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Abstract

Historically, iterative solvers have been designed so as to minimize the number of
floating-point operations. We propose instead that iterative solvers should be designed
to minimize the amount of data that must be loaded from the memory hierarchy to the
CPU. In this paper, we describe automated memory analysis, a technique to improve the
memory efficiency of a sparse linear iterative solver. Our automated memory analysis uses
a language processor to predict the data movement required for an iterative algorithm
based upon a Matlab implementation. We demonstrate how automated memory analysis
is used to reduce the execution time of a component of a global parallel ocean model. In
particular, code modifications identified or evaluated through automated memory analysis
enables a 46% reduction in execution time for the conjugate gradient solver on a small
serial problem. Further, we achieve a 9% reduction in total execution time for the full
model on 64 processors. The predictive capabilities of our automated memory analysis
can be used to simplify the development of memory efficient numerical algorithms or
software.

1 Introduction and Motivation

Many important scientific and engineering computations involve the solution of a set of
partial differential equations formulated as a large sparse system of linear equations. The
solution of the linear system by an iterative linear solver is often the single most costly
component of the application [?,?]. Historically, iterative solvers have been designed to
achieve the best numerical accuracy for a given number of floating-point operations [?, 7,
?]. This approach is based on the assumption that the time to perform those operations
dominates the cost of the solver. This assumption is no longer true because, while advances
in computer architecture have significantly reduced the cost of a floating-point operation, the
memory access cost has not seen nearly as rapid an improvement [?]. We must therefore
take a memory-centric approach to the design and implementation of efficient algorithms. To
that end, we propose to use memory analysis as an integral component of the design process.
Memory analysis evaluates the interaction of the algorithm with the memory hierarchy by
calculating the amount of data that must be loaded from the memory hierarchy for each
component of the iterative algorithm. We have developed the Sparse Linear Algebra Memory
Model (SLAMM) language processor to automate memory analysis. The SLAMM language
processor analyzes an algorithm written in Matlab code. The SLAMM analysis gives a
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prediction of the minimum required data movement for an efficient implementation of the
algorithm in a compiled language.

Automated memory analysis provides both the ability to rapidly evaluate the memory
efficiency of a particular design choice during the design phase and the ability to improve
the memory efficiency of a pre-existing solver. We illustrate both applications by using
SLAMM to reduce the execution time of the Parallel Ocean Program (POP) [?]. In Section
7?7, we provide the background for memory efficient programming and review related work.
In Section 7?7, we describe POP, a parallel ocean model developed at Los Alamos National
Laboratory. We describe the two-dimensional (2D) data structure it currently uses and an
alternative one-dimensional (1D) data structure in Section ??. In Section ??, we describe
memory analysis, a technique to calculate the amount of data that must be moved through
the memory hierarchy for each component of an iterative algorithm. We describe manual
memory analysis in Section 7?7 and automated memory analysis using SLAMM in Section
?7?7. Finally, in Section 7?7, we demonstrate how SLAMM is used to increase the memory
efficiency of the POP iterative solver and reduce execution time.

2 Background and Related Work

The creation of software that is both numerically and memory efficient [?,7,7,7] is a non-
trivial task that has not been done extensively or in a systematic fashion. We propose a
technique to simplify the design and implementation of memory efficient software through
automated memory analysis. Our automated memory analysis uses compiler techniques to
evaluate an algorithm implemented in Matlab. We chose Matlab because it is a ubiquitous
programming language in numerical analysis research. Matlab is popular because it allows
for the rapid prototyping of numerical algorithms without the complexities of a compiled
language like Fortran or C. The SLAMM language processor inputs Matlab code marked
with SLAMM directives and outputs the same code with additional code blocks to perform
memory analysis. Our work differs from the compilers described in [?,7,7?,?] because we
do not convert Matlab to another language but rather analyze the code to determine its
potential memory efficiency before implementation in a compiled language.

We focus our efforts on improving the execution rate of linear algebra algorithms that
are typically memory bandwidth-limited. Memory bandwidth is the rate that data is moved
through the memory hierarchy in units of cache-lines. We quantify the impact of memory
bandwidth on a particular algorithm by comparing the total storage requirement of an algo-
rithm as well as its working set size to the size of the cache. The total storage requirement
is the total size in bytes of all variables required by an algorithm. The working set size is
the size in bytes of all variables accessed during a particular section or phase of the algo-
rithm. Different implementations of the same algorithm may have the same total storage
requirement but may have significantly different working set sizes. The results of matching
an algorithm’s working set size to cache size can result in significant performance gains. For
example, loop blocking [?,?] of dense linear algebra, which breaks up larger code blocks or
loops into smaller blocks in order to match working set size and cache size, is used in the



optimized level 2 and 3 BLAS routines [?].

