
Cognon Neural Model Software Verification

and Hardware Implementation Design

by

Pau Haro Negre

B.S., Escola Tècnica Superior d’Enginyeria de Telecomunicacions de

Barcelona - BarcelonaTech (UPC), 2011

B.S., Facultat d’Informàtica de Barcelona - BarcelonaTech (UPC), 2011

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Master of Science

Department of Electrical, Computer, and Energy Engineering

2013

This thesis entitled:
Cognon Neural Model Software Verification

and Hardware Implementation Design
written by Pau Haro Negre

has been approved for the Department of Electrical, Computer, and Energy Engineering

Albin J. Gasiewski

Frank Barnes

Date

The final copy of this thesis has been examined by the signatories, and we find that both the
content and the form meet acceptable presentation standards of scholarly work in the above

mentioned discipline.

iii

Haro Negre, Pau (M.S., Electrical Engineering)

Cognon Neural Model Software Verification

and Hardware Implementation Design

Thesis directed by Prof. Albin J. Gasiewski

Little is known yet about how the brain can recognize arbitrary sensory patterns within

milliseconds using neural spikes to communicate information between neurons. In a typical brain

there are several layers of neurons, with each neuron axon connecting to ∼ 104 synapses of neurons

in an adjacent layer. The information necessary for cognition is contained in theses synapses, which

strengthen during the learning phase in response to newly presented spike patterns.

Continuing on the model proposed in [24], this study seeks to understand cognition from an

information theoretic perspective and develop potential models for artificial implementation of cog-

nition based on neuronal models. To do so we focus on the mathematical properties and limitations

of spike-based cognition consistent with existing neurological observations. We validate the cognon

model through software simulation and develop concepts for an optical hardware implementation

of a network of artificial neural cognons.

Dedication

To my sister, my parents, and Maria.

v

Acknowledgements

I would like to thank Pete J. Balsells, the Generalitat de Catalunya, and the University of

Colorado at Boulder for their support through the Balsells Graduate Fellowship Program at the

University of Colorado.

I am very grateful to Professor Albin J. Gasiewski for his advice, knowledge, and support

during these last two years. I am also thankful to the other thesis defense committee members,

Professor Frank Barnes and Professor David Beeman for their educative and inspiring observations.

I would also like to thank all my friends in the University of Colorado and Boulder who have

accompanied me all over these last two years.

Finally, a very special thanks to my sister, my parents, Maria, and my whole family, for their

unconditional support and encouragement.

Contents

Chapter

1 Introduction 1

1.1 Background . 1

1.1.1 The Human Brain Project . 1

1.1.2 SpiNNaker . 2

1.1.3 SyNAPSE . 3

1.1.4 BrainScaleS . 3

1.1.5 Numenta . 4

1.2 Purpose of the Study . 5

1.3 Overview of the Thesis . 5

2 Information Processing Within Mammalian Brain 6

2.1 Neocortex . 7

2.2 Nerve Cells . 10

3 Neural Cognon Model 12

3.1 Cognon Basic (CB) Neuron Model . 12

3.1.1 Basic Recognition . 13

3.1.2 Neural Learning Model . 17

3.2 Cognon Extended (CE) Model . 18

3.2.1 Synpase Atrophy (SA) Learning Model . 19

vii

3.2.2 Feedback Paths . 20

3.2.3 Innovation and Relevance . 21

3.3 Software Simulation of the Family of Cognon Models 21

3.3.1 Design . 22

3.3.2 Implementation . 23

3.3.3 Results . 23

4 Hardware Architectures 28

4.1 Spatial Phase Modulator (SPM) . 28

4.1.1 Description . 30

4.1.2 Learning . 32

4.1.3 Performance . 35

4.2 Spatial Amplitude Modulator (SAM) . 36

4.2.1 Description . 36

4.2.2 Learning . 41

4.2.3 Performance . 43

5 Conclusions 44

5.1 Suggestions of Future Research . 45

Bibliography 46

Appendix

A Source code 48

A.1 cognon basic.py . 48

A.2 test cognon basic.py . 51

A.3 cognon extended.py . 53

viii

A.4 test cognon extended.py . 58

A.5 run experiment.py . 64

A.6 test run experiment.py . 68

A.7 create tables.py . 71

ix

Tables

Table

2.1 Number of cortical neurons in mammals . 9

3.1 CB model parameters . 14

3.2 CE model parameters . 19

3.3 False alarm recognition probabilities of the CB model 26

3.4 Learning and false alarm probabilities of the CB model 26

3.5 Values of L (bits/neuron) for the CE model . 27

4.1 Lens properties . 39

4.2 LCD properties . 40

4.3 Diffuser properties . 40

4.4 Detector properties . 41

4.5 LED properties . 41

x

Figures

Figure

2.1 Three drawings of cortical lamination . 8

2.2 Neuron diagram . 10

3.1 Cognon Basic (CB) neuron model architecture . 13

3.2 General cognon model architecture . 15

3.3 Two neurons in a single layer of a dual-flow network 20

4.1 3D render of the SPM architecture . 29

4.2 Diagram of the SPM implementation . 30

4.3 Gerchberg-Saxton algorithm diagram . 34

4.4 3D render of the SAM architecture . 37

4.5 Diagram of the SAM implementation . 38

Chapter 1

Introduction

Currently it is a challenging intellectual problem to understand how the human brain com-

putes so rapidly using neural spikes. Despite the enormous amount already known about the brain’s

biochemistry, structure and connections, little is known about how the computation works.

1.1 Background

In recent years, projects based upon massive hardware simulation of interconnected neurons

have been undertaken with the goal of achieving a physical validation of a biologically inspired

model neural network. For example, the Spiking Neural Network Architecture (SpiNNaker) project

is developing a computer architecture to simulate the human brain by using parallel ARM processors

and a self-timed Network-on-Chip (NoC) communications system [8]. Another project, Blue Brain,

aims at building large-scale computer simulations of neuronal microcircuits with high biological

fidelity that run on the 360 teraFLOPS IBM Blue Gene/L supercomputer [18]. This section includes

a description of the most relevant projects that are currently in active development.

1.1.1 The Human Brain Project

The Human Brain Project (HBP), which integrates the Blue Brain project, is a research

project that aims to develop a large-scale information and communications technology (ICT) in-

frastructure for the specific purpose of understanding the brain and its diseases, and of translating

this knowledge into new computing technology. The end hopes of the HBP include being able to

2

mimic the human brain using computers and being able to better diagnose different brain problems.

The project is directed by the École Polytechnique Fédérale de Lausanne (EPFL) and co-directed

by Heidelberg University, the University Hospital of Lausanne and the University of Lausanne. As

of November 2011 the largest simulations were of mesocircuits containing around 1 million neurons

and 1 billion synapses. A full-scale human brain simulation of 86 billion neurons is targeted for

2023.

In medicine, the project’s results will facilitate better diagnosis, combined with disease and

drug simulation. In computing, new techniques of interactive supercomputing, driven by the needs

of brain simulation, will impact a range of industries, while devices and systems, modelled after the

brain, will overcome fundamental limits on the energy-efficiency, reliability and programmability

of current technologies, clearing the road for systems with brain-like intelligence.

1.1.2 SpiNNaker

SpiNNaker is a million-core massively-parallel computing platform designed as a collabora-

tion between several universities and industrial partners, led by Steve Furber at the University of

Manchester, and inspired by the working of the human brain [9]. The project flagship goal is to be

able to simulate the behaviour of aggregates of up to a billion neurons in real time.

Each SpiNNaker chip embeds 18 ARM968 energy-efficient processors. The chip has six bidi-

rectional, inter-chip links that allow networks of various topologies, controlled by the Network-on-

Chip subsystem. The design is based on a six-layer thalamocortical model developed by Eugene

Izhikevich [13]. The largest SpiNNaker machine will contain 1,200 Printed Circuit Board (PCB)

with 48 SpiNNaker nodes mounted PCB. It will be capable of simulation a 109 simple neurons,

or ∼106 of neurons with complex structure and internal dynamics. In operation, the engine will

consume at most 90 kW of electrical power.

3

1.1.3 SyNAPSE

Systems of Neuromorphic Adaptive Plastic Scalable Electronics (SyNAPSE) is a Defense

Advanced Research Projects Agency (DARPA) program with the goal to develop electronic neu-

romorphic machine technology that scales to biological levels. The ultimate aim is to build an

electronic microprocessor system that matches a mammalian brain in function, size, and power

consumption. It should recreate 1010 neurons, 1014 synapses, consume 1 kW (same as a small

electric heater), and occupy less than 2 l of space.

The project is currently in the third phase out of five. In the first phase cortical simulations

were developed with ∼109 neurons and ∼1013 synapses running on the Blue Gene/P supercomputer,

which had 147,456 CPUs and 144 terabytes of memory [1]. The second phase produced a 45 nm

CMOS neuromorphic chip that implements 256 leaky integrate-and-fire neurons and 1,024 synapses

per neuron with a power consumption of 45 pJ per spike [21]. As the third phase is completed, it

is expected that multi-core neurosynaptic chips with ∼106 neurons per chip will be announced this

year.

1.1.4 BrainScaleS

Brain-inspired multiscale computation in neuromorphic hybrid systems (BrainScaleS) is a

collaboration project of 18 research groups from 10 European countries with the aim to understand

function and interaction of multiple spatial and temporal scales in brain information processing.

The project focuses on three research areas: in vivo biological experimentation; simulation on

petascale supercomputers; and construction of neuromorphic processors. Their goal is to extract

generic theoretical principles to enable an artificial synthesis of cortical-like cognitive skills.

The BrainScaleS project has already fabricated a neuromorphic hardware based on wafer-

scale analog VLSI. Each 20-cm-diameter silicon wafer contains 384 chips, each of which implements

128,000 synapses and up to 512 spiking neurons. This gives a total of ∼200,000 neurons and 49

million synapses per wafer. The circuitry contains a mix of both analog and digital circuits, as the

4

simulated neurons themselves are analog, while the synaptic weights and interchip communication

is digital.

1.1.5 Numenta

Numenta is a company that uses a technology named Grok that is based on biologically

inspired machine learning technology to build solutions that help companies automatically and

intelligently act on their data. The company was founded by Jeff Hawkins, who previously founded

the Redwood Neuroscience Institute, a scientific institute focused on understanding how the neo-

cortex processes information. In 2004 he wrote the book On Intelligence [12], which describes the

progress on understanding the neocortex.

The core model of Grok technology is the Cortical Learning Algorithm (CLA), which is a

realistic model of a layer of cells in the neocortex. This model is based on the idea that the

neocortex is not a computing system, it is a memory system. In the CLA, the brain is described

as a predictive modeling system, where learning is achieved by building models of the world from

streams of sensory input. From these models, predictions are made, anomalies detected, and actions

taken.

The three principles behind the CLA are:

• In contrast with how computers store information, data stored in the brain is very sparse,

only a few percent of the neurons in the brain are active at a given time. A data storage

system named Sparse Distributed Representations (SDRs) is presented in this model, where

active neurons are represented by 1s and inactive neurons are 0s. SDRs have thousands of

bits, but typically only about 2% are 1s and 98% are 0s.

• Most machine learning techniques assume that each data point is statistically independent

of the previous and next records, but the brain uses the information of how patterns change

over time to make predictions. The primary function in the neocortex is sequence memory.

Learning sequences allow the brain to predict what will happen next.

5

• On-line learning allows the brain to keep up with the amount of new information that

enters through sensory inputs, by continuously refining the internal models of the world.

When sensory data enters the brain there is no time to store it and process it later. Every

new input needs to be processed, and learned if it is relevant.

1.2 Purpose of the Study

Part of the problem in understanding animal cognition consists of knowing how highly in-

terconnected networks of biological neurons can rapidly learn, store and recognize patterns using

neural spikes. Numerous models have been proposed to explain this [14], but few have progressed

to a stage of hardware implementation while retaining the essential biological character of neurons.

