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Abstract. 0S systems generalize context-free grammars without non-
terminals. It is shown that it is decidable whether or not two arbitrary
0S systems generate the same set of (derivation) sequences. As a corollary
we get that it is decidable whether or not two arbitrary context free grammars

have the same sets of derivation sequences.



0. INTRODUCTION

When considering a context-free grammar G= (VN,VT,P,S) from the "compu-

tational point of view" one can restrict oneself to G = (VN U VT’

is "a context free grammar without nonterminals"; such systems were investigated

P,S) which

e.g. in[2] or [5]. Generalized a Tittle bit,such systems give rise to 0S
systems which can be viewed as the quuentia1 counterpart of OL systems (see
e.g. [ 3]). Studying 0S systems is in our opinion a very natural step in a
systematic study of the foundations of formal language theory. On the one
hand in this way one hopes to build up more thorough foundations of the theory
of context free languages, on the other hand when contrasted with the theory
of OL systems such a study can shed new Tight on the basic differences
between parallel and sequential rewriting systems.

In this paper we view a 0S system as a system to generate sequences
of words (all "derivations" in it) and then we consider the basic decision
problem concerning this problem area: do two arbitrary O0S systems generate
the same set of sequences. We prove that this problem is decidable and show
that as a corollary it yields the following result: "it is decidable whether
or not two arbitrary context free grammars generate the same set of deriva-

tion sequences."



I. PRELIMINARIES

We assume the reader to be familiar with basics of the theory of context-
free grammars (e.g. in the scope of [4]). Mostly we will use standard terminol-
ogy and notation with perhaps the following requiring an additional explanation.
(1) For a word o, |a| denotes its Tength and aZph(a) denotes the set of letters
occurring in a. For o nonempty and 1 < i < |a|, a(i), denotes the i'th letter
in a; e.g. a(1) denotes the first and a(|a|) the last letter of a. For a
positive integer k, pref,o denotes the prefix of a of length k (if k > [a
then prefio = a); analogously suﬁkq denotes the suffix of a of length k. For
two words o and B, mpref(a,B) denotes the maximal common prefix of a and B
and msuf(a,B) denotes the maximal common suffix of o and B.

(2) For a word o over an alphabet I, o = ay...3,, N = 1, a; € % for 1 <1 <n,

n’
the set {a]...an,a2a3...ana1a2,...,an_]ana]...an_z,ana]...an_1} is called
the set of cyclic conjugates of o and denoted by conj(a).
(3) Given a (directed, labeled) tree T we define its size, denoted as size T,
to be the sum of lengths of all its path.

As usual in formal language theory we are faced with the problem of
distinguishing between letters and their occurrences in words. In order not
to burden our notation too much we will treat this problem rather informally,
we hope however that this does not lead to a confusion. For example it
should always be clear from the context whether we talk about the i'th occur-
rence in a word or about the letter that is "the value" of the i'th occurrence
in a word.

In dealing with words the following well-known basic lemma (see, e.g.,
[1]) turns out to be very useful.

Lemma 1. Let ¥ be a finite alphabet and let 0y 50958 € Z*. If aTB = Ba,
then there exist v,8 ¢ Z* and 2 = 0 such that ap = YS, Qy = Sy and
B = (y&)* )~

vy = y(8y 0



We end this section by proving a combinatorial result on the structure
of equal words which will be very crucial in our further considerations.

Lemma 2. Let I be a finite alphabet, n > 1, CETRERI: N Z, aB € 5t
and 1 < i < j <n. Then

(1) ... ay...2;_08;,q...8, = a]...aj_16aj+]...an
if and only if
*
(II) ... there exist y,8 ¢ Z and £ = 0 such that a = a;ys, B = éyaj and

_ 2
Aipqeeedyy = v(&y)”.
Proof.

(i) Let us assume that (II) holds. Then

q...8; 1085, ..2

'8
i+ N a]...aiyﬁy(éy) ay---ap and

_ 2
a]...aj_]Bajﬂ...an = a]...aiy(dy) éyaj...an
and so (I) holds.

(ii) Let us assume that (I) holds. Let ay...a;_ 7 = Y, a.

a

410008 =
Then (I) implies that ?u@ajg = ?aigsg and consequently
(I11) ... adaj = a;0p.