Several researchers have used compiler techniques to predict serial and parallel perfor-
mance. Cascaval et al. [?] use the Polaris compiler to predict the performance of serial Fortran
and C codes. Polaris-based predictions for execution time and cache miss-rates, which are
fed back into the compiler to improve code optimization, are accurate to within an average of
20% error. C. van Gemund [?] use the PAMELA compiler to add symbolic cost expressions
for data parallel problems, which, in combination with a simple machine model, allow it to
predict execution time to within 10% error. Fahringer [?] developed the parameter-based
performance prediction Tool (P3T) which is integrated with Vienna Fortran compiler [?].

Unlike [7,7,7], SLAMM does not analyze Fortran or C source code but rather analyzes
Matlab code. The use of Matlab allows the analysis of an algorithm before implementation
in a compiled language. Analyzing an algorithm written in an interpreted high level language
like Matlab provides an analysis that is not biased by the implementation details present in a
Fortran or C version. This allows SLAMM to accurately predict the minimum possible data
movement needed by an algorithm and compares it to the existing data movement. We do
not develop a sophisticated analytical model of memory performance because the consumer
of SLAMM’s analysis is the developer of the algorithm. Specifically, we find that a simple
model that predicts the amount of data loaded from L2 to L1 cache (Mbytesy) is sufficient
to provide valuable insight to the algorithm developer.

The performance of POP has been analyzed by several groups. Kerbyson [?] developed
an analytical model of expected parallel performance. Snavely [?] employs a convolution-
based framework that uses hardware performance counts and MPI library traces to predict
parallel performance. Our work does not specifically address parallel performance but rather
concentrates on reducing data movement for a single component of the POP model.

3 Parallel Ocean Program

The Parallel Ocean Program (POP) [?] is a global ocean model developed at Los Alamos
National Laboratory that is used extensively as the ocean component of the Community
Climate System Model [?]. POP uses finite-difference for the baroclinic component of the
timestep and a preconditioned conjugate gradient solver to solve for surface pressure in the
barotropic component. Parallelism on distributed memory computers is supported through
the Message Passing Interface (MPI) [?] standard.

We use POP version 2.0.1 [?] to examine data movement in the barotropic solver using the
test and griv3 grids. The test grid is a coarse grid provided with the source code to facilitate
the porting of POP to other compute platforms. The gx1v3 grid is higher resolution than the
test grid with one degree resolution at the equator. POP using the gx1v3 grid represents 20%
of the total compute cycles at the National Center for Atmospheric Research (NCAR) [?].



3.1 Existing data structure

POP uses a three-dimensional computational mesh. The horizontal dimensions are decom-
posed into logically rectangular two-dimensional (2D) blocks [?]. The computational mesh is
distributed across multiple processors by placing one or more 2D blocks on each processor.
There are km vertical levels associated with each 2D horizontal block. Blocks that do not
contain any ocean points, or land blocks, are eliminated. Table ?? contains the dimensions
of the test and gx1v3 grids. The variables nx and ny are the global numbers of points in the
x and y directions of the grid respectively. Table 77 also contains the block sizes bsize_xr and
bsize_y, the number of blocks nblocks, and the numbers of ocean, land, and total points in
the barotropic solver for several block size configurations. The block size parameters bsize_x
and bsize_y correspond to the number of points in the x and y directions for each 2D block.
Note that land block elimination reduces the number of 20 x 24 blocks to 246 resulting in a
reduction in the number of land points versus the 40 x 48 configuration.

grid # points
name | nx X ny X km | bsize_r X bsize_y | nblocks | ocean | land | total
test 192x128x20 16 x 16 92 15378 | 8174 23552
gx1v3 320x384x40 40 x 48 64 86354 | 36526 | 122880
20 x 24 246 86354 | 31726 | 118080

Table 1: Description of POP grids.