The purpose of this work is to develop new computation architectures that implement a

model of neurons and their interconnections, based on the model proposed in [24]. The objectives

of this research project are thus to extend the models presented in the book, and both simulate in

software and implement in hardware a network of modeled neurons of a size comparable to, e.g.,

small insects such as ants. Such a demonstration would allow us to determine if the cognon model

can provide new insights into understanding how the brain works, by joining multiple cognon models

of neurons, forming simple cognon neural networks, and studying how they interact to achieve the

cognition results observed experimentally in the brain of small animals to humans.

1.3 Overview of the Thesis

The thesis is organized as follows: Chapter 2 contains a brief introduction of the human brain

structure and characteristics, focusing on the neocortex and the neurons in this region. Chapter 3

contains the description of the cognon model, both the basic recognition and learning model and

the cognon extended model. Numerical results and intercomparison with the original results are

provided and discussed in this chapter. Chapter 4 contains the description of the two proposed

hardware architectures to implement the cognon model. Chapter 5 contains the conclusions and

future work direction.

Chapter 2

Information Processing Within Mammalian Brain

The mammalian brain is the most complex organ of the body and the main part of the central

nervous system. Specifically, the central nervous system is a bilateral and essentially symmetrical

structure with seven main parts [15]:

(1) The spinal cord, the most caudal part of the central nervous system, receives and processes

sensory information from the skin, joints, and muscles of the limbs and trunk and controls

movement of the limbs and the trunk.

(2) The medulla oblongata, which lies directly above the spinal cord, includes several centers

responsible for vital autonomic functions, such as digestion, breathing, and the control of

heart rate.

(3) The pons, which lies above the medulla, conveys information about movement from the

cerebral hemisphere to the cerebellum.

(4) The cerebellum lies behind the pons and is connected to the brain stem by several major

fibres tracts called peduncles. The cerebellum modulates the force and range of movement

and is involved in the learning of motor skills.

(5) The midbrain, which lies rostral to the pons, controls many sensory and motor functions,

including eye movement and the coordination of visual and auditory reflexes.

7

(6) The diencephalon lies rostral to the midbrain and contains two structures. One, the tha-

lamus, processes most of the information reaching the cerebral cortex from the rest of the

central nervous system. The other, the hypothalamus, regulates autonomic, endocrine,

and visceral function.

(7) The cerebral hemispheres consist of a heavily wrinkled outer layer (the cerebral cor-

tex) and three deep-lying structures: the basal ganglia, the hippocampus, and the

amygdaloid nuclei. The basal ganglia participate in regulating motor performance; the

hippocampus is involved with aspects of memory storage; and the amygdaloid nuclei coor-

dinate the autonomic and endocrine responses of emotional states. The cerebral cortex is

divided into four lobes: frontal, parietal, temporal, and occipital.

Despite the mammalian brain consists of a number of network structures that are critical for

higher level cognition, in this work we focus on the cerebral cortex, as it is the primary part of the

central nervous system involved in higher intelligence and cognition.

2.1 Neocortex

Almost everything we think of as intelligence (perception, language, imagination, mathemat-

ics, art, music, and planning) occurs primarily in the neocortex, which is the most phylogenetically

recent structure within the cerebral cortex.

The neocortex is a ∼2 mm thick wrinkled sheet of grey matter that wraps around the white

matter that wires the various cortical regions together. Although both cortical neuron character-

istics and their connection patterns vary from region to region, most cortex has six visibly defined

layers of physically differentiated neurons. Neurons in various layers connect vertically to form

small highly interconnected cascading networks called columns. This structure exhibits relatively

few visible differences across all cortex. Figure 2.1 shows three drawings of cortical layers developed

by Santiago Ramon y Cajal where this structure can be observed.

Stretched flat, the human neocortical sheet is roughly the size of a large dinner napkin. Other

8

Figure 2.1: Three drawings of cortical lamination by Santiago Ramon y Cajal [4], each showing a
vertical cross-section, with the surface of the cortex at the top. Left: Nissl-stained visual cortex of
a human adult. Middle: Nissl-stained motor cortex of a human adult. Right: Golgi-stained cortex
of a 11/2 month old infant. The Nissl stain shows the cell bodies of neurons; the Golgi stain shows
the dendrites and axons of a random subset of neurons. The six different cortical layers can be
identified.

9

mammals have smaller cortical sheets: the rat’s is the size of a postage stamp; the monkey’s is

about the size of a business-letter envelope [12]. But regardless of size, most of them contain six

layers similar to what you see in a stack of business cards [12].

The neocortex is basically made of a dense network of tightly packed nerve cells. Currently

the exact amount, or density, of neurons is not know precisely. Continuing with the stack of

business cards equivalent, a square of one millimeter on a side on the top of the stack marks the

position of an estimated 105 neurons. Estimates have been developed during the years for different

mammals cerebral cortex. Some of these values are shown in Table 2.1. The human cerebral cortex

is estimated to have in average 19 billion neurons in female brains and 23 billion in male brains, a

16% difference [22].

Table 2.1: Number of cortical neurons in mammals [23, 22].

Animal name Number of cortical neurons (in millions)

Mouse 4
Dog 160
Cat 300
Horse 1,200
African elephant 11,000
Human 19,000 - 23,000

Naked eye observation of the neocortex presents almost no landmarks, the convoluted surface

looks very similar in all parts. However, there are are two clear characteristics: a giant fissure

separating the two cerebral hemispheres, and the prominent sulcus that divides the back and front

regions.

Even though the appearance of the neocortex is homogeneous, neuroscientists have been able

to associate some mental functions to certain regions. Different functional regions perform visual,

auditory, tactile, somatic (smell), motor, memory, and other functions. For example, perception of

anything on the left side of the body and the space around it is located close to the right parietal

lobe. Another example can be found in the left frontal region known as Broca’s area, where an

10

injury may compromise the ability to use the rules of grammar, although the vocabulary and the

ability to understand the meanings of words are unchanged.

2.2 Nerve Cells

Nerve cells, or neurons, are the main signaling units of the nervous system. They are the

basic computational units of the brain and perform both logic and wiring functions as single inter-

connected cells. A typical neuron has four morphologically defined regions: the cell body or soma,

dendrites, the axon, and presynaptic terminals. Each of these regions has a distinct role in the

generation of signals between nerve cells. Figure 2.2 shows a representation of a typical neuron.

Figure 2.2: Typical neuron with its dendrite arbor below, the soma or cell body in the center,
and the axon arbor above. Neuronal signals propagate from axons across synapses to dendrites in
potential spikes of ∼1 millisecond duration [24].

The cell body is the metabolic center of the cell. It contains the nucleus, which stores the

genes of the cell, as well as the endoplasmic reticulum, an extension of the nucelus where the cell’s

proteins are synthesized. Dendrites branch out from the soma in tree-like fashion and are the main

apparatus for receiving incoming signals from other nerve cells. In contrast, the axon extends away

from the cell body and is the main conducting unit for carrying signals to other neurons. An axon

can convey electrical signals along distances ranging from 0.1 mm to 3 m. These electrical signals,

called action potentials, are rapid, transient, all-or-none nerve impulses, with an amplitude of

100 mV and a duration of about 1 ms.

11

When the axon from one neuron touches the dendrite of another, they form small connections

called synapses. Synapses are where the nerve impulse from one cell influences the behavior of

another cell. A neural signal, or spike, arriving at a synapse can make it more likely for the recipient

cell to spike. Some synapses have the opposite effect, making it less likely the recipient cell will

spike. Thus synapses can be inhibitory or excitatory. The exchange of a synapse can change

depending on the behavior of the two cells.

Observations of the brain show that neural signals consist mostly of spikes of perhaps one-

millisecond duration, or bursts of such spikes. Spike-based processing present in neurons can

support rapid learning and recognition of complex patterns. A spike from a typical neuron might

stimulate 10,000 other neurons, each of which might then feed 10,000 others.

Chapter 3

Neural Cognon Model

The cognon model is an information-based model of neural spike computation and cognition

presented by David H. Staelin and Carl H. Staelin [24]. It is based on well-known properties of cor-

tical neurons. In it, a layered spike-processing neural model is presented that is arguably consistent

with both observed neural behavior and sub-second learning and recall. Fast learning is explained

using a feed-forward scheme, which permits to train multiple layers of neurons sequentially in ap-

proximately linear time. Some extensions to the model are considered, which include spike timing,

dendrite compartments, and new learning mechanisms in addition to spike-timing-dependent plas-

ticity (STDP). The model is verified using the Shannon information metric (recallable bits/neuron)

to measure the amount of information taught to a model neuron using spike patterns, both in theory

and simulations.

3.1 Cognon Basic (CB) Neuron Model

The Cognon Basic (CB) model is based in a well-known characteristic of neurons: they

produce an output spike when the sum of nearly simultaneous (within a few milliseconds) identical

input spikes weighted by each synapse strength exceeds some firing threshold H that varies with

time, where the set of simultaneously excited neural inputs defines the neuron input pattern [20,

16, 25]. The CB model assumes all spikes have the same amplitude and shape, while synapses have

only two possible strengths, 1 and G (G > 1). Also, this model does not learn and respond to time

intervals between the successive arrival times of spikes at individual synapses, because this is an

13

unclear mechanism and adequate neuron model performance is obtained using this simpler model.

3.1.1 Basic Recognition

The architecture of the single-neuron computational model is represented in Figure 3.1. The

excitation pattern is defined as the set of output spikes of all the afferent neurons, which are the

neurons that have axons connected to the current neuron, at the soma output before the axons.

This model differs from common neuron definitions in that the axons from previous neurons are

included as part of the current neuron, and the axon of this neuron is excluded. For this reason

the output of the neuron is considered at the output of the cell body, before the axon arbor.

Figure 3.1: Diagram of the Cognon Basic (CB) neural model architecture and soma-based definition
of excitation patterns [24].

Each excitation pattern is a sequence of 0’s and 1’s that correspond respectively to the absence

or presence of a spike at the afferent soma (input neurons) within the same nominal millisecond

window during which spikes can superimpose efficiently. As displayed in Figure 3.1, the pattern

is not the input to the synapses, which could differ if the paths between the various afferent soma

and the summing point introduce additional different fixed delays. The output (0 or 1) is defined

by whether the neuron produces nearly simultaneous spike at the neuron output (right-hand side

of the figure), where each output spike signifies recognition of the input as familiar.

Neuron output spikes propagate along a highly branched axon arbor that might extend to

∼0.5 mm length or more. Each small axon branch typically terminates in a synapse that connects to

a dendrite on another neuron. Dendrites are generally shorter and thicker than axons and connect

14

to the cell body and soma where the basic neuron model sums the excitations over a sliding time

window that can be approximated using discrete time intervals of ∼1 millisecond width. If the sum

equals or exceeds the firing threshold, then the basic neuron model fires. In nature, patterns might

be presented at intervals of tens of milliseconds, and perhaps at the well-known gamma, theta, or

other periodicities of the brain [24].

Figure 3.2 displays the main parameters of the general cognon architecture. Each layer of

neurons has a set of binary outputs defined as sj where j identifies the layer index. In a layer, each

cognon-modeled neuron is identified by the index i. If we consider the modeled neuron i of layer j,

its output is defined as sij , and the set of synapse weights is defined as aij .

This figure also defines the different states of a synapse. It can be active or not active,

depending on whether the previous layer j−1 neuron i axon output si,j−1 is connected to one of the

dendrites of the current layer j neuron i forming a synapse. An active synapse can be excited when

the previous layer neuron connected to the synapse fires, and so the output is 1. Finally, in the

CE model an extension to the basic model is considered where some synapses may be atrophied

and even later removed if these synapses are found not to be useful to learn the patterns which the

neuron is exposed to.

Table 3.1: CB model parameter description and approximate values.