—_—— * — —_
Thus there exist words a,R ¢ & such that a = aso and g = Baj. Hence (III)
implies that a8 = gé'which by Lemma 1 implies that there exist words v,§ and
integer £ > 0 such that a = v§, B = &y and 8 = y(@y)l. Consequently

2
a = a.,yS, B = 6yaj and a; q...85 4 = v(&y)”. Thus (II) holds. O



IT. OS SYSTEMS AND PRODUCTIONS

In this section 0S systems are introduced and also some basic notions
concerning (rewriting) productions are considered.

First of all we owe the reader the explanation why do we give a new
name to grammars that are variations of context free grammars without non-
terminals. The reason is that the work presented in this paper forms a
result in our research concerning foundations of formal Tlanguage theory. We
are convinced that the theory of L systems (see, e.g. [ 3]) constitutes an
example of a systematic build-up of a fragment of formal language theory.
There one considers two basic mappings: a homomorphism and a finite substi-
tution and forms a rewriting system by either iterating a homomorphism or a
finite number of them or iterating a finite substitution or a finite number
of them. Thus e.g. the name "anOL system" denotes the L system (where L
symbolizes parallel rewriting) without interactions (that is what 0, zero,
stands for), which consists of iterations of a finite substitution. MWe
want to consider the theory of Chomsky grammars also to be built up in this
way and so e.g. the analogue of an OL system will be an 0S system where S
will stand for sequential rewriting (the "sequential use" of finite substi-
tution).

Definition. A sequential system without interactions, denoted as an
0S system, is a three-tuple G = (I,h,w) where & is a finite nonempty alphabet
(called the alphabet of G), w e 5t (called the axiom of G) and h is a homomor-

* *
phism from Z] into 22 where I

ys2and I, c X (called the transition function
*
of G or the set of productions of G; each pair (x,a) with x e Z; and o e I,

such that h(x) = a is called a production in G). [J

Definition. Let G = (Z,h,w) be an 0S system.

*
(1) Let Bez andy e £ . Me say that B directly derives y in G, denoted



as =y, if g = By X Bys Y = BjaBy and (x,a) is a production in G.

G

* *
(2) Let B e 5t and v € X . We say that 8 derives vy in G, denoted as B =y,
G
if there exist words yq,...,y, such that v = v, v. . =v. for 2 <i <n
1 n n i-1 G |
and B=¢y].
G

(3) A finite sequence of words Ygo¥1s+ees¥ye N = 1, is called a G-sequence

if Yo = W and Y5 = Y4 for 0 < i < n-1. The set of all G-sequences is called
G

the set of sequences of G and is denoted as E(G).

*
(4) The language of G, denoted as L(G), is defined by L(8) = {8 ¢ 3" :w =8} 0
6

As usual in language theory, toevery G-sequence we can assign a
derivation graph which in the case when the axiom is of Tength one becomes
a derivation tree. Given a derivation graph T a node e in it is called
productive if it contributes a nonempty subword to the Tast word of a sequence
represented by T (this subword is denoted by contr(e)); otherwise is called

nonproductive.

i

Example. Let 6 = (Z,h,w) be the 0S system where I = {a,b,c}, w = abc

and h(a) = {ca,A} h(b) {ba,bz} and h(c) = {cac}. Then
abc,cabc,chc,cacbc,cacbhac,cache

is a G-sequence and its derivation graph looks as follows

(o]s}

where the improductive nodes are double circled. [



We introduce now some terminology and notation needed in this paper.
Given a production (x,a) in an 0S system G = (Z,h,w) we write it also
in the form x - o and we also write (x-+a) ¢ h and say that x ~ o is a produc-
tion in h. As a matter of fact taking a more general look we say that x + o
is a production (over L) if x ¢ L and a ¢ Z*. For a production m = (x=>a) we
say that x is its left-hand side (denoted as Zlis(m)) and o is its right-hand
side (denoted as rhs(m)).The length of m is denoted by |m| and defined by
|| = |rhs(m)]. (For G = (Z,h,w) we use maxrG to denote max{|n| : 7 is a
production in G}.) The domain of m, denoted as dom(m), is defined by
dom(m) = {B ¢ 5t :B = B](Zhs(w))Bszor some By,8, € Z*}. Then for a word
8 in T\dom(r), 7(8) = P, and for a word 8 in dom(r),

m(B) = {B](Phs(ﬁ))Bz i B = 81(Zhs(w))62 for some BBy < Z*}.

