies to
some, but not all, paths.

89

QP3 EXAMPLES *k 223 %%
Program segment
BLOCK SOURCE
1 SUBROUTINE KSUB(X,Y)
2 X =1.0
3 IF (Y .LT. 0.0)
4 $ RETURN
5 X = Y**2
6 RETURN
1 END
Diagnostic
** 223 ** DUMMY ARGUMENT ----*X*-——- IS ASSIGNED A VALUE IN BLOCK

NO. 2 AND IS ASSIGNED A VALUE THEREAFTER BEFORE BEING

REFERENCED, ON SOME PATHS. |

ONE SUCH PATH, INDICATED BY BLOCK NUMBERS, IS
2 3 5

90

*Kk224%% DESCRIPTION xR 224 %%

This diagnostic appears after a subprogram if some COMMON variable
is defined in a statement and on all paths from the point of definition
both of the following are true: there is another definition of the
COMMON variable; between the two points of definition there is no
reference of the COMMON variable.

91
*kQ24 %% EXAMPLE x4 %%

Program segment

BLOCK SOURCE
1 SUBROUTINE FSUB(Y)
1 COMMON /BLOC/ X
2 X = 1.0
3 IF (Y .LT. 0.0)
4 $ Yy =1.0
5 X = YH*2
6 RETURN
1 END

Diagnostic
%% 224 ** COMMON VARIABLE ——---*X%———- IS ASSIGNED A VALUE IN BLOCK
NO. 2 AND IS ASSIGNED A VALUE THEREAFTER BEFORE BEING

REFERENCED, ON ALL PATHS. l

ONE SUCH PATH, INDICATED BY BLOCK NUMBERS, IS
2 - 5

92

*hP25** DESCRIPTION *HhP25%*

This diagnostic appears after a subprogram if some COMMON variable
is defined in a statement and on some, but not all, paths from the
point of definition both of the following are true: (1) there is
another definition of the COMMON variable; (2) between the two points
of definition there is no reference of the COMMON variable. This
diagnostic is 1ike 224 except it applies to some, but not all, paths.

93

**225%* EXAMPLE *KQ25%*

Program segment

BLOCK SOURCE
1 SUBROUTINE GSUB(Y)
1 COMMON /CMBLK/ X
2 X = 1.0 :
3 IF (Y .LT. 0.0)
4 $ RETURN
5 X = Y**2
6 RETURN
1 END
Diagnostic
k% 225 %% COMMON VARIABLE —-—-—*X*-—-—- IS ASSIGNED A VALUE IN BLOCK
NO. 2 AND IS ASSIGNED A VALUE THEREAFTER BEFORE BEING

REFERENCED, ON SOME PATHS.

ONE SUCH PATH, INDICATED BY BLOCK NUMBERS, IS
2 3 5

94
KP26% DESCRIPTION **226%*

This diagnostic appears after the main program if some COMMON
variable is defined in a statement and on all paths from the point
of definition both of the following are true: there is another defini-
tion of the COMMON variable, or an undefinition of the COMMON variable
(a STOP statement does this); between the first definition and the
second definition, or undefinition, there is no reference of the
COMMON variable.

95

KRP26% EXAMPLE *K226%*

Program segment

BLOCK SOURCE
0 C--MAIN PROGRAM
1 COMMON /BLK/ X
2 X = 1.0
3 READ (5,100) Y
4 IF(Y .LT. 0.0)
5 S STOP
6 X = Y*¥*)
0 C
0 C
0 C .
7 STOP
0 100 FORMAT (F3.0)
1 END
Diagnostic
**% 226 ** IN THE MAIN PROGRAM, COMMON VARIABLE ~---*X*———— IS
ASSIGNED A VALUE IN BLOCK NO. 2 AND IS EITHER

ASSIGNED A VALUE THEREAFTER BEFORE BEING REFERENCED,
OR IS NOT SUBSEQUENTLY REFERENCED, ON ALL PATHS.

ONE SUCH PATH, INDICATED BY BLOCK NUMBERS, IS
2 - 5

96

*KRQ2T** DESCRIPTION **P27**

This diagnostic appears after the main program if some COMMON
variable is defined in a statement and on some, but not all, paths
from the point of definition both of the following are true: there
is another definition of the COMMON variable or a STOP statement;
between the first definition and the second definition, or STOP
statement, there is no reference of the COMMON variable.

97

*XQ27** EXAMPLES *KRQ27**

Program segment

BLOCK SOURCE

0 C--MAIN PROGRAM
1 COMMON /BLOCK/ X
2 X =1.0
3 READ (5,100) Y
4 IF (Y .LT. 0.0)
5 S STOP
6 Y = X**2
0 C
0 C
0 C .
0 100 FORMAT (F3.0)
1 END
Diagnostic
*% 227 ** IN THE MAIN PROGRAM, COMMON VARIABLE ——=—*X%-——- IS
ASSIGNED A VALUE IN BLOCK NO. 2 AND IS EITHER

ASSIGNED A VALUE THEREAFTER BEFORE BEING REFERENCED,
OR IS5 NOT SUBSEQUENTLY REFERENCED, ON SOME PATHS.

ONE SUCH PATH, INDICATED BY BLOCK NUMBERS, IS
2 - 5

98

K228% DESCRIPTION **P28%*

This diagnostic appears after the main program if an element of
an array in COMMON is defined in a statement and on every path from
this point of definition there is no reference to any element of the

array.

99

kP28% EXAMPLE *k228%*

Program segment
BLOCK SOURCE

c

C

C--MAIN PROGRAM
COMMON /BLCK/ A(20)
READ (5,150) U,V
DO 10 K = 1,20

A(20) = U
CONTINUE

—
<

NOT USED IN ANY STATEMENT)

OO0 0N
—~
hag

150 FORMAT (2F3.0)
END

HOOOOOOOOUTAEWNHOOO

Diagnostic

*% 228 *%* IN THE MAIN PROGRAM, AN ELEMENT OF THE COMMON ARRAY
———-*A%-——— IS ASSIGNED A VALUE IN BLOCK NO. 4 |
AND THE ARRAY IS NOT SUBSEQUENTLY REFERENCED ON ANY PATH.

100

**229%* DESCRIPTION *KP29%*

This diagnostic appears after a program unit if a local variable
is defined in a statement and on every path from this statement one of
the following is true: there is another definition of the variable
and between the first definition and the second definition there is no
reference of the variable; a RETURN or STOP statement is reached
and there is no reference of the variable between the first definition
and the RETURN or STOP.

101
**229%* EXAMPLE *Kk229%*

Program segment

BLOCK SOURCE

1 SUBROUTINE HSUB(X,Y)
2 J =1
3 IF (X .LT. 0.0)
4 S J = 2
5 Y=Y + 1
6 RETURN
1 END
Diagnostic
*% 229 ** LOCAL VARIABLE ~---*J#%-——- IS ASSIGNED A VALUE IN BLOCK
NO. 2 AND IS EITHER ASSIGNED A VALUE THEREAFTER BEFORE

BEING REFERENCED, OR IS NOT SUBSEQUENTLY REFERENCED,
ON ALL PATHS.
ONE SUCH PATH, INDICATED BY BLOCK NUMBERS, IS

2 3 4

102

**230%* DESCRIPTION **230%*

This diagnostic appears after a program unit if a Tocal variable
is defined in a statement and on some, but not all, paths from this
statement one of the following is true: there is another definition
of the variable and between the first definition and the second defi-
nition there is no reference of the variable; a RETURN or STOP state-
ment is reached and there is no reference of the variable between the
first definition and the RETURN or STOP

103

K230% EXAMPLE **k230**

Program segment

BLOCK SOURCE
1 SUBROUTINE SUB(X,Y)
2 J =1
3 IF(X .LT. Y)
4 S RETURN
5 Y =J +1
6 RETURN
1 END

Diagnostic
*% 230 ** LOCAL VARIABLE ~-—==*J%———- I§ ASSIGNED A VALUE IN BLOCK
‘ NO. 2 AND IS EITHER ASSIGNED A VALUE THEREAFTER BEFORE

BEING REFERENCED, OR IS NOT SUBSEQUENTLY REFERENCED,
ON SOME PATHS.

ONE SUCH PATH, INDICATED BY BLOCK NUMBERS, IS
2 3 4

104

*FRP3T** DESCRIPTION *FR23T**

This diagnostic appears after a program unit if an element of a
local array is defined in a statement and on all paths from this
statement to a RETURN or STOP statement there is no reference to any
element of the local array.

105

P 3] ** EXAMPLE *E23]

Program segment

BLOCK SOURCE

1 SUBROUTINE JSUB(X,Y)
1 DIMENSION A (10)
2 DO 10 K = 1,10
3 A(K)y = 0.0
4 10 CONTINUE
5 X=X +Y
6 RETURN
1 END
Diagnostic
*% 231 ** AN ELEMENT OF THE LOCAL ARRAY ----*A*-—-- IS ASSIGNED A VALUE
IN BLOCK NO. 3 AND THE ARRAY IS NOT SUBSEQUENTLY “

REFERENCED ON ANY PATH.

106

k232H DESCRIPTION **232%*

This diagnostic is associated with a subprogram call. It appears
if both of the following are true: the same argument appears more
than once as an actual argument; in one appearance it is strict input
for the called subprogram and in the other appearance it is strict
output for the called subprogram. This diagnostic appears also when
there is more than one subprogram call in a statement as in

Y=AFUN(B,D) + BFUN(B,E)

where B is strict input for BFUN and strict output for AFUN.

107

**P 32K EXAMPLE *KRD32H*

Program segment

BLOCK SQURCE
u Cc
0 C
0 C--MAIN PROGRAM
11 Z = 1.0
12 CALL ASUB(Z,%Z,W)
0 C .
0 C
0 ¢ .
1 END
BLOCK SOURCE
1 SUBROUTINE ASUB(A,B,C)
2 A =1.0
3 C =1.0
4 IF (B .LT. 0.0)
5 S C = 2.0
6 RETURN
1 END

Diagnostic (printed after main program)

**% 232 ** BLOCK NO. 12
A POSSIBLE ILLEGAL SIDE EFFECT HAS BEEN DETECTED. IT OCCURS
VIA A VARIABLE PASSED IN AN ARGUMENT LIST. THIS VARIABLE
HAS APPEARED AT LEAST TWICE IN A STATEMENT -- IN ONE
APPEARANCE IT IS USED AS STRICT INPUT AND IN THE OTHER AS
STRICT OUTPUT.
CALLING SUBPROGRAM CALLED SUBPROGRAM
~*SYSMAIN*- -——*ASUB*~-—
ARGUMENT e akalt el s et
POSITION 2 2

108
*K233** DESCRIPTION *Kk233**

This diagnostic is associated with a subprdgram call and a COMMON
variable. It appears if both of the following are true: a COMMON
variable is used more than once in execution of the statement; in one
case it is used as strict input and in the other it is used as strict
output.

109

*FKP233** - EXAMPLE *kP33%*

Program segment

BLOCK SOURCE
0 C--MAIN PROGRAM
1 COMMON /BLK/ C,D
2 C =1.0
3 A= 2.0
4 Y = C + FUN(A)
0 C .
0 C
0 C .
5 STOP
1 END
BLOCK SOURCE
1 FUNCTION FUN(Y)
1 COMMON /BLK/ C,D
2 FUN = Y**2 4+ Y + 1.0
3 C=Y~-1.0
0 C
0 C
0 C .
4 RETURN
1 END
Diagnostic
¥% 233 ** BLOCK NO. 4

A POSSIBLE ILLEGAL SIDE EFFECT HAS BEEN DETECTED. IT OCCURS
VIA A COMMON VARIABLE WHICH HAS BEEN REFERENCED (POSSIBLY
INDIRECTLY) AT LEAST TWICE IN A STATEMENT -- IN ONE APPEAR-
ANCE IT IS USED AS STRICT INPUT AND IN THE OTHER AS STRICT
OUTPUT.
CALLING SUBPROGRAM CALLED SUBPROGRAM
~*SYSMAIN*- ———*PUN* ==~
VARIABLE L JOL I e CL
COMMON BLOCK ~—=*BLK*——— ~—=*BLK*=-—-

110

**234 %% DESCRIPTION *KQ234%*

This diagnostic appears after a program unit if a statement refer-
encés an arithmetic statement function and both of the following are
true: a variable is used twice in execution of the statement; in one
case it is used as strict input and in the other it is used as strict
output.

111

*X234 %% EXAMPLE ‘ *HRQ34 %%

Program segment

BLOCK ' SOURCE
0 C--MAIN PROGRAM
1 AFUN(X,Y) = BFUN(C) + X + Y
0 C)
0 C
0 C)
2 7 = AFUN(E,F) + C
0 C)
0 C
0 C .
1 END

BLOCK SOURCE
1 FUNCTION BFUN (D)
2 D =D+ 1
3 RETURN
1 END

Diagnostic
** 234 ** BLOCK NO. 2

A POSSIBLE ILLEGAL SIDE EFFECT HAS BEEN DETECTED. IT OCCURS
VIA A GLOBAL VARIABLE REFERENCED IN AN ARITHMETIC STATEMENT
FUNCTION. THIS VARIABLE HAS APPEARED AT LEAST TWICE IN A
STATEMENT -- IN ONE APPEARANCE IT IS USED AS STRICT INPUT AND
IN THE OTHER AS STRICT OUTPUT.
CALLING SUBPROGRAM CALLED SUBPROGRAM
-*SYSMAIN*- ~==*AFUN*~—-
VARIABLE ———m*CHh e i O

112

**235%* DESCRIPTION **PJ5%*

This diagnostic appears after a program unit if the program unit
is never referenced as an external procedure.

*%kP35%%

Program {complete)

BLOCK

0
1
2
3
0
1

BLOCK

=W N

113

EXAMPLE

SOURCE

C--MAIN PROGRAM

100

READ(5,100) X
READ(6,100) X
STOP
FORMAT (E20.10)
END

SOURCE

SUBROUTINE CSUB(Y) |

Y=Y +1
RETURN
END

Diagnostic (printed after subroutine CSUB)

*% 235 ** SUBPROGRAM ---*CSUB*-- IS NEVER CALLED.

235

114

*k230** DESCRIPTION *Kk236%*

This diagnostic appéars after a program unit if a local variable
is not defined in any statement.

115

**236%* EXAMPLE **236%*

Program segment

BLOCK SOURCE

SUBROUTINE DSUB(X,Y)
INTEGER 7%

IF (X .LT. Y)

$§ X =X +1

RETURN

END

b= > WD

Diagnostic

** 236 ** LOCAL VARIABLE ----*Z*-——- IS NEVER ASSIGNED A VALUE.

116

*Kk237** DESCRIPTION *KQ37 **

This diagnostic appears after a program unit if the following
is true: a variable in COMMON has a data type which is different
from the data type of the same variable used in BLOCK DATA.

117

*k237** EXAMPLE xR 3T **

Program segment

BLOCK SOURCE
1 BLOCK DATA
1 COMMON /CMBLK/ A,B,C
1 DATA A,B,C/1.0,2.0,3.0/
1 END
BLOCK SOURCE

SUBROUTINE SUB(X)
COMMON /CMBLK/ N,O,P

RETURN
END

HNO OO -
Q00N

Diagnostic (printed after subroutine SUB)

** 237 ** CORRESPONDING COMMON VARIABLES IN COMMON BLOCK —-*CMBLK*--

HAVE DIFFERENT DATA TYPES IN SUBPROGRAM =—=*SUB*=~~
AND BLOCK DATA.

SUBPROGRAM BLOCK DATA
ek GUR*—~—
VARIABLE S S —— S

DATA TYPE INTEGER REAL

118

119

2.5 Message Diagnostics

There are four message diagnostics. They are described below
in numerical order. In the DAVE output these diagnostics are
printed immediately after the 1isting of the program unit to which
they refer. They follow the warning diagnostics.

120

*%*307** DESCRIPTION **307 **

This diagnostic identifies a COMMON variable initialized in BLOCK
DATA. It appears after the program unit, highest in the call graph, in
which the COMMON variable is classified as input or strict input.

121

**307 ** EXAMPLE **307 **

Program segment

BLOCK SOURCE
0 C
0 C
0 C--MAIN PROGRAM ¥

1 COMMON /BLK/ A,B

2 B=A+1
0 C
0 C
0 C .
1 END

BLOCK SOURCE
1 BLOCK DATA
1 COMMON /BLK/ X,Y
1 DATA X/1.0/
1 END

Diagnostic
*% 301 ** COMMON VARIABLE —~———#A%———— IN BLOCK ~--*BLK*--- OF

SUBPROGRAM -*SYSMAIN*- IS INITIALIZED IN BLOCK DATA.

122

302%* DESCRIPTION *k302

This appears with a program unit if a COMMON block is available
to it but is not declared in it.

123

**302%* EXAMPLE **302%*

Program segment

BLOCK SOURCE

0 C
0 C--MAIN PROGRAM
1 COMMON /BLOCK/ C,D
0 C .
0 C
0 C .
6 CALL ASUB(U,V)
0. C .
0 C
0 C .
7 STOP
1 END

BLOCK SOURCE

SUBROUTINE ASUB(C,D)
CALL BSUB (D)

RETURN
END

HWOOOMNH
eNoXe!

BLOCK , SOURCE

SUBROUTINE BSUB (F)
COMMON /BLOCK/ U,V

RETURN
END

,\f—-‘JK\JOOC}P“!—‘
OO0

Diagnostic (printed after subroutine ASUB)

~*% 302 ** THE FOLLOWING COMMON BLOCKS, ALTHOUGH NOT EXPLICITLY IN
SUBPROGRAM ---*ASUB*--, ARE AVAILABLE TO IT.

COMMON BLOCK AVAILABILITY

—~*BLOCK*-~ ALWAYS

124

*%*303** DESCRIPTION *%303%*

This diagnostic is associated with COMMON variables. A1l COMMON
variables used are listed by COMMON block.

125

303 EXAMPLE *¥*303**

Program segment

BLOCK SOURCE
1 SUBROUTINE DSUB(A,B)
1 COMMON. /LAB/ L1,L2
2 CALL DDSUB (A)
0 C .
0 C
0 C .
3 RETURN
1 END
BLOCK SOURCE
1 SUBROUTINE DDSUB(Z)
1 COMMON /LAB/ M1, M2
2 IF (M1 .LT. 1) /
3 $ RETURN
4 Ml = M2 - 1
0 C
0 C
0 C .
5 RETURN
1 END

Diagnostic (printed after subroutine DSUB)

** 303 ** THE FOLLOWING DATA FLOW OCCURS THROUGH COMMON WHEN SUBPROGRAM
~-=-*DDSUB*-~ IS CALLED.

COMMON INPUT OUTPUT
BLOCK VARIABLE CLASSIFICATION CLASSIFCATION
—m = X[AB* === —m—mm k%o INPUT NON

——=*LAB¥~—= ———¥[] K STRICT OUTPUT

126
**k304%* DESCRIPTION **304%*
This diagnostic is associated with each program unit. It gives

the input and output classification for every global variable for the
unit.

127

%304% EXAMPLE **3 (4 **

Program segment

BLOCK SOURCE
1 SUBROUTINE ESUB(X,Y)
1 COMMON /COMBLK/ J,K
2 IF (K .LT. 0)
3 $X =Y + 1.0
4 Y = 2.0
5 J=J+1
6 RETURN
1 END

Diagnostic

x% 304 *% I/0 CLASSIFICATION OF ARGUMENTS AND COMMON VARIABLES

FOR SUBROUTINE ---*ESUB*--
ARGUMENTS
POSITION NAME INPUT CLASS OUTPUT CLASS
1 = KR K e NON OUTPUT
2 e RY e INPUT STRICT

COMMON BLOCK ~-*COMBLK*~
‘ AVAILABILITY = ORIGINAL

ARGUMENTS
- POSITION NAME INPUT CLASS OUTPUT CLASS

1 e KT H e STRICT STRICT
2 v e KR K e e e STRICT NON

128

2.6 Diagnostics Emanating from PHASEO

Sections 2.1 through 2.5 discuss the output produced when
DAVE terminates after execution of PHASE3 -- the standard termina-
tion. However, certain user errors are detected by PHASEQ and
cause termination at that point. The first action performed by
PHASEO is to read the user options file (cf. section 1). If an
error in expressing the options is encountered, the following
diagnostic is issued and PHASEO aborts the job.

ERROR IN USER OPTIONS--CONSULT USER MANUAL
--USER OPTIONS FILE--
<listing of options file>

The remaining diagnostics produced by PHASEQ are mainly due
to non-ANSI constructions found in the subject program. PHASEO
processes the entire subject program and prints diagnostics as
errors are encountered. If any errors are found, PHASEQ aborts
the job. As in the output for an abnormal termination of a DAVE
run discussed in section 2.1, the first 1ine of the output file
will read:

DAVE LEVEL

where the dots stand for a Tlevel number. After this will appear
the Tine:

FATAL ERROR(S)--DAVE ANALYSIS CANNOT CONTINUE
Then follow diagnostics of the form:

ERROR FOUND BY PHASEOQ ANALYSIS IN SUBPROGRAM XXXXXX
<statement in errors
*hkFk<cerror messages>xrkkk

The possible <error message>'s and their meanings are:
1. MAXIMUM NUMBER OF CONTINUATION LINES EXCEEDED
19 continuation Tines is the maximum allowable.

2. PROGRAM ERROR

A valid ANSI FORTRAN statement has caused an error within
PHASEQ; this is a DAVE system error.

10.

11.

12.

13.

14.

15.

16.

129

INVALID CHARACTER ENCOUNTERED

A character other than a digit or blank was found in
column 1-5.

LOGICAL IF STATEMENT FOUND AS DO LOOP TERMINATOR
The user may add a CONTINUE statement to avoid this error.

INCORRECT OR UNKNOWN STATEMENT TYPE ENCOUNTERED

This is a Non-ANSI statement or a statement which should
not occur in this position in the code.

DO LOOP NESTING HAS REACHED LIMIT
The current Timit on nesting is 30.

INVALID DO STATEMENT SYNTAX
This is an incorrectly formed DO statement.

IMPROPERLY FORMED LOGICAL IF STATEMENT.
This 1is an incorrectly formed IF statement.

EXPANDED LOGICAL IF STATEMENT MAY EXCEED MAXIMUM NUMBER OF
CONTINUATION LINES

The expansion of a logical IF statement exceeds 19 con-
tinuation Tines; the user must rewrite the statement
into a series of less complex statements.

BLOCK NUMBER HAS EXCEEDED MAXIMUM

The max block number is 9999. When more blocks are en-
countered, the block number is reset to 1.

AMBIGUOUS PROGRAM ENTRY POINT ENCOUNTERED
Two or more main programs were found.

END STATEMENT IS INCORRECTLY TERMINATING ROUTINE
Execution may fall through to end statement.

DO LOOP TERMINATOR NOT FOUND
A DO Toop terminator was not found.

MAXIMUM NUMBER OF DIMENSIONED VARIABLES EXCEEDED
The maximum allowable is set at 50 dimensioned variables.