Parameter Description Value∗

S0 Number of synapses per neuron ∼10,000
N Number of excited synapses at the neural model input
w Number of patterns taught while a neuron is learning ready w . S0/3N
H Firing threshold 9 < H < 60
G Ratio of strong synapse strength to weak synapse strength 1.3 < G < 1.8
L Recallable learned Shannon information
sj Layer j output vector 0 or 1
aij Strong synapse vector for cognon i of layer j 0 or 1

P ij Projection matrix of the active synapses for cognon i of layer j 0 or 1

∗Approximate values and ranges in real neurons.

Based on the parameters presented in Table 3.1 the model can be described formally as

15

Figure 3.2: Diagram of the general cognon model architecture.

16

follows. Synapses for cognon i of layer j are connected to a subset of the previous layer j− 1 axons

to obtain the active excited synapses:

P ijsj−1 (3.1)

The number of strengthened active synapses that are excited at a certain time can be ex-

pressed as:

atijP ijsj−1 (3.2)

In a similar form, the number of not strengthened active synapses that are excited at that

same time can be described as:

stj−1P
t

ijP ijsj−1 − atijP ijsj−1 (3.3)

Using these definitions, cognon neuron i fires when the number of excited strengthened

synapses weighted by G plus the number of non-strengthened but excited synapses is higher than

the threshold defined by GH:

(
atijP ijsj−1

)
G+

(
stj−1P

t

ijP ijsj−1 − atijP ijsj−1
)

1 > GH (3.4)

Which can also be expressed as:

atijP ijsj−1 >
GH − stj−1P

t

ijP ijsj−1

G− 1
(3.5)

In the CB model, the number of excited synapses at the neural model input N is fixed. Thus,

we can simplify using the equality:

stj−1P
t

ijP ijsj−1 = N (3.6)

And the condition deduced previously can be reduced to:

17

atijP ijsj−1 >
GH −N
G− 1

(3.7)

Finally, if the number of excited synapses N is close to the number of synapses needed to fire

a neuron H, the previous expression can be further simplified:

atijP ijsj−1 & H (N ' H) (3.8)

As later will be shown in the simulation results section, the basic recognition neuron model

can instantly recognize even hundreds of patterns with little error. This is also true of the early

Willshaw model [11] and a few others, so instant recognition alone is not unique to this model.

The uniqueness lies instead in the relative neurological plausibility of the fast learning mechanism

proposed for training the basic recognition neural model.

3.1.2 Neural Learning Model

Once the CB model has been shown to be able to recognize known patterns by using the

embedded information in the input synapse strength (1 or G), this section describes how this basic

neural recognition model could learn new patterns or determine which ones to learn.

The proposed learning model is based on a simplified form of spike-timing-dependent plas-

ticity (STDP) for which any spike that arrives in a timely way so as to help trigger an output spike

instantly strengthens its synapse from a weight of unity to G (G > 1). Since this basic model is

binary, no other synapse strengths are allowed. The authors designate this as the synapse-strength

(SS) learning model.

The main SS model learning mechanism is that when a learning-ready neuron is being trained,

any pattern that excites an output spike also irreversibly strengthens the weights of all contributing

afferent synapses from 1 to G. This assumption is based on neurological observations which show

that spike-triggered dendritic back-propagation is known to strengthen afferent synapses [19].

In contrast with most basic neural models, the SS model has the property of instant learning.

18

This permits to avoid the mathematical NP-complete back-propagation training time barrier, where

neuron learning times increase roughly exponentially with the number of synapses per neuron,

because learning is accomplished almost instantly within a single neuron rather than requiring to

consider the interaction between pairs of neurons. This roughly assumes that any pattern presented

to a neuron while it is learning ready, or plastic, merits memorization.

In order to be able to evaluate the SS model, a metric to measure the information stored per

neuron is defined as the learned Shannon information L (bits/neuron) recoverable from a binary

neuron [2]:

L ' w
[
(1− pL) log2

1− pL
1− pF

+ pL log2
pL
pF

]
(3.9)

Where w is the number of patterns, pL is the probability of a neuron learning a pattern

presented to it, and pF is the probability of false alarm, which is the probability of firing triggered

by unlearned patterns.

This Shannon metric applies when: 1) the desired information is the taught information that

can be recovered by observing the model’s outputs for all possible input excitation patterns, and

2) the only information provided by a neural spike is that the excitation pattern responsible for

that spike had excited approximately the same synapses that had been strengthened earlier as a

result of seeing similar excitation patterns when the synapses were plastic and learning-ready. In

contrast with other previous models, which often consider that some information may reside in the

time interval between two consecutive spikes, no other learned-information storage and recovery

mechanism is assumed for the basic neuron model.

3.2 Cognon Extended (CE) Model

The Cognon Extended (CE) model extends the basic cognon model by introducing the op-

tional possibilities that: 1) neuron firing decisions might be performed within dendritic sectors

(compartments) that independently sum their own synapse excitations and test that sum against

19

their own firing threshold before firing the neuron, and 2) the relative timing of spikes within a

single neuron excitation pattern (which might last 2-20 milliseconds) could further distinguish one

pattern from another. An additional learning model involving synapse atrophy (SA) is also con-

sidered, in which synapses that not contribute are atrophied and replaced with potentially more

useful ones.

Table 3.2: CE model parameters definition.

Parameter Description

C Number of dendrite compartments capable of firing independently
D Number of possible time slots where neurons can produce spikes
S0 Number of synapses per neuron
N Number of excited synapses at the neural model input
w Number of patterns taught while a neuron is learning ready
H Firing threshold
G Ratio of strong synapse strength to weak synapse strength
L Recallable learned Shannon information
pF False alarm probability for a random excitation pattern
pL Probability that a given taught pattern will be learned by a neuron
R Refractory period

3.2.1 Synpase Atrophy (SA) Learning Model

The SA learning model is a new learning mechanism proposed in the CE model. It can

be combined with the previously presented SS model or work alone. The main advantage of this

learning model is that, combined with the SS model, it can help reduce the false alarm probability

that increases when synapses with reduced weight (unity) still contribute to the sum which is tested

against the threshold G ·H and can therefore cause the neuron to fire erroneously.

In order to reduce this problem, the SA learning model proposes to atrophy synapses that

never contributed to a spike during learning, despite many opportunities. Less useful synapses

should be replaced with potentially more useful ones linked to other neurons, thus maintaining the

total number of synapses per neuron roughly constant over most of each neuron’s life. As neurons

20

maturate from young states, the number of synapses typically increases with time and then slowly

declines as the neuron becomes old, perhaps after yeards or decades.

3.2.2 Feedback Paths

Rich feedback between layers of cognon model neurons might permit improved noise immu-

nity, learning and recognition of pattern sequences, compression of data, associative or content-

addressable memory functions for both static and time-sequential patterns, and development of

communication links through white matter. It is well known that in many cortical areas there are

more feedback synapses conveying information top-down from higher levels than there are synapses

conveying information bottom-up from sense such as the auditory system [12].

Figure 3.3: Two cognon modelled artificial neurons (N) in a single layer of a dual-flow network
having top-down feedback paths. Set A synapses are feed-fordward and Set B synpases convey
feedback [24].

Figure 3.3 illustrates how the cognon neuron model might accommodate and rapidly train

synapses handling such bidirectional flows of information. This would allow to implement the

equivalent of a full-duple communications system. The afferent synapses for each neuron can be

divided into the “A” bottom-up set that accepts spikes from lower sensory layers, and the “B”

top-down set that accepts spikes from the outputs of that neural layer and any layer above.

21

3.2.3 Innovation and Relevance

No prior models are arguably consistent with both observed neural behavior and sub-second

learning and recall. Also, an analysis considering the information stored in the neuron as learnt

patterns was not done previously.

Many neuroscientists ask how simplified numerical models of neurons could contribute useful

understanding of cognition since they differ so markedly from real neurons. The behavior of good

simple numerical models is a subset of the achievable complex behaviours of real neurons, however

they can establish an approximate lower bound to real performance.

3.3 Software Simulation of the Family of Cognon Models

Starting from the models and algorithms presented in [24], we developed a software to simulate

the CB and CE models. The development is available at https://github.com/pauh/neuron for

download and study.

The cognon models family simulator trains and tests an ensemble of neurons having given

parameters and reports the average results for various parameters, particularly the mean and

standard deviation for the probability of learning pL, probability of false alarm pF , and learned

information metric L.

To obtain sufficiently accurate statistics for the probability of learning, the system trains

enough neurons so that at least 10,000 words are exposed to neurons during training. At least ten

neurons are trained, no matter how many words are in the training set for each neuron. Regarding

the probability of false alarm, each neuron configuration is tested on a total of at least 1,000,000

random words that do not belong to the training set. Each neuron instance is tested on at least

1,000 random words.

22

3.3.1 Design

The design of the software system is based on object-oriented design, where a set of interacting

abstract objects are defined to solve the problem. The system is structured in two modules: the

cognon model, and the auxiliary classes to run different setups.

The cognon model module contains the central class Neuron, which represents a CE model

neuron. It stores the neuron parameters (S0, H, G, C, D1, and D2) and the state of each

synapse (strength, delay, and container). It can also be used to model a CB neuron, by setting the

parameters C, D1, and D2 to 1, as the CE model is an extension of the CB model. In addition to

the main class, three other classes are defined to help with the neuron training process.

The Synapse class represents a connection between the neuron’s input dendrites and the

output axons of other neurons. It contains the offset of the represented synapse in the list of

neuron synapses, and the associated delay, which represents the time the signal takes to traverse

the axon to reach the synapse. An excitation pattern is represented using the Word class, which

contains the input synapses that fired for a given time period. Finally, the WordSet class stores a

time sequence of Word instances that are used to train and test a neuron.

The module that contains the auxiliary classes to run experiments with the cognon model

neuron is divided in four main classes. The first two classes (Alice and Bob) are based on a

classic metaphorical example from communications theory: suppose that Alice wishes to tell Bob

something that Bob should know, and that she does this by means of a single new neuron that she

trains. She trains the neuron while it is plastic by exposing it to a set of w patterns she chooses

from all possible patterns. Bob then extracts that maximum information by exposing the neuron

to all possible patterns and noting which patterns produce recognition signatures and are therefore

presumed to have been selected and taught by Alice. Using these two classes a neuron can be

trained with Alice class, and the learning probability pL and false alarm probability pF can be

obtained from the Bob class instance.

Two other classes are included in this module. The Configuration class is used to represent

23

a set of parameters to run a simulation experiment. The Cognon class is the main class of the

simulation system, it runs a set of experiments as described in the given configuration and processes

the obtained results.

3.3.2 Implementation

The design was implemented using Python programming language and the numerical libraries

NumPy. It was developed in a standard Linux environment, but should also work on any other

environment where Python and NumPy are available. In order to verify that the implementation

is coherent with the design unit tests were developed for each class in the system. Multiprocessing

capabilities of Python were used to run independent experiments at the same time when multiple

computer processors are available.

A first implementation of the most basic neural model was developed initially, which can be

found in the cognon basic.py source code file. This version only includes the Word class and a

simplified version of the Neuron class. It allows to test the first example in the book, which can

be verified using the accompanying script file test cognon basic.py that includes tests for both

classes. Within the neuron training tests, the test train() method is defined, which runs the

book example and makes sure that the result is the expected one.

Learning from the experience of this first prototype, the final design was developed and

implemented. The main requirements considered were clarity of the implementation and code to

facilitate reusability, and optimization of the resulting program where this requirement did not

conflict with the clarity of the solution.

3.3.3 Results

In order to verify that the results from the book and the implemented solution were the same,

simulations were run with the parameters shown in the book results tables.

Table 3.3 presents the average false alarm probabilities pF that result for the set of parameter

values proposed in the cognon book. The definition of each parameter can be found in Table 3.1.

24

These simulations use the most basic model presented previously in this section. Also, the number

of excited inputs N is fixed in each simulation.

The low values for pF near 1 percent suggest that in these cases the CB neuron model

should emit no more than one spontaneous erroneous spike every hundred patterns or so. It can be

observed that pF is very sensitive to both N and w, by comparing the first and second rows and

first and third rows respectively.