Let m and p be productions over some alphabet Z. We say that they are
assoctated (written as m ~ p) if there exists an x in 5 such that
m(x) n p(x) # P.

Obviously T~ for every production .

We classify now productions into six types.

Let m be a production over an alphabet %, m = (x-a).

1) mis of type 1 if o = A.

Q

is of type2 if a = x.

— —_ —
N
~—
=i

3) mis oftype3 if a(l) # x and a(|a]) # x.

mis of type & if o = xB for B e I such that 8(|8|) # x.

T is of type 5 if o = Bx for B8 ¢ £t such that B(1) = x.

*
xBx for B ¢ I .

1

(6) m is oftype6 if o
Lemma 3.

(1) If 7 is a production of type 1 and p ~ 7 then p = .

(2) If 7 is a production of type 2 and p ~ 7 then p is also a production of

type 2.



(3) If m is a production of type 3 and o ~ 7 then p = m.

(4) If m is a production of type 4, m = (x ~ xB), and p ~ m then either

o=mor o= (y = By) where B ¢ cong (8).

(5) If w is a production of type 5, m = (x>Bx), and p ~ 7 then either

p=mor p= (y~ yB) where B ¢ conj (B).

(6) If m is a production of type 6, m = (x ~ xBx), and p ~ 7 then either

o=, or p=(y>By) where B ¢ conj(Bx), orp = (y » yB) where B ¢ coni(x8).
Proof.

(1) and (2) are rather obvious and (3) through (6) follows from

Lemma 2. [



ITI. WINNING WORDS

When one considers whether or not E(G]) c E(Gg) for 0S systems G],G2
it is quite instructive to consider this problem as a game of G] against GZ'
Given a word o in L(G1), whenever G, applies a production 7 to (the 1'th
occurrence in) o we say that G] attacks, or makes a move on o (more specifically
the (i,m)-move on a). In this way one obtains a word 8 from m(a). We say
that G, defends (this move) if by applying a production o to (the j'th occur-
rence of) o it generates 8 (more specifically it defends by making the (j,p)-move
on a).

Thus (assuming that GT and G, have equal axioms) E(G]) ¢ E(Gz) if and
only if G1 can win against GZ‘ We are going to explore this point of view
somewhat further now.

It will be very convenient in our considerations to assume that every
word starts with the marker ¢ and ends with the marker ¢ where ¢ does not
belong to the alphabet % fixed in our considerations.

Let a « ¢Z+¢, a = ¢a1...an¢, a; € L forl <js<n, letme h] and let
ie{l,...,n}. We say that o is an (i,m)-winning word if lhs(m) = a«(i) and
¢a1...a1_1rh3(ﬂ)ai+1...an¢ ¢ hz(u).

If a is an (i,m)-winning word for some i and m then we also say that
a is a winning word.

Let o ¢ ¢Z+¢, o = ¢ay...a¢, aj e L for 1 =<3 <n,letbea produc-
tion over I and let i ¢ {1,...,n}.

(i) The left horizon of the occurrence a with respect to m in o, denoted
as Lhor_(a.) is defined as follows:

o,

(1) if a ¢ dom(m) then Zhoru,w(ai) =a.,

(2) if a e dom(n) andw is of type j for j e {1,2,3,4) then lhor_ (a;

,T 1) -

(3) if a e dom(m) andm is of type 5, m = (x + Bx), then Zhora,w(ai) = a4y

where t = Imsuf(61,prefi_1a)|,
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(4) if a e dom(m)andm is of type 6, m = (x + xBx), then Lhor -(a5) = ay - t-]

where t = Imsuf((xﬁ)j,prefi_]u)].