KEYWORD IN DECLARATION IS MISSPELLED OR UNRECOGNIZABLE

This statement is interpreted as a declaration statement
but is misspelled or unrecognizable.

EMPTY SUBJECT PROGRAM FILE

The file specified as containing the subject program is
empty.

(20

Chapter III: DAVE's INTERNAL STRUCTURE

1. Major Software Components

DAVE is composed of four separate phases, which are executed
consecutively. These are referred to as PHASEO, PHASE1, PHASEZ2, and
PHASE3. Each phase performs a segment of the analysis of the subject
program and passes the information gathered to the next phase for |
further processing. Briefly, PHASEO performs preliminary analysis
of the subject program, PHASET builds a data base for each program
unit comprising the subject program, PHASEZ performs the data flow
analysis, and PHASE3 outputs the results for the user.

The entity used to create and access the data bases is referred
to as the data base system and is composed of an initialization package
called DBINIT and a package of library routines called DATAB. DBINIT
is usually run only énce--at the time DAVE is installed on a particular
machine. A major‘change in the size of the dafaAbasés‘used by DAVE,
as explained in section 5.1 of this chapter, would necessitate a re-
configuration of the data base system, accomplished by re-running
DBINIT. The routines comprising DATAB are used by PHASE1, PHASEZ and
PHASE3 to build and access the data bases for the subject program.

A full description of the data base system may be found in [3].

PHASES 0-3 are described in more detail below.

I. PHASEQ.
The subprograms comprising PHASEO are:
BRNANL EXTRA INPBUF
BLOCK FETNAM PEND
ADARRN FINDEX PLCALL
CLASS GETARR PRINTL
CNBLKN TADVNP PSHDOL
DAVOPT ICHKAN PUTNHS
CARD ICHRCK RLABEL
DETIFH ICONVT RMDOLB
DETIFT IDOTRM
ERROR IDTFUN
ERRPT INCBLK
EXPLIF INIT

BRNANL is the driver for PHASEO, which numbers the blocks of the
subject program and classifies the statements according to type. A1l

declarations and the END statement are assigned to block 1 and all

131

executable statements are a single block except for logical IF state-
ments which form two blocks; comments and FORMATs are designated block
0. PHASEO produces a file, which is passed to PHASE1l, containing the
subject program with the block number, line number, statement type
code, and number of continuation 1ines for each statement. Non-ANSI
constructions are flagged as errors and cause termination of the DAVE
run by PHASEO after it has processed the entire subject program. The
user options file is checked by Subroutine DAVOPT at the outset of
PHASED and causes termination immediately if an error is found there.

IT. PHASET.

The subprograms comprising PHASE1 are:

DRIVET SYMTB GETOK STMTB ~ CONTOK
PROIMP FNDSM ADD ~ FLTCHR

BLOCK XTRNL ADDST SEVEN NAMCHR
ONEVR STRDM DLOOP CHR

TOKLST DATYP COMPLT RDWR INTCHR

SETTLP SUBFN EQCHN FCALL CHAR

STMTIN DATAS EQCHK PUSH ICONVT

PHASET EQUIV EQADD ASIGN

SKIP COMN EQMRG VARDM CGRAPH

LUNTIL FNDCM EQOFF GRORDR

EXPRSN PRORW COMOFF MKLBTB CKGRPH

ACT PRACI NOFF PUTLB LKCLRS

AC2 PRODM PRTGR

AC3 UPIT

AC4 CMDOWN

AC5

AC6

NEXTNB

LASTNB

PUTTOK

ISTYPE

DRIVE1 is the driver for PHASE1, which processes each subprogram
unit in the subject program line-by-line, building concurrently the
Symbol Table, Label Table, Statement Table, Common Block Table for each
unit and the call graph. The tables reside in the unit's data base
area, which is written out to a file when the end of the subprogram is
reached. The in-core data area is then used for the next subprogram
unit's tables. Subprograms TOKLST through ISTYPE above build the
token 1ist for the current Tine of the subject program unit being
analyzed. Subprograms SYMTB through NOFF build the Symbol Table and
Common Block Table. Subprograms STMTB through VARDM build the State-

132

ment Table and MKLBTB and PUTLB build the Label Table. CONTOK through
ICONVT do character-to-numeric conversions. NAMCHR, in particular, con-
verts symbolic names into their corresponding base 37 representations,
i.e. A1

B2

726
027

936
blank-0
Subprograms CGRAPH through CMDOWN build the call graph. The data
bases, call graph, and other information compiled by PHASEl are then
passed to PHASEZ2.

ITI. PHASE2.
The subprograms comprising PHASEZ are:
DRIVE2 INPVAR BLKTAB
FEXST
OUTVAR PEAST
BLOCK DATA TODRVR
TOVPNT
TOINIT LoyPn Y
DUMYIN IBBLT
BLKPR
PACKB ENTBLK
SBMTCH OKFPUS s
PRMTCH TYPE? T
STEPAR CKUNDF ERNBL
TOSTAT CLEAN A
COMTCH PATH i
NXCM ENPATH LoD
CLSTMT SAVEIO
ASFI0 MVSUB
CONSBD BSUBTB NOFF
BDMAIN
COPYCM

DRIVE2 is the driver for PHASE2, which produces the diagnostics
about the subject program while processing its units in a leafs-up order.
Subroutine DUMYIN is called if there are missing subprograms (i.e.
unsatisfied externals) in the subject program and the user has specified
that he wishes them to be dummied in so that processing may continue.

For function subprograms, the function name is assumed to be non-input
strict output and any parameters are assumed to be strict input, non-

133

output. For subroutine subprograms, parameters are also assumed to be
strict input, non-output. The number of parameters and their dimensions
are inferred from the first invocation of the missing unit in the sub-
ject program.

Subprograms SBMTCH through COPYCM perform matching of actual and
dummy parameters and COMMON variables in external calls, checking for
possible sources of error. The input/output classifications of global
variables in a unit are passed up to the calling subprogram at this time.

Subprograms INPVAR through BSUBTB perform the input/output classi-
fication of a subprogram unit's variables, checking for possible sources
of error, and entering the I/0 information in the Subprogramwide
Table for the unit.

Subprograms BLKTAB :through SKIPCF build the Block Table, which
contains the entry and exit blocks, transition codes, and I/0 variables
for each block in a subprogram unit. The Block Table is used by the
INPVAR-BSUBTB group when performing the I/0 analysis.

NOFF is a utility routine.

IV. PHASE3.
The subprograms comprising PHASE3 are:

DRIVE3
BLOCK

C37T11
C37T0A
CMPRES
CONVT
DIAGS
ERSTOR
GROUP
GTSYS
NPACKP
NUMCHR
PACKP
PRPATH
PRTGR
PSUBTB
REORD
SORTL
SOURCE
STOUT

DRIVE3 1is the driver for PHASE3, which interprets the diagnostics
produced by PHASE2 and produces the DAVE output described in Chapter II,

134

Section 2. The program units of the subject program are printed in

the order in which they were submitted to DAVE, with each unit being
followed by the errors, warnings and messages pertaining to it. ERSTOR
builds a data base to hold the diagnostic information so that it may be
easily retrieved. STOUT prints the header information and summary
statistics and PRTGR prints the call graph. SOURCE prints each sub-
program unit of the subject program, and DIAGS and GROUP print the
error, warning, message diagnostics pertaining to the unit.

2. Tables Generated

These tables are built and accessed via the data base system.
See the data base report [3] for a description of the data structures
employed.

I. SYMBOL TABLE
The name of the symbol table is ISYMTB. It is a sequential table,
each node consisting of nine fields:

ISNAME: This field contains the coded representation of the name
(base 37 integer)

ISDTYP: This field contains a code number identifying the data type
as follows:

typeless

integer

real

double precision
complex

logical

T WN - O

ISNTYP: The field contains a code number identifying the name type

as follows:

1 scalar

2 array

3 arithmetic statement function

4 intrinsic or basic external built in function
5 procedure name

ISNDIM: This field contains the header for a linked 1ist of informa-
tion about the dimensioning of a variable when ISNTYP = 2.
Otherwise this field is empty. Details of the linked 1ist
are below.

type

ISPARX:

ISDATV:

[SCOMN:

ISEQUV:

ISSTMT:

ISVOFF:

135

If this symbol is a formal parameter, then its position in
the calling sequence (1,2,...) is in this field. If this
symbol is a function subprogram name then this field con-
tains 0. Otherwise this field is empty.

If this symbol is assigned a value in a data statement
then a pointer to the data statement is in this field.

If this symbol appears in a common statement then this
field contains a pointer to the common table. For example,
if this symbol is contained in the named common block XXXX
and if this common block occupied the fourth sequential
position in the common table then ISCOMN = 4. If this
symbol does not appear in a common block then this field

is empty. ‘ : i

If this symbol appears in an equivalence statement, this
field contains a pointer to the entry for this symbol in a
linked 1ist of variables to which it is equivalenced,
called the equivalence chian. If this symbol does not
appear in an equivalence statement then this field is
empty. The equivalence chain is described below.

This field is a header for a linked 1ist of the numbers
of the statements in which this symbol appears. Details
of the linked Tist are below.

This field contains the offset in storage locations of
a COMMON variable in its block.

The entries in the linked 1lists of dimension information have node
IDMNOD and contain two fields:

ISDMVL:

ISDMFL:

ISDMLK:

This is the value field: the first node's value is the
number of dimensions {1,2, or 3}; successive nodes have
the values appearing in each subscript position. See
example below.

This is a field containing a flag to differentiate between
an integer valued dimension and a variable dimension.

This is the 1ink field. For example, the dimension state-

ment
DIMENSION XAMPL (5,7)

would Tead to this structure

136
XAMPL's entry in Symbol Table:
ISNDIM

2z

ISDMVL ISDMFL ISDMLK

° 0 \ N\

N T

The entries in the 1inked 1ists of numbers of statements have node
type ISTNPD and have two fields:

ISSTVL: This field contains a pointer to the sequential entry in
the statement table of a statement containing this symbol.

ISSTLK: This is the Tink field.

Equivalenced variables are chained together in a linked Tist. For
a variable in an equivalence 1ist, the field ISEQUV of its Symbol Table
entry contains a pointer to its entry in its equivalence chain (which
is a linked Tist).

Nodes in the chains are of type ISEQND with the following fields:

ISEQVL: C€ontains a pointer to the variable's Symbol Table entry.

ISEQOF: €ontains the offset number, to indicate the position of
the first location of the variable relative to all the
others in the chain. The number of storage locations.
a variable type requires is needed in this calculation.

ISEQCH: Contains the equivalence chain number.

ISEQLK: Link field.

IT. STATEMENT TABLE
ISTMTB is the name of the sequential table in the data base which
contains information about the statements of a Fortran subprogram.
Nodes in ISTMTB have the following fields:

LINOST: Line number on which statement begins.

IBLKST:
ITYPST:
ITVHST:

IOVHST:

IXTRNL:

137

Basic block number in which statement occurs.
Type of statement.

Header for a linked 1ist of input variable information
for a statement; nodes in this 1ist are of type IIVNOD
with fields:

ITVNDX: Variable's index in the Symbol Table.
IIVTYP: Contains an integer in the set {0, 1, 2, 3} where

IIVTYP = 0 type uncertain
1 type input
2 type strict input
3 type non-input

ITVLNK: Link field in IIVNOD.

Header for a linked Tist of output variable information
for a statement; nodes in this 1ist are of type IOVNOD
with fields:

IOVNDX: Variable's index in the Symbol Table.

IOVTYP: Contains an integer in the set {0, 1, 2, 3, 4}
where

type output

type strict output
type non-output
type undefined

IOVLNK: Link field in IOVNOD.

IOVTYP = [0 type uncertain
1
2
3
4

Headed for a Tinked Tist of external references; nodes 1in
this 1ist are of type IXTNOD with fields:

IXTNAM: Contains pointer to name of external in Symbol
Table.

IXTLNK: Link field in IXTNOD.

IXTPAR: Contains pointer to Tinked 1list of parameters;
nodes in this list are of type IPRNOD with fields:

IPRTYP: Contains integer code for the parameter type
Code number Meaning

expression
identifier
integer constant
real constant
double precision constant
complex constant
logical constant

10 Hollerith string

33 procedure declared external
100+Symbo1 argument in arithmetic statement
Table pointer function definition used as
to ASF name parameter in procedure call

oYW~

138

IPRNAM: Contains pointer to entry in Symbol Table of
parameter name when relevant; when IPRTYP>100,
this field contains the position of the argu-

ment in the dummy argument Tist
IPRLNK: Link field in IPRNOD

Example of 1ist of external references:
The statement
CALL SUB(A, 5, FUN, SIN(X))

will generate the following structure:

. 2 A .
!
statement table 7 /57%;/{‘/‘ IXTRNL Y
. 3 P I
S v Y
SUB 9 :
33 FUN I
Y Y
o SN — 1 p :
[
—
2 X

ITI. COMMON BLOCK TABLE

The Common Block Table (ICOMTB) is a sequential table built in the
course of constructing the Symbol Table. For a variable in common, the
field ISCOMN of its Symbol Table entry contains a pointer to an entry

in the Common Block Table.

Nodes in ICOMTB consist of four fields:

ILABCM: Label of common block as encoded base 37 integer; for

blank common, this is the encoding for six blanks.

IVARCM: Header to Tinked 1ist of pointers to Symbol Table entries

which are located in that common block. The entries (node

type ICOMND) in this linked 1ist have three fields:

ICOMYL: pointer to the variable's Symbol Table entry

ICOMNM: Contains base 37 name of the symbol for identifiers
in blocks added to the table as sometimes or always

139

available. For identifiers in those blocks con-
tained in the source code, this field will be
empty.

ICOMLK: Link field.

ICOMAV: Contains a code in the set {1,2,3} indicating whether the
block is:

(1) in the subprogram's source code.
(2) always available to the subprogram.
(3) sometimes available to the subprogram.

ICMCOP: Contains the base 37 name of the subprogram from which the
block's description is copied; this is meaningful only for
those blocks added to the table as sometimes or always
available.

For those identifiers in common blocks which are added to the Common
Block Table as sometimes or always available, entries will be made in the
Symbol Table. However, field ISNAME will be left empty. Information
will be entered in fields ISDTYP, ISNTYP, ISNDIM and ISCOMN as usual.

IV. BASIC BLOCK TABLE
The basic block table contains the following information for each
block:

The first statement in the block;

The last statement in the block;

List of input variables for the block;
List of output variables for the block;
List of entry blocks for the block;
List of exit blocks for the block.

Y O Bow N~

It is assumed that the basic blocks of the subprogram unit are numbered
sequentially (1, 2, ...) and the nodes in the sequential basic block
table are in this order: the first entry in the table is for basic block
1, the second for basic block 2, etc.

- The name of the basic block table is IBLKTB. It is a sequential
table, each node consisting of six fields:

IFRSTM: This field contains a pointer to the statement table at
the entry for the first statement of the block.

ILSSTM: This field contains a pointer to the statement table at
entry for the last statement of the block.

140

IIVBLK: This field is a header for the Tinked 1ist of input
variables of the block.

IOVBLK: This field is a header for the linked 1list of output
variables of the block.

TEBBLK: This field is a header for the Tinked 1ist of entry
blocks for the block.

IXBBLK: This field is a header for the linked Tist of exit blocks
for the block.

The 1inked 1ist of input variables for the block has one node for
each input variable. Each node contains three fields. These items
are specified as follows:

IIVNOD: Node type name for nodes in this Tist.

IIVNDX: This is a field containing a pointer to the node in the
symbol table for this variable.

IIVIYP: This is a field containing an integer in the set {0,1,2,3,4}

where

IIVTYP = 0 means uncertain if input
IIVTYP = 1 means input

IIVTYP = 2 means strict input
IIVTYP = 3 means non-input

IIVIYP = 4 means undefined input

IIVLNK: This is a link field

The Tinked 1ist of output variables for the block has one node for
each output variable. Each node contains three fields. The names of
these items are: TIOVNOD, IOVNDX, IOVTYP, IOVLNK with meanings corres-
ponding to those above, mutatis mutandis.

The Tlinked 1ist of entry blocks for the block has one node for each
entry block. Each node contains five fields. These items are specified
as follows:

IEBNOD: Node type name for nodes in this 1list.

IEBNDX: This is a field containing a pointer to the node in the
basic block table for this entry block.

IETRAN: This field contains the transfer code from this entry
block (IEBNDX) to the current block. The transfer
codes are listed below.

IEUNDF: This field is a header to a linked 1ist of variables
which become undefined during the transfer from this
entry block to the current block.

141

TEBLNK: This is a 1ink field.

The Tinked 1ist of exit blocks for the block has one node for each

exit block. Each node contains five fields. The names of these ijtems

are:

IXBNOD, IXBNDX, IXTRAN, IXUNDF, IXBLNK with meanings corresponding

to those above, mutatis mutandis.

The Tinked 1ist of DO-parameters which become undefined during a

transfer has one node for each parameter. Each node contains two fields.

IDOPAR: Node type name for nodes in the Tist.

IDOUND: This field contains the Symbol Table pointer for this

DO-parameter.

IDOLNK: This is a Tink field.

The transfer codes for a transfer from block A to block B are:

1.

0o ~N o o1 BoWw N

Unconditional Transfer (an unconditional G® TP or a normal
drop through)

Conditional Transfer (true branch of a logical IF)
Conditional Transfer (false branch of a Togical IF)
Do=Toop fall through

Do=Toop iteration

Assigned GO TP

Computed GPp TO

The transfer is undetermined. The last executable state-
ment in block A will be examined.

V. LABEL TABLE
The name of the label table is ILABTB. It is a sequential table,
each node consisting of 3 fields:

LABELV: This field contains the Tabél as an integer value

IEXLAB: This field contains the statement number of the state-

ment that uses the Tabel as an external Tlabel.

INLABH: This field contains the header to the internal label 1ist.

This Tist contains the statement numbers of all statements
that use the Tabel as an internal label.

INTLST is the name of the nodes on the internal label 1ist. Each
node consists of 2 fields:

VI.

INTLAB:

NXTLAB:

142
This field contains the statement number of the statement
that uses the label as an internal Tlabel.

This field contains a pointer to the next node of the
internal Tabel Tlist.

SUBPROGRAMWIDE TABLE

The sequential table ISUBTB contains information about an entire
subprogram unit and has one entry, or in the case of the master data
base, has an entry for each subprogram unit.

Each entry consists of three fields:

NAMESP:

ISBERS:

IPLSTS:

Nodes:

1.

LSTPRN:

The base 37 representation of the name of a subprogram.
This field contains a "0" for the main program and is
empty for BLOCK DATA.

A header to a linked 1ist of all external subprograms
referenced by this one. The 1ist consists of IERFND nodes.

A pointer field pointing to a 1list of lists of parameters
and COMMON variables for this subprogram and all of its
arithmetic statement functions. IPLSTS points to a linked
1ist whose nodes are of type LSTPRN. The first node of
this 1ist is to be assumed to be the header for the 1ist
of parameter variables to the entire subprogram. Sub-
sequent nodes are to be the headers for the various COMMON
blocks referenced and finally for the parameter lists for
the various ASF's in the subprogram.

Contains information about the lists of parameters, common
variables and ASF's for a subprogram unit.

Fach node consists of six fields:

INAMLS: The base 37 representation of the Tist name,i.e.
subprogram name, COMMON block name, or ASF name.

IAVAIL: Contains a code indicating whether the common
block is in the unit's source code, is always
available, or is sometimes available {1,2,3}.

I0STLP: Pointer to I/0 status Tist composed of IOSTND
nodes.

INTYCD: Contains code (statement type code) to indicate
type of name in INAMLS.

ICMORG: Contains, for common blocks which are sometimes
or always available to the subprogram the base 37
name of the subprogram from which the block's
description was copied.

LSTLNK: Link field for LSTPRN nodes.

143

2. IOSTND: Contains information about the parameters, common variables,
and ASF parameters in a particular list.

Fach node consists of seven fields:

TOVNME :

IDATYP:

I0VDLP:

TOVSUN:

INPCLS:

I0UCLS:

TOLLNK:

The base 37 representat1on of the part1cu1ar vari-
able's name.

The data type code of this variable using the
Symbol Table code values.

A pointer field pointing to a 1inked 1ist contain-
ing the number of dimensions and maximum allowable
subscript value for each dimension, in turn. This
field will contain an empty for scalar variables.
Otherwise, the linked 1ist pointed to will consist
of IDMNOD nodes, described in the Symbol Table
documentation.

An integer field whose value will be the total
number of storage units occupied by this entity.
Thus, for example, the IOVSUN field for an

i x j x k integer array should contain ijk. A
double precision array dimensioned at i x j x k
will, however, occupy d-ijk storage units.

The input category for a variable, where

1 means input
2 means strict input
3 means non-input

The output category for a variable, where

1 means output
2 means strict output
3 means non-output

Link field for IOSTND nodes.

3. IERFND: Contains the names of the external references for this unit.

Fach node consists of two fields:

TERNME:

TEFLNK:

VII. DIAGNOSTIC TABLE

The base 37 representation of the name of an
external subprogram referenced by this program unit.

Link field for IERFND nodes.

The name of the table containing the DAVE-generated diagnostics for

subprogram units is IERRTB. There is one entry per unit processed, each

entry having three fields:

IERPTR: Pointer to a linked 1ist of errors for this unit;'the list
contains IDIAND nodes.

3.

IWAPTR:

IMEPTR:

144

Pointer to a linked 1list of warnings for this unit; the
1ist contains IDIAND nodes.

Pointer to a linked list of messages for this unit; the
list contains IDIAND nodes.

The IDIAND nodes contain five fields:

NUMFLD:
TARGNM:
IBLKNM:
LISPTR:

IDIALK:

Contains the diagnostic number.
May contain a base 37 name concerning this diagnostic.
May contain a block number for this diagnostic.

Pointer to a Tinked Tist of IPATND nodes containing addi-
tional information for the diagnostic; last IPATND node
contains the number of nodes in the Tist.

Link field for IDIAND nodes.

The IPATND nodes contain two fields:

IBLNUM:

TPATLK:

Contains a piece of information concerning the diagnostic;
for paths, the block numbers are packed in IPATND nodes,
with the next to last node containing the length of the
path.

Link field for IPATND nodes.

File Organization
The following is a 1ist of the input and output files for each of

DAVE's execution phases. See Chapter IV for additional information on

the structure of the files employed.

I.

IT.

PHASEQ

IN:
OPTIONS:

SOURCE:

QUTPUT:

PHASET

COMDAT:

SOURCE:

CALLGR:

ORDER:

INPUT FILES
Contains FORTRAN source program to be analyzed.
Contains user options.

OUTPUT FILES

Contains subject program and each statement's type, line
number, block number, and number of continuation Tines.

Contains error information in case of non-ANSI construc-
tions in subject program.

INPUT FILES

Contains data base initialization values (produced by
DBINIT run).
Passed from PHASEO.

QUTPUT FILES

Contains call graph for subject program and information
on the format of the file of data bases.

Contains the processing order for the subprogram units.

ITI.

ROLL:

PAGET:

QUTPUT:

STATUS:

DIAG:

MODSRC:

PHASE?

