INTEGRATING ARCHITECTURE
AND OPERATING SYSTEMS*

by

G. J. Nutt
Department of Computer Science
University of Colorado at Boulder
Boulder, Colorado 80309

#CU-CS-104-77 March, 1977
revised September, 1977

* This work supported under NSF grant No. MCS74 08328 AO01.

ABSTRACT

Recent advances in integrated circuit technology have drawn
the fields of architecture and operating systems designs closer
together. In particular, bit slice bipolar microprocessor technology
provides a medium for realistic integration of many operating system
functions directly into firmware and hardware. Some aspects of this
integration are illustrated through two examples: memory relocation

and interprocess communication mechanisms.

INTRODUCTION

Current trends in integrated circuit technology are causing
multiple processor computer systems to become increasingly more at-
tractive to the computer system designer, [6,8,10]. The basic design
atoms have advanced from vacuum tubes, through transistors to large
scale integrated packages which incorporate several hundred gates
per chip, [7]. There are at least two important points resulting
from these advances that intimately affects operating system design.
First, the ability to economically produce parallel hardware is
rapidly outpacing the ability to produce software to control such
hardware. Questions of controlling parallelism in a system have been
answered (at least to the point of finding theoretical solutions and
mechanisms to control parallel processes). However, design technolo-
gies for operating systems do not seem to be so well understood that
one can implement an operating system for a multiple processor machine
in a manner that corresponds to the theoretical solutjons. The second
observation has to do with the integration of hardware and software
designs. Since the basic design atoms have become more powerful,
the area of logical design has become smaller; circuit designers
incorporate larger portions of Togical designs within each chip, and
software designers can now program these chips to achieve "hardware"
effects. (Logic designers are still necessary to interconnect the
large scale integrated circuits). Designing computer systems based
on current LSI technology allows many of the architectural features
to be at least partially controlled by the software designer. This
participation in hardware design is deeper than microprogramming a
fixed architecture machine, since the operating system designer should
now be able to understand the atoms and be able to work with a Togic

designer to build the kind of hardware system most viable for his software

2
designs.* As the packaging density for components increases, and very
large scale integration reaches production, the trend will continue to
an extreme integration of software and hardware.

One particular LSI development that will have an impact on the
design of large word size machines is that of the bit slice bipolar
microprocessor, e.g. Intel 3000 series, AMD 2900 series, etc. A
central processing unit constructed from these chips is not as com-
pactly packaged as is the case with the more widely known Intel 8080
or Motorola MC6800 microprocessors, but such a CPU is faster and
more flexible. The basic chips required to construct a CPU include
a sequencer (or control unit), an arithmetic-logical unit, and a con-
trol store. Each bit slice ALU can perform a few arithmetic and Togi-
cal operations on 2-4 bit operands. The ALU will contain logic to
perform the operations, to shift operands, and to incorporate a bank
of internal registers. Multiple ALU can be interconnected to form a
single ALU that operates on words with 64 or more bits. These result-
ing ALUs perform relatively fast arithmetic operations, since carry
Tookahead logic can be used to combine the individual bit slices.

The control unit of a bit slice microprocessor may have a fixed
design, (as in the case of the Intel 3001), or it may also be expand-
able in a manner similar to the ALU , (as in the case of the AMD 2909).
The first option restricts the flexibility of design, and the second
option forces the designer to provide more chip interconnections. In
either case, the control unit is microprogrammed, and it can be used
to economically implement any of a wide variety of instruction sets
once the data paths for the hardware have been established.

Bit slice bipolar microprocessors have typical microinstruction

cycle times in the range of 100-200 ns. A register-register integer

*This integration of software and hardware at design time is in contrast
to the approach taken in, e.g., the Venus operating system study [4],
where the microprogrammed architecture was still primitive to software
development.

add operation may require as 1ittle as one microinstruction for word
widths of arbitrary size. The cost of bit slice microprocessor chips
varies from about $5/bit {for the control unit and ALU) up to about
$15/bit excluding the cost of control store.

