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ABSTRACT

We model the solar horizontal velocity power spectrum at scales larger than granulation using a two-component
approximation to the mass continuity equation. The model takes four times the density scale height as the integral
(driving) scale of the vertical motions at each depth. Scales larger than this decay with height from the deeper
layers. Those smaller are assumed to follow a Kolmogorov turbulent cascade, with the total power in the vertical
convective motions matching that required to transport the solar luminosity in a mixing length formulation. These
model components are validated using large-scale radiative hydrodynamic simulations. We reach two primary
conclusions. (1) The model predicts significantly more power at low wavenumbers than is observed in the solar
photospheric horizontal velocity spectrum. (2) Ionization plays a minor role in shaping the observed solar velocity
spectrum by reducing convective amplitudes in the regions of partial helium ionization. The excess low wavenumber
power is also seen in the fully nonlinear three-dimensional radiative hydrodynamic simulations employing a realistic
equation of state. This adds to other recent evidence suggesting that the amplitudes of large-scale convective
motions in the Sun are significantly lower than expected. Employing the same feature tracking algorithm used with
observational data on the simulation output, we show that the observed low wavenumber power can be reproduced
in hydrodynamic models if the amplitudes of large-scale modes in the deep layers are artificially reduced. Since the
large-scale modes have reduced amplitudes, modes on the scale of supergranulation and smaller remain important
to convective heat flux even in the deep layers, suggesting that small-scale convective correlations are maintained
through the bulk of the solar convection zone.
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1. INTRODUCTION

Solar supergranulation is observed as horizontal divergent
flow within magnetic network boundaries (Leighton et al. 1962;
Simon & Leighton 1964), either by Doppler imaging away
from the disk center (Hathaway et al. 2000) or by correlation
(November et al. 1988; DeRosa & Toomre 2004; Meunier et al.
2007) or structure tracking near the disk center (Roudier et al.
1999, 2012). The power spectrum of the horizontal motions
shows a characteristic peak at horizontal scales ranging from
approximately 20 Mm to 50 Mm, and the motions at these scales
are identified as supergranulation. There is a dramatic drop in
spectral power for scales larger than supergranulation with very
weak giant cell flows only recently confirmed by observations
(Hathaway et al. 2013).

The physical origin of the supergranular length scale remains
a mystery. Suggestions range from possible dynamical effects
of the second ionization of helium (Leighton et al. 1962; Simon
& Leighton 1964; November et al. 1981) to spatial correlation
or self-organization of granular flows (Rieutord et al. 2000; Rast
2003; Crouch et al. 2007). Radiative hydrodynamic simulations
of solar surface convection fail to yield clear evidence for
supergranulation, even in very large domains spanning up to
96 Mm × 96 Mm in width and 20 Mm in depth (Stein et al. 2009;
Ustyugov 2010). Recent simulations in even larger domains of
up to 196 × 196 × 49 Mm3 suggest that the domain depth
and the consequent stratification captured by the simulation

may be as critical as the domain width (J. W. Lord 2014, in
preparation). Based on these broad and deep simulations of solar
surface convection we have developed a model of the convective
velocity spectrum that reproduces the simulation spectrum and
provides insight into how the deep convective flows help build
the observed photospheric spectrum.

The model assumes that, at each depth, vertical motions
are driven at scales four times the local density scale height.
The amplitudes of smaller scale motions are taken to be
consistent with the spectrum of unstratified and incompressible
turbulence. Larger scale vertical motions imprint from below
with reduced amplitude and are observed as primarily horizontal
flows at the surface (Spruit et al. 1990). In other words, modes
with wavelengths smaller than the integral (driving) scale are
assumed to have amplitudes that follow the spectrum of isotropic
homogeneous turbulence given by Kolmogorov (1941), while
vertical motions of scales larger than the integral scale are
assumed to decay with height from their driving depth. The
integrated power of the vertical velocity is determined using a
mixing length model of energy transport, and the spectrum of
horizontal velocity follows from the vertical velocity spectrum
at each depth by mass continuity.

Key scalings in the model are verified using the radiative hy-
drodynamic simulations of J. W. Lord 2014 (in preparation),
and the simplified model spectra agree with those of the sim-
ulations over a wide range of wavenumbers. They also match
observations at supergranular scales. However, power at lower
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wavenumbers, in both the model and radiative hydrodynamic
simulation spectra, significantly exceeds that observed. This
suggests either that large-scale flows deep in the solar convec-
tion zone are weaker than predicted by convection simulations
or that rotation and the consequent near surface shear layer,
not captured in our studies, plays a decisive role in masking
large-scale motions. We note, however, that recent helioseismic
observations (Hanasoge et al. 2010, 2012) and global scale nu-
merical simulations, with and without a near surface shear layer
(H. Hotta et al. 2014, in preparation), also suggest that large-
scale convection in the Sun is weaker than numerical models
predict. It is possible that magnetic fields play a role given that
convection in the Sun is fundamentally magnetized. Preliminary
studies of radiative magnetohydrodynamic simulations (J. W.
Lord 2014, in preparation) in very large domains show some
suppression of low wavenumber power in highly magnetized
solutions, though the mechanism is still under investigation and
the effect so far appears insufficient to explain solar observa-
tions. In this paper, we focus on strictly hydrodynamic effects to
elucidate the important role of stratification and the secondary
influence of ionization in shaping the photospheric horizontal
velocity power spectrum at supergranular and larger scales.

In Section 2 we describe the simplified two-component
continuity balance on which our model is based and transform
the balance equations into relationships between the vertical
and horizontal velocity spectra. We use these relationships to
identify the driving scale of the modes and demonstrate that
these relationships hold in fully compressible hydrodynamic
simulations. In Section 3 we describe the construction of the
mixing length atmosphere which sets the amplitude of the
model spectrum, identify two possible decay rates for the large-
scale modes, and explicitly outline the model steps employed
in the construction of the surface horizontal velocity spectrum.
In Section 4 we test the components of the model spectrum
against the full radiative hydrodynamic solutions and verify that
the model can reproduce the shape of the spectrum produced
by those simulations. In Section 5 we discuss the results of
the model spectrum, focusing on the spectrum at supergranular
scales and larger. We show, using feature tracking, that for scales
larger than supergranulation, the radiative hydrodynamic spectra
can only match the observations when the convective forcing is
removed entirely below 10 Mm. We conclude in Section 6 with
a discussion of the broader implications of the observed weak
low wavenumber amplitudes to our understanding of deep solar
convection.

