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Abstract

Let X € R™*?, Y € R™* be of full column rank, and let X = span(X), Y = span(Y).
This paper addresses the issues of accurate floating—point computation of the principal angles
between X and Y. The cosines of the principal angles are usually computed using the Bjorck-
Golub algorithm as the singular values of Q7Qy, where Q. and Q, are orthonormal matrices
computed by the QR factorizations of X and Y, respectively. This paper shows that the
Bjoérck—Golub algorithm is mixed stable in the following sense: The computed cosines of the
principal angles approximate with small relative error the exact cosines of the principal angles
between X = span(X +AX) and Y= span(Y + AY'), where €. = max;<i<p [|AX eil|2/]| X ei)2
and €, = max;<j<q||AYe;]|2/||Ye;]]2 are bounded by modest polynomials of m, p, ¢ times
machine precisic:n.” Hence, the backward error is bounded in the angle metric by sin Z( X, x ) <

real XL s, sin 29,3) < A,V [, where X = X.diag(|Xedla), ¥ = Yediag([Veills)
This paper also recommends that in the Bjorck-Golub algorithm the QR factorizations are
computed with complete pivoting of Powell and Reid. It is shown that in that case the Bjorck-
Golub algorithm achieves high accuracy if X and Y can be written as ng)Xﬂgm) =D1X.D,,
Hgy)Yﬂgy) = D3Y,D,, with (arbitrarily ill-conditioned) diagonal matrices Dy, Dz, D3, Dy
with descending diagonal entries, permutation matrices H(lz), ng), H(ly), Hgy), and with well
conditioned X, and Y,. Further, this paper proposes a new mixed stable algorithm, based on
Gaussian elimination with pivoting. The new algorithm approximates with small relative error
the exact cosines of the principal angles between X and ), where sin L(X, .JE') and sin L(y,ji)
depend on the accuracy of the pivoted LU factorizations of X and Y. The new algorithm
is more accurate than the Bjorck—Golub algorithm in cases when the LU factorization with
pivoting is more accurate than the QR factorization.
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1 Introduction

Let X € R™*?, Y € R™* be full column rank matrices with p > ¢ and let X = span(X),
Y =span(Y), k = dim(X V). Let Px and Py be the corresponding orthogonal projectors, and
let k + r = rank(PxPy). In a suitably chosen orthonormal basis, the matrix representations [Px]
and [Py] of Py and Py, respectively, read (cf. [45])

Pxl= Lo (847,,50) 0 0x, [Pyl = Lo (68,55)) ® 0y, (1)

where 2y and Qy are diagonal matrices with diagonal entries zero or one, and such that QxQy = O
and

) 5 ) . b .
=0 - [(1)] 0], == [Zi’jg] [cos di,sindi], 0< V<D hs1<i<han  (2)
(The matrices Qx and 0y may be void.) Principal angles between X and Y are, by definition, ¥; =
o= =0, g,y Vg, Tkgrgr = - = Fg = 1/2. Obviously, oy =cosdy, i =1,..., k47,
_ . =()e(i) _ |cos¥; 0 cosd;  sin;

are the non—zero singular values of PyPy. (Note that B} gy = { 0 ol | —sind; cos; )

The cosines of the principal angles are also known as canonical correlations and have important
applications in statistic, econometric, geology. Golub and Zha [26] discuss various equivalent
characterizations of the principal angles. For instance, they show that the SVD of Q7Qy can be
used to solve constrained optimization problems such as

Iil%xTrace(ATXTYB), where A"X"XA=1, B'Y'YB =1,

and the orthogonal Procrustes problem minp-y=r||Qs — Q,U||p. (For a thorough description of
the principal angles see [37].) ‘

In this paper, we analyze numerical computation of the principal angles.” Bjorck and Golub [10]
have shown that the principal angles can be computed via the SVD of Q7 Q,, where X = Q. R, and
Y = QyR, are the QR factorizations of X and Y, respectively. (Taking Px = Q.Q}, Py = Q,QJ,
and writing the SVD of Q7 Q, as Q7 Q, = WXV we obtain Py Py = (Q. W)E(Q,V)".) In§ 2, we
show that the Bjorck—Golub algorithm for numerical computation of the principal angles is mixed
stable: the computed approximations of the singular values of PyPy approximate with small
relative error the singular values of P3Py, where X = span(X + AX), Y = span(Y + AY) and
max;<icp [[AXe;||2/|| X eill2, maxi<icg||AY e;i]|2/|[Y e;]|2 are, up to factors of the dimensions, of the
order of the machine precision. From this estimate, it follows that the Bjorck—Golub algorithm has
equally small backward error angles (X, z‘:’), (Y, 5)) for all bases XDy, YD, of X, Y, where Dy,
D, are arbitrary diagonal nonsingular matrices. We also show-that the Bjorck—Golub algorithm
achieves high accuracy on a wider class of problems if the QR factorizations of X and Y are
computed with complete pivoting of Powell and Reid [32]. ,

Further, we propose a new algorithm for accurate computation of the principal angles. Detailed
description and analysis of the new algorithm are given in § 3. Asin the Bjorck—Golub algorithm,
our algorithm computes the SVD of Q7 Q,, where Q, and Q, are orthonormal bases of X and Y,
respectively. The main novelty in the new algorithm is that Q. and @, are not computed using the
QR factorizations of X and Y. Instead of that, @, and @, are certain permuted lower trapezoidal
orthonormal bases of X and Y. The matrices Q. and Q, are computed by a variant of the modified
Gram-Schmidt algorithm applied to permuted unit lower trapezoidal LU factors Il; Ly, I, L, (114,
II, permutations) of permuted X and Y, respectively. Error analysis shows that the new algorithm
computes with small relative error the singular values of P3Py, where X = span(Ily (Ly + ALg)),

~

Y = span(Ilz(Ly + ALy)), and max; <;<p ||ALgze;|2/||Loeil]2, maxi<icy ||AL§,ei|]2/||LyeiH2 depend
on the accuracy of Gaussian elimination with pivoting. Moreover, sin Z(X, X') and sin £(Y, V) are
correspondingly small. Another interesting feature of the new algorithm is that it computes with
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nearly the same accuracy the principal angles of all pairs (span(D; X D), span(D3sY D)), Dy, D,
D3, D4 arbitrary diagonal nonsingular matrices. We also explain (using the analysis of the new
algorithm) similar high accuracy of the Bjérck—Golub algorithm with complete pivoting of Powell
and Reid. However, since the accuracy of the new algorithm depends on backward perturbation
in the bases computed by Gaussian elimination (rather than backward perturbation from the QR
factorization) the new algorithm is generally more accurate than the Bjérck~Golub algorithm with
complete pivoting. In § 4, we give numerical examples that illustrate this difference between the
two approaches.

2 Analysis of the Bjorck—Golub algorithm

Golub and Zha [25] have shown that the Bjorck—Golub algorithm has the same forward error
bounds as a backward stable algorithm. However, they did not show that the algorithm itself
is backward stable. In this section, we prove that the Bjorck-Golub algorithm is mixed stable:
the computed canonical correlations are close approximations of the exact canonical correlations
of certain matrices X ~ X and Y ~ Y. Detailed analysis, presented in § 2.2,.shows that the
backward and the forward errors are independent of column scalings of X and Y. In § 2.3, we
show that the Bjorck-Golub algorithm achieves much higher accuracy if the QR factorization is
computed with complete pivoting of Powell and Reid [32].

2.1 Preliminaries

Before we start with detailed analysis of the computation of the principal angles, let us recall some
elementary results about floating—point computation of the QR factorization, floating—point matrix
product; and two fundamental perturbation results for the singular values. We use the standard
model of floating—point arithmetic,

fllaeb) =(@ob)(1+¢§), FUVe)=vc(1+C), [LICI<e, )

where a, b and ¢ are floating—point numbers, © denotes any of the four elementary operations -+,
—, - and +, and ¢ is the machine precision (round-off unit). The following two propositions can
be proved using (3). (For a proof of Proposition 2.1 see e.g. [16], [27]. For a proof of Proposition
2.2 see [24].)