The flexibility, speed, and cost all combine to make bit slice
microprocessors a viable implementation tool for multiple processor
computer systems with Targe word sizes. The simplicity of design
allows the operating system to be easily implemented across software,
firmware, and hardware boundaries. The remainder of this paper intends
to illustrate the flexibility of operating systems design by discussing
the organizations of a simple memory relocation mechanism and of an
interprocess communication scheme. The first example is primarily one
illustrating the applicability of microprogramming. This example could
apply to any commercially-available user microprogrammable machine.

The second example 1is specific to bit slice microprocessor implementa-
tion of an extended unit of a machine. There have been other applica-
tions in which a fixed instruction set microprocessor has been used to
impTlement a single, well-defined function of a system, (e.g., see [6]).
In this example, the extended unit is used to implement an entire set
of functions on a data structure. This approach is used to implement
a hardware/firmware instance of a monitor, [3]; the data structure is
local to a set of functions that are implemented in the extended unit.
The data in the local structure is not manipulated by any mechanism
other than the extended unit itself; the extended unit hides the details
of the Tocal data structures from all other parts of the machine.

For this discussion, it is assumed that a multiple processor
computer system composed of n processors, each of which supports m

levels of multiprogramming is to be implemented as a set of bit slice

4
microprocessors; (this architecture is a generalization of a SIMD design,
[51). The processors share a memory system as shown in Figure 1, i.e.
the memory is divided into 2n physically independent modules. Each pro-
cessor has a private path to/from one module in the memory system. It
also has a path over a shared memory bus to all other modules in the
memory system. Each processor, Pi’ is intended to make the majority of
its memory references to memory module Mi; in the case that memory con-
tents are shared among two or more processors, then no more than one of
them can have a direct connection to the corresponding memory module.
Memory modules Mn through M2n-2 are explicitly for shared use, and
module MZn-T is primarily used by a special purpose execution unit

called the Processor Interface, PI.

In a multiple processor system, the operating system could be
executed on a dedicated processor as in the case of the PRIME system
design, [2]; or it might be distributed across the set of all proces-
sors in the system as is the case with the HYDRA operating system for
the C.mmp, [9]. The distributed approach is favored here for the
following reasons: Processors should be treated as identical system
resources by the operating system so that if any single processor fails,
the system will continue to operate at a possibly reduced rate. Dis-
tribution tends to make more effective use of the processor resource
than the case where one processor is dedicated to the operating system.
However, dedicated processor operating systems may be easier to imple-
ment and may also be more effective in terms of protection and process
synchronization. For the distributed approach, operating system code

and tables are stored in physical memory modules Mn through MZn—Z

MEMORY RELOCATION

Hardware relocation registers can be used to advantage in systems
that employ single segment, dynamically relocatable memory organiza-
tions as well as the more general virtual memory strategies. As long
as the run time image of a program contains addresses relative to the
first location Toaded, then a base register can be used to relocate all
addresses at the time of reference. Multiple segment strategies require
multiple base registers (or a segment table containing the corresponding
segment base register contents).

Given the physical memory arrangement shown in Figure 1, the pro-
gram(s) executed on processor Pi should normally be loaded in memory
module Mi’ In some cases Mi will not be large enough to hold the pro-
gram¢s) and data for Pi’ thus memory from some other module must be
allocated to the corresponding process(es). There are two obvious
strategies that might be used for memory allocation: Provided that the
memory spaced required by the n processors does not exceed the amount
of memory in MO_Mn-l’ and the number of processors requiring more
memory than exists in their preferred modules is small, then space
from M. _;, M;, and M. . can be allocated to P,. This preserves the
single segment address space, and requires only one base register per
process for memory relocation. It is easy to construct examples that
will introduce excessive memory conflict with this strategy. An
alternative is to divide the memory space per process into two segments
(Togically one segment) such that the first portion of the Togical seg-
ment is loaded in the preferred module, and the second portion is
loaded into contiguous locations in modules Mn through MZn—Z‘ This
strategy requires, as a minimum, two additional registers in each pro-

cessor: A first-physical-segment base register (as before), a first-

physical-segment-Tength register, and a second-physical-segment base
register to point to the second portion of the address space in the
shared portion of the memory. If relocation is to be implemented in
hardware, different mechanisms are required for the two strategies;

if relocation is performed in software, then two different loader
algorithms must be used, and programs cannot be easily moved within

the memory. Alternatively, the relocation mechanism can be implemented
in microprograms within each processor.