2. MASS CONTINUITY AND THE EFFECTS
OF STRATIFICATION

We use the equation of mass continuity to examine how
stratification affects flow velocity. Explicitly,

∂ρ

∂t
+ ∇ · (ρu) = ∂ρ

∂t
+ ρ

(
∂ux
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+
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+
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)
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∂ρ
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where ρ is the mass density, u is the fluid velocity, and subscripts
x, y, and z indicate components in Cartesian coordinates. We
ignore curvature, and take gravity, and thus increasing density
in the stratified domain, to be in the positive z direction.

In the solar convection zone we can make a number of
further simplifying assumptions. Since we are looking for the

statistically steady velocity amplitudes over time periods much
longer than the convective turnover time, we take (∂ρ/∂t) → 0.
Moreover, we know from hydrodynamic simulations that the
horizontal gradients of the density are small compared to the
vertical stratification below the first few hundred kilometers
beneath the solar photosphere, so ux(∂ρ/∂x) and uy(∂ρ/∂y)
are ignored. Together these assumptions yield an anelastic-like
continuity equation (Gough 1969) that maintains the steady state
stratification by balancing the vertical advection of mass with
the divergence of the flow,

∇h · uh = −∂uz

∂z
− uz

Hρ

, (2)

where uh = ux î + uyĵ , ∇h = î(∂/∂x) + ĵ (∂/∂y), and Hρ =
((1/ρ)(dρ/dz))−1 is the density scale height.

This form of the continuity equation suggests two possible
flow regimes: for (∂uz/∂z) � (uz/Hρ) the motions may be
considered nearly divergenceless and isotropic whereas for
(∂uz/∂z) � (uz/Hρ) the stratification is most important in
determining the flow component speeds. Heuristically, small-
scale overturning eddies would fall in the first regime, while
eddies larger than the local scale height would fall in the second,
with the largest isotropic eddies increasing in size with depth as
the density scale height increases. Thus we expect the dominant
balance in Equation (2) to depend on the length scale of the flow
and depth within the convection zone.

Maintaining the mean stratification in a statistically steady
stratified convective flow requires that most of the mass must
overturn as the fluid rises through one scale height; over each
scale height, the density of rising fluid must decrease by a
factor of 1/e, implying that 1–1/e of the mass must overturn.
Similarly, downwelling fluid must entrain mass at this rate. If the
flow geometry is approximated by vertical cylinders of radius r
and height Hρ , then for all of the mass to overturn within one
scale height, 2πrHρρuh = πr2ρuz. This yields a characteristic
horizontal scale for the motions (Nordlund et al. 2009)

r = 2αHρ

uh

|uz| , (3)

where α is a factor of order 1 and includes a weak dependence
on geometry and the 1/e fraction of the mass that does not
overturn. We take this length scale to be the crossover between
those motions that feel the stratification and those that do not. We
demonstrate in the next section that such a crossover is seen in
the spectra of three-dimensional simulations. This length scale
is also the integral scale of the velocity spectrum in solar-like
hydrodynamic simulations (Stein et al. 2009), and henceforth
we refer to it as the driving or integral scale of the convection.

2.1. The Spectra of Horizontal and Vertical Motions

Equation (2) can be written as

ikh · ũh = −∂ũz

∂z
− ũz

Hρ

, (4)

where the overlying tildes indicate the complex Fourier am-
plitudes resulting from a two-dimensional horizontal Fourier
transform at each depth z and kh is the horizontal mode wave
vector. By squaring both sides and taking the two limits of
Equation (4), we can define a relationship between the power
in horizontal and vertical motions without directly solving for
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Figure 1. Horizontal velocity power spectra (solid curves) from hydrodynamic simulations using a Saha equation of state (see Sections 3.1 and 5.2 for details) at four
depths: black 1.3 Mm, blue 5.4 Mm, green 15.7 Mm, and red 23.9 Mm below the photosphere. The dashed and dotted curves show the horizontal velocity spectra
deduced from the vertical velocity based on Equations (5) and (6), respectively. The velocity is averaged over 30 minutes before computing these spectra to remove
p-modes. This averaging also reduces power in high wavenumber convective motions.

(A color version of this figure is available in the online journal.)

the phases of the modes. For modes smaller than the integral
scale, we take the limit (∂ũz/∂z) � (ũz/Hρ), while for larger
scale modes we take (∂ũz/∂z) � (ũz/Hρ). Even in these limits,
defining the relationship between vertical and horizontal power
is difficult for two reasons: when squaring Equation (4), the
cross terms between horizontal modes ũx and ũy on the left
side do not have an a priori known form, and the vertical
derivative on the right-hand side cannot be simply related to
the wavenumber of the horizontal Fourier modes.

To proceed we make simplifying assumptions that we
have empirically verified to hold in stratified (J. W. Lord
2014, in preparation) and incompressible turbulence simula-
tions (Mininni et al. 2006) as appropriate. At small scales, the
flow is nearly isotropic and homogeneous, with unstratified ho-
mogeneous and isotropic turbulence simulations showing that
k2
xũx ũ

∗
x ≈ k2

yũy ũ
∗
y ≈ (∂ũz/∂z)(∂ũ∗

z/∂z), which together with
incompressibility, yields (∂ũz/∂z)(∂ũ∗

z/∂z) ≈ (1/4)k2
hũh · ũ∗

h.
The simulations also suggest a relationship between the verti-
cal and horizontal gradients, (∂ũz/∂z)(∂ũ∗

z/∂z) ≈ (1/4)k2
hũzũ

∗
z ,

and together these yield a relationship between horizontal and
vertical power:

ũh · ũ∗
h = ũzũ

∗
z , (5)

where ũh · ũ∗
h = ũx ũ

∗
x + ũy ũ

∗
y . At large scales, the cross terms,

which result from squaring the left-hand side of Equation (4),
are measured in stratified simulations to be small and are set to
zero. This implies that k2
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2
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horizontal and vertical power in the modes are related as
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hH

2
ρ

ũzũ
∗
z , (6)
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h = k2

x + k2
y .