Proposition 2.1 Let X € R™*?, m > p, and let the QR factorization of X be computed using
Givens rotations or Householder reflections. If the computation is performed in floating-point
arithmetic, then there exist backward error 6 X and an orthonormal matriz Q such that

X 46X = QR, |[6Xeill2 < eqr(m,p)||Xeillz, 1<i<p, (4)

where eqr(m, p) is bounded by machine precision e times a modestly growing polynomial of m and
p. Furthermore, it holds that

[6X|<eqr(m,p)E|X|, E=ec (e=(1,...,1)7). (5)

Proposition 2.2 The floating-point product Z of an p X m matriz A and an m X g matriz B
satisfies

Z = AB + E, IEISSMM('ITLHA{LB‘, USSMM(m)§(1+€)m+1—1, (6)

where the absolute value and the inequality are taken element-wise. Generally, eprpr(m) depends
on the details of implementations. For instance, using double precision accumulation, the bound
for eprrpr(m) can be reduced to O(1)e for all m < 1/e.
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The following theorem estimates the absolute and the relative size of the perturbations of the
singular values of a matrix.

singular values of S and S, respectively. Then maxi<;<n|Gi — oi] < HS’ — S||2. Furthermore, if

max{||E|l2, || Fll2} < 1, then

Theorem 2.1 Let § = (~I+E)S(I+F), and let o1 > -+ > o and 51 > --- > &p be the

' |5 — i
— — 1. 7
max T2 ) -1 g
For a proof of relation (7) in Theorem 2.1 see e.g. [22, Lemma 6.4 and Corollary 6.1}, [28, Problem
12 in § 3.3], [16], [21], [29].

2.2 Mixed stability

The Bjorck—Golub algorithm follows a three step scheme: (i) compute the orthonormal QR factors
Qz, Qy of the data matrices X, Y; (i) compute the matrix product S = Q7 Qy; (i) compute the
SVD of S. By following these steps in floating—point computation and by using the results from §
2.1, we obtain the following theorem.

Theorem 2.2 Let 1 > -+ > &, be the singular values computed by the Bjorck-Golub algorithm.
Then there exist X = X + AX € R™X?, Y =Y + AY € R™*9 with the following two properties:

(i) The values max;<i<p |[[AXe;]|2/]|Xei|[2 and max;<icq [|AY e;]|2/]|Y el are of the order of
machine precision times a moderate polynomial of the corresponding matriz dimensions.

(i) If oy > -+ > oy are the ezact cosines of the principal angles between span(X) and span(Y),
then, for all i, either 6; = ol = 0 or |5; — o}|/o} is less than machine precision times a
moderate polynomial of the matriz dimensions.

Proof: To simplify the notation, we use 7;, ¢ = 1,2,... to denote small non-negative values
bounded by machine precision times a moderate function of matrix dimensions. For all reasonable
dimensions, the values of 7; are much less than one.

Let Qq, Qy, 2+, R, be the computed approximations of Q4, Qy, Ry, Ry, respectively. Then there
exist backward perturbatwns §X, 6Y and an n; < 1 such that (cf. Proposition 2.1)

w 5 7 16 Xeill2 6Yeill2 |
= = <. 8)
X +6X =QuR,, Y +6Y =QuR,, max{llga%) el 22 Veils J =™ (8)

Note that computation of the orthogonal factors is generally not backward stable unless the com-
puted matrices @, and Qy are exactly orthonormal. (We generally cannot say that the computed
matrix Qaz is exact orthogonal factor of some X ~ X. ) The best we can prove is mixed stability:

Q. and Qy are close to exact orthogonal factors of X 4+ 6X and Y + 8Y, respectively. This is
ensured since there exists an 7, < 1 such that

max{HQ;@m — 1|, HQ;Q'U —Il[r} < m2.

(Here we assume that. we use a QR factorization algorithm that ensures almost orthogonality of the
computed matrices Q, and @y) So, for example, if @, = Q. (I+7T) is the (exact) QR factorization
of Q., then the upper triangular matrix T, satisfies ||T4||2 < 72 and the mixed stability of the
computation of the orthonormal QR factor follows from the relation

F=X+aX=X+6X=0Q, (I+T)R.), [1G. - Qilla < IT2]l2

Similarly, Y +6Y = Q! (I + T4) Ry, ||Ty]|2 < n2. Let § = fI(Q1Q,). Then S = Q7Q, + Es, where
Esll2 < ns (cf. Proposﬁ;lon 2.2). The computed singular values &; > --- > &, are the exact
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singular values of S + 63, where ][65'”2 < 7m4. Here the values of 73 < 1, 74 < 1 depend on the
details of computation (cf. [24]). We can write the matrix S + §S as

S+65 = QiQu+ Bs+85=QL(Qy +(01)(Bs +65))
(I +T2)7 (@) Qy) (I +Ty),

[l

where (Q;)T = QLI +T)) " and Qy + (Q;)T(Eg +68) = Qy (I +T') is the QR factorization of
an almost orthonormal matrix with HT;,’H; < 15 < 1. Note that

V=Y +AY =Y +68Y + (Q0)(Bs + 65) R, = QUUI + TV)R,,
and that, for all 1 < ¢ <gq,

1Bl +1165]l2_1+m

(@) (25 +85) Ry ) eill g, Ty el
< +m)(—’173_—+n—’27‘)*—zuyeinz.

The proof completes by noting that the singular values of (Q;,)"Q; are the cosines of the principal

angles between span(X) and span(Y) and by invoking Theorem 2.1. Q.E.D.
The backward errors in Theorem 2.2 are small norm—wise relative errors in the columns of
the bases X and Y of X, ), respectively. These estimates, however, do not guarantee that the
backward perturbations of X and Y are small in the angle metric. In this paper we use the
following angle metric introduced by Wedin [45]. For any two subspaces S;, S with corresponding
orthogonal projections Ps,, Ps, (possibly of different ranks), the angle £(Sy, ;) is defined by

£(81,S2) = min {arcsin ([|[(I = Ps; )Ps, [[2) , aresin ([|(1 = Ps, ) Ps, [|2)} -

(If dim(8;) = dim(Sz), sin £{81,83) = ||Ps, — Ps,l|2-) Consider now the angle L(X,/f'), where
X = span(X), & = span(X + AX), and X, AX are as in Theorem 2.2. If Dx = diag(||Xe;]|2),
X = X.Dx, AX, = AXD}l, then X = span(X.), X = span(X, + AX,) and an estimate of
Wedin [45] yields
. ~ AX@in
sin L{X,A) < X:[ max L——————
( ) > H “2\/5155317 ”Xeiﬂz

Hence, we have the following corollary of Theorem 2.2.

Corollary 2.1 Let the assumptions of Theorem 2.2 hold. Then there exist subspaces X, Y and a
modest polynomial f(m,p,q) such that

_ AXe;
sin 2(%, &) < || %] |s/p max LAXeill2

n 23, 9) < ] IaYes
1<i<p || Xeilla ' sin 2(Y,Y) < ||Ye']|24/q max

1<i<q |[Yesllz '

and such that the computed values (5;){_, are up to a relative error of order f(m,p, q)e the ezact
singular values of P3Py.

In the principal angle computation, the angles Z(X, /{’), (Y, 57) seem to be very natural metric
to measure backward errors. The following perturbation estimate illustrates this observation.