(i1) The right horizon of the occurrence a; with respect to T in a, denoted

as PhOPa,ﬂ(aﬁ)a is defined as follows:

(1) if a ¢ dom(m) then rhor&’ﬂ(ai) = ai’

(2) if a edom(m)and ™ is of type j for j e {1,2,3,5} then rhor, _(a;) = a;

,T 1

(3) if a e dom(w) and wis of type 4, m = (x + xB), then rhora,ﬂ(ai) = A5 44

where t = [mpref(B,ai,prefia!ai+]...an)[,
(4) if o € dom(m)and T is of type 6, ™ = (x ~ xBx), then rhora,ﬂ(aj) = A5 444
where t = [morer((8)1%1, pror| agsy. 2l

Note that, because o starts and ends with ¢, both ZhorOc w(ai) and

rhorugﬂ(ai) are well defined.

Let o = ¢a]...an¢ € ¢Z+¢, a; e T for 1 < j <n, be an (i,m)-winning

J
word. Then we write o in the form o = left, (a) mid;  (a) right; (o) where
b 3 3

midi TT(oc) is a subword of o starting with Zhoru W(ai) and ending with

We will consider now several cases when one can alter a winning word (o)
to obtain another winning word.

. : +

Lemma 4. If yy,v, are words such that y1madi’W@x)y2 e ¢Z ¢ and
ath(Y1Y2) c alph(a) then y = y1mid1 W(u)yz is an (i —|Zefti,ﬂ(a)l + lY1l,ﬂ)-
winning word.

Proof,

We will prove the Temma by demonstrating that if x is not an

(i - |zeft.

; 71_(oc)l+{y]],ﬂ)-w1'nning word then o could not be an (i,m)-winning

word.
So let us assume that vy is not an (i - |Zeft, ﬂ_(cx)|t+ Iy][,ﬂ)Jwinning

word. (Note that v(i - fa,| + |y1]) = a(i) and so Zhs(m) =v(i - [og| + |v;1).)
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We have six cases to consider.

(1) If 7 is of type 1 then (by Lemma 3) G, defends by the (1-—!a]| + ;Y}j,ﬂ)—
move on o. Hence 7 ¢ h2' But then 62 can defend the (i,m)-move on a by G]

by making the (i,m)-move on a.

(2) If w is of type 2 then (by Lemma 3) G, defends by applying a production

of type 2 to vy. Since alph(y) < alph(a), Gy can defend the (i,m)-move ono by Gy.
(3) If m is of type 3 then (by Lemma 3) G, defends by the (i - [a1| + |y1[,w)-
move on y. Consequently the (i,m)-move by G] on a is defended by the
(i,m)-move by G, on a.

(4) If mis of type 4 then (by Lemma 3) we have two cases to consiéer.

(4.1) If the (i - ]a]] + [y]],ﬂ)—move by G, on y is defended by G, also by
applying the production m then by Lemma 2 it must be the (i - ]u1[ + 1Y1laﬂ)'
move by G, on y. But then the (i,m)-move by G] on o can be defended by the
(i,m)-move by G2 on o.

(4.2) If the (i - IuT[ + Iy1l,w)—m0ve by Gy on y is defended by G, by an
application of a production p = (y » By), where m = (x > xB8) and B ¢ cong (B)

then (by the definition of the rhor, (ai)) G, can defend by applying p to an

> T

occurrence b in v which 1ies within mi¢d. _(a). But then the (i,m)-move by G

1,T

1
on o can be defended by GZ by applying p to "the same" occurrence b.

The two remaining cases (of 7 being of type 5 and w being of type 6)

can be proved analogously to the case (4). 0O

Lemma 5. Let ]midiﬂﬂ(a)] > 3 and Tet
midi,w(a) = Zhoragﬂ(ai)Y]B]Yzaiy382Y4rhoru’ﬂ(ai)
where 8,8, are words such that (|mw] -1) divides |87 and (|m] -1) divides
|B,|.  Then the word
Zefti,w(a) Zhora’ﬂ(ai)Y]yzaiy3y4rhora,w(ai)righti,W(u) is an (i -[B][,W)-

winning word.
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Proof.
Since the proof of this Temma can be carried analogously to the proof
of Lemma 4, we leave it to the reader. The crucial observation here is that,

because (|m|-1) divides }611 (and (|r]| -1) divides |B51), by removing By

(and 62) we have removed from the periodic word (y(éy)R — see Lemma 2) sub-

words the length of which are multiplicities of the period. But then if Gy
can defend on such words it can also defend on the original one and in the

"corresponding" positions. [J

In the same way we Teave to the reader the proofs of the following
two Temmas.