COMDAT:
CALLGR:

ORDER:
ROLL:
PAGEI:

STATUS:

DIAG:

PAGEI:

QUTPUT:

STATUS:

DIAG:

DBUTIL:

145

Contains a data base for each subprogram unit; each data
base contains a Symbol Table, Statement Table, Common
Block Table, Label Table, Block Table, and Subprogramwide
Table.

Paging file used (if necessary) by each data base when it
is being built.

Contains diagnostic information in case of a DAVE execu-
tion error; this file is copied to another file ERRS
through the job control Tanguage after completion of
PHASET so that its contents will not appear first in the
Tisting of DAVE output.

Contains a code indicating the status of completion of
PHASET, i.e. whether it terminated novrmally, or abnormally
through ERRSUB in the case of a DAVE execution error.

Contains diagnostic information gathered by DAVE about the
subject program. The only diagnostic found by PHASET is
that of missing subprograms with the simulation option off.

Contains the modified subject program; it is used by
PHASE3 for printing the FORTRAN source.

INPUT FILES
Contains data base initialization values.
Passed from PHASET.
Passed from PHASET.
Passed from PHASET.

Paging filed used (if necessary) by each data base when
it is in core.

Contains a code indicating the status of completion of
PHASET.

Passed from PHASET.

OUTPUT FILES
Same as above.

Contains diagnostic information 1in case of a DAVE execu-
tion error; this file is copied to file ERRS through the
job control language after completion of PHASE2 so that its
contents will not appear at this point in the Tisting of
DAVE output.

Contains a code indicating the status of completion of
PHASE2.

Contains diagnostic information gathered by DAVE about the
subject program.

Contains data base utilization information. It may be
helpful to 1ist this file in case of abnormal termination
of DAVE.

IV.

4.

146

MASTR: Contains the master data base array (copied from its in-
core location.)

PAGEM: Paging file for the master data base.

PHASE3

INPUT FILES
COMDAT: Contains data base initialization values.
CALLGR: Passed from PHASEZ2.
PAGET: Paging file for diagnostic data base.
STATUS: Contains PHASET-PHASE2 completion status code.
DIAG: Passed from PHASEZ2.
MODSRC: Passed from PHASET.
MASTR: Passed from PHASE2.
PAGEM: Passed from PHASEZ.

QUTPUT FILES

OUTPUT: Contains information gathered by DAVE about the subject
program; after completion of PHASE3, file ERRS is printed
so that any internal DAVE diagnostics appear after what
is printed in PHASE3.

System Dependencies

is to

DAVE is usually tailored for the particular system on which it
be installed before it is sent there. The following is a list

of those system dependencies which must be altered.

I. D

A.

B.

BINIT
The main program contains a PROGRAM card.

Common block GLOBAL, initialized in BLOCK DATA, contains
machine dependent constants:

CDC(60 bits/word) IBM(32 bits/word)

MTYPRT - 20000008 200008000
MTYFUL - 400040000000000000008 780000000
IPTFLG - 1000000B 740000000
NPTFLG - 2777777B Z3FFFFFFF
MSKFLD(1)- 37777778B Z0000FFFF
MSKFLD(2)- 177777740000008B ZFFFF0000
MSKFLD(3)= 777777600000000000008B 0

NBSPPW - 20 16

NPWPFW - 3 2

147

DEC (36 bits/word) UNIVAC (36 bits/word)

MTYPRT - "400000 pA00000

MTYFUL - "400000000000 p400000000000

IPTFLG - "200000 p200000

NPTFLG - "177777 p177777

MSKFLD(1)- "777777 p777777

MSKFLD(2)- "777777000000 @777777000000
MSKFLD(3)- 0 0

NBSPPW - 18 18

NPWPFW - 2 2

C. There is an octal format specification. in format 99984 in Sub-
routine FINDAT.

IT. DATAB.

A. The Functions IAND, IOR and INOT which perform bit-by-bit
logical intersetion, union, and complement operations, have
to be modified.

B. A FUNCTION ISHIFT(IWD,NBITS) which shifts word IWD by NBITS:
left circular if NBITS>0 and right, end off with sign exten-
sion if NBITS<0, must be added.

C. There is an octal format specification in format 99996 in
Subroutine GARTST.

D. There is an octal format specification in format 99993 in
Subroutine ERRSUB.

E. In Subroutine ERRSUB there appears a call to Subroutine CALTRC,
which prints out traceback information and should be replaced
by the local equivalent:

40 CALL CALTRC

F. Subroutine RANRW contains calls to random access routines
WRITMS and READMS:
CALL WRITMS(IFILE,IAREA(INDX),NUM,NREC,KEY2)
CALL REABMS(IFILE,IAREA(INDX),NUM,NREC)
where IFILE = random access file number
IAREA(INDX)=starting address of words to be written out

ITI.

IV.

148

NUM = number of words to be written out
NREC
KEY?2

I

record number to be written to

"

0 if writing in place

1 if writing at end of information

PHASEQ
A. There is a PROGRAM card in the main program.

B. In the main program and Subroutine DAVOPT, there are calls to
Subroutine ABORT, which should terminate the DAVE job without
returning control to the next control card. ABORT has no
parameters.

C. In Subroutine DAVOPT at 1line 49 there is an end-of-file test.

D. In Subroutine INPBUF at line 46 there is an end-of-file test.

PHASET
In the main program there is a PROGRAM card. Also there are
calls to OPENMS to open the random access files IDAB1 and IPUNIN
and calls to CLOSMS to close them:
CALL OPENMS(IDABT,INDEX,MXREC,0)
CALL OPENMS(IPUNIN,INDEXI,MAXPGS+1,0)

CALL CLOSMS(IDABT,INDEX,MXREC)
CALL CLOSMS(IPUNIN,INDEXI,MAXPGS+1)

The variable MXREC=4*I0RSZ+1=401 is the maximum number of
records for file IDAB1 with record size IRECSZ, and MAXPGS=100 is
the maximum number of records for file IPUNIN with record size
IPAGSZ. For CDC, the index arrays, INDEX and INDEXI, are accord-
ingly dimensioned INDEX(401) and INDEXI(101). The fourth argu-
ment to OPENMS indicates use of a numbered index for the random
access file. The records in file IPUNIN are initialized so that
henceforth they may be written to in place.

149

V. PHASE2

A. In the main program there is a PROGRAM card. Also there are
calls to OPENMS to open the random access files IDAB1, IPUNIN,
and IPUGMS, with number of records MXREC, MAXPGS, and MAXPGS
and record sizes IRECSZ, IPAGSZ, IPAGSZ, repectively. For CDC
the records of PAGEM must be initialized so that they can Tater
be written to in place. CLOSMS is called to close IPUGMS. The
index arrays for IDABT, IPUNIN and IPUGMS are dimensioned
INDEX(401),INDEXI(101) and INDEXM(T101).

B. In Block Data the common block BBMASK is initialized:

IBMSK--a fullword mask with IBBIT zeros right justified.
IIMSK--a fullword mask with IBBIT ones right justified.

IBBPW--number of part word fields/word; dependent upon
IBBIT and word size.

IBBIT--number of bits/part word; should be 6 bits if
possible, else 8.

for 60-bit for 36-bit for 32-bit

word size word size word size
IBMSK 777777777777777777008B @777777777700 ZFFFFFFOO
TIMSK 778 p77 Z000000FF
IBBPW 10 6 4
IBBIT 6 6 8

VI. PHASE3

A. In the main program there is a PROGRAM card. Also there are
calls to OPENMS to open the random access files IPUNIN and IPUGMS,
with number of records MAXPGS and record size IPAGSZ. Their in-
dex arrays are dimensioned INDEXI(101) and INDEXM(101).

B. In Block Data the common block BBMASK is initialized:

IBMSK--IBBIT zeros right justified.
IIMSK--IBBIT ones right justified.

IBBPW--number of part words/full word; dependent upon
IBBIT and word size.

IBBIT--number of bits/part word; must be Targe enough
to hold the maximum block number.

150

for 60-bit for 36-bit for 32-bit

word size word size word size
IBMSK 77777777777777776000B @777777777000 ZFFFF0000
TIMSK 17778 p777 Z0000FFFF
IBBPW 6 4 2
IBBIT 10 9 16

Note: These values are different from those used in PHASEZ.

C. In Subroutine SOURCE there are two end-of-file tests at lines
38 and 191.

Size Alterations that may be made to change DAVE's core requirements
and the size of programs DAVE can analyze
5.1 Maximum data base size »

The largest size a data base may become (through paging) is
determined by the product of the maximum number of pages MAXPGS(=100)
and the page size IPAGSZ(=512), whose values are set in DBINIT. If
MAXPGS is changed, arrays dependent upon it must also be changed;
these are indicated in 5.2 wherever MAXPGS appears as a dimension.

There are also values set in DBINIT which determine how much of
this maximum size of 51200 may actually be used, namely the number of
part word fields/word, NPWPFW, which is dependent upon the word-size
of the machine and the number of bits per part-word, NBSPPW. Obviously,
the more part word fields/word, the more economical the use of storage.
However, the maximum data base size addressable is Z(NBSPPW’2> so that
for a 32-bit word size, with NBSPPW=16 and MAXPGS=32 the largest useable
data base is 16384 words. In order to use a 51200 word capability the
number of bits required for pointer fields is 18. Therefore, for IBM
the data base structure would have to be reconfigured with pointers as
full-word fields (with the implication of a less economical use of
storage). To reconfigure the data base, it is necessary to change the
values of the variables in common block GLOBAL, initialized in BLOCK
DATA in DBINIT. DBINIT must then be re-run, creating a new COMDAT;
INCDAT does not change. Then DAVE may be run as usual, with the new
COMDAT. For IBM's 32-bit word size, the values of variables in GLOBAL
for pointers occupying full words with MAXPGS=100 and for pointers
occupying half words with MAXPGS=32 are:

151

MAXPGS=100 MAXPGS=32
MTYPRT 200008000 200008000
MTYFUL 280000000 280000000
IPTFLG 740000000 200004000
NPTFLG Z3FFFFFFF ZO0003FFF
MSKFLD(1) ZOOO0OFFFF Z0000FFFF
MSKFLD(2) ZFFFF0000 ZFFFF0000
MSKFLD(3) 0 0
NBSPPW 16 16
NPWPFW 2 2

For a data base size Targer than 51200, MAXPGS must be changed
and caution must be taken that 2(NBSPPW-2) > data base size. If
NBSPPW must be changed to achieve this, then the other variables in
GLOBAL must also be changed accordingly.

5.2 Other Size Limitations

Note: ARRAY(ISIZE) indicates that to alter an array's size, you must
change its DIMENSION statement and reset ISIZE in a DATA state-
ment. The current sizes are indicated.

I. PHASEI
A. Driver

T. INDDB(INDSZ) - the in-core data base area for a single sub-
program; most efficient if it is a multiple of the
page size (IPAGSZ=512) and as large as core limita-
tions will allow to avoid costly paging; INDSZ=3584.

2. IGRPH(IGRSZ) - the size of array IGRPH is dependent upon
the number of subprograms being processed, the number
of common blocks in each, and the number of subpro-
grams called by each. There is an entry for each sub-
program consisting of 6 words; each common block in a
subprogram requires an entry of 3 words and each sub-
program which it calls or is called by also requires
a 3-word entry. IGRSZ=3000.

3. IORDR(IORSZ) - array IORDR'mustvbe dimensiond to the
maximum number of subroutines that can be processed
at one time. I0RSZ=100.

152

The space that must be allocated for the random
access file IDAB1 must be altered accordingly if a
1argér number of subroutines are to be processed
together in order to accommodate the additional
records. See I.A.5.

4. IDBTB(IORSZ,2) = contains information about the format-
ting of the individual subprogram data bases on
file IDABT.

5. INDEX(MXREC+1) - used by the CDC random access routines
for the file of subprogram data bases (IDAB1); the
number of records (MXREC) is variable due to the in-
determinate sizes of the data bases because of pag-
ing; it can be estimated by dividing the average data
base size by the record size (see I.B.1) and multi-
plying the result by the maximum number of subpro-
grams that can be processed together (see I.A.3.)
MXREC=4*IORSZ+1.

6. IDBAR(MAXPGS) - holds information, for a paged data base,

‘ about which pages are written out to the file of data
bases (IDAB1), MAXPGS=100.

7. INDEXI(MAXPGS+1) - used by CDC random access routines for
the paging file (IPUNIN) associated with a subpro-
gram's data base (INDDB); MAXPGS=100.

Block Data

1. TIRECSZ - record size for file IDABT; must be < smaller of
the in-core data base areas (INDDB and MSTDB) and a
multiple of IPAGSZ, the page size; IRECSZ=2048.

Subprograms COMPLT, EQCHN, EQADD, EQUIV BLOCK DATA:

COMMON/EQINF/IQLST(100,4),IQMAX, IQLN

DATA IQMAX/100/ (set in BLOCK DATA)

IQLST must have a row for each variable appearing in an
EQUIVALENCE Tist plus an entry between T1ists. See D below
and II.E.

Subprograms COMPLT, EQCHN, EQCHK, EQADD, EQMRG, EQOFF, COMOFF:
COMMON ICHTB(100,4),ICNX
ICHTB must be dimensioned the same as IQLST, see. I.C.

and II.E.

153

E. Subprograms ASIGN, ADD, FCALL, PRACI
COMMON/ ID1/1DUM(20),IDX,IDLOC
IDUM contains the dummy arguments for an arithmetic
statement function. 1Its size is set in DATA statement
DATA IDLMT/20/
in PRACI and ASIGN.
IT. PHASEZ2
A. Driver
1. INDDB(INDSZ
2. IGRPH(IGRSZ)
3. IORDR(IORSZ) must be the
4. IDBTB(IORSZ,2) same as
5. IDBAR(MAXPGS) PHASET
6. INDEX(MXREC+1)
7. INDEXI(MAXPGS+1) /
8. MSTDB(MSTSZ) - the in-core data base area for the master

10.

11.

data base, which contains information about all the
subprograms processed; same constraints as INDDB;
MSTSZ=8704.

INDEXM(MAXPGS+1) - used by CDC random access routines

for the paging file (IPUGMS) associated with the
master data base (MSTDR).

IBIND(LENGTH) ,IPATH(LENGTH) , ISTK(2*LENGTH) - LENGTH is

the maximum number of blocks in any subprogram being
processed. IBIND is also used by Subroutine SBMTCH
as array IBUF; ISTK is used by Subroutine IOINIT as
array LSTBF and by Subroutine SAVEIO as array IBUF.
If LENGTH is adequate, these arrays will be also and
don't normally need to be taken into consideration.
LENGTH=500.

INTID(INIDL) - INIDL is the maximum number of global or

local variables (each group is done separately) in
any subprogram. Also used by Subroutine SBMTCH as
array ICOM, which holds the common blocks available
to a subprogram and their availability codes.
INIDL=300.

154

B. Block Data
1. IRECSZ - same as PHASEI
2. Common IOBLK(IOBSZ),I0BSZ,I0BPTR, INNOD
IOBLK appears in blank common in PHASE2 driver, Block
Data, IBBLT,PACKB,INPVAR,OUTVAR,IODRVR,IOINIT,TYPE2,
CKUNDF, CLEAN.

It is equivalenced to the master data base MSTDB and
has size roughly equal to the product of the number of
blocks in a subprogram and (the number of global [also
done for local] variables in the unit plus the average
number of exit and entry blocks per block). I0BSZ=9000.

C. Subroutine VARPR
1. IBUF(IASIZE),ITEMP(IASIZE),ITYPE(IASIZE) - used by CPLIST
for the list of I/0 variables for a statement; nodes
(one for each variable) consist of 3 part-word fields;
in blank common. IASIZE=1200.

D. Subroutines SBMTCH,PRMTCH,STEPAR,IOSTAT,COMTCH,ASFIO,CONSBD,
COPYCM contain array INOS in common block STNOS, which is
used by CPLIST to hold the 1ist of statements which refer-
ence an external; each node consists of two part-word fields;
INOS(350).

E. Subroutine IODRVR
IDISP(IELMT),IEQUV(IELMT) - contain equivalence informa-
tion, must be same as I.C., I.D.

ITI. PHASE3
A. Driver

1. MSTDB(MSTSZ) - same as in PHASE2

2. INDEXI(MAXPGS+1) - same as in PHASE2

3. INDEXM(MAXPGS+1) - same as in PHASE2

4. IERDB(IERSZ) - data base containing diagnostics about

subject program. IERSZ=8704.

‘IORDR(100) - same as in PHASES 1 and 2
IGRPH(3000) - same as in PHASES 1 and 2

155

7. LIST(500) - in blank common; must be dimensioned to
the maximum number of blocks occurring in any sub-
program unit processed or the total number of sub-
programs being processed, whichever is larger. This
would have to be changed also in subprograms DIAGS,
ERSTOR, PRTGR, REORD, STOUT. See also B.Z2 below.

8. IBUF(100,3) - in blank common; first dimension must be
the same as dimension of IORDR. This would have to
be changed also in subprograms DIAGS, ERSTOR, STOUT.

B. Block Data
1. IRECSZ - same as PHASE 1 and 2
2. IBBIT in common block BBMASK must be = log (max.no. of
blocks per subprogram + 1). IBMSK, IIMSK, IBBPW must
be adjusted accordingly (see p. 149, VI.B).

6. Recovery

It is possible to modify DAVE so that'in certain cases if an error
occurs, the job may be re-run from the point of failure. These cases in-
volve two types of errors which may be detected during PHASE1 of analysis:
(1) syntax errors in the subject program and (2) unsatisfied externals
when the simulation option is off. 1In these cases, the user can recover
from the error by re-submitting the job; but this time the input to DAVE
consists of only the unprocessed subprograms. In case 1, the revised
input file is that portion of the original subject program from the sub-
program being processed at the time of failure to the end of the file; and
in case 2, it consists of the missing externals. DAVE could, therefore,
pick up where it left off.

Please note, however, that an extra price is paid for the recovery
capability in the form of additional I/0 charges since large files must
be saved between the two runs. Also, ANSI violations and unsatisfied
externals may be found more economically by using tools such as Bell
Laboratories' PFORT Verifier [4] prior to using DAVE. For these reasons,
we do not encourage use of the recovery capability but will provide in-
structions for anyone interested.

Chapter IV: INSTALLING DAVE ON A COMPUTER

The party desiring to install DAVE should first complete and return the
questionnaires shown in Appendix B.

A tape containing DAVE's source code will then be prepared and mailed.

This code will have been tailored to the particular system according to speci-
fications obtained from the questionnaire. This tape will contain the follow-

ing files:

STEP ONE.
STEP_THO.

STEP THREE.

QO ~N O O Bow o -
s ¢ &« a2 = s s e

DBINIT -- DAVE SOURCE CODE
NUDATA -- DATA FILE FOR DBINIT
DATAB -- DAVE SOURCE CODE
PHASEO -- DAVE SOURCE CODE
PHASET -- DAVE SOURCE CODE

- PHASE2 -- DAVE SOURCE CODE

PHASE3 -- DAVE SOURCE CODE
TESTFL -~ TEST PROGRAM TO RUN THROUGH DAVE

Read the tape and set up the files with the above names.

Compile files 1, 3-7 and save the binary modules under the
following names:

Source file name Binary file name
DBINIT DBINB
DATAB DBLIB*
PHASEO PHOB
PHASET PHIB
PHASE? PH2B
PHASE3 PH3B

*File DBLIB should be made a library file.

Run DBINB, the data base initialization package. This is only
done once, its purpose being the creation of file COMDAT,
which is used by DAVE during execution. The program requires
the file NUDATA, assigned to unit 4, as input. Its output
files are the printer, unit 6; INCDAT, unit 8; and COMDAT,
unit 9. COMDAT must be saved. |

At this point it is judicious to send the printed output from the data
base initialization run to us at the University of Colorado for verification

before proceeding.

157

STEP FOUR. EXECUTE DAVE. DAVE consists of four separate phases, which are
run consecutively. The files used by each phase are listed be-
Tow. The octal core requirements Tisted are for the CDC 6400.

A. PHASEQ
INPUT FILES
Unit
Name No. Contents
IN 5 Fortran Source program to
be analyzed; maximum of 80
; characters/record
OPTIONS 1 User options file; maximum
of 80 characters/record
QUTPUT FILES
Unit
Name No. Contents Disposition
SOURCE 9 Formatted with 125-character To be passed to PHASE]

records; no.of records=no.
of 1ines in file IN

OUTPUT 6 Maximum of 80 characters/ Printer
record; only written to
in case of error

Core requirement: 40000

B. PHASE1
INPUT FILES
Unit

Name No. Contents

COMDAT* 1 Unformatted; 8 records
with maximum size of 812
words

SOURCE 9 Formatted with 125-

character records; no.of
records=no.of lines in
subject program

*COMDAT was created in STEP THREE

QUTPUT FILES

Unit . .
Name No. Contents Dispoisition
CALLGR 2 Unformatted; 3 records, To be passed to PHASE?
maximum size 3001 words
ORDER 3 Unformatted; maximum of To be passed to PHASE2

of 101 records, one word/
record

Name
ROLL

PAGEI

OUTPUT

STATUS
DIAG

MODSRC

PHASET requires the Tibrary DBLIB to satisfy external references
during loading.

Core requirements

PHASE?2

Name
COMDAT
CALLGR
ORDER
ROLL
PAGEI
STATUS
DIAG

Unit
No.

158

Contents

10

Random access file; maxi-
mum of MXREC=401 records
(set in DRIVET), maximum
size IRECSZ=2048 (set in

- BLOCK DATA)

Random access file; maxi-
mum of MAXPGS=100 records,
maximum size IPAGSZ=512
(both set by DBINIT)

Only written to in case of
DAVE execution error, maxi-
mum of 80 characters/record

Unformatted, one word

Unformatted, no.of records
dependent upon no.of diag-
nostics issued about subject
program, maximum size 504
words, average size 50-100
words

Unformatted; no.of records=
no.of statements in subject
programs, maximum record

size 1331 words, average size

80 words

114000
INPUT FILES
Unit
No. Contents
1 Same as in B above
2 Same as in B above
3 Same as in B above
4 Same as in B above
5 Same as in B above
7 Same as in B above
8 Same as in B above

Disposition
To be passed to

To be passed to

Printer

To be passed to
To be passed to

To be passed to

PHASE2

PHASE?Z

PHASE?2
PHASE?Z

PHASE3

Name
PAGEI
OUTPUT
STATUS
DIAG
DBUTIL*

MASTR

PAGEM

Unit
No.

159

OUTPUT FILES

Contents

11

12

13

Same as in B above
Same as in B above
Same as in B above
Same as in B above

Formatted; 24 records per
subprogram analyzed, 83
words/record

Unformatted; maximum 25
records, maximum 2048
words/record

Random access file; maxi-

mum of MAXPGS=100 records,
maximum size of IPAGSZ=512
(both set by DBINIT)

Disposition

To be passed to PHASE3
Printer

To be passed to PHASE3
To be passed to PHASE3

To be copied to output
in case of abnormal term-
ination

To be passed to PHASE3

To be passed to PHASE3

*DBUTIL contains data base utilization information useful only to

the DAVE maintainer.

termination.