Theorem 2.3 Let X, X, Y, Y be subspaces of R™ (or C™) with dim(X) = dim(X), dim(Y) =
dim(Y), and let } 3 _ _

n=sin £L(X,X) +sin Z(Y, V) + sin L(X, X) - sin L(Y, V).
Let ¥ = diag(o;), E = diag(¢;), ¥ = diag(s:), E = diag(é;) be the singular values of PxPy,
(I =Px)Py, PsPs, (I —Pz)Py; respectively. Then

122l <n, [[E-E[2 < (9)
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Furthermore, let @ = diag(d;), © = diag(d;) be the principal angles between X and Y, and between

X and Y, respectively. Then n < ( \/- 1 /\/5 implies

1@ — ||, < ! : (10)
1= (n+ 1/3/2)? |

Proof: The first inequality in (9) follows from

IZ-5l; < |[[PxPy—Ps (Px —Pg)Py +Px(Py — Py) — (Px — Pg)(Py — Py)
sin Z(X, X) +sin £(Y, V) + sin L(X,f) sin (Y, ).

|2

A

Similarly, the second inequality in (9) follows from ||Z — E||; < ||(I — Px )Py — (I — P3)Pyll2 and
from the identity Z(X,X) = £(X+, X1). To prove (10), we first note that

_ max{o;,5;} dt max{ﬁg,f;’} dt
[9: — 0] = / —_— = - (11)
min{o;,5;} 1—1 min{€;,€:} It

and that min{max{c;, &}, max{¢;,&}} < 1/v/2 + 1. Then we estimate the integrals in (11).
Q.E.D.

Corollary 2.1 shows that the backward error angle in the Bjorck—Golub algorithm is inde-
pendent of column scalings of the bases X and Y, and that this angle might be large only if
Minp=diag K2(X D) and minp=qiag #2(Y D) are large. (Here we recall the near optimality of x2(X.),

Ka(Xe) < /pminp=diag £2(X D); see [42].) In that case, certain, even very small, norm-wise rela-
tlve changes of the columms of the ill-conditioned basis X might cause arbitrarily large flutter of
the corresponding subspace. The following example will illustrate. Let

1 1 1 : 1 1 ,
X=le —¢|, Y=|1|, X=|e —e|, |1, (12)
€ € 1 € —€

and let X' = span(X), X = span(f(), Y = span(Y). Note that the angle between & and Y is fairly
large (X is close to span(e; +e3)) and that the corresponding columns of X and X differ by small
(O(€)) angles. However, it holds that Y C X. Using MATLAB with € = 1000 * eps = 2.22- 1073,
we compute the orthogonal factors of X and X, respectively, as

} —1.00 2.22-1071° — —1.00 3.14-1071°
Qr ~ | —2.22.10713 —1.00 . Qe ~ | —222-107 —7.07-107"
—2.22-1071% 2.46.1072%6 —2.22-107% 707107

Hence, the principal angles between & and Y are poorly determined in the presence of such errors.
This behavior is also captured by the following theorem of Golub and Zha [25].

Theorem 2.4 Let X € R™*P gnd Y € R™*? be full column rank matrices and let X = X.Dyx,
Y = Y.Dy, where Dx = diag(||Xe;]|2), Dy = diag(||YVes|l2). Let X = X + AX, ¥V =Y + AY be
also full column rank matrices such that |AX| < eGx|X|, |AY]| < eGy|Y|, where O <e<1and
Gx, Gy are matrices with nonnegative elements. Let X = span(X), YV =span(Y), & = span(X)

Yy = span(Y). Let C(X, X) be the orthogonal complement of X X in X + X, and let £ be the
minimal angle between C(X,X) and Y. Simalarly, let ¢ be defined as minimal cmgle between C(YV, V)
and X. If 22, 3 are the diagonal matrices of the cosines of the principal angles between X and Y,
and between X and Y, respectively, then

][i ~ 3l <e (\/p(m—p)HGXIFIchz( cosf + v/ qg(m — Q)||Gy|l2r2(Ye) cos C)
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This theorem shows that the accuracy of the singular values of PyPy depends on the condition
number of column scaled matrices X, and Y,.

Remark 2.1 It can be easily shown that the error bound in Theorem 2.4 can be improved to

15 = Tz < e(VBlGx|lar2(Xe) cos € + 1/al|Gy [lara(Ye) cos ¢) .

We conclude our analysis of the Bjorck—Golub algorithm with an experimental illustration of
the bounds in Theorem 2.2 and Corollary 2.1.

Example 2.1 We generate test pair (X,Y) as follows. We write X, ¥ as X = X,Dyx, Y =
Y, Dy, where Dx = diag(||Xei||2), Dy = diag(|[Ye:||2), and ka(X,), k2(Y,) € {10%, i = 2,...,6},
ra(Dx) € {108, 1012,10'%}, ko(Dy) € {10°,10%3 105}, For fixed values of the condition numbers
(k2(X,), k2(Dx), k2(Yy), k2(Dy)) we generate X,, Dx, Y,, Dy with different distributions of
singular values. We use the procedure DLATM1() from [14], and we choose the values of the
parameter MODE so that the distributions of the singular values of X,, Dx, Y,, Dy are from the
set {5,3} x {6} x {5, —4} x {5}. In this way, we generate 900 test pairs (X,Y), divided into 25
classes, where the pairs from the same class C;; have nearly the same value of (rk2(X.), k2(Ye)) =
(10%,107), 2 < i,j < 6. We measure the backward error angles in the following way. We use single
precision floating—point arithmetic to find approximate orthonormal bases Qm and @;L for X and
X+, respectively. Then, we use double precision computation to compute the sine of the angle
between span(@zj and X'. This is accomplished by an application of the Bjorck-Golub algorithm
to the matrices QF and X. The same procedure is applied to Qy and Y. (It is clear from the
proof of Theorem 2.2 that the computation of the orthonormal bases introduces the major part of
the error. Hence, this experiment gives a useful insight into the overall accuracy of the algorithm.)
The QR factorizations are computed using the LAPACK [1] procedure SGEQRF(). The results of
the test with m = 200, p = 100, ¢ = 50 are given in Figure 1, where

ey = (X,H;E)Lé(ci,» max{sin‘L(span(QQ), X)), sin L(span(Qy), Y)}.

Note that Figure 1 indicates that the error bounds in Theorem 2.2 and Corollary 2.1 are almost
attainable.

2.3 Modified algorithm

In some situations, large x3(X.) and k,(Y.) represent artificial ill-conditioning and Bjorck—Golub
algorithm can be modified to be more accurate than the above theory predicts. For example, let
X = X, D, where X, is well-conditioned. Then replacing X with D'X, where D' is ill-conditioned
diagonal matrix, produces an ill-conditioned problem in the framework of the analyses of Theorem
2.2 and Theorem 2.4. Numerical experiments clearly show that the algorithm indeed becomes
unstable and that it computes with large backward (and forward) errors. Such large errors are
caused by known stability problem of the QR factorization of the matrix with widely differing row
norms. To overcome this problem, we use the QR factorization with column and row pivoting, as
suggested by Powell and Reid [32]. The results of an experiment are reported in the next example.

Example 2.2 We follow a similar test procedure as in Example 2.1. The only difference is that
the generated matrices X = X,Dx, Y = Y, Dy are updated as follows: X := Dy X, Y := D, Y,
where DY, D) are randomly generated in the same way (with the same parameters) as Dy, Dy,
respectively. In this way, x2(X.) and x3(Y.) are increased, but in a very structured way. The QR
factorizations are computed by a modification of the LAPACK procedure SGEQPF(). The results
of the test are shown in Figure 2. In Figure 3, we show the values of e, = sin /_(Q,H X)), ka(Xe),
e, /k2(X.), where X, is obtained from X by column equilibration.
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m=200,p=100,q9=50

log10(e_ij)

Figure 1: The values of logge;;, 2 < 4,j < 6 in Example 2.1. Note that log,sei; ~ 107 max{i,j}
as predicted by the theory.

m =200, p =100, q = 50

log10(e_ij)

Figure 2: The values of log,ye;;, 2 < 1i,j < 6 in Example 2.2.
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m =200, p = 100, q = 50
10 T T T T T T T T

g

k_2(X_c)

10 E
107 |
e_x/k_2(X_c)
1072(’ i I 1 i i 1 1
0 100 200 300 400 500 600 700 800 900

Test matrix X

Figure 3: The values of e, = sin Z(Qq, X), xa(X.), ex/r2(X.) for all 900 examples of the basis
X and with the modified Bjérck—Golub algorithm (Example 2.2). The values of f, represent the
backward error angles sin A(Qm,X), where Q, is computed with QR factorization without Powell-
Reid pivoting.