Finally, without approximation, the driving scale that sep-
arates these two behaviors (Equation (3)) can be rewritten as

λh = 4αHρ

uh

|uz| , (7)

where λh = 2π/kh is the wavelength of the Fourier mode
corresponding to a convective cell diameter of d = 2r . By
taking α and uh/uz ≈ 1 we approximate the driving scale as
λh ≈ 4Hρ . It is on the basis of these relationships (Equation (5)
at small scales and Equation (6) at large scales with the crossover
between them given by the driving scale λh = 4Hρ at each
depth) that we calculate the horizontal velocity power spectrum
from the vertical.

Analysis of large-scale radiative hydrodynamic simulations
of solar convection (for details, see Section 5.1 and J. W. Lord
2014, in preparation) helps validate these relationships. Below
1.3 Mm beneath the photosphere, the mass continuity in the sim-
ulations matches the anelastic balance (Equations (2) and (4))
to within a few percent. Near the photosphere, this balance
breaks down because of fluid compressibility, particularly at
high wavenumbers. We thus restrict our model analysis to depths
below 1.3 Mm. At low wavenumbers, p-mode contributions can
still be important at the shallowest depths. We remove these
when comparing the numerical simulations to the model by aver-
aging the simulation velocities over 30 minutes. This averaging
also reduces the amplitude of the high wavenumber convective
motions, but preserves the relationships between horizontal and
vertical flows of Equations (5) and (6). This is illustrated by
Figure 1, in which the horizontal velocity spectra measured at
several depths in a solar-like radiative hydrodynamic simulation
are plotted. Overplotted are the horizontal velocity spectra de-
duced from the vertical velocity spectra of the simulation at the
same depths using Equations (5) and (6) (dotted and dashed line
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Figure 2. Crosses show the driving scale in the hydrodynamic simulation. This scale separates the small-scale divergenceless motions that follow Equation (5) and
the large-scale motions that feel the stratification and follow Equation (6). The driving scale is taken to be the smallest wavenumber where the horizontal velocity
spectrum begins to systematically diverge from Equation (6). The solid (red) curve shows 4Hρ from the hydrodynamic simulation.

(A color version of this figure is available in the online journal.)

styles, respectively). The two-component reconstruction of the
horizontal velocity spectrum from the vertical reproduces the
shape and amplitude of the actual spectrum quite well. More-
over, the driving scale estimate of 4Hρ is in good agreement with
the crossover between the two behaviors. Plotted in Figure 2 is
the crossover wavenumber as a function of depth (defined as the
smallest wavenumber in the simulations for which the balance in
Equation (6) begins to fail, meaning that the difference between
the two terms at neighboring larger horizontal wavenumbers
is increasingly large). For comparison, 4Hρ is overplotted in
red. They are in good agreement. Note that the discontinuities
in the measured values are due to the finite spectral resolu-
tion of the simulation; many depths in the simulation appear to
have the same crossover scale because there are no modes that
can discriminate between them.

3. MODEL COMPONENTS

Having verified the two-component continuity balance, we
construct the horizontal spectrum of horizontal motions from
the horizontal spectrum of the vertical velocity using the
relationships derived. To do this, we must model the vertical
velocity spectrum at each depth. This depends on the driving
(integral) scale at that depth, the spectrum of the small-scale
motions, and the decay rate of the large-scale modes that are
driven below the height of consideration. We have already
defined the driving scale as 4Hρ , and we choose the spectrum of
the higher wavenumber motions to follow a turbulent cascade
with a k−5/3 Kolmogorov slope. The Kolmogorov spectrum
does not match the spectrum of motions in the hydrodynamic
simulations exactly, but we use it in the model for simplicity and
in place of an ad hoc fit to the simulations, which themselves may
not match the spectrum of solar motions (see Section 4). The
integrated spectral power is determined using the rms velocity of
a mixing length model of solar convection (Section 3.1). Thus,
the amplitudes of modes with scales larger than the driving

scale are determined by their decay with height from the depth
at which they were last driven (Section 3.2), and the remaining
power (the rms velocity squared minus the power in large-scale
modes) is distributed among all modes at the driving scale or
smaller according to a Kolmogorov distribution.

3.1. Mixing Length Transport by Small-scale Modes

We employ a simplified hydrostatic mixing length atmosphere
of pure hydrogen and helium in Saha equilibrium, integrating
the mixing length equations (Prandtl 1925; Böhm-Vitense
1958) using the observed density and temperature of the solar
photosphere as boundary conditions. We take the convective
flux to be equal to the photospheric radiative output (6.3 ×
1010 erg cm−2 s−1) as appropriate for efficient convection and
note that this introduces an error in the lower portions of the
model where, in the Sun, radiation transports a significant
fraction of the energy flux. This error makes a small contribution
to the excess model power at the largest scales (Section 4).

Explicitly, we solve the equation for the convective energy
flux Fc = (1/2)ρvCpT (l/Hp)(∇ − ∇′) along with that of
hydrostatic balance (dP/dz) = −ρg. Here ρ is the fluid
density, v is the velocity, Cp is the specific heat at constant
pressure, T is the temperature, ∇ is the mean temperature
gradient, ∇′ is the temperature gradient within the convective
cell, P is the pressure, and g = Gm(z)/r(z)2 is the gravitational
acceleration with r(z) the distance from the Sun’s center, m(z)
the mass within that radius, and G the gravitational constant.
We employ the equation of state P = ρkT /μ, where k is
the Boltzmann constant and μ is the mean molecular weight
of the plasma, and assume that the convective motions are
adiabatic, so that ∇′ = ∇ad = (∂lnT /∂lnP )|ad, the adiabatic
temperature gradient. Finally, the rms convective velocity is
given by v2 = (1/8)gQ(l2/Hp)(∇ − ∇′), where l is the mixing
length measured in units of the pressure scale height HP.
Note that Q = 1 − (∂lnμ/∂lnT )|P , Cp, ∇ad, and μ account for
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Figure 3. Diamonds show vertical velocity power from the driving depth, λh = 4Hρ , up to 1.3 Mm below the photosphere in the hydrodynamic simulation. The
different colors show different modes from 20 Mm (red) to 50 Mm (purple). The black curve is the cubic polynomial fit to the observed decay rate. The triangles show
the decay rate for a potential flow (Equation (9)) for the same range of modes.