PHASE2 requires DBLIB to satisfy externals.

Core requirement:

PHASE3

Name
COMDAT
CALLGR
PAGEI
STATUS
DIAG
MODSRC
MASTR
PAGEM

Name
QUTPUT

121000
INPUT FILES
Unit
No. Contents
1 Same as in B above
2 Same as in B above
5 Same as in B above
7 Same as in B above
8 Same as in B above
10 Same as in B above
12 Same as in B above
13 Same as in B above
QUTPUT FILES
Unit
No. Contents
6 Maximum record size of 80

characters; all DAVE analy-
sis is printed in PHASE3

PHASE3 requires DBLIB to satisfy externals.

Core requirement:

135000

It may be helpful in cases of abnormal

Disposition
Printer

STEP FIVE.

Set up a procedure file to execute DAVE.

160

The following is a

prototype procedure file for the CDC 6400 under KRONOS 2.1,

with an explanation of each job control command.

This procedure

file, named DAVE, is invoked by the statement:
CALL(DAVE(OPTIONS=FILET,INPUT=FILE2)

where FILET is the file containing the user options and FILEZ2

is the file containing the Fortran subject program (see section

on how to execute DAVE).

The names OPTIONS and INPUT are formal

parameters to the procedure file; FILE1 and FILEZ are the actual

parameters.

JOB CONTROL STATEMENT

EXPLANATION

GET,PHOB,PH1B,PH2B,PH3B,DBLIB,COMDAT.

RFL,40000.
PHOB(OPTIONS, INPUT)

RFL,114000.
LDSET(LIB=DBLIB)

PHIB.

REWIND,OUTPUT.
COPY,OUTPUT, ERRS.
RETURN, OUTPUT.

RFL,121000.
LDSET(LIB=DBLIB)

PHZB.

REWIND,QUTPUT.
COPY,0QUTPUT,ERRS.
RETURN,QUTPUT.

RFL,134000.
LDSET(LIB=DBLIB)

PH3B.

Get the files necessary for DAVE's
execution.

Set the field Tength for PHASEO.

Load and execute PHOB. OPTIONS and
INPUT are parameters to the procedure
file. OPTIONS indicates the name of
the file containing the user options
for this run and INPUT indicates the
name of the file containing the
Fortran subject program. These files
appear in the first two positions on
the program card for PHASEQ.

Set the field length for PHASET.

Specify that library DBLIB is to be
searched to satisfy externals in PHIB.

Load and execute PHIB.

Copy to file ERRS anything written to
file OUTPUT in PHASE1. Return OUTPUT
so that it can be re-created as a

new file in PHASEZ2.

Set field length for PHASEZ2.

Specify that library DBLIB is to be
searched to satisfy externals in PHZ2B.

Load and execute PHZB.

Copy to file ERRS anything written to
file OUTPUT in PHASE2. Return OUTPUT
so that it can be re-created as a new
file in PHASE3.

Set field length for PHASE3.

Specify that library DBLIB is to be
searched to satisfy externals in PH3B.

Load and execute PH3B.

161

JOB CONTROL STATEMENT EXPLANATION

REWIND,ERRS. If anything was written on ERRS,

COPY,ERRS,OUTPUT. copy it to OUTPUT now.

EXIT. Control passes here when a system error

REWIND,ERRS. (such as address out of range) occurs

COPY, ERRS,QUTPUT during processing. Files ERRS and

REWIND,DBUTIL. DBUTIL are copied to OUTPUT to help

COPY,DBUTIL,QUTPUT. the DAVE maintainer determine the cause
of the error.

STEP SIX. Run DAVE on the subject program TESTFL (file #8 on the tape)

by calling the procedure file:
CALL(DAVE(OPTIONS=INPUT, INPUT=TESTFL)
where file INPUT contains the record
SI=0N
which indicates that simulation of missing subprograms is

desired.
The output produced should duplicate the Tlisting in Appendex A.

Chapter V: INTERNAL DIAGNOSTICS PRODUCED BY DAVE

This section contains explanations of the internal diagnostics
issued by DAVE and their probable causes. Some of these diagnostics
are due to ANSI violations in the subject program, which can be corrected
by the user. Others are due to overflow of arrays used by DAVE and may
be corrected by enlarging array dimensions. DAVE's size Timitations are
explained in detail in Chapter III, Section 5. Still other diagnostics
may be due to an undetected bug in DAVE, in which case we should be
notified.

Diagnostics emanating from DBINIT, the data base initialization
package, are due to errors in file NUDATA. These should not appear when
using the NUDATA supplied with the DAVE system. However, an explanation
of these diagnostics appears here in case the user wishes to modify
NUDATA, since the data base system may be used independently from DAVE.

Diagnostics emanating from PHASEO are mainly due to ANSI FORTRAN
violations in the subject program and so are discussed in Chapter II,
Section 2.6.

For DATAB, PHASE1, PHASE2 and PHASE3, diagnostic packets are issued
through Subroutine ERRSUB, contained in DATAB. The ERRSUB packet has
the following format:

//ERROR///

ERROR NUMBER = -1
DETECTED IN SUBPROGRAM EXAMPL
ERROR PACKET IS --

INDEX OCTAL ALPHABETIC INTEGER
1 00000000000000000044 9 36
2 02555555555555555555 B R
3 00000000000000000020 P 16

This is followed by traceback information (ERRSUB is edited before-
hand to call the local traceback routine.) A negative error number is
fatal and causes termination of the job by ERRSUB after the traceback.

A positive error number causes a diagnostic package to be printed but
execution continues. There are very few non-fatal errors so that term-
ination may acceptably occur in the traceback routine.

163

The Tisting of the diagnostics is organized as follows:

I. DBINIT
IT. DATAB
IIT. PHASET, PHASE2, PHASE3 combined

DIAGNOSTICS ISSUED BY DBINIT (Data Base Initialization Package)

$$$ FATAL ERROR $$$ NUMBER OF DATA TYPES REQUESTED EXCEEDS <maximum
number of nodes>

The maximum number of nodes allowable (100) has been exceeded.

Processing is aborted.

$$$ FATAL ERROR $$$ NUMBER OF FIELDS REQUESTED EXCEEDS <maximum num-
ber of fields>

The maximum number of fields allowable (200) has been exceeded.

Processing is aborted.

$$ ERROR $$ BUFFER OVERFLOW ON ENTRY--<entry name>
There are too many field or node names. This condition is
dependent upon #1 and #2 above. Processing continues.

$$ ERROR $$ ILLEGAL TYPE CODE--<code>
ALPHANUMERIC (A) TYPE CODE SUBSTITUTED
Legal type codes are 'A', 'P', 'R', 'I'. Processing continues.

$$ ERROR $$ TOO MANY TOKENS ON REMAINDER OF CARD--<remainder of card>
There is a card on NUDATA whose syntax is in error. Processing
continues.

$$ ERROR $$ UNCONVERTIBLE TOKEN--<token>
There is a card on NUDATA whose syntax is in error. Processing
continues.

$$ ERROR $$ BOUNDS SHOULD BE INTEGER, AT LEAST ONE IS NOT

There is an error in the bounds information on NUDATA. Proces-
sing continues.

$$ ERROR $$ BOUNDS SHOULD BE REAL, AT LEAST ONE IS NOT

There 1is an error in the bounds information on NUDATA. Process-
ing continues.

$$ ERROR $$ NODE SIZE EXCEEDS<maximum part words> PARTWORDS
There are more than 100 part word fields for a particular node.
Processing continues.

10.

11.

12.

13.

14.

15.

IT.

164

$$ ERROR $$ DUPLICATE REQUEST NAME
There are duplicate common block names in the explicit INCLUDE
blocks. Processing continues.

$ WARNING $§ UNIDENTIFIED CARD--<card image>
There is an invalid key on NUDATA. Valid keys are 'T', 'N',
"F', "E'. Processing continues.

$ WARNING $§ COMMENT INDICATOR IS NOT A POSITIVE INTEGER
The number of comments must be indicated by 'C', blank, or
integer value. Processing continues.

$ WARNING § NO BOUND INFORMATION IS REQUIRED
For 'A' and 'P' types, no bound information is needed. Pro-
cessing continues.

$ WARNING $ NO DATA BASE DEFINED
No data base description was given.

$ WARNING § A NODE WITH NO FIELDS HAS BEEN DEFINED
Incomplete node description.

DIAGNOSTICS ISSUED BY DATAB
Diagnostics emanating from subprograms in DATAB should not appear

under normal circumstances. Since they may be difficult to interpret with-
out a working familiarity with the data base system, we at the University
of Colorado should be contacted for assistance.

Notes:

1.

Some errors which are detected by user level data accessing routines
are actually sensed by service routines called by them. The trace-
back information for such cases will include the name of that service
routine sensing the error. 1In the following description, errors
sensed via service routines are denoted as follows:
Denotation Service Routine

(a) CHLPAR

(b) CHTPAR

(c) LOCLST

(d) LOCTBL

165

Some elements of a given error packet may not appear for every error
or may contain the alphanumeric name associated with the element;

these are denoted by *.

This section is divided into two sub-sections:

A) A listing of the error numbers and their packets by subprogram

for DATAB.

B) A description of the errors by number.

A. Error numbers and packets by subprogram.

ERROR # MESSAGE
ADLSTL 1(a) ERRPKT(1)*=IFIELD
2(a) (2)*="NIL"
4(a) (3)*=NDTYPH
9(a) (4)*="NIL"
10(a) (5) =LOCH
-15 (6)*=LNKFLD
-20 (7)*="NIL"
21 (8)*=NODTYP
-23 (9)*="NIL"
(10) =LOC
(11)*=node type of node
pointed to
ADLSTT 1(a,b) ERRPKT(1)*=IFIELD
2(a) (2)*="NIL"
3(b) (3) =NUMBER
4(a) (4)*=ITABLE
6(b) (5)*="NIL"
9(a,b) (6)*=LNKFLD
10(a) (7)*="NIL"
13(b) (8)*=NODTYP
-15 (9)*="NIL"
-19(b) (10) =LOC
-20 (11)*=no. of entries
21 in ITABLE
-23 or node type of node

pointed to

CPLIST

GARWCK

ITMLST

ITMTBL

LSTPOS

ERROR #

1(a)
2(a)
4(a)
9(a)
10(a)
-12
-15
16
20

-17

166

MESSAGE

ERRPKT(1)*=LNKFLD
)*=“NIL“
)*=NODTYP

2
3
4)*="NIL"
5

(
(
(
(4)

(5) =

(6) =IBUFSZ
(7)*=node type

of node pointed
to

ERRPKT(1) =NAMNOD(ITABLE,1)
(2) =NAMNOD(ITABLE,2)

ERRPKT(1)*=IFIELD

(2)*="NIL"

(3)*=NODTYP

(4)*="NIL"

(5) =LOC

(6)*=free 1ist pointer

(7)*=size of

data base

ERRPKT(1)*=IFIELD
(2)*="NIL"
(3) =NUMBER
(4)*=ITABLE
(5)*="NIL"
(6)*=pointer to table entry
(7)*=base of table
(8)*=top of table
ERRPKT(1)*=ITABLE

(2)*="NIL"

(3)*=type of data base

167

ERROR # MESSAGE
LSTSCH 1(a) ERRPKT(1)*=IFIELD/LNKFLD
2(a) (2)*="NIL"
4(a) (3)*=NODTYP
9{a) (4)*="NIL"
10(a) (5) =L0C
-15
MKLSTL 1 ERRPKT(1)*=IFIELD
2 (2)*="NIL"
4(a) (3)*=NDTYPH
9 (4)*="NIL"
10(a) (5) =LOCH
-15 (6)*=LNKFLD
19
20 (7)*="NIL"
21
-22 (8)*=NODTYP
(9)*="NIL"
(10)*=node type of
node pointed to
MKLSTT 1 ERRPKT(1)*=IFIELD
2 (2)*="NIL"
3(b) (3) =NUMBER
6(b) (4)*=ITABLE
9 (5)*="NIL"
13(b) (6)*=LNKFLD
-15
19 (7)*="NIL"
-19(b)
20 (8)*=NODTYP
21
-22 (9)*="NIL"

(10)*=number of entries in
table or node type of
node pointed to

MTYLST

MTYTBL

NEWNOD

NXTPOS

PAGE

PUTLST

ERROR #

-15
-17

-16

168

MESSAGE

ERRPKT(1)*=NODTYP
(2)*:”NIL"

ERRPKT(1)=ITABLE

ERRPKT(1)*=NODTYP

(2)*="NIL"

ERRPKT(1) =ITABLE

ERRPKT(1)
(2)

IPRFOF
IP

1]

ERRPKT(1) =INFO
(2)*=IFIELD
(3)*="NIL"
(4)*=NODTYP
(5)*="NIL"
(6) =LOC
(7)*=MINBND(IFIELD)
- or free pointer
(8)*=MAXBND(IFIELD
or size of data base

PUTTBL

RESEQ

STLIST

TOPLSL

ERROR #

1(b)
3(b)
6(b)
-7
- 8
9(b)
13(b)
-14
-15
-18(d)
-19(b)

-26

-1
-9
-16

1(a)
2(a)
4(a)
9(a)
10(a)
-15
-20
21

169
MESSAGE

ERRPKT(1) =INFO
2)*=IFIELD
3)%="NIL"
4) =NUMBER
(5)*=ITABLE
(6)*="NIL"

(7)*=number of entries

(
(
(
(

in table or node

type pointed to or

MINBND{IFIELD)
(8)*MAXBND (IFIELD)

ERRPKT(1)=ISTACK(1)

(MAX) =ISTACK(MAX)

ERRPKT(1) =NODTYP
(2) ="NIL"
(3) =IBUFSZ

ERRPKT(1)*=IFIELD
(2)*="NIL"
(3)*=NDTYPH
(4)*="NIL"
(5) =LOCH

(6)*=LNKFLD

(7)%="NIL"

(8)*=NODTYP

(9)*="NIL"

170

ERROR # MESSAGE
TOPLST 1(a,b) ERRPKT(1)*=IFIELD
2(a) (2)*="NIL"
3(b) (3) =NUMBER
4(a) (4)*=1TABLE
6(b) (5)*="NIL"
9(a,b) (6)*=LNKFLD
10(a) (7)*="NIL"
13(b) (8)*=NODTYP
-15 (9)*="NIL"
-19(b) (10) =LOC
-20 (11)*=number of entries in table
21 or node type of node pointed to
WRDAB -35 ERRPKT(1) =IDBTB(1,1)

(2*157) =IDBTB(ISZ,2)

XPTLST 1(a) ERRPKT(1) =XINFO
2(a) (2)*=IFIELD
4(a) (3)*="NIL"
7 (4)*=NODTYP
9(a) (5)*-”NIL"
10(a) (6) =
-11(c) (7)*—xw1N(1FIELD)
-12(c) free pointer

-15 (8)*=XMAX(IFIELD) or size
24 -+ of data base

16

XPTTBL 1(b) ERRPKT(1) =XINFO
3(b) (2)*=IFIELD
6(b) (3)*="NIL"
-7 (4) =NUMBER
9(b) (5)*=ITABLE
13(b) (6)*="NIL"
-15 (7)*=number of entries
-18(d) in table or node type
-19(b) of node pointed to or
-24 pointer to table entry
or MINBND(IFIELD)
(8)*=base of table or MAXBND(IFIELD)
(9)*=top of table
XTMLST 1(a) ERRPKT(1)*=IFIELD
2(a) (2)*="NIL"
4(a) (3)*=NODTYP
9(a) (4)*="NIL"
10(a) (5) =L0C
-11(c) (6)*=free pointer
-12(c) (7)*=size of data base
-15
24
XTMTBL 1(b) ERRPKT(1)*=IFIELD
3(b) (2)*="NIL"
6(b) (3) =NUMBER
9(b) (4)*=ITABLE
13(b) (5)*="NIL"
-15 (6)*=number of entries in
-18(d) table or node type of
-19(d} of node pointed to

(7)*=base of table
(8)*=top of table

172

Errors described by number.

1.
2.

10.
11.
12.

14.
15.

16.
17.

18.
19.
20.

21.
22.

23.

24,

The node name for a list or table node is unrecognizable.
Field does not correspond with the T1ist node type.
I1legal table.

ITTegal main data base area.

Requested information from a field that is empty.

Sequence number is out of range.

Information to be put in the data base is not within the correct
range.

Field type must not be any of the real types.

Node is a sequential table node when a Tinked node is required.
IT11egal pointer--pointer flag missing.

Pointer is out of range.

Pointer points to a different type noderthan NODTYP.

Field specified is not a component of the sequential table type.

Only pointer information may be put in the specified field.

Termination due to illegal parameter(s); see preceding diagnos-
tic packets.

Overflow in vector.

Overflow in data base. The maximum number of pages MAXPGS=100
and the page size IPAGSZ=512 are set in DBINIT.

Computed address of a sequential node is not in the data base -
check for illegal data base or vector.

Node type specified is not in the vector IBUF.
LNKFLD must be a pointer field.
IFIELD must be a pointer field.

The vector does not contain any nodes to be put on the Tinked
Tist.

Node(s) on 1ist is not of the same type as the node to be added
to the Tist.

Field must be of real type.

25.

26.

27.
28.

29.

30.

31.

32.

33.

34.

35.

173

In-core ‘data base area is too small for a non-prefix page to
reside in core.

Overflow of array ISTACK, whose size is MAX=512. ISTACK and
MAX appear in common block STACKS in the calling subprogram.
The size of ISTACK is set by DBINIT.

An error was discovered in the marking of a node.

There has been a change in the format of the prefix between
the roll-out and roll-=in phases.

Array IBUF, whose size is MAXBUF, passed in throughAROLLiN, is
not large enough to hold the old data base description, whose
size is stored in IDBTB(ISZ,1).

An unpaged data base is being rolled in but the new in-core
array is not large enough to hold even the prefix + linked
area of the old data base. IDBTB(NUM,2) is the size of the
prefix + linked area.

The old unpaged data base will not fit into the new data base
array. ICON=the unused portion of the old data base (between
Tinked and sequential) is less than old size-~new size:.

The size IASZ of IAREA is Tess than LIMIT, the number of data
base description items to be written out.

MAXBUF, the size of IBUF, is Tess than MAXPGS=100, the maximum
number of pages for a data base. IBUF is used by WRDAB to hold
information about the pages, which is then written out to IFLNM.

During the roll-in process, it has been found that all the
linked nodes were not targeted properly.

Overflow of the 2-dimensional array IDBTB used to hold informa-
tion on the format of the file of data bases. It is dimensioned
(no. of data bases,2).

ADDENDUM TO V. III, p. 174
(Internal Diagnostics Produced by DAVE)

CKGRPH

-2 ERRPKT(1)=I0RDR(IORSZ) Overflow of array IORDR. There
are more than IORSZ subprogram
units (including those to be
simulated). IORSZ must be in-
creased; see Ch. III, Sec. 5.2.

LKCLRS

-1 ERRPKT(1)=IGRPH(IPNT) Overflow of array IGRPH, due to

a large number of subprogram
units being processed:and/or a
large number of common blocks.
See Ch. III, Sec. 5.2, I.A.2.

174

IIT. PHASE1, PHASEZ2, PHASE3 combined.

NO. MESSAGE MEANING

ACT

-1 ERRPKT(1)=KCHAR An operator or logical constant has
(2)=IPONT not been found as expected.
(3)=ISAVE Probable cause: Syntax error

-2 (1)=INSTK(IPONT) A complete operator or logical
(2)=IPONT constant was not found as expected.
(3)=IEND Probable cause: Syntax error in the

subject program.

AC2

-1 ERRPKT(1)=INSTK(IPONT) The current character INSTK(IPONT) is
(2)=IPONT not one of those expected, "+" "-"
(3)=ITYPE n/n n(u n)u H’ll ll=||.

Probable cause: Syntax error in
subject program.

AC3
-1 ERRPKT(1)=IBEG No non-blank character is found after
(2)=1END the asterisk.
(3)=ISAVE Probable cause: A syntax problem in-
volving the use of
* or ** has been en-
countered in the
subject program. .
AC4
-1 ERRPKT(1)=IBEG A non-blank character was not found
(2)=1END as expected.
(3)=IPONT Probable cause: Syntax error in
, subject program.
-2 ERRPKT(1)=IBEG Either .D or .E was found. Alone
(2)=IEND they constitute an illegal string.
(3)=IPONT Probable cause: Syntax error in

subject program.

175

NO. MESSAGE
AC5
-1 ERRPKT(T)=INSTK(IPONT)
(2)=IPONT
-3 ERRPKT(1)=INSTK(IPONT)
(2)=IPONT
AC6
-1 ERRPKT(1)=IPONT
(2)=IEND
ASIGN
-1 ERRPKT(1)=1
(2)=D
(3)=X
BLKTAB
-1 ERRPKT(1)=NUM
(2)=LENGTH

MEANING

The current character is not an E,

D or H as required.

Probable cause: Syntax error in
subject program

The Tength of the Hollerith string

is less than or equal to O.

Probable cause: Syntax error in
subject program -
an illegal Hollerith
specification has
been encountered.

Error in imaginary part of complex
constant.
Probable cause: Syntax error.

There are more than 20 dummy argu-
ments in an arithmetic statement
function.

Overflow of array IUNDOV, whose
size is LENGTH=500, the maximum
allowable number of blocks per sub-
program unit in the subject program.
BLKTAB is called by DRIVEZ with
corresponding actual parameter
array IBIND. See Ch. III, Sec.

5.2, IT.A.10.

176

NO. MESSAGE MEANING
C37T11
-1 ERRPKT(1)=ICHAR(1) There is a non-ANSI variable
. . name containing more than
(i)=ICHAR(I) 6-characters.
CGRAPH
-1 ERRPKT(1)=A Overflow of array IGRPH, due to a
(2)=R large number of subprogram units
(3)=R being processed and/or a -large
(4)=F number of common blocks. See
(5)=U Ch. III, Sec. 5.2, I.A.2.
(6)=L
(7)=L
CHR
-1 ERRPKT(1)=C The character C is not a blank,
letter or digit.

Probable cause: An error in the
subject program's
representation of
a variable name, or
system fault.

CKGRPH
-1 ERRPKT(1)=INAMS(1) There are more than 400 unsatisfied
- externals in the program units being
e processed. INAMS contains their
(400)=INAMS (400) names (in coded base 37 representa-
tion).
CMDOWN
-1 ERRPKT(1)=IGRPH(IPCMI) An entry in IGRPH for this common
(2)=IGRPH(IPCMI+1) block is missing.
(3)=IGRPH(IPCMI+2) Probable cause: System fault.
-2 ERRPKT(1)=IGRPH(IPCMI) The classification of this common
(
(3)

1
2)= IGRPH(IPCMI+1) block in the calling subprogram
3)=IGRPH(IPCMI+2) is unknown.

Probable cause: System fault.

NO.