The main result from Table 3.3 is that the CB neuron model can instantly recognize hundreds

of patterns with little error. In addition to instant recognition, the fast learning mechanism of this

model is a unique feature not found in other models.

The top part of Table 3.3 shows that the acceptable false alarm probability pF limits both N

and w. It also shows how larger neurons (larger S0) can store many patterns before failing due to

an excessive number of learned patterns w, which is equivalent to over education. The lower part

of Table 3.3 shows that lower values of G, even close to 1, are enough to keep pF low, and this is

more consistent with synaptic values observed in neurons.

Table 3.4 shows the simulation results of the full CB model. In this case, the number of

excited inputs N is not fixed, instead the probability that any given synapse is excited for any

particular excitation pattern is 1/R and is independent and identically distributted among synapses

and patterns, following a binomial distribution.

The values of S0 and H are fixed, but the values of R, w, and G were extracted from an

optimization to maximize the L. The resulting pF and pL estimates have been obtained averaging

the results of many experiments.

Table 3.5 presents the simulation results for the full CE model. In this case the modelled

neurons are tested with different numbers of independent dendrite compartments C and more than

one available inter-pattern delay D. The simulations are for neurons with 10,000, 1,000, and 200

synapses.

In the results it can be observed that having variable delays enable neurons to learn more

information. However, this software implementation does not work as expected for multiple com-

25

partments. The neurons seem to be over-trained, as the probability of learning pL is 1.0, and the

probability of false alarm pF is also 1.0, all patterns are being recognized even if the neuron was not

trained with these patterns. The simulations of the original authors did not expose this problem,

so further inspection of the development might show how to overcome this unexpected results.

26

Table 3.3: False alarm recognition probabilities pF as a function of the basic recognition model
neuron parameters with a fix number N of excited synapses.

pF (%) N H S0 w G L L/S0

0.47 4 4 10 1 100 7.7 0.77
10.22 5 4 10 1 100 3.3 0.33
14.70 4 4 10 2 100 6.6 0.66
0.00 10 10 100 4 100 6.3 0.06
0.02 11 10 100 4 100 26.9 0.27
0.11 11 10 100 5 100 50.7 0.51
0.46 11 10 1,000 60 100 467.7 0.47
0.44 11 10 10,000 600 100 4730.8 0.47
0.35 22 20 10,000 450 100 3682.4 0.37

0.03 10 10 100 6 1.5 56.4 0.56
0.00 11 10 1,000 15 1.5 31.9 0.03
0.01 11 10 10,000 160 1.5 603.5 0.06
1.51 14 10 10,000 10 1.5 60.7 0.01

Table 3.4: Values of L, pF , and pL as a function of the CB model parameters when the number N
of excited synapses is binomially distributed about its mean S0/R.

L pF (%) pL(%) H G S0 R w

759.4 1.19 72.4 30 4.0 10,000 303 200
574.0 0.09 85.4 105 4.0 10,000 86 70
413.9 0.14 53.2 40 1.9 10,000 250 100

181.4 0.80 18.3 5 3.6 1,000 333 300
119.8 0.69 40.3 10 3.6 1,000 111 60
115.9 1.92 18.4 5 1.9 1,000 333 300
107.3 0.40 56.3 15 4.0 1,000 66 30

34.7 1.23 25.9 5 3.6 200 57 40
26.6 1.73 58.0 10 4.0 200 20 10
9.5 0.42 20.5 20 1.9 200 12 10

27

Table 3.5: Values of L (bits/neuron) as a function of the CE model parameters, based on the
maximized values in [24].

C D S0 L H R G pF (%) pL(%) w

10 4 10,000 0 5 125 1.8 100.00 100 2000
1 4 10,000 1117 5 384 3.8 1.15 58 400
4 4 10,000 155 5 178 3.2 43.62 76 500
10 1 10,000 0 5 333 3.8 100.00 100 200
4 1 10,000 2 10 357 3.6 99.48 100 300
1 1 10,000 756 30 303 4.0 1.23 72 200

1 1 1,000 163 5 285 4.0 1.52 27 200
4 4 1,000 4 5 25 1.9 96.36 99 200
1 4 1,000 158 5 83 1.9 1.14 13 500
4 1 1,000 10 5 83 3.8 88.55 100 60
10 4 1,000 0 5 10 1.8 100.00 100 70

1 1 200 34 5 57 3.8 1.71 28 40
1 4 200 31 5 16 1.8 1.09 14 80
4 1 200 2 5 16 3.8 87.07 100 10
4 4 200 1 5 5 1.9 96.80 99 40

Chapter 4

Hardware Architectures

In this chapter two new hardware architectures are presented. These are inspired on the

information-based model of neural spike computation and cognition presented by David H. Staelin

and Carl H. Staelin, the cognon model [24]. Both architectures are based on optical devices, and

aim to build a set of layers of cognons. Connections are built between each contiguous layer to

simulate the synapses between neurons.

Based on the cognon model simulations from the previous chapter and the devices used in both

approaches, a performance in learning speed for each cognon of less than one second is expected.

However, the recognition speeds might be much faster, as it involves only optical devices.

4.1 Spatial Phase Modulator (SPM)

The first proposed architecture implementation is based on using spatial light modulators

(SLMs) to create beams that simulate the synapses between neurons, and being able to modify the

weights of these synapses by changing the properties of the generated beams. This approach can

easily implement the plasticity that has been observed in the synapses, as the beams can be steered

to remove old synapses and create new ones as they learn new information. Figure 4.1 shows

a concept representation of the Spatial Phase Modulator (SPM) architecture. The interaction

between two layers can be observed, where the top layer generates spikes that are received and

processed by the lower layer.

29

Figure 4.1: 3D representation of the SPM implementation.

30

4.1.1 Description

In this architecture, each model neuron is implemented by a SLM that processes the light

received from the previous layer. The amount of light that crosses the SLM is measured with an

optical detector. The output level of the detector is compared to a defined threshold, and if it is

higher, the light-emitting diode (LED) at the lower end of the device emits a spike that may be

captured by the next layer.

Figure 4.2: Diagram of the SPM implementation

A detailed diagram of the SPM architecture is shown in Figure 4.2. The top layer is identified

as sj−1 following the previous chapter definition. It is represented by the set of output LEDs that

light when the neuron that model fires. The LEDs are separated a distance D, which is also the

width of each SLM.

Only one element of the bottom layer sj is represented for clarity. At the top, the SLM

generates a set of N beams, where each beam corresponds to a strengthened synapse. These beams

implement the values of the projection matrix P ij and the strong synapses vector aij described in

31

the previous chapter. Also, the secondary lobes generate non-strengthened synapses. The difference

in gain between the main lobe G0 and the secondary lobes GS is used to model the ratio of strong

synapse strength to weak synapse strength G = G0/GS .

The amount of light that is received through the SLM is measured by the optical detector,

implementing the weighted sum of the synapse inputs at the output of the detector. This output

is then compared to the firing threshold H previously defined. If the output is higher than the

threshold the neuron fires by lightening the LED at the bottom of the diagram.

4.1.1.1 Components

The presented SPM architecture uses 4 main elements that are described in this section.

SLM

Spatial light modulators (SLMs) are devices capable of converting data in electronic form

(or sometimes in incoherent optical form) into spatially modulated coherent optical signals.

These devices have been used since mid-1960s to modulate the intensity of laser beams for

optical information processing applications. SLMs can be used in the input plane of optical

processing systems to generate input images, holograms or interferograms; but also in the

Fourier plane of analog optical processing systems [6]. Multiple technologies exist for these

devices. Currently, the most important are liquid crystal SLMs.

Most screens of currently existing devices use liquid crystal displays. In such applications

voltages applied to pixelated electrodes cause a change in the intensity of the light trans-

mitted by or reflected from the display. Similar principles can be used to construct a spatial

light modulator. Both displays and SLMs exploit the ability to change the transmittance

of a liquid crystal by means of applied electric fields. Usually those fields are applied be-

tween the glass plates that contain the liquid crystal material using transparent conductive

layers (indium tin oxide films) coated on the inside of the glass plates. In order to achieve

alignment of the liquid crystal at the interface, the conductive layer is covered with a thin

32

alignment layer (often polyimide) which is subjected to polishing.

An example device that could be used for this system is Hamamatsu LCOS-SLM x10468,

which is a pure phase SLM, based on Liquid Crystal on Silicon (LCOS) technology in

which liquid crystal (LC) is controlled by a direct and accurate voltage, and can modulate

a wavefront of light beam. This device has a resolution of 800 x 600 pixels and an efective

area of 16 x 12 mm. The response time is 35 ms.

Detector

An optical detector, or photodetector, is a type of sensor that measures the intensity of

light. In this system, the detector would measure the amount of light that arrives through

the beams generated by the SLM. This would implement an equivalent to the weighted

sum of the excitation pattern received from the previous layer neurons.

Signal Processor

During the learning phase, the system needs to change the phase values at the SLM. This

process requires some calculations to estimate the desired phase distribution from the beam

pattern that needs to be generated. Section 4.1.2 contains more details on the algorithm

that should implement this part of the system.

LED

The last item of the device is an LED preceded by a comparator that checks if the signal

measured by the detector is higher than the defined threshold. In that case the hardware

neuron generates a spike by lighting the LED for a short interval, while the signals from

the previous layer stay unchanged.

4.1.2 Learning

When a modeled neuron enters learning mode, for each new pattern that fires the neuron, the

corresponding synapses need to be updated. This process is explained by the following algorithm:

33

(1) As the cognon is in learning phase, lower the firing threshold from the recognition level

GH to H. This allows the neuron to fire for most of the inputs, and it learns each pattern

that generates a firing event.

(2) If the cognon fires:

(a) Find the previous layer lighted axons by scanning.

(b) Strengthen the synapses that were excited by the pattern to G, by creating new beams

pointing to the previous layer neurons.

(c) Train the system to synthesize the old plus the new beams with the SLM, generating

a new amplitude distribution by changing the phase distribution on the device.

This requires to change the phase distribution of the SLM to generate new beams in the

directions where synapses should be strengthened. This problem is known as the phase problem,

which consists of obtaining the right phase distribution for the SLM in order to generate a certain

target amplitude pattern in the far-field.

Different algorithms have been proposed for solving this problem, which is known as phase

retrieval. A complete review of different algorithms, including the most well-known Gerchberg-

Saxton algorithm, can be found in [7]. In this section the most common Gerchberg-Saxton algorithm

[10] is presented as a solution to be used in the SPM system.

4.1.2.1 Gerchberg-Saxton algorithm

The Gerchberg-Saxton or error reduction algorithm solve the phase problem through the

iteration of 4 steps, which can be summarized by the following iterative equation:

Ψ(x, y) = lim
n→∞

(PmF−1PFF)n|Ψ(x, y)eiφ(x,y)| (4.1)

where F denotes the Fourier transform, and PF and Pm, projection operators which adjust

the amplitude so that the amplitude conditions in the Fourier and real space are respectively

fulfilled. Figure 4.3 shows a diagram of this process.

34

Figure 4.3: Gerchberg-Saxton algorithm diagram

35

Under the given prerequisites (given real space amplitudes and evenly illuminated Fourier

space), we start in the upper left corner. In the first iteration nothing is to adapt in real space

so we can apply directly the Fourier transform to our pattern (if we start in the Fourier space, an

initial guess of the phases would be necessary). In Fourier space the amplitudes of the transformed

pattern will generally not match with the given ones. We set all amplitudes to the same value, but

leave the phases unaltered. Next we transform the pattern back into real space. This completes

the first iteration of the algorithm. But now the amplitudes have changed and we must adapt them

to match the given pattern. This means we set the modulus of an illuminated pixel to one and of

a dark pixel to zero. After that we use the Fourier transformation again and continue as before

with amplitude adaption in Fourier space and so on. The algorithm is repeated as long as the

convergence criterion is not met or a certain number of iterations is not reached.

