
Implicit Space-Time Domain Decomposition Methods for

Stochastic Parabolic Partial Differential Equations

by

Cui Cong

B.A., Shandong University of Science and Technology, 2005

M.S., University of Colorado Boulder, 2011

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Mathematics

2013

This thesis entitled:
Implicit Space-Time Domain Decomposition Methods for Stochastic Parabolic Partial Differential

Equations
written by Cui Cong

has been approved for the Department of Mathematics

Xiao-Chuan Cai

Karl Gustafson

Robert Goodrich

Congming Li

Robert Leben

Date

The final copy of this thesis has been examined by the signatories, and we find that both the
content and the form meet acceptable presentation standards of scholarly work in the above

mentioned discipline.

iii

Cong, Cui (Ph.D., Mathematics)

Implicit Space-Time Domain Decomposition Methods for Stochastic Parabolic Partial Differential

Equations

Thesis directed by Professor Xiao-Chuan Cai and Professor Karl Gustafson

In this thesis, we introduce and study parallel space-time domain decomposition methods

for solving deterministic and stochastic parabolic equations. Traditional parallel algorithms solve

parabolic problems time step by time step, i.e., the simulation of the later time step is based on

the solution of the earlier time step. Therefore, the parallelism is restricted to each time step,

and the algorithms are purely sequential in time. Recently, there are several attempts to develop

time-parallel algorithms, such as parareal, waveform relaxation, and space-time multigrid. In this

thesis, we develop some overlapping Schwarz methods whose subdomains cover both space and time

variables, and we show numerically that the methods work well for stochastic parabolic equations

discretized with an implicit stochastic Galerkin method. The main components of the stochastic

Galerkin method are Karhunen-Loève expansion and double orthogonal polynomials, which are used

to decouple the stochastic parabolic problem into a sequence of deterministic parabolic equations.

In order to solve the sequence of equations efficiently, one- and two-level Schwarz preconditioned

recycling GMRES methods are carefully investigated such that some components of the methods

are reused to maximize the benefit of the recycling Krylov subspace when a large number of linear

systems are solved. The key elements of this approach include an ordering algorithm and two

grouping algorithms. We present some experimental results obtained on a parallel computer with

more than one thousand processors.

Dedication

To my husband, my daughter, my parents ...

v

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my advisor Prof. Xiao-

Chuan Cai and Prof. Karl Gustafson for their continuous support of my Ph.D study and research.

I deeply appreciate their helpful suggestions, patience, encouragement, and immense knowledge.

Their guidance helped me throughout my research and writing this thesis.

My sincere thanks also go to Professors Robert Goodrich, Congming Li and Robert Leben for

serving on my committee, reviewing my work, insightful comments, and hard questions.

I thank my wonderful labmates and colleagues: Yuqi Wu, Si Liu, Chao Yang, Chao Jin and

Fande Kong for their helpful discussions.

Last but not least, I would like to thank my parents for giving birth to me and supporting me

throughout my life, and my husband Hai Long, whose love and spiritual encouragement allowed

me to finish this journey.

vi

Contents

Chapter

1 Introduction 1

2 Space-time domain decomposition methods 7

3 Stochastic Galerkin method for parabolic problems 18

3.1 Weak form of the stochastic parabolic equation . 18

3.2 Karhunen-Loève (KL) expansion . 20

3.3 Double orthogonal basis . 24

3.4 Discretization in ξ-space . 25

3.5 Discretization in space and time . 27

4 Recycling Krylov subspace method and grouping algorithms 29

4.1 Recycling Krylov subspace method . 29

4.2 Ordering algorithm . 31

4.3 Grouping algorithm for one-level RAS preconditioning 33

4.4 Grouping algorithm for two-level hybrid preconditioning 35

4.5 Numerical examples . 37

5 Numerical experiments 53

5.1 Identifying the dimension of the recycling Krylov subsapce 53

5.2 Comparing several recycling strategies . 56

vii

5.3 Scalabilities study of the two-level hybrid preconditioning 67

6 Conclusions and future work 70

Appendix

Bibliography 72

viii

Tables

Table

2.1 The extrema singular values and condition numbers for matrices As as s increases. 13

4.1 Reordering Cij ,j decreasingly by permutation, for all j, 0 ≤ j ≤M , {0, 1, · · · , nj} −→

{lj0, l
j
1, · · · , l

j
nj}. 32

5.1 Computing time (second) and average number of iterations (denoted by “aiter”) for

the one-level RAS preconditioned FGMRES without restart, δ = 8, ILU(∗) and LU

are subdomain solvers. 55

5.2 Computing time (second) and average number of iterations (denoted by “aiter”) for

the one-level RAS preconditioned FGMRES with restart (= 50), δ = 8. 55

5.3 Computing time (second) and average number of iterations (denoted by “aiter”) for

the two-level hybrid preconditioned FGMRES without restart. δ = 8, the coarse

overlap δc = 0. km is defined in (5.1). 56

5.4 Computing time (second) and average number of iterations (denoted by “aiter”) of

four schemes. 57

5.5 Average number of iterations for the two-level hybrid preconditioning with different

mesh size, overlap size, and number of processors. The coarse mesh is 32× 32. . . . 67

5.6 Computing time (second) per window size and average number of iterations (denoted

by “aiter”) for the two-level hybrid preconditioning with different window sizes. . . . 67

ix

5.7 Computing time (second) and average numbers of iterations (denoted by “aiter”) for

the two-level hybrid preconditioning with different ∆t. 68

x

Figures

Figure

2.1 The pattern of matrix As for a 8 × 8 × 4 mesh, s = 4 is the number of time levels.

The number of processors is 4. 16

4.1 The largest 4 eigenvalues of Ca(x, x
′), x, x′ ∈ [0, 1]. 39

4.2 The largest 11 eigenvalues of Ca(x, x
′), x, x′ ∈ [0, 1]2. 39

4.3 The first eigenfunction of Ca(x, x
′), x, x′ ∈ [0, 1]2. 40

4.4 The second eigenfunction of Ca(x, x
′), x, x′ ∈ [0, 1]2. 40

4.5 The third eigenfunction of Ca(x, x
′), x, x′ ∈ [0, 1]2. 41

4.6 The fourth eigenfunction of Ca(x, x
′), x, x′ ∈ [0, 1]2. 41

4.7 The maxima and minima of the diffusion coefficients aM,i(x) for all 9216 systems. . . 45

4.8 The maxima singular values of all 9216 systems without any preconditioning. 46

4.9 The minima singular values of all 9216 systems without any preconditioning. 47

4.10 The condition numbers of all 9216 systems without any preconditioning. 48

4.11 The maxima singular values of all 9216 systems with the two-level hybrid precondi-

tioner. 50

4.12 The minima singular values of all 9216 systems with the two-level hybrid precondi-

tioner. 51

4.13 The condition numbers of all 9216 systems with the two-level hybrid preconditioner. 52

xi

5.1 One-level RAS preconditioning, comparison of numbers of iterations for Scheme 1

and 2 . 58

5.2 One-level RAS preconditioning, comparison of numbers of iterations for Scheme 1

and 3 . 59

5.3 One-level RAS preconditioning, comparison of numbers of iterations for Scheme 1

and 4 . 60

5.4 One-level RAS preconditioning, comparison of numbers of iterations for Scheme 1

and 4 in the bad group . 61

5.5 Two-level hybrid preconditioning, comparison of numbers of iterations for Scheme 1

and 2 . 62

5.6 Two-level hybrid preconditioning, comparison of numbers of iterations for Scheme 1

and 3 . 63

5.7 Two-level hybrid preconditioning, comparison of numbers of iterations for Scheme 1

and 4 . 64

5.8 Two-level hybrid preconditioning, comparison of numbers of iterations for Scheme 1

and 4 in the bad group . 65

5.9 Speedup of two-level hybrid preconditioner . 69

5.10 Average numbers of iterations of two-level hybrid preconditioner 69

Chapter 1

Introduction

Many phenomena in science and engineering are modeled by differential equations, which

may be elliptic, parabolic, hyperbolic, linear, nonlinear, deterministic, or stochastic, etc. In order

to make the modeling more accurate, more and more researchers realize that a proper stochastic

process needs to be involved into the equations in domain, boundary, initial condition or coefficient.

The resulting equations are called stochastic differential equations. For example, we use a heat

equation to describe the heat conduction process in physics. The conductivity coefficient is a

deterministic function in terms of only space and time if the medium is homogenous. However,

if the medium is inhomogenous, the deterministic coefficient would not be able to describe the

physical phenomenon accurately, therefore, under this condition, a stochastic process is necessary

to be included in the conductivity coefficient in the heat equation for accuracy.

In this thesis, we focus on and develop parallel implicit algorithms for solving a parabolic

partial differential equation (PDE)

∂u

∂t
−∇(a∇u) = f(x) in D × (0, T]

u(x, 0) = u0(x) in D

u(x, t) = 0 on ∂D × [0, T],

(1.1)

where x ∈ D ⊂ R2, and f(x) and u0(x) are given. The diffusion coefficient a is either a standard

function a = a(x) or a stochastic process a = a(x, ω) with the random variable ω. In the latter case,

the parabolic equation is called stochastic [37, 46]. Traditional parallel approaches for solving time

dependent problems focus on the parallelization within each time step, and are purely sequential

2

between time steps. As the number of processors becomes much larger on recent, and future,

supercomputers, a new generation of algorithms is being introduced that are parallel not only in

space, but also in time. This higher degree of parallelism is desirable especially for the upcoming

exascale computers with expected millions or more processors.

Generally speaking, “time” is a sequential concept, the solution u(x, tk+1) can not be com-

puted without knowing the solution u(x, tk) at the previous time step. However, since both

u(x, tk+1) and u(x, tk) are computed iteratively, their approximate solutions do not necessarily

have the sequential dependency and can be obtained simultaneously. Based on this observation,

several classes of algorithms have been developed.

Waveform relaxation [31, 44] is one of the time-parallel methods to solve systems of ordinary

differential equations (ODEs) with initial condition. In this method, the matrix from the discretized

system is separated into lower, diagonal and upper components. The decoupling of the matrix allows

independent solving of each uncoupled system in parallel. For parabolic PDEs, a semi-discretization

is applied to transform PDEs into ODEs, then the resulting systems can be solved by the waveform

relaxation method. In order to accelerate the convergence, several variants of waveform relaxation

are developed, for example, multigrid waveform relaxation method [25, 42] or Schwarz waveform

relaxation method [17, 41].

The space-time multigrid method for parabolic PDEs [23, 24, 43] considers time as an ad-

ditional dimension beside the spacial dimensions. It applies the multigrid operators of smoothing,

coarsening, restriction and prolongation on the whole grid combining both temporal and spacial

domains.

The parareal algorithm proposed by Lions, Maday and Turinici in [32] is an iterative method

to solve evolution problems in a time-parallel manner. Since this method is attracting more and

more attentions in the numerical mathematical world, we briefly introduce the general idea of the

3

basic parareal algorithm. For the general problem
∂y

∂t
+Ay = 0

y(0) = y0

(1.2)

on the interval (0, T), where A is an operator over the Hilbert space. By evenly dividing the time

interval into L subintervals, we obtain the decomposition as follows

0 = T0 < T1 < · · · < TL = T,

with Ti = i∆T , and ∆T = T/L.

We divide problem (1.2) as L subproblems with the similar form
∂yl
∂t

+Ayl = 0, t ∈ (Tl, Tl+1)

y(T+
l) = λl

(1.3)

for l = 0, · · · , L−1. Then the collection of solutions {y0, y1, · · · , yL−1} of problem (1.3) is connected

with the solution y of the original problem (1.2) if only if

λl = y(Tl). (1.4)

or, more intrinsically,

λl = yl−1(T−l) with y−1(T0) = y0.

Assuming that A is time-independent, we introduce the propagator F∆T such that, for any given

µ, F∆T (µ) is the solution at time ∆T of equation (1.2) with y0 = µ, or in a matrix form



I

−F∆T I

. . .
. . .

−F∆T I

. . .
. . .

−F∆T I





λ0

λ1

...

λl

...

λL−1


=



y0

0

...

0

...

0


, (1.5)

4

or in the matrix notation

MΛ = F.

In order to accelerate the convergence, an iterative procedure is introduced to construct a sequence

Λk that converges to the exact solution of equation (1.5). Using a coarse propagator G∆T and an

implicit Euler scheme

G∆T (µ)

∆t
+AG∆T (µ) = 0,

then the corrector is defined as follows

λkl = F∆T (λk−1
l−1) + G∆T (λkl−1)− G∆T (λk−1

l−1)

where the superscript k is the iteration index. Notice that F∆T is a parallel propagator, and G∆T

is strictly serial. We introduce the matrix

M̃ =



I

−G∆T I

. . .
. . .

−G∆T I

. . .
. . .

−G∆T I


, (1.6)

then the iterative procedure can be written in the matrix form as follows

Λk+1 = Λk + M̃−1Resk,

where Resk = F −MΛk. Refer to [34] for more details about the derivation.