177

MESSAGE

.COMPLT

-1

COMTCH

-1

CONTOK

~1

ERRPKT(1)=INA

ERRPKT(1)=ISTNO

ERRPKT(1)=IEXT
(2)=1CMB

ERRPKT(1)=IEXT
(2)=1CMB

ERRPKT(!)=INTSK(1)

£100)=INSTK(100)
ERRPKT(1)=INSTK(1)

(100)=INSTK(100)

ERRPKT(1)=INSTK(1)

(100)=INSTK(100)

ERRPKT(1)=INSTK(1)

(100)=INSTK(100)

MEANING

The first character (INA) of a

symbolic name converted from its

base 37 representation is not a

letter.

Probable cause: System fault or
syntax error in
subject program.

There is a missing statement
number (ISTNO) in the subject
program.

There is no entry for common block
ICMB (base 37 representation) in the
calling subprogram's Tist of blocks.
Probable cause: System fault.

A common block is always available
in the called subprogram and either
sometimes or never available in the
calling subprogram.

Probable cause: System fault.

Type of token 1is out of allowable
range.
Probable cause: System fault.

Overflow of token stack.

Probable cause: System fault or
Fortran statement
in subject pro-
gram exceeds 20
Tines.

The starting point of the string
input exceeds the end.
Probable cause: System fault.

The Tength of array INSTK is Tess
than the index of the last character
of string input .

Probable cause: System fault.

178

NO. MESSAGE

CONTOK | (continued)

-5 ERRPKT(1)=INSTK(1)

.

(100)=INSTK(100)

oaTye |

-1 ERRPKT(1)=K
(2)=E
(3)=Y
(4)=
(5)=E
(6)=R
(7)=R

DUMYEﬁ[}

-1 ERRPKT(1)=I0RDR(1)

(N)=TORDR(N)
-2 ERRPKT(1)=TORDR(1)

(N)=TORDR(N)

-3 ERRPKT(1)=T0RDR(1)

(N)=IORDR(N)

EQADD

-1 ERRPKT

N M e ? e
TR T | I TR
I RO

MEANING

No "T" was found in an ASSIGN TO
statement.

The statement being processed is
not a type declaration as expected.
Probable cause: System fault

There is no entry in IGRPH for the
caller of this subprogram unit (Nth
in IORDR). IORDR contains the pro-
cessing order of the units.

No entry was found for this sub-
program unit's name in the
caller's Symbol Table.

Probable cause: System fault.

No entry was found in the caller's
Statement Table for the call to
this external.

Probable cause: System fault.

Overflow in array ICHTB. IQMAX=100,
the maximum number of variables
which may appear in EQUIVALENCE
statements in a program unit. See
Ch.III, Sec. 5.2, I.C., I.D., and
IT.E.

NO. MESSAGE
EQMRG
-1 ERRPKT(1)=
(2)=
(3)=
(4)=
(5)=
(6)=
(7)=
(8)=
(9)=
EQUIV
-1 ERRPKT(1)=
(2)=
(3)=
(4)=
(5)=
EXPRSN
-1 ERRPKT(1}=
(2)=
(3)=
ERRPKT(1)=
(2)=
(3)=
or.
ERRPKT(1)=
(2)=
(3)=

< - 2L T

Ao rm

> I L

IBEG

—
T
=
O

EXTPT
ENSTT

N= -

NXTST
KRSTA
3

179

MEANING

An error has occurred in the pro-

cessing of equivalence chains.

Probable cause: System fault or
equivalencing
error in subject
program.

Array IQLST has overflowed.
IQMAX=100, the maximum number of
variables which can appear in
equivalence lists plus the number
of 1ists in a program unit. See
Ch. III, Sec. 5.2, I.C, I.D. and
IT.E.

Source string indices are incorrect:
IBEG>TEND
Probable cause: System fault.

The next transition is in error;

NEXTPT no longer points to the

transition table. (NEXTPT must be

less than the length of the table

LENSTT).

Probable cause: Syntax error in an
expression in the
subject program.

The next state is in error; NXTST
must be one of 1, 2, 3, 4, 5, but
has been found to be 0.

Probable cause: Syntax error in an
expression in the
subject program.
One possibility is
the illegal juxta-
position of 2
operators.

ey

! FLTCHR

-1

GRORDR

-1

GROUP

-1

180

MESSAGE
ERRPKT(1)=ISTK(IP,1)

ERRPKT(1)=ISTK(1,1)

(IP)=ISTK(IP,1)
ERRPKT(1)=ISTK(1,1)

(10)=1STK(10,1)
or
ERRPKT(1)=IPAR(1,1)
(10)=1PAR(10,1)

ERRPKT(1)=1I1
(2)=12
(3)=V(11)

ERRPKT

TN AN TN TN TN NN TN
N OO W N -
N Nt N N aret? S it
wonononouonon
mMEIT =0

ERRPKT(1)=NUM

MEANING

A parameter classification of pro-
cedure declared external or arith-
metic statement function name was
expected but not found.

Probable cause: System fault.

The token is equal to none of the
expected code identifiers.
Probable cause: System fault.

Underflow in either ISTK or IPAR.

Probable cause: System fault, or
incorrect paren-
theses usage 1in
subject program.

Either the input segment V(I1),...,
V(I2) does not contain a valid repre-
sentation of a real number or I1>I2.
Probable cause: Syntax error in
FORTRAN representa-
tion of a real number
in the subject pro-
gram, or system fault.

An entry for the caller of this sub-
program unit was not found.
Probable cause: System fault.

Have an incorrect diagnostic number,
NUM.

Probable cause: System fault.

181

NO. MESSAGE MEANING
INPVAR
-1 ERRPKT(1)=1ISTK(1) Underflow of array ISTK.
(2)=1STK(2) Probable cause: System fault.
-2 ERRPKT(1)=IBIND(IBB) Overflow of array ISTK, dimensioned
. LIM=1000. :

oo Probable cause: There are more than
(1BK)=IBIND(IBL) LIM/2=500 blocks in
the subprogram unit
being processed. IBIND
contains the start index
in IOBLK for each block.
See Ch. III, Sec. 5.2,

IT.A.10.
-3 ERRPKT(1)=IOBLK(INNOD) 1I1legal I/0 classification code.
Probable cause: System fault.
INTCHR
-1 ERRPKT(1)=11 Either the input segment V(Il,...,
(2)=12 V(I2) does not contain a valid repre-
(3)=V(I1) sentation of an integer, or I1>12.
Probable cause: Syntax error in the
subject program or
system fault.
IOINIT
-2 ERRPKT(1)= Overflow of array ISTOP, containing
= the block numbers of exit nodes for
= a subprogram unit. ISTPL=100, set
= in Subroutine IODRVR.
-3 ERRPKT Overflow of array IBIND, which con-

tains one entry/block for a sub-
'program unit. IBNDL (size of
IBIND=500), See Ch. III, Sec. 5.2,
IT.A.10.

O=ZMmM-—-WnN>=>T O=2m-—wvmI>T

[T N I [N | B |

B N N N LN D D L

NO. MESSAGE
continued
-4 ERRPKT(1)=U
(2)=N
(3)=C
(4)=L
(5)=A
(6)=S
(7)=S
-5 ERRPKT(1)=P
(2)=A
(3)=S
(4)=T
(5)=E
(6)=N
(7)=D
-6 ERRPKT(1)=P
(2)=A
(3)=S
(4)=T
(5)=E
(6)=N
(7)=D
-7 ERRPKT(1)=P
(2)=A
(3)=S
(4)=T
(5)=E
(6)=N
(7)=D
—
I0STAT
-1 ERRPKT(1
(2
(3
(4
{:EEYUND
-1 ERRPKT

(1
(2)=NUM
(3)=LHEAD
(4)=KCOUNT

)=1EXITB

182

MEANING

A variable's 1/0 status is un-
classified.

Probable cause: System fault.

Overflow of array IOBLK whose
size is IOBSZ=9000. The size is
dependent upon the number of
blocks and variables in a subpro-

gram. See Ch. III, Sec. 5.2,
I1.B.2.

Overf]ow of array IEQND, whose size
is TELMT=100. TIEQND contains the
equivalenced variables for a sub-

program unit. See Ch. III, Sec.
5.2, II.E.

Overflow of array INTID, whose
size is INIDL=300. INTID contains
Symbol Table pointers for the
global or local variables in a
subprogram unit. See Ch. III,
Sec. 5.2, IT.A.11.

I/0 classification of parameter
is in error.

Probable cause: System fault.

The block IEXITB does not have a
Tinked Tist of entry blocks.
Probable cause; System fault.

NO. MESSAGE
TOVUND (continued)

-2 ERRPKT(1)=IEXITB
(2)=NUM
(3)=LHEAD
(4)=KCOUNT
(5)=LLNUM

-3 ERRPKT(1)=KCOUNT
(2)=KSIZE

—

ISTYPE |

~1

LABBLK

-1

LASTNB

-1

ERRPKT(1)=ICHAR
(2)=IPONT

ERRPKT(1)=K
(2)=LHEAD
(3)=LSAVE

ERRPKT(1)=NUMDO
(2)=KDO

ERRPKT(1)=dJ
(2)=INLABX

ERRPKT(1)=IBEG
(2)=1END
(3)=IPONT

183

MEANING

The block NUM is not in the entry
block Tist for block IEXITB.
Probable cause: System fault.

KCOUNT has exceeded KSIZE=50, the
size of array KOVUND, which con-
tains undefined output variables
for a block.

A non=ANST character ICHAR has
been found.
Probable cause: Syntax error in
the subject

program.

The Tlinked Tist of internal refer-
ences to an external label is in
error.

Probable cause: System fault.

There are more than KD0=20 DO=
statements which refer to the same
DO-Toop closure statement number.

There are more than INLABX=50
statements which refer to the same
external Tlabel.

IPONT is out of range.
Probable cause: System fault.

184

NO. MESSAGE MEANING
LEXST
1 ERRPKT(1)=IERR The beginning of the program unit
(2)=d was reached without finding an
(3)=0 executable statement.
(4)=LLAST Probable cause: System fault.
(5)=JTYPE
(6)=JCODE
2 ERRPKT(1)= IERR An executable statement was not
(2)=J found before block J.
(3)=JBLOCK Probable cause: System fault.
(4)=LLAST
(5)=JTYPE
(6)=JCODE
3 ERRPKT(1)=IERR JCODE is out of range, 1-2.
(2)=4 Probable cause: System fault.
(3)=0
(4)=LLAST
(5)=JTYPE
(6)=JCODE
LUNTIL
-1 none A non-blank character could not
be found.
Probable cause: Syntax error 1in
subject program.
MKLBTB

-1 ERRPKT(1)=TKSTK(1) There is a labelling error in
. . an ASSIGN, GOTO, or DO state-

(2%LCLEN+6)=TKSTK(2*LCLEN+6) Ment-

NAMCHR
-1 ERRPKT(1)=11 Either the input segment V(I1),...,
(2)=12 V(I2) does not contain a valid repre-
(3)=V(11) sentation of a FORTRAN variable name,
or IT>12.

Probable cause: Syntax ervror in sub-
ject program, or
system fault.

NO.

185

MESSAGE

NEXTNB

-1

NUMCHR

-1

OUTVAR

PHASET

-1

ERRPKT(1)=1BEG

1
g2)=IEND
(3)=IPONT

ERRPKT(1)=NUM

ERRPKT(1)=ISTK(1)
(2)=ISTK(2)

ERRPKT(1)=IBIND(IBB)

(IBL)=IBIND(IBL)

ERRPKT(1)=ISTOP(1)

(ISTL)=ISTOP(ISTL)
ERRPKT(1)=T0BLK(INNOD)

[none]

MEANING

IPONT is out of range.
Probable cause: System fault.

The array IARRAY of length LEN is
too small to hold the converted
integer. NUM is the remainder to
be converted to characters.
Probable cause: System fault.

Underflow of array ISTK.
Probable cause: System fault.

Overflow of array ISTK, dimen-
sioned LIM=1000.
Probable cause:

There are more than

LIM/2=500 blocks 1in

the subprogram unit
being processed. IBIND
contains the start in-
dex in IOBLK for each
block. See CH. III,
Sec. 5.2, II.A.10.

Overflow of érray ISTOP,kcontaining
the block numbers of exit nodes for
a subprogram unit. ISTL=100, set

“in Subroutine I0QDRVR.

ITTegal I/0 c1assificat10n code.
Probable cause: System fault.

Probable cause: Syntax error in sub-

ject program. Check

for the following:
(a) a missing (non-blank) character.
(b) an error in an ASSIGN statement.
(c) an error in a DO statement.

186

NO. MESSAGE
PHASET (continued)
-2

PROIMP

-1

ERRPKT(1)=T1TYPE

MEANING

An illegal statement type (ITYPE)
has been encountered.
Probable cause: Syntax error.

ERRPKT(1)=first paramete

(26)=20th parameter

Check for a non-
ANST FORTRAN
statement.

r There are more than 20 dummy
parameters in an arithmetic
statement function.

This is not a DIMENSION statement
as expected.
Prebable cause: System fault.

Missing left parenthesis.
Probable cause: Syntax error in

ERRPKT(1)=N
(2)=0
(3)=T
(4)=D
(5)=M
ERRPKT(1)=N
(2)=0
(3)=L
(4)=F
(5)=T
(6)=P
(7)=A
(8)=R

ERRPKT(1)=ITOK
(2)=IVAL

subject program.

Incorrect keyword in IMPLICIT

statement.

Probable cause: Syntax error in
subject program.

187

NO. MESSAGE MEANING
PUSH

-1 ERRPKT(1)=ISTK(1,1) Overflow of array ISTK, dimensioned
: (100,2). PUSH is called by Subrou-
Y= tine FCALL with array ISTK or array
(IP)=ISTK(IP,T) IPAR, which are in blank common in
FCALL. To enlarge either array,
only the blank common in FCALL need
be changed and the dimension in PUSH.
Probable cause: Very deep nesting of
calls within a sub-
routine or function
call or very deep
nesting of parenthe-
ses within a call.

PUTTOK
-1 ERRPKT(1)=IALPHA An overflow condition exists.
(2)=1BEFA Probable cause: System fault.
(3)=1IFNTK
(4)=LNTOK
RDWR
-1 ERRPKT(1)=IND(1) Overflow of array IND, which con-

tains the symbol table indices of
variables appearing in implied DO

(50)=IND(50) loops in a READ or WRITE statement.

SAVEIO

-2 ERRPKT

There is a variably dimensioned
COMMON array in the subject program.

N TN TN TN TN
oy orRw o —
N N s st et N
LTI I T T
ERDODROI><<

SKIP

SORTL

STEPAR

-1

STOUT

MESSAGE

ERRPKT(1)=ICOM(1)

(ICLMT)=ICOM(ICLMT)

[none]

ERRPKT(1)=LIST(1)

(NUM)=LIST(NUM)

(2)=IPR

ERRPKT(1)=NAM(1)

(21)=NAM(21)

MEANING

There are more than ICLMT=300
entries for ICOM, which contains
2* no. of common blocks sometimes
or always available to this sub-
program. ICLMT is passed in from
DRIVE2? as INIDL.

A non-blank character could not
be found.
Probable cause: Syntax error in sub-
ject program. Check
for a non-ANSI

FORTRAN statement.

NUM is greater than the size, LENG,
of LIST. NUM should fall between
1 and LENG.

Probable cause: System fault.

An argument in a subroutine or
function call is not an allowable
type. IPR(1) is the base 37
coded representation of the
called subprogram.

Probable cause: System fault.

Overflow of array NAM, dimensioned
21, which contains an output line
for Part II summary.

Probable cause: System fault.

NO. MESSAGE
STRDM
-1 ERRPKT(1)=B
(2)=A
(3)=D
(4)=T
(5)=0
(6)=K
-2 ERRPKT(1)=N
(2)=0
(3)=R
(4)=T
(5)=P
(6)=A
(7)=R
TRANS
-1 ERRPKT(1)= ICODE
(2)=K
(3)=K
-2 ERRPKT(])=ICODE
(2)=KA
(3)=KB
-3 ERRPKT(1)=1COD
=KA
=KB
-4 ERRPKT(1)=ICODE
(2)=KA
(3)=JTYPE
VARPR
-1 ERRPKT(1)=INPVAR
(2)=4

MEANING

The token is not ")", ",", a
symbolic name or an integer as
expected.
Probable cause: Syntax error in

subject program

The right paranthesis is missing
for a dimensioned variable.

ICODE is out of the range 1-8.
Probable cause: System fault.

No entry is found on KA's exit 1list
for block KB.

Probable cause: System fault.

No entry is found on KB's entry
T1ist for block KA.
Probable cause: System fault.

The statement type JTYPE for the
last statement in block KA is 1in-
correct.

Probable cause:

System fault.

The input variable (INPVAR) 1is in
the output Tist with type unde-
fined for statement number J.
Probable cause: system fault.

190

REFERENCES

[1] L. J. Osterweil and L. D. Fosdick, "DAVE--A Validation Error
Dectection and Documentation System for FORTRAN Programs,"
Software-Practice and Experience, 6 (1976), 473-486.

[2] L. D. Fosdick and L. J. Osterweil, "Data Flow Analysis in Soft-
ware Reliability," ACM Computing Surveys 8, 3 (1976),
305-330.

[3] L. J. Osterweil, L. Clarke, C. Miesse, E. Myers, D. W. Smith,
"A Flexible FORTRAN Data Base System," (to appear).

[4] B. G. Ryder, "The PFORT Verifier," Software-Practice and
Experience, 4 (1974), 359-378.

ooooo

APPENDIX A

DAVE LEVEL 8.0

khkhkhkhhhkhhkhhkhkdrhhhkhhhhhdrhrhhhkhkhhhhkddhhhhddhhtrhhhdtx

* *
* DAVE TERMINATION NORMAL *
* *

khkkhkhhkhkhkhhkhkhhhhhhkhhhhhhhhhhhhhhhhhhhhhhkdbhhkhhhkthdhhx

NOTE -- FOR MISSING SUBPROGRAMS THE FOLLOWING I/0 BEHAVIOR

HAS BEEN SIMULATED,

A, FOR FUNCTION SUBPROGRAMS, THE FUNCTION NAME HAS
BEEN CLASSIFIED AS STRICT OUTPUT AND ALL ARGU-
MENTS AS STRICT INPUT, NON-QUTPUT.

B. FOR SUBROUTINE SUBPROGRAMS, ALL ARGUMENTS HAVE
BEEN CLASSIFIED AS STRICT INPUT, NON-OUTPUT.

A SIMULATED SUBPROGRAM IS ASSUMED TO USE NO COMMON
VARIABLES. THE NUMBER AND DIMENSIONS OF ITS DUMMY
ARGUMENTS HAVE BEEN INFERRED FROM THE FIRST INVO-
CATION OF THE SUBPROGRAM BY THE PROGRAM UNIT
INDICATED BELOW.

SIMULATED SUBPROGRAM CALLER

———*PSIM*—~ ~*SYSMATIN* -
-—*SUBSIM*~ ~*SYSMAIN*-

USER OPTIONS SPECIFIED THIS RUN
SIMULATE I/0 BEHAVIOR FOR MISSING SUBPROGRAMS (SI= ON).
RE-START OF PREVIOUS RUN (RE=0FF) .

SUPPRESS DIAGNOSTICS (SU=O0OFF).

e &

DIAGNOSTIC SUMMARY =-- PART 1 A=-2

FREQUENCY
SUBPROGRAM ERRORS WARNINGS MESSAGES
SYSMAIN 24 48 5
BLKDATA 1
E101 2 5 1
SUB103 1 4 2
SUB302 1 5 2
SUB105 2 1
SUB106 1 1 2
SUB208 2 1 1
w201 4 1
SUB215 1 1
SUB 4 1
FUN 1 2 1
FSIM 1
SUBSIM 1
DIAGNOSTIC SUMMARY =—-- PART 2
ERRORS WARNINGS MESSAGES
IDENT.NO. FREQUENCY IDENT.NO., FREQUENCY IDENT.NO. FREQUENCY
101 1 201 1 301 2
102 2 202 1 302 2
103 4 203 1 303 3
104 1 204 5 304 14
105 1 205 1
106 2 206 1
107 2 207 2
108 2 208 1
109 2 209 1
110 4 2190 3
111 2 211 1
112 9 212 1
213 2
214 2
215 1
216 5
217 2
218 1
219 1
220 1
221 1
222 1
223 2

224
225
226
227
228
229
230
231
232
233
234
235
236
237

B O bt b DN b N e

|

CALL GRAPH

SUBPROGRAM CALLED BY CALLS

" SYSMAIN E101

SUB103

SUB105

SUB106

SUB208

w201

SUB215

SUB

FSIM

SUBSIM
E101 SYSMAIN
SUB106

SUB103 SYSMAIN SUB302

SUB302 SUB103 SUB106

SUB105 SYSMAIN SUB106

SUB106 SYSMAIN E101
SUB302
SUB105
SUB208 SYSMAIN
W201 SYSMAIN
SUB215 SYSMAIN
SUB SYSMAIN

FUN

FSIM SYSMATIN

SOURCE PROGRAM LISTING

$ IN THE CONTINUATION FIELD INDICATES THE EXPANSION
OF THE LOGICAL IF STATEMENT ON THE PREVIOUS LINE

BLOCK SOURCE
0 C PROGRAM TO TEST ALL DAVES ERRORS WARNINGS AND MESSAGES.
0 C BEFORE EACH PIECE OF CODE IS A SHORT DESCRIPTION OF THE
0 C TYPE OF ERROR WARNING OR MESSAGE TO BE OUTPUT.
0 C
0 C
1 COMMON/B1/CAl, BA
1 COMMON/BLK1/CA,D218,Y228(6)
1 EXTERNAL SUBEX
1 DIMENSION XDAT (5),XDT(5,2)
1 INTEGER I236
1 DATA 1220/1/ ,X221/1./
1 LASRF (X,Y)=5.%E101(C) +X+Y
2 c=1.
3 B=1,
0 C
0 C WARNING 209
0 C COMMON VAR REFERENCED BEFORE BEING DEFINED
0 C
4 IF (A.EQ. B)
5 $ X = CAl
0 C
0 C ERROR 109
0 C COMMON VAR IS REF BEFORE BEING DEFINED
0 C
6 X = M+CA
0 C
0 C GENERATES ERROR 101 INSIDE FUNCTION
0 C GENERATES ERROR 102 INSIDE FUNCTION
0 C
7 R = E101(1.)
0 C
0 C ERROR 103
0 C ACTUAL ARGUMENT IS CONSTANT OR EXPRESSION AND IS ASSIGNED A
0 C VALUE ON ALL PATHS IN CALLED SUBPROGRAM
0 C WARNING 203
0 C SAME AS 103 BUT SOME PATHS
0 C
8 CALL SUB103(3,B+C,Y+1)
0 C |
0 C ERROR 104
0 C NUMBER OF ARGUMENTS DOESNT MATCH
0 C
9 CALL SUB103(A)
0 ccC
0 C ERROR 105
0 C EXTERNAL IS USED AS A VAR IN CALLED ROUTINE
0 C
0 C WARNING 204
0 C CONSTANT IS NEVER REF IN SUBPROGRAM

e
COOCOOOONOOOOOCOROC OO OOoOOOO

bt bt
U W

it

ot

et
OCNOOOOHOOCOWOOOOOOOOOCOOOOOWOO OO OOJODOOTOO

[N

[3S]

N o
O b W

OO0 n OO0 SHONESRS! OO0 (@]

OO0 00n

QOO0 0nn

oN@]

QOO0

CALL SUB105(SUBEX, 3)

ERROR 106
EXTERNAL IS ASSIGNED A VALUE ON ALL PATHS IN SUBPROGRAM
WARNING 203
CONSTANT IS ASSIGNED A VALUE ON SOME PATHS
WARNING 213
ARGUMENTS HAVE DIFFERENT DATA TYPES

CALL SUB106 (SUBEX, 3)

WARNING 208
COMMON VAR (CA) IS USED AS A DUMMY ARG. AND IS COMMON IN SUBPROGRAM

CALL SUB208 (A,CA)

ERROR 111

CONTROL VAR IS REF OUTSIDE OF LOOP
ERROR 112

LOCAL VAR IS REF BUT NOT DEFINED

DO 10 I =

K = LOC +
10 CONTINUE

K=1H4+26

1, 10
1

WARNING 205 AND 206
EXTERNAL ,SUBEX, IS REFERENCED AS A VAR ON SOME PATHS
AND IS ASSIGNED A VALUE ON SOME PATHS

CALL SUB(1l.,SUBEX)

ERROR 108
COMMON VAR IS ASSOCIATED WITH A DUMMY VAR
FUNCTION W201 CAUSES WARNING 201 AND 202

I = w201(CA)

WARNING 215
ARGUMENTS HAVE DIFFERENT DIMENSIONALITY

WARNINGS 216 AND 217
COMMON VARIABLE ASSIGNED A VALUE ON ALL(SOME) PATHS BUT
BLOCK NOT AVAILABLE TO CALLER

WARNINGS 218 AND 219
COMMON VARIABLE INITIALIZED IN BLOCK DATA IS ASSIGNED A VALUE
ON ALL(SOME) PATHS BUT BLOCK IS NOT AVAILABLE TO CALLER
CALL SUBZ215(XDAT, B,C)

WARNING 226
TYPE II ANOMALY ON ALL PATHS, COMMON VAR. IN MAIN PROGRAM
CA = 1.
CA = 2

WARNING 227

TYPE II ANOMALY ON SOME PATHS, COMMON VAR. IN MAIN PROGRAM
BA=CA

IF(D219.EQ. Q)
$ CA=3.+BA

0 C WARNING 228 A-7
0 C COMMON ARRAY IS ASSIGNED A VALUE AND NOT REFERENCED
0 C
25 Y228(1)=6.
0 C
0 C WARNING 229
0 C LOCAL VAR IS ASSIGNED A VALUE AND NOT REFERENCED
0 C
26 X229=6,
0 ¢ ”
0 C WARNING 229 . o
0 C SAME AS ABOVE BUT ASSIGNED A VALUE AGAIN
0 C V o '
27 X230 = 1.
28 IF (CA.EQ.L)
29 $X230=3.
0 C
0 C WARNING 231
C LOCAL ARRAY XDAT IS ASSIGNED A VALUE AND NOT USED
C

W

XDAT(5)=1.