Note the similarity of the error behavior in Figure 1 and Figure 2. (In this example, we have
observed similar accuracy if the Powell-Reid pivoting is replaced by simple reordering of the rows
of the matrix so that their Euclidean norms are in descending order.)

In the next two examples, we show the difference in the forward errors for the two variants of the
Bjorck—Golub algorithm.

Example 2.3 In this example we show that QR based computation of the orthogonal bases can
introduce large error and it can fail to detect that, for example, one of the principal angles is close
to m/2. We take the bases X and Y to be

0.57378941- 1017 —0.74737239-10°° —0.10439621-10°% ]
—0.75415686 - 102° 0.25173789-10%%2 —0.11089462- 10
—0.52912208 - 10'® 0.51559708- 102 —0.63842515-10%

X = 0.26020839-102% —0.72667785-10'®%  0.14745371-10°

0.21463361 - 1022 —0.76107815-10'*  0.39906168 - 10°¢

0.13388386 - 102% —-0.48858418-10'%  0.75605997 - 101!

| —0.43084490 - 1020 0.33985776- 1012  —0.38962076 - 10°°

0.12378225- 10790 _—0.17331250- 10113 7

0.84008590- 10799  0.17773952. 10105
—0.26428604- 1071 —0.98536731- 1071

VY = 0.13059467- 10712 —0.80072369-107%° | |

0.18943973- 1011  —0.20708348 10101
~0.16178360-107%1  —0.33048027- 1013

0.40286435-107%¢  0.10409793 - 1079 |

where the entries of the corresponding double precision arrays are shown to eight decimal places.
In Table 13, we show the computed approximations of the cosines of the principal angles. (7—
Bjorck-Golub refers to the Bjorck-Golub algorithm with pivoting suggested by Powell and Reid.
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Algorithm 3.1 is described in § 3. At this point, the only purpose of the last row in Table 13 is to
give a second set of double precision reference values (singular value approximations).)

7; | Bjorck-Golub (single) | Bj6rck-Golub (double) m—Bjorck-Golub (single)

&1 | 0.10000002- 10! 0.9999999910693745 0.10000000 - 10t (13)
&, | 0.91120803 0.2269574724944604-10~% | 0.21987161-10"°

[ Algorithm 3.1 (double): &; ~ 0.9999999910693748, 5, ~ 0.2219392787298458 - 10°. |

Since &, ~ 3.7¢, it is determined only to an absolute uncertainty of order e. To illustrate this,
we multiply the entries of X and ¥ by randomly chosen numbers 1 & ¢;; with |e;| < 10™%, The
single precision Bjorck—Golub algorithm and w-Bjorck-Golub algorithm compute, respectively,
G2 ~ 0.99112201 and &3 =~ 0.75409122 - 10~%. The double precision computation gives 7, ~
0.7685475597770073 - 10~%. The maximal principal angle is not sensitive to this change since

¥ 2 arccos(0.21987161 - 10~%) and 9, ~ arccos(0.75409122 - 10~°) satisfy 95/, ~ 1.0000003 and
(7/2)/ min{d,, ¥} ~ 1.0000005. This is obvious from the formula

v =

Sk

/ 7L dt

o V1 —t2 ’

Remark 2.2 The value of 5, = 0.10000002-10" in Table 13 shows that mixed stability is the right
framework for the numerical analysis of principal angle computation. No backward perturbation

can in exact arithmetic lead to 0.10000002-10" as the cosine of a principal angle. (Strictly speaking,
the Bjorck—Golub algorithm (and Algorithm 3.1 in § 3) are not backward stable.)

Example 2.4 The most critical part of the principal angle computation is the computation of the
orthonormal bases of the given spaces. If that computation introduces large errors that “rotate”
the initial spaces, there is no way to tell which singular value of PyPy will suffer the largest
perturbation. In this example, we show that the largest error might be in the largest singular
value, while the smallest one is computed very accurately. Let

0.81909804 - 10°Y —0.85610022-10%%2 —0.19108842-10"2
—0.31793150 - 101 0.15111104-10**  0.26747300- 1022
—0.51921289 - 1012 0.32394455- 101  0.74985519 - 1022
X =~ —0.12806811 - 101 0.32962115- 10 0.11506216 - 1028
0.11302525-10°% —0.85968597-10°% —0.16852694 - 101°
0.85886880- 106 = —0.89292760- 107 —0.17015941 - 1027
0.14028936 - 10°% —0.69895642-10°® —0.11412105- 106

[ —0.77654567-10"% —0.42605337-10~0¢
—0.52320495 - 107 —0.42627118.10799
—0.12184166 - 107% —0.47657759- 109
Y =~ 0.34901023-107%  0.19476305-10-98
0.22741771- 10t 0.86991999. 107!
0.15964494-107%  0.15686126-1071°
0.75523679-107%  0.46711879.10"!!

The computed singular values are given in Table 14. (As in Example 2.3, the last row in Table 14
and in Table 15 is used only as a second set of reference values.)

| &; | Bjorck-Golub (single) | Bjorck-Golub (double) n—Bjorck-Golub (single)
1 | 0.99059296 0.5015345317976148- 102 | 0.48222207 - 102
o | 0.25136729-10° 0.2510846255712600- 1079 | 0.22261035- 1077

| Algorithm 3.1 (double): &3 2 0.5015345505648627- 102, &, ~ 0.2510846257369576- 10~ °. |
(14)
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To illustrate how well o1 and o, are determined by the data, we introduce random rounding errors
of order 10™* into the entries of X and Y and we run the test again. The results are shown in
Table 15.

G; | Bjorck-Golub (single) | Bjérck-Golub (double) m-Bjorck-Golub (single)
&y | 0.99053305 0.5013070874085607-10~2 | 0.48202435- 102
s | 0.24991473-10°° 0.2502365149198476-10~° | 0.22178702-10~°

| Algorithm 3.1 (double): &; ~ 0.5013070984780922- 10~7, & ~ 0.2502365153154889 - 10 7. |

(15)

The benefits of row pivoting in the QR factorization are well known in solving weighted least squares
problems and there exist computational experience and satisfactory backward error bounds which
justify the need for row interchanges; see e.g. [3], [43], [8]. In what follows, we try to contribute
to further understanding of the nature of the backward error and its implications to the forward
perturbation of the orthogonal QR factor. We first recall the following result of Powell and Reid.

Proposition 2.3 Let X, §X, Q, R be as in Proposition 2.1, and let the QR factorization be
computed by a sequence of p Householder reflections. Let X(¥) L ¢ {1,...,p}, denote the floating~
point matriz computed in the kth step of the algorithm, let X*), k e {1,.. ., P}, denote the matriz
in the kth step of ezact computation, and let X = X + 86X and

pl(}z) :ln?'cxi(X(k))iyln pl(X) :m%XI(X(k))tjl) = 19m (16)
Iy Js

- Then there exists a modest polynomial h(p) such that |6X;;| < h(p)s,o,(X) Furthermore, if the

columns of X are permuted following the pivoting of Golub [23], and if, in addition, the rows of
the matrices X¥) are permuted so that, for all k, |(X*))y| = max;>k (X U))ix ], then

max [(X D) i) < Vml(X )], and pi(X) < (1+ v2) ' v/m max | X ).
7 J

Powell and Reid report that the pivot growth factors

pi(X)

max; tXij‘ !

wi(X) = 1<i<m, (17

are usually moderate and that the exponential growth is attained only in pathological cases.