(A color version of this figure is available in the online journal.)

the non-ideal effects of hydrogen and helium ionization (where
the number density of each ionization state is determined in
collisional equilibrium as a Saha balance).

The equations are integrated numerically from the photo-
sphere downward, yielding the convective rms velocity and the
local density scale height at each depth.

3.2. Decay of Large-scale Modes with Height

In all simulations of solar convection, the amplitude of the
vertical velocity at low wavenumbers decreases toward the sur-
face where granular scale convection is dominant. The rate of
this decrease for the largest scale convective modes is a fun-
damental uncertainty in our understanding of solar convection.
While global simulations predict giant cell convection through-
out much of the convection zone (e.g., Miesch et al. 2008),
surface observations have only very recently found evidence for
weak flows at these scales (Hathaway et al. 2013). Numerical
simulations have difficulty directly addressing the photospheric
amplitude of large-scale motions. They are either of limited ex-
tent in depth (Stein et al. 2009; Ustyugov 2010; J. W. Lord 2014,
in preparation) or do not capture the non-ideal and highly com-
pressible nature of the uppermost layers (Miesch et al. 2008).

Because of these uncertainties, we examine two possible
vertical velocity amplitude decay profiles. Starting from the
depth at which the wavelength of the mode exceeds the integral
scale, we decay the modes either by approximating the flow as
potential (van Ballegooijen 1986) or by using a cubic polynomial
fit to the observed decay of modes with wavelengths between
20 Mm and 50 Mm in the hydrodynamic simulations (shown
as diamonds in Figure 3). The potential flow approximation
takes the flow to be irrotational, allowing a direct solution to the
large-scale continuity balance, written as

∂φ̃

∂z
= −khHρφ̃, (8)

where φ is the velocity potential with ũz = ∂φ̃/∂z. This yields
a profile for the velocity amplitude with height

ũz(z) = ũz(zd )
Hρ(z)

Hρ(zd )
exp

[
k2
h

∫ z

zd

Hρ(z′)dz′
]

, (9)

where zd is the driving depth. This velocity profile can be
integrated numerically for any wavenumber kh, the results of
which are shown with triangles in Figure 3. The polynomial fit,
on the other hand, approximates the decay of the modes by a
single function determined from the hydrodynamic simulations
(solid line in Figure 3). The fit groups the behavior of all modes
between 20 and 50 Mm together and is thus inadequate to
reproduce the hydrodynamic simulation in detail (see Section 4).
It is employed in the model because of its simplicity. The two
schemes are quite different in form and together provide a test
of the sensitivity of the model to this key unknown function.

3.3. Construction of the Model Spectrum

In summary, we construct the model surface horizontal
velocity spectrum as follows. To calculate the spectrum of the
vertical velocity we follow these steps.

1. Construct a mixing length model of the solar convec-
tion zone integrating from the photosphere downward to
200 Mm, the approximate depth of the solar convection
zone.

2. Determine the wavelength of the largest scale mode allowed
at the bottom of the model atmosphere, λh = 4Hρ , and
use this as the integral (driving) scale (i.e., the lowest
wavenumber mode) in a k−5/3 turbulent cascade. The
highest wavenumber in the spectrum is taken to be the
Nyquist frequency of the hydrodynamic simulations on
which the model is based (2π/384 km, see Section 5.1),
and the spectrum is normalized so that the integrated power
is equal to the mixing length velocity squared at the bottom
of the model atmosphere.
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3. Move one step up in the atmosphere (a grid spacing of 64 km
is used to again match the hydrodynamic simulations).
Decay modes with wavelengths longer than the local
integral scale (4Hρ) using one of the two decay functions
discussed in Section 3.2. Compute the integrated power
in the decaying modes and normalize the remaining k−5/3

spectrum by the squared mixing length velocity minus the
power in the decaying modes.

4. Repeat step 3 until the top of the model atmosphere is
reached.

From the vertical velocity spectrum, the horizontal velocity
spectrum at any height is computed using Equations (5) and (6).

4. TESTING THE MODEL

We used the model outlined above to compute the horizon-
tal velocity spectrum at a depth of 1.3 Mm below the solar
photosphere (as previously discussed, model assumptions break
down above this height and results from hydrodynamic simula-
tions validate this spectra as a close approximation to the surface
spectrum for supergranular and larger scale motions). The re-
sulting spectrum is shown as a solid (red) curve in Figure 4(a).
For clarity we show the spectrum obtained when employing
the large-scale mode decay rate as measured in the hydrody-
namic simulation only (we discuss the potential decay below).
The spectrum has two notable low wavenumber features: mono-
tonically increasing power at scales larger than supergranulation
and a small plateau of power at supergranular scales. The mono-
tonic increase of power to lower wavenumbers is not observed
on the Sun. The horizontal velocity spectrum of solar motions
shows decreasing power at scales larger than supergranulation
(see Section 5.1). The small supergranular plateau extends from
λh ∼ 20–30 Mm (corresponding to k/2π ∼ 0.03–0.05 Mm−1

in Figure 4(a)), matching supergranular scales in solar observa-
tions. The high wavenumber features of the spectrum, in partic-
ular the discontinuity at the 1.3 Mm depth integral scale, occur
at scales for which the model is ill-suited.

