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Thesis directed by Prof. Alexander Gorokhovsky

The main problem we consider in this thesis is the essential self-adjointness of the symplectic

Dirac operators D and D̃ constructed by Katharina Habermann in the mid 1990s. Her construc-

tions run parallel to those of the well-known Riemannian Dirac operators, and show that in the

symplectic setting many of the same properties hold. For example, the symplectic Dirac operators

are also unbounded and symmetric, as in the Riemannian case, with one important difference:

the bundle of symplectic spinors is now infinite-dimensional, and in fact a Hilbert bundle. This

infinite dimensionality makes the classical proofs of essential self-adjointness fail at a crucial step,

namely in local coordinates the coefficients are now seen to be unbounded operators on L2(Rn). A

new approach is needed, and that is the content of these notes. We use the decomposition of the

spinor bundle into countably many finite-dimensional subbundles, the eigenbundles of the harmonic

oscillator, along with the simple behavior of D and D̃ with respect to this decomposition, to con-

struct an inductive argument for their essential self-adjointness. This requires the use of ancillary

operators, constructed out of the symplectic Dirac operators, whose behavior with respect to the

decomposition is transparent. By an analysis of their kernels we manage to deduce the main result

one eigensection at a time.
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Chapter 1

Introduction

We shall give here a proof of the essential self-adjointness of the symplectic Dirac operators

D and D̃ acting on sections the symplectic spinor bundle Q over a compact symplectic manifold

(M,ω). This is a preliminary result in the larger quest for a symplectic analog of the well-known

Atiyah-Singer index theorem on a Riemannian manifold. To understand the importance of Dirac

operators and their self-adjointness in this quest, it is necessary to briefly review the historical

development of the classical index theorem, its generalizations, and various proofs.

The classical index theorem originated in the famous papers of Atiyah, Singer and Segal of

the 1960s and early 1970s, [5], [6], [7], [8], [9], and [10], and gave an equivalence between the analytic

index of an elliptic operator P acting on sections of a complex vector bundle E over a Riemannian

manifold (M, g) and that manifold’s topological index, via the equation

index(P ) = {ch(P ) · T (M)}[M ]

The term on the left is the analytic index, defined as index(P ) = dim kerP − dim coker(P ), while

the term on the right consists of topological invariants: the Chern character, a ring homomorphism

ch : K(M) → H•(M ;Q), taking the symbol of P , realized as an element of the K-theory ring

K(M), into the rational cohomology ring H•(M ;Q) of M , the Todd class T (M) of M , and the

fundamental class [M ] of M . The motivation for this theorem was Gel’fand’s 1960 observation

[36] that the analytical index index(P ) of an elliptic operator is always homotopy invariant, and

so should describe a topological invariant. It had also been proven by Borel and Hirzebruch in
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1958, [18], that the Â-genus of a spin manifold was always an integer, even though this topological

quantity was defined in terms of an infinite series. Atiyah and Singer’s paper [5] explained this

unusual result as the index of the manifold’s Dirac operator.

The first announcement of the general theorem came in that same 1963 paper [5], though its

proof arrived somewhat later, in Palais’ 1965 book [86]. According to Atiyah and Singer themselves,

[6], this early proof used the computationally taxing and ill suited methods of cobordism and

rational cohomology groups, which failed to reveal the basic underlying mechanics of the theorem’s

simple statement, while also making difficult the theorem’s generalizations. The three papers of

1968, [6], [7], [8], replaced cobordism and homology with just K-theory, which was more in line

with Grothendieck’s outlook on such matters.

The years 1968-1973 saw several advances, the most important of which, for us, was the

introduction heat equation methods to the proof method of the index theorem. These brought with

them some revealing simplifications in certain cases, and reduced the dependency on topological

machinery with the introduction of more analytic tools. The first inroads were made by McKean

and Singer, [80], in 1967. They looked at the Dirac operator d + d∗ : Ωev(M) → Ωodd(M) on a

Riemannian manifold (M, g) to prove the index theorem equating the index of d+ d∗ to the Euler

characteristic of M . Observing that the integrand α, given by the heat equation methods, and

the normalized Gauss curvature K had the same total integral, they asked whether α = K locally,

by some remarkable cancellations of higher order terms in local coordinates. Patodi [87] in 1971

answered affirmatively. As recounted in Atiyah, Bott and Patodi [11], the drawbacks to Patodi’s

methods were the complicated algebraic process of cancellation. Gilkey’s 1973 approach [40] showed

that the higher derivatives could be eliminated on a priori grounds, so that the integrand α should

never involve higher derivatives. The drawback here, however, was with the lengh and difficulty

of the proofs. In Atiyah et al’s estimation, this was due to the reliance on general differential

operator theory, rather than the Riemannian geometry at hand. With a change in tactics, toward

the Riemannian geometric tools, Atiyah, Bott and Padodi succeeded in simplifying the analytical

proof of Gilkey enough to make it manageable.
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The last step in this direction, using the heat equation methods and cancellation of higher

order terms in the local expansion, came with Getzler’s 1985 paper [38], which introduced his

eponymous symbol calculus involving only the top order terms in the asymptotic expansion of the

heat kernel of /D
2
. This paper gave a clear and simple proof of the local index theorem, and now

serves as the model in the smooth category (see for example Melrose [81]). The Dirac operator

case is a specific case of the general index theorem [5], of course, and it seems that it was a bit of

mathematical folklore that the Dirac case could imply the general topological case. The present

author has just seen two new preprints by Paul Baum and Erik van Erp on just this topic, [13],

[14]. These papers give a proof of the implication of the general index theorem from the special

Dirac case, using K-homology and Bott periodicity. So it seems that the general elliptic case and

the special Dirac operator case are in fact equivalent.

The heat kernel approach to the classical Atiyah-Singer index theorem by means of Dirac

operators is indeed the model of our investigations. Of course, the symplectic category is vastly

different from the Riemannian category, first and foremost because symplectic manifolds do not

have local invariants, as a consequence of Darboux’s theorem. The topological side, therefore, is

quite different and employs ideas deriving more from algebraic geometry than from differential

geometry. Our goal here, however, is to understand only the analytical side of the hypothetical

’index theorem.’ We aim merely to lay the analytical groundwork for heat kernel methods.

The first step in this direction is ensuring that our Dirac operators are self-adjoint, or at

least essentially self-adjoint. Generally speaking, self-adjointness of unbounded operators on a

Hilbert space are important because their spectrum is real, and thus the functional calculus may

be applied to them to get continuous or even Borel functions of these operators. For example, we

may exponentiate them, or take square roots, if the spectrum is nonnegative. Merely symmetric

operators may not have real spectrum, and there are examples of such cases, for instance i ddx on

L2([0, 1]) with domain {f ∈ AC([0, 1]) | f(0) = f(1) = 0}. Essentially self-adjoint operators are

symmetric operators whose closures are self-adjoint, and these enjoy the same benefits as self-

adjoint operators, only without our needing to specify their domains ahead of time. In the case
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of our symmetric differential operators D and D̃, the application of the functional calculus we are

most interested is in exponention. Then we can apply the heat kernel methods to try to make some

connections with the underlying symplectic topology of our manifold.

The notion of spinors came to light in Brauer and Weyl’s 1935 paper [20], following earlier

investigations of Cartan and originating in Dirac’s work on the spin of the electron. Spinors may be

upgraded to spinor fields on a Riemannian manifold, and here begins the notion of a spin manifold,

whose topology was studied by Borel and Hirzebruch [18], and thence by Atiyah and Singer [5] by

means of Dirac operators. The symplectic analog of a spinor was introduced by Kostant [65] in

1974, and the symplectic Dirac operators were introduced in 1995 by Habermann [50]. Subsequent

investigations of the symplectic Dirac operators were conducted by Habermann in the papers [51],

[52] and [53]. The construction of these operators was completely analogous to the classical Dirac

operators on a spin manifold, as operators acting on sections of the spin bundle.

The difference in the symplectic case is that we replace the Clifford algebra bundle, inside

which sits the spin group and its Lie algebra, with the Weyl algebra bundle, whose sections are

the symplectic spinor fields. The Weyl algebra bundle uses the symplectic form ω instead of

the Riemannian metric g to give the relations u · v − v · u = −ω(u, v)1 (this is the symplectic

analog to u · v + v · u = −g(u, v)1 in the Riemannian setting). The skew-symmetry of ω has

important consequences for the Weyl algebra bundle, the most eye-catching of which is that it

makes the Weyl algebra infinite-dimensional. Another difference is that the representations of the

metaplectic group, the double cover of the symplectic group, are not matrix representations. They

are unitary representations on the Hilbert space L2(Rn), and are unique up to isomorphism. This

is in contrast to the representation of the spin group, the double cover of the special orthogonal

group, which is a matrix representation on C2n (and variants thereof on Rk or H`, where k and `

depend on n = dimM , see Lawson and Michelsohn [71]). These facts point to the need for infinite-

dimensional Hilbert bundles of spinors over M rather than finite-dimensional. The implications

for the symplectic Dirac operators are that, unlike the Riemannian case, the Dirac operators have

unbounded coefficient operators in local coordinates, making the traditional proofs of their essential
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self adjointness (Wolf [110], Chernoff [25]) difficult to emulate.1

Another difficulty arising in the symplectic case is that, though we show the symplectic Dirac

operators to be essentially self-adjoint, they are also known to not be elliptic, unlike the Riemannian

case. Their commutator P = i[D̃,D] is, however, elliptic, and this fact will be useful for a variety

of purposes. These technical differences, particularly the jump to infinite dimensions, make the

symplectic Dirac operator case both more unusual and also more interesting given the intricate

topological constructions available in the symplectic category (see McDuff and Salamon [76], [77]).

Let us now briefly describe the structure of this thesis. Since the setting for our Dirac

operators is the smooth symplectic category, following some general observations on bilinear vector

spaces, we begin Chapter 2 with the linear symplectic category, consisting of symplectic vector

spaces and linear symplectic morphisms. This is necessary because the fibers of the tangent bundle

of a symplectic manifold are symplectic vector spaces. The model for the linear symplectic category

is the standard symplectic vector space (R2n, ω0), where ω0 =
∑n

j=1 dp
j ∧ dqj is given in terms of

the dual basis vectors dpj = e∗n+j and dqj = e∗j of the standard orthonormal basis vectors. The

notation here is meant to recall the physicists’ convention of viewing R2n as the phase space of a

free particle. The configuration space of such a particle is Rn, and coordinates qj = ej are position

coordinates of the particle. The momentum coordinates pj should technically lie in the cotangent

bundle T ∗Rn = Rn × (Rn)∗ of Rn, whose coordinates are (q1, . . . , qn, dp
1, . . . , dpn). However, by

use of the nondegenerate form ω0 we may identify Rn with its dual, and by this means we identify

T ∗Rn with R2n.

As we will see, all symplectic vector spaces (V, ω) are linearly symplectomorphic to the

standard symplectic space (R2n, ω0), so the nature of the whole linear symplectic category boils

down to that of this space. Now, R2n is also a Euclidean vector space with standard metric g0 the

1 Habermann, in her original paper [50], cited Wolf’s proof as applicable to the symplectic Dirac operators, but
the present author couldn’t understand how that proof could be modified to work in the symplectic case.
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dot product. By means of the standard complex structure, an endomorphism

J0 =

 0 −In

In 0


of R2n squaring to −I2n, we may also endow R2n with a complex vector space structure of complex

dimension n. Complex-scalar multiplication is given by

(a+ ib)v := av + bJ(v)

making R2n
J0

complex-isomorphic to Cn. The general linear group GL(2n,R) acts transitively by

conjugation on the space J (R2n) of all complex structures on R2n, with stabilizer isomorphic to

GL(n,C), so we have the diffeomorphism

J (R2n) ≈ GL(2n,R)/GL(n,C)

Each J ∈ J (R2n) similarly endows R2n with a complex structure, by exactly the same procedure

as above, giving an isomorphisms R2n
J
∼= Cn. Another GL(2n,R)-action, this time on the space of

symplectic forms Ω(R2n), shows the diffeomorphism

Ω(R2n) ≈ GL(2n,R)/ Sp(n,R)

where Sp(n,R) may be identified with the stabilizer of ω0 under this action. We will also demon-

strate that the space of metricsM(R2n) is diffeomorphic to the positive definite symmetric matrices

Sym2n(R)+,

M(R2n) ≈ Sym2n(R)+

So we see that there is no shortage of symplectic forms, complex structures, and metrics on R2n.

The natural question, then, is, ’What sort of interactions there between these structures?’

The most important interaction is ω-compatibility. Given a symplectic form ω on R2n, a

complex structure J is said to be compatible with ω if g(u, v) := ω(u, J(v)) defines a metric. It will

be shown in this chapter that the space of such ω-compatible complex structures is also large, and

even connected and contractible. Moreover, we also have a converse condition: given a complex
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structure J on R2n, there always exists a symplectic form ω such that J is ω-compatible, and the

space of such symplectic forms is convex and contractible. We may conclude, therefore, that the

linear symplectic category is well-equipped with compatibile Euclidean, symplectic and complex

structures, in particular ω-compatibility is a property not only of J for given ω, but of ω given J .

Moving to the smooth symplectic category such compatibility conditions do not always occur.

One additional feature of symplectic manifolds is the closedness of the symplectic form ω ∈ Ω2(M).

Fiberwise, ω may be identified with the standard linear symplectic form ω0, but globally we require

more. From this condition alone we see why compatibility becomes more difficult in the smooth

setting. The class of manifolds with compatible Riemannian, symplectic and complex structures is

rather restrictive, being the Käler class. It follows from the fiberwise case that manifolds equipped

with symplectic structures are always equipped with compatible almost complex structures, and

conversely. The term ’almost’ in the smooth setting refers to the potential lack of an integrability

condition on J , meaning simply that J may not come from a complex structure on the manifold

M . The obstructions to compatibility are by nature topological, and though it is not our focus in

these notes, we will pause and state some of the known results in this area which are relevant to

understanding the various subclasses of symplectic manifolds.

Following this, we describe the basic objects associated to symplectic manifolds: Hamiltonian

vector fields, the Poisson bracket, symplectomorphisms, and symplectic connections. We will also

sketch a proof of the fundamental Darboux theorem, which asserts that locally all symplectic

manifolds are symplectomorphic to an open subset of the standard symplectic space (R2n, ω0).

This is the key feature distinguishing the symplectic category from the Riemannian.

After the geometric setting has been adequately described, we return to analysis. We ded-

icate Chapter 3 to the construction of the relevant functions spaces needed to handle unbounded

differential operators: Sobolev spaces, locally convex spaces and distributions. We do this first in

the Euclidean setting, then describe the method of transferring these spaces to manifolds, even in

the noncompact case. Then we use these spaces to enlarge the class of differentiable functions to

weakly differentiable functions. The embedding theorems and the Fourier transform are recalled,
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before describing the general theory of differential operators on a manifold. Invariant definitions

are given, and filtered algebras are constructed, before we give the definition of the symbol of a

differential operator. The symbol’s importance lies in the fact that elliptic operators are defined to

be those whose symbol is always invertible fiberwise off the zero vector. This naturally leads into

elliptic theory. We describe elliptic regularity, which is of fundamental importance for us. In its

simplest version, it states that if P is elliptic and a (not necessarily smooth) section s satisfies the

weak equality Ps = 0, then s is in fact smooth. Thus, the kernel of an elliptic operator P consists

of smooth sections. If P is also self-adjoint, then its spectrum is particularly simple, being real and

discrete, and we will describe these points in detail.

Before venturing into elliptic theory, however, we will spend some time on the general theory

of self-adjoint unbounded operators on a Hilbert space H. Section 3.2 of Chapter 3 is devoted to

complete proofs of von Neumann’s famous theorems characterizing self-adjoint unbounded opera-

tors. Importantly for us, we will see why an unbounded symmetric operator T on a Hilbert space

H is self-adjoint if and only if ker(T ∗ ± iI) = {0}. This characterization is the one we will employ

in our proof of the essential self-adjointness of the symplectic Dirac operators D and D̃.

This completed, we then embark in Chapter 4 on the technicalities of the construction of

the symplectic spinor bundle Q and, in Chapter 5, on the construction of the symplectic Dirac

operators acting on its sections. The Weyl algebra is defined and its properties studied, before

shifting gears and considering the metaplectic representation. The metaplectic group Mp(n,R) is

the double cover of the symplectic group Sp(n,R), the structure group of any symplectic vector

bundle (in particular the tangent bundle of a symplectic manifold), and the fact that it has no

matrix representation, but only one (up to isomorphism) unitary representation on L2(Rn), leads

to the unusual properties of symplectic spinors. Firstly, the symplectic spinor bundle Q is the

associated L2(Rn) Hilbert vector bundle

Q = PMp(n,R) ×m L
2(Rn)

to the metaplectic prinicpal bundle via the metaplectic representation m. This is an infinite-
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dimensional Hilbert bundle, and symplectic spinors are sections of this bundle. The smooth sections

turn out to be precisely those sections with image in PMp(n,R)×m S(Rn), the Schwartz space-valued

symplectic spinors. The Lie algebras mp(n,R) and sp(n,R) of the metaplectic and symplectic

groups, respectively, may be embedded in the Weyl algebra, and the tangent map dρ of the double

covering map ρ : Mp(n,R) → Sp(n,R) may be understood in terms of the Weyl algebra product.