WARNING 232
ILLEGAL SIDE EFFECT . VAR APPEARS TWICE IN BELOW STMT.

OO0

98]

HOUOOOROOCOWOOOONCOODOHOODODODOOOD
o000

I = W201(X)+X

WARNING 233
SAME AS 232 BUT WITH COMMON VAR

OO 00

(O]

I = W201(CA)+CA

WARNING 234
GLOBAL VAR C IS USED TWICE

3 I = LASRF(2.,5.)+C
C
C SIMULATION OF FUNCTION CALL
C
3 I = FSIM(CA)
C
C SIMULATE SUBROUTINE CALL
C
3 CALL SUBSIM(X,A,B,D)
3 STOP
END
ERRORS
ERROR
NUMBER DESCRIPTION
*% 103 ** BLOCK NO. 7

AN ACTUAL ARGUMENT IS AN EXPRESSION OR CONSTANT, YET THE
CORRESPONDING DUMMY ARGUMENT IS ASSIGNED A VALUE ON ALL PATHS.
CALLING SUBPROGRAM CALLED SUBPROGRAM

*% 103 **

k% 103 **

k% 103 %%

k% 104 **

% 105 **

k% 106 **

k% 106 **

A-8

~-*SYSMAIN* - ———*E101%-—
ARGUMENT REAL Y P
POSITION 1 1

BLOCK NO. 8

AN ACTUAL ARGUMENT IS AN EXPRESSION OR CONSTANT, YET THE

CORRESPONDING DUMMY ARGUMENT IS ASSIGNED A VALUE ON ALL PATHS.
CALLING SUBPROGRAM CALLED SUBPROGRAM

-*SYSMAIN*- -=-*SUB103%~-
ARGUMENT INTEGER ek Tk e e
POSITION 1 1

BLOCK NO. 8

AN ACTUAL ARGUMENT IS AN EXPRESSION OR CONSTANT, YET THE

CORRESPONDING DUMMY ARGUMENT IS ASSIGNED A VALUE ON ALL PATHS.
CALLING SUBPROGRAM CALLED SUBPROGRAM

-*SYSMAIN*- -=-*SUB103%~-
ARGUMENT EXPRESSION D
POSITION 2 2

BLOCK NO. 11

AN ACTUAL ARGUMENT IS AN EXPRESSION OR CONSTANT, YET THE

CORRESPONDING DUMMY ARGUMENT IS ASSIGNED A VALUE ON ALL PATHS.
CALLING SUBPROGRAM CALLED SUBPROGRAM

-*SYSMAIN* - -=-*SUB10O6*~
ARGUMENT INTEGER e KK e
POSITION 2 2

BLOCK NO. 9

THE NUMBER OF DUMMY ARGUMENTS IN CALLED SUBPROGRAM -~*SUB103#%-
DOES NOT AGREE WITH THE NUMBER OF ACTUAL ARGUMENTS SUPPLIED

BY CALLING SUBPROGRAM -*SYSMAIN*-,

BLOCK NO. 10
AN ACTUAL ARGUMENT IS A PROCEDURE DECLARED EXTERNAL, YET THE
CORRESPONDING DUMMY ARGUMENT IS REFERENCED AS A VARIABLE
ON ALL PATHS.
CALLING SUBPROGRAM CALLED SUBPROGRAM

—*SYSMAINY* - -=-*SUB105%~-
ARGUMENT --*SUBEX*-~ e KKK e e
POSITION 1 1

BLOCK NO., 10
AN ACTUAL ARGUMENT IS A PROCEDURE DECLARED EXTERNAL, YET THE
CORRESPONDING DUMMY ARGUMENT, USED AS A VARIABLE, IS ASSIGNED
A VALUE ON ALIL PATHS.

CALLING SUBPROGRAM CALLED SUBPROGRAM

-*SYSMAIN*~- --*3UB105%~
ARGUMENT -~*SUBEX* =~ S) 'S -
POSITION 1 1

BLOCK NO. 11
AN ACTUAL ARGUMENT IS A PROCEDURE DECLARED EXTERNAL, YET THE

CORRESPONDING DUMMY ARGUMENT, USED AS A VARIABLE, IS ASSIGNED
A VALUE ON ALL PATHS.

CALLING SUBPROGRAM CALLED SUBPROGRAM A-9

~*SYSMAIN*- ~~*SUB106*~
ARGUMENT ~~*SUBEX* -~ e G
POSITION 1 1
*% 108 ** BLOCK NO. 18
A SUBPROGRAM REFERENCE CAUSES DUMMY ARGUMENT -——-*X*-——-
TO BECOME ASSOCIATED WITH A COMMON VARIABLE IN THE CALLED
SUBPROGRAM, =—---*X*---- IS ASSIGNED A VALUE ON ALL PATHS.
CALLING SUBPROGRAM CALLED SUBPROGRAM
~*SYSMAIN*- ——=*W201%-~
ARGUMENT —— e *CAK) L
COMMON VARIABLE ————*CA*——m =k CAK
% 108 ** BLOCK NO. 32
A SUBPROGRAM REFERENCE CAUSES DUMMY ARGUMENT ——-—*X%————
TO BECOME ASSOCIATED WITH A COMMON VARIABLE IN THE CALLED
SUBPROGRAM., =----*X*-—-— TS ASSIGNED A VALUE ON ALL PATHS.
CALLING SUBPROGRAM CALLED SUBPROGRAM
~*SYSMAIN*- == *[201 %=~
ARGUMENT === *CA¥ =) G
COMMON VARIABLE === *CAK = ————*CAK =
*% 109 ** COMMON VARIABLE -~--*Y228*—- IN COMMON BLOCK —---*BLKl*-- IS

REFERENCED ON ALL PATHS IN THE MAIN PROGRAM, YET IT HAS NOT
PREVIOUSLY BEEN ASSIGNED A VALUE, NOR HAS IT BEEN INITIALIZED
IN BLOCK DATA, (SEE NOTE 1)

** 109 ** COMMON VARIABLE -=---=*CA%*--- IN COMMON BLOCK ---*BLKl*-- IS
REFERENCED ON ALL PATHS IN THE MAIN PROGRAM, YET IT HAS NOT
PREVIOUSLY BEEN ASSIGNED A VALUE, NOR HAS IT BEEN INITIALIZED
IN BLOCK DATA. (SEE NOTE 1)

** 110 ** COMMON VARIABLE —----*M*--—-- IS REFERENCED ON ALL PATHS IN
CALLED SUBPROGRAM ---*E101%*--, YET IS NOT INITIALIZED. IT
DOES NOT APPEAR IN BLOCK DATA, AND ITS COMMON BLOCK =-~--=*E110%*--
I5 NOT AVAILABLE TO CALLING SUBPROGRAM -*SYSMAIN*-, (SEE
NOTE 1)

** 110 ** COMMON VARIABLE —----=*B%*---- IS REFERENCED ON ALL PATHS IN
CALLED SUBPROGRAM --*SUB103*-, YET IS NOT INITIALIZED. IT
DOES NOT APPEAR IN BLOCK DATA, AND ITS COMMON BLOCK ==--*BLK*-—--
IS NOT AVAILABLE TO CALLING SUBPROGRAM -*SYSMAIN*-, (SEE
NOTE 1)

** 110 ** COMMON VARIABLE ~-=--*D¥---- IS REFERENCED ON ALL PATHS IN
CALLED SUBPROGRAM --*SUB208%*-, YET IS NOT INITIALIZED. IT
DOES NOT APPEAR IN BLOCK DATA, AND ITS COMMON BLOCK —-==-*BLK*---
IS NOT AVAILABLE TO CALLING SUBPROGRAM —-*SYSMAIN*-, (SEE
NOTE 1)

** 111 ** CONTROL VARIABLE ==~=-==*I*-——— BECOMES UNDEFINED UPON SATISFACTION
OF ITS DO LOOP AT BLOCK NO. 15, YET IS REFERENCED ON ALL

PATHS THEREAFTER.

* %

* %

* %

* %

* %

* %

* %

112

112

112

112

112

112

112

112

* %

* %

* %k

* %

* k

WARNING
NUMBER

ONE SUCH PATH,
15 16

LOCAL VARIABLE

A VALUE ON ALL

ONE SUCH PATH,
1 - 19

LOCAL VARIABLE

A VALUE ON ALL

ONE SUCH PATH,
1 - 4

LOCAL VARIABLE

A VALUE ON ALL

ONE SUCH PATH,
1 - 6

LOCAL VARIABLE

A VALUE ON ALL

ONE SUCH PATH,
1 - 8

LOCAL VARIABLE

A VALUE ON ALL

ONE SUCH PATH,
1 - 14

LOCAL VARIABLE

A VALUE ON ALL

ONE SUCH PATH,
1 - 23

LOCAL VARIABLE

A VALUE ON ALL

ONE SUCH PATH,
1 - 28

LOCAL VARIABLE

A VALUE ON ALL

ONE SUCH PATH,
1 - 35

INDICATED BY BLOCK NUMBERS, IS

-—-=*XDAT*-- IS REFERENCED BEFORE
PATHS.

INDICATED BY BLOCK NUMBERS, IS
—~=——=%A%*-—-- TS REFERENCED BEFORE
PATHS.

INDICATED BY BLOCK NUMBERS, IS
———=*%*M*-——- IS REFERENCED BEFORE
PATHS.

INDICATED BY BLOCK NUMBERS, 1S
—=—==%Y%*-——--~ IS REFERENCED BEFORE
PATHS.

INDICATED BY BLOCK NUMBERS, IS
~==*L0OC*---~ IS REFERENCED BEFORE
PATHS.

INDICATED BY BLOCK NUMBERS, IS

-==%D219*-~ IS REFERENCED BEFORE
PATHS.

INDICATED BY BLOCK NUMBERS, IS
——=—=*%L*-~—-- IS REFERENCED BEFORE
PATHS.

INDICATED BY BLOCK NUMBERS, IS
————*%*D%*-—-—- IS5 REFERENCED BEFORE
PATHS,

INDICATED BY BLOCK NUMBERS, IS

WARNINGS

BEING

BEING

BEING

BEING

BEING

BEING

BEING

BEING

ASSIGNED

ASSIGNED

ASSIGNED

ASSIGNED

ASSIGNED

ASSIGNED

ASSIGNED

ASSIGNED

* %

* %

* %

* %k

* k%

* k)

203

204

204

204

204

204

205

* %

* %

* %

* %

* *

BLOCK NO, 8

AN ACTUAL ARGUMENT IS AN EXPRESSION OR CONSTANT, YET THE

CORRESPONDING DUMMY ARGUMENT IS ASSIGNED A VALUE ON SOME PATHS.
CALLING SUBPROGRAM CALLED SUBPROGRAM

-*SYSMAIN* - ~=-*SUB103*~-
ARGUMENT EXPRESSION e A Y K e e
POSITION 3 3

BLOCK NO. 7
AN ACTUAL ARGUMENT IS AN EXPRESSION OR CONSTANT, YET THE
CORRESPONDING DUMMY ARGUMENT IS NEVER REFERENCED.

CALLING SUBPROGRAM CALLED SUBPROGRAM

-*SYSMAIN* - ~——*E101*-~
ARGUMENT REAL S O
POSITION 1 1

BLOCK NO. 8
AN ACTUAL ARGUMENT IS AN EXPRESSION OR CONSTANT, YET THE
CORRESPONDING DUMMY ARGUMENT IS NEVER REFERENCED.

CALLING SUBPROGRAM CALLED SUBPROGRAM

-*SYSMAIN*- -~*SUB103*~-
ARGUMENT INTEGER e K T K e e e
POSITION 1 1

BLOCK NO. 8
AN ACTUAL ARGUMENT IS AN EXPRESSION OR CONSTANT, YET THE
CORRESPONDING DUMMY ARGUMENT IS NEVER REFERENCED.

CALLING SUBPROGRAM CALLED SUBPROGRAM

- *SYSMAIN*~- --*SUB103*~
ARGUMENT EXPRESSION e A K e
POSITION 2 2

BLOCK NO. 10
AN ACTUAL ARGUMENT IS AN EXPRESSION OR CONSTANT, YET THE
CORRESPONDING DUMMY ARGUMENT IS NEVER REFERENCED.

CALLING SUBPROGRAM CALLED SUBPROGRAM

-*SYSMAIN* - --*SUB105%~-
ARGUMENT INTEGER e AT K e
POSITION 2 2

BLOCK NO. 11
AN ACTUAL ARGUMENT IS AN EXPRESSION OR CONSTANT, YET THE
CORRESPONDING DUMMY ARGUMENT IS NEVER REFERENCED.

CALLING SUBPROGRAM CALLED SUBPROGRAM

-*SYSMAIN*- -=-*SUB106* -
ARGUMENT INTEGER KT e
POSITION 2 2

BLOCK NO, 17
AN ACTUAL ARGUMENT IS A PROCEDURE DECLARED EXTERNAL, YET THE
CORRESPONDING DUMMY ARGUMENT IS REFERENCED AS A VARIABLE ON
SOME PATHS.
CALLING SUBPROGRAM CALLED SUBPROGRAM
~*SYSMAIN*- — == SUB¥ =~

%k 206 **

k% D08 **

* %

* %

* %

* %

* %

* %

209

210

210

210

213

213

* %k

* %

* %

* %

* %k

* %

A-12

ARGUMENT —~*SUBEX*—~ SR 3 - ¥ Ju——
POSITION 2 2
BLOCK NO. 17

AN ACTUAL ARGUMENT IS A PROCEDURE DECLARED EXTERNAL, YET THE
CORRESPONDING DUMMY ARGUMENT, USED AS A VARIABLE, IS ASSIGNED
A VALUE ON SOME PATHS.

CALLING SUBPROGRAM CALLED SUBPROGRAM

-*SYSMAIN*- e ek GUB* == —
ARGUMENT —-—-*SUBEX* -~ SRR o S
POSITION 2 2
BLOCK NO. 12
A SUBPROGRAM REFERENCE CAUSES DUMMY ARGUMENT ———=*X%*w———-
TO BECOME ASSOCIATED WITH A COMMON VARIABLE IN THE CALLED
SUBPROGRAM., —-==*X%*-——~ IS ASSIGNED A VALUE ON SOME PATHS.
CALLING SUBPROGRAM CALLED SUBPROGRAM
-*SYSMAIN*- -—-*SUB208%~
ARGUMENT e R CAK e S 3¢ J
COMMON VARIABLE ———==*CA¥*— e e R C DK e
COMMON VARIABLE =-~-*CAl*-—-- IN COMMON BLOCK —---*Bl*——- IS

REFERENCED ON SOME PATHS IN THE MAIN PROGRAM, YET IT HAS NOT
PREVIOUSLY BEEN ASSIGNED A VALUE, NOR HAS IT BEEN INITIALIZED
IN BLOCK DATA, (SEE NOTE 1)

COMMON VARIABLE ---=*C#*---- IS REFERENCED ON SOME PATHS IN
CALLED SUBPROGRAM --*SUB103*-, YET IS NOT INITIALIZED.
IT DOES NOT APPEAR IN BLOCK DATA, AND ITS COMMON BLOCK

-—-—*BLK*--- IS NOT AVAILABLE TO CALLING SUBPROGRAM
-*SYSMAIN*-, (SEE NOTE 1)
COMMON VARIABLE —---=*D*---- 1S REFERENCED ON SOME PATHS IN

CALLED SUBPROGRAM --*SUB103*-, YET IS NOT INITIALIZED.
IT DOES NOT APPEAR IN BLOCK DATA, AND ITS COMMON BLOCK

-==*BLK*-~-- IS NOT AVAILABLE TO CALLING SUBPROGRAM
-*SYSMAIN*-—, (SEE NOTE 1)
COMMON VARIABLE ----*B*--—-~ 1S REFERENCED ON SOME PATHS IN

CALLED SUBPROGRAM --*SUB208*-, YET IS NOT INITIALIZED.
IT DOES NOT APPEAR IN BLOCK DATA, AND ITS COMMON BLOCK

-——*BLK*--- IS NOT AVAILABLE TO CALLING SUBPROGRAM
-*SYSMAIN*-—, (SEE NOTE 1)
BLOCK NO. 9

CORRESPONDING ARGUMENTS HAVE DIFFERENT DATA TYPES.
CALLING SUBPROGRAM CALLED SUBPROGRAM

~*SYSMAIN*- ~--*3UB103*-
ARGUMENT SR N - K Th e
POSITION 1 1
DATA TYPE REAL INTEGER

BLOCK NO. 11
CORRESPONDING ARGUMENTS HAVE DIFFERENT DATA TYPES.

* %

* %

* %

* %

* %

* %k

* k

* %

214

215

216

216

216

216

217

217

* %

* %

* %

* %

* %k

* %

* %

CALLING SUBPROGRAM CALLED SUBPROGRAM A-13

-*SYSMAIN*- --*SUB106*~-
ARGUMENT INTEGER el A et
POSITION 2 2
DATA TYPE INTEGER REAL
CORRESPONDING COMMON VARIABLES IN COMMON BLOCK ---*BLKl*--

HAVE DIFFERENT DATA TYPES.
CALLING SUBPROGRAM CALLED SUBPROGRAM

~*SYSMAIN* - --*SUB103*-
VARIABLE e *CA*— e ek ke
DATA TYPE REAL INTEGER

BLOCK NO. 19
CORRESPONDING ARGUMENTS HAVE DIFFERENT DIMENSIONALITY.
CALLING SUBPROGRAM CALLED SUBPROGRAM

-*SYSMAIN* - --*SUB215%~-
ARGUMENT ———*XDAT* -~ —~=*XDAT* -~
POSITION 1 1
DIMENSIONS 1 2
COMMON VARIABLE --==*M*---- 1S ASSIGNED A VALUE ON ALL PATHS
IN CALLED SUBPROGRAM ---*E101*--, YET ITS COMMON BLOCK

-—--*E110*-- IS NOT AVAILABLE TO CALLING SUBPROGRAM -*SYSMAIN*-,
HENCE, A COMPUTED VALUE WILL BE LOST. (SEE NOTE 1)

COMMON VARIABLE —----*B#*----~ TS5 ASSIGNED A VALUE ON ALL PATHS
IN CALLED SUBPROGRAM --*SUB103*-, YET ITS COMMON BLOCK
-—-=*BLK*--- IS NOT AVAILABLE TO CALLING SUBPROGRAM -*SYSMAIN*-,
HENCE, A COMPUTED VALUE WILL BE LOST. (SEE NOTE 1)

COMMON VARIABLE =----*D#*--—- IS ASSIGNED A VALUE ON ALL PATHS
IN CALLED SUBPROGRAM --*SUB103*-, YET ITS COMMON BLOCK
-—-—*BLK*--- IS NOT AVAILABLE TO CALLING SUBPROGRAM -*SYSMAIN*-,
HENCE, A COMPUTED VALUE WILL BE LOST. (SEE NOTE 1)

COMMON VARIABLE ----*C#*---~- IS ASSIGNED A VALUE ON ALL PATHS
IN CALLED SUBPROGRAM --*SUB215*-, YET ITS COMMON BLOCK
-—-*BLK*~-- IS NOT AVAILABLE TO CALLING SUBPROGRAM -*SYSMAIN*-,
HENCE, A COMPUTED VALUE WILL BE LOST,. (SEE NOTE 1)

COMMON VARIABLE ----#*C*---- IS ASSIGNED A VALUE ON SOME PATHS
IN CALLED SUBPROGRAM ~--*SUB103*-, YET ITS COMMON BLOCK
—-—=*BLK*--- IS NOT AVAILABLE TO CALLING SUBPROGRAM
-*SYSMAIN*-, HENCE, A COMPUTED VALUE MAY BE LOST. (SEE
NOTE 1)

COMMON VARIABLE =----*D%*-—-- IS ASSIGNED A VALUE ON SOME PATHS
IN CALLED SUBPROGRAM --*SUB215*-, YET ITS COMMON BLOCK
~==*BLK*--- IS NOT AVAILABLE TO CALLING SUBPROGRAM
-*SYSMAIN*-, HENCE, A COMPUTED VALUE MAY BE LOST. (SEE
NOTE 1)

* k

* %

* %

* %

* %

218

219

226

227

228

229

229

229

229

* %k

* %

* %

* %

* %

* %

* %

* %

COMMON VARIABLE -—--=%T#%-—-- TS INITIALIZED IN BLOCK DATA. A-14

IT IS ASSIGNED A VALUE ON ALL PATHS IN CALLED SUBPROGRAM
-=-*SUB215*-, YET ITS COMMON BLOCK =---*IBD*--- IS NOT AVAILABLE
TO CALLING SUBPROGRAM -*SYSMAIN*-, HENCE, UNDEFINITION WILL
OCCUR UPON EXIT FROM --*SUB215*-, (SEE NOTE 2)

COMMON VARIABLE ---—*W*---- IS INITIALIZED IN BLOCK DATA,

IT IS ASSIGNED A VALUE ON SOME PATHS IN CALLED SUBPROGRAM
--*3UB215*-, YET ITS COMMON BLOCK =---=*IBD*--- IS NOT AVAILABLE
TO CALLING SUBPROGRAM -*SYSMAIN*-, HENCE, UNDEFINITION MAY
OCCUR UPON EXIT FROM --*SUB215*-, (SEE NOTE 2)

IN THE MAIN PROGRAM, COMMON VARIABLE —-—=—==*CA%*-—- IS
ASSIGNED A VALUE IN BLOCK NO. 20 AND IS EITHER
ASSIGNED A VALUE THEREAFTER BEFORE BEING REFERENCED,
OR IS NOT SUBSEQUENTLY REFERENCED, ON ALL PATHS.