More applications of parareal algorithm are reported in [4, 34, 35] and references therein. The

advantage of the algorithm is that it successfully approximates the solutions later in time before

accurately finding the solutions at earlier times. The algorithm has received great attention since

it was proposed, and several variants are presented in different frameworks, for example, PITA

(parallel implicit time integrator) [18], space-time multigrid and multiple shooting method [19].

5

Inspired by these time-parallel approaches, we propose an implicit space-time domain decom-

position method for a parabolic PDE. To find the solution u at time steps 0 = t0 < t1 < · · · < tn =

T , ∆ti = ti − ti−1,we group equations for s (s ≤ n) steps into a single system,

u1
h + ∆t1Lh(u1

h)− u0
h = ∆t1f

1

u2
h + ∆t2Lh(u2

h)− u1
h = ∆t2f

2

...

ush + ∆tsLh(ush)− us−1
h = ∆tsf

s.

(1.7)

Here Lh is a discrete version of the elliptic part of equation (1.1), and ukh is a space-time ap-

proximation of u(x, t). The coupled system becomes more ill-conditioned as s increases (we will

theoretically prove this point in the later chapter), therefore, we usually select s to be much smaller

than n. The algorithm needs to be used several times in order to cover all n time steps.

One of the main emphases of our work is to develop an overlapping Schwarz preconditioned

recycling Krylov subspace method for solving the system (1.7). The subproblems are obtained by

a partition of D× [t1, ts]. The classical Schwarz theory [7, 8, 9] doesn’t work for this problem, but

our numerical experiments show that both the one- and two-level Schwarz algorithms which we will

introduce later work very well.

The second focus of our work is to consider the case when the diffusion coefficient is a

stochastic process that satisfies a certain probability distribution. The widely used methods for

solving stochastic differential equations are Monte Carlo method and its variants [15, 45]. For

Monte Carlo method, a sequence of realizations of random inputs are generated based on a given

probability distribution, in which all the realizations are deterministic and independent of each

other. The statistical information, such as mean and variance, of the problem is obtained from the

solutions of the sequence of deterministic realizations. The main advantage of the Monte Carlo

method is easy to implement, which simply requires repeating the deterministic simulations over and

over again, but the converge rate of the solution statistics is relatively slow. For instance, the mean

value of the solution typically converges as 1/
√
K, where K is the number of realizations [28, 45].

Although some modified techniques are developed to accelerate the convergence, the expense on the

6

repetitive realizations is still a huge computational burden to limit their applicability. Alternatively,

a recently proposed numerical approach has attracted great interests among the scientific computing

community, which is called the stochastic Galerkin method. Using a stochastic Galerkin approach

[20, 29, 30, 46], we convert the stochastic parabolic problem into a large number of deterministic

equations that are similar to (1.7). After discretization, these linear systems have different matrices

and right-hand sides. When designing methods for solving these systems, a key design point is

“reuse of computation”, which is a trivial issue for direct type methods, but a rather difficult task

for methods that are “iterative” since most components are re-computed from iteration to iteration.

Our approach starts with a careful analysis of the sequence of systems, orders them appropriately,

and then puts them into separate groups. Within each group we construct a single Krylov subspace

and a preconditioner that are effective for solving all systems in this group. To demonstrate the

applicability of the method and its parallel performance, we implement the method on top of PETSc

[5] and obtain some excellent results for a sequence with more than 9000 systems in which each

system has several millions or even tens of millions degrees of freedom.

Chapter 2

Space-time domain decomposition methods

In this chapter, we consider the numerical solution of a deterministic parabolic equation

∂u

∂t
+ Lu = f(x) in D × (0, T]

u(x, 0) = u0(x) in D

u(x, t) = 0 on ∂D × [0, T],

(2.1)

where D ∈ R2 is a polygonal domain with boundary ∂D, and L is an elliptic operator of the form

Lu = −∇ · (a(x)∇u).

Let 0 = t0 < t1 < · · · < tn = T and ∆tk = tk − tk−1. Suppose uk(x) is the solution at time tk. We

use a backward Euler scheme for the time discretization, then the problem becomes

uk+1 (x)− uk (x)

∆tk+1
+ Luk+1 = fk+1, for k = 0, 1, · · · , n− 1. (2.2)

Let Lh be the discretized operator in the spacial domain, and ukh the nodal solution at t = tk,

then we obtain the finite difference equation

uk+1
h + ∆tk+1Lh

(
uk+1
h

)
− ukh = ∆tk+1f

k+1. (2.3)

We denote L̄h as

L̄h

(
ukh

)
= ukh + ∆tkLh

(
ukh

)
= (I + ∆tkLh)

(
ukh

)
,

and

U =
(
u1
h, u

2
h, · · · , ush

)T

8

where s(≤ n) is the window size; i.e., the number of time steps coupled into one system. Now the

equation (2.3) can be rewritten in the matrix form

AsU = B, i.e.



L̄h

−I L̄h

. . .
. . .

−I L̄h

. . .
. . .

−I L̄h





u1
h

u2
h

...

ukh
...

ush


=



u0
h + ∆t1f

1

∆t2f
2

...

∆tkf
k

...

∆tsf
s


. (2.4)

By solving several linear systems of the form (2.4), all the approximations of u(x, t) at t1, t2, · · · , tn

are obtained.

The matrix As has the same block matrix on the diagonal and −I on the subdiagonal. Based

on this special structure, we have the following theorem that relates the condition number of As

and the window size s.

Theorem 1 The condition number of As is nondecreasing as s increases.

Theorem 1 may be proved by the Rayleigh-Ritz method similar to the considerations of [1],

where a Schur complement argument is employed. One can also obtain the result directly by using

the largest singular vector of As to approximate that of As+1. The proof of the latter method is

given based on the following two lemmas.

Lemma 1 The largest singular value of As+1 is no less than that of As.

9

Proof. Let

As =



L̄h

−I L̄h

. . .

−I L̄h

. . .

−I L̄h

−I L̄h



.

The largest singular value of a matrix A, is defined by

σ1(A) :=
√

max
‖x‖=1

x∗A∗Ax.

Suppose the size of L̄h is m, then the size of matrix As+1 is (s+ 1)m.

As+1 =

 As 0

−Ī L̄h


(s+1)m

,

where 0 = 0sm×1 is a vertical zero vector of size sm× 1, and Ī = Ī1×sm = (0 I) =
(
01×(s−1)m I

)
is

a horizontal vector of size 1× sm.

We consider x∗A∗s+1As+1x,

A∗s+1As+1 =

 A∗s −Ī∗

0 L̄∗h


 As 0

−Ī L̄h



=

 A∗sAs + I1 −L̄h1

−L̄∗h1 L̄∗hL̄h

 ,

where

I1 =

 0 0

0 Im


sm×sm

, L̄h1 =

 0

L̄h


sm×m

.

10

x∗A∗s+1As+1x =

(
x∗1 x∗2

) A∗s −Ī∗

0 L̄∗h


 As 0

−Ī L̄h


 x1

x2



=

(
x∗1 x∗2

) A∗sAs + I1 −L̄h1

−L̄∗h1 L̄∗hL̄h


 x1

x2


= x∗1 (A∗sAs + I1)x1 − x∗1L̄h1x2 − x∗2L̄∗h1x1 + x∗2L̄

∗
hL̄hx2

= x∗1A
∗
sAsx1 + x∗1I1x1 − x∗1L̄h1x2 − x∗2L̄∗h1x1 + x∗2L̄

∗
hL̄hx2,

where x1, x2 are compatible to the block matrix multiplication. Note that x∗1I1x1 is the sum of the

squares of the last m elements in x1.

We set

x =

 x1

0


such that ‖x‖ = ‖x1‖ = 1 and assume that x1 is the vector to satisfy

σ2
1(As) = max

‖x‖=1
x∗A∗sAsx = x∗1A

∗
sAsx1.

In this case,

x∗A∗s+1As+1x = x∗1A
∗
sAsx1 + x∗1I1x1.

Hence,

σ2
1(As+1) ≥ x∗A∗s+1As+1x = x∗1A

∗
sAsx1 + x∗1I1x1 ≥ σ2

1(As),

which yields:

σ1(As+1) ≥ σ1(As).

Lemma 2 The smallest singular value of As+1 is no greater than that of As.

11

Proof. The smallest singular value of a matrix A is defined by

σn(A) :=
√

min
‖x‖=1

x∗A∗Ax.

Note that As+1 can also be written as

As+1 =

 L̄h 0

−Ĩ As

 ,

where

Ĩ =

 Im

0


sm×m

.

Then

A∗s+1As+1 =

 L̄∗h −Ĩ∗

0 A∗s


 L̄h 0

−Ĩ As



=

 L̄∗hL̄h + I2 −As(m)

−As(m)∗ A∗sAs

 ,

where

I2 =

 Im 0

0 0


sm×sm

,

and As(m) represents the matrix consisting of the first m rows of As.

x∗A∗s+1As+1x =

(
x∗1 x∗2

) L̄∗hL̄h + I2 −As(m)

−As(m)∗ A∗sAs


 x1

x2


= x∗1

(
L̄∗hL̄h + I2

)
x1 − x∗1As(m)x2 − x∗2As(m)x1 + x∗2A

∗
sAsx2.

We set

x =

 0

x2



12

such that ‖x‖ = ‖x2‖ = 1 and assume that x1 is the vector to satisfy

σ2
n(As) = max

‖x‖=1
x∗A∗sAsx = x∗2A

∗
sAsx2.

In this case,

x∗A∗s+1As+1x = x∗1A
∗
sAsx1.

Hence,

σ2
n(As+1) ≤ x∗A∗s+1As+1x = x∗1A

∗
sAsx1 ≤ σ2

n(As).

Taking the square root on both sides, we obtain the desired result:

σn(As+1) ≤ σn(As).

The condition number of A is defined by

κ(A) =
σ1(A)

σn(A)
,

then we obtain

κ(As) ≤ κ(As+1),

which complete our proof of Theorem 1.

As an example for Theorem 1, we set A = A1 = L̄h, the matrix takes the form

A1 =



5.1 2 2

2 5.1 2 2

2 2 5.1 2 2

2 2 5.1 2

2 2 5.1


.

From Table 2.1 of the experiment, we see that the maximum singular value of As increases

with s, and they strictly increase in this example. The minimum singular value of As decreases with

13

Table 2.1: The extrema singular values and condition numbers for matrices As as s increases.

σ1 σn κ(A)s σ1 σn κ(A)s
A1 3.3122 1.3653 2.4261 A41 11.9683 0.8696 13.7625

A2 11.4823 1.4298 8.0305 A42 11.9684 0.8694 13.7667

A3 11.6891 1.2330 9.4805 A43 11.9685 0.8691 13.7706

A4 11.7890 1.1252 10.4771 A44 11.9686 0.8689 13.7742

A5 11.8441 1.0592 11.1826 A45 11.9687 0.8687 13.7776

A6 11.8776 1.0155 11.6961 A46 11.9688 0.8685 13.7809

A7 11.8995 0.9851 12.0795 A47 11.9689 0.8683 13.7839

A8 11.9144 0.9630 12.3720 A48 11.9690 0.8682 13.7867

A9 11.9252 0.9465 12.5996 A49 11.9691 0.8680 13.7894

A10 11.9331 0.9337 12.7798 A50 11.9691 0.8678 13.7919

14

s, also they strictly decrease in the example. Therefore, the condition number of As increases as

the number of subblocks on the diagonal increases. Also note that the condition number increases

very slowly in s.

As we know, a matrix with a low condition number is said to be well-conditioned, while a

problem with a high condition number is said to be ill-conditioned. To solve this problem, we

consider the preconditioning technique to reduce the condition number of a larger linear system.

According to Theorem 1, we realize that the window size cannot be too large, especially

for certain sensitive systems that can be easily perturbed to be nearly singular. Because of this,

additional technique should be considered to reduce the condition number, for example, Schwarz

preconditioning method which we now introduce.

Before formally defining the Schwarz preconditioners in the space-time formulation, we firstly

recall the traditional Schwarz preconditioners. For the one-level Schwarz preconditioner, we begin

with a fine meshDh on the spacial domainD. We first decomposeD into non-overlapping subregions

Dk, k = 1, 2, · · · , N , where the number of subdomain N is always the same as the number of

processors np. To obtain an overlapping decomposition of the domain, we extend each subregion

Dk to Dδ
k by including extra δ mesh layers from adjacent subregions. Assume we have m fine mesh

points inside the whole spacial domain D and mk fine mesh points inside the overlapped subdomain

Dδ
k, then the elements of matrix Rδk of size nk × n are defined as follow:

(Rδk)pq =

 1 if mesh point associated with p, q ∈ Dδ
k,

0 otherwise.