Figure 77 illustrates the gx1v3 grid decomposed into 2D blocks of size 20 x 24. The white
area in Figure 77 represents land, while ocean is indicated by gray. The black lines in Figure
7?7 indicate the boundaries of the 20 x 24 blocks. We next describe the form of the 2D data
structure in greater detail.

Each 2D block contains bsize_x X bsize_y internal grid points and a halo region of width
nghost. The halo region is used to store grid points that are located in neighboring 2D blocks.
Figure 77 illustrates the 2D data structure within the source code for the block from Figure
7?7 containing the Iberian peninsula. Note that the large white structure on the upper right
side of the block in Figure 77 is the Iberian peninsula while the white structure in the lower
right-side is the northern coast of Africa. For this particular block, only about 60% of the
grid points represent ocean.

The matrix-vector multiply within the conjugate gradient solver is applied via a 9-point
stencil. The code for the 9-point stencil is illustrated in Figure ?7. To calculate point Y (3, j),
the nine points X (4, j), X (4,j+1), X (4,5—1), X(i+1,7), X(i—1,7), X(i+1,j+1),X(i+1,j—
1), X(¢—1,j+1),and X (i—1,j—1) are required along with the associated coefficient arrays
A0, AN, AE, and ANFE. The need for a halo region is apparent if we consider the calculation
of the corner point Y'(1,1). We need among other points X (0,0) which is contained within
the halo region. The primary advantage of the 2D data structure is that it provides a regular
stride-one access for the matrix-vector multiply. The disadvantage of the 2D data structure
is that it includes a large number of grid points that represent land. In effect, a number of
explicitly stored zeros are added to the matrix. While it is possible to reduce the number of



Figure 1: The POP gx1v3 grid, where white corresponds to land points, gray to ocean points,
and superimposed lines indicate 20 x 24 blocks.

excessive land points by reducing the block size, smaller blocks have a larger percentage of
their total size dedicated to halo points. We present an alternative to the 2D data structure
in the next section.

3.2 An alternate data structure

We next describe a one-dimensional data structure that enables the elimination of a poten-
tially large number of land points present in the 2D data structure. The 1D data structure
consists of a 1D array of extent n. The first nActive elements in the 1D array correspond to
active ocean points, while the remaining n — nActive points correspond to the off-processor
halo needed by the 9-point stencil. In removing the excessive land points, the 1D data struc-
ture changes the form of the matrix-vector multiply. Indirect-addressing is now necessary to
apply the operator matrix which is stored in a compressed sparse row format. The code for
the matrix-vector multiply for the 1D data structure is provide in Figure ?7. The need for
the Mat%Ia and Mat%Ja index arrays has the potential to negate any reduction in data
movement achieved by the elimination of land points. We demonstrate in the next section



nblocks

Figure 2: A 20 x 24 block of the gx1v3 grid over Iberian peninsula. Note the presence of land
and ocean points within the block.

how memory analysis is used to evaluate the impact of alternative data structures on data
movement.

4 Memory Analysis

We next examine the process of memory analysis. Memory analysis examines the amount of
data that must be loaded from the memory hierarchy to the CPU to perform an operation.
Consider two fundamental linear algebra operations, a dot product and an AXPY. The dot
product of two vectors o = u'v where v,u € R™ and a € R requires two vectors of length
n. The amount of data that must be loaded from the memory hierarchy, or working set load
size (WSL), is

WSLPOT —2n Ly, (1)

where L is the size of a double precision floating-point value in bytes. The AXPY operation
u = u + av, where v,u € R" and a € R, requires two vectors of length n and a scalar. The
working set size for an AXPY operation is

WSLAXPY — (2n +1) L, (2)



do j=this_block}jb,this_block%je
do i=this_block%ib,this_blocklie
Y(i,j) = A0 (i ,j I)*X({E ,j ) + &
AN (i ,j )*X(G ,j+D)
AN (i Lj-D*X(G ,j-1)
AE (i ,j )*X(i+1,j )
AE (i-1,j )#*X(i-1,j )
ANE(i ,j )*X(i+1,j+1)
ANE(i ,j-1)*X(i+1,j-1)
ANE(i-1,j )*X(i-1,j+1)
ANE(i-1,j-1)*X(i-1,j-1)

+ o+ + + + o+ +
R R R

end do
end do

Figure 3: The barotropic operator in POP, implemented as a 9-point stencil using the two-
dimensional data structure.

is = Mat%Ia(1)

do i=1,n2
ie = MatYIa(i+1)
tmp = 0.0

do j=is,ie-1
tmp = tmp + Mat%A(j)*X(Mat%Ja(j))
enddo
Y(i) = tmp
is = ie
enddo

Figure 4: The barotropic operator in POP, implemented as compressed sparse row matrix-
vector multiply using the one-dimensional data structure.