Once the position and momentum coordinates of the base manifold (M,ω) are quantized, qj 7→ ixj

(a multiplication operator on L2(Rn)), pj 7→ ∂/∂xj , the quantization map is shown to satisfy the

defining Weyl algebra relation, allowing us to extend it to the entire Weyl algebra. This allows

us to define symplectic Clifford multiplication, X · s, multiplying a symplectic spinor field s by

a vector field X. We can understand this as a linear combination of position and momentum

operators acting on s fiberwise. These are unbounded operators, and here is where the symplectic

case begins to seriously diverge from the Riemannian case.

Given a symplectic connection ∇ on (M,ω), we may lift it to the symplectic spinor bundle

Q. The symplectic Dirac operators are then defined to be the compositions

Γ(Q)
∇−→ Γ(T ∗M ⊗Q)

ω]−→
g]

Γ(TM ⊗Q)
µ−→ γ(Q)

where ω] and g] are isomorphisms between T ∗M and TM deriving from the symplectic and Rie-

mannian structure of M , and µ is the symplectic Clifford product described above. These are the

operators studied by Katharina Habermann in the papers [50], [51], [52] and [53]. Under appropri-

ate conditions on M , D and D̃ are symmetric, and it is the subject matter of this thesis to show

that they are essentially self-adjoint.

Traditional functional analytic methods tend to fail because of the unboundedness of sym-

plectic Clifford multiplication. In local coordinates, this means that D and D̃ have coefficients

which are unbounded operators on the fibers L2(Rn). There is, however, some extra information

we can work with here. Our main tool is the harmonic oscillator. In Rn, the harmonic oscilla-

tor H0 is known to be essentially self-adjoint and to have the Hermite functions as eigenfunctions.

These form a complete orthonormal system for L2(Rn), and therefore decompose L2(Rn) into finite-
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dimensional eigenspaces of H0. The metaplectic representation, restricted to the double cover of

the unitary group, the maximal compact subgroup of the symplectic group, commutes with H0,

thus giving a decomposition of the symplectic spinor bundle Q into finite-dimensional subbundles

Q`. Our symplectic Dirac operators D and D̃ combine to construct ancillary Dirac-type operators

Z = D+ iD̃ and Z∗ = D− iD̃, which have very simple behavior with respect to the decomposition

of Q. Z moves sections of Q` down by one to sections of Q`−1, and Z∗ moves sections up by one.

This simple behavior is exploited, along with information about the kernels of the operators D, D̃,

Z, Z∗ and P = i[D̃,D], to obtain an inductive proof that any symplectic spinor in ker(D∗ ± iI)

must be 0. Von Neumann’s theorem then applies to say that D and D̃ are essentially self-adjoint.

Along the way we prove some related results, and look at the local behavior of our symplectic Dirac

operators. Elliptic regularity is employed in statements about the kernel of P , which is known to

be elliptic.



Chapter 2

Symplectic Manifolds

2.1 Preliminaries on Bilinear Spaces

2.1.1 Matrix Representations of Bilinear Forms

Let V be a vector space over a field F and let B be a bilinear form on V (we will also

use the notation 〈·, ·〉 for a bilinear form, and we denote the set of all bilinear forms on V by

Hom2
F (V ;F )). When V is finite-dimensional with ordered basis β = (v1, . . . , vn), any bilinear form

B on V possesses a matrix representation [B]β ∈Mn(F ) with respect to β, namely

[B]β :=



B(v1, v1) B(v1, v2) . . . B(v1, vn)

B(v2, v1) B(v2, v2) . . . B(v2, vn)

...
...

. . .
...

B(vn, v1) B(vn, v2) . . . B(vn, vn)


(2.1)

Moreover, the action of B in matrix terms is given by the following proposition. It’s proof is

straightforward so we omit it.

Proposition 1 If V is a finite-dimensional vectors space over a field F and β is an ordered basis

for V , then for any bilinear form B ∈ Hom2
F (V ;F ) an any vectors x, y ∈ V we have

B(x, y) = [x]Tβ [B]β[y]β �

Theorem 1 The function ϕβ : Hom2
F (V ;F )→Mn(F ), ϕβ(B) := [B]β, is an isomorphism. There-

fore, Hom2
F (V ;F ) ∼= Mn(F ) and dim(Hom2

F (V ;F )) = n2. �
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We now ask what happens when we switch bases from β to γ on V . The answer is [B]β

and [B]γ are congruent matrices, and conversely congruent matrices X and Y represent the same

bilinear form B with respect to different bases β and γ. This follows directly from the change of

basis theorem from linear algebra and the previous theorem.

Theorem 2 Let V be an n-dimensional vector space over a field F , and let β and γ be two ordered

bases for V . If Mβ,γ is the change of coordinate matrix changing β-coordinates to γ-coordinates,

then a bilinear form B ∈ Hom2
F (V ;F ) gives congruent matrix representations with respect to the

two bases:

[B]β = MT
β,γ [B]γMβ,γ (2.2)

Conversely, if two matrices X,Y ∈Mn(F ) are congruent, that is

X = P TY P (2.3)

for some P ∈ GL(n, F ), and if Y = [B]γ represents a bilinear form B on V with respect to a basis

γ, then X = [B]β represents B with respect to some other basis β for V , and P = Mβ,γ is the

change of coordnates matrix.

Proof : By Change of Coordinates Theorem in linear algebra, for all v ∈ V we have [v]γ = Mβ,γ [v]β,

which means

B(x, y) = [x]Tγ [B]γ [y]γ = (Mβ,γ [v]β)T [B]γMβ,γ [v]β = [v]Tβ
(
MT
β,γ [B]γMβ,γ

)
[v]β

Conversely, if X = P TY P and Y = [B]γ , then we must have P = Mβ,γ . �

2.1.2 Orthogonality and Isotropy

In what follows we assume (V,B) is a bilinear space. We establish here some terminology.

Two vectors u and v in V are called orthogonal if B(u, v) = 0, and this fact is denoted by

u ⊥ v. We remark here that B(u, v) = 0 does not necessarily imply B(v, u) = 0 (see the section on

reflexivity below). We also write u ⊥ S when we mean to say u ⊥ s for all s ∈ S for any subset S
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of V , and similarly we write S ⊥ v and S ⊥ T . The direct sum U ⊕ S for subspaces U and S of V

is written U⊥©S when we also have U ⊥ S.

Define two associated maps BL ∈ HomF (V, V ∗) and BR ∈ HomF (V, V ∗) by

BL(v) := B(v, ·)

BR(w) := B(·, w)

The kernel of BL is also called the left radical of the space (V,B), and the kernel of BR is called

the right radical of (V,B), and the notation

radL(V ) ≡⊥ V := kerBL and radR(V ) ≡ V ⊥ := kerBR

is used. If W is a subspace of V , we write

⊥W := {v ∈ V | v ⊥ w for all w ∈W} = ker(BL : V →W ∗)

and

W⊥ := {v ∈ V | w ⊥ v for all w ∈W} = ker(BR : V →W ∗)

and call these the left orthogonal complement and the right orthogonal complement of W ,

respectively. We do not necessarily have ⊥W = W⊥ (see the reflexivity section below).

The norm of a vector v ∈ V is the field element B(v, v).

A vector v ∈ V is called isotropic if v 6= 0 and B(v, v) = 0, i.e. v ⊥ v, while if B(v, v) 6= 0 it

is called anisotropic. An isotropic subspace U of V is one which contains an isotropic vector,

and an anisotropic subspace contains no isotropic vectors. A totally isotropic subspace U of

V consists entirely of isotropic vectors. When applied to the entirety of V , this terminology about

subpaces being isotropic or anisotropic is sometimes carried over to the bilinear form B, which is

thus isotropic or anisotropic according as V is one or the other. This is the case especially when B

is a symmetric form (see below).

Remark 1 When B is symplectic (that is nondegenerate and skew-symmetric, see below), then

the term ’isotropic’ has a different meaning. Let us explain why. Since B is alternating whenever
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it is skew-symmetric, by Theorem 3 in the next section, assuming of course ch(F ) 6= 2, we already

have that B(v, v) = 0 for all v ∈ V , so that V is trivially totally isotropic in the symplectic case in

the sense of isotropy introduced above. In the symplectic case, then, an isotropic subspace U of

V is one which is contained in its orthogonal complement, U ⊆ U⊥, that is u ⊥ v for all u, v ∈ U .�

2.1.3 Symmetry and Skew-Symmetry

We recall that there are three important classes of bilinear forms: symmetric, skew-symmetric

and alternating.

(1) A symmetric bilinear form satisfies B(x, y) = B(y, x) for all x, y ∈ V .

(2) A skew-symmetric bilinear form satisfies B(x, y) = −B(y, x) for all x, y ∈ V .

(3) An alternating bilinear form satisfies B(x, x) = 0 for all x ∈ V .

A bilinear space (V,B) is called a symmetric space, a skew-symmetric space or an

alternating space according to it’s bilinear form (see Szymiczek [97], Greub [42], Roman [92]).

Theorem 3 If ch(F ) 6= 2, then any bilinear form B ∈ Hom2
F (V, F ) is alternating iff it is skew-

symmetric, and the zero form is the only bilinear form that is both symmetric and skew-symmetric.

Proof : If B is alternating, then for all x, y ∈ V we have B(x+ y, x+ y) = 0. Expanding this and

noting that B(x, x) = B(y, y) = 0 gives the result, B(x, y) + B(y, x) = 0. For the converse B is

skew-symmetric, then for all x ∈ V we have B(x, x) = −B(x, x), or 2B(x, x) = 0, and therefore,

since 2 6= 0 in F , B(x, x) = 0. For the last statement, suppose that for all x, y ∈ V we have

B(x, y) = −B(y, x) = B(y, x), where the first equality is by skew-symmetry and the second by

symmetry, then 2B(x, y) = 0, so B(x, y) = 0. �

Next, we observe that in a sense symmetric and skew-symmetric bilinear forms are the two

types of forms out of which all bilinear forms are made.

Theorem 4 Let V be a vector space over a field F with ch(F ) 6= 2, and let

Hom2
F,sym(V ;F )
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denote the subspace of Hom2
F (V ;F ) of all symmetric biliniear forms on V , and let

Hom2
F,skew(V ;F ) or Hom2

F,alt(V ;F )

denote the subspace of all skew-symmetric (equiv. alternating) bilinear forms on V . Then,

Hom2
F (V ;F ) = Hom2

F,sym(V ;F )⊕Hom2
F,skew(V ;F ) �

Corollary 1 If ch(F ) 6= 2, then, letting Symn(F ) and Skewn(F ) denote, respectively, the spaces

of symmetric and skew-symmetric n× n matrices with entries in F , we have

Mn(F ) = Symn(F )⊕ Skewn(F ) �

2.1.4 Reflexivity and Degeneracy

Another reason for focusing on the symmetric and skew-symmetric forms is that these are

the only reflexive forms.

We assume as usual that ch(F ) 6= 2. Two vectors x, y ∈ V are said to be orthogonal if

B(x, y) = 0 and this fact is denoted x ⊥ y. Orthogonality defines a binary relation ⊥ on V . In the

case that ⊥ is reflexive, that is x ⊥ y =⇒ y ⊥ x, or in other words B(x, y) = 0 =⇒ B(y, x) = 0,

the bilinear form B is called reflexive. Reflexivity is needed in order to be able define the kernel,

or radical, of B and determine to what extent B is degenerate (that is, to what extent it collapses

subspaces of V to 0). A priori these are not well defined ideas, since B acts potentially differently

in each coordinate. In fact, not all bilinear forms are reflexive; an example is the bilinear form

B on the set of 2 × 2 real matrices given by B(X,Y ) =
∑2

i,j=1(XY )ij . Obviously symmetric and

skew-symmetric forms are symmetric, and as we will show below, these are the only reflexivity

forms on V .

Theorem 5 Let V be a vector space over a field F . A bilinear form B ∈ Hom2
F (V, F ) is reflexive

iff it is either symmetric or skew-symmetric.
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Proof : Suppose first that B is reflexive. Note that for all x, y, z ∈ V we have

B(x,B(x, y)z −B(x, z)y) = B(x, y)B(x, z)−B(x, z)B(x, y) = 0 (2.4)

Reflexivity then implies

B(x, y)B(z, x)−B(x, z)B(y, x) = B(B(x, y)z −B(x, z)y, x) = 0 (2.5)

Choosing z = x shows that

B(x, x)(B(x, y)−B(y, x)) = 0 (2.6)

for all x, y ∈ V . From this it is apparent that either B(x, x) = 0 or B(x, y) − B(y, x) = 0 for all

x, y ∈ V . If B(x, y)− B(y, x) = 0 for all x, y ∈ V , then B is symmetric. Otherwise, if we suppose

B(x, y)−B(y, x) 6= 0 for some x, y ∈ V , we will show that B(z, z) = 0 for all z ∈ V , and this implies

that B is skew-symmetric, because 0 = B(x + y, x + y) = B(x, x) + B(x, y) + B(y, x) + B(y, y)

implies B(x, y) = −B(y, x).

Suppose, therefore, that for some x, y ∈ V we have B(x, y) − B(y, x) 6= 0. In that case,

B(x, x) = 0. Take any z ∈ V . We must show that B(z, z) = 0. If B(z, x) 6= B(x, z), then by (2.6)

we have B(z, z) = 0. So suppose B(z, x) = B(x, z), and likewise suppose B(z, y) = B(y, z). Then,

from (2.5) we get that

0 = (x, y)B(z, x)−B(x, z)B(y, x)

= B(z, x)B(x, y)−B(z, x)B(y, x)

= B(z, x)(B(x, y)−B(y, x))

Since we assumed B(x, y)−B(y, x) 6= 0, we must have B(z, x) = 0. Similarly we get that B(z, y) =

0. By the assumed reflexivity we also have B(x, z) = B(y, z) = 0, and consequently

B(x+ z, y) = B(x, y) +B(z, y) = B(x, y) 6= B(y, x) = B(y, x) +B(y, z) = B(y, x+ z) (2.7)

Using (2.6) with x′ = x+ z and y′ = y we get

0 = B(x′, x′)(B(x′, y′)−B(y′, x′)) = B(x+ z, x+ z)

6= 0 by (2.7)︷ ︸︸ ︷
(B(x+ z, y)−B(y, x+ z))
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so that we must have B(x + z, x+ z) = 0. Expanding this and noting that B(x, x) = B(z, x) = 0

we get

0 = B(x+ z, x+ z) =

= 0︷ ︸︸ ︷
B(x, x) +B(x, z) +B(z, x) +B(z, z) = B(z, z)

The converse is immediate, for if B is symmetric or alternating, then B(x, y) = 0 implies

B(y, x) = ±B(x, y) = 0. �

If B is reflexive, then the right and left radicals are the same, and we may speak of the

kernel of B and the radical of (V,B). In this case,

kerB = rad(V ) = V ⊥

and all of these are equal to kerBL = kerBR. We say that a reflexive form B, or sometimes the

space (V,B), is nondegenerate or nonsingular if

kerB = rad(V ) = {0}

We may equally well speak of the rank(BL) and rank(BR), or in the case that B is reflexive, of

rankB, by the same reasoning.

Proposition 2 If (V,B) is a finite-dimensional reflexive bilinear space, then B is nondegenerate

iff it’s matrix [B]β with respect to any basis β for V is nonsingular.

Proof : B is nondegenerate iff ker(B) = ker(BL) = ker(BR) = {0} iff ker([B]β) = {0}, where [B]β

can be viewed as acting by multiplication on the left, i.e. as a matrix representation of BR. �

Remark 2 In the case that B is reflexive and nondegenerate, and V is finite-dimensional, we get

that BL and BR are isomorphisms between V and V ∗. When B is an inner product, BL is usually

denoted

B[ := BL or BL(v) = v[

and it’s inverse B−1
L is denoted by

B] := B−1
L or B−1

L (α) = α]
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These are called the flat and sharp operators, respectively. Similar notation is used when B is a

symplectic form. �

Remark 3 (Nondegenerate Subspaces and Riesz Representation) When V is a finite-

dimensional space, and B is a reflexive bilinear form on V , then, even if B fails to be nondegenerate

on all of V , it may nevertheless be so on a subspace W of V . In this case, we can restrict B to

W×W , and get the standard isomorphisms B[ = BL and B] = B−1
L between W and W ∗. Moreover,

if we restrict only the second component of B to W , that is we allow BL to have domain all of V ,

then we get a linear map

BL|V×W : V →W ∗, BL(v) := B(v, ·)|W

The kernel of this map is clearly W⊥,

kerBL|V×W = W⊥

and moreover the finite-dimensional Riesz representation theorem applies to give the existence of

a unique v ∈ W such that BL|V×W (w) = B(v, w) for all w ∈ W . Even if W is nondegenerate we

can still find a representing v, this time in any of V , though it may not be unique. (See Theorem

11.6 in Roman [92]). �

Proposition 3 If B is a reflexive bilinear map on a finite-dimensional F -vector space V , then for

any subspace we have that

rad(W ) = W ∩W⊥

and thus B|W×W is nondegenerate iff rad(W ) = {0}.