ONE SUCH PATH, INDICATED BY BLOCK NUMBERS, IS

20 21
IN THE MAIN PROGRAM, COMMON VARIABLE —===*BA*-—- IS
ASS5IGNED A VALUE IN BLOCK NO. 22 AND IS EITHER

ASSIGNED A VALUE THEREAFTER BEFORE BEING REFERENCED,
OR IS5 NOT SUBSEQUENTLY REFERENCED, ON SOME PATHS.
ONE SUCH PATH, INDICATED BY BLOCK NUMBERS, IS

22 23 25 - 36

IN THE MAIN PROGRAM, AN ELEMENT OF THE COMMON ARRAY
-—=*Y228*-- IS ASSIGNED A VALUE IN BLOCK NO, 25
AND THE ARRAY IS NOT SUBSEQUENTLY REFERENCED ON ANY PATH.

LOCAL VARIABLE ---*I220*%-- IS ASSIGNED A VALUE IN BLOCK
NO. 1 AND IS EITHER ASSIGNED A VALUE THEREAFTER BEFORE
BEING REFERENCED, OR IS NOT SUBSEQUENTLY REFERENCED,

ON ALL PATHS.

ONE SUCH PATH, INDICATED BY BLOCK NUMBERS, IS

1 - 36
LOCAL VARIABLE ---*X221%-- IS ASSIGNED A VALUE IN BLOCK
NO. 1 AND IS EITHER ASSIGNED A VALUE THEREAFTER BEFORE

BEING REFERENCED, OR IS NOT SUBSEQUENTLY REFERENCED,
ON ALL PATHS.
ONE SUCH PATH, INDICATED BY BLOCK NUMBERS, IS

1 - 36
LOCAL VARIABLE —---=*¥X*-—~- IS ASSIGNED A VALUE IN BLOCK
NO. 5 AND IS EITHER ASSIGNED A VALUE THEREAFTER BEFORE

BEING REFERENCED, OR IS NOT SUBSEQUENTLY REFERENCED,
ON ALL PATHS,
ONE SUCH PATH, INDICATED BY BLOCK NUMBERS, IS

5 6
LOCAL VARIABLE —-=--=*K*---- IS ASSIGNED A VALUE IN BLOCK
NO. 14 AND IS EITHER ASSIGNED A VALUE THEREAFTER BEFORE

BEING REFERENCED, OR IS NOT SUBSEQUENTLY REFERENCED,

* %

* %

* k

* k

229

229

231

232

* *

* %

* %

* k

k% 230 **

k% 233 **

ON ALL PATHS. A-15
ONE SUCH PATH, INDICATED BY BLOCK NUMBERS, IS
14 15 16

LOCAL VARIABLE ---*X229*%-- IS ASSIGNED A VALUE IN BLOCK
NO. 26 AND IS EITHER ASSIGNED A VALUE THEREAFTER BEFORE
BEING REFERENCED, OR IS NOT SUBSEQUENTLY REFERENCED,

ON ALL PATHS.

ONE SUCH PATH, INDICATED BY BLOCK NUMBERS, IS

26 - 36
LOCAL VARIABLE ---*X230*-- IS ASSIGNED A VALUE IN BLOCK
NO. 27 AND IS EITHER ASSIGNED A VALUE THEREAFTER BEFORE

BEING REFERENCED, OR IS NOT SUBSEQUENTLY REFERENCED,
ON ALL PATHS,
ONE SUCH PATH, INDICATED BY BLOCK NUMBERS, IS

27 28 29

AN ELEMENT OF THE LOCAL ARRAY ---*XDAT*-- IS ASSIGNED A VALUE
IN BLOCK NO. 30 AND THE ARRAY IS NOT SUBSEQUENTLY
REFERENCED ON ANY PATH.

BLOCK NO. 31
A POSSIBLE ILLEGAL SIDE EFFECT HAS BEEN DETECTED. IT OCCURS
VIA A VARIABLE PASSED IN AN ARGUMENT LIST. THIS VARIABLE
HAS APPEARED AT LEAST TWICE IN A STATEMENT -- IN ONE
APPEARANCE IT IS USED AS STRICT INPUT AND IN THE OTHER AS
STRICT OUTPUT.

CALLING SUBPROGRAM CALLED SUBPROGRAM

~*SYSMATN*- - X201~
ARGUMENT) LT) LR
POSITION 1 1

BLOCK NO, 32
A POSSIBLE ILLEGAL SIDE EFFECT HAS BEEN DETECTED. IT OCCURS
VIA A VARIABLE PASSED IN AN ARGUMENT LIST. THIS VARIABLE
HAS APPEARED AT LEAST TWICE IN A STATEMENT -- IN ONE
APPEARANCE IT IS USED AS STRICT INPUT AND IN THE OTHER AS
STRICT OUTPUT.

CALLING SUBPROGRAM CALLED SUBPROGRAM

~*SYSMATIN*- ———*W201%-~
ARGUMENT m——=*CA% == SN P
POSITION 1 1

BLOCK NO. 18
A POSSIBLE ILLEGAL SIDE EFFECT HAS BEEN DETECTED. IT OCCURS
VIA A COMMON VARIABLE WHICH HAS BEEN REFERENCED (POSSIBLY
INDIRECTLY) AT LEAST TWICE IN A STATEMENT -- IN ONE APPEAR-
ANCE IT IS USED AS STRICT INPUT AND IN THE OTHER AS STRICT
OUTPUT.
CALLING SUBPROGRAM CALLED SUBPROGRAM
-*SYSMAIN*~- —-—=*W201*-~
VARIABLE —— ==k CA¥ = ~—==*CA*———
COMMON BLOCK ——=*BLK1*-~ —=—=*BLK1%*--

*% 233 ** BLOCK NO. 32 A-16
A POSSIBLE ILLEGAL SIDE EFFECT HAS BEEN DETECTED. IT OCCURS
VIA A COMMON VARIABLE WHICH HAS BEEN REFERENCED (POSSIBLY

INDIRECTLY) AT LEAST TWICE IN A STATEMENT -- IN ONE APPEAR-
ANCE IT IS USED AS STRICT INPUT AND IN THE OTHER AS STRICT
OuTPUT.
CALLING SUBPROGRAM CALLED SUBPROGRAM
-*SYSMAIN*- —-—=*W201%-~
VARIABLE ——=—=*CA*-~- —===*CA* -~
COMMON BLOCK ~==*BLK1*=-~ ~==%*BLK1*-~

*% 234 ** BLOCK NO. 33
A POSSIBLE ILLEGAL SIDE EFFECT HAS BEEN DETECTED. IT OCCURS
VIA A GLOBAL VARIABLE REFERENCED IN AN ARITHMETIC STATEMENT
FUNCTION. THIS VARIABLE HAS APPEARED AT LEAST TWICE IN A
STATEMENT -- IN ONE APPEARANCE IT IS USED AS STRICT INPUT AND
IN THE OTHER AS STRICT OUTPUT.
CALLING SUBPROGRAM CALLED SUBPROGRAM

-*SYSMAIN*- -—*LASRF*~-~

VARIABLE i -—% * -
** 236 ** LOCAL VARIABLE ---*XDT#*---~ IS NEVER ASSIGNED A VALUE.
** 236 ** [LOCAL VARIABLE ---*I1236%*-- IS NEVER ASSIGNED A VALUE.
** 236 ** LOCAL VARIABLE —-—--*M*-—--- IS NEVER ASSIGNED A VALUE.
** 236 ** LOCAL VARIABLE —-—==*Y*--—-- IS NEVER ASSIGNED A VALUE.
** 236 ** LOCAL VARIABLE ~---*LOC*--- IS NEVER ASSIGNED A VALUE.
** 236 ** [LOCAL VARIABLE ---*D219*-- IS NEVER ASSIGNED A VALUE.
** 236 ** LOCAL VARIABLE —----*L*---- IS NEVER ASSIGNED A VALUE.
** 236 ** [LOCAL VARIABLE —--=-*D*---- IS NEVER ASSIGNED A VALUE.

MESSAGES

MESSAGE
NUMBER DESCRIPTION
*% 301 ** COMMON VARIABLE ---*D218%*-- IN BLOCK ~---*BLKl*-- OF

SUBPROGRAM -*SYSMAIN*- IS INITIALIZED IN BLOCK DATA.

A-17
** 301 ** COMMON VARIABLE —---*§*-—--= IN BLOCK —---*IBD*-—-- OF
SUBPROGRAM --*SUB215%- IS INITIALIZED IN BLOCK DATA.

** 303 ** THE FOLLOWING DATA FLOW OCCURS THROUGH COMMON WHEN SUBPROGRAM
--*SUB103*~ IS CALLED,

COMMON INPUT ouTPUT
BLOCK VARIABLE CLASSIFICATION CLASSIFICATION
-==*BLKl*== ————*CA*-—- STRICT NON
-=~*BLK]l*-- —=-=%D2]18%-- STRICT OouTPUT
—==*BLK]#*== —=—*Y228%-- STRICT OUTPUT

** 303 ** THE FOLLOWING DATA FLOW OCCURS THROUGH COMMON WHEN SUBPROGRAM
---*W201*-~ IS CALLED.

COMMON INPUT OUTPUT
BLOCK VARIABLE CLASSIFICATION CLASSIFICATION
~——*BLK1*== —=——*CA¥——x STRICT NON

** 304 ** I/0 CLASSIFICATION OF ARGUMENTS AND COMMON VARIABLES
FOR -*SYSMAIN*-

COMMON BLOCK ————kB] ke

AVAILABILITY = ORIGINAL

ARGUMENTS
POSITION NAME INPUT CLASS OUTPUT CLASS
1 ———*CAl*——— INPUT NON
2 SR 3 7. — NON STRICT
COMMON BLOCK ———*BLK1%--

AVAILABILITY = ORIGINAL

ARGUMENTS
POSITION NAME INPUT CLASS OUTPUT CLASS
1 ———=*CAK = STRICT STRICT
2 ~—=*D218% -~ STRICT OUTPUT
3 ——=*Y228%—— STRICT STRICT
~—~*LASRF * -~
ARGUMENTS
POSITION NAME INPUT CLASS OUTPUT CLASS

1 S P STRICT NON
2 i S STRICT NON

NOTES A-18

ALTHOUGH DETECTED IN THIS SUBPROGRAM, THE CAUSE FOR THIS
DIAGNOSTIC MAY HAVE OCCURRED AT A DEEPER LEVEL OF SUBPROGRAM
REFERENCES AND BEEN PROPAGATED UP TO THIS ONE.

IF MESSAGE 301 CONCERNING THIS VARIABLE APPEARS IN THE
OUTPUT, IT MAY PROVIDE ADDITIONAL USEFUL INFORMATION
ABOUT THE DATA FLOW AMONG SUBPROGRAMS.

SOURCE PROGRAM LISTING

$ IN THE CONTINUATION FIELD INDICATES THE EXPANSION

OF THE LOGICAL IF STATEMENT ON THE PREVIOUS LINE

BLOCK SOURCE
1 BLOCK DATA
1 COMMON/IBD/B,C,D
1 COMMON /BLK1/CA,D218,Y228(6)
1 DATA B,C,D/1.,2.,3./
1 DATA D218/1./
1 END
*x] O E RROR S **
** N O WARNTING S **
MESSAGES
MESSAGE
NUMBER DESCRIPTION

A-19

** 304 ** I/0 CLASSIFICATION OF ARGUMENTS AND COMMON VARIABLES

FOR *BLOCKDATA*
COMMON BLOCK ———*IBD*=m-

AVAILABILITY = ORIGINAL

ARGUMENTS
POSITION NAME INPUT CLASS
1 —==—*BA-——- NON
2 —m—=*CH e NON
3 ~=—=*D¥---- NON
COMMON BLOCK -~-*BLK1%--

AVAILABILITY = ORIGINAL

ARGUMENTS
POSITION NAME INPUT CLASS

1 ————*CA*——— NON

2 ———*D218%-— NON

OUTPUT CLASS
STRICT

STRICT
STRICT

OUTPUT CLASS

NON
STRICT

~==*Y228% -~ NON NON A-20

$ IN

SOURCE PROGRAM LISTING A-21

THE CONTINUATION FIELD INDICATES THE EXPANSION

OF THE LOGICAL IF STATEMENT ON THE PREVIOUS LINE

BLOCK

OO0 0n

@]

QOO n

WONOOCONUTOODOOHODODOOWODNOODOOOK MM
OO0 QOO0

pd it
W N O

ERROR
NUMBER

s 0 e o o

% 101 **

SOURCE

FUNCTION E101(A)
COMMON/BLK/B,C,D
COMMON/E110/M

FUNCTION CAUSES ERROR101

FUNCTION NAME REF BEFORE BEING ASSIGNED A VALUE
ERROR 102

FUNCTION NEVER ASSIGNED A VALUE

A =1
R = E101
ERROR 110

VAR M NOT INITIALIZED
X = M+1

WARNING 212
LOCAL VAR REFERENCED BEFORE BEING ASSIGNED ON SOME PATHS

IF(X.EQ.R)
S K=1I
WARNING 211
CONTROL VARIABLE REFERENCED ON SOME PATHS AFTER BECOMING
UNDEFINED
DO 5 K=1,10
M=K*M+M
5 CONTINUE
IF(M.GT.100)
SRETURN
A=K
RETURN
END

FUNCTION NAME ---*E]101*-- IS REFERENCED BEFORE BEING ASSIGNED
A VALUE ON ALL PATHS.
ONE SUCH PATH, INDICATED BY BLOCK NUMBERS, IS

1 2 3

** 102 ** FUNCTION NAME ---*E101*-- IS NEVER ASSIGNED A VALUE.

WARNTINGS

WARNING
NUMBER DESCRIPTION
** 211 ** CONTROL VARIABLE —---*K*--—- BECOMES UNDEFINED UPON SATISFACTION
OF ITS DO LOOP AT BLOCK NO. 9, YET IS REFERENCED ON SOME
PATHS THEREAFTER.
ONE SUCH PATH, INDICATED BY BLOCK NUMBERS, IS
9 10 12
** 212 ** [LOCAL VARIABLE ----*I*-—-- IS REFERENCED BEFORE BEING
ASSIGNED A VALUE ON SOME PATHS.
ONE SUCH PATH, INDICATED BY BLOCK NUMBERS, IS
1 - 6
** 223 ** DUMMY ARGUMENT ----*A%-—-- IS ASSIGNED A VALUE IN BLOCK
NO. 2 AND IS ASSIGNED A VALUE THEREAFTER BEFORE BEING
REFERENCED, ON SOME PATHS.
ONE SUCH PATH, INDICATED BY BLOCK NUMBERS, IS
2 - 10 12
** 229 ** [LOCAL VARIABLE ~--=*K#*-—-—— IS ASSIGNED A VALUE IN BLOCK
NO. 6 AND IS EITHER ASSIGNED A VALUE THEREAFTER BEFORE
BEING REFERENCED, OR IS NOT SUBSEQUENTLY REFERENCED,
ON ALL PATHS,.
ONE SUCH PATH, INDICATED BY BLOCK NUMBERS, IS
6 7
** 236 ** LOCAL VARIABLE --=-*I%*-——- IS NEVER ASSIGNED A VALUE.
MESSAGES
MESSAGE
NUMBER DESCRIPTION

** 304 ** I/0 CLASSIFICATION OF ARGUMENTS AND COMMON VARIABLES
FOR FUNCTION ---*E1Ql%--

ARGUMENTS
POSITION

0
1

COMMON BLOCK

AVAILABILITY = ORIGINAL

ARGUMENTS
POSITION

1
2
3

COMMON BLOCK

AVAILABILITY = ORIGINAL

ARGUMENTS
POSITION

1

NAME

———*E101%--

e KA K e

......_*BLK*..__

NAME

U <
SN YoT JEU—
ek DF e

———*E110%--

NAME

e K MK e e

INPUT CLASS

STRICT

NON

INPUT CLASS

NON
NON
NON

INPUT CLASS

STRICT

A-23

OUTPUT CLASS

NON
STRICT

OUTPUT CLASS
NON

NON
NON

OUTPUT CLASS

STRICT

S IN
OF TH
BLOCK

OO0

COO R ODOCOOOWROOOJODODOOUTE WN) b bt =
ONONS!

C
C
C
C
1
1
C
C
C
12
13
14
15
1
ERROR
NUMBER
*% 107 **

SOURCE PROGRAM LISTING

THE CONTINUATION FIELD INDICATES THE EXPANSION
E LOGICAL IF STATEMENT ON THE PREVIOUS LINE

SOURCE

SUBROUTINE SUB103(I,X,Y)
COMMON/BLK/B,C,D
COMMON/BLK1/J,Y (7)

I=4

X=6,

IF(Y.GT.X)

SY=X

B=B+1

CALL IS TO HELP GENERATE MESSAGE 302
CALL SUB302
HELPS GENERATE WARNING 210 IN MAIN PROGRAM

IF(B.EQ.1.)
$ C=D

WARNING 224
COMMON REDEFINED ON ALL PATHS BEFORE BEING REFERENCED

B=1.
B=2,

WARNING 225
SAME AS 224 BUT ON SOME PATHS

D =B
IF(X.EQ.C)
S D=B+1
RETURN
END
ERRORS
DESCRIPTION
THE NAME —--=-=*Y*-———- TS USED TO REPRESENT BOTH A DUMMY

ARGUMENT AND A COMMON VARIABLE IN THIS SUBPROGRAM.

WARNTINGS

WARNING
NUMBER DESCRIPTION
** 214 ** CORRESPONDING COMMON VARIABLES IN COMMON BLOCK —--—*BLKl*--
HAVE DIFFERENT DATA TYPES.
CALLING SUBPROGRAM CALLED SUBPROGRAM
--*SUB103*- -=-*SUB302*~
VARIABLE e KY K e e Eatabeded Gttt
DATA TYPE REAL INTEGER
*% 224 ** COMMON VARIABLE —----*B*--—- IS ASSIGNED A VALUE IN BLOCK
NO. 10 AND IS ASSIGNED A VALUE THEREAFTER BEFORE BEING
REFERENCED, ON ALL PATHS.
ONE SUCH PATH, INDICATED BY BLOCK NUMBERS, IS
10 11
*% 225 ** COMMON VARIABLE =----*D*--—-- IS ASSIGNED A VALUE IN BLOCK
NO. 12 AND IS ASSIGNED A VALUE THEREAFTER BEFORE BEING
REFERENCED, ON SOME PATHS.
ONE SUCH PATH, INDICATED BY BLOCK NUMBERS, IS
12 13 14
*% 237 ** CORRESPONDING COMMON VARIABLES IN COMMON BLOCK —--=*BLK1*--
HAVE DIFFERENT DATA TYPES IN SUBPROGRAM --*SUB103*-
AND BLOCK DATA,
SUBPROGRAM BLOCK DATA
--*SUB103*~-
VARIABLE ek J e —= == CAF -
DATA TYPE INTEGER REAL
MESSAGES
MESSAGE
NUMBER DESCRIPTION

** 303 ** THE FOLLOWING DATA FLOW OCCURS THROUGH COMMON WHEN SUBPROGRAM
--*5UB302*- IS CALLED.

COMMON INPUT OUTPUT
BLOCK VARIABLE CLASSIFICATION CLASSIFICATION
~——*BLK1*== ———*Yk———o STRICT NON

~—=*BLK1*=—= ——e*Jkooee STRICT NON

** 304 ** I/0 CLASSIFICATION OF ARGUMENTS AND COMMON VARIABLES
FOR SUBROUTINE --*SUB103%*-

ARGUMENTS
POSITION

1
2
3

COMMON BLOCK

NAME INPUT CLASS
————k ke NON
———e R YK e NON
————k Yk STRICT

—=—=*BLK*-~-

AVAILABILITY = ORIGINAL

ARGUMENTS
POSITION

1
2
3

COMMON BLOCK

NAME INPUT CLASS
———e KRR e STRICT
—— e KO K e INPUT
Tt 1)} — INPUT

———=*BLK1%*--

AVATILABILITY = ORIGINAL

ARGUMENTS
POSITION

1
2

NAME INPUT CLASS
S STRICT
e R K e STRICT

OUTPUT CLASS
STRICT

STRICT
ouTPUT

OUTPUT CLASS
STRICT

OUTPUT
STRICT

OUTPUT CLASS

NON
OUTPUT

$ IN

SOURCE PROGRAM LISTING

THE CONTINUATION FIELD INDICATES THE EXPANSION

OF THE LOGICAL IF STATEMENT ON THE PREVIOUS LINE

BLOCK

SRS KP! SNONOESNS!

oNe RS Re!