Remark 2.3 Barlow [3] has shown that the G-algorithm of Bareiss [2] has similar backward error
bound as in Proposition 2.3. Hence, the forthcoming analysis can be applied to the G-algorithm
as well.

Let us continue with two observations.

(i) In the computation of an orthonormal basis for span(X), column scaling X := XD (D
diagonal, det(D) # 0) is admissible transformation, while the row scaling X := D'X (D’
diagonal, det(D’) # 0) is not. In other words, we may scale the columns of X to achieve
better numerical stability or tighter perturbation bounds, but we must not scale the rows of
X.

(ii) Let X = X!D, where D is a diagonal matrix of powers of the base of the floating—point
arithmetic. Then, in the absence of underflow and overflow, the QR factorizations of X
and X! are numerically equivalent in the sense that both compute the same floating—point
approximation @m ~ Q. (Q, denotes the exact orthogonal factor of X.)
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To simplify the notation, we assume that the initial matrix is permuted so that no column or row
interchanges are necessary in the Powell-Reid QR factorization with pivoting. We also assume that
we can write X = D'X,D = X!D, where D, D' are nonsingular diagonal scalings, the diagonals
of D are powers of the base of the floating—point arithmetic, and that no column interchanges are
necessary to compute the QR factorization with column pivoting of X!. (In that case, neither the
row interchanges are necessary in the Powell-Reid row pivoting.) We let Q. denote the computed
approximation of the orthonormal basis Q. Using Proposition 2.3, we conclude that there exist
an exactly orthonormal matrix Q! and a backward error §X such that the computed triangular
factor R, satisfies

X +6X = QL R., [6Xy|< h(P)EM(X)m?XIXijl‘ (18)

By observation (it), we can also write
Xl= X0+ 6(X) = Qu(R.D™Y), 1(8(X0))is| < h(p)eps(X:) max |(X)i] (19)
J
We can rewrite relation (19) to

D'(X. + D'78(X1)D = Q. R, l—“—(é(ﬁé))“

< h{p)ep; (X)) mjax|(Xc)ij|. (20)

Since the computed matrix Q, is nearly orthonormal and since HQZ — QLl|2 is (up to a factor of
the dimensions m, p) of order e, the main issue in perturbation of X = span(X) is how the matrix
Q@ changes in the presence of the following perturbation:

X=D'X.D+— X +6X = D'(X,+6X.)D, |(6X.)i;] <h(p)em:(X.)max|(Xc)i;|.  (21)
J
The existing perturbation results for the QR factorization can be roughly divided into two groups.

“In the first group, we have error bounds in terms of ||§X||r/||X||2 and typical estimate is of the
form '

§X
I60ul1r < Vo) X lE. (22
; X112
as in [40] (derived using fixed—point and operator theory; see also [33], [38]) or
16Qulle < v max [[(X +1- (5))~ 16X | (23)

as in [5] (derived for m x m nonsingular matrices using calculus on the manifold GL(m)). In the
second group are the results of Sun [39] and Zha [46]. These results are best represented by the
following theorem due to Zha: If |§X| < eGx|X|, with Gx > 0, ||Gx|leo = 1, and with sufficiently
small ¢, then

16Qulloo < m(m, p)ell [Rel - |RZ [loo, (24)

where z(m, p) is modestly growing function. Zha has shown that the bound (24) is sharp. (Here
the matrix absolute values and the inequalities involving matrices are understood element—wise;
|| ||oo is the matrix norm induced by the £, vector norm.) An important feature of the bound (24)
is that it is invariant under replacing X + 6 X with (X + 6X)D,, where D, is arbitrary diagonal
nonsingular matrix. Hence, the size of the error in the case of column-wise perturbations (such asin
Proposition 2.1) is essentially determined by cond(X) = mian:diag k2(X D, ). However, cond(X)
may be large if X has heavily weighted rows, for example if X is composed as X = D'X.D, where
D and D' are ill-conditioned diagonal scalings, and X, has moderate (say) kz(X.). Thus, the
bound (24) is not sharp in the case of perturbation (21).

It does not seem simple to deal with row scaling in the perturbation analysis of the QR factor-
ization. In the case of column scaling, we use the fact that both X = QzR; and XD, = Qz(R.Dy)
are the essentially unique QR factorizations, and we can take advantage of the fact that ry (X D,)
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might be much smaller that x2(X). In other words, if the ill-conditioning can be “filtered out” by
column scaling, it is artificial and it does not affect the accuracy of the computation. On the other
hand, the relation between the orthonormal QR factors of the matrices X, X, X +6X, X. + 6X.
in relation (21) is not obvious. (For an asymptotic analysis of the QR factorization see [34].) We
discuss the solution to this problem in the next section, where we describe a new algorithm that
is based on another fundamental matrix factorization, namely the LU factorization.

3 The new algorithm

The main difference between our new algorithm and the algorithm of Bjorck and Golub is in the
computation of the orthonormal bases of X = span(X) and Y = span(Y). Instead of the QR
factorization applied directly to the matrices X and Y, we first compute the LU factorizations
of X and Y using Gaussian elimination with complete (or partial) pivoting. Then we use the
computed unit lower trapezoidal LU factors as new bases for X', Y. (Note that the numbers of
parameters in the unit lower trapezoidal LU factors of X and Y are equal to the dimensions of the
corresponding Stiefel manifolds of m x p and m x ¢ orthonormal matrices.)

Algorithm 3.1 CC(X,Y)
Input X e R™®, Y € R™? full column rank matrices with p > q.

Step 1 Compute the LU factorizations with pivoting, Pt X P, = L. U,, P3Y Py = L,U,. (For partial
pivoting, P, = I,, Py = I;.)

Step 2 Compute the QR factorizations L, = Q. R,, Ly = Qy R, using the modified Gram-Schmidt
algorithm.

Step 3 Compute the matrix S = Q7 ({(P1P])Qy) and the SVD of 5, S = WEV™.
Output Return the matrices &, P Q. W, P7Q,V

Consider the computational complexity of Algorithm 3.1. We estimate the number of elementary
floating point operations {flops), where we consider only the highest order terms in polynomial
expressions for the actual flop count. The cost of the LU factorizations in Step 1 is m(p? + ¢*) —
(p® + ¢%)/3 flops and, in the case of complete pivoting, m(p* + ¢*)/2 — (p® + ¢°®)/6 floating-point
absolute value comparisons. Since L, and L, are lower trapezoidal, the cost of the modified
Gram-Schmidt orthogonalization can be reduced using the following algorithm:

Algorithm 3.2 MGS_LT(L)

forj=p,p—1,...,1
Lm(J L m, .7) = (1/”[/93(.7 : m)J)Hz)Lm(] : mu])
fori=j-1,7-2,...,1
Lp(5:my2) = Ly(j:m, i) — ((Lu(5 : my5))" La(j : m, 1)) Ly (j : m, 5)
end for
end for

Note that this algorithm overwrites L, with a lower trapezoidal orthonormal basis of span(ZL,).
The computation completes in 2mp? — 4p®/3 flops. Our current implementation of Algorithm 3.2
uses BLAS 1 procedures SAXPY(), SDOT(), SNRM2() and SSCAL(). To compute the matrix S, we
first use the LAPACK’s procedure SLASWP() to apply the permutation P;P] to the computed
matrix Qy Then we use the triangularity of the leading p x p submatrix of Qm to compute
S by application of BLAS 3 procedures STRMM() and SGEMM(). The cost of this computation
is 2mpq — p?q flops. Hence, starting with X and Y, we compute the matrix S in a total of
3m(p® + ¢*) + 2mpq — (5/3)(p* + ¢°) — p’q flops and m(p® + ¢*)/2 — (p* + ¢°)/6 floating—point
absolute value comparisons. For comparison, the Bjorck—Golub algonthm computes S in a total

of 2m(p® + 2¢%) + 4mpq — (2/3)(p* + 2¢°) — 2p*q flops.
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3.1 Error analysis