Proof : Since rad(W ) = ker(B|W×W ) = {w ∈ W | B(w, v) = 0, ∀v ∈ W} = W ∩ W⊥ and

BL|W ∈ GL(W ) iff ker(BL|W ) = {0} iff BL|W and therefore B|W×W is nondegenerate. �
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Theorem 6 If (V,B) is a finite-dimensional reflexive bilinear space, then for any subspace W of

V we have

dimW + dimW⊥ = dimV + dim(W ∩ V ⊥)

Consequently, if W is nondegenerate, then, V = W ⊥©W⊥. Indeed, the following are equivalent:

(1) V = W +W⊥.

(2) W is nondegenerate.

(3) V = W ⊥©W⊥.

Moreover, we always have

V = rad(V )⊥©S = V ⊥⊥©S

for some nondegenerate subspace S of V . �

2.1.5 Symmetric Spaces

Let V be a vector space over a field F and let B ∈ Hom2
F (V ;F ) be a reflexive bilinear form

on V . If V is finite-dimensional with basis β = (v1, . . . , vn), then we say that β is an orthogonal

basis if all the basis vectors are mutually orthogonal, i.e. B(vi, vj) = 0 whenever i 6= j. We

call β orthonormal if B(vi, vj) = δij . We say that B is diagonalizable if there is a basis β

for V such that [B]β = diag(B(v1, v1), . . . , B(vn, vn)). Since such a matrix is symmetric, B is a

fortiori symmetric (if γ is any other basis for V , then [B]γ = MT
β,γ [B]βMβ,γ is also symmetric).

Thus diagonalizability implies symmetry. The converse also holds. To show this we will need the

following proposition.

Proposition 4 Let (V,B) be a reflexive finite-dimensional bilinear space over a field F and use

Theorem 6 to obtain a nondegenerate subspace S of V such that V = S⊥©V ⊥. Then B is diagonal-

izable iff B|S×S is diagonalizable.

Proof : The forward direction is clear, while the other direction follows by extending any orthogonal

basis (b1, . . . , bk) for S to an orthogonal basis for V , e.g. by adjoining any basis (bk+1, . . . bn) for

V ⊥, since for i, j ≥ k + 1 we have B(bi, bj) = 0. �
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Proposition 5 Let (V,B) be a finite-dimensional bilinear space over a field F . Then B is diago-

nalizable iff it is symmetric.

Proof : We have already remarked in the opening paragraph of this section that the diagonaliz-

ability of B implies its symmetry. Now suppose B is symmetric. By the previous proposition it

suffices to prove the result for the nondegenerate subspace S complementing V ⊥, V = S⊥©V ⊥.

Toward this end let B′ := B|S×S , and use induction on dimS. If k = dimS = 1, then there exists

a b1 ∈ S\{0} such that B′(b1, b1) 6= 0, and for the basis β = (b1) we have that [B′]β = [b1], whcih

is symmetric. Suppose, then, that the result holds for k− 1 = dimS where k− 1 ≥ 1 and consider

the case k. Since B′ is nondegenerate, there exists a b1 ∈ S\{0} such that B′(b1, b1) 6= 0. Then

span(b1) is a nondegenerate subspace of S, and by Theorem 6 we have S = span(b1)⊥© span(b1)⊥.

Since dim span(b1)⊥ = k−1, the induction hypothesis applies to give the existence of an orthogonal

basis (b2, . . . , bk) for span(b1)⊥. Since b1 is by definition in the orthogonal complement of span(b1)⊥,

we have b1 ⊥ bj for all j = 2, . . . , k, and so (b1, . . . , bk) forms an orthogonal basis for S. The linear

independence of b1 . . . , bk is clear, since if a1b1 + · · · akbk = 0 for ai ∈ F , applying B to both sides in

the first coordinate and placing vi in the second shows that aiB(bi, bi) = 0, and since B(bi, bi) 6= 0,

we must have ai = 0. �

Let V be a vector space over a field F , with the usual assumption that ch(F ) 6= 2. A

quadratic form on V is a map q : V → F together with an associated symmetric bilinear

map Bq ∈ Hom2
F,sym(V ;F ) satisfying

(1) q(av) = a2q(v) for all a ∈ F and all v ∈ V .

(2) Bq(u, v) = 1
2

[
q(u+ v)− q(u)− q(v)

]
for all u, v ∈ V .

The pair (V, q) is called a quadratic space.

Proposition 6 There is a one-to-one correspondence between quadratic forms on V and bilinear

forms on V . Given q, we have a unique bilinear form Bq as defined in (2) above, while conversely

given B ∈ Hom2
F,sym(V ;F ) we define q by q(v) := B(q, q), and in this case B = Bq.
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Proof : Given q, we are automatically give a symmetric form Bq by (2) in the definition. So it

only remains to check that given B ∈ Hom2
F,sym(V ;F ) we get a quadratic form q and Bq = B.

Toward this end, note that if we define q by q(v) := B(v, v), then, defining Bq as in (2), we have

Bq(v, v) =
1

2

[
q(v + v)− 2q(v)

]
=

1

2

[
4q(v)− 2q(v)

]
= q(v) = B(v, v)

for all v ∈ V , and

Bq(u, v) =
1

2

[
q(u+ v)− q(u)− q(v)

]
=

1

2

[
B(u+ v, u+ v)−B(u, u)−B(v, v)

]
=

1

2

[
B(u, u) + 2B(u, v) +B(v, v)−B(u, u)−B(v, v)

]
= B(u, v)

for all u, v ∈ V , so in fact B = Bq. �

Thus, quadratic spaces (V, q) and symmetric spaces (V,B) are basically the same thing.

Henceforth, we shall identify quadratic and symmetric spaces. As a side remark, we note that

the identification is so common in the literature that Bq and q are often not even distinguished

notationally, so that q(u, v) is used instead of Bq(u, v).

The terms isotropic, anisotropic and totally isotropic, which apply to V and B, therefore

also apply to q. And q is nondegenerate or nonsingular iff B is. This terminology shows up

in the build-up to Witt’s extension and cancellation theorems, which we do not include here, and

which are used to prove the main theorem of this section, namely Sylvester’s Law of Inertia. See

Szymiczek [97] for details.

Theorem 7 (Sylvester’s Law of Inertia) Let V be a finite-dimensional space over a field F

of characteristic different from 2, and suppose F is an ordered field (e.g. F = R). If B is a

nondegenerate symmetric bilinear form and β = (b1, . . . , bn) and γ = (c1, . . . , cn) are two orthogonal

bases for V , then the number of positive diagonal entries bii := B(bi, bi) equals the number of

positive diagonal entries cii := B(ci, ci) in the matrix representations [B]β and [B]γ, respectively,



12

and similarly with the number of negative diagonal entries. These two numbers, p and q, are

therefore invariants of the space (V,B), and the pair (p, q) is called the signature of the space or

of the form B. �

Remark 4 We could enlarge the definition of signature to include degenerate symmetric forms,

but then we would have a triple (p, q, r), where r would be the dimension of the space V ⊥ in the

decomposition V = S⊥©V ⊥ of V , and where S is nondegenerate. This is sometimes taken as an

alternative definition of signature. �

Remark 5 There is a canonical diagonalization of a nondegenerate symmetric form B, namely

[B]β = Ip ⊕−Iq =

Ip O

O −Iq


by applying an appropriate congruence to any given diagonalization of B. �

Suppose B is nondegenerate and β = (b1, . . . , bp, pp+1, . . . , bn=p+q) is an orthogonal basis, and

let P = span(b1, . . . , bp) and N = span(bp+1, . . . , bp+q) be the positive and the negative parts of

V , respectively, where q(vi) > 0 for i = 1, . . . , p and q(vi) < 0 for i = p+ 1, . . . , p+ q. A symmetric

form B, and also its associated quadratic form q, is called positive definite if q(v) = B(v, v) ≥ 0

for all v and q(v) = B(v, v) = 0 iff v = 0. From the decomposition of V = P ⊥©N we see immediately

that B is positive definite iff q = 0, for if v =
∑n

i=1 vibi, then

B(v, v) = [v]Tβ [B]β[v]β =
n∑
i=1

v2
i

which will be negavie if we choose v ∈ N . Moreover, we clearly have B(v, v) = 0 iff all vi = 0 iff

v = 0 in this case.

A similar procedure applies to the case when B is negative definite, i.e. q(v) = B(v, v) ≤ 0

for all v ∈ V and q(v) = B(v, v) = 0 iff v = 0.

Notation 1 Let us denote the space of positive definite symmetric bilinear forms

Hom2
F,Sym(V ;F )+ �
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2.1.6 Skew-Symmetric Spaces

Let V be a vector space over a field F and let B ∈ L2(V ;F ) be a reflexive bilinear form on

V . A pair of vectors u, v ∈ V is called a hyperbolic pair if u and v are isotropic and B(u, v) = 1,

B(u, u) = B(v, v) = 0 and B(u, v) = 1

The span, H := span(u, v), of a hyperbolic pair is called a hyperbolic plane. A hyperbolic

space is any subspaceH of V which can be decomposed into an orthogonal direct sum of hyperbolic

planes,

H = H1⊥©H2⊥©· · · ⊥©Hk

If V itself is a hyperbolic space, and each Hi is spanned by the hyperbolic pair (ui, vi), then the

ordererd set (u1, v1, u2, v2, . . . , uk, vk) is called a hyperbolic basis for V , or a symplectic basis

in the case that B is skew-symmetric.

Remark 6 Any hyperbolic pair (u, v) is linearly independent, so u is not a scalar multiple of v.

For if v = au for some a ∈ F\{0}, then 1 = B(u, v) = aB(u, u) = 0, an impossibility. �

Remark 7 Let β = (u, v) be an ordered hyperbolic pair and let H = span(u, v). Then

[B|H×H ]β =

B(u, u) B(u, v)

B(v, u) B(v, v)

 =

 0 1

±1 0

 =



0 1

1 0

 , if B is symmetric

 0 1

−1 0

 , if B is skew-symmetric

�

Henceforth we suppose that (V,B) is a nondegenerate reflexive bilinear space over a field F

of characteristic other than 2, so that a fortiori B is symmetric or skew symmetric (Theorem 5). If

U is a subspace of V and W is any subspace of V containin U , i.e. U ⊆ W ⊆ V , then W is called

an extension of U . A nondegenerate completion of U is a minimal nondegenerate extension

of U .
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Theorem 8 Let (V,B) be a finite-dimensional nondegenerate reflexive bilinear space over a field

F of characteristic other than 2.

(1) If v ∈ V is isotropic, and span(v)⊥©U exists as a subspace of V for some subspace U of V ,

then span(v) can be extended to a hyperbolic plane H = span(v, z) such that H⊥©U exists

as a subspace of V .

(2) Let W be a nondegenerate subspace of V and suppose there are linearly independent vectors

v1, . . . , vk ∈ V such that U = span(v1, . . . , vk)⊥©W exists as a subspace. If v1, . . . , vk ∈

rad(U) = U ∩ U⊥, so that the vi are isotropic, then span(v1, . . . , vk) can be extended to a

hyperbolic space Hk := H1⊥©· · · ⊥©Hk for which (v1, z1, . . . , vk, zk) is a hyperbolic basis, and

moreover U has a proper nondegenerate extension

U := Hk⊥©W = H1⊥©· · · ⊥©Hk⊥©W

Finally, if (v1, . . . , vk) for a basis for rad(U), then dimU = dimU + dim rad(U). We call

U a hyperbolic extension of U . If U is nondegenerate (i.e. rad(U) = {0}, then we say

that U is a hyperbolic extension of itself . �

The difficult task is proving (1). Then (2) follows by an induction argument. See Roman

[92], Theorem 11.10, for a full proof.

Theorem 9 Let (V,B) be a finite-dimensional nondegenerate reflexive bilinear space over a field

F of characteristic other than 2. Then for any subspace U the following are equivalent:

(1) T = H⊥©W , for some hyperbolic space H of V , is a hyperbolic extension of U .

(2) T is a minimal nonsdegenerate completion of U .

(3) T is a nondegenerate extension of U such that dimU = dimU + dim rad(U).

Proof : If U ⊆ X ⊂ V and X is nondegenerate, then by the previous theorem there is a hyperbolic

extension K⊥©W of U such that U ≤ K⊥©W ≤ X, so every nondegenerate extension of U contains

a hyperbolic extension of U . Since all hyperbolic extension U of U have the same dimension,

dimU = dimU + dim rad(U), none is propertly contained in any other. �
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Remark 8 If (V,B) is a skew-symmetric space over F , with ch(F ) 6= 2, then B is not diago-

nalizable unless it is totally degenerate, that is rad(V ) = V ⊥ = V , since we already know that

diagonalizability is equivalent to symmetry, and the only symmetric and skew-symmetric form is

the zero form. Thus, since we cannot hope to diagonalize a nondegenerate skew-symmetric form,

the best we can hope to do is find a a symplectic basis and decompose V into hyperbolic planes.

This works even if B is degenerate, but not totally degenerate. Indeed, if B is not totally degen-

erate, then V ⊥ ( V , so there is a v ∈ V \V ⊥, which means there is also a w ∈ W , necessarily

different from v since B is alternating, such that B(v, w) 6= 0. By Theorem 8, there is a nontrivial

nondegenerate subspace S of V such that V = V ⊥⊥©S. The claim now is that we can decompose S

into hyperplanes, that is S is a hyperbolic space, and therefore V = V ⊥⊥©H1⊥©· · · ⊥©Hk. We prove

this below. �

Theorem 10 Let (V,B) be a skew-symmetric space over a field F of characteristic different from

2, or else an alternating space over any F . Then

V = H⊥©V ⊥

= H1⊥©· · · ⊥©Hk⊥©V ⊥

where the Hi are hyperplanes and H = H1⊥©· · · ⊥©Hk is a hyperbolic space. Consequently, if

rankB = dimH, and if β = (v1, z1, . . . , vk, zk) is the corresponding hyperbolic basis for H, then,

extending to a basis β̃ = (v1, z1, . . . , vk, zk, w1, . . . , wn−2k) for V we get the matrix represetntation

[B]β̃ =

( k⊕
i=1

J

)
⊕On−2k



J O · · · O O

O J · · · O O

...
...

. . .
...

...

O O · · · J O

O O · · · O On−2k



where J =

 0 1

−1 0

. If V is nondegenerate, then we just get [B]β̃ =
⊕k

i=1 J . Moreover, in the
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nondegenerate case, if we re-order the basis as γ = (v1, . . . , vk, z1, . . . , zk), then

[B]γ =

 Ok Ik

−Ik Ok


or alternatively if we order it as δ = (z1, . . . , zk, v1, . . . , vk), then

[B]δ = J0 :=

Ok −Ik

Ik Ok


In particular, we see that a nondegenerate skew-symmetric space V has to be even-dimensional.

Proof : If V ⊥ = V , then B = 0 and any basis is orthogonal, whence [B]β = On. If V ⊥ ( V , then

choose v1 ∈ V \V ⊥ and use the fact that v1 6= V ⊥ to find w ∈ V such that B(v1, w) 6= 0 (here

w 6= v, because B is alternating), and let

z1 :=
1

B(v1, w)

Then note that B(v1, v1) = B(z1, z1) = 0 and B(v1, z1) = 1, so (v1, z1) forms a hyperbolic pair and

H1 = span(v1, zn) a hyperbolic plane. Note that H1 ∩H⊥1 = {0}, since B(v1, z1) = 1 and (v1, z1)

forms a basis for H1, so by Proposition 3 H1 is a nondegenerate subspace. Theorem 6 thus applies

to give that V = H1⊥©H⊥1 .

Now use induction on dimension: if the statement holds true for all spaces of dimension ≤ n,

then consider V with dimV = n + 1. By the above argument, V = H1⊥©H⊥1 , and dimH⊥1 =

(n + 1) − 2 = n − 1, so if radH⊥1 = {0}, otherwise we can apply the induction hypothesis to get

H⊥1 = H2⊥©· · · ⊥©Hk⊥© rad(H⊥1 ). But

rad(H⊥1 ) = H⊥1 ∩H⊥⊥1 = (H1⊥©H⊥1 )⊥ = V ⊥ = rad(V )

so in this case we have V = H1⊥©H2⊥©· · · ⊥©Hk⊥© rad(V ). �

If a skew-symmetric bilinear form B is nondegenerate, we call it a symplectic form. Sym-

plectic forms are conventionally denoted ω. The skew-symmetric space (V, ω) is then called a
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symplectic vector space. We have just seen that a symplectic space always possesses a symplec-

tic basis, and so is a hyperbolic space, decomposable into hyperbolic planes. By necessity V is an

even-dimensional space.