The matrix Rδk is used as a restriction operator by getting rid of all the components that are outside

of the subregion Dδ
k. If we transpose the restriction matrix, the resulting matrix RTk works as an

extension operator, which refills the components that do not belong to Dδ
k by 0. The one-level

restricted additive Schwarz (RAS) preconditioner [10] for the matrix A can be written as

M−1
1 = (R0

1)TA−1
1 Rδ1 + (R0

2)TA−1
2 Rδ2 + · · ·+ (R0

N)TA−1
N RδN .

where Ak, k = 1, 2, · · · , N , are subdomain matrices defined by Ak = RδkA(Rδk)
T . The matrix vector

15

multiplication involving A−1
k is usually computed by LU or ILU factorization.

For the traditional two-level additive Schwarz preconditioning, besides the one-level additive

Schwarz preconditioner as a component, we also include a coarse level by defining a restriction

operator IHh from the spacial fine mesh to the spacial coarse mesh, an interpolation operator IhH from

the spacial coarse mesh to the spacial fine mesh. By constructing a coarse matrix A0 = IHh AsI
h
H

on the spacial coarse mesh, we obtain the two-level additive Schwarz preconditioner as

M−1
2 = IhHA

−1
0 IHh +M−1

1 .

For the space-time formulation, we define a fine mesh Dsh on the domain D× [0, T] by simply

combining all the fine meshes in the domain D × [tl+1, tl+s]. Hence, the nonoverlapping and

overlapping decomposition of D× [tl+1, tl+s] are defined as Dk × [tl+1, tl+s] and Dδ
k × [tl+1, tl+s],

respectively. Suppose we have n̄ fine mesh points inside D × [tl+1, tl+s] and n̄k fine mesh points

inside Dδ
k × [tl+1, tl+s], then the elements of a matrix R̄δk of size n̄k × n̄ are defined as follows:

(R̄δk)pq =

 1 if mesh point associated with p, q ∈ Dδ
k × [tl+1, tl+s],

0 otherwise.

Analogously, the matrix R̄δk serves as a restriction operator by eliminating all the components that

are outside of Dδ
k × [tl+1 tl+s]. And the transpose of the matrix R̄δk refills the components that do

not belong to Dδ
k × [tl+1 tl+s] by 0. Therefore, the one-level RAS preconditioner in the space-time

formulation for the matrix As can be written as

M̄−1
1 = (R̄0

1)TA−1
1 R̄δ1 + (R̄0

2)TA−1
2 R̄δ2 + · · ·+ (R̄0

N)TA−1
N R̄δN ,

where Ak, k = 1, 2, · · · , N , are subdomain matrices defined by Ak = R̄δkAs(R̄
δ
k)
T . The solution

corresponding to the matrix A−1
k is also computed by LU or ILU factorization based on the

performance of the convergence.

Figure 2.1 shows the partition of a 8 × 8 × 4 mesh, and the corresponding matrix pattern

without overlapping. From the bottom figure of Figure 2.1, we notice that the discretized matrix

is not symmetric because of the extra subdiagonal components.

16

0 50 100 150 200 250

0

50

100

150

200

250

nz = 1344

Figure 2.1: The pattern of matrix As for a 8× 8× 4 mesh, s = 4 is the number of time levels. The
number of processors is 4.

17

For the two-level additive Schwarz preconditioning in the space-time formulation, we define a

restriction operator ĪHh from the fine mesh to the coarse mesh on Dδ
k× [tl+1 tl+s], and also define an

interpolation operator ĪhH from the coarse mesh to the fine mesh on Dδ
k × [tl+1 tl+s]. Accordingly,

the coarse matrix Ā0 is constructed by

Ā0 = ĪhHAsĪ
h
H ,

and the two-level additive Schwarz preconditioner in the space-time formulation is

M̄−1
2 = ĪhHĀ

−1
0 ĪHh + M̄−1

1 .

Another widely used multilevel Schwarz method is the two-level hybrid preconditioner, which

combines the coarse-level and fine-level in a multiplicative manner. More preciously, the space-time

formulation of the two-level hybrid preconditioner is given as

z := M̄−1
1 x,

z := z + M̄−1
C (x−Asz),

z := z + M̄−1
1 (x−Asz),

where M̄−1
C = ĪhHĀ

−1
0 ĪHh is the coarse preconditioner constructed as the first term of M̄−1

2 . On

each subdomain, zero Dirichlet boundary conditions are used on the internal subdomain boundary

∂(Dδ
k × [tl+1, tl+s]) ∩D × [tl+1, tl+s], and the original boundary conditions are used on the phys-

ical boundary. Several inexact additive Schwarz preconditioners are available. In our numerical

experiments, we employ the two-level hybrid preconditioner with an incomplete factorization for

the subdomain matrices in the implementation.

Chapter 3

Stochastic Galerkin method for parabolic problems

In this chapter, we briefly introduce the main components of stochastic Galerkin method to

show how to discretize a parabolic equation with a stochastic diffusion coefficient. Some related

details are available in [2, 3, 16, 20].

3.1 Weak form of the stochastic parabolic equation

At the beginning, we introduce some notations and conceptions [6]. Let Ω be a given sample

space, then a σ−algebra A on Ω is a family A of subsets of Ω with the following properties:

(1) φ ∈ A

(2) A ∈ A ⇒ AC ∈ A, where AC = Ω\A

(3) A1, A2, · · · ∈ A ⇒ A :=
⋃
Ai ∈ A.

The pair (Ω,A) is called a measurable space. A probability measure P on a measurable space

(Ω,A) is a function P : A −→ [0, 1] such that

(1) P (φ) = 0, P (Ω) = 1

(2) If A1, A2, · · · ∈ A and {Ai}∞i=1 is disjoint, then

P

(∞⋃
i=1

Ai

)
=

∞∑
i=1

P (Ai).

19

The triple (Ω,A, P) is called a probability space. It is called a complete probability space if and

only if

A ∈ A with P (A) = 0, and B ⊂ A =⇒ B ∈ A.

We define a real-valued random function F on the jointly measurable spacial domain D and

sample space Ω

F : D × Ω −→ R

such that for each fixed point x ∈ D, F(x, ·) is a random variable with respect to the probability

space (Ω,A, P), and for each sample ω ∈ Ω, F(·, ω) is a function on D. Thus, a random function

is a stochastic process with the spatial coordinate x ∈ D and sample point ω ∈ Ω.

Furthermore, the mean or expected value of a random varialbe ξ,

ξ : Ω −→ R

is denoted by

〈ξ(ω)〉 :=

∫
Ω
ξ(ω)dP (ω) =

∫
R
tρ(t)dt

where ρ is the probability density function of ξ(ω).

The covariance of the random function f at x1, x2 ∈ D is denoted by

Covf := 〈(f(x1, ·)− 〈f(x1, ·)〉)(f(x2, ·)− 〈f(x2, ·)〉)〉.

By definition, the covariance functions are bounded, symmetric, positive definite.

A random function a(x, ω) is jointly measurable defined from D × Ω to R. We define the

stochastic Hilbert space

L2(D × Ω) = {u(x, ω)| 〈‖ u(x, ω) ‖L2(D)〉 <∞}.

Using the standard notation, the function space H1
0 (D) is the subspace of the Sobolev space H1(D)

consisting of functions which vanish on ∂D. Similarly, the stochastic Sobolev space H1
0 (D × Ω)×

H([0, T]) is defined by

H1
0 (D × Ω)×H([0, T]) = {u(x, t, ω)| 〈‖ u(x, t, ω) ‖H1

0 (D×Ω)×H([0,T])〉 <∞}.

20

The inner product over D is defined using the Lebesgue measure; i.e., for any two functions

h1(x), h2(x), their inner product is defined by

(h1(x), h2(x)) =

∫
D
h1(x)h2(x)dx.

All the notations and terminologies are listed above, now let’s recall the classical deterministic

parabolic PDE:

∂u(x, t)

∂t
−∇ · (a(x)∇u(x, t)) = f(x) on D × (0, T]

u(x, 0) = u0(x) on D

u(x, t) = 0 on ∂D × [0, T].

Its weak form is to find u(x, t) ∈ H1
0 (D)×H1([0, T]) such that∫

D
utv(x)dx+

∫
D
a(x)∇u(x) · ∇v(x)dx =

∫
D
f(x)v(x)dx (3.1)

for any v(x) ∈ H1
0 (D).

Now we change the coefficient function a(x) into the random function a(x, ω) ∈ L2(D × Ω),

so the stochastic parabolic PDE is changed correspondingly into:

∂u(x, t, ω)

∂t
−∇ · (a(x, ω)∇u(x, t, ω)) = f(x) on D × (0, T]× Ω

u(x, 0, ω) = u0(x) on D

u(x, t, ω) = 0 on ∂D × [0, T].

(3.2)

Analogously, the weak form of the stochastic parabolic PDE is to find u(x, t, ω) ∈ H1
0 (D ×

Ω)×H1([0, T]) such that〈∫
D

∂u

∂t
vdx

〉
+

〈∫
D
a(x, ω)∇u(x, ω) · ∇vdx

〉
=

〈∫
D
f(x)vdx

〉
(3.3)

for any v ∈ H1
0 (D × Ω). Here 〈·〉 denotes the expected value.

3.2 Karhunen-Loève (KL) expansion

The KL expansion [33] is one of the most widely used methods to represent the stochastic

coefficient and for dimensional reduction. In this thesis, we employ the KL expansion by assuming

21

the mean function a0(x) and covariance function Ca(x1, x2) of a(x, ω) are given as

〈a(x, ω)〉 = a0(x) =

∫
Ω
a(x, ω)dP (ω),

and

Ca(x1, x2) =

∫
Ω

(a(x1, ω)− a0(x1))(a(x2, ω)− a0(x2))dP (ω).

On a probability space (Ω,A, P), we denote L2(Ω,A, P) the collection of real-valued random

variables a(ω) defined on (Ω,A, P) such that the expectation of the square of the random variable

is finite, i.e.

〈a(ω)2〉 <∞.

The expectation 〈xy〉 defines an inner product (·, ·) on L2(Ω,A, P) associated with the L2 norm

‖a(ω)‖L2 = 〈a(ω)2〉1/2.

It has been shown that L2(Ω,A, P), equipped with the inner product (·, ·) and the L2-norm is a

Hilbert space. Thus, by the definition of the completeness, any random variable a(ω) ∈ L2 can be

expressed as a summation:

a(ω) =

∞∑
i=0

ciζi(ω),

where {ζi(ω)}∞i=0 is a basis of L2 and {ci}∞i=0 denote the projections of ξ(ω) onto the basis {ζi(ω)}∞i=0.

If the stochastic process includes extra dimensions in space, the above expansion can be generated

as follows:

ξ(x, ω) =

∞∑
i=0

ci(x)ζi(ω).

Since the covariance function Ca(x1, x2) of the stochastic process is bounded, symmetric, and

positive definite, we can get the spectral decomposition of Ca(x1, x2) [12]

Ca(x1, x2) =
∞∑
n=1

λnkn(x1)kn(x2),

where the constants λn and function kn(x) are a eigenpair of the covariance function Ca(x1, x2)

such that ∫
D
Ca(x1, x2)kn(x1)dx1 = λnkn(x2).

22

For the same reason, we note that these eigenfunctions {kn(x)}∞n=1 form a complete orthonormal

set in L2(D) in the sense ∫
D
km(x)kn(x)dx = δmn

where δmn is the Kronecker delta. The eigenvalues {λn}∞n=0 are all positive, which can be ordered

non-increasingly, λ1 ≥ λ2 ≥ · · · ≥ λn ≥ · · · > 0.

According to the KL expansion [20], a(x, ω) can be expressed by a series expansion:

a(x, ω) = a0(x) +
∞∑
i=1

√
λiki(x)ξi(ω), (3.4)

where {ξi(ω)}∞i=1, ξi : Ω −→ R, are mutually uncorelated random variables in L2(Ω) to be deter-

mined in the stochastic Galerkin method.