The Gerchberg-Saxton algorithm is straight forward and easy to implement, but it has some

flaws. It converges for example to the nearest minimum, which is not necessarily the global minimum

of the deviation to the original image. In order to remedy those other issues, modified versions

of Gerchberg-Saxton were introduced. An example of improved version of this algorithm is the

relaxed averaged alternating reflections (RAAR) algorithm [17].

4.1.3 Performance

The performance of the system will be determined by the operation mode. During the

recognition phase, the system does not need to change any parameters, and all the process is

run by propagating light through the different layers of devices. This would allow high speed

computations to be performed with the system during recognition phase, when not learning.

However, when the system is in learning phase, the speed would be more restricted. The

calculations to update the phase of the SLM would need some time, probably in the order of

microseconds, to run the Gerchberg-Saxton algorithm. We define this time as TGS . After the

desired phase distribution is calculated, the SLM would need to be updated, which is limited by

the refresh period of the device, defined as TSLM . Adding these two times we can obtain the

36

learning time of the system: TL = TGS + TSLM .

4.2 Spatial Amplitude Modulator (SAM)

The other designed architecture uses commercially available optical devices, that include

LEDs, lenses and LCDs, to recreate the details of the cognon model. Modeled neurons are arranged

in 2D layers that are put one on top of the other. Each cognon is connected to 10,000 cognons of

the previous layer using optical signals, which simulate the synapses through which the spikes are

transmitted. Based on the initial estimations using current market technology, each cognon would

have a size of 1 cm2 and a layer spacing of 1 m would be needed. Figure 4.4 shows a 3D concept

representation of the Spatial Amplitude Modulator (SAM) architecture. The interaction between

two layers can be observed, where the top layer generates spikes that are received and processed

by the lower layer.

4.2.1 Description

In this architecture, each synapse is modeled by a cell of an liquid crystal display (LCD), and

a set of the cells simulate a neuron with all the synapses. Using a lens, the light from the previous

layer is focused on the LCD and this applies the weighting to each of the input signals. Below the

screen there is a diffuser that adds the light from all synapses and a detector the measures the total

received light. As in the SPM architecture, the signal from the detector is compared to a threshold

and the LED at the bottom is lighted, emulating a spike, if the signal is higher than the threshold.

A detailed diagram of the SAM architecture is shown in Figure 4.5. The top layer is identified

as sj−1 following the previous chapter definition. It is represented by the set of output LEDs that

light when the neuron that model fires. The LEDs are separated a distance D, which is also the

width of each group of LCD cells.

The elements of layer sj are represented at the bottom of the figure. Each element includes

a lens that focuses the lights from the previous layer, an LCD region, a diffuser, a detector, a

comparator and the final LED. Even though in the diagram the LCD regions are represented as

37

Figure 4.4: 3D representation of the SAM implementation.

38

Figure 4.5: Diagram of the SAM implementation

39

separate LCDs, a practical implementation would share a high resolution screen between multiple

neurons. The pixels of each region of the LCD would implement the projection matrix P ij and the

strong synapses vector aij described in the previous chapter.

The amount of light that is received through the SLM is measured by the optical detector,

implementing the weighted sum of the synapse inputs at the output of the detector. This output

is then compared to the firing threshold H previously defined. If the output is higher than the

threshold the neuron fires by lightening the LED at the bottom of the diagram.

4.2.1.1 Components

The presented SAM architecture uses 5 main elements that are described in this section.

Lens

The first item of the device is a plano-convex lens that focuses the light received from the

previous layer on the LCD screen. The parameters that describe this item are shown in

Table 4.1.

Table 4.1: Parameters and estimated values of the lens in the SAM architecture.

Parameter Description Value

D Diameter 1 cm
f Focal length 5 mm
F# f/D 0.5

LCD

The LCD could be obtained from any commercial available device with a high resolution

screen. Current screens are capable of 300 dpi or better, what is equal to having about

0.1 mm per pixel. Together with the lens, this part is one of the size limiting components

of the system. Table 4.2 shows the relevant parameters of this device.

Diffuser

40

Table 4.2: Parameters and estimated values of the LCD in the SAM architecture.

Parameter Description Value

A Number of strong synapses 40
a Pixel size 0.1 mm
G Ratio strengthened pixel to non-strengthened 1.8

The diffuser adds the light that is received through the LCD in order to measure the sum

of excited synapse, both strengthened and regular. Different technologies exist for these

devices, with very different transmission efficiencies. The cheapest devices have very poor

transmission rates, about 0.3, and would not be suitable for this application, as the LEDs

required power would have to be increased. Table 4.3 shows the main parameter of the

diffuser, with the estimated value for the best quality devices available.

Table 4.3: Parameters and estimated values of the diffuser in the SAM architecture.

Parameter Description Value

ηdiff Efficiency of transmission 0.9

Detector

An optical detector, or photodetector, is a type of sensor that measures the intensity of

light. In this system, the detector would measure the amount of light that arrives through

the pixel pattern in the LCD screen. This would implement an equivalent to the weighted

sum of the excitation pattern received from the previous layer neurons. Table 4.4 shows

the relevant parameters of this device.

LED

The last item of the device is an LED preceded by a comparator that checks if the signal

measured by the detector is higher than the defined threshold. In that case the hardware

neuron generates a spike by lighting the LED for a short interval, while the signals from

41

Table 4.4: Parameters and estimated values of the detector in the SAM architecture.

Parameter Description Value

PR Received power
GR Gain pattern
� Diameter or active area 3− 100 mm2

NEP Noise Equivalent Power 8.6 · 10−14 W/
√
Hz

R Responsivity 0.62 A/W @ 950 nm

the previous layer stay unchanged. Table 4.5 shows the relevant parameters of the LED.

Table 4.5: Parameters and estimated values of the LED in the SAM architecture.

Parameter Description Value

PT Transmitted power 10 mW
GT Gain pattern FNBW ' 40◦

fr Firing rate 20 Hz
λ Peak wavelength 900 nm

∆λ Spectral width 50 nm

4.2.2 Learning

When a modeled neuron enters learning mode, for each new pattern that fires the neuron, the

corresponding synapses need to be updated. In this architecture the process is easier, as there is

no need to recalculate the phase distribution. This process is explained by the following algorithm:

(1) As the cognon is in learning phase, lower the firing threshold from the recognition level

GH to H. This allows the neuron to fire for most of the inputs, and it learns each pattern

that generates a firing event.

(2) If the cognon fires:

(a) Find the previous layer lighted axons by scanning.

42

(b) Strengthen the synapses that were excited by the pattern to G, by adding them to

the list of strengthened pixels.

(c) Update the LCD pixel values with the new strengthened synapses.

The process of finding the previous layer lighted axons can be optimized by using smart

search algorithms. An option would be to use Welsch functions, by setting up a certain function

on the LCD screen and measuring the received light power.

Another method that would be useful could be based on compressed sensing theory [5]. Given

that the set of excited inputs in the excitation patterns is small compared to the total number of

synapses, it can be considered as a sparse signal. Thus, this problem could be analyzed as a convex

optimization problem. In order to obtain a solution with the minimum number of measurements,

reducing the time to obtain the previous layer lighted inputs, would be to minimize the sum of

excited inputs given that the weighted sum of the signals is equal to the measured power [3].

4.2.2.1 Inhibitory Synapses

In a network of cognon model neurons, it is obviously more efficient if only one or a few neigh-

boring artificial neurons learn any given excitation pattern, rather than having excess duplication

among many. Therefore it would be useful for an artificial neuron that recognizes one pattern to

suppress its nearby neighbors’ ability to learn the same pattern. One common hypothesis is that

this is partly accomplished if some fraction of all axons inhibit firing of nearby neurons by using

synapses having negative strength.

In order to implement these negative synapses in the SAM architecture, the system design

needs to be modified, as when using incoherent light powers always add, and do not subtract.

A method to obtain these desired negative strengths would be to use a two color system, where

another subset of the LCD array would be used to implement negative synapses. The sum of

negative synapses would be obtained using another detector per each cognon device. The result

would have to be subtracted from the sum of the original detector before the comparator checks if

43

the result is higher than the threshold and whether the LED needs to be ligthed to fire the artificial

neuron.

4.2.3 Performance

As in the SPM architecture, the performance of the system will be determined by the spec-

ifications of the components. In this case, the recognition speed can also be very high, as the

computation is done through optical paths. However the refresh rate of the LCD screen might need

to be considered in this operation mode.

Regarding the learning phase, the performance is limited by the refresh time of the screen

TLCD plus the time needed to find the excited inputs at each step of the learning process TS . The

total learning time for this device would be TL = TLCD + TS .

Chapter 5

Conclusions

This work presents research on the development of intelligent computing systems using cor-

tical spikes to communicate information between artificial neurons. The focus is on the cognon

neural model, validating in software the existing results, and proposing two designs for hardware

implementations of the model.

The cognon model, with the proposed extensions, is consistent with both observed neural

behavior and sub-second learning and recall. It is an innovative approach that considers the infor-

mation stored in the neuron as learnt patterns, and optimizes the parameters of the model based

on the total recallable information. Software simulation shows promising results for this neural

model. The original results are verified by a new implementation that prioritizes the clarity of the

code and optimizes expensive operations.

No highly-interconnected, in the order of 10,000 synapses, scalable neural architecture imple-

mented in hardware has been implemented yet, but multiple research groups are working on new

systems. In this thesis, two new neural computing hardware architectures based on the cognon

model are presented. One of the architectures is based on using SLMs as the main component to

generate a set of beams that simulate synapses. The other hardware architecture uses an array of

lens and commercially available LCD screens to create artificial synapses between layers of neu-

rons. These architectures could lead to machines with intelligent capabilities, useful for processing

high amounts of data in real-time and other applications that are difficult to solve with current

computing technologies.

45

5.1 Suggestions of Future Research

Continuing on the results of this work, the Synapse Atrophy model, the second cognon

extended model learning method, should also be considered and compared with the presented

Synapse Strength model. The preliminary results of this model seem very promising. Later, this

model could also be incorporated to the proposed hardware architectures. A logical extension to

the existing results would be the simulation of a network of cognon model neurons, implementing

in software a set of modelled neurons that interact propagating spikes.

Regarding the hardware architectures, the next step would consist of building a prototype

hardware implementation of the designed presented in this thesis. Moreover, other architectures

could be developed based on similar principles. Different communication systems could be used

instead of optic signals. For example, radio-frequency strategies with coding schemes or frequency

modulation.

Finally, building truly intelligent machines would require an understanding of how layers

in the neocortex interact and form different regions associated with certain sensory inputs. This

higher level architectures would have to be incorporated to the presented hardware architectures

in order to achieve results similar to the capabilities of the mammalian brain.

Bibliography

[1] Rajagopal Ananthanarayanan, Steven K. Esser, Horst D. Simon, and Dharmendra S. Modha.
The cat is out of the bag. In Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis - SC ’09, page 1, New York, New York, USA, 2009. ACM
Press.

[2] Adam B Barrett and M C W van Rossum. Optimal learning rules for discrete synapses. PLoS
computational biology, 4(11):1–7, November 2008.

[3] Stephen Boyd and Lieven Vandenberghe. Convex optimization, volume 25. Cambridge Uni-
versity Press, 2004.

[4] Santiago Ramón y Cajal. Comparative study of the sensory areas of the human cortex. 1899.

[5] D L Donoho. Compressed sensing. IEEE Transactions on Information Theory, 52(4):1289–
1306, 2006.

[6] Uzi Efron. Spatial Light Modulator Technology: Materials, Devices, and Applications. CRC
Press, 1995.

[7] J R Fienup. Phase retrieval algorithms: a comparison. Applied Optics, 21(15):2758–2769,
1982.

[8] SB Furber, Steve Temple, and AD Brown. High-performance computing for systems of spiking
neurons. In AISB’06 workshop on GC5: Architecture of Brain and Mind, pages 29–36, 2006.

[9] Steve Furber and Steve Temple. Neural systems engineering. Journal of the Royal Society,
Interface / the Royal Society, 4(13):193–206, April 2007.