First and the most important fact used in the analysis is that span(X) = span(L.), span(Y’) =
span(Ly). The central idea of Algorithm 3.2 is then to concentrate all perturbations into perturba-
tions of L, and L,. The motivation is well-conditioning of L, and L, — they are lower trapezoidal
matrices with unit diagonal and with off~diagonal elements less than one in modulus. This fact also
ensures that the QR factorizations of L, and L, can be accurately computed using the modified
Gram-Schmidt algorithm. Furthermore, since L, and L, are well-conditioned bases for X and Y
we expect the backward error to be small in the angle metric. :

We begin detailed error analysis by pointing out an important difference between the LU and
the QR factorization. Consider the floating—point LU factorization of X (cf. [24], [27]):

Proposition 3.1 Let X be a real m x p matriz, and let its LU factorization be computed by
the Gaussian elimination. If no zero pivots are encountered during the elimination process, the
computed factors L, and U, satisfy

~ =~ - ~ €
L0, = X +6X, §X| < esv(p)lLo]-Tal, eru(p) < 1 ﬁps. (25)

Let us now assume that in Step 1 of Algorithm 3.2 the rows and the columns of X are so permuted
that o ) 3
X+5X:LmUa:7 IéXlSELU(P)iLm|'IUzlw (26)

is the LU factorization with complete pivoting. (That is, we simplify the notation by identifying
X = PLXP, = L,U,, where P; and P, are permutation matrices determined by the complete
pivoting.) Let X = D1 ZD,, where D; and D; are diagonal scalings, and let §Z be defined by the
relation

X +6X = Di(Z +6Z)Ds, (27
that is, 67 = Dl_léXDz"l. IfZ =1L,U, and Z +6Z = L,U, are the LU factorizations, then
Z = (D;'L.Dy) (D7 U, D7), Z+6Z = (Dy'L.Dy)(D;'U.D; "),
and, by the uniqueness of the LU factorization,
L.=D;'L,Dy, U, = Dy'U.D;', L. =D;'L.Dy, U, = D{'U,D;".
Furthermore, from relations (26) and (27) it follows that |
LU, =2+462, |62 <epv(p)|L:||U.] (28)

Note that Ly — Ly = Dy(L. — L,)D;* and that

e = Bodels | (D0)s | (B = e [Eeeil
[Eeeils XD eells el (29)
ax (Dl)JJ H )€1H2
S M), Y Toals (30)

Similarly, writing U, — U, = (DyD3)

[(Ue — Ua)"esl2

Uzell:  ~

< max
Jjxi

DY U, — ﬁ'z D,, we obtain
2

ol = Oe)edlz
U7 eill2

(31)

The important relations (30) and (31) are interpreted as follows: If X = Py X P, can be written
as X = D{ZD,, where the diagonal entries of the diagonal matrices |D;| and |D,| are graded
from large to small and Z in (28) admits an accurate LU factorization, then the floating—point
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LU factorization of X is accurate as well. Furthermore, if for some diagonal matrices Dy, Dy the
scaled matrices L, Dy, and Dy U, are well conditioned, then the matrices L, Dy and Dy U, are well
conditioned as well. (Cf. [13], [17], [20], [35], [12].)

On the other hand, relations (4) and (5) from Proposition 2.1 show that the error estimates
of the floating—point QR factorization are only invariant under column scalings. This limits the
accuracy of the QR factorization without complete (row and column) pivoting in the least squares
computation with heavy row weighting (cf. [32], [43], [3], [4], [8, § 4.4.2]), in the SVD computation
(cf. [13]) and in the principal angle computation (cf. Examples 2.2, 2.3, 2.4). In the case of
the QR factorization with complete pivoting, we can use the results for the LU perturbations to
understand the higher accuracy. Recall relation (21),

X =D'X.Dr— X +6X = D'(X. +6X.)D, [(6Xc)ij| < h(p)ep:(X.) max |[(Xc)ij],
J

and assume that the diagonals of D, D' are are graded (|Di;| > |Diy1,i41], |Di| > ]D1'.+1‘i+1})
and that X. admits accurate LU factorization in the presence of the perturbation §X.. (Note
that pivoting ensures that D, D’ nearly meet the ordering assumption.) In that case, the LU
factorization of X = L,U, is accurate as well and max; |6 L,e;l|2/]|Lz€i]lz < 1. Now note that
from X = LU, = Q. R, it follows that L, = Q.(R.U, ') is the QR factorization of L,. In other
words, the orthonormal QR factors of X and L, are essentially the same (up to orientation of the
columns of Q, depending on the signs of the pivots). Similarly, if X +6X = (L, +0L, ) (U, +6U;) =
(Qe + 6Qz)(Ry + §R,), then Q, + 8Q, is orthonormal QR factor of L, + §L,. This means
that we can develop perturbation theory for §Q, as function of L, and §L,. The good news
is that 6L, is from the column—wise class of perturbations and the relevant condition number
is minDL:diag k2(LyDy). This condition number is moderate if the unit lower trapezoidal LU
factor of X, is well-conditioned. In that case we can derive sharp perturbation estimates for the
QR factorization of the perturbed matrix X from relation (21). For example, we can prove the

following proposition.

Proposition 3.2 Let X = Q. R,, X +6X = (Qz +6Q:)(R, -+ 8R,) be the QR factorizations of
X and X + 68X, respectively. Let L, and L, + §L, be the unit lower triangular factors of X and
X + 68X, and let (Ly). = Lodiag(||Leeil|2)™", (6Ls)e = 6Lydiag(||Laes]l2)™ ", H(&Lm)LIHg < 1/2.

There exist an upper triangular matriz E such that

(1+(822)21) @u = (Qu +6Q.)(I + B)

and .
1Bl < Val (6zarl) + 6zl + (eraed) (6zazd) e (2
< VR (21622 le + 1)1 6Tl ) (33)
T |

162 EL e + 1]
16Qallr < T IE]s £ (34)
Furthermore,

sin £ (span(Qs + 6Q2), span(X)) < [[(Za)] (6Tl (35)

We now return to the analysis of Algorithm 3.1. Since L, and L, are unit lower trapezoidal
matrices computed by Gaussian elimination with pivoting, the spectral condition numbers of L,
and L, are bounded by a function of the dimensions. Although the theoretical bound of the
condition numbers is exponential function of the dimension, the values of k3(L;) and k3(Ly) are
almost always moderate (cf. e.g. [41], [36], [44]). Hence, we can safely use the modified Gram—
Schmidt algorithm to compute nearly orthogonal bases for span(L,) and span(L,). The numerical
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properties of the modified Gram—Schmidt algorithm are well understood; see [6], [11], [7]. The two
most important facts are summarized in the following theorem due to Higham [27, § 18.7, Theorem
8.12].

Theorem 3.1 Suppose the modified Gram-Schmidt algorithm is applied to A € R™*? of rank p.
If Q and R are the computed matrices, then there exzist backward perturbation § A and moderate
polynomials pyras(m,p), hres(m, p) such that

) :4 +64 = QR, ||6Aei]|2 < epmas(m, p)||del|s, (36)
1Q7Q = Il < ephyes(m p)ra(A) + O((ephras(m, p)ra(Al))?), (37)
. where A, — Adiag(]|de;|]2)7t.

Theorem 3.2 Let L, = L, + 6L, f}y = Ly, + 6L, be the computed lower triangular factors in
Step 1 of Algorithm 3.1, let rank(L, + 8L,) = rank(L. ), rank(Ly + 6L,) = rank(Ly), and let

18 Loei]l2 18 Ly ez
= max ———— < 1, = max < 1.
T =8 el W el

Further, let in Step 2 the computed approzimations Qe, C}y of Qp and Q,, respectively, satisfy
w = max{||Q7Q: — Lllr, [1Q;Qy — Lllr} < 1, (38)

where w is derived from Theorem 3.1. Then there ezist subspaces /\Af', Y and moderate function
f(m,p, q) such that

(i) The subspaces X and Y are close approzimations of X and Y, respectively. More precisely,
it holds that

sin £(¥,X) < x/ﬁ(nz+ssOMG5(m,P)(1+%))H(Lm)jl1zu (39)

in2v,9) < a(n+ LEPICEW oty )

where 771'; =1y + epmas(m, q) (1 +ny).