There are several important properties for the random variables ξi(ω) that we will derive

below. Let the stochastic part of a(x, ω) be denoted by aω(x, ω)

aω(x, ω) =
∞∑
i=1

√
λiki(x)ξi(ω), (3.5)

then a(x, ω) = a0(x)+aω(x, ω). It’s easy to show that 〈aω(x, ω)〉 = 0, and the covariance of aω(x, ω)

is the same as the covariance of a(x, ω),

〈aω(x, ω)〉 = 〈a(x, ω)− a0(x)〉 = 〈a(x, ω)〉 − 〈a0(x)〉 = 0.

and

Ca(x1, x2) =

∫
Ω

(a(x1, ω)− a0(x1))(a(x2, ω)− a0(x2))dP (ω)

=

∫
Ω
aω(x1, ω)aω(x2, ω))dP (ω)

= 〈aω(x1, ω)aω(x2, ω)〉. (3.6)

By equation (3.6) and (3.5), we have

Ca(x1, x2) = 〈aω(x1, ω)aω(x2, ω))〉

= 〈
∞∑
i=1

√
λiki(x1)ξi(ω) ·

∞∑
j=1

√
λjkj(x2)ξj(ω)〉

=

∞∑
i=1

∞∑
j=1

√
λiλjki(x1)kj(x2)〈ξi(ω)ξj(ω)〉. (3.7)

23

Using the orthogonality of the eigenfunctions, we multiply both sides of (3.7) by km(x2) for some

fix number m and do integration with respect to x2, we get∫
D
Ca(x1, x2)km(x2)dx2 =

∫
D

∞∑
i=1

∞∑
j=1

√
λiλjki(x1)kj(x2)km(x2)〈ξi(ω)ξj(ω)〉dx2

=

∞∑
i=1

∞∑
j=1

√
λiλj〈ξi(ω)ξj(ω)〉ki(x1)

∫
D
kj(x2)km(x2)dx2

=
∞∑
i=1

√
λiλm〈ξi(ω)ξm(ω)〉ki(x1). (3.8)

We multiply kn(x1) on the right-hand side of equation(3.8) and do integration with respect to x1,

∞∑
i=1

√
λiλm〈ξi(ω)ξm(ω)〉

∫
D
ki(x1)kn(x1)dx1 =

∞∑
i=1

√
λiλm〈ξi(ω)ξm(ω)〉δin

=
√
λnλm〈ξn(ω)ξm(ω)〉. (3.9)

By the definition of the covariance function, the left-hand side of (3.8) can be written as∫
D
C(x1, x2)km(x2)dx2 = λmkm(x1). (3.10)

Repeating the same work on the right-hand side of equation (3.10)∫
D
λmkm(x1)kn(x1)dx1 = λmδmn. (3.11)

Thus, the right-hand sides of equations (3.9) and (3.11) are equivalent. So

√
λnλm〈ξn(ω)ξm(ω)〉 = λmδmn. (3.12)

Rearrange the two sides of (3.12), we get the important property of the random functions

〈ξn(ω)ξm(ω)〉 =

√
λm
λn

δmn = δmn. (3.13)

Therefore,

〈ξn(ω)〉 = 0 and 〈ξn(ω)ξm(ω)〉 = 0 for m,n ∈ Z. (3.14)

[20] lists some additional properties and their proofs about the KL expansion, such as the Error

Minimizing property and Uniqueness of the Expansion property.

24

For numerical simulation, we use a finite number of terms to approximate the series expansion

of a(x, ω) by a truncated function aM (x, ω),

aM (x, ω) = a0(x) +
M∑
i=1

√
λiki(x)ξi(ω)

where the value of M depends on the decay of eigenvalues.

Let ρi be the probability density function of the random variable ξi(ω), then the joint

probability density function of the joint random variable ξ = (ξ1, ξ2, · · · , ξM) can be denoted by

ρ = (ρ1, ρ2, · · · , ρM),

ξ : ΩM −→ RM .

Suppose Γi is the image of ξi ∈ R, thus Γ = (Γ1,Γ2, · · · ,ΓM) ⊆ RM is the image of ξ, i.e.

ξ(ω) = (ξ1(ω), ξ2(ω), · · · , ξM (ω)) ∈ Γ = (Γ1,Γ2, · · · ,ΓM) for all ω ∈ Ω.

Hence, for each ω ∈ Ω, there exists a unique ξ ∈ Γ correspondingly. Then we can replace aM (x, ω)

by the approximation aM (x, ξ)

aM (x, ξ) = a0(x) +
M∑
i=1

√
λiki(x)ξi. (3.15)

Now, the stochastic problem can be converted into a deterministic parabolic PDE with the

solution uM (x, t, ξ) ∈ H1
0 (D)×H1([0, T])× L2(Γ, ρ), namely,

∂uM (x, t, ξ)

∂t
−∇ · (aM (x, ξ)∇uM (x, t, ξ)) = f(x). (3.16)

3.3 Double orthogonal basis

A double orthogonal basis [20] is introduced in order to decouple the equation (3.16) in the

ξ−space under the assumption that the random variables {ξi(ω)}Mi=1 are all independent. The

double orthogonal basis is constructed as follows. For some positive integer n ∈ Z+, the space of

single-variable polynomials of degree at most n is

Pn := span{1, z, z2, · · · , zn}.

25

For n= (n1, n2, · · · , nM) ∈ (Z+)M , we construct the multi-variable polynomial space Pn by the

tensor product of M independent subspaces of single-variable polynomials Pni , for i = 1, 2, · · · ,M ,

Pn := Pn1 ⊗ Pn2 ⊗ · · · ⊗ PnM ∈ L
2(Γ, ρ).

On each independent subspace Pnj , for j = 1, 2, · · · ,M , we define a double orthogonal

polynomial basis {φk,j(z)}
nj

k=0, j = 1, 2, · · · ,M , by satisfying the following two conditions:


∫

Γj

φp,j(z)φq,j(z)ρj(z)dz = δp,q p, q = 0, 1, · · ·nj ,∫
Γj

tφp,j(z)φq,j(z)ρj(z)dz = Cp,jδp,q p, q = 0, 1, · · ·nj ,
(3.17)

where {Cp,j}
nj

p=0 are nonzero constants. In each subspace Pnj , there are nj+1 basis functions, which

yield totally Nn :=
∏M
j=1(nj + 1) basis functions in the approximation subspace Pn ∈ L2(Γ, ρ).

Defining an index for the Nn double orthogonal polynomials

I = {{i1, i2, · · · , iM} | ij ≤ nj , for j = 1, 2, · · · , nM},

the set of all the basis functions of Pn isφi(ξ) | φi(ξ) =

M∏
j=1

φij ,j(ξ), ij ∈ {0, 1, · · · , nj}, i ∈ I

 . (3.18)

3.4 Discretization in ξ-space

We use the double orthogonal basis to denote the solution

uM (x, t, ξ) =
∑
i∈I

uM,i(x, t)φi(ξ)

which satisfies 〈∫
D

∂u

∂t
vdx

〉
+

〈∫
D
aM∇u · ∇vdx

〉
=

〈∫
D
f(x)vdx

〉
, (3.19)

26

for any v = h(x)φj(ξ) ∈ H1
0 (D) × Pn(Γ), j ∈ I. The second term of the left-hand side in equation

(3.19) can be rewritten as〈∫
D
aM∇u · ∇vdx

〉
=

〈∫
D
aM∇

(∑
i∈I

uM,i(x, t)φi(ξ)

)
· ∇ (h(x)φj(ξ))

〉

=
∑
i∈I

〈∫
D
aM∇ (uM,i(x, t)φi(ξ)) · ∇(h(x)φj(ξ))

〉
=

∑
i∈I

(a0(x)∇uM,i(x, t),∇h(x))

∫
Γ
φi(ξ)φj(ξ)ρ(ξ)dξ

+
∑
i∈I

M∑
n=1

√
λn (kn(x)∇uM,i(x, t),∇h(x))

∫
Γ
φi(ξ)φj(ξ)ξnρ(ξ)dξ.

Thus the representation in the double orthogonal basis yields〈∫
D
aM∇u · ∇vdx

〉
=

∑
i∈I

[
(a0(x)∇uM,i(x, t),∇h(x)) +

M∑
n=1

√
λn(kn(x)∇uM,i(x, t),∇h(x))Cin,jn

]
δij.

And the first term is〈∫
D

∂u(x, t, ξ)

∂t
v(x, ξ)dx

〉
=

〈∫
D

(∑
i∈I

∂uM,i(x, t)

∂t
φi (ξ)

)
(h (x)φj (ξ)) dx

〉

=
∑
i∈I

〈∫
D

∂uM,i(x, t)

∂t
h (x)φi (ξ)φj (ξ) dx

〉
=

∑
i∈I

∫
D

∂uM,i(x, t)

∂t
h (x) dx

∫
Γ
φi (ξ)φjρ(ξ)dξ

=
∑
i∈I

∫
D

∂uM,i(x, t)

∂t
h (x) dxδij.

The right-hand side of equation (3.19) is〈∫
D
f(x)v(x, ξ)dx

〉
=

∫
D
f(x)h(x)dx 〈φj(ξ)〉

=

∫
D
f(x)h(x)dx

M∏
j=1

∫
Γj

φij ,j(ξj)ρj(ξj)dξj .

We summarize the results in the following theorem.

Theorem 2 For any M ∈ Z+, there exists a multi-variable polynomial space Pn = Pn1 ⊗ Pn2 ⊗

· · ·⊗PnM ∈ L2(Γ, ρ), on which the stochastic equation (3.19), whose initial and boundary conditions

27

are the same as (1.1), can be decoupled into Nn =
∏M
j=1(nj + 1) deterministic equations

∂uM,i(x, t)

∂t
−∇ · (aM,i (x)∇uM,i (x, t)) = fi(x), (3.20)

where 

aM,i(x) := a0 (x) +
∑M

j=1

√
λjkj(x)Cij ,j

fi(x) := f(x) ·
∏M
j=1

∫
Γj

φij ,j(z)ρj(z)dz

i ∈ I = {{i1, i2, · · · , iM} | ij ≤ nj , forj = 1, 2, · · · , nM}.

(3.21)

The solution to the equation (3.19) is

uM (x, t, ξ) =
∑
i∈I

uM,i (x, t)φi (ξ) . (3.22)

3.5 Discretization in space and time

In this section, we discretize the equation (3.2) using implicit Euler formula for temporal

direction and 5-point scheme for the spacial direction.

Let ∆x and ∆y be the mesh size in the x- and y-dimension in domain D. Suppose uki,j is the

solution at the mesh point xi = i ·∆x, yj = j ·∆y, and Tk = k ·∆t. We know that

∇ · (a∇u) =
∂

∂x

(
a
∂u

∂x

)
+

∂

∂y

(
a
∂u

∂y

)
∂

∂x

(
a
∂u

∂x

)
≈

(
a∂u∂x

)
i+ 1

2
,j
−
(
a∂u∂x

)
i− 1

2
,j

∆x(
a
∂u

∂x

)
i+ 1

2
,j

≈ ai+ 1
2
,j

ui+1,j − ui,j
∆x(

a
∂u

∂x

)
i− 1

2
,j

≈ ai− 1
2
,j

ui,j − ui−1,j

∆x
,

then

∂

∂x

(
a
∂u

∂x

)
≈ 1

(∆x)2

[
ai+ 1

2
,jui+1,j + ai− 1

2
,jui−1,j −

(
ai+ 1

2
,j + ai− 1

2
,j

)
ui,j

]
,

and

∂

∂y

(
a
∂u

∂y

)
≈ 1

(∆y)2

[
ai,j+ 1

2
ui,j+1 + ai,j− 1

2
ui,j−1 −

(
ai,j+ 1

2
+ ai,j− 1

2

)
ui,j

]
.

28

Hence

∇ · (a∇u) ≈ 1

(∆x)2

[
ai+ 1

2
,jui+1,j + ai− 1

2
,jui−1,j −

(
ai+ 1

2
,j + ai− 1

2
,j

)
ui,j

]
+

1

(∆y)2

[
ai,j+ 1

2
ui,j+1 + ai,j− 1

2
ui,j−1 −

(
ai,j+ 1

2
+ ai,j− 1

2

)
ui,j

]
.

On the other hand,

∂u

∂t
=
uk+1
i,j − uki,j

∆t

then the implicit Euler formula yields

uk+1
i,j − uki,j

∆t
≈ 1

(∆x)2

[
ai+ 1

2
,jui+1,j + ai− 1

2
,jui−1,j −

(
ai+ 1

2
,j + ai− 1

2
,j

)
ui,j

]
+

1

(∆y)2

[
ai,j+ 1

2
ui,j+1 + ai,j− 1

2
ui,j−1 −

(
ai,j+ 1

2
+ ai,j− 1

2

)
ui,j

]
+fk+1

i,j ·
∫

Γj

φij ,j(z)ρj(z)dz.

Let’s rewrite the above equation into the space-time formulation,

[
1 + γx

(
ai+ 1

2
,j + ai− 1

2
,j

)
+ γy

(
ai,j+ 1

2
+ ai,j− 1

2

)]
uk+1
i,j

−γxai+ 1
2
,ju

k+1
i+1,j − γxai− 1

2
,ju

k+1
i−1,j − γyai,j+ 1

2
uk+1
i,j+1 − γyai,j− 1

2
uk+1
i,j−1 − uki,j

= fk+1
i,j

∫
Γj

φij ,j(z)ρj(z)dz ·∆t, (3.23)

where γx = ∆t/∆x2, γy = ∆t/∆y2. If ∆x = ∆y, then γx = γy = γ, we get the discretized formula(
1

γ
+ ai+ 1

2
,j + ai− 1

2
,j + ai,j+ 1

2
+ ai,j− 1

2

)
uk+1
i,j

−ai+ 1
2
,ju

k+1
i+1,j − ai− 1

2
,ju

k+1
i−1,j − ai,j+ 1

2
uk+1
i,j+1 − ai,j− 1

2
uk+1
i,j−1 −

1

γ
uki,j

= ∆x2fk+1
i,j

∫
Γj

φij ,j(z)ρj(z)dz, (3.24)

Chapter 4

Recycling Krylov subspace method and grouping algorithms

Based on Theorem 2, the stochastic parabolic equation is decoupled into a sequence of deter-

ministic parabolic equations. These deterministic problems are related and, with a proper grouping,

the change within a group is small from one to the next. We expect to significantly reduce the

number of iterations and the total computing time by (1) reusing the preconditioner, and (2) re-

cycling selected vectors from the Krylov subspace generated in the previous linear system in the

same group. In this section, we first propose an ordering algorithm according to the change of

the parameter Cij ,j computed in each subspace of Pn. Based on the ordering algorithm, we intro-

duce a grouping algorithm for the one-level RAS preconditioning, and a grouping algorithm for the

two-level hybrid preconditioning. Finally, we show an example to demonstrate how to utilize the

grouping algorithms.