To test the sensitivity of the model to the mixing length
atmosphere employed we compared the spectrum shown in
Figure 4(a) to one computed using a more sophisticated non-
local mixing length formulation (Christensen-Dalsgaard et al.
1996). The non-local formulation employs the OPAL (Rogers
& Iglesias 1992) equation of state and opacities, more carefully
accounting for the chemical composition of the convection
zone. Importantly, it also accounts for the transport of energy
by radiation in the lower portion of the convection zone,
which reduces the convective flux and consequent driving
amplitudes there. The resulting horizontal velocity spectrum has
a shape nearly identical to that computed using our simplified
Saha balance. Only the largest scale mode shows any notable
difference, with the amplitude of that mode somewhat reduced
as it is the only mode driven in the lower third of the convection
zone where the Christensen-Dalsgaard et al. (1996) convective
velocities are weaker as a result of the more careful accounting
of the radiative energy flux.

As there is no a priori expectation for the decay rate of the
large-scale modes, this aspect of the model is more difficult to
assess. We chose to compare the spectrum shown in Figure 4(a)
(obtained using the large-scale mode decay rate measured in
the hydrodynamic simulations) to one employing an analytic
potential flow assumption (van Ballegooijen 1986) because
the latter yields an exponential decay of the mode amplitudes
(Equation (9)) and may thus represent a somewhat limiting

(b)

(a)

Figure 4. Spectra computed from the two-component model using the decay rate
fit to the hydrodynamic simulations. We show the horizontal velocity spectrum
at a depth of 1.3 Mm in part (a) and the vertical velocity power at the driving
depth in part (b). The solid (red) curve in part (a) and diamonds in part (b)
(red) show the spectrum computed from a mixing length atmosphere with a
Saha equation of state that includes H, He i, and He ii ionization; the dashed in
(a) and triangles in (b) (green) are computed from an atmosphere with no He ii
ionization; and the dotted line in (a) and crosses in (b) (blue) are computed from
an atmosphere with no He i or ii ionization. The vertical dotted lines show the
depths of 50% He i (6 Mm and k/2π = 0.1 Mm−1) and He ii (17.5 Mm and
k/2π = 0.03 Mm−1) ionization in part (b) and driving scale, where λh = 4Hρ ,
at those depths in part (a).

(A color version of this figure is available in the online journal.)

case. The surface horizontal velocity spectrum computed with
the exponential decay shows significant reduction in overall
power, particularly at small scales, but quite similar shape at
supergranular scales. At scales larger than supergranulation
it exhibits a nearly identical monotonic increase of power
to that seen in Figure 4(a). The relative amplitudes of low
wavenumber modes are quite insensitive to the imposed mode
decay function. The low wavenumber power distribution is
primarily determined by the mode amplitudes at depth, with
those amplitudes constrained by convective flux requirements
of the model atmosphere.

Finally, we looked to validate the model using the three-
dimensional hydrodynamic simulations directly. When taking
the driving scale (4Hρ) and rms velocity amplitude directly
from the simulation itself, rather than from a mixing length
atmosphere, the model matches the horizontal velocity spec-
trum of simulation to within 10% over the wavenumber band
k/2π = 0.02–0.15 Mm−1 (λh ∼ 7–50 Mm) at all depths be-
low 1.3 Mm. This is achieved, however, only by fitting the

6



The Astrophysical Journal, 793:24 (11pp), 2014 September 20 Lord et al.

Figure 5. Photospheric velocity power computed from the Coherent Structure Tracking (CST) algorithm of Roudier et al. (2012) which computes velocities by tracking
continuum intensity maps. The dashed curve is from HMI observations, the solid (red) curve is from a radiative hydrodynamic simulation in a 196 × 196 × 50 Mm3

domain using the OPAL equation of state, and the dotted (blue) curve is from an identical simulation that also includes an artificial energy flux carrying the solar flux
below 10 Mm. Modes with k < 0.013 Mm−1 in the simulations (indicated by the vertical dotted fiducial line and the dot-dashed line style) have driving depths outside
the simulation domain and consequently have lower photospheric amplitudes than we would expect from a deeper simulation. We use 192 × 192 Mm2 HMI images
to match the simulation domain width and degrade simulation resolution to match the observations (∼370 km). To compute the spectrum of the CST velocities, we
cut off the two outermost cells and zero-pad by adding twice the number of grid cells in each direction (and multiply all amplitudes by a factor of four to maintain
integrated spectral power) to remove the influence of the non-periodic boundary.

(A color version of this figure is available in the online journal.)

decay rate of each mode individually and reducing the over-
all amplitude of the spectrum by a constant offset factor of
two. The increased power in the model spectrum results be-
cause the power at the driving depth in the model is over-
estimated by the assumed Kolmogorov power distribution of
the isotropic modes. The factor of two can be removed by us-
ing a non-Kolmogorov spectrum at depth, but this introduces
additional free parameters that cannot be constrained by so-
lar observations. This highlights an important result: the shape
of the horizontal velocity spectrum in the upper layers of the
model is largely determined by the vertical velocity amplitude
of the modes at depth. The relative amplitudes of large-scale
modes in the solar photosphere depend critically on the ver-
tical velocities at the depth. This is further supported by the
models’ inability to reproduce the simulation results for scales
λh > 50 Mm (k/2π < 0.02 Mm−1). For these very large scale
motions the driving depth lies near the bottom of the simula-
tion domain and the mode amplitudes as well as the measured
decay rates are influenced by the simulation lower boundary
condition.

5. SURFACE CONVECTION DEPENDENCE ON
MOTIONS AT DEPTH

The model tests discussed above confirm that the monotoni-
cally increasing low wavenumber power and much less promi-
nent supergranular plateau are robust features of the horizontal
velocity spectrum. That the model can reproduce the shape of
the hydrodynamic simulation spectrum validates the underlying
assumption that there are two components to the flow separated
by the integral (driving) scale which reflects the local scale
height at each depth. Larger scale motions are driven deep in

the convection zone and decay from below with height. Smaller
scale motions behave as isotropic homogenous turbulence. Mis-
matches between the model and hydrodynamic simulation spec-
tra and observations, however, raise broader questions. What is
the spectrum of solar convective motions at depth and what
governs the decay of these motions with height?