(i) If o1 > - > oy are the exact cosines of the principal angles between X and Y, then, for all
i, either &; = o, = 0 or |5; — o}|/o} is less than w plus e times a moderate polynomial of the

!
T
space dimension.

Proof: The floating—point QR factorization of i)m can be represented as Qm Rm = Ew +5l~}m, where
(cf. Theorem 3.1) ||6zwein < spMGS(m,p)Hf}mein, 1<i<p. Let ALy = 6Ly + 6L, and let,
as in Theorem 2.2, Q, = QL(I +T2) be the QR factorization of Q.. (Q', is exactly orthonormal
and T is upper triangular with || T;]|; < w.) Then L, + AL, = Q (I + T!)R,. Note that
rank(L, + AL,) = rank(L,). Define X = span(L, + AL,) and note that the sine of the angle
between X and X equals sin Z(X, X)) = |((QL)1)" Qzll2, where (Q1)* is orthonormal basis of the

orthogonal complement of X. An easy calculation shows that
(@0)")7 Qe = —((Qu))(ALe)RSY, sin £(X, ®) < [[AL R 2.

Similarly, we can write Ly + A'L, = Q(I + T;)Ry, A'L, = 6L, + 6L,. As in the proof of
Theorem 2.4, we write S = fI(Q7Q,) = Q1Q, + Es and we represent the computed singular
values &y > -+ > &, as exact singular values of S +6S, where 6S as well as Eg is small in the
spectral norm (||Esl|l2 < 1, ||65]]2 < 1). Then we write

S+65 = QLG+ Bs+85=Q1(Qy + (@) (Bs +69)
(I+T)7 ((Qu)7@Qy) (I +1),

1l

Il
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where Q, + (Q;)T(Es +6S5) = Qy(I+T,) is the QR factorization of an almost orthonormal matrix
with HT;/Hz < 1. Define

Ly + ALy =Ly + ALy + (1) (Es + 65)R, = Q"(I + TRy,

- vy

and Y = span(Ly + ALy). The proof completes by elementary calculations of the upper bounds
for [|ALze;i||a/||Laeill2, [|ALyes||2/]|Lyejll2s 1 <3 < p, 1 < j < g, and by invoking Theorem 2.1.
Q.E.D.

Remark 3.1 The backward error bounds (39) and (40) can be improved as follows. Note that
it also holds that sin Z(X,X) = [[(Q+)"QL|l2, where QX is orthonormal basis of the orthogonal
complement of . An easy calculation shows that

(Qz)7Q% = (Qx) (AL )R (I +Ty) "
Let now AL, = Qa,Ra, be the QR factorization of AL, and let L4, = span(AL,). Then

HALmR;IHZ

(Qe)7Qz = ((Q2)7Qa.) Ra B NI+ )™ sin (¥, ) < sin £(X, £2,) =5 .

Hence, if span(AL,) C X, then sin £(X, 22) =0.

Remark 3.2 In this paper, we consider only the classical partial and complete pivoting in the
Gaussian elimination. Other choices include, for example, the pivoting for stability and sparsity
due to Bjorck and Duff [9], the maximal transversal pivoting due to Olschowka and Neumaier [30],
and pivoting for forward stable Gaussian elimination due to Demmel et al [13].

In Figure 4, we summarize the difference between the Bjérck—Golub algorithm and Algorithm 3.1.

L, + ALy L,
our algorithm\ 1 \L
Lm+ALm A?<~~_~‘>j} y Y
L. X X<mmemm Y Y +AY
} )‘ Bjorck-Golub algorithm
X X+ AX

Figure 4: Commutative diagram for principal angle computation between X = span(X) and Y =
span(Y'). The Bjorck—Golub algorithm computes the principal angles between X = span(X + AX)
and Y = span(Y + AY). On the other hand, our algorithm computes the principal angles between
X = span(Ly + ALg) and Y = span(Ly + ALy).

3.2 Comments on the SVD computation in principal angle algorithms

Next, we analyze more closely the SVD computation of the matrix S = fl(@;(;)y) = Q;@y + Es.
Recall that the computed singular values are denoted by &; > .- > &4, and that in the proofs
of Theorem 2.2 and Theorem 3.2 we do not explicitly mention which SVD algorithm is used.
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Implicitly, however, we use the fact that the algorithm is backward stable where the backward
error is small in the matrix norm. Thereby, we indicate that the QR or the divide and conquer
algorithm are good choices, and, at the same time, we raise the following question: If the goal
is mazimal accuracy, why don’t we use the more accurate Jacobi SVD algorithm?. The question
is reasonable, for the Jacobi SVD algorithm is more accurate than any other algorithm that first
bidiagonalizes the matrix (cf. [15]). We argue that SVD computation with higher accuracy (using
the Jacobi SVD algorithm) generally does not improve the accuracy of the overall computation.
First indication for that is fairly sharp estimate of Theorem 3.2, which is derived using norm-wise
backward stability (hence, only high absolute accuracy) of the SVD computation. Secondly, we
can show that in the cases when the Jacobi SVD algorithm can compute much more accurate
singular values of S, the error in S is such that the initial uncertainty of the singular values cannot
be corrected. We can show this using backward error analysis. If §' = Q Qy, the issue is how well
the singular values of S’ are determined by S = S’ + Es.

Backward analysis: If we use the Jacobi SVD algorithm, then we can estimate 65 by (cf.
18)) |165es|la < g(p, q)e||Seillz, 1 < i < g, where g(p,q) is modest polynomial. This means
that the backward error in small columns of S is correspondingly small. However, if for some
j the column 5~’ej is small (of order e, say), it means that S’ej is generally accurate only to an
absolute uncertainty of order me ({]EgeJHZ < O(me)) and that the relative error might be large
(I|Esejll2/11S"ej||2 > €). Hence, ||[(Es + 6S)e]||2 might be large and we cannot expect high relative
accuracy of the corresponding small singular value. (This holds even if the backward error 58S is
zero.)

It is instructive to show the same fact in the forward mode of the analysis. The QR or the
divide and conquer algorithms are less accurate than the Jacobi algorithm if in the factorization
S' = S'D,, D, = diag(]|S"e;]|2), the condition number x3(S5’) is much larger than k2(SL), k2(S") >
k2(S%). In that case, ko(D,) > 1 and mm1<3<q [[S'e;|lz < 1. To estimate the relative difference
between the singular values of S’ and 5+ 685, we assume full column rank S’ and we use the
factorization

§+65=(I+(Bs+ 58)(s")1) s,

and Theorem 2.1 to obtain relative error bound 7 = [[(Es + 6S) D7 |- H(SL)TH} If jo is such that

the column norm (D, );,;, is minimal, and if we cannot guarantee that ||(Es 4 6.5)ej, ||z < (Ds)jojo

then the bound

I(Es +85)ejoll2 _ _ [1Es+65]]
(Ds)joge —  ~ minigicq||5e[2

1SHTls (s
for the parameter 7 shows that the relative accuracy might depend on k3(S’). Moreover, if one of
the subspace is close to the orthogonal complement of the other one, the matrix S might be merely
the roundoff noise and computation with high relative accuracy is not feasible.