- Typical bit slice microprocessors include from 10 to 16 registers
within the ALU chip; some of these registers are used as general purpose
registers available to the assembly language programmer, while the other
may be used by the microprogrammer to implement various machine regis-
ters such as the program counter, instruction word register, etc. Micro-
programs may also require scratch registers for implementing certain
machine level instructions. In some cases, the number of registers
within the microprocessor ALU may be insufficient to satisfy all of
these needs; in these cases, high speed 16 word random access memories
can be used by the ALU even though the corresponding registers are
physically external to the ALU chips, or writeable control store memory
space can be used. This freedom of register usage at the microprogram
level allows one to reconfigure the "abstract machine" used by the
assembly Tanguage programmer. In particular, microprograms can be
written to incorporate a single base register for address calculations;
a base and a Tength register; two base registers and a length register,
etc. by altering the microprograms.

The memory relocation algorithms, themselves, are easily deter-
mined by the microprograms. Effective address formation is implemented

in microcode so that indexing and/or indirection correspond to micro-

subroutines used whenever appropriate. The memory relocation schemes
mentioned above do not differ substantially from index register cal-
culations and could possibly even use the same microsubroutines (with
appropriate bound checking). The additional time required for firm-
ware relocation is approximately 2 microcycles in the single segment
memory case.

It may occasionally be necessary for a processor to generate
an absolute memory address, e.g. to reference locations in memory
module M2n-1’ In the hardware case, it may be difficult (i.e. expen-
sive) to allow processors to sometimes reference memory via a reloca-
tion unit and at other times to bypass the unit. In the firmware case
the desired flexibility is easily incorporated into the address forma-
tion microprograms by a simple conditional test. It is also possible
to allow this ability to generate absolute addresses only for certain
instructions such as privileged instructions.

Although somewhat slower than hardware relocation mechanisms,
the generality and flexibility of the approach allows the operating

system designer to control a wide variety of memory relocation schemes

that are relatively secure from user programs.

PROCESS COMMUNICATION

In order for two or more processes to share resources or other-
wise cooperatively execute in any manner, a mechanism for communication
among processes must be established. There are a number of schemes for

accomplishing processor communication in multiple processor systems.

The simplest schemes use mailboxes and polling (e.g. in the Control

Data 6000 series operating systems). If elapsed time is import-

ant during such communications, this method may be ineffective, since
the average response time to inspect mailbox will increase with the
number of processes, mxn, in the system. A more prompt scheme may use
interrupts and mailboxes, but this scheme may require O(nz) Tines
interconnecting the n processors and the ability of a process to map

a receiving process's name into the processor identification before
issuing an interrupt. The number of Tines can be sacrificed in exchange
for response time by using a shared interrupt bus, [8]. A third scheme
is to dispense with mailboxes, and to use multiple interrupts to dis-
tinguish between message types. This is essentially the approach taken
in HYDRA, [9].

The communication scheme given here is an example of bit slice
microprocessor teéhnology applied to operating system and hardware inte-
gration. The scheme uses h interrupt lines for the n processor system,
and message response time can be adjusted by priority assignments among
processes and/or processors. The Processor Interface is used to imple-
ment a firmware form of communication among processes that is reminiscent
of the software scheme used in the RC4000 Multiprogramming System, [1].
Notice, that the PI is a firmware/hardware implementation of a software
notion; it is an integration of all technologies to achieve a goal.

One software(method for interprocess commuhication in a multi-
programmed system is to include a kernel routine that is invoked by a
sending process whenever it wishes to send a message to some other pro-
cess. The kernel routine must find a process descriptor for the
receiver process, possibly check to see if the sender has permission
to transmit a message to the given receiver, and then attach the mes-
sage to a queue within the descriptor of the designated receiver pro-
cess. The sending process is then resumed by the kernel routine. It

is usually not possible to implement hardware message passing of this

form in a multiprogrammed system, since the receiver process may not
be executing on a processor at the time a message is directed toward
it; the process identifier exists only in a descriptor and not in a
hardware register. This software approach forces all authorization
checks, message queuing, etc. to be susceptible to software bugs and
volatility (assuming the kernel code is stored in read/write memory).
A firmware approach to the problem allows the flexibility of the soft-
ware method and the speed and safety of a hardware method. The fol-
lTowing method for implementing communication mechanisms is an example
of the approach.