Remark 9 We recall the vector space isomorphism L2
skew(V ;F ) ∼=

(∧2 V
)∗

, via the universal

property defining
∧2 V . When V is finite-dimensional, we also have

Hom2
F,skew(V ;F ) ∼=

2∧
V

If (v1, . . . , vn) is a basis for V , then a basis for
∧2 V is {vi ∧ vj | 1 ≤ i < j ≤ n}, so a typical

skew-symmetric 2-form is a sum of basic 2-forms,

B =
∑
i<j

aijvi ∧ vj

where aij ∈ F . For example, in R3, in terms of the standard basis (e1, e2, e3), a typical skew-

symmetric 2-form is given by

B = a12e1 ∧ e2 + a13e1 ∧ e3 + a23e2 ∧ e3

where aij ∈ R. The effect of, say, e1 ∧ e2 on a pair of vectors (u,v) is

e1 ∧ e2(u,v) = e1(u)e2(v)− e1(v)e2(u)

= u1v2 − u2v1

= det

u1 v1

u2 v2


= ‖(u1, u2, 0)× (v1, v2, 0)‖

which is the area of the parallelogram spanned by the projections of u and v onto the xy-plane.

Similarly,

e1 ∧ e3(u,v) = u1v3 − u3v1 = −‖((u1, 0, u3)× (v1, 0, v3)‖

e1 ∧ e2(u,v) = u2v3 − u3v2 = ‖((0, u2, u3)× (0, v2, v3)‖

�



18

2.1.7 Morphisms of Bilinear Spaces

Let (V,BV ) and (W,BW ) be bilinear vector spaces over the same field F and let T ∈

HomF (V,W ) be a linear map. The pullback of the form BW by T to V is the bilinear form

T ∗BW := BW ◦ (T × T ), i.e. T ∗BW (u, v) := BW (T (u), T (v)), ∀u, v ∈ V

We say T preserves the form BV if we have T ∗BW = BV , that is if for all u, v ∈ V we have

BW (T (u), T (v)) = BV (u, v), and we call such a form-preserving map an morphism of bilinear

spaces. It is the structure-preserving map needed to make the collection of bilinear spaces into a

category, B. It’s objects are bilinear spaces and its morphisms are form-preserving F -linear maps,

Ob(B) = {(V,B) | V ∈ Ob(F -Vect), B ∈ Hom2
F (V ;F )}

HomB
(
(V,BV ), (W,BW )

)
= {T ∈ HomF (V,W ) | T ∗BW = BV }

An isometry of bilinear spaces (V,BV ) and (W,BW ) is an invertible morphism T ∈ HomB
(
(V,BV ), (W,BW )

)
.

We denote the set of isometries

GL
(
(V,BV ), (W,BW )

)
The isometries of a single bilinear space (V,B) form a group under composition, called the group

of isometries, and denoted

Isom(V,B) or GL(V,B) := {T ∈ GL(V ) | T ∗B = B}

There are two broad cases we want to consider, the orthogonal group and the symplectic group.

We consider only finite-dimensional vector spaces here.

(1) If B is symmetric and nondegenerate, with associated quadratic form q, and V is finite-

dimensional, then the space (V,B) = (V, q) is called a quadratic vector space. If B (and

so q) is also positive definite, then (V,B) = (V, q) is called an inner product space or a

Euclidean space. The group of isometries of a quadratic space is called the orthogonal

group and is more commonly denoted

O(V,B) := GL(V,B) = {T ∈ GL(V ) | T ∗B = B} or O(V, q) = {T ∈ GL(V ) | T ∗q = q}
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depending on whether we prefer to use B or q. Of course, T ∗q = q iff T ∗B = B (see

the next theorem), so the two groups are the same. Its elements are called orthogonal

operators.

(2) An isometry of symplectic spaces (V, ωV ) and (W,ωW ) is called a linear symplectomor-

phism, and an isometry ω ∈ Isom(V, ω) is also sometimes called a symplectic isometry.

The group of symplectomorphisms of (V, ω) is called the symplectic group, and is denoted

Sp(V, ω) or Sp(V ) := {T ∈ GL(V ) | T ∗ω = ω}

and its elements are called symplectic operators or symplectic matrices when considering

their matrix representatives.

Theorem 11 Let (V,BV ) and (W,BW ) be reflexive bilinear vector spaces over the same field F ,

with ch(F ) 6= 2, and let T ∈ HomF (V,W ).

(1) Given a basis β = (b1, . . . , bn) for V , T is an isometry iff T is bijective and preserves the

form on β, i.e. BW (T (bi), T (bj)) = BV (bi, bj) for all bi, bj ∈ β.

(2) If (V,BV ) and (W,BW ) are symmetric, then T is an isometry iff both T is bijective and

qW (T (v)) = qV (v) for all v ∈ V .

(3) If T is an isometry and V = E⊥©E⊥ and W = F ⊥©F⊥, then T (E) = F and T (E⊥) = F⊥.

Proof : (1) If T is an isometry, then T is invertible, and so bijective. Moreover BW (T (u), T (v)) =

BV (u, v) for all u, v ∈ V , so in particular this is true for basis vectors. Conversely, ifBW (T (bi), T (bj)) =

BV (bi, bj) for all bi, bj ∈ β, then for any u =
∑n

i=1 sibi and v =
∑n

i=1 tibi in V we haveBW (T (u), T (v)) =∑
ij sitjBW (bi, bj) =

∑
ij sitjBV (bi, bj) = BV (u, v). Since T is bijective, it is invertible with linear

inverse (from basic linear algebra), and so T is an isometry.

(2) The forward direction is clear because qW (T (v)) = BW (T (v), T (v)) = BV (v, v) = qV (v),

so suppose T is bijective and qW (T (v)) = qV (v) for all v ∈ V . Then expanding and using the



20

symmetry of BW and BV we have for all u, v ∈ V that

qW (T (u)) + 2BW (T (u), T (v)) + qW (T (v))

= BW (T (u), T (u)) + 2BW (T (u), T (v)) +BW (T (v), T (v))

= BW (T (u+ v), T (u+ v))

= BV ((u+ v), (u+ v))

= BV (u, u) + 2BV (u, v) +BV (v, v)

= qV (u) + 2BV (u, v) + qV (v)

Since qW (T (u)) = qV (u) and qW (T (v)) = qV (v), we can cacle those and get BW (T (u), T (v)) =

BV (u, v).

(3) Suppose V = E⊥©E⊥ and T is an isometry. If T (E) = F and W = F ⊥©F⊥, then for

all u ∈ E and v ∈ E⊥ we have BW (T (u), T (v)) = BV (u, v) = 0 and conversely BW (T (u), T (v)) =

BV (u, v) = 0 implies v ∈ V ⊥ for all u ∈ V , so that T (E⊥) = T (E)⊥ = F⊥. �
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2.2 Grassmannians

Let V be an n-dimensional vector space over a field F , which we will generally consider to

be R or C in these notes.

Definition 1 Nowl let k be an integer, 0 ≤ k ≤ n = dimV , and denote by

G(k, V ) and G(k, n) := G(k, Fn)

the set of all k-dimensional subspaces of V . We call G(k, V ) the Grassmannian or Grassmann

manifold of k-dimensional subspaces of V . When k = 1, this is the projective space P (V ) =

G(1, V ). �

2.2.1 Topological Manifold Structure of Grassmanians

We show in this section that for any real or complex n-dimensional vector space V and any

0 ≤ k ≤ n the Grassmannian G(k, V ) is a topological manifold of dimension n(n − k). In fact,

G(k, V ) is a smooth manifold, which we will demonstrate below, but the constructions in this

section have their own virtues. They allow us to see clearly the relationship between k-frames,

k-dimensional subspaces, group actions, and the geometric algebra underlying G(k, V ). We begin

by introducing the concept of a Stiefel manifold Vk(V ) of k-frames for V . The topology of Stiefel

manifolds is easy to understand and can be used to construct the topology for G(k, V ), as a quotient

topology.

Definition 2 Let V be an n-dimensional vector space over a field F (which we take to be R or C

in these notes). Define the Stiefel manifold of k-frames for V ,

Vk(V ) := {(v1, . . . , vk) ∈
k∏
j=1

V | v1, . . . , vn are linearly independent} (2.8)

If V is equipped with an inner product g, we can define the subset of orthonormal k-frames,

V 0
k (V ) := {(v1, . . . , vk) ∈ Vk(V ) | v1, . . . , vn are orthonormal} (2.9)

which is also called a Stiefel manifold. Our notation follows that of Milnor and Stasheff [79]. �
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When working with V = Fn, we can characterize elements (v1, . . . , vk) ∈ Vk(Fn) in terms of

n× k matrices, namely those whose columns are precisely the vectors vj : define the map

Vk(F
n)→Mn,k(F )

(v1, v2, . . . , vk) 7→ A :=

(
v1 v2 · · · vk

)
and note that a k-tuple of n-vectors (v1, . . . , vk) ∈

∏k
j=1 F

n lies in Vk(F
n) iff the corresponding

matrix satisfies A∗A ∈ GL(k, F ), so that we have the bijection

Vk(F
n) ≈ {A ∈Mn,k(F ) |A∗A ∈ GL(k, F )} (2.10)

In the real case, this is easily seen to be a type of Gram matrix, spanning a k-dimensional paral-

lelpiped in Rn, and ATA ∈ Symk(R) in fact, not merely GL(k,R).

Example 1 For example, if (u,v) is a 2-frame in R3, then it’s corresponding matrix A gives

ATA =

uT

vT

(u v

)
=

u · u u · v

v · u v · v


The square root of the absolute value of the determinant of this matrix is the area of the parallel-

ogram spanned by u and v:

Area(P (u,v)) =
√
| det(ATA)|

and its area is nonzero precisely when u and v are linearly independent. �

A corollary of this result is:

V 0
k (Rn) ≈ {A ∈Mn,k(R) |ATA = Ik} (2.11)

and

V 0
k (Cn) ≈ {A ∈Mn,k(C) |A∗A = Ik} (2.12)

Note that (v1, . . . , vk) ∈ Vk(Fn) iff rankA = k. Put the matrix A into standard form,

Mn,k(F ) 3 A 7→

B
C


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where B ∈ GL(k, F ) and C ∈Mn−k(F ), which involves finitely many elementary row-interchanging

operations, and which can be subsumed into a single left-multiplication by P ∈ GL(n, F ), then

apply the determinant function to B, that is apply det to the projection of PA onto the first

k × k entries. Since each of the operations, the GL(n, F )-action, the projection (which is linear),

and the determinant, is smooth, their composition is smooth, and hence continuous. Denote this

composition by

ϕ : Mn,k(F )→ F

ϕ(A) := det(πk×kPA)

Then we have that

Vk(F
n) = ϕ−1(F ∗)

and since F ∗ is open, so is Vk(F
n) as a subset of F kn ∼= Mn,k(F ). In particular, Vk(F

n) is a

kn-dimensional smooth manifold.

Moreover, since (v1, . . . , vk) ∈ V 0
k (Fn) iff A∗A = Ik, in which case det(A∗A) = 1, consider

the map

ψ : Mn,k(F )→ F

ψ(A) = det(A∗A)

Since A 7→ A∗A and the determinant function are smooth, so is ψ, and

V 0
k (Fn) = ψ−1(1)

is therefore a closed set. In fact, it is compact, since if we extend (v1, . . . , vk) to an orthonormal

basis for Fn, we have that the matrix Ã = (A|B) with columns vi is unitary/orthogonal, and so we

can view A as a submatrix of Ã which satisfies, for all v ∈ F k ∼= F k × {0n−k} ⊆ Fn with ‖v‖ = 1,

‖Av‖ ≤ 1 (because ‖Ãv‖ ≤ 1). Thus, V 0
k (Fn) is also bounded (in the operator norm here, but in

fact in any norm, since all norms are equivalent in finite dimensions). By the Heine-Borel theorem

V 0
k (Fn) is compact. It’s dimension is smaller than that of Vk(V ). To see this, consider first the
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case where V = Rn is real. Define the smooth map

ψ : Mn,k(R)→ Symk(R)

ψ(A) := ATA− Ik

We claim that ψ is a submersion with kernel V 0
k (Rn) = ψ−1(0). Since Symk(R) is a vector space,

so trivially a manifold, we can avoid using charts in computing the derivative of ψ at A, which is

merely the Leibniz rule,

Dψ(A) ∈ HomR
(
Mn,k(R),Symk(R)

)
Dψ(A) = AT (·) + (·)TA, i.e. Dψ(A)B = ATB +BTA

To see the surjectivity of Dψ(A) at any A ∈ V 0
k (R), let B ∈ Symk(R) and let 1

2AB ∈ Mn,k(R).

Then, the fact that ATA = Ik implies

Dψ(A)

(
1

2
AB

)
=

1

2
(AT (AB) +BTATA) = B

so ψ has full rank and is therefore a submersion (cf Lee [73, Proposition 4.1]), with V 0
k (Rn) = ψ−1(0)

an embedded submanifold of Mn,k(R). Moreover, codimV 0
k (Rn) = dim Symk(R) = k(k+ 1)/2, and

therefore dimV 0
k (Rk) = dimMn,k(R)− dim Symk(R) = nk − k(k + 1)/2 (Lee [73, Corollary 5.14]).

Analogous arguments prove that for V complex, dimR Vk(Cn) = 2nk and dimC V
0
k (Cn) = 2nk−k2,

since the image of ψ in this case is U(k), which has real dimension k2.

Under the isomorphism V ∼= Fn we have therefore proved the following result:

Proposition 7 If V is a real vector space of dimension n, then the Stiefel manifold Vk(V ) is a

smooth kn-dimensional manifold. The Stiefel submanifold V 0
k (V ) of orthonormal k-frames is a

compact submanifold of Vk(V ) of dimension nk − 1
2k(k + 1). If V is a complex space, then Vk(V )

and V 0
k (V ) are real manifolds of dimensions dimVk(V ) = 2nk and dimV 0

k (V ) = 2nk − k2. �

We delay calculating the dimensions of Vk(V ) and V 0
k (V ) until the Section 2.2.3 below, where

we consider these spaces as homogeneous spaces under the left-multiplication action of GL(V ). For
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then we can use the Lie group orbit-stabilizer theorem to get an explicit diffeomorphism onto a

quotient Lie group whose dimensions are known.

Let us, following Milnor and Stasheff [79], define the map

q : Vk(V )→ G(k, V ) (2.13)

q(v1, . . . , vk) := spanF (v1, . . . , vk) (2.14)

which is clearly surjective, and let q0 = q|V 0
k (V ). Let us then use q to put the quotient topology on

G(k, V ), so that U ⊆ G(k, V ) is open iff q−1(U) ⊆ Vk(Fn) is open. Notice that the Gram-Schmidt

process gives us the following commutative diagram,

V 0
k (Fn) ⊂

i
- Vk(F

n)
G.S.

- V 0
k (Fn)

G(k, V )

q

?

q0

�

q0
-

so that we may also view G(k, V ) as the quotient under the map q0 : V 0
k (Fn)→ G(k, V ).

Proposition 8 G(k, V ) is a compact completely Hausdorff space.

Proof : Compactness follows from the compactness of V 0
k (V ) and the continuity of the quotient

map q0. To show that G(k, V ) is completely Hausdorff, meaning that any two distinct points U

and U ′ in G(k, V ) can be separated by a continuous function, we need to find a continuous function

f : G(k, V ) → F such that f(U) = 0 and f(U ′) = 1. Toward this end, let U and U ′ be distince

points in G(k, V ). Endow V with a metric g (hermitian in the case F = C), then decompose V

as V = U⊥©U⊥, in which case any v may be uniquely written as v = u + u⊥, where u ∈ U and

u⊥ ∈ U⊥. Then, the distance from U to v is given by

d(v, U) = ‖u⊥‖ = ‖v − u‖ =
(
g(v, v)− projU v

)1/2
=
(
g(v, v)−

k∑
j=1

g(v, bj)
)1/2
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for any orthonormal basis (b1, . . . , bk) for U . To see that this function is continuous in U for any

fixed v ∈ V , define

fv : G(k, V )→ F

fv := d(v, U)

and note that the composition fv ◦ q0 : Vk(F
n)→ F is continuous, as evidenced by the formula

(fv ◦ q0)(b1, . . . , bk) :=
(
g(v, v)−

k∑
j=1

g(v, bj)
)1/2

which is the square root of a linear function in the bj . Consequently, since the quotient topology

induced by q0 is characterized by the continuity condition, fv ◦ q0 is continuous iff fv is, we have

that fv is continuous.

Consider now two distinct subspaces U and U ′ in G(k, V ) and choose v ∈ U\U ′. Then clearly

fv(U) = 0 and fv(U
′) > 0. �

Proposition 9 G(k, V ) is locally Euclidean, and therefore a topological manifold of dimension

k(n− k).

Proof : Fix W0 ∈ G(k, V ), and consider the orthogonal projection p : V = W0⊥©W⊥0 →W0. Then

define the subset UW0 ⊆ G(k, V ) by

UW0 := {W ∈ G(k, V ) | p(W ) = X0} = {W ∈ G(k, V ) |W ∩W⊥0 = {0}}

We demonstrate in the next section (where these sets are treated as chart domains for the smooth

structure on G(k, V )) that this set is in bijective correspondence with the graphs of linear maps,

and therefore with the maps themselves, between W0 and W⊥0 , that is UW0 ≈ HomF (W0,W
⊥
0 ) ∼=

F k(n−k), and that this bijection is moeover a homeomorphism (see the proof of Proposition 11

below). �
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Proposition 10 The map ⊥: G(k, V ) → G(n − k, V ), U 7→ U⊥, with respect to a given metric g

on V , is a homeomorphism.