[10] RW Gerchberg. A practical algorithm for the determination of phase from image and diffraction
plane pictures. Optik, 35(2):237–246, 1972.

[11] Bruce Graham and David Willshaw. Probabilistic Synaptic Transmission in the Associative
Net. Neural Computation, 11(1):117–137, January 1999.

[12] Jeff Hawkins and Sandra Blakeslee. On intelligence. Times Books, New York, 2004.

[13] E M Izhikevich. Simple model of spiking neurons. IEEE transactions on neural networks / a
publication of the IEEE Neural Networks Council, 14(6):1569–72, January 2003.

47

[14] Eugene M Izhikevich. Which model to use for cortical spiking neurons? IEEE transactions
on neural networks / a publication of the IEEE Neural Networks Council, 15(5):1063–70,
September 2004.

[15] Eric Kandel, James Schwartz, and Thomas Jessell. Principles of Neural Science. McGraw-Hill
Medical, 2000.

[16] Christof Koch. Biophysics of Computation: Information Processing in Single Neurons. Ox-
ford University Press, USA, 2004.

[17] D Russell Luke. Relaxed Averaged Alternating Reflections for Diffraction Imaging. Inverse
Problems, 21(1):13, 2004.

[18] Henry Markram. The blue brain project. Nature reviews. Neuroscience, 7(2):153–60, February
2006.

[19] Henry Markram, Joachim Lübke, Michael Frotscher, and Bert Sakmann. Regulation of Synap-
tic Efficacy by Coincidence of Postsynaptic APs and EPSPs. Science, 275(5297):213–215,
January 1997.

[20] Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas immanent in nervous
activity. The Bulletin of Mathematical Biophysics, 5(4):115–133, December 1943.

[21] Paul Merolla, John Arthur, Filipp Akopyan, Nabil Imam, Rajit Manohar, and Dharmendra S.
Modha. A digital neurosynaptic core using embedded crossbar memory with 45pJ per spike
in 45nm. In 2011 IEEE Custom Integrated Circuits Conference (CICC), pages 1–4. IEEE,
September 2011.

[22] B Pakkenberg and H J Gundersen. Neocortical neuron number in humans: effect of sex and
age. The Journal of comparative neurology, 384(2):312–20, July 1997.

[23] Gerhard Roth and Ursula Dicke. Evolution of the brain and intelligence. Trends in cognitive
sciences, 9(5):250–7, May 2005.

[24] David H. Staelin and Carl H. Staelin. Models for Neural Spike Computation and Cognition.
2011.

[25] Rufin VanRullen, Rudy Guyonneau, and Simon J Thorpe. Spike times make sense. Trends in
neurosciences, 28(1):1–4, January 2005.

Appendix A

Source code

A.1 cognon basic.py

Copyright 2013 Pau Haro Negre

based on C++ code by Carl Staelin Copyright 2009-2011

#

See the NOTICE file distributed with this work for additional information

regarding copyright ownership.

#

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

#

http://www.apache.org/licenses/LICENSE-2.0

#

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

#

import numpy as np

class Word(object):

"""A Word contains a list of those input synapses that fired for the most

recent given excitation pattern.

Attributes:

offset: A set containing the syanpses that fired.

"""

def __init__(self, fired_syn=[]):

49

"""Inits Word class.

Args:

fired_syn: List of input synapses that fired. Can only contain

positive values.

"""

if len(fired_syn) > 0 and sorted(fired_syn)[0] < 0:

raise ValueError(’offset values have to be positive’)

self.offset = set(fired_syn)

class Neuron(object):

"""Models a CB neuron.

Attributes:

S0: Number of synapses.

H: Number of synapses needed to fire a neuron.

G: Ratio of strong synapse strength to weak synapse strength, binary

approximation.

training: whether the neuron is in training mode.

"""

def __init__(self, S0 = 16, H = 4.0, G = 2.0):

"""Inits Neuron class.

Args:

S0: Number of synapses.

H: Number of synapses needed to fire a neuron.

G: Ratio of strong synapse strength to weak synapse strength,

binary approximation.

"""

self.S0 = S0

self.H = H

self.G = G

self.strength = np.ones(S0)

self.training = False

def expose(self, w):

"""Models how the neuron reacts to excitation patterns, and how it computes

whether or not to fire.

Expose computes the weighted sum of the input word, and the neuron fires if

that sum meets or exceeds a threshold. The weighted sum is the sum of the

S0 element-by-element products f the most recent neron vector, the current

word, and the neuron frozen Boolean vector.

50

Args:

w: A Word to present to the neuron.

Returns:

A Boolean indicating whether the neuron will fire or not.

"""

Compute the weighted sum of the firing inputs

s = self.strength[list(w.offset)].sum()

if self.training:

return s >= self.H

else:

return s >= self.H*self.G

def train(self, w):

"""Trains a neuron with an input word.

To train a neuron, "train" is called for each word to be recognized. If the

neuron fires for that word then all synapses that contributed to that

firing have their strengths irreversibly increased to G.

Args:

w: A Word to train the neuron with.

Returns:

A Boolean indicating whether the neuron fired or not.

"""

if not self.training:

print "[WARN] train(w) was called when not in training mode."

return False

if not self.expose(w): return False

Set the srength for participating synapses to G

self.strength[list(w.offset)] = self.G

return True

def start_training(self):

"""Set the neuron in training mode.

"""

self.training = True

def end_training(self):

51

"""Set the neuron in recognition mode.

Once the training is complete, the neuron’s threshold value H is set

to H*G.

"""

self.training = False

A.2 test cognon basic.py

Copyright 2013 Pau Haro Negre

based on C++ code by Carl Staelin Copyright 2009-2011

#

See the NOTICE file distributed with this work for additional information

regarding copyright ownership.

#

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

#

http://www.apache.org/licenses/LICENSE-2.0

#

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

#

from cognon_basic import Neuron

from cognon_basic import Word

from nose.tools import assert_false

from nose.tools import assert_in

from nose.tools import assert_true

from nose.tools import eq_

from nose.tools import raises

class TestWord:

def test_empty(self):

w = Word()

eq_(len(w.offset), 0)

@raises(ValueError)

def test_negative_offset(self):

w = Word([-1])

52

def test_fire_1_3_8(self):

w = Word([1,3,8])

eq_(len(w.offset), 3)

assert_in(1, w.offset)

assert_in(3, w.offset)

assert_in(8, w.offset)

class TestNeuron:

def test_defaults(self):

n = Neuron()

eq_(n.S0, 16)

eq_(n.H, 4.0)

eq_(n.G, 2.0)

eq_(len(n.strength), n.S0)

assert_false(n.training)

def test_expose_not_training(self):

n = Neuron(S0 = 16, H = 4.0, G = 2.0)

w1 = Word([1,6,9])

assert_false(n.expose(w1))

w2 = Word([1,3,4,5,6,8,9,14])

assert_true(n.expose(w2))

@raises(IndexError)

def test_expose_index_error(self):

n = Neuron(S0 = 16)

w = Word([16])

n.expose(w)

def test_train(self):

n = Neuron(16, 4.0, 2.0)

wA = Word([1,6,9,14])

wB = Word([3,4,9,13])

n.start_training()

assert_true(n.train(wA))

assert_true(n.train(wB))

n.end_training()

wD = Word([2,6,12,14])

wE = Word([3,7,9,13])

assert_false(n.expose(wD))

53

assert_false(n.expose(wE))

wF = Word([1,4,9,14])

assert_true(n.expose(wF))

def test_train_not_training(self):

n = Neuron()

w = Word()

assert_false(n.train(w))

A.3 cognon extended.py

Copyright 2013 Pau Haro Negre

based on C++ code by Carl Staelin Copyright 2009-2011

#

See the NOTICE file distributed with this work for additional information

regarding copyright ownership.

#

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

#

http://www.apache.org/licenses/LICENSE-2.0

#

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

#

from collections import namedtuple

import numpy as np

import random

class Synapse(namedtuple(’Synapse’, [’offset’, ’delay’])):

"""A Synapse represents a connection between the neuron’s input dendrites

and the output axons of other neurons.

Attributes:

offset: Identifies a synapse of the neuron.

delay: Represents the time the signal takes to traverse the axon to

reach the synapse. Takes a value in range(D1).

"""

pass

54

class Word(object):

"""An input Word represents the input signals to the neuron for a time

period.

A Word contains a list of those input synapses that fired for the

most recent given excitation pattern.

Attributes:

synapses: A set of pairs containing the syanpses that fired and the

associated delay.

"""

def __init__(self, fired_syn=[]):

"""Inits Word class.

Args:

fired_syn: List of pairs of input synapses that fired and

associated delays. Can only contain positive synapse offset

values.

"""

if len(fired_syn) > 0 and sorted(fired_syn)[0][0] < 0:

raise ValueError(’synapse offset values have to be positive’)

self.synapses = [Synapse(*s) for s in fired_syn]

class WordSet(object):

"""An array of Words.

Wordset is simply an array of Word instances, which may also store

information regarding the delay slot learned for the word during training.

Attributes:

words: Array of Word instances.

delays: Delay slots learned for each word during training.

"""

def __init__(self, num_words, word_length, num_delays, num_active=None,

refractory_period=None):

"""Inits WordSet class.

Args:

num_words: Number of Words to initialize the WordSet with.

word_length: Number of synapses in a Word.

num_delays: Number of delay slots.

55

num_active: Number of active synapses per word.

refractory_period: Average number of different patterns presented

before a given neuron fires.

"""

Distribution of the number of active synapses per word?

if not refractory_period:

fixed: N

N_array = np.empty(num_words, int)

N_array.fill(num_active)

else:

binomial: B(S0, 1/R)

N_array = np.random.binomial(word_length, 1.0/refractory_period,

num_words)

Generate the set of words and set delays to 0

synapses = range(word_length)

self.words = [Word(zip(

random.sample(synapses, N), # active synapses

np.random.randint(num_delays, size=N))) # active delays

for N in N_array]

self.delays = [0] * num_words

class Neuron(object):

"""Models a CE neuron.

Attributes:

S0: Number of synapses.

H: Number of synapses needed to fire a neuron.

G: Ratio of strong synapse strength to weak synapse strength, binary

approximation.

C: Number of dendrite compartments capable of firing independently.

D1: Number of possible time slots where neurons can produce spikes.

D2: Number of different time delays available between two neural

layers.

synapses: Represents a connection between the neuron’s input dendrites

and the output axons of other neurons. Each row of the array

contains 3 fields:

- strength: Strength of the synapse.

- delay: Represents the time the signal takes to traverse the axon

to reach the synapse. Takes a value in range(D2).

- container: The dendrite compartment of this synapse.

training: whether the neuron is in training mode.

"""

def __init__(self, S0 = 200, H = 5.0, G = 2.0, C = 1, D1 = 4, D2 = 7):

56

"""Inits Neuron class.

Args:

S0: Number of synapses.

H: Number of synapses needed to fire a neuron.

G: Ratio of strong synapse strength to weak synapse strength,

binary approximation.

C: Number of dendrite compartments capable of firing independently.

D1: Number of possible time slots where neurons can produce spikes.

D2: Number of different time delays available between two neural

layers.

"""

self.S0 = S0

self.H = H

self.G = G

self.C = C

self.D1 = D1

self.D2 = D2

self.training = False

self.synapses = np.zeros(S0, dtype=’float32,uint16,uint16’)

self.synapses.dtype.names = (’strength’, ’delay’, ’container’)

self.synapses[’strength’] = 1.0

self.synapses[’delay’] = np.random.randint(D2, size=S0)

self.synapses[’container’] = np.random.randint(C, size=S0)

def expose(self, w):

"""Models how the neuron reacts to excitation patterns, and how it

computes whether or not to fire.

Expose computes the weighted sum of the input word, and the neuron fires

if that sum meets or exceeds a threshold. The weighted sum is the sum of

the S0 element-by-element products of the most recent neuron vector and

the current word.

Args:

w: A Word to present to the neuron.