5.1. The Problem of Excess Low Wavenumber Power

Both the simplified model and the full three-dimensional
radiative hydrodynamic spectra show more power than the Sun
at scales larger than supergranulation, with that power increasing
monotonically toward lower wavenumbers because large-scale
flows are convectively driven in the deep layers of the domains.
It is worth noting that if the solar spectrum matched either
the simplified model or the radiative hydrodynamic simulation
spectrum, giant cell convection would be relatively easy to
observe as the power in these large-scale modes would exceed
that in supergranulation.

To make a more direct comparison between our numerical
simulations and observations, we employed a Coherent Struc-
ture Tracking (CST; Roudier et al. 2012) algorithm to infer the
horizontal velocities on large scales from measurements of the
motions of granules. In Figure 5 we compare the CST hori-
zontal velocity spectra of a large-scale radiative hydrodynamic
simulation (solid red curve) using the OPAL equation of state
(Rogers & Iglesias 1992) with that of solar observations (dashed
black curve) from the Helioseismic and Magnetic Imager (HMI)
aboard the Solar Dynamics Observatory. The measurements in
both cases employ a 22 hr sequence of continuum intensity
images with each HMI image separated by 45 s and each sim-
ulation image separated by ∼40 s. We break this sequence into
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11 two-hour subsets and use the CST method to compute the ve-
locity for each 2 hr window. The spectrum shown is the average
spectrum of those 11 velocity computations. The HMI obser-
vations are of a 192 × 192 Mm2 region at disk center with a
low magnetic activity on 2010 19 June. The simulation solution
was computed using the MURaM code (Vögler et al. 2005) in
a 196 × 196 × 49 Mm3 domain with 192 × 192 × 64 km3 grid
spacing (J. W. Lord 2014, in preparation).

We note that the spectra in Figure 5 are truncated at high
wavenumbers because the CST method is not reliable for scales
smaller than 2.5 Mm. Moreover, low wavenumber modes, those
with wavenumbers below k < 0.013 Mm−1 (indicated by the
vertical fiducial line and dot-dashed line style in Figure 5)
have length scales larger than the integral (driving) scale at the
bottom of the simulation domain and consequently have lower
photospheric amplitudes than they would likely have in a deeper
simulation. Between these extremes are two notable mismatches
between the simulation and observation spectra: the simulation
shows an excess of power at low wavenumbers and a deficit of
power at high wavenumbers when compared to observations.
Our very wide and deep simulations resolve supergranular scale
motions well but under-resolve granular motions. This leads to
an inferred CST velocity with reduced power at high k, a result
that is inconsistent with the actual simulation velocities and
HMI observations. The excess of low wavenumber power is, on
the other hand, a fundamental difference between the resolved
motions in the simulation and those in observations and is robust
as the CST constrains large-scale motions better than small-scale
motions (Roudier et al. 2012). Thus, understanding the observed
solar supergranulation spectrum requires understanding the
origin of this low wavenumber reduction in power along with
any mechanism that may enhance power at supergranular scales.

Our simplified mixing length model suggests that the low
wavenumber vertical motions are driven deep in the convection
zone and decrease in amplitude toward the surface. The radiative
hydrodynamic simulations behave similarly (Section 4), and
reducing the vertical flow velocities at depth reduces the
low wavenumber horizontal velocity power in the simulated
photosphere and improves the match between simulations and
observations. We demonstrate this conclusively via simulations
in which convective velocities in the deep layers are reduced
without changing the mean stratification of the atmosphere
(which is also fundamental to the surface spectrum). This was
done using an artificial energy transport term. Specifically, we
added an artificial flux function to the energy equation that
depends only on depth. The artificial flux carries the full solar
flux below a specified depth and none of the flux at heights
above this. The hyperbolic tangent flux profile employed is
5.12 Mm wide centered at 10 Mm (where 4Hρ ∼ 20 Mm),
effectively supporting radiative losses from the photosphere
by depositing the heat where the divergence of the function
is nonzero. In Figure 5 (dotted blue curve) we plot the resulting
photospheric horizontal velocity spectrum using the same CST
method described above. There is substantially reduced power
in the photosphere of the artificial flux simulation in those
modes that are driven at depths below ∼10 Mm (scales larger
than ∼20 Mm). This is the region of the domain for which the
artificial energy flux is important and consequently convective
(rms) velocities are reduced by a factor of ∼2.5.

The artificial energy flux experiment confirms the hypothesis
that low wavenumber modes are driven deep in the simulated
convection zone and imprint as horizontal flows in the surface
layers. The photospheric power spectrum reflects a hierarchy

of driving scales with depth even in fully nonlinear radiative
hydrodynamic simulations. It also suggests that neither the ra-
diative hydrodynamic solutions nor the simplified model spec-
trum capture the true dynamics of the solar convection below
∼10 Mm. In other words, in the Sun, low wavenumber flows
carry much less of the convective energy flux or transport the en-
ergy at substantially lower velocities than expected based on the
simulations or the model. Flow/enthalpy correlations, essential
to convective transport, may thus not be correctly captured by
hydrodynamic simulations. This may be due to their limited
resolution or result from the boundary conditions applied. For
example, the open boundary condition commonly employed in
radiative hydrodynamic simulations of photospheric convection
may smooth perturbations in the inflowing plasma. Alterna-
tively, magnetic fields, not included in the simulations we have
discussed in this paper, may maintain flow correlations and al-
low convective transport on smaller scales or at lower velocities
than predicted by purely hydrodynamic models. Preliminary re-
sults from magnetized simulations favor this hypothesis, though
the underlying mechanisms are still under investigation and the
effect so far appears insufficient to explain solar observations
(J. W. Lord 2014, in preparation).