1. To :b—Axo,po :0,¢0 = (?”0,7‘0)

2. for 7 =0,1,... until convergence

3. Mz=r; /* Apply Precon */
4. ¢jr1 = (1}, 2) /* dot product */
d. B=dj+1/9;

6. Pj+1 =2+ Pp; /* AXPY */

7. q=Apjn /¥ MxV */

8. § = (pj+1,9) /* dot product */
9. a=¢jp1/d

10. Tj41 = Tj + apj1 /* APXY */

11. Tjr1 =T — apjr1 />l< AXPY */

12. end

Figure 5: Preconditioned Conjugate Gradient (PCG) algorithm.

The derivation of equations (??) and (??) is an example of manual memory analysis. While
manual memory analysis is trivial for simple linear algebra operations, its complexity grows
if we extend the technique to an entire iterative algorithm. We describe manual memory
analysis of a complete iterative algorithm in Section ??, followed by our automated memory
analysis procedure in Section ?7.

4.1 Manual Memory Analysis

We focus on the preconditioned conjugate gradient (PCG) iterative solver used by POP [7]
to update the ocean surface pressure at each timestep. In Figure 7?7, we provide a common
form of the PCG solver. Iterative solvers are composed of basic linear algebra operations.
Thus, we compute the working set load size of the solver from the working set load size of
its constituent operations. In Table 77, we provide the working set sizes for each line of the
PCG algorithm in Figure ??7. Note that the PCG algorithm requires several dot products
(DOT) and axpy operations (AXPY), a single sparse matrix-vector product (MxV), and the
application of the preconditioner (Precon) for each iteration.

We first determine the working set load size for the sparse matrix-vector multiply for the
2D and 1D data structures, followed by the application of the preconditioner. First, consider
the matrix-vector multiply for the 2D data structure. The working set load size (WSL) of a
matrix-vector multiply y = Ax, where A is a sparse coefficient matrix, is

WSL = sizeof (y) + sizeof (x) + sizeof (A), (3)

where sizeof() is a function that returns the size of its argument in bytes. An examination of
Figure 77, which contains the code for the matrix operator for the 2D data structure, indicates
that arrays A0, AN, AE, and ANE form the coefficient matrix A. Because sizeof(A) =
4-sizeof(x), we use (?7) to calculate working set load size for the 2D matrix-vector product

WSLYSV = (2nyp + 4nop) Lg = 6nap Ly, (4)



Line Operation WSL (bytes)

3 Precon varies

4 DOTV() 2n Lg

6 AXPY() 2n+1)Lg

7 MzV() varies

8 DOTV() 2n Lg

10 AXPY() (2n+1)Lq

11 AXPY() 2n+1)Lg

2-12  TOTAL (10n +3) Lq
+WSLM=V

for 1 iteration +W SLFrecon

Table 2: Working set sizes (WSL) for each line of the PCG algorithm in Figure 7?7

where
nap = nblocks - (bsize_x + 2 - nghost) (bsize_y + 2 - nghost).

The WSL for the matrix-vector multiply for the 1D data structure is different than for
the 2D data structure because sizeof(A) is different. In the case of the 1D data structure, we
must account for both the number of non-zero entries and the size of the indirect addressing
arrays. The WSLMeV is therefore

WSLMeV = (nnzip 4+ 2n1p) Ly + (nnzip + nip) L; (5)

where n1p is the number of ocean points from column 5 of Table 77, nnzp is the number of
nonzero values in the matrix Mat%A in Figure 7?7, and L; is the size of an integer in bytes.

We next calculate the working set load size for the application of the preconditioner.
Because POP uses a scaled diagonal preconditioner,

WSLEreon = 2p L. (6)

Using equations (?7), (?7), and (?7) and the equations provided in Table ?? we can
calculate the working set load sizes for both the 2D and 1D based solvers. Deriving and
evaluating the analytical expression for data movement in this way is a time consuming,
laborious, and error prone process that can be automated using language processing tech-
niques. In the next section we describe the automated memory analysis procedure which
greatly simplifies memory analysis.