Returns:

A 3-element tuple containing:

0. A Boolean indicating whether the neuron fired or not.

1. The delay in which the neuron has fired.

2. The container where the firing occurred.

"""

offsets = [syn.offset for syn in w.synapses]

delays = [syn.delay for syn in w.synapses]

synapses = self.synapses[offsets]

57

Iterate over delays until neuron fires

for d in range(self.D1 + self.D2):

delay_indices = (synapses[’delay’] + delays) == d

Compute the weighted sum of the firing inputs for each container

for c in range(self.C):

container_indices = synapses[’container’] == c

indices = delay_indices & container_indices

s = synapses[’strength’][indices].sum()

Check if the container has fired

if (self.training and s >= self.H) or s >= self.H*self.G:

return (True, d, c)

If no container has fired for any delay

return (False, None, None)

def train(self, w):

"""Trains a neuron with an input word.

To train a neuron, "train" is called for each word to be recognized. If

the neuron fires for that word then all synapses that contributed to

that firing have their strengths irreversibly increased to G.

Args:

w: A Word to train the neuron with.

Returns:

A Boolean indicating whether the neuron fired or not.

"""

if not self.training:

print "[WARN] train(w) was called when not in training mode."

return False

fired, delay, container = self.expose(w)

if not fired: return False

Update the synapses that contributed to the firing

offsets = [s.offset for s in w.synapses]

delays = [syn.delay for syn in w.synapses]

synapses = self.synapses[offsets]

delay_indices = (synapses[’delay’] + delays) == delay

container_indices = synapses[’container’] == container

58

active_indices = delay_indices & container_indices

indices = np.zeros(self.S0, dtype=bool)

indices[offsets] = active_indices

self.synapses[’strength’][indices] = self.G

return True

def start_training(self):

"""Set the neuron in training mode.

"""

self.training = True

def finish_training(self):

"""Set the neuron in recognition mode.

Once the training is complete, the neuron’s threshold value H is set

to H*G.

"""

self.training = False

A.4 test cognon extended.py

Copyright 2013 Pau Haro Negre

based on C++ code by Carl Staelin Copyright 2009-2011

#

See the NOTICE file distributed with this work for additional information

regarding copyright ownership.

#

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

#

http://www.apache.org/licenses/LICENSE-2.0

#

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

#

from cognon_extended import Neuron

from cognon_extended import Synapse

59

from cognon_extended import Word

from cognon_extended import WordSet

from nose.tools import assert_false

from nose.tools import assert_greater_equal

from nose.tools import assert_in

from nose.tools import assert_is_none

from nose.tools import assert_less

from nose.tools import assert_less_equal

from nose.tools import assert_true

from nose.tools import eq_

from nose.tools import ok_

from nose.tools import raises

class TestSynapse:

@raises(TypeError)

def test_construct_requires_args(self):

s = Synapse()

def test_named_attributes(self):

s = Synapse(1, 0)

eq_(s.offset, 1)

eq_(s.delay, 0)

class TestWord:

def test_empty(self):

w = Word()

eq_(len(w.synapses), 0)

@raises(ValueError)

def test_negative_synapse_offset(self):

w = Word([(-1, 0)])

def test_fire_1_3_8(self):

w = Word([(1,0),(3,0),(8,0)])

eq_(len(w.synapses), 3)

assert_in((1,0), w.synapses)

assert_in((3,0), w.synapses)

assert_in((8,0), w.synapses)

def test_delay_0(self):

w = Word([(1,0),(3,0),(8,0)])

for offset, delay in w.synapses:

60

eq_(delay, 0)

class TestWordSet:

def test_small(self):

num_words = 5

word_length = 16

num_delays = 4

num_active = 4

ws = WordSet(num_words, word_length, num_delays, num_active)

eq_(len(ws.words), num_words)

eq_(len(ws.delays), num_words)

for word in ws.words:

eq_(len(word.synapses), num_active)

for synapse in word.synapses:

assert_greater_equal(synapse.offset, 0)

assert_less(synapse.offset, word_length)

assert_greater_equal(synapse.delay, 0)

assert_less(synapse.delay, num_delays)

def test_refractory_period(self):

num_words = 5

word_length = 16

num_delays = 4

num_active = None

refractory_period = 4

ws = WordSet(num_words, word_length, num_delays, num_active,

refractory_period)

eq_(len(ws.words), num_words)

eq_(len(ws.delays), num_words)

for word in ws.words:

for synapse in word.synapses:

assert_greater_equal(synapse.offset, 0)

assert_less(synapse.offset, word_length)

assert_greater_equal(synapse.delay, 0)

assert_less(synapse.delay, num_delays)

class TestNeuron:

61

def test_defaults(self):

n = Neuron()

eq_(n.S0, 200)

eq_(n.H, 5.0)

eq_(n.G, 2.0)

eq_(n.C, 1)

eq_(n.D1, 4)

eq_(n.D2, 7)

assert_false(n.training)

eq_(len(n.synapses), n.S0)

assert_true((n.synapses[’strength’] == 1.0).all())

assert_true((n.synapses[’delay’] >= 0).all())

assert_true((n.synapses[’delay’] < n.D2).all())

assert_true((n.synapses[’container’] >= 0).all())

assert_true((n.synapses[’container’] < n.C).all())

def test_attributes_in_range(self):

n = Neuron()

assert_greater_equal(n.H, 1.0)

assert_greater_equal(n.C, 1)

assert_less_equal(n.D1, n.D2)

assert_true((n.synapses[’strength’] >= 0.0).all())

def test_expose_not_training(self):

n = Neuron(S0 = 16, H = 4.0, G = 2.0, C = 1, D1 = 1, D2 = 1)

w = Word([(1,0), (6,0), (9,0)])

fired, delay, container = n.expose(w)

assert_false(fired)

assert_is_none(delay)

assert_is_none(container)

w = Word([(1,0), (3,0), (4,0), (5,0), (6,0), (8,0), (9,0), (14,0)])

fired, delay, container = n.expose(w)

assert_true(fired)

eq_(delay, 0)

eq_(container, 0)

@raises(IndexError)

def test_expose_index_error(self):

n = Neuron(S0 = 16)

w = Word([(16,0)])

n.expose(w)

def test_expose_multiple_containers(self):

n = Neuron(S0 = 16, H = 2.0, G = 2.0, C = 3, D1 = 1, D2 = 1)

62

Set container assignment manually to remove randomness

n.synapses[’container’][0:10] = 0

n.synapses[’container’][10:14] = 1

n.synapses[’container’][14:16] = 2

w = Word([(1,0), (2,0), (6,0)])

fired, delay, container = n.expose(w)

assert_false(fired)

assert_is_none(delay)

assert_is_none(container)

w = Word([(1,0), (2,0), (3,0), (4,0), (5,0), (6,0)])

fired, delay, container = n.expose(w)

assert_true(fired)

eq_(delay, 0)

eq_(container, 0)

w = Word([(10,0), (11,0), (12,0), (13,0)])

fired, delay, container = n.expose(w)

assert_true(fired)

eq_(delay, 0)

eq_(container, 1)

w = Word([(14,0), (15,0)])

fired, delay, container = n.expose(w)

assert_false(fired)

assert_is_none(delay)

assert_is_none(container)

def test_expose_with_delays(self):

n = Neuron(S0 = 16, H = 2.0, G = 2.0, C = 1, D1 = 2, D2 = 3)

Set delay assignment manually to remove randomness

n.synapses[’delay’][0:10] = 0

n.synapses[’delay’][10:14] = 1

n.synapses[’delay’][14:16] = 2

w = Word([(1,0), (2,0), (6,0)])

fired, delay, container = n.expose(w)

assert_false(fired)

assert_is_none(delay)

assert_is_none(container)

w = Word([(1,0), (2,0), (3,0), (4,0), (5,0), (6,0)])

fired, delay, container = n.expose(w)

assert_true(fired)

eq_(delay, 0)

63

eq_(container, 0)

w = Word([(1,1), (2,1), (3,1), (4,1), (5,0), (6,0)])

fired, delay, container = n.expose(w)

assert_true(fired)

eq_(delay, 1)

eq_(container, 0)

w = Word([(1,0), (2,0), (3,0), (4,1), (5,1), (6,1)])

fired, delay, container = n.expose(w)

assert_false(fired)

assert_is_none(delay)

assert_is_none(container)

w = Word([(10,1), (11,1), (12,1), (13,1)])

fired, delay, container = n.expose(w)

assert_true(fired)

eq_(delay, 2)

eq_(container, 0)

w = Word([(12,0), (13,0), (14,0), (15,0)])

fired, delay, container = n.expose(w)

assert_false(fired)

assert_is_none(delay)

assert_is_none(container)

def test_train(self):

n = Neuron(S0 = 16, H = 4.0, G = 2.0, C = 1, D1 = 1, D2 = 1)

Train neuron with 2 patterns

wA = Word([(1,0), (6,0), (9,0), (14,0)])

wB = Word([(3,0), (4,0), (9,0), (13,0)])

n.start_training()

assert_true(n.train(wA))

assert_true(n.train(wB))

n.finish_training()

Test recognition

wD = Word([(2,0), (6,0), (12,0), (14,0)])

fired, delay, container = n.expose(wD)

assert_false(fired)

wE = Word([(3,0), (7,0), (9,0), (13,0)])

fired, delay, container = n.expose(wE)

assert_false(fired)

64

wF = Word([(1,0), (4,0), (9,0), (14,0)])

fired, delay, container = n.expose(wF)

assert_true(fired) # False alarm

def test_train_not_training(self):

n = Neuron()

w = Word()

assert_false(n.train(w))

def test_train_with_delays(self):

n = Neuron(S0 = 16, H = 4.0, G = 2.0, C = 1, D1 = 2, D2 = 2)

Fix neuron delays manually for the test

n.synapses[’delay’] = 1

n.synapses[’delay’][1] = 0

n.synapses[’delay’][14] = 0

Train neuron with 2 patterns

wA = Word([(1,1), (6,0), (9,0), (14,1)])

wB = Word([(3,0), (4,0), (9,0), (13,0)])

n.start_training()

assert_true(n.train(wA))

assert_true(n.train(wB))

n.finish_training()

Recognize

wD = Word([(2,0), (6,0), (12,0), (14,0)])

fired, delay, container = n.expose(wD)

assert_false(fired)

wE = Word([(1,1), (3,0), (9,0), (13,0)])

fired, delay, container = n.expose(wE)

assert_true(fired) # False alarm

wF = Word([(1,0), (4,1), (7,0), (9,0), (11,0), (14,0)])

fired, delay, container = n.expose(wF)

assert_false(fired)

A.5 run experiment.py

Copyright 2013 Pau Haro Negre

based on C++ code by Carl Staelin Copyright 2009-2011

#

See the NOTICE file distributed with this work for additional information

regarding copyright ownership.