Proof : Fix W0 ∈ G(k, V ), so that V = W0⊥©W⊥0 , and fix a basis (u1, . . . , un−k) ∈ Vn−k(V ) for

W⊥0 . Then define the function f : q−1(U) → Vk(V ) as follows: for each (v1, . . . , vk) ∈ q−1(U)

apply the Gram-Schmidt process to (v1, . . . , vk, u1, . . . , un−k) to obtain the orthonormal n-frame

(v′1, . . . , v
′
n) ∈ Vn(V ) for V . Then define f to be

f(v1, . . . , vk) := (v′k+1, . . . , v
′
n)

Now, the diagram

q−1(U)
f
- Vk(V )

U

q

?

⊥
- G(k, V )

q

?

is commutative. Since f is continuous (being the composition of the Gram-Schmidt process with

the projection onto W⊥0 ), q ◦ f is continuous, which means ⊥ ◦q is continuous, and therefore ⊥ is

continuous. �

2.2.2 Smooth Manifold Structure of Grassmanians

We show in this section that for any real n-dimensional vector space V and any 0 ≤ k ≤ n

the Grassmannian G(k, V ) is a smooth manifold of dimension n(n− k).

We begin by constructing charts for G(k, V ). Toward this end, we introduce the concept of

transversality, which will be needed here, and which will also be useful later for manifolds.

Definition 3 We say that two subspaces U0 and U1 of V are transversal if their sum equals all

of V :

U0 + U1 = V (2.15)
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We do not require that the sum be direct, i.e. that U0 ∩ U1 = {0}. However, the identity

dim(U0 + U1) + dim(U0 ∩ U1) = dim(U0) + dim(U1)

shows that if dim(U0) = dim(U1) and U0 + U1 = V , then dim(U0 ∩ U1) = 0 and dimV = 2 dimUi,

so U0 ∩ U1 = {0} and the sum is direct. We extend the notion of transversality to linear maps

T0 ∈ Hom(U0, V ) and T1 ∈ Hom(U1, V ), saying that T0 is transversal to T1 if their images are

transversal subspaces. In this case we write

T0 t T1 ⇐⇒ imT0 + imT1 = V (2.16)

In terms of annihilators U0 := {f ∈ V ∗ | U ⊆ ker f}, the condition translates to 0 = V 0 =

(imT0 + imT1)0 = (imT0)0 ∩ (imT1)0 = kerT ∗0 ∩ kerT ∗1 . �

Now let W1 ∈ G(k, V ) and find a vector space complement W2 ∈ G(n− k, V ) for W1, so that

V = W1 ⊕W2. Denote the set of k-subspaces U ∈ G(k, V ) intersecting trivially with the given

k-subspace W2 ∈ G(n− k, V ) by

UW2 := {W ∈ G(k, V ) |W ∩W2 = {0}} (2.17)

Let us demonstrate that UW2 is in bijective correspondence with HomR(W1,W2), via

φ12 : UW2 → HomR(W1,W2) (2.18)

φ12(W ) := T = π2 ◦ π1|−1
W (2.19)

where πi : V → Wi is the projection onto Wi, i = 1, 2. Clearly imφ12 ⊆ HomR(W1,W2), since

π1|−1
W is an isomorphism from W to W1 by the transversality condition W ∩W1 = {0}. But to see

that φW1,W2 is surjective, let T ∈ HomF (W1,W2), and note that its graph Γ(T ) is a k-dimensional

subspace of V , Γ(T ) = {v + T (v) | v ∈ W1} ∈ G(k, V ), since a basis for Γ(T ) is constructed out of

any basis β = (b1, . . . , bk) for W1, by γ = (b1 + T (b1), . . . , bk + T (bk)). Moreover, Γ(T )∩W2 = {0},

since any nonzero v ∈W1 would make v+T (v) sit outside W2, so Γ(T ) ∈ UW2 . Letting W = Γ(T ),

we then have for all v ∈W1 that

φ12(W )(v) = π2 ◦ π1|−1
Γ(T )(v) = π2(v + T (v)) = T (v)
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so that φ12(W ) = T , and φ12 is surjective. But φ12 is also injective, for any function T = φ12(W )

uniquely defined on its domain W1, which means that if T = φ12(W ) = φ12(W ′) = T ′, then

W = Γ(T ) = Γ(T ′) = W ′.

In summary, we have associated to each trivially intersecting transversal pair (W1,W2), where

W1 ∈ G(k, V ) and W2 ∈ G(n− k, V ), a bijection from the set of W ∈ G(k, V ) transversal to W2 to

HomR(W1,W2).

Proposition 11 The maps φ12 : UW2 → HomR(W1,W2) ∼= Rk(n−k) together with their domains

constitute a smooth atlas on G(k, V ),

A =
{(
UW2 , φ12

)
|W1 ∈ G(k, V ), W1 ⊕W2 = V

}
This means that

(1) The family
{
UZ | Z ∈ G(n− k, V )} is a cover of G(k, V ) (which, by (4), is open).

(2) Each image φ12

(
UW2 ∩ UW ′2

)
is open in HomR(W1,W2) ∼= Rk(n−k).

(3) The transition maps

φ12,1′2′ = φ1′2′ ◦ φ−1
12 : φ12(UW2 ∩ UW ′2)→ φ(UW2 ∩ UW ′2)

are smooth.

(4) The resulting topology on G(k, V ) defined by the atlas A is Hausdorff and second countable.

Consequently, G(k, V ) is a smooth k(n− k)-dimensional manifold.

Remark 10 If we consider a complex vector space V of complex dimension n, with its complex

Grassmannians GC(k, V ), the sets of complex k-dimensional subspaces of V , 0 ≤ k ≤ n, then the

transition maps above are in fact holomorphic, and the atlas A gives GC(k, V ) a complex manifold

structure. �

Proof : (1) That G(k, V ) =
⋃
W∈G(k,V ) UW is clear. However, this cover in fact contains a finite

subcover: Let β = (b1, . . . , bn) be any basis for V , and consider all partitions of β into two subsets,

one of size k and one of size n−k. There are
(
n
k

)
such partitions, and each determines a transversal
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pair W1 ⊕ W2 = V . Given any W ∈ G(k, V ), there must be at least one choice of W2 which

intersects trivially with W , which is just the statement that W has a complement Z, and any basis

for W can be extended to a basis for V in such a way that the remaining n− k basis elements are

in β.

(2) Let us now show (following John Lee [73, Example 1.36]) that φ12

(
UW2 ∩ UW ′2

)
is open

in HomR(W1,W2) ∼= Rk(n−k). Now, any T lies in this set iff Γ(T ) ∩W ′2 = {0}, by the definition of

UW2 . Letting IT ∈ HomR(W1, V ) be IT (v) = v + T (v), which is an isomorphism from W1 to Γ(T )

by the remarks above, we have Γ(T ) = im IT , and since W ′2 = kerπ1′ , we see that Γ(T )∩W ′2 = {0}

iff π1′ ◦ IT has maximal rank. Moreover, the matrix entries of any matrix representation of π1′ ◦ IT

depend continuously on T (since Mm,n(F ) is linearly isomorphic to HomF (V,W ), n = dimV ,

m = dimW ), with respect to any choice of basis (since any change of basis is just conjugation by

an invertible matrix, which is a smooth operation). But the set of such maximal rank matrices

is open in Mm,n(R), by the continuity of the determinant. Hence, T is contained in an open

neighborhood in HomR(W1,W2) ∼= Rk(n−k).

(3) Nex, let us show that the transition maps φ12,1′2′ are smooth. If T ∈ φ12(UW2 ∩ UW ′2)

then T ′ := φ12,1′2′(T ) = π2′ ◦ π1′ |−1
Γ(T ). Writing IT for the isomorphism from W1 to Γ(T ) as in (1),

we can write this as

T ′ = π2′ ◦ IT ◦ (π1′ ◦ IT )−1

However, π1′ ◦ IT = π1′ |W1 + π1′ |W2 ◦ T and π2′ ◦ IT = π2′ |W1 + π2′ |W2 ◦ T , and each of these

depends smoothly on T , as does the inverse of the first, which is a smooth map (see for example

Rudin [93, Corollaries 1 and 2, p. 353]), as can be seen by any matrix representation of the maps

involved—matrix addition, multiplication, and inversion are smooth operations.

(4) The second countability condition follows from the finite subcover of
{
UZ |Z ∈ G(n−k, V )}

as explained in the proof of (1). To see the Hausdorff condition, let W,W ′ ∈ G(k, V ) and note that

they have a common complement W2 (which follows from the basic fact that no vector space is the

finite union of proper subspaces), so they are both contained in a chart domain, say UW . Then, a
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basic fact of point-set topology (as in John Lee [73, Lemma 1.35] or Jeffrey Lee [72, Proposition

1.32]) implies the result. �

2.2.3 Homogeneous Space Structure of Grassmannians

Consider the GL(V )-action on the Stiefel manifold of Vk(V ) of k-frames,

GL(V )× Vk(V )→ Vk(V )(
g, (v1, . . . , vk)

)
7→
(
g(v1), . . . , g(vk)

)
or, in shorthand, (g, β) 7→ g(β). Note that the linearity of any g ∈ GL(V ) implies that g commutes

with the quotient map q : Vk(V ) → G(k, V ), q ◦ g = g ◦ q, so the GL(V )-action descends to an

action on the Grassmann manifold G(k, V ):

GL(V )×G(k, V )→ G(k, V )

(g, U) 7→ g(U) = im g|U

On Vk(V ) the GL(V )-action is obviously transitive by the change-of-basis theorem, and therefore

the action is transitive on G(k, V ). Put an equivalence relation ∼ on Vk(V ),

β ∼ γ ⇐⇒ q(β) = q(γ)

and let π : Vk(V )→ Vk(V )/ ∼ be the quotient map, then consider the induced map f :
(
Vk(V )/ ∼)

→ G(k, V ) making the following diagram commute,

Vk(V )
q

- G(k, V )

Vk(V )/ ∼

f

-

π
-

f is bijective by construction, for f([β]) = f([γ]) iff q(β) = q(γ). The orbit of any β ∈ Vk(V )

under the GL(V )-action is not necessarily [β] (for example the frame (e1, e2) ∈ V2(R3) may be

rotated about the x-axis by π/2) so g[β] = [β] iff we restrict the action to the stabilizer subgroup
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GL(V )f([β]), for by the commutativity of q with all g ∈ GL(V ), we will have γ ∈ π−1(π(β)) iff

q(γ) = q(β), and so g ∈ G satisfies γ = g(β) iff q(γ) = q(g(β)) = g(q(β)) = q(β) iff g ∈ GL(V )f([β]).

Thus, there is a bijective correspondence between equivalence classes in Vk(V )/ ∼ and stabilizers

of their image under f ,

[β] ←→ GL(V )f([β]) = GL(V )q(β)

Moreover, GL(V )q(β) ·β = [β] is an embedded submanifold of Vk(V ), whose dimension we compute

below. By the Lie group orbit-stabilizer theorem we have the diffeomorphism

[β] = GL(V )q(β) · β = GL(V )q(β)/GL(V )q(β)β

Now consider the action of the full group GL(V ) on G(k, V ). The orbit-stablizer theorem for Lie

groups gives us a diffeomorphism

G(k, V ) = GL(V ) · q(β) ≈ GL(V )/GL(V )q(β)

We mention in passing that the bijection G(k, V ) ≈ Vk(V )/ ∼ is a diffeomorphism, for Vk(V )/ ∼

can be given a quotient manifold topology, though this requires some work to demonstrate. Let

us characterize the stabilizer GL(V )q(β), and thus get some topological information about G(k, V ).

Note that any g ∈ GL(V )q(β) can be written in block matrix form as

GL(V )q(β) =

{h k

0 `

 ∣∣∣∣| h ∈ GL(U), ` ∈ GL(U⊥), k ∈ HomF (U⊥, U)

}

for if we write V = U⊥©U⊥, then g must act on the U component by a sub-operator g′ ∈ GL(U) and

on U⊥ by any U⊥-invarint operator, not necessarily invertible. But g itself must remain invertible,

so once we choose h ∈ GL(U) we must let the lower left-hand sub-operator be 0. Then, noting that

det g = (deth) det(`) 6= 0 implies det ` 6= 0, we see that ` ∈ GL(U⊥), and we let k ∈ HomF (U⊥, U)

be arbitrary. Thus, the dimension of GL(V )q(β) is k2 + (n − k)2 + k(n − k) = n2 − nk + k2, and

therefore

dim G(k, V ) = dim GL(V )− dim GL(V )q(β) = n2 − (n2 − nk + k2) = k(n− k)
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which agrees with our previous result. By similar reasoning, the stabilizer of β ∈ Vk(V ) under the

GL(V )q(β)-action consists of all g ∈ GL(V )q(β) which act only on extensions γ of β to bases for V .

Therefore, in the block form of g we must have h = I and k = 0, so dim GL(V )β = (n − k)2 and

dim[β] = (k2 + (n − k)2 + k(n − k)) − (n − k)2 = k2 + k(n − k) = kn. Note that the stabilizer

GL(V )β of β under the total group action on Vk(V ) must be a subgroup of GL(V )q(β), so in the

block form of g we must have h = I, and therefore GL(V )q(β)β = GL(V )β.

Let us summarize these results.

Proposition 12 For any n-dimensional real vector space V and any 0 ≤ k ≤ n, the GL(V )-

action on G(k, V ) is transitive, and the stabilizer subgroup of any U ∈ G(k, V ) is an (n2 − nk +

k2)-dimensional Lie subgroup, so the Grassmann manifold is a homogeneous space of dimension

dim G(k, V ) = k(n− k) which is diffeomorphic to the quotient group by the stabilizer group,

G(k, V ) ≈ GL(V )/GL(V )U (2.20)

GL(V ) also acts transitively on Vk(V ), and the stabilizer group GL(V )β of any β ∈ Vk(V ) is a Lie

subgroup of dimension n(n− k), which gives the diffeomorphism

Vk(V ) ≈ GL(V )/GL(V )β (2.21)

making Vk(V ) a smooth manifold of dimension dimVk(V ) = nk. Moreover, the stabilizer subgroup

GL(V )q(β) of U = q(β) ∈ G(k, V ) acts transitively on the equivalence class [β] of β in Vk(V )/ ∼, and

its stabilizer subgroup GL(V )q(β)β of β is a Lie group of dimension (n− k)2 + k(n− k) = n(n− k)

equal to GL(V )β. Thus, [β] is an embedded submanifold of Vk(V ) diffeomorphic to the quotient

group GL(V )q(β)/GL(V )β,

[β] ≈ GL(V )q(β)/GL(V )β (2.22)

whose dimension is dim[β] = kn. �

Let us next consider the action O(V ) on V 0
k (V ), which is transitive by the change-of-basis

theorem (any two orthonormal n-frames are related by an orthogonal transformation, so any two
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k-frames can be extended to orthonormal n-frames and then related by a corresponding orthogonal

transformation). The stabilizer of any β ∈ V 0
k (V ) is

O(V )β =

{Ik 0

0 `

 ∣∣∣∣| ` ∈ O(U⊥, g|U⊥) ∼= O(n− k)

}
∼= O(n− k)

which therefore has dimension (n− k)(n− k − 1)/2, so that

V 0
k (V ) = O(V ) · β ≈ O(V )/O(V )β ∼= O(n)/O(n− k)

and therefore

dimV 0
k (V ) = dim O(n)− dim O(n− k)

=
n(n− 1)

2
− (n− k)(n− k − 1)

2

= nk − k(k − 1)

2

The analogous result of V 0
k (V ) for V complex is achieved by exactly the same methods, which show

that V 0
k (V ) ≈ U(n)/U(n− k) and has dimension n2− (n− k)2 = 2nk− k2. Restricting the actions

of O(n) and U(n), respectively, to SO(n) and SU(n), we also get V 0
k (V ) ≈ SO(n)/ SO(n − k) and

V 0
k (V ) ≈ SU(n)/SU(n− k).

We summarize these results in the next proposition:

Proposition 13 The Stiefel manifold V 0
k (V ) of orthonormal k-frames in a real vector space V is

a homogeneous space, and a smooth submanifold of Vk(V ) diffeomorphic to O(n)/O(n− k),

V 0
k (V ) ≈ O(n)/O(n− k) (2.23)

≈ SO(n)/ SO(n− k) (2.24)

and therefore dimV 0
k (V ) = nk − k(k−1)

2 . If V is complex, then we have

V 0
k (V ) ≈ U(n)/U(n− k) (2.25)

≈ SU(n)/ SU(n− k) (2.26)

making it a smooth manifold of real dimension dimR V
0
k (V ) = 2nk − k2. �
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Two frames β and γ in Vn(Rn) are said to have the same orientation if the change-of-basis

matrix g ∈ GL(n,R) changing β to γ coordinates, γ = gβ, has positive determinant deg g > 0.

This defines an equivalence relation ∼ on Vn(R),

β ∼ γ ⇐⇒ γ = gβ and det g > 0

The two equivalence classes in the quotient space Vn(Rn)/ ∼ define two orientations on Rn, and

a choice of one of these gives Rn an orientation, which we denote by Vn(Rn)+. The remaining

equivalence class is denoted Vn(Rn)−. Recall that GL+(n,R) = det−1(0,∞) is the connected

component of the identity, and consists of the orientation-preserving change-of-basis matrices, while

GL−(n,R) = det−1(−∞, 0) consists of orientation-reversing matrices.