5.2. Helium Ionization Plays a Minor Role

The small plateau of power at supergranular scales (solid
red curve in Figure 4(a) at kh ∼ 0.04 Mm−1) reflects the role
of helium ionization in determining the convective velocities
at depth. Superimposed on the horizontal velocity spectrum in
Figure 4(a) we have plotted fiducial vertical lines to highlight
the integral (driving) scale at the depths of 50% He i (k/2π =
0.1 Mm−1, 6 Mm depth) and He ii (k/2π = 0.03 Mm−1,
17.5 Mm depth) ionization. The plateau of supergranular power
falls between these two fiducial lines. We have also computed
the horizontal velocity spectrum for mixing length background
atmospheres with equations of state that do not allow He ii or
both He i and He ii ionization (Figure 4, dashed (green) and
dotted (blue) curves, respectively). These test atmospheres show
a continuous power law increase toward low wavenumbers with
no feature at supergranular scales. More precisely, these spectra
do not show the suppression of power at scales corresponding
to the integral scale at the depths of 50% He i or He ii when the
ionization processes are disallowed. The differences between the
ionizing and non-ionizing spectra at still lower wavenumbers
result because the stratification in the deep layers lies along
a different adiabat. The velocity differences at depths below
helium ionization, reflected in the low wavenumber horizontal
velocity spectra in the near surface, are due to differences in
the mean stratification as the medium is nearly fully ionized.
In the region of partial ionization, convective velocities are
also influenced by the availability of ionization energy in heat
transport via perturbations about the mean ionization state.

Helium ionization is thus responsible for the small supergran-
ular plateau in the model spectrum, albeit in a curious fashion.
The ionization of helium yields a slight reduction in the driving
scale mode amplitudes in the partially ionized regions (where
the driving scale λh ∼ 10 Mm for He i and λh ∼ 35 Mm for
He ii), producing a small apparent enhancement of power in
the upper layers at wavenumbers that lie between these driving
scales (where λh ∼ 20 Mm). The reduction in mode ampli-
tudes results because ionization energy contributes to the heat
transport. In a partially ionized fluid the heat can be transported
by ionization state perturbations as well as thermal perturba-
tions (Rast et al. 1993; Rast & Toomre 1993), and convective
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velocities in the mixing length model are thus reduced in par-
tially ionized regions. (We note that the mixing length model is a
local transport model and does not take into account other effects
of ionization such as the increased linear (Rast 1991) and non-
linear (Rast 2001) instability of the fluid, though these may play
a role in solar convective flows or in our more complete three-
dimensional simulations.) The vertical velocity amplitudes of
modes that begin their decay at the depths of helium ionization
(the integral or driving scale modes at those depths) are thus
suppressed, resulting in a reduction in their horizontal velocity
power near the surface. Since ionization energy transport de-
pends on ionization state perturbations, with transport in a fully
neutral or fully ionized plasma behaving as an ideal gas, modes
with peak amplitudes (those with integral scales equal to 4Hρ)
at depths that lie between the partially ionized regions (10 Mm,
for example, where λh ∼ 20 Mm and k/2π = 0.04 Mm−1) have
more power than neighboring modes.

This is illustrated by Figure 4(b), which shows the vertical
velocity power at the driving depth (i.e., the depth where the
wavelength of the mode is equal to the integral (driving) scale)
for mixing length model atmospheres which do or do not allow
He i or He ii ionization. The driving scale modes in the regions of
partial ionization have lower amplitudes than those outside of it,
with minima in the mode amplitudes occurring at the depths of
50% ionization when allowed. The role of hydrogen ionization
is difficult to illustrate as its effect is dominant in the surface
layers where hydrogen recombination supports radiative losses.
The region of H partial ionization is broad in depth and integral
to the structure of the radiative boundary layer, and experiments
preventing H ionization dramatically alter the mean state of
the atmosphere and result in dramatic changes in the velocity
spectrum across a wide range of wavenumbers. Thus we do
not explicitly consider an atmosphere that disallows hydrogen
ionization, but it is clear from Figure 4(b) that the effect of
hydrogen ionization on mode amplitudes overlaps that of He i
(compare crosses (blue) and triangles (green)).

The simple model we have presented thus suggests that there
is an apparent enhancement of photospheric power at ∼20 Mm
scales that occurs because helium ionization reduces the flow
speeds in the regions of partial ionization which suppresses
power at larger (∼35 Mm from He ii) and smaller (∼10 Mm
from He i) scales, not because He ii ionization enhances the
driving of flows at this depth as has been previously sug-
gested. This apparent enhancement, however, is much smaller
than the increased power in observations of solar supergran-
ulation. To investigate the suppression of photospheric power
by helium ionization in the context of solar-like convection we
use the same Saha equations of state described above in three-
dimensional radiative hydrodynamic simulations. We use the
MURaM (Vögler et al. 2005) code to run simulations that use
192×192 km2 horizontal resolution and 64 km vertical resolu-
tion with 1024 × 1024 × 768 grid cells (giving a domain size
of 196 × 196 × 49 Mm3). The results presented here are from
more than 5 days of solar time after the simulation has reached
a relaxed equilibrium (J. W. Lord 2014, in preparation).

Figure 6(a) shows a comparison of the photospheric hori-
zontal velocity spectrum from three such simulations, one that
allows H, He i, and He ii ionization (solid red curve), one in
which only H and He i ionization are permitted (dashed green
curve), and one with only H ionization (dotted blue curve). The
resulting horizontal velocity spectra show suppression of photo-
spheric power similar to that seen in the simplified model (Fig-
ure 4) when ionization is allowed. The two lowest wavenumber

(a)

(b)

Figure 6. (a) Horizontal velocity spectrum at the photosphere and (b) vertical
velocity power at the driving depth. The solid curve in (a) and diamonds in
(b) (red) are spectra with a Saha equation of state including H, He i, and He ii
ionization; the dashed curve in (a) and triangles in (b) (green) use an equation
of state with no He ii ionization; and the dotted curve in (a) and crosses in
(b) (blue) use an equation of state with no He i or ii ionization. The vertical
dotted lines show the depths of 50% He i (7Mm and k/2π = 0.1 Mm−1) and
He ii (20 Mm and k/2π = 0.025 Mm−1) ionization in (b) and the driving scale,
where λh = 4Hρ , at those depths in (a). Note that the two largest scale modes are
shown with the dot-dashed line style here because the driving depth is outside
the simulation domain which makes them unreliable.