4.2 Automated Memory Analysis

We next describe how the sparse linear algebra memory model (SLAMM) language processor
is used to automate the memory analysis procedure. We use the dot product described in
Section 7?7 as an example. Figure 77 contains a Matlab code that calculates the dot product
of two vectors u, v € R™. Note that lines 2 and 4 in Figure 7?7 are the Matlab code to initialize



%SLM start caseStudy; % line 1
n=200; u=rand(n,1); v=rand(n,1); % line 2
%SLM start dotprod; % line 3
alpha=u’*v % line 4
%SLM end dotprod; % line 5
%SLM print dotprod; % line 6
%SLM end caseStudy; % line 7

Figure 6: Matlab code that computes the dot product of two vectors with SLAMM directives.

SLAMM Memory Analysis for Body: dotprod
TOTAL: Storage Requirement Kbytes (SR) : 3.13
TOTAL: Loaded from L2 -> L1 Kbytes (WSL): 3.12 +- 0.00
DGEMM Kbytes : 0.00 +- 0.00
Sparse Ops Kbytes : 0.00 +- 0.00

Figure 7: The SLAMM generated predictions for dot product code in Figure ?77.

and calculate the dot product, respectively. The remaining lines in Figure ??7 with the prefix
%SLM are directives that control the SLAMM language processor. Lines 1 and 7 delineate
the beginning and end of a body of Matlab code. Lines 3 and 5 also delineate a body of code
and identify it with the symbolic name dotprod. Line 6 is a SLAMM directive requesting the
printing of the memory analysis of the dotprod code block.

Based on the input Matlab code in Figure 7?7, the SLAMM language processor analyzes
and generates modified output code which contains both the original code and new blocks
of code that calculate memory usage properties. Figure 7?7 shows the resulting automated
memory analysis of code body dotprod from Figure 77. Note that the total storage require-
ment (SR) and the working set load size (WSL) are printed in Kbytes. SLAMM separately
indicates the component of data movement due to dense matrix-matrix multiplication, indi-
cated by DGEMM, as well as sparse matrix operations. We differentiate between the different
components of WSL to indicate the fraction of the algorithm that might benefit from specific
optimization techniques like the use of an optimized DGEMM subroutine. Fundamentally,
the SLAMM language processor derives and evaluates equation (?7) automatically. While
automated memory analysis is certainly not necessary for a simple operation like a dot prod-
uct, its advantages become apparent when it is applied to a complete iterative algorithm that
may contain a large number of linear algebra operations. We demonstrate the application
of automated memory analysis to evaluate the memory efficiency of the POP preconditioned
conjugate gradient solver in the next section.
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5 Results

Automated memory analysis can be used to evaluate a design decision before implementation
in a compiled language and to evaluate the quality of a particular implementation. We first
demonstrate how automated memory analysis is used to evaluate the choice of data structure
for POP. We implement the PCG algorithm of Figure 7?7 in Matlab using both the 2D and 1D
data structures described in Sections 7?7 and 77, respectively. Using the SLAMM directives
described in the previous section, we delineate one iteration of the PCG algorithms. The
predicted data movement (WSLp) for the 2D data structure (PCG2+2D) and the 1D data
structure version (PCG2+1D) for the test grid are provided in the second column of Table
?7?7. SLAMM predicts that the use of the 1D data structure would reduce the amount of data
loaded from the L2 to the L1 cache (Mbytesr1) by 34% versus the existing 2D data structure.

Solver version Ultra IT POWERA4 R14K
Implementation WSLp WSLy | error | WSLas | error | WSLa | error
PCG2+2D 4902 vl 5163 5.3% 5068 3.4% 5728 16.9%
v2 4905 0.1% 4865 -0.7% 4854 -1.0%
PCG2+1D 3218 3164 -1.7% 3335 3.7% 3473 7.9%
Reduction in Mbytesr1 34% 39% 34% 39%

Table 3: Mbytesy for a single iteration of preconditioned conjugate gradient solver in POP
using the test grid. The values of W.SLp and W SLj; are in Kbytes.