Corollary 2 We have the following diffeomorphisms:

Vn(Rn) ≈ GL(n,R) Vn(Rn)+ ≈ GL+(n,R) (2.27)

V 0
n (Rn) ≈ O(n) V 0

n (Rn)+ ≈ SO(n) (2.28)

Vn(Cn) ≈ GL(n,C) (2.29)

V 0
n (Cn) ≈ U(n) (2.30)

Remark 11 These results can also be understood more simply, by noting, for example, that an n-

frame β ∈ Vn(Rn) is a set of n-linearly independent vectors, β = (v1, . . . ,vn), which can be arranged

into columns of an n× n matrix g = (v1 · · · vn). This matrix is the change-of-basis matrix from

the standard basis ρ = (e1, . . . , en) to β, for gei = vi. Similarly, if the vi are orthonormal, that

is β ∈ V 0
n (Rn), then g ∈ O(n) and it is the change-of-basis matrix from ρ to β. In any case,

the identifications of Vn(Fn) with GL(n, F ) and V 0
n (Fn) with O(n) or U(n), for F = R or C,

respectively, are the reason for identifying frame bundles F (E) → M of vector bundles E → M

with principal GL(n, F )-bundles, or their O(n)- or U(n)-bundle equivalents. �

We pause here to consider also the case of symplectic frames for R2n, which are elements

β ∈ V2n(R2n) giving matrix representation of ω0 the standard complex structure, [ω0]β = J0
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(this is equivalent to requiring β = (v1, . . . ,vn,w1, . . . ,wn) to satisfy the relations ω0(vi,vj) =

ω0(wi,wj) = 0, ω0(vi,wj) = δij , see (2.35) below). Consider two such bases, β, γ ∈ V2n(R2n) and

let g ∈ GL(2n,R) be the change-of-basis matrix taking β to γ, that is γ = gβ. Since g acts by

J0 = [ω0]γ = gT [ω0]βg = gTJ0g

according to Theorem 2, we have that g ∈ Sp(n,R), and conversely, any g ∈ Sp(n,R) takes

symplectic frames to symplectic frames (Proposition 19 below). Let

V Sp
2n (R2n) := {β ∈ V2n(R) | [ω0]β = J0}

be the set of all symplectic frames for R2n. Then we can identify this set with the symplectic group

Sp(n,R) by an analog of the above procedure for showing V 0
n (Rn) ≈ O(n), namely, let Sp(n,R) act

on V Sp
2n (Rn) by g · β := g(β). Since the Sp(n,R)-action is free and transitive we have a bijection

V Sp
2n (R2n) ≈ Sp(n,R), by the orbit stabilizer theorem, which can be upgraded to a diffeomorphism

once we view V Sp
2n (R2n) as a manifold. This can be achieved as follows: but of course, as in the

previous remark on the identification of GL(n,R) with Vn(Rn), we can view any β ∈ V Sp
2n (R2n) as

a matrix g with columns the vectors in β. But this matrix is the change-of-basis matrix from the

standard symplectic basis ρ = (p1, . . . , pn, q1, . . . , qn) to β, since gpi = vi and gqj = wj . Thus,

the identification is actually just a change of viewpoint, viewing bases as matrices. The manifold

structure is then immediate (Proposition 26).

We summarize these results below:

Proposition 14 The space of symplectic frames V Sp
2n (R2n) may be identified diffeomorphically with

the symplectic group Sp(n,R),

V Sp
2n (R2n) ≈ Sp(n,R) (2.31)

�
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2.3 Symplectic Vector Spaces

In this section we consider the special case of bilinear spaces (V, ω) over the field R where

the bilinear form ω is skew-symmetric and nondegenerate. Necessarily, the (real) dimension of such

a space is even, and it is perhaps usurprising that there is an intimate relationship between such

spaces and complex vector spaces of complex dimension half that of the real dimension. Indeed,

the complex vector spaces are V itself, equipped with different complex structures. There is a close

relationship between the different choices of complex structures for V and the collection of metrics

(symmetric, positive definite bilinear forms) on V . Indeed, there is an explicit correspondence—

not bijective however—between metrics M(V ) on V and a certain subclass of complex structures

J (V, ω) on V .

2.3.1 Complexifications and Complex Structures

Let V be a real (finite-dimensional) vector space. There are two main ways to turn V into

a complex vector space, by complexifying and by use of so-called complex structures. In the first

case we take C and consider only its uderlying real vector space structure, so that we can tensor it

with V over R, thereby getting what is called the complexification of V ,

V C := V ⊗R C

Complex scalar multiplication on V C is given on simple tensors by α(v ⊗ z) := v ⊗ (αz), where

v ∈ V and α, z ∈ C, and extended by linearity to all of V C.

Remark 12 Note that V C is also a real vector space, since the tensor product is over R, so if

a ∈ R, then we still have

a(v ⊗ z) = (av)⊗ z = v ⊗ (az)

but if a ∈ C, then we only have

a(v ⊗ z) = v ⊗ (az) �
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The second way makes use of of a complex structure on V , a real-linear automorphism

J ∈ GLR(V ) which squares to the negative of the identity I on V ,

J2 = −I

i.e. J ◦ J = −I. Using J we can define complex-scalar multiplication on V by

zv = (a+ ib)v :=
(
aI + bJ

)
(v) = av + bJ(v) (2.32)

for all z = a+ ib ∈ C and v ∈ V .

Proposition 15 The complex multiplication (2.32) makes V a complex vector space, which we

denote VJ .

Proof : (1) (VJ ,+) is abelian, since (V,+) is.

(2) (distributivity) If z = a+ ib, w = c+ id ∈ C and u, v ∈ V , then

(z + w)v =
(
(a+ c) + i(b+ d)

)
v

= (a+ c)v + (b+ d)J(v)

= (av + bJ(v)) + (cv + dJ(v))

= (a+ ib)v + (c+ id)v

= zv + wv

and

z(u+ v) = (a+ ib)(u+ v)

= a(u+ v) + bJ(u+ v)

= (au+ bJ(u)) + (av + bJ(v))

= (a+ iv)u+ (a+ iv)v

= zu+ zv
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(3) (compatibility) If ζ = a+ ib, η = c+ id ∈ C and v ∈ V , then

ζ(ηv) = (a+ ib)
(
(c+ id)v

)
= (a+ ib)(cv + dJ(v))

(2)
= (a+ ib)(cv) + (a+ ib)(dJ(v))

= a(cv) + bJ(cv) + a(dJ(v)) + bJ(dJ(cv))

= (ac)v + (bc)J(v) + (ad)J(v) + (bd)J2(v)

= (ac)v + (bc)J(v) + (ad)J(v)− (bd)v

= (ac− bd)v + (ad+ bc)J(v)

=
(
(a+ ib)(c+ id)

)
v

= (ζη)v

(4) (identity) 1Cv = (1R + i0)v = 1Rv + 0J(v) = 1Rv = v. �

Proposition 16 If W is a complex finite-dimensional vector space, then we can look at the under-

lying real vector space and put a complex structure J on W , namely J = Li, the left-multiplication-

by-i map J(v) := Li(v) := iv. Then the space WJ with multiplication given by (2.32) returns the

original space W , i.e. WJ = W .

Proof : This is simply the observation that (a+ ib)v = aI(v) + bJ(v) = av + ibv. �

It is an immediate corrolary of this result that VJ must have even real dimension if it is to

have a complex dimension, or equivalently if it is to admit a complex structure J . We naturally

want to understand the relationships between V , VJ , and V C. It is simplest to consider V = R2n

and VJ = Cn, for it seems natural to consider the underlying real vector space R2n of Cn as the

direct sum Rn ⊕ Rn, with the complex structure J acting on this space as mutiplication by i.
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We begin with the following observation: The complexification V C of V is functorial. On

maps between real vector spaces, T ∈ HomR(V,W ), we have

TC ∈ HomC(V C,WC)

TC(v ⊗ z) := T (v)⊗ z

on simple tensors, then extending linearly. However, the complexification via J is not immediately

functorial, as the next proposition shows:

Theorem 12 Let T ∈ EndR(V ). Then TJ := T ∈ EndC(VJ) iff T ◦ J = J ◦ T .

Proof : Let T ∈ EndR(V ). If T ∈ EndC(VJ), i.e. T ((a+ ib)v) = (a+ ib)T (v), then

aT (v) + bT (J(v)) = T (av + bJ(v)) = T ((a+ ib)v) = (a+ ib)T (v) = aT (v) + bJ(T (v))

so that T (J(v)) = J(T (v)) for all v ∈ V . Conversely, if T ◦ J = J ◦ T , then

(a+ ib)T (v) = aT (v) + bJ(T (v)) = aT (v) + bT (J(v)) = T (av + bJ(v)) = T ((a+ ib)v)

and T ∈ EndC(VJ). �

Example 2 Consider the real-linear map T =

1 2

3 4

 ∈ EndR(R2). Then,

T ◦ J0 =

1 2

3 4


0 −1

1 0

 =

2 −1

4 −3

 6=
−3 −4

1 2

 =

0 −1

1 0


1 2

3 4

 = J0 ◦ T

Therefore, TJ /∈ EndC(VJ). �

The previous results allow us to better understand the relationship between Cn and R2n
J . If

we start with Cn and forget the complex structure, we are left with R2n. To regain the complex

structure, we complexify via J , that is choose a complex structure J ∈ GL(2n,R) and obtain R2n
J .

Let us show how this works in R2
J
∼= C first, and then generalize to R2n

J
∼= Cn.
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Example 3 (Complex Structure on R2) Consider V = R2 with J ∈ GL(R2) = GL(2,R) given

by

J =

0 −1

1 0


Clearly J2 = −I, so the complex scalar multiplication on R2

J takes the form

(a+ ib)

x
y

 = (aI + bJ)

x
y

 = a

x
y

+ b

−y
x

 =

ax− by
bx+ ay


This is precisely the (real) matrix representation of C on R2,

ρ : C→ GL(2,R)

ρ(a+ ib) := aI + bJ = a

1 0

0 1

+ b

0 −1

1 1

 =

a −b

b a


which is clearly faithful and irreducible, and an isomorphism onto its image,

C ∼= ρ(C) = spanR(I, J)

The only difference between R2
J and the matrix representation of C is the latter takes the form of

endomorphisms, or matrices, while the former is the associated group action of C on R2 via the

representation.

In any case, this shows that R2
J
∼= C, and therefore, since R2

J
∼= RC, we have the known

result,

C ∼= spanR(I, J) = R2
J
∼= RC = R⊗R C �

Example 4 (Complex Structure on R2n) The identification C ∼= R2
J of the previous example

can be generalized in an identical way, except for the analogy with the matrix representation of C,

since Cn is not a group for n ≥ 2:

Cn ∼= spanR(I2n, J) = R2n
J
∼= (Rn)C = Rn ⊗R C

for any complex structure J . �



42

Let us consider again the identification Cn ∼= R2n
J0

, particularly the precise way in which the

complex operators, or their matrix representatives, relate to their associated real operators, or their

matrix representatives. At issue is the dimension: Cn has complex dimension n, while R2n
J has real

dimension twice that, 2n, so matrices from Cn to itself are complex and of size n×n, while matrices

from R2n
J to itself are real and of size 2n× 2n. Thus, we would like to embed Mn(C) into M2n(R)

in such a way as to preserve the algebraic structure of EndC(Cn) ∼= Mn(C) yet allow us to view it

as a subring of EndR(R2n
J ) ∼= M2n(R). With this in hand, we will be able to view GL(n,C) as a

subgroup of GL(2n,R). As a side benefit, subject to the commutativity condition of Theorem 12,

we will complete the functoriality of the complexification by J .

Proposition 17 Define the map f : Mn(C)→M2n(R) by

f(X) = f(A+ iB) :=

A −B

B A


where A = <(X) and B = =(X). Then, f is an injective real-linear ring homomorphism which

satisfies f(X∗) = f(X)T .

Proof : First, f is a linear transformation: if a ∈ R and X = A+ iB ∈Mn(C), then

f(aX) = f(aA+ iaB) =

aA −aB

aB aA

 = a

A −B

B A

 = af(X)

while if X = A+ iB and Y = C + iD lie in Mn(C), then

f(X + Y ) = f((A+ iB) + (C + iD)) = f((A+ C) + i(B +D))

=

A+ C −(B +D)

B +D A+ C

 =

A −B

B A

+

C −D

D C

 = f(X) + f(Y )

Secondly, f preserves matrix multiplication. To see this, note that

XY = (A+ iB)(C + iD) = (AC −BD) + i(BC +AD)
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so that

f(XY ) = f((AC −BD) + i(BC +AD))

=

AC −BD −(BC +AD)

BC +AD AC −BD

 =

A −B

B A


C −D

D C

 = f(X)f(Y )

Finally,

f(X∗) = f((A+ iB)∗) = f(AT − iBT ) =

 AT BT

−BT AT

 =

A −B

B A


T

= f(X)T

The injectivity of f is clear, since ker f = {0}. �

Corollary 3 GL(n,C) can be viewed as a subgroup of GL(2n,R) under the identification with its

image under f . Moreover, under this identification, we have, in view of Theorem 12, that the

complex general linear group is isomorphic to the stabilizer of J0 in GL(2n,R) under the adjoint

action:

GL(n,C) ∼= GL(2n,R)J0 = {X ∈ GL(2n,R) |XJ0 = J0X}

As a result, the real dimension of the Lie group GL(n,C) is 2n2. �

Remark 13 We should observe that the first method of extending a linear map T ∈ HomR(V,W )

to its complexification TC ∈ HomC(V C,WC) works equally well for multilinear maps. If T ∈

Homk
R(V1, . . . , Vk;W ), then

TC ∈ Homk
C(V C

1 , . . . , V
C
k ;WC)

TC(v1 ⊗ z1, . . . , vk ⊗ zk) := T (v1, . . . , vk)⊗ (z1 · · · zk)

on simple tensors, then extending by multilinearity. Moreover, if T ∈ Hom2
R,Sym(V ;R) is a sym-

metric real form, then TC ∈ Hom2
C,Skew(V C;C) is a symmetric complex form, and similarly with

skew-forms.
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But there are situations where we would like to extend T ∈ Hom2
R(V ;R) to a sesquilinear

form. That is, we would like it to be conjugate-linear in the first term and C-linear in the second

term. This is accomplished in the obvious way, on simple tensors:

TCs(α(v ⊗ z), β(w ⊗ ζ)) := αβT (v, w)⊗ (zζ)

for v, w ∈ V , α, β, z, ζ ∈ C. Then we may distinguish between symmetric and skew-symmetric

sesquilinear extensions as before. A symmetric sessquilinear form is called a Hermitian form.

The symmetry of T means T (u, v) = T (v, u) for all u, v ∈ V , where V is a complex vector

space. Combined with the skew-symmetry we have for all a, b ∈ C that T (au, bv) = T (bv, au)

iff baT (v, u) = abT (u, v) iff baT (v, u) = abT (u, v) iff T (v, u) = T (u, v), which is the usual definition

of Hermitian. We say that a Hermitian form is positive definite if additionally T (u, u) > 0 for all

u ∈ V \{0}, and this applies equally well to any complexification of a real form. �

The identity J2 = −I shows that the only eigenvalues of J are ±i, but these are not real

eigenvaues, while J is a real-linear endomorphism. Hence the need to complexify V and extend J

to V C. Now, the real vector space V is naturally embedded into V C by

V ↪→ V C

v 7→ v ⊗ 1

and we can see that, if we define complex conjugation on V C by

v ⊗ z := v ⊗ z

then V is the subspace of V C which is left invariant under conjugation. When V is endowed with

a complex structure J , we can extend J functorially to V C by defining it on simple tensors as

JC(v ⊗ z) := J(v)⊗ z
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and extending linearly. Then the identity (JC)2 = −I shows that the only eigenvalues of JC are

±i. The ±i eigenspaces of JC are denoted (cf Huybrechts [59]),

V 1,0 := {v ∈ V C | JC(v) = iv}

V 0,1 := {v ∈ V C | JC(v) = −iv}

Since V 1,0 ∩ V 0,1 = {0}, the map V 1,0 ⊕ V 0,1 → V C is merely inclusion, so is injective. But it is

surjective, too, for it has an inverse, via the projections

P± : V C → V 1,0 or V 0,1

P±(v) :=
1

2
(I ∓ iJC)(v)

namely,

P+ + P− : V C → V 1,0 ⊕ V 0,1

and this shows that

V C = V 1,0 ⊕ V 0,1

Moreover, complex conjugation on V C interchanges V 1,0 and V 0,1 in an R-linearly isomorphic

manner,

V 1,0 ∼=R V
0,1

since, writing v = x + iy ∈ V C, we have v − iJC(v)) = x+ iy − iJC(x+ iy) = x − iy + iJC(x) −

JC(y) = x− iy + iJC(x− iy) = v + iJC(v). Consequently,

dimR V = 2n

dimC V
C = 2n

dimC V
1,0 = dimC V

0,1 = n

We remark that V C has two complex structures, i and J , which in general differ by a minus sign

on V 0,1, though they agree on V 1,0.