Lemma 6. Let Imidi W(a)[ > 2 andilet midisﬂ(u) = a:Y3BoYrhor (a.)

a,m

9

where (|m| -1) divides |82|. Then the word Zefti,ﬂ(u)a1y3y4rhord’ﬂ(a1)righttﬂ(a)

is also an (i,m)-winning word. [

Lemma 7. Let lmidi,ﬂ(&)[ > 2 and let midi’ﬂ(u) = Zhora,ﬂ(ai)Y]B1Y2ai

where (|m| -1) divides |B]I. Then the word Zef%i,W(a)Zhor&,ﬂ(ai)y]yzairight1, (a)

™
is an (i —IB][,ﬂ)-winning word. 0O
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IV. THE 0S SEQUENCE EQUIVALENCE PROBLEM

We will consider now the sequence equivalence problem for 0S systems:

1 and GZ?“

e will demonstrate that this problem is decidable, that is there

"Is E(G1) equal to E(GZ) for arbitrary two 0S systems G

exists an algorithm which, given arbitrary 0S systems G] and GZ’ decides whether
or not E(G]) = E(GZ)'

To this aim Tet G1 = (Z],h],w]) and G2 = (Zz,hz,wz) be two arbitrary
0S systems that we fix now for our considerations. Clearly considering
=z

the sequence equivalence problem for 0S systems we can assume that & =7,

1 2
wy = w, = wand |w| = 1. Also following our convention from the last section
we assume that words in G, and G, start and end with ¢ which is not an
element of ¥ and so it is never rewritten.

The following result allows one to check whether G] contains winning
words.

Lemma 8. Let C =4 « (#1) - (maer])Z. The following two statements
are equivalent:
(1) L(G]) contains a winning word,
(2) L(G]) contains a winning word o such that there exists a derivation
tree Tu of o with the property that no path in Tu is Tonger than C.

Proof.

(i). Clearly (2) implies (1).

(ii). To prove that (1) implies (2) we proceed as follows.
Let o = ¢ay...a ¢, ag,...,a < I, be a winning word in L(G;) with the follow-
ing property:

it has a derivation tree T which is such that among all the deriva-

(x)...< tion trees 1in G] for winning words there is none of the size smaller

than T.
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Let o be an (i,m)-winning word and let (as in the preceding) it be of the
form o = Zefti,ﬂ(a) midi’w(d) r@ghtijﬂ(u).
We consider two cases separately.
(i1.7) [midisﬂ(d)] = 1.
Let p be an arbitrary path in T starting at the root of T and ending at the
occurrence in o (a leaf).
We have two cases to consider.
(i1.1.1) p contains a node e that is an ancestor of mid, ﬂ(oc), however the

b

direct descendent of e is not an ancestor of midi,ﬂ(a).

Then Tlet Py be the "initial" part of p, starting at the root and
ending at e, and let Py be the "final" part of p, starting at the direct
descendent of e and ending at midi’ﬂ(u).

Clearly neither Py nor p, can have nodes with the same labels,
because otherwise we could "shorten" p by removing the path between such two
nodes and obtain a derivation tree T of a winning word (see Lemma 4) such
that sizeT < sizeT which contradicts (*). Thus the length of p is bounded
by 2 « (#1).

(i1.2.3) It is not true that (ii.1.1) holds.

Then the reasoning analogous to that from (ii.1.1) yields that the
length of p is bounded by #I.

(11.2). lmidi,w(a)l > 2,

Then we have three cases to consider; they correspond to Lemma 5,
Lemma 6 and Lemma 7 respectively.

Clearly the "worst case" is the one corresponding to Lemma 5 and so
we consider only this case.

Thus Tet midi,ﬂ(u) = Zhoru’ﬂ(ai)YTB1Y2§iy362y4rhora’ﬂ(a1) where (|m|-1)

divides 1811 and (|n| - 1) divides [g,].
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Let p be an arbitrary path in T starting at the root and ending at
a leaf (an occurrence in o). A node e on p is called special if the sub-
word it contributes to o contains one of the occurrences from the set
{Zhopa,ﬂ(ai)’Phora,ﬂ(ai)’ai} but the direct descendent of e does not contain
this occurrence in its contribution to a.

Clearly p can contain at most three distinguished points which yields
the division of p (done analogously to that in (ii.1.1)) into at most four
parts pyspyspsspy (which catenated in this order yield p).