To compare SLAMM-predicted to measured data movement, we instrumented each ver-
sion of the solvers with a locally developed performance profiling library (Htrace), which is
based on the PAPI [?] hardware performance counter API. Htrace calculates data movement
by tracking the number of cache lines moved through the different components of the mem-
ory hierarchy. We focus on three primary microprocessor compute platforms that provide
counters for cache lines loaded from the memory hierarchy to the L1 cache: Sun Ultra II [7]
(Ultra II), IBM POWER 4 [?] (POWER4), and MIPS R14K [?] (R14K). A description of
the cache configurations for each compute platform is provided in Table 77?.

CPU Ultra II | POWER4 | R14K
Company SUN IBM SGI
Mhz 400 1300 500
L1 Data-cache 32KB 32KB 32KB
L2 cache 4 MB 1440 KB 8 MB
L3 cache — 32 MB -

Table 4: Description of the microprocessor compute platforms and their cache configurations.

The measured data movement (W.SLjys) or Mbytesr; the amount of data loaded from
the L2 to the L1 cache for the existing 2D data structure implementation (PCG2+2D v1),
an optimized 2D version (PCG2+2D v2), and the 1D version are provided for each of the
compute platforms in Table ??. We measure 10 iterations and report the average measured

11



! code block: solver vl
|
do iblock=1,nblocks
P(:,:,iblock) = Z(:,:,iblock) + P(:,:,iblock)*beta
Q = operator(P,iblock)
WORKOC(:,:,iblock) = Q(:,:,iblock)*P(:,:,iblock)
enddo
delta=global_sum(WORKO,LMASK)

! code block: solver v2
|
delta_local=0.d0
do iblock=1,nblocks

P(:,:,iblock) = Z(:,:,iblock) + P(:,:,iblock)*beta

Q = operator(P,iblock)

WORKO = Q(:,:,iblock)*P(:,:,iblock)

delta_local = delta_local + local_sum(WORKO,LMASK(:,:,iblock))
enddo
delta=gsum(delta_local)

Figure 8: A code block that implements lines 6 to 8 of the PCG algorithm in Figure ?7? for
the v1 and v2 solvers.

data movement. While the discrepancies between the measured and predicted WSL for
the PCS2+2D v1 solver are minimal for both the Ultra II and POWER4 platforms, the
measured value of 5728 Kbytes for the R14K is 17% greater than the predicted value of 4902
Kbytes. The difference in data movement between the three compute platforms may be due
to additional code transformations performed by the Ultra II and POWER4 compilers. That
the PCG2+2D v1 solver is loading 17% more data from the memory hierarchy than necessary
on the R14K is an indication that it is possible to improve the quality of the implementation.

An examination of the source code for the PCG2+2D v1 solver indicates that a minor
change to the dot product calculation reduces data movement. Code blocks that correspond
to lines 6 to 8 of the PCG algorithm in Figure 7?7 for the vl and v2 versions of the solver
are provided in Figure ?7. The function operator applies the 9-point stencil from Figure 77,
and the array LMASK is an array that masks out points that correspond to land points. In
version v1 of the do loop, a temporary array WORKO is created that contains the point-
wise product of two vectors Q and P. Outside the do loop, the product of LMASK and the
WORKO array is calculated by global_sum to complete the dot product. If the size of data
accessed in the do loop is larger than the L1 cache, then a piece of the WORKO array at the
end of the do loop is no longer located in the L1 cache and must be reloaded to complete the
calculation.

In version v2 of the do loop, in Figure 77, a scalar temporary delta_local is added to
accumulate each block’s contribution to the dot product of Q and P. An additional function
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local_sum is used that applies the land mask to complete the dot product. Finally, we replace
the function global_sum with a call to gsum. The subroutine gsum, when executed on a single
processor, is an assignment of delta_local to delta. Because version v2 of the code block does
not access WORKO outside the do loop, it potentially reduces data movement.

Both dot product calculations (lines 4 and 8 of Figure ??) in the PCG algorithm were
rewritten to create the v2 solver. The W SLj; values in Table 7?7 for the vl and v2 versions
of the PCG24-2D solver on the R14K indicate that the rearranged dot product calculations
reduce data movement by 18%. Note, that data movement is also reduced on the Ultra II
and POWERA platforms but to a lesser extent.