Notation 2 In what follows, we will write J for both J and JC, to avoid pedantry. The context

will make clear which complex structure we are referring to. �
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For proofs of the following statements we refer to Huybrechts [59].

(1) If V is a real vector space equipped with a complex structure J , then the dual space

V ∗ = HomR(V,R) has a natural complex structure, the pullback or transpose, J∗, defined

by J∗f := f ◦ J , and in this case

(V ∗)C = (V ∗)1,0 ⊕ (V ∗)0,1

where

(V ∗)1,0 = (V 1,0)∗ = HomC(VJ ,C)

(V ∗)0,1 = (V 0,1)∗

(2) We also define the exterior algebra of V C in terms of bi-degree-valued vectors,

∧•
V C :=

d⊕
k=0

∧k
V C

where d = 2n = dimR V
C, and

∧p,q
V :=

∧p
V 1,0 ⊗C

∧q
V 0,1

Here
∧p,q V can be viewed as a subspace of

∧p+q V C, and

∧k
V =

⊗
p+q=k

∧p,q
V

Therefore, ∧•
V C :=

d⊕
k=0

⊕
p+q=k

∧p,q
V

Complex conjugation defines a C-anti-linear ismorphism
∧p,q V ∼=

∧q,p V , namely

∧p,q
V =

∧q,p
V

Lastly, exterior multiplication is a bidgree (0, 0) map,

∧p,q
V ×

∧r,s
V →

∧p+r,q+s
V

(α, β) 7→ α ∧ β
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From the above considerations we can understand the relations between V , VJ , V C, and

V C
J = V 1,0

J ⊕ V 0,1
J , namely, choose a C-basis (z1, . . . , zn) for V 1,0

J , where zj = 1
2(vj − iJ(vj)) for

some vj ∈ V , and let wj := J(vj). Then (v1, w1, . . . , vn, wn) is an R-basis for V , and (v1, . . . , vn) is

a C for VJ , and

VJ ∼= V 1,0

(see Huybrechts [59, p. 30]).

2.3.2 Symplectic Forms

We recall some basic facts about skew-symmetric spaces (V,B) from Theorem 10 above.

First, any such space has an orthogonal direct sum decomposition into hyperbolic planes and it’s

radical, V = H1⊥©· · · ⊥©Hk⊥©V ⊥. If B is nondegenerate, we call it a symplectic form and denote it

by ω instead. Then V ⊥ = {0}, so V = H1⊥©· · · ⊥©Hk. Moreover, (V, ω) has possesses a symplectic

basis β = (v1, z1, . . . , vn, zn) with respect to which ω has a matrix representation

[ω]β̃ =
n⊕
i=1

J =



J O · · · O

O J · · · O

...
...

. . .
...

O O · · · J



where J =

 0 1

−1 0

. If we re-order the basis as γ = (v1, . . . , vn, z1, . . . , zn), then

[ω]γ =

 On In

−In On

 (2.33)

while if we order it as δ = (z1, . . . , zk, v1, . . . , vk), then

[ω]δ = J0 :=

On −In

In On

 (2.34)
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These representations are equivalent to ω satisfying the relations

ω(vi, vj) = ω(zi, zj) = 0 and ω(vi, zj) = δij (2.35)

In particular, we see that a symplectic space (V, ω) has to be even-dimensional (This also follows

from the much stronger statement, Proposition 32 below, that every symplectic space is symplec-

tomorphic to (R2n, ω0), see the next section for the definition of (R2n, ω0)). The matrix J0 = [ω]δ

above is called the standard or canonical representation of ω, though it should be mentioned

that some authors take J0 to be [ω]γ .

Theorem 13 Let V be a 2n-dimensional real vector space. Then, a skew-symmetric bilinear form

ω ∈ L2
skew(V ;R) is nondegenerate iff the n-fold exterior power is nonzero,

ωn = ω ∧ · · · ∧ ω 6= 0

Proof : If ω is degenerate, then there is a v 6= 0 in V such that ω(v, ·) = 0 ∈ V ∗, so if we extend

v = v1 to a basis (v1, . . . , v2n) for V , then ωn(v1, . . . , v2n) = 0, whence ωn = 0. Conversely, if ω

is nondegenerate, then the easiest way to see that ωn 6= 0 is by use of the symplectomorphism

Φ : V → R2n given in Proposition 32 below, which pulls ω back to ω0 in R2n, Φ∗ω = ω0. For we

know that

ωn0 =

( n∑
i=1

dqi ∧ dpi
)2

=
∑
σ∈Sn

qσ(1) ∧ pσ(1) ∧ · · · ∧ qσ(n) ∧ pσ(n)

and this sum is a nonzero multiple of the standard volume form q1∧ · · · ∧ qn∧ p1 ∧ · · · ∧ pn, since to

put any summand qσ(1) ∧ pσ(1) ∧ · · · ∧ qσ(n) ∧ pσ(n) into this form requires an odd number of moves,

each contributing a minus sign. �

2.3.3 The Symplectic Space (R2n, ω0)

On R2n with the standard basis ρ = (e1, . . . , e2n) and dual basis ρ∗ = (de1, . . . , de2n) we have

the standard symplectic form

ω0 :=

n∑
i=1

dei ∧ den+i ∈
∧2

(R2n)∗ ∼= Hom2
R,Skew(R2n;R) (2.36)
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If we relabel the basis vectors to accord with common practice in physics, letting q1 = e1, . . . , qn =

en and p1 = en+1, . . . , pn = e2n, then

ω0 =
n∑
i=1

dqi ∧ dpi (2.37)

In classical mechanics the qi represent position coordinates of a mechanical system and the pi

represent momentum coordinates, with R2n representing the phase space of the system, which

is thought of as the (trivial) cotangent bundle T ∗Rn ∼= Rn × (Rn)∗ ∼= R2n on Rn identified with

R2n.

Viewing ω0 as a form, rather than a 2-covector, though still keeping the notation of the

abstract Grassmann 2-covector, we recall that the effect of a wedge product of 1-forms α, β ∈ (R2n)∗

on a pair of vectors x1,x2 ∈ R2n is a sum involving the alternator

Alt : L(R2n;R)→ L2
skew(R2n;R)

Alt(α⊗ β)(x1,x2) =
1

2!

∑
σ∈S2

sgn(σ)(α⊗ β)(xσ(1),xσ(2))

via

(α ∧ β)(x1,x2) = 2! Alt(α⊗ β)(x1,x2)

:=
∑
σ∈S2

sgn(σ)(α⊗ β)(xσ(1),xσ(2))

= (α⊗ β)(x1,x2)− (α⊗ β)(x2,x1)

= α(x1)β(x2)− α(x2)β(x1)

on simple tensors α⊗β. We then extended by bi-linearity. So, for example, if u = (u1, . . . , u2n), v =

(v1, . . . , v2n) ∈ R2n, then (dqi ∧ dpi)(u,v) = uivn+i − un+ivi, so that

ω0(u,v) =
n∑
i=1

(dqi ∧ dpi)(u,v) =
n∑
i=1

uivn+i − un+ivi (2.38)

Consequently, ω0 satisfies the relations (2.35),

ω0(qi, qj) = ω0(pi, pj) = 0 and ω0(qi, pj) = δij (2.39)
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for all i, j = 1, . . . , n, and therefore the matrix representation of the standard form ω0 is a complex

structure on R2n,

[ω0]ρ =

 On In

−In On

 (2.40)

We follow Habermann and Habermann [54] and define the standard complex structure on R2n

to be instead the negative of this matrix isomorphism (equivalently, the matrix representation of

ω0 with respect to the basis (p, q) instead of (q, p)):

J0 :=

On −In

In On

 (2.41)

Since JT0 = [ω0]ρ, we see that ω0 is related to the standard inner product 〈·, ·〉 on R2n by J0 as

ω0(u,v) = [u]Tρ [ω0]ρ[v]ρ = uTJT0 v = 〈J0u,v〉 (2.42)

Also, we note that

J0 ∈ Sp(R2n, ω0), that is J∗0ω0 = ω0 (2.43)

for since JT = −J0 = J−1
0 , i.e. J0 is skew-adjoint, by the above identity ω0 = 〈J0·, ·〉 we get

J∗0ω0(u,v) = ω0(J0u, J0v) =
〈
J2

0 u, J0v
〉

= 〈u,−J0v〉 = 〈J0u,v〉 = ω0(u,v)

for all u,v ∈ R2n. An immediate consequence is

J0 ∈ O(R2n, 〈·, ·〉) = O(2n), that is J∗0 〈·, ·〉 = 〈·, ·〉 (2.44)

for if u,v ∈ R2n,

〈u,v〉 =
〈
−J2

0 u,v
〉

= 〈J0u, J0v〉

As a result, we have

ω0(·, J0·) = 〈J0·, J0·〉 = 〈·, ·〉

We summarize these results in the following proposition.
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Proposition 18 If we denote the standard inner product on R2n by gJ0 = 〈·, ·〉, then we have

(1) J0 ∈ Sp(R2n, ω0) ∩O(R2n, gJ0) = Sp(n,R) ∩O(2n)

(2) ω0(·, ·) := gJ0(J0·, ·) =
∑n

j=0 dq
j ∧ dpj

(3) gJ0(·, ·) := ω0(·, J0·) =
∑n

j=0 dq
j ∧ (dpj ◦ J0)

(4) Furthermore, if we write u = (u1,u2) where u1 = (q1, . . . , qn) and u2 = (p1, . . . , pn), and

similarly v = (v1,v2), then we also get the expression

ω0(u,v) = 〈J0u,v〉 = 〈(−u2,u1), (v1,v2)〉 = 〈u1,v2〉 − 〈u2,v1〉 �

Remark 14 This situation is typical for even-dimensional real vector spaces V . If V is equipped

with both an inner product g and a symplectic form ω, there is a complex structure J that is

compatible with ω, in the sense that ω(u, v) = g(J(u), v) for all u, v ∈ V . It is a little trickier to

start with only ω and J , for even though we get a nondegenerate symmetric bilinear form g on V ,

we do not always have that it is positive definite. This is not a big problem, in general, for we can

always just specify g first, which is always possible on a finite-dimensional space. The main result

we wish to get is that any 2n-dimensional symplectic space (V, ω) is linearly symplectomorphic to

(R2n, ω0), and moreover the symplectomorphism Φ : R2n → V can be chosen to be compatible with

complex structures J ∈ J (V ) and J0 ∈ J (R2n), in the sense that J ◦Φ = Φ ◦ J0. We prove all this

in Section 2.3.5 below. �

We remark that there are J ∈ End(R2n) which are not complex structures but which never-

theless define a symplectic form via ω := gJ0 ◦ (J × I2n). The following example of such a J is from

Guillemin and Sternberg [47] and de Gosson [22].

Example 5 Let B ∈ Skewn(R) and π1 : Rn × Rn → Rn the projection onto the first component,

and define the bilinear form

ωB : R2n × R2n → R

ωB(u,v) := ω0(u,v)− 〈Bπ1(u), π1(v)〉
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Then ωB is clearly bilinear, while skew-symmetry follows from that of B:

〈Bπ1(v), π1(u)) = −〈π1(v), Bπ1(u)〉 = −〈Bπ1(u), π1(v)〉

Note that if we set

JB :=

−B −In

In 0

 = −B ⊕ 0 + J0

then J2
B 6= −I2n unless B = 0, but nevertheless

gJ0(JB·, ·) = gJ0(−(B ⊕ 0)·, ·) + gJ0(J0·, ·) = −〈B ◦ π1·, ·〉+ ω0(·, ·) = ωB

Thus, JB gives a symplectic form ωB = gJ0 ◦ (J × I2n) though JB ∈ End(R2n) is not a complex

structure. The term 〈B ◦ π1·, ·〉 is called the magnetic term, and the form ωB appears in electro-

magnetic theory. �

2.3.4 The Symplectic Group Sp(n,R) and the Symplectic Lie Algebra sp(n,R)

An immediate corollary of the last proposition, 18, is a characterization of symplectic ma-

trices, that is elements of Sp(n,R) ∼= Sp(R2n, ω0). Recall from Section 2.1.7 that the group of

isometries Isom(V,B) := {T ∈ GL(V ) | T ∗B = B} of a bilinear space (V,B) is the set of all in-

vertible linear operators which preserve the form. In the case that B is a symplectic form we call

the group the symplectic group and denote it Sp(V,B). In the special case of (R2n, ω0), where we

identify the group GL(R2n) with the matrix group GL(2n,R), we have the symplectic matrix

group

Sp(n,R) := Sp(R2n, ω0)

The elements of Sp(n,R) are called symplectic matrices. Fix J0 :=

On −In

In On

.

Proposition 19 Symplectic matrices are characterized as follows:

Sp(n,R) = {A ∈ GL(2n,R) |A∗ω0 = ω0} (2.45)

= {A ∈ GL(2n,R) |ATJ0A = J0} (2.46)

= {A ∈ GL(2n,R) |AJ0A
T = J0} (2.47)
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Proof : From equation (2.42), or equivalently Proposition 18 part (2), we have that ω0(u,v) =

gJ0(J0u,v) = 〈J0u,v〉, so that A∗ω0 = ω0, that is ω0(Au, Av) = ω0(u,v) for all u,v ∈ R2n,

iff 〈J0Au, Av〉 = 〈J0u,v〉 for all u,v ∈ R2n iff (J0Au)T (Av) = (J0u)Tv for all u,v ∈ R2n iff

uTATJT0 Av = uTJT0 v for all u,v ∈ R2n iff ATJ0A = J0, which proves the first equality. For the

second equality, note that J2
0 = −I and JT0 = −J0, which implies the following set of equivalences:

ATJ0A = J0 iff ATJ0AJ0 = −I = −IT = (ATJ0AJ0)T = JT0 A
TJT0 A = J0A

TJ0A iff AJ0A
TJ0A =

−A iff AJ0A
T = −A(J0A)−1 = −AA−1J−1

0 = J0. �

2.3.4.1 Description of the Lie Algebra sp(n,R)

Proposition 20 The symplectic Lie algebra of R2n is characterized as follows:

sp(n,R) = TI Sp(n,R) (2.48)

= {A ∈M2n(R) | ω0(Au,v) + ω0(u, Av) = 0, ∀u,v ∈ R2n} (2.49)

= {A ∈M2n(R) | 〈J0Au,v〉+ 〈J0u, Av〉 = 0, ∀u,v ∈ R2n} (2.50)

= {A ∈M2n(R) | J0A+ATJ0 = 0} (2.51)

= {

B C

D −BT

 ∈M2n(R) |B ∈Mn(R), C,D ∈ Symn(R)} (2.52)

Proof : If A(t) is a path in Sp(n,R) passing through I2n at t = 0, then A(t)TJ0A(t) = J0 for all t

in a neighborhood of 0, so differentiating with respect to t at t = 0 gives

d

dt

∣∣∣∣
t=0

(
A(t)TJ0A(t)

)
=

(
d

dt

∣∣∣∣
t=0

A(t)T
)
J0A(0) +A(0)J0

(
d

dt

∣∣∣∣
t=0

A(t)

)
= BJ0 + J0B

where B =
(
d
dt

∣∣
t=0

A(t)
)
, and this equals 0, since the right-hand-side is constant at J0. Since we

can specify such a bath by its derivative at t = 0, d
dt

∣∣
t=0

A(t), we get all possible B ∈Mn(R). Now,

note that J0A+ATJ0 = 0 iff uT (J0A+ATJ0)v = 0 for all u,v ∈ R2n iff 〈J0Av,u〉+ 〈J0v, Au = 0〉

for all u,v ∈ R2n iff ω0(Av,u) + ω0(v, Au) = 0, ∀u,v ∈ R2n. Finally, since J0A + ATJ0 = 0 iff

AT = J0AJ0, if

A =

B C

D E

 ∈ sp(n,R)
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then BT DT

CT ET

 =

O −I

I O


B C

D E


O −I

I O

 =

−E D

C −B


so BT = −E, DT = D and CT = C. �

Proposition 21 The symplectic Lie algebra sp(V, ω) of a symplectic space (V, ω) is a Lie subalgebra

of the Lie algebra End(V ) with Lie bracket [σ, τ ] = σ ◦ τ − τ ◦ σ. In particular, sp(n,R) is a Lie

subalgebra of M2n(R) with Lie bracket [A,B] = AB −BA.