4.1 Recycling Krylov subspace method

In the past several decades, some variants of Krylov subspace methods were developed for

solving large sparse systems, [11, 13, 14, 22, 36, 39, 40]. We choose to use the so-called GCRO-DR

version of the recycling GMRES introduced in [38] since both the matrix and the right-hand side

change in the sequence of systems. When solving a single linear system of equations, GCRO-DR is

algebraically equivalent to the GMRES-DR method [36, 38], which, in each cycle, carries forward k

harmonic Ritz vectors associated with k harmonic Ritz values computed at the end of the previous

cycle and restarts with those vectors. When solving multiple systems, after the first system in

30

the group is solved, a subspace spanned by selected harmonic Ritz vectors is retained and used as

the initial subspace for the other systems. More detailed description about GCRO-DR is available

in [38]. To make the GCRO-DR algorithm more flexible, [28] generalizes it to a flexible version,

namely, FGMRES. The framework of GCRO-DR is briefly introduced as follows.

Suppose we retain k recycled vectors in Ȳk after solving the previous (i− 1)th system, i.e.

Ȳk = [ȳ1, ȳ2, · · · , ȳk].

Then GCRO-DR constructs the matrices Ck, Uk ∈ Rn×k as in the following equations, which take

the approximate invariant subspace from the (i− 1)th system.

Ck = Q, Uk = Ȳ R−1,

where Q,R are obtained using reduced QR decomposition of AiȲk such that

AiUk = Ck, CHk Ck = Ik.

Let x0 and r0 be the initial guess and initial residual of the ith system. We write the solution over

the range(Uk) by x = x0 +UkC
H
k r0 and set r = r0−CkCHk r0. Suppose m is the maximum number

of iterations before restarting another FGMRES cycle. A Krylov subspace Km−k+1 is produced

with (I − CkCHk)Ai by the Arnoldi process, and the corresponding Arnoldi relation is

(I − CkCHk)AiVm−k = Vm−k+1H̄m−k.

Note that the matrix Vm−k is produced with preconditioning in FGMRES. Since Vm−k+1 ⊥ Ck, we

have

Ai[Uk Vm−k] = [Ck Vm−k+1]

 Ik Bm−k

0 H̄m−k

 , (4.1)

where Bm−k = CHk AiVm−k. In order to avoid the ill-conditioning in equation (4.1), we normalize

the columns of Uk as Ũk := UkDk. Defining

V̂m = [Ũk Vm−k], Ŵm+1 = [Ck Vm−k+1], Ḡm =

 Dk Bm−k

0 H̄m−k

 ,

31

we rewrite equation (4.1) as

AiV̂m = Ŵm+1Ḡm.

Finally, we update the solution and evaluate the residual of the ith linear system

x = x+ V̂mt

r = r −AiV̂mt = r − Ŵm+1Ḡmt,

where t minimizes ‖ek+1‖r‖ − Ĝmt‖. More details can be found in [28, 38].

4.2 Ordering algorithm

In order to maximize the benefit of the recycling strategy, we arrange the systems following a

decreasing order of the perturbation. In this way, we can determine when to restart a new Krylov

subspace and a new preconditioner when the cumulative perturbation has grown too large using the

current Krylov subspace and preconditioner. Theorem 2 shows that the perturbation among the

decoupled systems is originated from the diffusion coefficient aM,i(x), which consists of the mean

function, eigenvalues, eigenfunctions and the constants Cij ,j . The mean function and covariance

function are stationary in the KL expansion. The eigenvalues and the corresponding normalized

eigenfunctions are determined by the covariance function and they appear in all systems. Thus, we

see that the constants Cij ,j play the dominant role in the variability of the systems.

In principle, the decreasing ordering of the perturbation can be realized when

M∑
j=1

√
λjkj(x)Cij ,j (4.2)

is ordered, in some sense, from large to small. However, it is very expensive to obtain such ordering

directly. Consequently, an alternative approach is proposed here to produce a pseudo-decreasing

order of the summation (4.2) by reordering Cij ,j decreasingly in each subspace of the approximated

random space, as shown in Table 4.1. Given n = {n1, n2, · · · , nM}, the sequence of systems is

indexed using a multi-index i = {i1, i2, · · · , iM} ∈ I, 0 ≤ ij ≤ nj , 1 ≤ j ≤ M . We reorder

32

Table 4.1: Reordering Cij ,j decreasingly by permutation, for all j, 0 ≤ j ≤ M , {0, 1, · · · , nj} −→
{lj0, l

j
1, · · · , l

j
nj}.

λ1: C0,1 C1,1 · · · Cn1,1 −→ Cl10,1 Cl11,1 · · · Cl1n1
,1

λ2: C0,2 C1,2 · · · Cn2,2 −→ Cl20,2 Cl21,2 · · · Cl2n2
,2

...
...

...
...

λM : C0,M C1,M · · · CnM ,M −→ ClM0 ,M ClM1 ,M · · · ClMnM
,M

33

{0, 1, · · · , nj} by a certain permutation:

{0, 1, · · · , nj} −→ {lj0, l
j
1, · · · , l

j
nj
},

such that Cij ,j decreases in the subspace corresponding to λj , for all j = 1, 2, · · · ,M . We call this

a “pseudo-decreasing” ordering because (4.2) is not strictly decreasing, and in fact it is easy to

construct a counterexample by choosing appropriate values for each product component. But our

experiments indicate that our ordering algorithm adequately determines a sufficiently decreasing

ordering. Based on the above discussion, we summarize our ordering in the following algorithm:

Ordering Algorithm:

k = 1;

for i1 = l10, l
1
1, · · · , l1n1

for i2 = l20, l
2
1, · · · , l2n2

· · ·

for iM = lM0 , lM1 , · · · , lMnM

label the kth system corresponding to i = {i1, i2, · · · , iM};

k = k + 1;

end all for

4.3 Grouping algorithm for one-level RAS preconditioning

The ordering algorithm generates a sequence of systems with the property that the pertur-

bation is relatively small among systems that are nearby in the sequence. If two systems are not

nearby in the sequence, then the perturbation can be quite large, which means a Krylov subspace

generated by one system can be reused for some nearby systems, but not for others. In this section,

we mainly discuss how to restart the recycling for the one-level RAS preconditioning.

Although there is no theory to describe how the recycled one-level RAS preconditioner im-

34

pacts the convergence of the sequence of systems, experiments show that it is good enough to

consider a division corresponding to the constants C0,1, C1,1, · · · , Cn1,1 associated with the largest

eigenvalue λ1. This gives (n1 + 1) groups, denoted as G0, G1, · · · , Gn1 . We recycle a selected

Krylov subspace and the preconditioner of the first linear system in each group.

In most cases, the perturbation within the group is quite minor so that the selected Krylov

subspace and preconditioner can be reused to solve all the other systems. However, in the last

group Gn1 , for some special cases, some of the systems are close to being singular. In this situation,

recycling the Krylov subspace and preconditioner for all the systems is not a wise strategy any

more. Especially for the space-time method, as shown in Theorem 1, the more time steps are

coupled into one system, the worse the condition number. Therefore, it is then more important to

remove the sensitive systems from the group if we want to couple more time steps into one system.

One approach to address this issue is to extract those sensitive systems from the group, and choose

a smaller window size s to make them better conditioned, then solve them separately. In order to

single out the sensitive systems, we set up a cutoff parameter γ(≥ 0) as a criterion to evaluate the

minimum of aM,i(x) on a coarse mesh VHC of the spacial domain D, i.e.,

min
x∈VH

C

{aM,i(x)} < γ. (4.3)

When the inequality (4.3) holds, we remove its corresponding system from the group and label it

as nearly singular. All these nearly singular systems are collected together to form another group,

called the “bad” group, Gb.

According to the above analysis, we summarize our grouping algorithm for the one-level RAS

preconditioning as follows: For a given n = (n1, n2, · · · , nM), there are (n1 + 1)× (n2 + 1)× · · · ×

(nM +1) systems to be solved. Assume the systems are ordered by the ordering algorithm proposed

in the previous section.

Grouping algorithm for one-level RAS preconditioning:

• Divide all the systems evenly into (n1 + 1) groups, i.e., G0, G1, · · · , Gn1 , with each group

35

containing (n2 + 1)× · · · × (nM + 1) systems.

• Choose an appropriate cutoff parameter γ ≥ 0, extract all the systems in the last group

Gn1 that satisfy the inequality (4.3), and collect them in the bad group Gb. The modified

last group is then denoted as Gn1 = Gn1 \Gb.

• For the regular groups, take a relatively large number of time steps coupled into one system.

In each group, construct a Krylov subspace and a preconditioner from the first system, then

recycle them when solving the other systems within the same group.

• For the bad group Gb, take a relatively smaller number of time steps to make all the systems

in Gb solvable. Construct a Krylov subspace and a preconditioner from one of the systems,

then recycle the Krylov subspace and the symbolic factorization of the submatrix solver

for the other systems in Gb.

Notice that the choice of the value γ depends on the specific problem. For some problems

with 0 < a1 ≤ a(x, ω) ≤ a2 <∞, where a1 is not too close to zero, we don’t need to set up such a

cutoff parameter γ, since there is no sensitive system in this case.

4.4 Grouping algorithm for two-level hybrid preconditioning

The grouping algorithm for one-level RAS doesn’t work well when the two-level hybrid pre-

conditioner is employed. This is because the additional coarse level correction on the hybrid pre-

conditioner greatly improves the condition numbers of the systems, then the numbers of iterations

are drastically reduced. However, the smaller Krylov subspace generated in the reduced iterations

yields fewer subsequent systems fitting the recycled Krylov subspace and preconditioner. There-

fore, we need another grouping algorithm for the two-level hybrid preconditioning. The algebraic

average of the eigenvalues provides a clue as to how to further divide the groups of systems.

We first evenly divide all the systems into (n1 + 1) groups, denoted as G0, G1, · · · , Gn1 , as

36

in the section 4.2. Then we average the M eigenvalues, denoted as λ, as following

λp > λ =
1

M

M∑
i=1

λi > λp+1, 2 ≤ p ≤M,

where the index p works as a divider. We divide each of the groups G0, G1, · · · , Gn1−1 uniformly

into (n2 + 1)× (n3 + 1)× · · · × (np + 1) subgroups with (np+1 + 1)× (np+2 + 1)× · · · × (nM + 1)

systems in each subgroup.

Since the last group Gn1 contains the systems that may be close to be singular, the systems

in this group can be sensitive. So we divide the group Gn1 uniformly into (n2 + 1) × (n3 + 1) ×

· · · × (np + 1)× (np+1 + 1) subgroups with (np+2 + 1)× (np+3 + 1)× · · · × (nM + 1) systems in each

subgroup. As in the grouping algorithm for one-level RAS preconditioning, the sensitive systems

are gathered into the last group Gn1 , which is extracted from some of the subgroups in Gn1 by the

cutoff parameter γ(≥ 0). All the sensitive systems satisfying (4.3) are put in the bad group Gb.

For the regular subgroups in G0, G1, · · · , Gn1−1 as well as all the subgroups in Gn1 after the

sensitive systems are extracted, we construct a Krylov subspace and a preconditioner from the first

system, then recycle them when solving the other systems within the same subgroup. For the bad

group Gb, we use the same strategy as the one-level RAS preconditioning.

The grouping algorithm for two-level hybrid preconditioning is thus organized as follows: All

the assumptions are the same as the grouping algorithm for the one-level RAS preconditioning,

and all the decoupled systems are already ordered by the ordering algorithm.

Grouping algorithm for two-level hybrid preconditioning:

• Follow step 1 of the grouping algorithm for the one-level RAS preconditioning, we have

(n1 + 1) groups, G0, G1, · · · , Gn1 .

• Average the M eigenvalues to obtain λ, and then compare it with all the eigenvalues to

find the index p, such that λp > λ > λp+1, 2 ≤ p ≤M .

• In groups G0, G1, · · · , Gn1−1, each group is uniformly divided into (n2 +1)×(n3 +1)×· · ·×

37

(np+1) subgroups with (np+1+1)×(np+2+1)×· · ·×(nM+1) systems in each subgroup. For

the last group Gn1 , we divide it uniformly into (n2 +1)×(n3 +1)×· · ·×(np+1)×(np+1 +1)

subgroups with (np+2 + 1)× (np+3 + 1)× · · · × (nM + 1) systems in each subgroup.