Let each of the n processors contain a register made up of h
bits, called the ID register, used to identify a process; (each pro-
cess, in turn, has an ID register content). Let IDij[k] denote bit k

(O<k<h) of process i (0si<m) on processor j (0<j<n). If

IDij[k]/\IDi'j‘[k]z] for some O<k<h

then process 1 can cooperatively communicate with process i', and vice

versa. Otherwise no communication is possible between process i and i'.
This definition implies that a check on process identifiers is made in
order to test for authorized access (in an unspecified mode). If pro-

cess 1 can cooperatively communicate with process i' and additionally,

IDi'j'[k]=]==> IDij[k]=] for all O<k<h

then process i has privilege with respect to process i', (no two pro-
cesses may have identical ID register contents). The concept of privi-
lege is not symmetric as 1is cooperative communication. Privilege is
used to establish a hierarchy (partial ordering) on the set of pro-

cesses that exist at any given time within the system.

10

For example, suppose h=4 and there exist four processes in a

system with two processor such that

IDNA=1111

00

IDO]=1100

ID]0=0011

ID,,=0001

02

Denote process i on processor j as (i,j), where the process index i is
also the index of a multiprogrammed level within processor j. Then,
(0,0) can cooperatively communicate with any other process. (0,1) can
cooperatively communicate only with (0,0); this does not preclude in-
direct communication between (0,1) and, say, (1,0) through (0,0).
(1,0), (0,2), and (0,0) can cooperatively communicate among themselves.
(0,0) has privilege over all other processes in this example, and (1,0)
has privilege with respect to (0,2).

The important component in determining the communicative ability
of a process is the content of its ID register. Therefore, the values

loaded into IDi'j‘ by process 1 on processor j is restricted such that

10, 5 [k]=1D; ; [k]-y
where

0gy< IDij [k].

i.e., process i cannot specify a new ID content for process i' where
more bits are set in ID1..J.I than are set in IDij‘ Furthermore, process
i can change the content of ID1.Ijl only if process 1 has privilege with
respect to process i'. Notice that this does not preclude the case
where i=i' and j=j'. In any case, the process is prevented from in-

creasing its communicative power without the help of some other process

11

that "supervises" the given process.

Each processor also contains an h bit signal register, S, used
to indicate the ID of some process to which a communication is directed.
That is, S is loaded with the ID of the receiver process before the
sending process executes a send message instruction.

Two forms of message passing are used in the system: Active and
passive communication. Active communication, called preemption, forces
the receiving process to terminate execution of its current program and
to begin execution of a program at the memory location specified within
a preempt instruction executed in behalf of the sending process. Pre-
emption of process i' by process i is allowed only if process i has
privilege over process i'. Passive communication, called signaling,
causes the receiving process to interrupt execution of the program it
is currently executing and to begin executing a new program loaded at
the absolute address pointed to by an interrupt register, INT, asso-
ciated with the receiving process. Process i can signal process i'
only if the two processes can cooperatively communicate.

Both forms of message passing act as interrupts for the receiving
process, the differences between the two being the conditions under
which the interrupt can be generated by the sender, and the control of
the Tocation at which the interrupt forces execution. During passive
communication, the sender does not necessarily dictate the location
which the receiver must branch to upon accepting the interrupt.

As with all forms of interrupts, the critical section problem
arises in which a process cannot be interrupted during the execution
of some code segment. Two additional 1 bit registers are included with
each process(or) in order to turn off interrupts of either type during

critical sections. The PAij register for process i executing on pro-

12

cessor Pj is set (true) if a privilege interrupt can be accepted by
process 1. CAij for process i on Pj is set (true) if a cooperative
interrupt, i.e. a signal operation, can be accepted by process 1. PA1j
and CAij are binary semaphores to protect critical sections within pro-
cess 1.