Example 3.1 We illustrate the above discussion in the case p = ¢ = 1. Let X = [2], ¥V = [y],
where z,y € R™ are unit vectors, and let 6z, §y be small perturbations (||6z||s < 1, [|8y[]z < 1).
Then /(X,Y) = arccos(z"y) and

(& + 62)" (y + 6y) — 27y| < [15llz + [18]l2 + [[52[12/|8:-

Hence, the relative accuracy of the singular value oy = 27y is in the presence of errors éz and dy
determined by (||62||2+||6yll2)/(2"y). If ||§z||2 and ||6y]|2 are of the order of the machine precision
e, then we see that floating—point computation of oy is feasible to only (roughly) —|log,,(e/(27y))]
decimal places. In other words, small singular values are poorly determined if the corresponding
subspaces are nearly orthogonal (cf. [25]).

Remark 3.3 If X and Y are normally scaled (p = ¢, X7Y = I,) then the canonical correlations
of X and Y are the singular values of XY". In that case the canonical correlations are determined
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to high relative accuracy if the condition numbers ry(X.), x2(Y:) of column scaled matrices X, Y
are moderate (cf. [25]). For accurate SVD computation of XY see [17], [19].

3.3 Cross—product implementation

In this subsection, we briefly discuss an implementation of Algorithm 3.1 that may be an efficient
alternative in the case m >> max{p, ¢}.

Algorithm 3.3 X-CC(X,Y)
Input X ¢ R™*? Y ¢ R™*? full column rank matrices with p > gq.

Step 1 Compute the LU factorizations with pivoting, P, X P, = L, U,, PsY Py = L,U,. (For partial
pivoting, P, = I,, Py = I.)

Step 2 Compute the matrices Hyp = L] Ly, Hyy = L] Ly, Hyy = L7 ((P1P5)Ly), and the Cholesky
factorizations Hye = R R, Hyy, = R, R,. Exploit symmetry as much as possible.

Step 3 Compute the matrix S = R;"H,y R, " and the SVD of S, S = WXV,
Output Return the matrix %.

The use of the Cholesky factors of the cross—product matrices is similar to the Peters—Wilkinson
[31] algorithm for least squares solution using normal equation. (Recall that the principal angle
problem in the case ¢ = 1 is closely related to the classical least squares problem, cf. [10]. Also
note that in the case of sparse X and Y we may use complete pivoting of Bjorck and Duff [9]
which is designed to preserve as much of the original sparsity as possible. For related results see
also Barlow [3] and Barlow and Handy [4].) Perturbation analysis of Algorithm 3.3 can be done
as in [19]. We omit the details for the sake of brevity.

4 Numerical examples
We conclude this work with several numerical examples.

Example 4.1 In this example, we generate test pairs (X,Y) as in Example 2.1, and we measure
the errors in the computed orthonormal bases Q,, @, of X = span(X), Y = span(Y), respectively.
We record for each generated matrix X the following values:

e; = sin L(span(Q; ), X'),

8z — Hégéw - IPHZ:

Ka(Xe), X = Xdiag(|[Xe2) ",
ka((Le)e), (La)e = Lodiag(]|Laesll2) ™"

(Similarly for Y.) The results for all 900 values of X are given in Figure 5. Recall that the
test matrices {X = D'X,D} are divided into five classes (180 examples each) with xy(X,) =
10%,10%,10% 10%, 105 These classes are clearly recognizable in Figure 5 if one follows the growth
of e,. Also note that the deviation from orthonormality of Qw is of the order of me. We also observe
similar accuracy in a variant of Algorithm 3.1 with LU factorizations with partial pivoting, see
Figure 6.

Example 4.2 In this example, we generate a set of rather ill-conditioned bases. We first generate
an X as in Example 2.1, and then we partition X as X = [Xi, X;] and we introduce heavy
weighting into the rows of X,. Both Algorithm 3.1 and the Bjorck-Golub algorithm are sensitive
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Figure 7: The values of e,, f,/e,, x2(X.) for all 900 matrices {X} in Example 4.2. The LU and
the QR factorizations are computed with complete pivoting.

to ill-conditioning introduced in this way. However, Algorithm 3.1 retains its accuracy properties
in most of the cases, while the QR based approach computes with much larger errors. In Figure

7, e, is defined as in Example 4.1 (C}fE computed by Algorithm 3.1) and f, = sin L(span(@m), XY,

where @), is computed by the QR factorization with complete pivoting. The variant of Algorithm
3.1 with partial pivoting is also less accurate; see Figure 8.

Example 4.3 Examples where Algorithm 3.1 is guaranteed to achieve high accuracy include struc-
tured matrices where various combinatorial and algebraic conditions (sparsity, sign pattern) ensure
forward stable Gaussian elimination with pivoting, ¢f. [13]. (For further references on highly ac-
curate Gaussian elimination see [27].) In such cases, Algorithm 3.1 has an advantage over the
modified Bjorck—Golub algorithm.

Example 4.4 In this example, we measure the forward error in the computed canonical corre-
lations. As reference values we use the approximate canonical correlations o{D) > e > agD)
computed by the double precision Algorithm 3.1. The test problems are generated as in Example
4.1. We test the accuracy of the Bjorck—Golub algorithm with complete pivoting, Algorithm 3.1
with complete and partial pivoting, and Algorithm 3.3 with complete pivoting. For single precision
approximations J§5) >z o’és) computed by each of the four algorithms, we compute
maxicicq ol — ot

max{ry(X,), k2(Y,)}

€cc =

The expected values of egc are of order of the machine precision €. The computed values are
shown in Figure 9.

Remark 4.1 Our software, written in FORTRAN 77, is based on the BLAS and the LAPACK
libraries. The procedure for the QR factorization with complete pivoting is a simple modification of
the LAPACK procedure SGEQPF (), the LU factorization is computed using the LAPACK procedure
SGETRF (), and the LU factorization with complete pivoting is computed by a modification of the
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Figure 8: The values of e, f;/e,, k2(X,.) for all matrices {X} in Example 4.2. The LU factoriza-
tions are computed with partial pivoting and the QR factorizations are computed with complete
pivoting.
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Figure 9: The values of g for all 900 pairs {(X,Y)} in Example 4.4. Note that all four algorithm
have nearly the same accuracy.
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Figure 10: The computed forward errors in Example 4.5.

LAPACK procedure SGETF2(). The modified Gram-Schmidt Algorithm 3.2 is implemented on
top of BLAS 1. Matrix multiplications are performed using the BLAS 3 procedures SGEMM()
and STRMM(). All experiments were done on a DEC alpha workstation. We have observed that
Algorithm 3.1 with partial pivoting is fastest in reducing the pair (X,Y) to the single matrix S.
For instance, if m = 400, p = 100, ¢ = 50, it requires 0.67 of the time needed in the Bjorck—Golub
algorithm with complete pivoting, or 0.63 of the time needed in Algorithm 3.1 with complete
pivoting. Algorithm 3.1 with complete pivoting requires in this case 1.06 of the time of the
Bjorck—Golub algorithm with complete pivoting. For a thorough analysis of the efficiency of these
algorithms, more software engineering has to be done.

Example 4.5 In our last example, we compare the algorithms based on the QR and the LU
factorizations with pivoting with the algorithm based on the use of the SVD in the computation
of the orthonormal bases for span(X), span(Y). (The use of the SVD in the principal angle
computation is discussed in {10] in connection with ill-conditioned and rank deficient cases.) In
this example, we compute the SVD using the LAPACK procedure SGESVD (). The test is performed
as in Example 4.4 and with the dimensions m = 100, p = ¢ = 50. For each of 900 examples, we
compute the maximal forward errors e (for the Bjérck—Golub algorithm with complete pivoting),
ezve (for Algorithm 3.1 with complete pivoting), exyp (for Algorithm 3.1 with partial pivoting)
and egyp for the computation based on the SVD. The results shown in Figure 10 show that the
SVD approach is less accurate than the QR and LU based algorithms with complete pivoting. (We
conjecture that similar situation occurs in the weighted least squares computation if we compare
the Peters—~Wilkinson algorithm, the QR approach with complete pivoting and the algorithm based
on the SVD.)
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