• Choose an appropriate cutoff parameter γ ≥ 0, extract all the systems from the subgroups

in Gn1 that satisfy (4.3), and collect them in the bad group Gb.

• For the regular subgroups and the subgroups from which sensitive systems are extracted,

we construct a Krylov subspace and a preconditioner from the first system, then recycle

them within the same subgroup.

• Then follow step 4 of the grouping algorithm for the one-level RAS preconditioning.

4.5 Numerical examples

We illustrate our grouping algorithms by the following example [30] with the mean and

covariance functions:

a0(x) = 3 + sin(πx1) Ca(x, x
′) = e−|x−x

′|2 , x ∈ [0, 1]2. (4.4)

The series expansion of a(x, ξ) is truncated at M = 11 by the decay of the eigenvalues. The selection

algorithm proposed in [16] gives the dimensions in each subspaces: n = (3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1),

which means we obtain 9216 linear systems to be solved. Let the random variable ξj in the KL

expansion be uniformly distributed in Γj = [−
√

3,
√

3], j = 1, 2, · · · ,M . For the one-level RAS

preconditioner, the total 9216 systems are evenly divided into n1 + 1 = 3 + 1 = 4 groups with 2304

systems in each group.

For the squared-exponential kernel, the eigenvalues and eigenfunctions can be analytically

computed by Zhu et al. in [47]. Alternatively, in our experiments, we calculate the eigenvalues and

eigenfunctions in terms of the matrix associated with the covariance function Ca(x, x
′).

Firstly, we consider the one-dimensional case:

Ca(x, x
′) = e−|x−x

′|2 , x, x′ ∈ [0, 1].

38

Suppose we evenly divide the sample interval [0, 1] into n subdivisions, then choose the middle

points of each subdivision as the grid points. Now the discretized matrix C̄ associated with the

covariance function has the entries as follows:

C̄i,j = Ca(xi, xj) = e−|xi−xj |
2 · 1

n
,

where xk = 1
n(k − 0.5), for k = 1, 2, · · · , n. Using MATLAB, we get the eigenvalues λ1,i and its

corresponding eigenfunctions v1,i, for i = 1, 2, · · · , n of the matrix C̄. Similarly, we obtain the

eigenpairs λ2,j and v2,j of Ca(y, y
′) = e−|y−y

′|2 , y, y′ ∈ [0, 1], j = 1, 2, · · · , n.

For the two-dimensional case:

Ca(x, x
′) = e−|x−x

′|2 , x, x′ ∈ [0, 1]2,

the eigenvalues and eigenfunctions are

λk = λ1,iλ2,j , vk = v1,iv2,j .

Since the largest 4 eigenvalues of Ca(x, x
′) and Ca(y, y

′), x, x′, y, y′ ∈ [0, 1], shown in Fig.4.1, are

λ1,1 = λ2,1 = 0.8648, λ1,2 = λ2,2 = 0.1262, λ1,3 = λ2,3 = 0.0086, λ1,4 = λ2,4 = 0.0004, the largest 11

eigenvalues for Ca(x, x
′) = e−|x−x

′|2 , x ∈ [0, 1]2 are λ1 = 0.7480, λ2 = λ3 = 0.1092, λ4 = 0.0159, λ5 =

λ6 = 0.0074, λ7 = λ8 = 0.00108, λ9 = λ10 = 0.00032, λ11 = 0.00007 as plotted in Fig.4.2. The four

eigenfunctions corresponding to the largest four eigenvalues are plotted in Fig.4.3, Fig.4.4, Fig.4.5,

and Fig.4.6.

Next, we calculate the non-zero constant parameters Cp,j in equation (3.17). Since we set

dimPn1 = 3, then there are 4 double orthogonal basis functions in Pn1 . Suppose those double

orthogonal basis have the following form:

φi = ci,0 + ci,1x+ ci,2x
2 + ci,3x

3 for i = 0, 1, 2, 3. (4.5)

where ci,j are the coefficients to be determined. Plugging all the basis functions into equation

(3.17), we have
∫

Γ1
φp(t)φq(t)ρ(t)dt =

∑3
k=0

∑3
l=0 cp,kbk,lcq,l = δp,q, p, q = 0, 1, 2, 3,∫

Γ1
tφp(t)φq(t)ρ(t)dt =

∑3
k=0

∑3
l=0 cp,kak,lcq,l = Cp,1δp,q p, q = 0, 1, 2, 3

(4.6)

39

1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

Figure 4.1: The largest 4 eigenvalues of Ca(x, x
′), x, x′ ∈ [0, 1].

1 2 3 4 5 6 7 8 9 10 11
0

0.2

0.4

0.6

0.8

1

Figure 4.2: The largest 11 eigenvalues of Ca(x, x
′), x, x′ ∈ [0, 1]2.

40

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

Figure 4.3: The first eigenfunction of Ca(x, x
′), x, x′ ∈ [0, 1]2.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 4.4: The second eigenfunction of Ca(x, x
′), x, x′ ∈ [0, 1]2.

41

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 4.5: The third eigenfunction of Ca(x, x
′), x, x′ ∈ [0, 1]2.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Figure 4.6: The fourth eigenfunction of Ca(x, x
′), x, x′ ∈ [0, 1]2.

42

where

bk,l =
1

2
√

3

∫ √3

−
√

3
tktldt and ak,l =

1

2
√

3

∫ √3

−
√

3
ttktldt.

Rewrite it into the matrix form,

XBXT = I, and XAXT = Diag{C0,1, C1,1, C2,1, C3,1}, (4.7)

where

X = (ck,l), k, l = 0, 1, 2, 3

A = (ak,l), k, l = 0, 1, 2, 3

B = (bk,l), k, l = 0, 1, 2, 3.

The algorithm 8.7.1 in [21] is employed to calculate the matrix X and Diag{C0,1, C1,1, C2,1, C3,1}:

Given matrices A = AT ∈ Rn×n and B = BT ∈ Rn×n with B positive definite, the following

algorithm computes a nonsingular X such that

XBXT = In XAXT = Diag(a1, a2, · · · , an).

• Compute the Cholesky factorization B = GGT , where G is a lower triangular matrix.

• Compute C = G−1AG−T .

• Use the symmetricQR algorithm to compute the Schur decompositionQTCQ = diag(a1, · · · , an).

• Set X = QTG−1.

Therefore, we get

X =



−0.2214 0.1484 0.6384 −0.4280

−1.0373 1.7615 0.4663 −0.7918

0.2214 0.1484 −0.6384 −0.4280

−1.0373 −1.7615 0.4663 0.7918


(4.8)

43



C0,1 = 1.49153184392336179975

C1,1 = 0.58886444109925895063

C2,1 = −1.49153184392336513042

C3,1 = −0.58886444109925928370.

Similarly, in Pn2 and Pn3 , the computed X and the diagonals are:

X =


0.0000 −0.7071 0.5270

−1.5000 0.0000 0.8333

0.0000 0.7071 0.5270




C0,2 = C0,3 = −1.34164078649987383862

C1,2 = C1,3 = 0.00000000000000008500

C2,2 = C2,3 = 1.34164078649987406067.

For the space Pnj , j = 4, · · · , 11, the computed values are

X =

 −0.7071 0.7071

0.7071 0.7071


 C0,4 = · · · = C0,11 = −1.00000000000000000000

C1,4 = · · · = C0,11 = 1.00000000000000000000.

In the following paragraphs, we provide some analysis to reveal the relationship between the

eigenvalues λi and the constant parameters Cp,j in the double orthogonal basis. Based on the results

of our experiments, we notice that the largest eigenvalue λ1 = 0.7480 plays an important role in the

perturbation of the diffusion coefficient. n1 = 3 means the first subspace associated with the largest

eigenvalue has four important constants C0,1 = 1.49, C1,1 = 0.59, C2,1 = −1.49, C3,1 = −0.59. By

our ordering algorithm and grouping algorithm for the one-level RAS preconditioning, we divide all

the systems uniformly into 4 groups: G0, G1, G2, G3, with 2304 systems in each one. The systems in

44

G0, G1, G2, G3 correspond to C0,1, C1,1, C3,1, C2,1 respectively, since Cij ,j are ordered decreasingly.

Fig.4.7 illustrates the maximum and minimum of the diffusion coefficient aM,i(x), 1 ≤ i ≤ 9216. The

four groups are plotted in Fig.4.7 with different colors. For the two-level hybrid preconditioning,

the average of M eigenvalues is λ3 > λ = 0.0909 > λ4, so we divide groups G0, G1, G2 uniformly

into (n2 + 1)× (n3 + 1) = (2 + 1)× (2 + 1) = 9 subgroups with 256 systems in every subgroup. For

the last group G3, it is divided into (n2 + 1)× (n3 + 1)× (n4 + 1) = (2 + 1)× (2 + 1)× (1 + 1) = 18

subgroups with 128 systems in each one.

In Fig.4.7, we can easily notice that there are four points at which the diffusion coefficients

curve crosses the x-axis, each of those represents four systems. We set the cutoff parameter γ = 0

to separate those sensitive systems and form the bad group. For the bad group, we need to find

a proper window size s to make sure all these sensitive systems are solvable. In our experiments,

we couple 2 time steps for the bad group, and up to 64 time steps for the other regular groups.

Since the extrema of the diffusion coefficients are relatively close for the systems in the bad group,

and the matrix pattern is exactly the same, we construct the Krylov subspace and the symbolic

factorization of subdomain matrices from one of the systems and recycle them throughout the bad

group.

We also plot the extrema singular values and condition numbers for the 9216 systems without

preconditioning in Fig.4.8, Fig.4.9 and Fig.4.10. All the systems are coupled by 16 time steps for

the regular groups, but only one time step for the bad group. Fig.4.8 describes the maximum

singular values of all the systems without any preconditioning. Note that the graph is similar, to

certain extent, to the maximum of diffusion coefficients in Fig.4.7. In Fig.4.8 and Fig.4.9, it’s easy

to observe that there are again four points with minimum singular values and condition numbers

that are dramatically distinct from the others. These correspond to the situation identified in

Fig.4.7 and constitute the bad group.

For comparison, we also plot the extrema singular values and condition numbers for all the

systems with the two-level hybrid preconditioner in Fig.4.11, Fig.4.12 and Fig.4.13. After applying

the preconditioner on the systems, the maximum singular values reduced by about 50% and the

45

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
−1

0

1

2

3

4

5

6

7

9216 systems

E
x
tr

e
m

a

Figure 4.7: The maxima and minima of the diffusion coefficients aM,i(x) for all 9216 systems.

46

2304 4608 6912 9216
15

25

35

45

55

Max SV

Figure 4.8: The maxima singular values of all 9216 systems without any preconditioning.

47

2304 4608 6912 9216
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−3

Min SV

Figure 4.9: The minima singular values of all 9216 systems without any preconditioning.

48

2304 4608 6912 9216
0

5

10

15
x 10

4

Condition #

Figure 4.10: The condition numbers of all 9216 systems without any preconditioning.

49

minimum singular values increase by almost 1000 times. Hence, the resulting condition numbers are

reduced to about one thousandth of the condition numbers without any preconditioning. Because

of the improved condition numbers, the systems in the bad group may include more time steps

together. In Fig.4.11 and Fig.4.12, we couple 2 or 4 time steps for the systems in the bad group,

such that all the maximum singular values in the bad group are larger than the regular systems

and all the minimum singular values in the bad group are smaller than the regular systems, which

can be seen in the figures at the distinctive four bunches of cusps.

50

2304 4608 6912 9216
15

20

25

30

Max SV

Figure 4.11: The maxima singular values of all 9216 systems with the two-level hybrid precondi-
tioner.

51

2304 4608 6912 9216
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Min SV

Figure 4.12: The minima singular values of all 9216 systems with the two-level hybrid precondi-
tioner.

52

2304 4608 6912 9216
60

80

100

120

140

160

180

200

Condition #

Figure 4.13: The condition numbers of all 9216 systems with the two-level hybrid preconditioner.

Chapter 5

Numerical experiments

In this chapter, we report some numerical experiments to illustrate the performance of the

Schwarz preconditioned recycling FGMRES of [38] used together with our ordering and grouping

algorithms. The software is developed using PETSc [5] and tested on the parallel supercomputer

Janus at University of Colorado Boulder. We consider the stochastic parabolic equation (3.2) on a

two-dimensional domain D = [0, 1]2, f(x) = 1, u0(x) = 0, the mean and covariance functions are

given in equation (4.4), and all other parameters are the same as in Section 4.4. All the tests use

∆t = 0.001, except the ones in Table 5.7, where we show the tests with different time step sizes.

The stopping criteria for FGMRES, i.e., the relative tolerance and the absolute tolerance, are both

10−6.

5.1 Identifying the dimension of the recycling Krylov subsapce

In this section, we numerically investigate the suitable dimension of the recycling Krylov

subspace for the one-level and two-level preconditionings respectively.