The previous description is a demonstration of how SLAMM is used to guide performance
tuning. Table 77 also provides the relative error between predicted and measured data
movement for the solvers. SLAMM predicts data movement to within an average error of
0.6% for the PCG2+2D v2 solver and within 4.4% for the PCG2+1D solver. We provide the
actual percentage reductions in data movement for the 1D versus 2D solver for each compute
platform. Table 77 indicates that the actual percentage reductions in data movement are
very similar to the predicted reductions. Table 77 clearly demonstrates that is is possible for
automated memory analysis to accurately predict the amount of data movement required for
an algorithm. Such a capability provides a priori knowledge of the memory efficiency of a
particular design choice before implementation in a compiled language.

We next examine the impact of reducing data movement on execution time. The timestep
of POP includes a baroclinic and a barotropic component. The barotropic component is
composed of a single linear solver for surface pressure. We execute POP using the test grid
on a single processor of each compute platform for a total of 20 timesteps. This configuration
requires an average of 69 iterations of the PCG algorithm per timestep. In Table 77, we
provide the barotropic execution time in seconds using the three implementations of the
solver. We include the execution time for the initial implementation of the solver using 2D
data structures to accurately reflect the overall impact automated memory analysis has on
execution time. Note that the PCG141D solver consistently has a lower execution time
than either of the 2D data structure based solvers. The last row in Table 7?7 contains the
percentage reduction in barotropic execution time for the PCG2+2D v1 versus the PCG2+1D
solver. Table 77 indicates that code modifications either evaluated or identified by automated
memory analysis reduce execution time by an average of 46%. Curiously, a comparison of
Tables 7?7 and 77 indicates that the percentage reduction in execution time is even larger
than the percentage reduction in data movement. This discrepancy may be due to improved
compiler optimization for the greatly simplified PCG2+1D solver.

We next examine the impact of the 1D data structures on parallel execution time using
the gx1v3 grid. We use the generalized gather-scatter routines of Tufo-Fischer [?] to provide
parallel execution under MPI for the 1D version of the solver. In addition to the two dot
product PCG gradient algorithm (PCG2) in Figure ??, POP also provides a single dot
product PCG algorithm (PCG1) [?]. The PCG1 algorithm provides a performance advantage
for parallel execution because it eliminates one of the distributed dot production calculations.
Because we want to realistically estimate the impact the 1D data structure has on execution
time, we provide timing results for both PCG algorithms using the 2D and 1D data structures

13



Solver

implementation | Ultra II | POWER4 | R14K
PCG2+2D v1 21.17 4.57 8.58
PCG2+2D v2 20.49 4.01 7.97
PCG2+1D 12.74 2.11 4.61
Reduction 39% 54% 46%

Table 5: Barotropic execution time for 20 timesteps of POP in seconds using the test grid
on a single processor.

in Table 77.

We execute POP on 64 IBM POWERA4 processors for a total of 200 timesteps, with an
average 151 iterations per timestep. The total execution time in seconds for the four solver
implementations is provided in Table ?7?7. These results indicate that use of the PCG141D
solver versus the PCG14-2D solver reduces total POP execution time by 9%. A 9% reduction
in total execution time of POP is significant because it has been extensively studied and
optimized [?,7]. Further, POP consumes approximately 2.4 million CPU hours every year
at NCAR. A 9% reduction is execution time eliminates the need for 216,000 CPU hours per
year.

Solver Implementation
PCG2+2D vl | PCG1+4+2D vl | PCG2+1D | PCG1+1D

total time (sec) 86.2 81.5 78.8 73.9

Table 6: Total execution time for 200 timesteps with gx1v3 grid on 64 POWERA4 processors.

6 Conclusion

We demonstrate how automated memory analysis is used to performance tune the Parallel
Ocean Program. We automate memory analysis using the SLAMM language processor which
accurately predicts the amount of data loaded from the L2 to L1 cache to within a relative
error of 10%. The accurate predictive capability of SLAMM enables the identification of
excessive data movement in the existing 2D data structure based solver, and it allows us to
evaluate the use of an alternative 1D data structure. We observe that the SLAMM predicted
reduction in data movement for the 1D versus the 2D solver is 34% and compares favorably
with a measured 36% reduction. The reduction in data movement results in an average 46%
reduction in single processor execution time. Finally we demonstrate how use of the 1D data
structure reduces total execution time of POP on 64 processors using a 1 degree resolution
grid by 9% which represents a substantial savings in compute time.
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