#

65

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

#

http://www.apache.org/licenses/LICENSE-2.0

#

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

#

from cognon_extended import Neuron

from cognon_extended import WordSet

from math import log

from multiprocessing import Pool

import numpy as np

import os

class Alice(object):

def train(self, neuron, wordset):

neuron.start_training()

for word in wordset.words:

fired = neuron.train(word)

neuron.finish_training()

class Bob(object):

def __init__(self):

self.true_true = 0 # trained and fired (ok)

self.true_false = 0 # trained but not fired (false negative)

self.false_true = 0 # not trained but fired (false positive)

self.false_false = 0 # not trained and not fired (ok)

def test(self, neuron, train_wordset, test_wordset):

Check the training set

for word in train_wordset.words:

fired, delay, container = neuron.expose(word)

if fired:

66

self.true_true += 1

else:

self.true_false += 1

Check the test set

#num_active = len(train_wordset.words[0].synapses[0])

#test_wordset = Wordset(num_test_words, neuron.S0, neuron.D1, num_active)

for word in test_wordset.words:

fired, delay, container = neuron.expose(word)

if fired:

self.false_true += 1

else:

self.false_false += 1

class Configuration(object):

def __init__(self):

self.neuron_params()

self.test_params()

def neuron_params(self, C = 1, D1 = 4, D2 = 7, Q = 40, G = 2, H = 5):

self.H = H # Num. of synapses needed to fire a neuron

self.G = G # Ratio of strong synapse strength to weak synapse s.

self.C = C # Num. of dendrite compartments

self.D1 = D1 # Num. of posible time slots where spikes can happen

self.D2 = D2 # Num. of time delays available between two layers

self.Q = Q # Q = S0/(H*R*C)

def test_params(self, num_active = 4, R = None, w = 100, num_test_words = 0):

self.num_active = num_active # Num. of active synapses per word

self.R = R # Avg. num. of patterns per afferent synapse spike

self.w = w # Num. of words to train the neuron with

self.num_test_words = num_test_words # Num. of words to test

@property

def S0(self):

if self.R:

return int(self.Q * self.H * self.C * self.R)

else:

return int(self.Q * self.H * self.C)

67

class Cognon(object):

def __call__(self, config):

If the OS is Unix, reseed the random number generator

http://stackoverflow.com/a/6914470/2643281

if os.name == "posix":

np.random.seed()

return self.run_experiment(config)

def run_configuration(self, config, repetitions):

Ensure that at least 10,000 words are learnt

MIN_LEARN_WORDS = 10000

#MIN_LEARN_WORDS = 1

if repetitions * config.w < MIN_LEARN_WORDS:

N = MIN_LEARN_WORDS/config.w

else:

N = repetitions

Ensure that at least 1,000,000 words are tested

MIN_TEST_WORDS = 1000000

if not config.num_test_words:

config.num_test_words = MIN_TEST_WORDS/N

Run all the experiments

#values = [self.run_experiment(config) for i in xrange(N)]

pool = Pool(processes=20)

values = pool.map(Cognon(), [config,]*N)

Store the results in a NumPy structured array

names = (’pL’, ’pF’, ’L’)

types = [np.float64,] * len(values)

r = np.array(values, dtype = zip(names, types))

return r

def run_experiment(self, cfg):

create a neuron instance with the provided parameters

neuron = Neuron(cfg.S0, cfg.H, cfg.G, cfg.C, cfg.D1, cfg.D2)

create the training and test wordsets

68

train_wordset = WordSet(cfg.w, cfg.S0, cfg.D1, cfg.num_active, cfg.R)

test_wordset = WordSet(cfg.num_test_words, cfg.S0, cfg.D1,

cfg.num_active, cfg.R)

create Alice instance to train the neuron

alice = Alice()

alice.train(neuron, train_wordset)

create a Bob instance to test the neuron

bob = Bob()

bob.test(neuron, train_wordset, test_wordset)

results

pL = bob.true_true/float(cfg.w)

pF = bob.false_true/float(cfg.num_test_words)

L = w*((1-pL)*log2((1-pL)/(1-pF)) + pL*log2(pL/pF)) bits

L = 0

if pL == 1.0:

if pF != 0:

L = -cfg.w*log(pF)/log(2.0)

else:

L = cfg.w

elif pL > pF and pF != 0:

L = cfg.w/log(2.0) * \

(log(1.0 - pL) - log(1.0 - pF) +

pL * (log(1.0 - pF) - log(1.0 - pL) + log(pL) - log(pF)))

return pL, pF, L

A.6 test run experiment.py

Copyright 2013 Pau Haro Negre

based on C++ code by Carl Staelin Copyright 2009-2011

#

See the NOTICE file distributed with this work for additional information

regarding copyright ownership.

#

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

#

http://www.apache.org/licenses/LICENSE-2.0

#

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

69

See the License for the specific language governing permissions and

limitations under the License.

#

from run_experiment import Alice

from run_experiment import Bob

from run_experiment import Configuration

from run_experiment import Cognon

from cognon_extended import Neuron

from cognon_extended import Word

from cognon_extended import WordSet

from nose.tools import assert_false

from nose.tools import assert_greater_equal

from nose.tools import assert_in

from nose.tools import assert_is_none

from nose.tools import assert_less

from nose.tools import assert_less_equal

from nose.tools import assert_true

from nose.tools import eq_

from nose.tools import ok_

from nose.tools import raises

from unittest.case import SkipTest

class TestAlice:

def test_train(self):

n = Neuron(S0 = 16, H = 4.0, G = 2.0, C = 1, D1 = 1, D2 = 1)

wA = Word([(1,0), (6,0), (9,0), (14,0)])

wB = Word([(3,0), (4,0), (9,0), (13,0)])

wordset = WordSet(num_words = 2, word_length = 16, num_delays = 1,

num_active = 4)

wordset.words = [wA, wB]

alice = Alice()

alice.train(n, wordset)

Test recognition

wD = Word([(2,0), (6,0), (12,0), (14,0)])

fired, delay, container = n.expose(wD)

assert_false(fired)

wE = Word([(3,0), (7,0), (9,0), (13,0)])

70

fired, delay, container = n.expose(wE)

assert_false(fired)

wF = Word([(1,0), (4,0), (9,0), (14,0)])

fired, delay, container = n.expose(wF)

assert_true(fired) # False alarm

class TestBob:

def test_test(self):

n = Neuron(S0 = 16, H = 4.0, G = 2.0, C = 1, D1 = 1, D2 = 1)

wA = Word([(1,0), (6,0), (9,0), (14,0)])

wB = Word([(3,0), (4,0), (9,0), (13,0)])

train_wordset = WordSet(num_words = 2, word_length = 16,

num_delays = 1, num_active = 4)

train_wordset.words = [wA, wB]

alice = Alice()

alice.train(n, train_wordset)

wD = Word([(2,0), (6,0), (12,0), (14,0)])

wE = Word([(3,0), (7,0), (9,0), (13,0)])

wF = Word([(1,0), (4,0), (9,0), (14,0)]) # False alarm

test_wordset = WordSet(num_words = 3, word_length = 16,

num_delays = 1, num_active = 4)

test_wordset.words = [wD, wE, wF]

bob = Bob()

bob.test(n, train_wordset, test_wordset)

eq_(bob.true_true, 2)

eq_(bob.true_false, 0)

eq_(bob.false_true, 1)

eq_(bob.false_false, 2)

class TestConfiguration:

def test_config(self):

raise SkipTest

class TestCognon:

def test_cognon(self):

71

raise SkipTest

A.7 create tables.py

Copyright 2013 Pau Haro Negre

based on C++ code by Carl Staelin Copyright 2009-2011

#

See the NOTICE file distributed with this work for additional information

regarding copyright ownership.

#

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

#

http://www.apache.org/licenses/LICENSE-2.0

#

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

#

from run_experiment import Cognon

from run_experiment import Configuration

def run_table_row(w, active, C, D1, D2, Q, R, G, H):

repetitions = 20

config = Configuration()

config.neuron_params(C, D1, D2, Q, G, H)

#config.test_params(active, R, w, 5000)

config.test_params(active, R, w)

cognon = Cognon()

return cognon.run_configuration(config, repetitions)

def table21():

print "%%%%%%%%%%%%%%"

print "% Table 2.1. %"

print "%%%%%%%%%%%%%%"

print

N | H | S0 | w | G

table21_row(4, 4, 10, 1, 100)

table21_row(5, 4, 10, 1, 100)

72

table21_row(4, 4, 10, 2, 100)

table21_row(10, 10, 100, 4, 100)

table21_row(11, 10, 100, 4, 100)

table21_row(11, 10, 100, 5, 100)

table21_row(11, 10, 1000, 60, 100)

table21_row(11, 10, 10000, 600, 100)

table21_row(22, 20, 10000, 450, 100)

print "\t\\midrule"

table21_row(10, 10, 100, 6, 1.5)

table21_row(11, 10, 1000, 15, 1.5)

table21_row(11, 10, 10000, 160, 1.5)

table21_row(14, 10, 10000, 10, 1.5)

def table21_row(N, H, S, w, G):

r = run_table_row(w, N, 1, 1, 1, S/float(H), None, G, float(H))

pF_mean = r[’pF’].mean()*100

pF_std = r[’pF’].std()*100

L_mean = r[’L’].mean()

L_S0 = L_mean/S

txt = ("\t{:.2f} & {} & {} & {:,} & {} & {} & {:.1f} & {:.2f} \\\\ "

"% {:.3f}")

print txt.format(pF_mean, N, H, S, w, G, L_mean, L_S0, pF_std)

def table23():

print "%%%%%%%%%%%%%%"

print "% Table 2.3. %"

print "%%%%%%%%%%%%%%"

print

H | G | S0 | R | w

table23_row(30, 4.0, 10000, 303, 200)

table23_row(105, 4.0, 10000, 86, 70)

table23_row(40, 1.9, 10000, 250, 100)

print "\t\\midrule"

table23_row(5, 3.6, 1000, 333, 300)

table23_row(10, 3.6, 1000, 111, 60)

table23_row(5, 1.9, 1000, 333, 300)

table23_row(15, 4.0, 1000, 66, 30)

print "\t\\midrule"

table23_row(5, 3.6, 200, 57, 40)

table23_row(10, 4.0, 200, 20, 10)

73

table23_row(20, 1.9, 200, 12, 10)

def table23_row(H, G, S, R, w):

r = run_table_row(w, None, 1, 1, 1, S/float(H*R), R, G, float(H))

L_mean = r[’L’].mean()

pF_mean = r[’pF’].mean()*100

pF_std = r[’pF’].std()*100

pL_mean = r[’pL’].mean()*100

pL_std = r[’pL’].std()*100

txt = ("\t{:.1f} & {:.2f} & {:.1f} & {} & {:.1f} & {:,} & {} & {} \\\\ "

"% {:.3f} {:.3f}")

print txt.format(L_mean, pF_mean, pL_mean, H, G, S, R, w, pF_std, pL_std)

def table32():

print "%%%%%%%%%%%%%%"

print "% Table 3.2. %"

print "%%%%%%%%%%%%%%"

print

C |D1| S0 | H | R | G | w

table32_row(10, 4, 10000, 5, 125, 1.8, 2000)

table32_row(1, 4, 10000, 5, 384, 3.8, 400)

table32_row(4, 4, 10000, 5, 178, 3.2, 500)

table32_row(10, 1, 10000, 5, 333, 3.8, 200)

table32_row(4, 1, 10000, 10, 357, 3.6, 300)

table32_row(1, 1, 10000, 30, 303, 4.0, 200)

print "\t\\midrule"

table32_row(1, 1, 1000, 5, 285, 4.0, 200)

table32_row(4, 4, 1000, 5, 25, 1.9, 200)

table32_row(1, 4, 1000, 5, 83, 1.9, 500)

table32_row(4, 1, 1000, 5, 83, 3.8, 60)

table32_row(10, 4, 1000, 5, 10, 1.8, 70)

print "\t\\midrule"

table32_row(1, 1, 200, 5, 57, 3.8, 40)

table32_row(1, 4, 200, 5, 16, 1.8, 80)

table32_row(4, 1, 200, 5, 16, 3.8, 10)

table32_row(4, 4, 200, 5, 5, 1.9, 40)

def table32_row(C, D1, S, H, R, G, w):

D2 = {1: 1, 4: 7}

r = run_table_row(w, None, C, D1, D2[D1], S/float(H*R), R, G, float(H))

L_mean = r[’L’].mean()

pF_mean = r[’pF’].mean()*100

74

pF_std = r[’pF’].std()*100

pL_mean = r[’pL’].mean()*100

pL_std = r[’pL’].std()*100

txt = ("\t{} & {} & {:,} & {:.0f} & {} & {} & {:.1f} & {:.2f} & {:.2f} & {} & "

"{:.2f} \\\\ % {:.3f} {:.3f}")

print txt.format(C, D1, S, L_mean, H, R, G, pF_mean, pL_mean, w, 0,

pF_std, pL_std)

if __name__ == "__main__":

table21()

print

print

table23()

print

print

table32()