We firstly test the one-level RAS preconditioning on a 497× 497 mesh. The overlap between

adjacent subdomains is δ = 8. For the regular groups, we set the window size to s = 16. For the

bad group, we set s = 2, which is the largest window size such that the algorithm does not stagnate.

In this test, the number of processors is np = 1024. In each group Gi, we solve the first system by

the non-recycled and non-restarted FGMRES method, and record the number of iterations as ki.

54

It is not feasible to test all possible dimensions for the recycling subspace, we therefore take

km = min
i
ki, (5.1)

then set the dimension kr as a percentage of km as shown in Table 5.1.

In Table 5.1, we report the computing time (the unit is second) and the average number

of iterations (denoted by “aiter” in the tables) for various dimensions of the recycling subspaces.

km is defined as in (5.1). The total number of processors is 1024, and the number of unknowns

of the systems in the regular groups is 3952144. “best” represents the dimension of the recycling

Krylov subspace corresponding to the minimal computing time, which is marked in red. “total”

represents the total dimension, i.e., the summation of “best” and “aiter” corresponding to the

minimal computing time. From this table, we notice that when ILU(0) is used as the subdomain

solver in the one-level RAS preconditioner, the best computing time is obtained when the recycling

subspace is kr = 30%km, which is approximately 65. As the fill-in of ILU increases, the percentage

becomes larger in order to reduce the computing time. Since km is relatively large for the one-level

RAS preconditioning, the computing cost of Arnoldi process cannot be ignored when we calculate

the total number of iterations (refer to the last row in Table 5.1), which means the total number of

iterations consists of the actual number of iterations and the size of the Krylov subspace we kept

for recycling. Therefore, the total number of iterations decreases when a more accurate subdomain

solver is applied. We notice that the computing time also decreases except ILU(3) where the

computing time increases slightly in column 4. This is because the total numbers of iterations with

ILU(2) and ILU(3) are pretty close, but ILU(3) is more expensive.

We also test the restarted FGMRES for the one-level RAS preconditioning in Table 5.2. As

the subdomain solver becomes more accurate, the computing time and the number of iterations

both decrease. But the best result for the restarted FGMRES is worse than the best one in Table

5.1. Therefore, we conclude that the one-level RAS preconditioner with LU subdomain solver is

the best choice.

Next, we investigate the choice of recycling dimension for the two-level hybrid precondition-

55

Table 5.1: Computing time (second) and average number of iterations (denoted by “aiter”) for the
one-level RAS preconditioned FGMRES without restart, δ = 8, ILU(∗) and LU are subdomain
solvers.

ILU(0) ILU(1) ILU(2) ILU(3) LU

km = 216 km = 134 km = 108 km = 82 km = 40

kr = time aiter time aiter time aiter time aiter time aiter

100%km 90565 3.80 35279 3.97 23829 3.99 15603 4.22 9866 7.17

90%km 73206 4.32 29227 4.49 20079 4.84 13343 4.95 9156 7.15

80%km 60058 4.94 24376 5.09 16805 5.54 11301 6.13 9162 7.64

70%km 45446 5.72 19196 6.18 13646 6.78 10405 10.12 9590 8.86

60%km 35317 7.02 14618 7.45 12767 8.84 10830 15.87 11375 9.35

50%km 26388 8.54 11447 9.51 10164 14.55 11153 21.51 12136 11.44

40%km 18460 11.71 10865 19.96 11907 29.90 14158 31.47 11972 12.93

30%km 13382 16.44 12947 42.66 13983 44.07 15095 41.47 15430 17.45

20%km 17015 58.10 15772 66.81 16334 61.71 20334 55.98 18329 21.31

10%km 30433 125.7 20628 98.92 20536 85.86 20943 67.76 32814 39.01

best 65 54 54 57 36

total 81.44 73.96 68.55 67.12 43.15

Table 5.2: Computing time (second) and average number of iterations (denoted by “aiter”) for the
one-level RAS preconditioned FGMRES with restart (= 50), δ = 8.

ILU(0) ILU(1) ILU(2) ILU(3) LU

kr time aiter time aiter time aiter time aiter time aiter

10 22715 195.19 17870 117.04 19315 93.73 19124 66.28 18554 19.27

20 22671 155.77 16631 91.08 16606 71.49 17245 52.48 11334 11.74

30 23787 120.58 16411 68.41 15020 50.79 14645 36.40 9743 8.51

40 29794 85.13 18380 43.70 18563 39.89 19230 30.09 11367 7.00

56

Table 5.3: Computing time (second) and average number of iterations (denoted by “aiter”) for the
two-level hybrid preconditioned FGMRES without restart. δ = 8, the coarse overlap δc = 0. km is
defined in (5.1).

ILU(0) ILU(1) ILU(2) ILU(3) LU

km = 13 km = 8 km = 7 km = 5 km = 4

time aiter time aiter time aiter time aiter time aiter

kr = km 1278 4.38 2043 5.91 2608 5.39 3563 4.88 14268 5.16

kr = km − 1 1326 4.42 2090 6.01 2576 5.45 3509 4.88 11084 5.18

kr = km − 2 1353 5.04 2374 6.15 2583 5.49 3606 4.92 12564 5.06

kr = km − 3 2083 7.31 2112 6.18 2600 5.56 4889 5.02 11191 5.17

ing in Table 5.3. The coarse mesh is 32× 32 and the fine mesh is 497× 497. The computing time

increases when a more accurate subdomain solver is employed. However, the average numbers of

iterations oscillate slightly between 4 and 6. There are two main factors that impact the number of

iterations. (1) the dimension of the recycling Krylov subspace. A larger recycling Krylov subspace

usually yields to a faster convergence. If the recycling Krylov subspace is too small, such as the

last column in Table 5.3, more iterations are necessary. (2) the subdomain solver. A more accurate

subdomain solver implies fewer number of iterations. These two opposite factors working together

yield the oscillation of the iterations in Table 5.3. For the computing time, the subdomain solver is

dominant when the numbers of iterations are close. Hence, the expensive subdomain solver yields

larger computing time. Compared with the one-level RAS preconditioner, the two-level hybrid pre-

conditioner results in a better convergence with ILU(0) and the largest recycling Krylov subspace.

5.2 Comparing several recycling strategies

In this section, we compare four recycling strategies. The parameters correspond to the opti-

mal combinations of one- and two-level preconditionings obtained in the last section. The number

of systems in the regular groups is 9200, the other 16 sensitive systems are contained in the bad

group Gb. The four schemes to be compared are listed below, in which we mainly make comparisons

for the systems in the regular groups. For the systems in the bad group Gb, we only compare the

57

Table 5.4: Computing time (second) and average number of iterations (denoted by “aiter”) of four
schemes.

Scheme 1 Scheme 2 Scheme 3 Scheme 4

preconditioning time aiter time aiter time aiter time aiter

one-level RAS 43733 48.61 30472 8.44 13537 11.90 9371 7.15

two-level hybrid 4817 15.86 3817 8.06 4495 15.50 1257 4.38

number of iterations for Scheme 1 and Scheme 4.

1. Solve all the systems separately without any recycling.

2. Recycle the Krylov subspace and the symbolic factorizations of subdomain matrices, both

constructed from the first system, throughout all the other 9199 systems.

3. Keep the Krylov subspace and the preconditioner, both constructed from the first system,

and then recycle them throughout all the other 9199 systems.

4. Apply the one- and two-level grouping algorithm.

First, we look at the performance of the one-level RAS preconditioning for the four schemes.

A comparison of the four schemes for the regular groups is shown in Fig.5.1, 5.2 and 5.3. The

computing time and average numbers of iterations are reported in Table 5.4. For the bad group,

we only show the numbers of iterations in Fig.5.4.

Scheme 1 is the most time-consuming approach, since all the 9200 systems are solved inde-

pendently without any recycling. For Scheme 2, all the matrices in the sequence of linear systems

share the same nonzero pattern, so we recycle the symbolic factorization of the subdomain ma-

trices. At the same time, we also recycle the Krylov subspace constructed from the first system

throughout all the other 9199 systems. For this test, we keep the harmonic Ritz vectors associated

with the smallest k = 36 harmonic Ritz values in the first system for recycling. The numbers of

iterations of Scheme 2 shown in Fig.5.1 are reduced drastically by more than 80% compared with

Scheme 1, and the computing time is saved by about 30%.

58

0 2304 4608 6912 9216
0

20

40

60

80

100

9200 systems

It
e

ra
ti
o

n
 N

u
m

b
e

rs

Scheme 1
Scheme 2

Figure 5.1: One-level RAS preconditioning, comparison of numbers of iterations for Scheme 1 and
2

59

0 2,304 4,608 6,912 9,216
0

20

40

60

80

100

9200 systems

It
e

ra
ti
o

n
 N

u
m

b
e

rs

Scheme 1
Scheme 3

Figure 5.2: One-level RAS preconditioning, comparison of numbers of iterations for Scheme 1 and
3

60

0 2,304 4,608 6,912 9,216
0

20

40

60

80

100

9200 systems

It
e

ra
ti
o

n
 N

u
m

b
e

rs

Scheme 1
Scheme 4

Figure 5.3: One-level RAS preconditioning, comparison of numbers of iterations for Scheme 1 and
4

61

2 4 6 8 10 12 14 16
0

5

10

15

20

Scheme 1

Scheme 4

Figure 5.4: One-level RAS preconditioning, comparison of numbers of iterations for Scheme 1 and
4 in the bad group

62

0 2304 4608 6912 9216
0

5

10

15

20

25

30

9200 systems

It
e

ra
ti
o

n
 N

u
m

b
e

rs

Scheme 1
Scheme 2

Figure 5.5: Two-level hybrid preconditioning, comparison of numbers of iterations for Scheme 1
and 2

63

0 2304 4608 6912 9216
0

5

10

15

20

25

30

9200 systems

It
e

ra
ti
o

n
 N

u
m

b
e

rs

Scheme 1

Scheme 3

Figure 5.6: Two-level hybrid preconditioning, comparison of numbers of iterations for Scheme 1
and 3

64

0 2304 4608 6912 9216
0

5

10

15

20

25

30

9200 systems

It
e

ra
ti
o

n
 N

u
m

b
e

rs

Scheme 1
Scheme 4

Figure 5.7: Two-level hybrid preconditioning, comparison of numbers of iterations for Scheme 1
and 4

65

2 4 6 8 10 12 14 16
0

5

10

15

20

Scheme 1

Scheme 4

Figure 5.8: Two-level hybrid preconditioning, comparison of numbers of iterations for Scheme 1
and 4 in the bad group

66

Scheme 3 recycles both the Krylov subspace and the preconditioner obtained from the first

system throughout the other 9199 systems, which means that we construct the Krylov subspace and

the preconditioner only once. From Table 5.4, we can see that the numbers of iterations of Scheme 3

are slightly worse than that of Scheme 2 because of the recycled preconditioner, but the computing

time is reduced by around 70% due to the time saved from recomputing the preconditioners.

Scheme 4 takes advantage of both Scheme 2 and Scheme 3. It reconstructs a new Krylov

subspace and preconditioner for recycling before the cumulative perturbation grows too large, hence

the average number of iterations of Scheme 4 is greatly reduced by the one-level grouping algorithm.

Some of the systems require zero iteration, which means that the recycled Krylov subspace already

contains the solutions to these systems. The computing time is the smallest among the four schemes.

Next, we analyze the performance of the two-level hybrid preconditioning. The parameters

are chosen from the best timing results of the previous section. We present results of the four

schemes in Fig.5.5, 5.6 and 5.7. The computing time and the average numbers of iterations for the

two-level hybrid preconditioning are also recorded in Table 5.4. Notice that the computing time for

Scheme 4 in Table 5.4 is slightly different from the optimal results in Table 5.1 and 5.3, even though

they represent different runs of the same tests. This is because the network of the supercomputer is

shared by all the users, which leads to the slight instability for the computing time. The comparison

of four schemes with two-level hybrid preconditioner shows similar results to that with the one-

level RAS preconditioner. Scheme 1 is the most expensive scheme. Scheme 2 (Fig.5.5) needs fewer

number of iterations and smaller computing time by recycling Krylov subspace through all the

systems. Scheme 3 (Fig.5.6) is worse than Scheme 2, since the cumulative perturbation at some

point is too large, which yields a blow up at one point. Scheme 4 (Fig.5.7) does the recycling in each

subgroup, so it has the best performance in terms of the numbers of iterations and the computing

time. Fig.5.8 shows the numbers of iterations of the systems in the bad group.

67

Table 5.5: Average number of iterations for the two-level hybrid preconditioning with different
mesh size, overlap size, and number of processors. The coarse mesh is 32× 32.

mesh-window size overlap
number of processors

128 256 512 1024

249× 249× 8 4 4.68 4.72 4.70 4.69

373× 373× 16 6 5.83 5.87 5.90 5.96

497× 497× 32 8 5.62 5.49 5.58 5.54

5.3 Scalabilities study of the two-level hybrid preconditioning

In this section, we test the dependency of the numbers of iterations on the mesh size, the

number of processors, the overlap, the window size and the time step size using the grouping

algorithm for the two-level hybrid preconditioning. The speedup is also presented to show its

parallel scalability.