The Processor Interface, PI, is a bit slice microprocessor used
to implement the process communication instructions of the repertoire
of each processor; it is not used as a dedicated processor on which
to implement an operating system. PI is invoked by a processor, Pj’
whenever Pj stores a process communication instruction into a pre-
specified location in module M2n—1‘ The ability of process i executing
on processor J to reference this Tocation is checked by the microcode
within processor j. Each Pj has its own unique PI instruction buffer,
and PI will service simultaneous requests as specified by any strategy
provided by PI's microprogram, (e.g. round robin, FCFS, etc.). The
processor that requests PI service is blocked (waiting for an interrupt)
until the PI has finished executing the desired instruction. Upon in-
struction completion, PI sends an interrupt back to the requesting Pj‘

In order to correctly implement signal and preempt instructions
(as discussed above), PI must be able to reference the ID, S, INT, PA,
and CA registers for each process on each processor. PI must be able
to reference these registers in the abstract machine that executes a
process whether the process is physically running or not. To integrate
this (usually software implemented) function into the firmware, these
register contents are stored in memory module M, . rather than in an
operating system-dependent process descriptor. Since signal and pre-

empt instructions will potentially cause more than one message to be

directed toward a given process before it is willing to accept any

13

message, (i.e., PA and CA are reset), message queues also need to be
handled by the PI. One possible memory organization (data structure)
to be used to describe this portion of a process's state is shown in
Table 1. Locations I through I+n-1 are used as the mailbox for pro-
cessor Pj to pass a communication instruction to PI. Locations J
through J+n-1 are used to save the program counter content of Pj when
it is interrupted by a preemption, (more details of the operation are
given below). K through K+n-1 are used to save the program counter of
Pj when it is interrupted by a signal. Memory locations L through
L+4mn-4 contain a partial process descriptor for each process in the
system. The form of the process descriptor for process i executing on
processor j is shown in Figure 2. An unspecified number of memory
locations (from Q to L) are used to hold messages of the form shown in
Figure 3 in the queue. In order to see how this data structure is
used to execute communication instructions, next consider some PI
microprogram algorithms.

In the following, assume that there exist microprogram subroutines
ENQUEUE and DEQUEUE to handle insertions and deletions to and from the
message queues. The preemption instruction can be implemented as fol-

Tows, (assume that process i on processor j executes the instruction):

14

comment process i has privilege with respect to process i';
begin

if "i' not running on j'" v =1 PAy. 4 then ENQUEUE

else

begin
PAi.j,:=fgl§g;
commenter. completes current instruction cycle;
comment PCj. is the program counter in Pj'
MEMORY [J+j']:=PCj.;
PCj.:= <effective address of PREEMPT instruction>;
A—REGISTERi.j[= A-REGISTERij;
PAij 1= true

end

end;

comment Return instruction-complete interrupt to Pj;

Now, the operating system scheduler must issue a command to the PI
whenever it schedules a process onto a processor. The effect of that
instruction is not only to restore ID, S, and INT registers, but also
to DEQUEUE pending messages for the schedule process.

The signal instruction is similar to preempt, except that the
interrupt address is taken from the interrupted process's INT register,
and the conditions under which one process can signal another (coopera-
tive communication) are different from those for preemption (privileged
communication). One possible algorithm for the signal instruction

executed by process i is the following:

15

lf-(IDi'j':Sij)/\(IDi'j'r]ID1j>O) then

comment processes i and i' can communicate;

begin
if "i' not running on j'" V~wCA1.j.\/~1PAi.j. then ENQUEUE
else
begin
PAi'j' := CAi'j' 1= false;
comment Pj' completes current instruction cycle;
MEMORY [K+j'] := PCi'j';
PCi'j‘ := INTi.j,;
A-REGISTERi.j, := A-REGISTERij;
PAij = true
end
end;

comment ‘Return instruction-complete interrupt to Pj;

Again, a schegu1ing or "restore state" command must be executed by the
PI whenever processor is multiplexed in order to remove queue entries.

The PI executable instructions must also include those that load/
store the various registers; most of these instructions are privileged
instructions, and the Tload instructions have to check for legal con-
tents whenever the ID register receives new data.