1

OO U OO OOWNOODOHHOOOOCOMH

ERROR
NUMBER

ki 111 **

WARNING

SOURCE

SUBROUTINE SUB302
WARNING 214

COMMON VARIABLES HAVE DIFFERENT DATA TYPES IN CALLING AND CALLED
WARNING 237
'COMMON VARIABLES HAVE DIFFERENT DATA TYPES HERE AND IN BLOCK DATA
COMMON/BLK1/K (8)
SUBROUTINE WILL HELP GENERATE MESSAGE 302

CALL SUB106(X,Y)
I=1+K (1)

ERROR 111
CONTROL VAR IS REFERENCED OUTSIDE OF LOOP

bo 100 J =1 , 5

X =1
00 CONTINUE
I =4
RETURN
END
ERRORS
DESCRIPTION
CONTROL VARIABLE —---=*J*-——- BECOMES UNDEFINED UPON SATISFACTION
OF ITS DO LOOP AT BLOCK NO. 6, YET IS REFERENCED ON ALL

PATHS THEREAFTER.
ONE SUCH PATH, INDICATED BY BLOCK NUMBERS, IS
6 7

WARNTINGS

* *

* %k

* *

* %

* *

* %k

NUMBER

229 **

229 **

237 **

237 **

237 **

MESSAGE
NUMBER

302 **

DESCRIPTION A-28
LOCAL VARIABLE ~—---=-*X*---- IS ASSIGNED A VALUE IN BLOCK
NO. 5 AND IS EITHER ASSIGNED A VALUE THEREAFTER BEFORE

BEING REFERENCED, OR IS NOT SUBSEQUENTLY REFERENCED,
ON ALL PATHS.
ONE SUCH PATH, INDICATED BY BLOCK NUMBERS, IS

5 - 8

LOCAL VARIABLE ----*I*---- IS ASSIGNED A VALUE IN BLOCK
NO. 3 AND IS EITHER ASSIGNED A VALUE THEREAFTER BEFORE
BEING REFERENCED, OR IS NOT SUBSEQUENTLY REFERENCED,
ON ALL PATHS.
ONE SUCH PATH, INDICATED BY BLOCK NUMBERS, IS

3 - 7

CORRESPONDING COMMON VARIABLES IN COMMON BLOCK —--=*BLKl*--
HAVE DIFFERENT DATA TYPES IN SUBPROGRAM --*SUB302%-
AND BLOCK DATA.

SUBPROGRAM BLOCK DATA
-—*SUB302%~-
VARIABLE e S —— kY228 %
DATA TYPE INTEGER REAL
CORRESPONDING COMMON VARIABLES IN COMMON BLOCK —--*BLK1l%*--

HAVE DIFFERENT DATA TYPES IN SUBPROGRAM --*SUB302*-
AND BLOCK DATA.

SUBPROGRAM BLOCK DATA
~-*SUB302%~
VARIABLE] CEEE ~ = *CA* =~
DATA TYPE INTEGER REAL
CORRESPONDING COMMON VARIABLES IN COMMON BLOCK —--*BLK1*--

HAVE DIFFERENT DATA TYPES IN SUBPROGRAM --*SUB302%*-
AND BLOCK DATA.

SUBPROGRAM BLOCK DATA
~-*%SUB302%~
VARIABLE —— kR km e ~—=*D218% -~
DATA TYPE INTEGER REAL

MESSAGES

THE FOLLOWING COMMON BLOCKS, ALTHOUGH NOT EXPLICITLY IN
SUBPROGRAM --*SUB302*%-, ARE AVAILABLE TO IT.

COMMON BLOCK AVAILABILITY A-29

-~—*BLK*-—~ ALWAYS
** 304 ** I/0 CLASSIFICATION OF ARGUMENTS AND COMMON VARIABLES
FOR SUBROUTINE --*SUB302%-
THERE ARE NO PARAMETERS OR COMMON BLOCKS

COMMON BLOCK ~——*BLK1*--

AVAILABILITY = ORIGINAL

ARGUMENTS
POSITION NAME INPUT CLASS OUTPUT CLASS
1 KRk e STRICT NON
COMMON BLOCK ———*BLK*——-

AVAILABILITY = ALWAYS

VARIABLE NAMES TAKEN FROM SUBPROGRAM --*SUBl106*-

ARGUMENTS
POSITION NAME INPUT CLASS OUTPUT CLASS
1 ——— R K e NON NON
2 SR Yo R J— NON NON
3 UGN 3 T S NON NON

SOURCE PROGRAM LISTING A-30

$ IN THE CONTINUATION FIELD INDICATES THE EXPANSION
OF THE LOGICAL IF STATEMENT ON THE PREVIOUS LINE

BLOCK

QGO

HBEWN O OO

WARNING
NUMBER

k% 207 *%

X%k 229 k%

MESSAGE
NUMBER

k% 304 **

SOURCE

SUBROUTINE SUB105(X,I)

ERROR 105 GENERATED BY THIS ROUTINE IN MAIN PROGRAM
ALSO AIDS IN GENERATION OF MESSAGE 302

Y = X+4

CALL SUB106(X,Y)

RETURN

END

% N O ERRORS **
WARNTINGS
DESCRIPTION

DUMMY ARGUMENT --—-—-*I*---- IS5 NEVER USED.

LOCAL VARIABLE ----*Y*---- IS ASSIGNED A VALUE IN BLOCK
NO., 2 AND IS EITHER ASSIGNED A VALUE THEREAFTER BEFORE

BEING REFERENCED, OR IS NOT SUBSEQUENTLY REFERENCED,
ON ALL PATHS.

ONE SUCH PATH, INDICATED BY BLOCK NUMBERS, IS
2 3

I/0 CLASSIFICATION OF ARGUMENTS AND COMMON VARIABLES
FOR SUBROUTINE =--*SUB105%*-

A-31

ARGUMENTS
POSITION NAME INPUT CLASS OUTPUT CLASS
1) LI STRICT STRICT
2 ————k Tk NON NON

SOURCE PROGRAM LISTING A-32

$ IN THE CONTINUATION FIELD INDICATES THE EXPANSION
OF THE LOGICAL IF STATEMENT ON THE PREVIOUS LINE

BLOCK SOURCE
1 SUBROUTINE SUB106(X,Z)
0 C
0 C SUBROUTINE WILL GENERATE ERROR 106 IN MAIN PROGRAM
0 C
2 X=6.
0 ¢C
0 C AID WITH MESSAGE 302
3 Y=E101(2)
0 C
0 C WILL GENERATE WARNING 203 IN MAIN PROGRAM
0 C
4 IF(Y.LT.X)
5 $2=3
) RETURN
1 END
ERRORS
ERROR
NUMBER DESCRIPTION
**% 110 ** COMMON VARIABLE ----*M*-—-- IS REFERENCED ON ALL PATHS IN
CALLED SUBPROGRAM ---*E1Q0l*--, YET IS NOT INITIALIZED. 1IT
DOES NOT APPEAR IN BLOCK DATA, AND ITS COMMON BLOCK ---*E110%--
IS NOT AVAILABLE TO CALLING SUBPROGRAM --*SUBl106*-, (SEE
NOTE 1)
WARNINGS
WARNING
NUMBER DESCRIPTION
** 216 ** COMMON VARIABLE —---=*M*--—- IS ASSIGNED A VALUE ON ALL PATHS
IN CALLED SUBPROGRAM ---*E1(01*--, YET ITS COMMON BLOCK

-==*E110%~-- IS NOT AVAILABLE TO CALLING SUBPROGRAM --*SUBl06%*-,

HENCE, A COMPUTED VALUE WILL BE LOST. (SEE NOTE 1) A-33

MESSAGES

MESSAGE
NUMBER DESCRIPTION

P A S — P O PR T ——

** 302 ** THE FOLLOWING COMMON BLOCKS, ALTHOUGH NOT EXPLICITLY IN
SUBPROGRAM --*SUB106*-, ARE AVAILABLE TO IT.

COMMON BLOCK AVAILABILITY

—=—=*BLK* ==~ SOMETIMES
** 304 ** I/0 CLASSIFICATION OF ARGUMENTS AND COMMON VARIABLES
FOR SUBROUTINE --*3UBl106%*~

ARGUMENTS
POSITION NAME INPUT CLASS OUTPUT CLASS
1 e K YK e NON STRICT
2 e KL K e e NON STRICT
COMMON BLOCK ——=*BLK* =~

AVAILABILITY = SOMETIMES

VARIABLE NAMES TAKEN FROM SUBPROGRAM ——--*E1Ql*--
ARGUMENTS

POSITION NAME INPUT CLASS OUTPUT CLASS

1 - LT NON NON

2 T JoL B NON NON

3 e LR NON NON

NOTES

NOTE 1 ALTHOUGH DETECTED IN THIS SUBPROGRAM, THE CAUSE FOR THIS

———— DIAGNOSTIC MAY HAVE OCCURRED AT A DEEPER LEVEL OF SUBPROGRAM
REFERENCES AND BEEN PROPAGATED UP TO THIS ONE.

NOTE 2 IF MESSAGE 301 CONCERNING THIS VARIABLE APPEARS IN THE
———— - OUTPUT, IT MAY PROVIDE ADDITIONAL USEFUL INFORMATION
ABOUT THE DATA FLOW AMONG SUBPROGRAMS.

34

SOURCE PROGRAM LISTING A

$ IN THE CONTINUATION FIELD INDICATES THE EXPANSION
OF THE LOGICAL IF STATEMENT ON THE PREVIOUS LINE

BLOCK SOURCE
1 SUBROUTINE SUB208(B,X)
1 COMMON/RLK1/CA
1 COMMON/BLK/B,C,D
0 C
0 C ERROR 107
0 C COMMON VARIABLE IS ALSO USED AS A DUMMY ARGUMENT
0 C
2 IF (Y.EQ.D)
3 $ GO TO 100
4 X=B
5 100 RETURN
1 END
ERRORS
ERROR
NUMBER DESCRIPTION
** 107 ** THE NAME —----*B*———— IS USED TO REPRESENT BOTH A DUMMY
ARGUMENT AND A COMMON VARIABLE IN THIS SUBPROGRAM.
*% 112 ** LOCAL VARIABLE —---—-*Y*-——- IS REFERENCED BEFORE BEING ASSIGNED
A VALUE ON ALL PATHS.
ONE SUCH PATH, INDICATED BY BLOCK NUMBERS, IS
1 2
WARNTINGS
WARN ING
NUMBER DESCRIPTION

** 236 ** LOCAL VARIABLE =----*Y#*-——— TS NEVER ASSIGNED A VALUE,

MESSAGE
NUMBER

** 304 ** I/0 CLASSIFICATION OF ARGUMENTS AND COMMON VARIABLES

FOR SUBROUTINE --*3UB208%-

ARGUMENTS
POSITION NAME INPUT CLASS
1 ————*Bk e INPUT
2 e G NON

COMMON BLOCK —-——*BLK1%--
AVAILABILITY = ORIGINAL

ARGUMENTS
POSITION NAME INPUT CLASS

1 m===*CA%-—— NON
COMMON BLOCK ~——*BLK*---

AVAILABILITY = ORIGINAL

ARGUMENTS
POSITION NAME INPUT CLASS
1 e kBk INPUT
2 — e K C K e NON
3 —— e kDk e STRICT

OUTPUT CLASS

NON
ouTPUT

OUTPUT CLASS

NON

OUTPUT CLASS

NON
NON
NON

SOURCE PROGRAM LISTING A-36

S IN THE CONTINUATION FIELD INDICATES THE EXPANSION
OF THE LOGICAL IF STATEMENT ON THE PREVIOUS LINE

BLOCK SOURCE

1 FUNCTION W201 (X)
1 COMMON/BLK1/CA
0 C
0 C WARNING 202
0 C FUNCTION NAME IS UNDEFINED ON SOME PATHS
0 C
2 Y=5
0 C
0 C WARNING 222
0 C DUMMY VAR IS CHANGED BEFORE BEING REF ON ALL PATHS
0 C
3 X =1
4 X=CA
5 IF (Y.GT.X)
6 $ GO TO 100
7 RETURN
0 C
0 C WARNING 201
0 C FUNCTION NAME IS REF BEFORE BEING ASSIGNED ON SOME PATHS
0 C
8 100 I=W201
9 W201=1.

10 RETURN
1 END

% N O E RROR S **
WARNTINGS
WARNING
NUMBER DESCRIPTION
*% 201 ** FUNCTION NAME ---*{§201*-- IS REFERENCED BEFORE BEING

ASSIGNED A VALUE ON SOME PATHS.
ONE SUCH PATH, INDICATED BY BLOCK NUMBERS, IS
1l - 6 8

**% 202 ** FUNCTION NAME ---*W201*-- IS NOT ASSIGNED A VALUE ON SOME PATHS.

k*k 2920 k%

% 290 %%

MESSAGE
NUMBER

*%k 304 **

DUMMY ARGUMENT --=--%X*---- TS ASSIGNED A VALUE IN BLOCK
NO. 3 AND IS ASSIGNED A VALUE THEREAFTER BEFORE BEING
REFERENCED, ON ALL PATHS.

ONE SUCH PATH, INDICATED BY BLOCK NUMBERS, IS

3 4
LOCAL VARIABLE —---=*I*--—-- TS ASSIGNED A VALUE IN BLOCK
NO. 8 AND IS EITHER ASSIGNED A VALUE THEREAFTER BEFORE

BEING REFERENCED, OR IS NOT SUBSEQUENTLY REFERENCED,
ON ALL PATHS.
ONE SUCH PATH, INDICATED BY BLOCK NUMBERS, IS

8 9 10

I/0 CLASSIFICATION OF ARGUMENTS AND COMMON VARIABLES
FOR FUNCTION —==*W201*~~

ARGUMENTS
POSITION NAME INPUT CLASS OUTPUT CLASS
0 —==*W201%--~ INPUT OUTPUT
1 ababalebd G B R NON STRICT
COMMON BLOCK -=—=*BLK1*--

AVAILABILITY = ORIGINAL

ARGUMENTS
POSITION NAME INPUT CLASS OUTPUT CLASS

1 ~——=*CA* = STRICT NON

-37

$ IN

SOURCE PROGRAM LISTING

THE CONTINUATION FIELD INDICATES THE EXPANSION

OF THE LOGICAL IF STATEMENT ON THE PREVIOUS LINE

BLOCK

OO WNOO OO
NSO EPKS]

et b et b e
G WO

e

WARNING
NUMBER

k% 223 k%

SOURCE

SUBROUTINE SUB215 (XDAT,A,B)
COMMON/IBD/W,V,T
COMMON/BLK/B1,C,D
DIMENSION XDAT(5,2)

WARNING 223

TYPE II ANOMALY, DUMMY ARGUMENT

B=XDAT (2,1)
A =2,
IF(XDAT(1,1).EQ.2.)
$ B=3.

Y=1
IF(B.EQ. 3)

$ B=Y

C=B*Y
T=W*Y+B
IF(C.GT.100)
$GO TO 10
D=A*B
W=B**2

10 RETURN
END

** N O ERRORS **

DUMMY ARGUMENT ----*B¥*---- IS ASSIGNED A VALUE IN BLOCK
NO. 2 AND IS ASSIGNED A VALUE THEREAFTER BEFORE BEING
REFERENCED, ON SOME PATHS.
ONE SUCH PATH, INDICATED BY BLOCK NUMBERS, IS

2 - 5

MESSAGES

_____ CoEe A-39
MESSAGE
NUMBER DESCRIPTION
% 304 ** I/0 CLASSIFICATION OF ARGUMENTS AND COMMON VARIABLES
FOR SUBROUTINE --*SUB215%-
ARGUMENTS
POSITION NAME INPUT CLASS OUTPUT CLASS
1 —=~*XDAT* -~ STRICT NON
2 i L I NON STRICT
3 - LT NON STRICT
COMMON BLOCK —=—*IBD*~-~-
AVAILABILITY = ORIGINAL
ARGUMENTS
POSITION NAME INPUT CLASS OUTPUT CLASS
1 L L STRICT OUTPUT
2 A R NON NON
3 e * Tk e NON STRICT
COMMON BLOCK ———*BLK*=~—
AVAILABILITY = ORIGINAL
ARGUMENTS
POSITION NAME INPUT CLASS OUTPUT CLASS
1 e *¥B] K NON NON
2 kR NON STRICT
3 L L NON OUTPUT

BL

* %

* %

* k

* %

SOURCE PROGRAM LISTING A-40
$ IN THE CONTINUATION FIELD INDICATES THE EXPANSION
OF THE LOGICAL IF STATEMENT ON THE PREVIOUS LINE
OCK SOURCE
1 SUBROUTINE SUB (A, B)
1 DATA X,Y/1.,2./
0 C WARNING 220 AND 221
0 C LOCAL VARIABLE INITIALIZED IN DATA STATEMENT IS ASSIGNED
0 C A VALUE ON ALL(SOME) PATHS
2 Y=A
3 IF(A.LT.0)
4 $X=B
5 IF(X.LT.Y)
6 $ RETURN
7 B=1
8 RETURN
1 END
¥ N O E RROR S **
WARNTINGS
WARNING
NUMBER DESCRIPTION
220 **% LOCAL VARIABLE —----*Y*————, INITIALIZED IN A DATA STATEMENT,
IS ASSIGNED A VALUE ON ALL PATHS. UNDEFINITION WILL OCCUR
UPON EXIT FROM THIS SUBPROGRAM.
221 ** LOCAL VARIABLE ——--*%X*-———, INITIALIZED IN A DATA STATEMENT,
IS ASSIGNED A VALUE ON SOME PATHS. UNDEFINITION MAY OCCUR
UPON EXIT FROM THIS SUBPROGRAM.
229 ** [LOCAL VARIABLE —~--*Y*-———- IS ASSIGNED A VALUE IN BLOCK
NO. 1 AND IS EITHER ASSIGNED A VALUE THEREAFTER BEFORE
BEING REFERENCED, OR IS NOT SUBSEQUENTLY REFERENCED,
ON ALL PATHS.
ONE SUCH PATH, INDICATED BY BLOCK NUMBERS, IS
1 2
230 ** LOCAL VARIABLE —--—*X*-—-- IS ASSIGNED A VALUE IN BLOCK

NO. 1 AND IS EITHER ASSIGNED A VALUE THEREAFTER BEFORE

BEING REFERENCED, OR IS NOT SUBSEQUENTLY REFERENCED,
ON SOME PATHS.
ONE SUCH PATH, INDICATED BY BLOCK NUMBERS, IS

1 - 4

MESSAGE

MESSAGE
NUMBER DESCRIPTION

P - i o, i i o s o o

** 304 ** I/0 CLASSIFICATION OF ARGUMENTS AND COMMON VARIABLES

FOR SUBROUTINE =--—=-*SUB*—-—-
ARGUMENTS
POSITION NAME INPUT CLASS OUTPUT CLASS
1 e STRICT NON
2 —==—= ¥Rk e INPUT ouTPUT

S IN

SOURCE PROGRAM LISTING

THE CONTINUATION FIELD INDICATES THE EXPANSION

OF THE LOGICAL IF STATEMENT ON THE PREVIOUS LINE

BLOCK

N OO O
OEONP!

ERROR
NUMBER

k% 102 **

WARNING
NUMBER

k% (7 **

k% 235 k%

MESSAGE
NUMBER

SOURCE

FUNCTION FUN(X)

FUNCTION IS NEVER REFERENCED

RETURN
END
ERRORS
DESCRIPTION
FUNCTION NAME ---*FUN*--- IS NEVER ASSIGNED A VALUE.
WARNINGS
DESCRIPTION
DUMMY ARGUMENT ---=*X*---- TS NEVER USED.
SUBPROGRAM —-—=-*FUN#¥*-~~ IS NEVER CALLED.

*% 304 ** I/0 CLASSIFICATION OF ARGUMENTS AND COMMON VARIABLES

FOR FUNCTION —--*FUN*---
ARGUMENTS
POSITION NAME INPUT CLASS OUTPUT CLASS

0 e R FUNF = - NON NON
1 R (3 ° NON NON

SIMULATED SUBPROGRAM MESSAGE A-44

** 304 ** I/0 CLASSIFICATION OF ARGUMENTS AND COMMON VARIABLES

FOR FUNCTION —==*FSIM*--
ARGUMENTS
POSITION NAME INPUT CLASS OUTPUT CLASS
0 —-——*FSIM*-~ NON STRICT

1 DUMMY PARM. STRICT NON

SIMULATED SUBPROGRAM MESSAGE A-45

% 304 ** I/0 CLASSIFICATION OF ARGUMENTS AND COMMON VARIABLES
FOR SUBROUTINE ~--*SUBSIM*-

ARGUMENTS
POSITION NAME INPUT CLASS OUTPUT CLASS
1 DUMMY PARM. STRICT NON
2 DUMMY PARM. STRICT NON
3 DUMMY PARM. STRICT NON
4 DUMMY PARM. STRICT NON

Appendix B DAVE REQUIREMENTS QUESTIONNAIRE B-1

Name: ' Phone:

Address:

General

I. Desired format of unlabeled magnetic tape copy of DAVE:
800 cpi, 7-track, even parity.
800 cpi, 9-track, odd parity.
1600 cpi, 9-track, odd parity.
Number of characters per block (multiple of 80)**

Tape character code:

Special instructions:

II. Kind of machine:

IIT. Operating system:

IV. Fortran compiler to be used:

V. How much core is available and comments on its cost and accessibility (e.g.
amount of core that is easily accessible for normal production):

VI. Number of files which may be open at one time:

VII. Is there a random access capability for mass Storage files?

Specific Fortran

I. Is there a local Fortran-callable traceback routine and how is it called?

** A blocking factor of 80 characters necessitates the use of a 2400 foot tape
and 600 foot tape; a factor of 1600 characters requires qn]y a 600 foot
tape. There will an additional charge of $15.00 for card image tapes.

IT.

ITI.

IV.

VI.

B-2
Are there Fortran-callable shift and bit manipulation routines (returning
integer or typeless results)? Please describe below.

a. SHIFT (A1,A2) bit positions: left circular if A2 is positive; right with
sign extension and end off if A2 is negative.

b. AND(A1,A2): bit-by-bit logical AND of Al and A2.

c. OR(A1,A2): bit-by-bit logical OR of Al and A2.

d. COMPL(A): bit-by-bit Boolean complement of A

How do you use your random access read and write routines?

What is the Fortran end-of-file test?

What is the notation used to represent machine constants (e.g. CDC octal
constants are followed by "B", as in 77B)?

Is there a local Fortran-callable routine which will abort a job, i.e. prevent
execution of subsequent control cards? How is it called?

IT.

B-3

For CDBC installations only

Is there a PROGRAM card?

Can buffer sizes be set on the PROGRAM card? e.qg.
PROGRAM MAIN (IN=101,0UT=1001,TAPE1=IN,TAPE2=0UT)
Are the sizes specified in octal or in decimal?

What is the minimum allowable size? Is it different for formatted and
unformatted files?

What is the default?

APPENDIX C C-1

Non-ANS FORTRAN Constructs Accepted by DAVE

The CDC PROGRAM card (including file buffer specifications).

Two branch logical IF statements of the form
IF (logical expression) L1, L2
where L1 is the transfer label if the expression is true and
L2 is the transfer label if the expression is false.
Double precision and complex constants.

IMPLICIT type declaration statements of the form

IMPLICIT type](ac1,...,aci-acj,...acn),..,typez(ac],...,acn)

where typei e{LOGICAL,REAL,INTEGER,DOUBLE PRECISION,DOUBLE,COMPLEX}
and ac; is a single alphabetic character
aci-acj is a range of characters.

FORTRAN II READ and PRINT statements.

DATA statements where data is entered into an array by mention
of the array name only (e.g. DATA A/1.0,2.0,3.0/).

FORMAT statements which have Hollerith strings delimited by
asterisks.

Multiple assignment statements (e.g. A=B=C+1).