We first check how the average numbers of iterations behave with respect to the change of the

mesh size, the overlap, and the number of processors. Table 5.5 shows that the average numbers

of iterations are quite stable when the overlap is proportional to the diameter of subdomain, i.e.,

the condition numbers are nearly independent of the mesh size and the number of processors.

Next, we check the performance of the algorithm with respect to the change of the window

size. Table 5.6 shows that the computing time per window size is minimized when s = 8, then in-

creases thereafter. The average numbers of iterations also have the same tendency as the computing

time for each window size.

Table 5.7 shows some results with different ∆t. We notice that the computing time and

Table 5.6: Computing time (second) per window size and average number of iterations (denoted
by “aiter”) for the two-level hybrid preconditioning with different window sizes.

497× 497
window size

4 8 16 32 64

aiter 4.44 3.64 4.38 5.54 6.65

time/window size 79 64 80 126 167

68

Table 5.7: Computing time (second) and average numbers of iterations (denoted by “aiter”) for
the two-level hybrid preconditioning with different ∆t.

∆t 0.0001 0.001 0.01 0.1

time 1307 1278 1556 1499

aiter 5.49 4.38 5.20 5.19

the average numbers of iterations do not change too much, even with large ∆t. This shows the

robustness of the algorithm.

We next present the speedup results obtained using two meshes in Fig.5.9. One has a fine

mesh-window size 497 × 497 × 16 and a coarse mesh-window size 32 × 32 × 16, the other has the

mesh-window size 497× 497× 32 and a coarse mesh-window size 32× 32× 32. From the left figure,

we see that, for the smaller system, the speedup is close to be linear. For the larger system, the

speedup is superlinear. We present the average numbers of iterations of two meshes in Fig.5.10,

where the average number of iterations corresponding to the larger mesh is slightly more than that

of the smaller mesh. The average number of iterations corresponding to the smaller mesh remains

between 4 and 5 as the number of processors increases. Similarly, for the larger case, the average

number of iterations increases slowly as the number of processors increases to 1024.

69

128 256 512 1024
1

2

3

4

5

6

7

8

9

10

Number of processors

S
p
e
e
d
u
p

Speedup of hybrid preconditioner

Ideal

DOF=3.95 × 10
6

DOF=7.90 × 10
6

Figure 5.9: Speedup of two-level hybrid preconditioner

128 256 512 1024
1

2

3

4

5

6

7

8

9

10

Number of processors

A
v
e
ra

g
e
 i
te

ra
ti
o
n
 n

u
m

b
e
rs

Average iteration numbers of hybrid preconditioner

DOF=3.95 × 10
6

DOF=7.90 × 10
6

Figure 5.10: Average numbers of iterations of two-level hybrid preconditioner

Chapter 6

Conclusions and future work

In this chapter, we make some conclusions based on the research and experiments. We also

try to outline some potential research directions on numerical simulation of stochastic differential

equations.

In this thesis, we introduced and studied some implicit space-time domain decomposition

preconditioned recycling Krylov subspace methods for stochastic parabolic differential equations.

Using a stochastic Galerkin method, we decoupled the stochastic parabolic equation into a sequence

of uncoupled deterministic parabolic equations. In order to accelerate the convergence of the

preconditioned GMRES solver for the sequence of systems, an ordering algorithm and two grouping

algorithms were proposed to take advantages of of the recycling Krylov subspace method and

preconditioners. By using the grouping algorithms in some cases, the total computing time was

reduced by almost 80%. Based on the experiments obtained on a supercomputer with over one

thousand processors, we concluded that the two-level hybrid preconditioning technique with the

corresponding grouping algorithm was the best choice in terms of the total computing time. In

this thesis, we only considered domain decomposition methods, but multigrid methods [26, 27] may

also work for the space-time discretized problems with some varieties of the proposed ordering and

grouping algorithms.

We proved a theorem indicating that the window size cannot be too large, and in other words,

the window size needs relatively small subdomain size compared with the spacial direction.

We believe that our approaches can be extended to solve the nonlinear system of stochas-

71

tic parabolic PDEs, such as Navier-Stokes equations in fluid dynamics, and also the hyperbolic

equations. Increasing the number of levels in the preconditioner may also be necessary when the

number of processors is much larger.

Bibliography

[1] O. Axelsson, Iterative Solution Methods, Cambridge University, New York, 1994.

[2] I. Babuska and P. Chatzipantelidis, On solving elliptic stochastic partial differential
equations, Comput. Methods Appl. Mech. Engrg., 191 (2002), pp. 4093-4122.

[3] I. Babuska, R. Tempone, and G. Zouraris, Galerkin finite element approximations of
stochastic elliptic partial differential equations, SIAM J. Numer. Anal., 42 (2004), pp. 800-
825.

[4] G. Bal and Y. Maday, A“parareal” time discretization for non-linear PDE’s with application
to the pricing of an American put, Recent developments in domain decomposition methods,
Lect. Notes Comput. Sci. Engrg., Springer, Berlin, 23 (2001), pp. 189-202.

[5] S. Balay, K. Buschelman, W. D. Gropp, D, Kaushik, M. Knepley, L. C. McInnes,
B. F. Smith, and H. Zhang, PETSc Users Manual, Argonne National Laboratory, 2013.

[6] B. Øksendal, Stochastic Differential Equations: An Introduction with Applications, Springer
2010.

[7] X.-C. Cai, Additive Schwarz algorithm for parabolic convection-diffusion equations, Numer.
Math., 60 (1990), pp. 41-62.

[8] X.-C. Cai, Multiplicative Schwarz methods for parabolic problems, SIAM J. Sci. Comput.,
15 (1994), pp. 587-603.

[9] X.-C. Cai, Some Domain Decomposition Algorithms for Nonselfadjoint Elliptic and Parabolic
Partial Differential Equations, Ph.D. Thesis, Courant Institute, 1989.

[10] X.-C. Cai and M. Sarkis, A restricted additive Schwarz preconditioner for general sparse
linear systems, SIAM J. Sci. Comput., 21 (1999), pp. 792-797.

[11] A. Chapman and Y. Saad, Deflated and argumented Krylov subspace techniques, Numer.
Linear Algebra Appl., 4 (1997), pp. 43-66.

[12] Courant and Hilbert, Methods of Mathematical Physics, Interscience, New York, 1953.

[13] C. Farhat, L. Crivelli, and F. X. Roux, Extending substructure based on iterative solvers
to multiple load and repeated analyses, Comput. Methods Appl. Mech. Engrg., 117 (1994),
pp. 195-209.

73

[14] P. F. Fischer, Projection techniques for iterative solution of Ax=b with successive right-hand
sides, Comput. Methods Appl. Mech. Engrg., 163 (1998), pp. 193-204.

[15] G. S. Fishman, Monte Carlo: Concepts, Algorithms, and Applications. Springer-Verlag, New
York, 1996.

[16] P. Frauenfelder, C. Schwab, and R. A. Todor, Finite elements for elliptic problems
with stochastic coefficients, Comput. Methods Appl. Mech. Engrg., 194 (2005), pp. 205-228.

[17] M. J. Gander, L. Halpern, and F. Nataf, Optimal convergence for overlapping and
non-overlapping Schwarz waveform relaxation, Eleventh International Conference on Domain
Decomposition Methods, 1999.

[18] M. J. Gander and Petcu, Analysis of a Krylov subspace enhanced parareal algorithm for
linear problems, Paris-Sud Working Group on Modeling and Scientific Computing 2007-2008
(E. Cances et al., eds.), ESAIM Proc., no. 25, EDP Sci., Les Ulis, 2008, pp. 114-129

[19] M. J. Gander and S. Vandewalle, Analysis of the parareal time-parallel time-integration
method, SIAM J. Sci. Comput., 29 (2007), pp. 556-578

[20] R. G. Ghanem and P. D. Spanos, Stochastic Finite Elements: A Spectral Approach,
Revised Edition, Dover, 2003.

[21] G. Golub and C. Van Loan, Matrix Computations, The Johns Hopkins University Press,
Baltimore, 3rd edition, 1996.

[22] K. Guruprasad, D. E. Keyes, and J. H. Kane, GMRES for sequentially multiple nearby
systems, Technical Report (1995), Old Dominium University.

[23] G. Horton, The time-parallel multigrid method, Comm. Appl. Numer. Methods, 8 (1992),
pp. 585-595.

[24] G. Horton and S. Vandewalle, A space-time multigrid method for parabolic partial
differential equations, SIAM J. Sci. Comput., 16 (1995), pp. 848-864.

[25] G. Horton, S. Vandewalle, and P. Worley, An algorithm with polylog parallel
complexity for solving parabolic partial differential equations, SIAM J. Sci. Comput., 16 (1995),
pp. 531-541.

[26] H. Elman and D. Furnival, Solving the stochastic steady-state diffusion problem using
multigrid, IMA J. Number. Anal., 27 (2007), pp. 675-688.

[27] H. Elman, C. Miller, E. Phipps, and R. Tuminaro, Assessment of collocation and
Galerkin approaches to linear diffusion equations with random data, Intel. J. Uncertainty
Quantification, 1 (2011), pp. 19-33.

[28] C. Jin, Parallel Domain Decomposition Methods for Stochastic Partial Differential Equations
and Analysis of Nonlinear Integral Equations Ph.D. Thesis, University of Colorado at Boulder,
2007.

[29] C. Jin and X.-C. Cai, A preconditioned recycling GMRES solver for stochastic Helmholtz
problems, Commun. Comput. Phys., 6 (2009), pp. 342-353.

74

[30] C. Jin, X.-C. Cai, and C. Li, Parallel domain decomposition methods for stochastic elliptic
equations, SIAM J. Sci. Comput., 29 (2007), pp. 2096-2114.

[31] E. Lelarasmee, A. Ruehli, and A. Sangiovanni-Vincentelli, The waveform relaxation
method for time-domain analysis of large scale integrated circuits, IEEE Trans. Computer-
Aided Design, 1 (1982), pp. 131-145.

[32] J.-L. Lions, Y. Maday, and G. Turinici, Eásolution d’EDP par un schéma en temps
“pararéal”, C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), pp. 661-668.

[33] M. Loève, Probability Theory, Vol. I, II, Springer, New York, 1978.

[34] Y. Maday and G. Turinici, A parareal in time procedure for the control of partial differential
equations, C. R. Acad. Sci. Paris, Sér. I Math., 335 (2002), pp. 387-392.

[35] Y. Maday and G. Turinici, The parareal in time iterative solver: A further direction to
parallel implementation, Proceedings of the 15th International Domain Decomposition Con-
ference. Lect. Notes Comput. Sci. Engrg., Springer, Berlin, 40 (2005), pp. 441-448.

[36] R. B. Morgan, GMRES with deflated restarting, SIAM J. Sci. Comput., 24 (2002), pp.
20-37.

[37] F. Nobile and R. Tempone, Analysis and implementation issues for the numerical
approximation of parabolic equations with random coefficients, Intl J. for Numer. Methods
in Engrg., 80 (2009), pp. 979-1006.

[38] M. L. Parks, E. d. Sturler, G. Mackey, D. Johnson, and S. Maiti, Recycling Krylov
subspaces for sequences of linear systems, SIAM J. Sci. Comput., 28 (2006), pp. 1651-1674.

[39] V. Simoncini and E. Gallopoulos, An iterative method for nonsysmmetric systems with
multiple right-hand sides, SIAM J. Sci. Comput., 16 (1996), pp. 917-933.

[40] E. de Sturler, Nested Krylov methods based on GCR, J. Comput. Appl. Math., 67 (1996),
pp. 15-41.

[41] M.-B. Tran, Parallel Schwarz waveform relaxation algorithm for an n-dimensional semilinear
heat equation, arXiv preprint arXiv:1006.1323 (2010).

[42] S. Vandewalle, Parallel Multigrid Waveform Relaxation for Parabolic Problems, B.G. Teub-
ner Verlag, Stuttgart, 1993.

[43] T. Weinzierl and T Koppl, A geometric space-time multigrid algorithm for the heat
equation, Numer. Math. Theor. Meth. Appl., 5 (2012), pp. 110-130.

[44] J. White, A. Sangiovanni-Vincentelli, F. Odeh, and A. Ruehli, Waveform relaxation:
theory and practice, Trans. Soc. Comput. Simul., 2 (1985), pp. 95-133.

[45] D. Xiu, Numerical Methods for Stochastic Computations-A Spectral Method Approach,
Princeton University Press, 2010.

[46] D. Xiu and G. E. Karniadakis, A new stochastic approach to transient heat conduction
modeling with uncertainty, Internat. J. Heat Mass Trans., 46 (2003), pp. 4681-4693.

75

[47] H. Zhu, C. Williams, R. Rohwer, and M. Morciniec, Gaussian Regression and Optimal
Finite Dimensional Linear Models, Neural Networks and Machine Learning, Springer-Verlag,
Berlin (1998).