The mechanism suggested here can be viewed as a hardware imple-
mentation that strongly resembles Hoare's monitors, [3]. The data
structures used by the Processor Interface are not available to any
processes other than those that execute on the PI. Therefore, there
particular configuration is of importance only to the PI microprograms

and not to the remaining processes and processors in the machine. The

16

microprograms themselves are analogous to monitor procedures. Notice
also that since PI is a single physical processing unit with the
unique ability to execute process communication instructions, then the
problems of mutua] exclusion of processes from executing certain in-
structions (i.e. kernel routines) is taken care of by guaranteed

sequential execution of PI.

SUMMARY

Large scale integrated circuit technology has advanced to the
state in which the basic design atoms for building computers have begun
to resemble the processor itself. Bit slice microprocessor sets offer
the ability to build Targe word size machines interconnected in very
general ways, where each machine is microprogrammed. The level of these
Togical building blocks allows the operating system designer to actively
participate in the architecture of a machine in which he will develop
software. The result is that the time has come when operating system
functions can be implemented in hardware or firmware as a common design
practice; it is no longer necessary to hypothesize that a given feature
could be implemented in firmware or hardware and then implement it in
software because of cost considerations.

This aspect of design has been illustrated by providing two
examples of the incorporation of operating system tasks into the firm-
ware and hardware. The memory relocation example relies on the micro-
programmability of the processors in order to have flexibility in
choosing a virtual memory strategy. The process communiasation example
is a much more general application of both microprocessors as hetero-

geneous units of a multiple processor and as flexible units to implement

the concept of a monitor.

17

ACKNOWLEDGEMENT

The author wishes to thank the National Science Foundation for

the support of this work under grant number MCS74-08328 AO1.

REFERENCES

[1] Brinch Hansen, P. (editor), RC4000 Software Multiprogramming System,
A/S Regnecentralen, Copenhagen, Denmark, (Feb., 1971). 159 pages.

[2] Fabry, R. S., "Dynamic Verification of Operating System Decisions",
Communications of the ACM, Vol.16, No.11, (Nov., 1973), pp. 659-668.

[3] Hoare, C.A.R., "Monitors: An Operating System Structuring Concept",
Communications of the ACM, Vol.17, No.10, (Oct., 1974), pp. 549-557.

[4] Liskov, B. H., "The Design of the Venus Operating System", Com-
munications of the ACM, Vol. 15, No. 3, (March, 1972), pp.140-143.

[5] Nutt, G. J., "Microprocessor Implementation of a Parallel Processor",
Proceedings of the 4th Annual Symposium on Computer Architecture,
(March, 1976), pp. 147-152.

[6] Radoy, C. H. and Lipovski, G. J., "Switched Multiple Instruction,
Multiple Data Stream Processing", Proceedings of the 2nd Annual
Symposium on Computer Architecture, (Jan., 1975), pp. 183-187.

[7] Verhofstadt, P.W.J., "Technology for Microprocessor Hardware",

IEEE COMPCON 76, (Feb., 1976), pp. 19-22.

[8] Widdoes, L. D., Jr., "The Minerva Multi-Microprocessor", Pro-
ceedings of the 3"d Annual Symposium on Computer Architecture,
(Jan., 1976), pp. 34-39.

[9] Wulf, W. et al, "HYDRA: The Kernel of a Multiprocessor Operating
System", Communications of the ACM, Vol.17, No.6, (June, 1974),
pp. 337-345,

[10] ----- ~, Proceedings of the 4th Annual Symposium on Computer

Architecture, (March, 1976).

lTocation content

[+n-1 PI call word from Pt

I PI call word from P0

J+n-1 Program counter save space for preemption of Pn—T
J Program counter save space for preemption of PO
K+n-1 Program counter save space for signal to Pn—]

K Program counter save space for signal to PO
L+4mn-4 Descriptor for Pmn (see Figure 2)

L+4mn-8 Descriptor for Pm-in (see Figure 2)

L Descriptor for P 0 (see Figure 2)

0

Queue Space (see Figure 3)

MEMORY ADDRESS RESERVATION

TABLE 1

n-1 n

2n-2,

2n-1

n-1

The Multiple Processor Organization

Figure 1

10P

PI

L+41j

SRR
Hhigee

L4543

ID

PA CA

Q.Length

Q.Link

INT

Figure 2

Partial Process Description

S
/p

Q. Link

Org address
(A-Register
content)

t—«~-~——SIGNAL or PREEMPT message.

Message Queue Entry

Figue 3