(A color version of this figure is available in the online journal.)

modes (dot-dashed line style) have driving depths outside of the
simulation domain and are consequently unreliable and weaker
than what would be expected in a deeper simulation. The modes
with integral (driving) scales equal to 4Hρ in the regions of
partial helium ionization again have reduced amplitudes. This
is particularly apparent at the wavenumbers corresponding to
modes that peak in the He ii partial ionization region (k/2π
near 0.013 Mm−1 in Figure 6(a)) which is well separated from
the effects of hydrogen ionization. Not allowing He ii ionization
(dashed green and dotted blue curves) causes a small but sig-
nificant elevation of photospheric power at those wavenumbers.
Disallowing He i ionization (dotted blue curve) induces smaller
differences due to the dominant role of hydrogen in the surface
layers.

The same reduction in the mode amplitude of the vertical
velocity spectrum at the driving depths corresponding to partial
helium ionization seen in the simplified model is apparent in
these hydrodynamic simulations (Figure 6(b)). Modes with
scales equal to 4Hρ at the depths of partial He i and He ii
ionization have reduced amplitudes, though this reduction is
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noisier in the simulation than in the mixing length atmosphere
(we note that the rms velocity amplitudes, not shown here,
also very clearly increase at the nominal ionization depths
when ionization is disallowed). This is due to three primary
factors: the spectral resolution of the simulation is limited by
the domain width, the three-dimensional simulation is non-
local which makes using a single depth a poor representation
of the vertical velocity power that reaches the surface, and
the intrinsic temporal variation in the power of the modes
below ∼10 Mm is long compared to the 5 days of simulation
time. Moreover, other nonlinear effects of ionization may play
some role, as discussed above. These experiments do, however,
confirm, in the context of fully nonlinear three-dimensional
radiative hydrodynamic simulations, two important results of
the simplified model: the horizontal velocity spectrum in the
photosphere reflects the amplitude of the vertical velocity at
depth and the reduced amplitude of vertical velocity in the
regions of partial helium ionization plays a minor role in shaping
the spectrum of supergranular flows at the surface.

6. CONCLUSION

We have constructed a model that computes the horizontal ve-
locity spectrum near the solar surface based on the amplitudes
of modes deep in the solar convection zone. The model has three
primary features: it is able to match the shape of the photospheric
spectrum in three-dimensional radiative hydrodynamic simula-
tions, shows a small supergranular scale enhancement of power
at 20–30 Mm, and an excess of power at lower wavenumbers
not seen in observations.

We used the model to examine the role that helium ionization
plays in shaping the solar photospheric velocity spectrum. We
showed that near the depths of 50% He i and He ii ionization
the amplitudes of the vertical motions are reduced because the
solar energy flux can be transported at lower velocities due to
the contribution of ionization energy. This manifests itself as a
suppression of horizontal velocity power in the surface layers at
scales neighboring supergranulation (∼35 Mm scales for He ii
and ∼10 Mm scales for He i). We confirmed this effect in three-
dimensional radiative hydrodynamic simulations that examined
convection with and without helium ionization. We conclude
that, instead of enhancing a particular flow scale, He i and He ii
ionization act to highlight supergranular scales by reducing the
power in the adjacent modes. This enhancement is, however,
smaller in the models than the observed enhancement of solar
photospheric power at supergranular scales.

A robust feature of both the model spectrum and the hydro-
dynamic simulations is an excess of power at low wavenumbers
when compared to solar observations. This highlights two un-
certainties that require further study. First, we do not know
the convective flux spectrum in the deep layers of the Sun.
While we took the flow spectrum to be Kolmogorov for all
scales below the integral scale, this assumption only approxi-
mates the spectrum observed in hydrodynamic simulations, and
it may significantly underestimate the role small scale motions
play in transporting heat through the solar convection zone.
Moreover, the large-scale hydrodynamic simulations also show
excess power at large scales compare to the Sun. Preliminary
results from similarly large-scale magnetohydrodynamic simu-
lations suggest that magnetic fields may play a role in reduc-
ing convective flow speeds or maintaining the correlations re-
quired for the energy flux to be carried by smaller scale motions
(J. W. Lord 2014, in preparation), but as yet these effects are
too small to explain observations. Second, we do not know

how the amplitude of the vertical motions decreases with height
in the solar convection zone. The decay rates (with height) of
low wavenumber modes may be influenced by solar rotation
and the near surface shear layer which are not included in
our analysis. It is likely that the supergranular excess in the
solar power spectrum is largely defined by the observed de-
crease in power to lower wavenumbers, and has thus been elu-
sive in simulations that show a monotonic increase in power to
lower k.

The excess low wavenumber power we find in both our
simplified model and realistic simulations adds to other re-
cent evidence that large-scale flows deep in the solar convec-
tion zone are weaker than previously thought. It supports sug-
gestions that numerical simulations more generally may have
difficulty matching solar observations if they are required to
carry all of the solar energy flux in the resolved modes (N.
Featherstone 2014, private communication). Helioseismic ob-
servations (Hanasoge et al. 2010, 2012) yield estimates of flow
velocities that are an order of magnitude or two below those
found in either global (e.g., Miesch et al. 2008) or local area
(J. W. Lord 2014, in preparation) simulations. Moreover, as
global simulations become more turbulent, with lower diffu-
sivities, flow speeds increase and differential rotation profiles
flip to an anti-solar configuration, with a slow equator and fast
poles because rotational constraints are too weak. This transi-
tion to anti-solar behavior can be avoided by decreasing the heat
flux through the convection zone or increasing the rotation rate
(J. Toomre et al. 2013, private communication; P. Charbonneau
2014, private communication; H. Hotta et al. 2014, in prepa-
ration). We found that reducing the convective transport role
of large-scale modes (by employing an artificial energy flux at
all depths below 10 Mm which reduces the deep rms velocities
by a factor of ∼2.5) can significantly improved the match be-
tween the coherent structure tracking spectra of the simulations
and observations. These separate lines of evidence all suggest
that the Sun transports energy through the convection zone while
maintaining very low amplitude large-scale motions. Something
is missing from our current theoretical understanding of solar
convection below ∼10 Mm.
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