Let us consider an arbitrary part p of p (p e {p],pz,p3,p4}). To
each node e of p we assign its description des(e) = (x,M,N) defined as follows:
x is the label of e in T,

if'e is a productive node in T and contr(e) = 4+ for some

aqaq+]...aq
T<qg<n-T,s>1thenM=g-1 (mod(|n| -1)) and N = g+ s(mod(]|m|-1)),
if e is a nonproductive node in T then M = N = |7| - 1.

We note that no two different nodes on p can have the same descrip-
tion. The reason is that by removing the path between them we obtain
— either a smaller derivation tree of o (if those nodes are improductive),
— or a smaller derivation tree of a winning word o shorter than o; this
follows from Lemmas 4, 5, 6 and 7 and from an observation that the construc-
tion of p guarantees that the subword we remove to obtain o from o lies

either to the left of ZhoznOc (ai), or between Zhor@ (ai) and as, or between

,’]T ,7T
a; and rhoru’w(ai), or to the right of rhora,w(ai) — moreover the length of
these subwords is divisible by (|m|-1).

Thus the Tength of p is bounded by (#Z)(maxr81)2 and consequently
the length of p is bounded by 4 « (#I) - (maer])Z.

This completes the proof of the lemma. [
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On the basis of the above lemma we can demonstrate now that the O0S
sequence equivalence problem is decidable.
Theorem 1. It is decidable whether or not E(G]) = E(Gz) for arbitrary
0S systems G] and GZ'
Proof.
Clearly to decide whether or not E(G]) = E(GZ) it suffices to decide
whether or not E(G]) c E(GZ) and E(Gz) c E(G]). It is also obvious that
E(Gi) c E(Gj), i,j e {1,2}, 1 # 3, if and only if E(Gi) does not contain winning
words (with respect to GZ)' However, by Lemma 8, to decide whether or not
Gi contains a winning word it suffices to generate in Gi all Gi-sequences
for which derivation trees do not have a path longer than 4  (#I) (maeri)Z
and then check whether or not among those words there is a winning word.
This is clearly effective since for each such word o it suffices to check
whether or not hi(@) contains a word which is not in hj(a). 0
Let G = (VN’VT’P’S) be a context-free grammar. (As usual we assume
that every nonterminal in G can be rewritten, in a number of steps, in such
a way that it yields a word in V;). The weakest notion of a derivation in

G (used quite often in the literature) is defined as the sequence of words

. ,
BO,B],...,BH, n =1, such that BO =S, Bn € VT and Bi Z> 61+] for 0 < i < n-1.

We will call the set of all derivations (in the sense as above) the
computation set of G and denote it as compG. Clearly in considering compG
one can consider the 0S system G = (V,H,S) where V = VN U VT and h is defined
by productions in P (so h : V; -+ V*). Then, obviously, compG1 = comply if
and only if E(G&) = E(Gé) where G],Gz are two arbitrary context-free grammars.
Clearly the question whether or not compﬁ} = compG2 for arbitrary
context-free grammars G1 and G2 is one of the most natural questions about
context-free grammars. The above reasoning and Theorem 1 yields now the

following result.
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Theorem 2. 1t is decidable whether or not compG] = comp62 for
arbitrary context-free grammars G] and GZ'

It is very instructive to compare this result with the well known
result, see, e.g. [5] that it is not decidable whether or not two context-

free grammars generate the same set of sentential forms.



18

REFERENCES

[1] M. Harrison, Formal languages, Addison-Wesley, Reading, Mass., 1978.

[2] T. Harju and M. Penttonen, Some decidability problems of sentential
forms, Techn. Rep. 78—CS-8, Dept. of Appl. Math., McMaster University, 1978.

[3] G.T. Herman and G. Rozenberg, Developmental systems and languages,

North-Holland, Amsterdam, 1975.

[4] A. Salomaa, Formal languages, Academic Press, London, 1973.

[5] A. Salomaa, On sentential forms of context-free grammars, Acta

Informatica 2, 40-49.



Acknowledgments. The second author is very much indebted to IBM Belgium

and NFWO foundation for supporting his stay at the University of Colorado

at Boulder which made the work on this and other papers possible.

19