Proof : Let σ, τ ∈ sp(V, ω) Then,

ω([σ, τ ](u), v) + ω(u, [σ, τ ](v))

= ω(σ ◦ τ(u)− τ ◦ σ(u), v) + ω(u, σ ◦ τ(v)− τ ◦ σ(v))

= ω(σ ◦ τ(u), v)− ω(τ ◦ σ(u), v) + ω(u, σ ◦ τ(v))− ω(u, τ ◦ σ(v))

= −ω(τ(u), σ(v)) + ω(σ(u), τ(v))− ω(σ(u), τ(v)) + ω(τ(u), σ(v))

= 0

where the penultimate equality follows from the fact that ω(σ(u), v)+ω(u, σ(v)) = 0 for all u, v ∈ V ,

and similarly with τ , because σ, τ ∈ sp(V, ω). Thus, [σ, τ ] ∈ sp(V, ω), and therefore sp(V, ω) is closed

under the bracket operation. �

Proposition 22 Let (R2n)�2 be the vector space of symmetric 2-tensors of R2n. Then we have the

vector space isomorphism

sp(n,R) ∼= (R2n)�2 (2.53)

via the map ϕ : (R2n)�2 → sp(n,R) which on simple tensors is given by

ϕ(u� v)(·) := ω0(·,u)v + ω0(·,v)u (2.54)

= 〈J0·,u〉v + 〈J0·,v〉u (2.55)

where the dot indicates the slot for the argument of the map (or matrix viewed as a map).
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Proof : Certainly ϕ(u � v)(·) is linear, since ω0 is in the first argument, and moreover we have

that ϕ(u� v)(·) ∈ sp(n,R), for

ω0

(
ϕ(u� v)(x),y

)
+ ω0

(
x, ϕ(u� v)(y)

)
= ω0

(
ω0(x,u)v + ω0(x,v)u,y

)
+ ω0

(
x, ω0(y,u)v + ω0(y,v)u

)
= ω0(x,u)ω0(v,y) + ω0(x,v)ω0(u,y) + ω0(y,u)ω0(x,v) + ω0(y,v)ω0(x,u)

= ω0(x,u)ω0(v,y) + ω0(x,v)ω0(u,y)− ω0(u,y)ω0(x,v)− ω0(v,y)ω0(x,u)

= 0

Moreover, ϕ is bijective, because (R2n)∗ ∼= R2n via the isomorphism v 7→ ω(·,v) (due to the fact that

ω0 is nondegenerate), and using this map we have the isomorphism R2n ⊗ R2n ∼= End(V )(R2n) ∼=

M2n(R), via u⊗ v 7→ ω0(·,v)u, and therefore we have the isomorphism

ω0(·,u)v + ω0(·,v)u 7→ v ⊗ u + u⊗ v = 2u� v

Thus, the map ϕ is in fact an isomorphism onto its image. However, since the dimension of (R2n)�2

is
(

2n+2−1
2

)
= 2n(2n+1)

2 = 2n2 + n, which is also the dimension of sp(n,R) (as can be seen from

(2.52) of Proposition 20, since we can choose B ∈ Mn(R) and C,D ∈ Symn(R), that is we have

n2 + 2n(n+1)
2 = 2n2 + n choices), ϕ is an isomorphism between (R2n)�2 and sp(n,R). �

What does a typical matrix A in sp(n,R) look like as a symmetric 2-tensor?

Proposition 23 If A ∈ sp(n,R), then A is mapped by ϕ−1 : sp(n,R)→ (R2n)�2 to

ϕ−1(A) =
1

2

n∑
j=1

(
Aqj � pj − qj �Apj

)
(2.56)

where q1 = e1, . . . , qn = en and p1 = en+1, . . . , pn = e2n is the standard symplectic basis for R2n
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Proof : If v = (v1, . . . , v2n) =
∑n

i=1 viqi + vn+ipi, then the relations ω0(qi, qj) = ω0(pi, pj) = 0 and

ω0(qi, pj) = δij , along with the fact that vi = ω0(v, pi) and vn+i = −ω0(v, qi), imply that

2Av = 2A

( n∑
i=1

viqi + vn+ipi

)

= 2A

( n∑
i=1

ω0(v, pi)qi − ω0(v, qi)pi

)

= A

( n∑
i=1

ω0(v, pi)qi − ω0(v, qi)pi

)
+

n∑
i=1

(
ω0(Av, pi)qi − ω0(Av, qi)pi

)
=

n∑
i=1

(
ω0(v, pi)Aqi − ω0(v, qi)Api − ω0(v, Api)qi + ω0(v, Aqi)pi

)
where the last equality follows from the fact that A ∈ sp(n,R). Collecting terms we get

2Av =
n∑
i=1

[(
ω0(v, Aqi)pi + ω0(v, pi)Aqi

)
−
(
ω0(v, Api)qi + ω0(v, qi)Api

)]

7→
n∑
i=1

(
Aqi � pi − qi �Api

)
v

under ϕ−1, and this is true for any v ∈ R2n. �

Remark 15 The identification sp(n,R) ∼= (R2n)�2,

A - 1

2

n∑
j=1

(
Aqj � pj − qj �Apj

)

ω0(·,u)v + ω0(·,v)u

wwwwwwwwww
� u� v

wwwwwww
allso carries the Lie bracket from sp(n,R) to (R2n)�2, [A,B] = AB−BA. To see what the bracket

[u� v, x� y] looks like on simple tensors, we use the identification

[u� v, x� y] 7→
[
ω0(·,u)v + ω0(·,v)u, ω0(·,x)y + ω0(·,y)x

]
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and compute the right-hand side:

[
ω0(·,u)v + ω0(·,v)u, ω0(·,x)y + ω0(·,y)x

]
=
(
ω0(·,u)v + ω0(·,v)u

)
◦
(
ω0(·,x)y + ω0(·,y)x

)
−
(
ω0(·,x)y + ω0(·,y)x

)
◦
(
ω0(·,u)v + ω0(·,v)u

)
= ω0

(
ω0(·,x)y + ω0(·,y)x,u

)
v + ω0

(
ω0(·,x)y + ω0(·,y)x,v

)
u

− ω0

(
ω0(·,u)v + ω0(·,v)u,x

)
y − ω0

(
ω0(·,u)v + ω0(·,v)u,y

)
x

= ω0(·,x)ω0(y,u)v + ω0(·,y)ω0(x,u)v + ω0(·,x)ω0(y,v)u + ω0(·,y)ω0(x,v)u

− ω0(·,u)ω0(v,x)y − ω0(·,v)ω0(u,x)y − ω0(·,u)ω0(v,y)x− ω0(·,v)ω0(u,y)x

= −ω0(u,x)
(
ω0(·,v)y + ω0(·,y)v

)
− ω0(u,y)

(
ω0(·,v)x + ω0(·,x)v

)
− ω0(v,x)

(
ω0(·,u)y + ω0(·,y)u

)
− ω0(v,y)

(
ω0(·,u)x + ω0(·,x)u

)
Therefore, the bracket on simple tensors is

[u� v, x� y] = −ω0(u,x)v � y − ω0(u,y)v � x− ω0(v,x)u� y − ω0(v,y)u� x �

2.3.4.2 Description of the Symplectic Group Sp(n,R)

We now want to investigate some of the topological and geometric properties of Sp(n,R),

particularly its manifold structure and fundamental group, both of which will be needed later.

This description is easiest achieved via the polar decomposition of its elements, which will make

the underlying structure transparent.

Theorem 14 (Polar Decomposition) Let
(
V, 〈·, ·〉

)
be a finite-dimensional complex inner prod-

uct space and let T ∈ End(V ) be any linear operator. Then there exist a unique positive operator

P ∈ End(V )+ and a (not necessarily unique) unitary operator U ∈ U(V ) such that

T = U ◦ P (2.57)

Moreover, if T ∈ GL(V ), then U is also unique.
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Proof : It is known (cf. Roman [92]) that T ∗ ◦ T is positive and has a unique positive square root

√
T ∗ ◦ T , which is also positive, for any linear operator T (the square root of a positive operator A

is defined as
√
A =

√
λ1π1 + · · ·+

√
λkπk, where A = λ1π1 + · · ·+λkπk is the spectral resolution of

A, provided of course λi ≥ 0 for all i, which is true if A is positive). Hence, let us define P as this

square root:

P :=
√
T ∗ ◦ T

Then, let us define U on im(P ) by

U(P (v)) := T (v)

The only question is, what happens if P is not injective, what if P (v) = P (w) for v 6= w? Clearly

we’ll have U(P (v)) = U(P (w)), but is it necessarily true that T (v) = T (w)? The answer is yes,

because for all v ∈ V we have

‖P (v)‖2 = 〈P (v), P (v)〉 =
〈
P 2(v), v

〉
(2.58)

= 〈(T ∗ ◦ T )(v), v〉 = 〈T (v), T (v)〉 = ‖T (v)‖2

so if P (v) = P (w), then

0 = ‖0‖ = ‖P (v)− P (w)‖ = ‖P (v − w)‖ = ‖T (v − w)‖ = ‖T (v)− T (w)‖

and therefore T (v) = T (w). Consequently, im(U ◦ P ) = U(P (V )) = T (V ) = im(T ) and U is well

defined. Moreover, U is a linear isometry on im(P ), because for all v ∈ V we have by (2.58) and

our definition of V that

‖U(P (v))‖ = ‖T (v)‖ = ‖P (v)‖

Also U is an isomorphism from im(P ) to im(T ), or im(U ◦ P )
U∼= im(T ): if U(P (v)) = 0, then

U(P (v)) = T (v) = 0, so v ∈ ker(T ), whence by (2.58) v ∈ ker(P ) as well, or P (v) = 0. Thus

ker(U) = {0} and T is injective. Consequently, if β is any basis for im(P ), then U(β) is a basis for

im(U ◦ P ) = im(T ), and so

dim(im(P )) = |β| = |U(β)| = dim(im(T ))
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We conclude that T is bijective and an isometric isomorphism. Consequently, U is unitary on im(P ),

and therefore, ifB = (v1, . . . , vk) is an orthonormal basis for im(P ), then U(B) = (U(v1), . . . , U(vk))

is an orthonormal basis for im(U ◦ P ) = im(T ). Let us extend B and U(B) to orthonormal bases

for V , and then extend the definition of U to an isometry on V for which T = U ◦ P .

Finally, the uniqueness of P follows from the fact that P 2 = T ∗ ◦ T is positive, so it must

have a unique postivie square root, and the square of this square root is unique. If T is additionally

an isomorphism, then, since ker(P ) ⊆ ker(T ) = {0}, so is P , and U = T ◦ P−1 is unique. �

Corollary 4 Let
(
V, 〈·, ·〉

)
be a finite-dimensional complex inner product space and let T ∈ End(V )

be any nonzero linear operator. Then, if T = U ◦ P is the polar decomposition of T into a (not

necessarily unique) unitary operator U ∈ U(V ) and a unique positive operator P ∈ End(V )+,1

then there is a (not necessarily unique) self-adjoint operator S ∈ End(V ) and a unique self-adjoint

operator B ∈ End(V ) such that

U = eiS , and P = eB (2.59)

so that

T = U ◦ P = eiS ◦ eB (2.60)

Moreover, if T is an isomorphism, then S is unique.

Proof : Suppose T = P ◦ U , and let σ(T ) = {λ1, . . . , λk} be the spectrum of U . By the spectral

theorem σ(T ) ⊆ S1 so λj = eiθj for some θj ∈ [0, 2π). Define an operator S ∈ End(V ) functionally

by S := θ1π1 + · · ·+ θkπk where the projections πj are orthogonal, so that σ(S) = {θ1, . . . , θk} is,

by our definition, the spectrum of S. Then by the spectral theorem S normal, and S is self-adjoint

because σ(S) ⊆ R. Finally, U = eiS := eiθ1π1 + · · · + eiθkπk, and so T = U ◦ eiS . Finally, if T is

an isomorphism, then by the previous theorem U is unique, whence the θj are uniuqe, whence S is

unique.

1 End(V )+ is the set of positive self-adjoint operators on V . When V = Rm this space is identified with the convex
cone Symm(R)+ in Symm(R) consisting of symmetric positive definite matrices.
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If P is positive definite, then it is in particular symmetric and all its eigenvalues are positive,

so its spectral resolution is P = λ1π1 + · · ·+λkπk with all λi > 0. Consequently, taking the natural

log of each λi gives θi := ln(λi) and a self-adjoint operator B = θ1π1 + · · · + θkπk, and therefore

λi = eθi for all i, which means P = eB. �

Remark 16 If
(
V, 〈·, ·〉

)
is a real finite-dimensional inner product space, then U is still the exponen-

tial of a linear operator S, but now we have eS =
∑∞

n=0
1
n!S

n, or equivalently eS = eθ1π1+· · ·+eθkπk

where U = λ1π1 + · · · + λkπk is the spectral resolution of U , so that λi = eθi for all i. The argu-

ments used in the above corollary are almost identical. Moreover, in that case U will be orthogonal

instead of unitary, i.e. U ∈ O(V ), and if V = Rn, then we may consider n× n matrices instead of

operators, and so if A ∈ Mn(R), we will have A = UP for an orthogonal matrix U ∈ O(n) and a

unique positive definite matrix P , and if A ∈ GL(n,R), U will be unique as well. �

Proposition 24 If A ∈ Sp(n,R), then in the unique polar decomposition A = UP we will have

U ∈ O(2n) ∩ Sp(n,R) and P ∈ Sym2n(R)+ ∩ Sp(n,R), that is U and P will be symplectic as well.

Moreover, if we write P = eB as in Corollary 4, where B is symmetric (which is equivalent to

self-adjoint in the real case), then B ∈ sp(n,R) as well.

Proof : This follows from the expression (2.46) in Proposition 19, namely AJ0A
T = J0, for then

(AT )−1J0A
−1 = J0, and so (AT )−1 = J0AJ

−1
0 . Therefore, if A = UP , we have

(P T )−1(UT )−1 = (AT )−1 = J0AJ
−1
0 = J0(UP )J−1

0 = (J0UJ
−1
0 )(J0PJ

−1
0 )

But J0 ∈ O(2n), because its rows and columns are orthonormal, so J0UJ
−1
0 ∈ O(2n) and J0PJ

−1
0 ∈

M2n(R)+ (i.e. is positive, for if x = (x1, x2) ∈ R2n, then xTJ0 = (x2,−x1), and J−1
0 x = −J0x =

(x2,−x1)T = (xTJ0)T , so that xTJ0PJ
−1
0 x = (xTJ0)P (xTJ0) ≥ 0 and = 0 iff xTJ0 = 0 iff

x = 0). Consequently, by the uniqueness of the polar decomposition, (UT )−1 = J0UJ
−1
0 and

(P T )−1 = J0PJ
−1
0 , which shows that U,P ∈ Sp(n,R).
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Finally, if U = eB and B = BT , then

eB = P = U = J0P
−1J−1

0 = J0e
−BJ−1

0 = J0

( ∞∑
n=0

1

n!
(−B)n

)
J−1

0

=

∞∑
n=0

1

n!

(
J0(−B)J−1

0

)n
= e−J0BJ

−1
0

so we must have BT = B = −J0BJ
−1
0 , or BTJ0 = −J0B, and therefore J0B + BTJ0 = 0, which

shows that B ∈ sp(n,R) by Proposition 20, equation (2.51). �

The following result was first stated in Arnol’d [3].

Proposition 25 If we identify R2n with Cn via (p, q) 7→ p+ iq, then

U(n) = Sp(n,R) ∩O(2n)

= Sp(n,R) ∩GL(n,C))

= O(2n) ∩GL(n,C)

is a maximal compact real Lie subgroup of Sp(n,R) of dimension n2.

Proof : If K is a subgroup of Sp(n,R) containing Sp(n,R) ∩ O(2n), then for any A ∈ K with

polar decomposition A = UP we also have U ∈ K and therefore P = U−1A ∈ K. But P is

positive definite and detP = 1, since P TJ0P = J0, so either P = I or else some eigenvalue of P

is greater than 1 (see Corollary 4 and its proof). In the first case A = U ∈ O(2n), and in the

second case P k ∈ K for all k ∈ N and ‖P k‖ ↗ ∞, in which case K is not compact. That is, if

Sp(n,R) ∩O(2n) ≤ K ≤ Sp(n,R) and K is compact, then K = Sp(n,R) ∩O(2n).

Recall the results of Section 2.3.1 on complex structures. Complexifying R2n by the standard

complex structure J0 gives the identification R2n
J0
∼= Cn (Example 4) and the identification of

GL(n,C) with the subgroup of GL(2n,R) consisting of matrices X commuting with J0 (Corollary

3). We then have the following conditions:

(1) X ∈ U(n) ⇐⇒ XX∗ = X∗X = I

(2) X =

A −B

B A

 ∈ GL(n,C) ⊆ GL(2n,R) ⇐⇒ XJ0 = J0X (Corollary 3)
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(3) X ∈ Sp(n,R) ⇐⇒ XTJ0X = J0 (Proposition 19)

(4) X ∈ O(2n) ⇐⇒ XTX = XXT = I

Out of the last three conditions, we claim that any two of them imply the third. For instance, (3)

and (4) imply (2): If XXT = I and XTJ0X = J0, then J0X = (XXT )J0X = X(XTJ0X) = XJ0,

so X ∈ GL(n,C). Similarly, (2) and (3) imply (4): If XJ0 = J0X and XTJ0X = J0, then J0 =

XTJ0X = XTXJ0, so multiplying both sides by −J0 gives I = XTX, which means X ∈ O(2n).

Finally, (2) and (4) imply (3): If XJ0 = J0X and XTX = XXT = I, then XTJ0X = XTXJ0 =

IJ0 = J0, and X ∈ Sp(n,R). This proves the second and third equalities.

Let us now show the first equality, U(n) = Sp(n,R) ∩ O(n). Consider a unitary matrix

X = A+ iB ∈ U(n) ⊆ GL(n,C) under the identification of GL(n,C) with GL(2n,R). The adjoint

X∗ becomes the transpose, XT (cf Proposition 17), therefore the defining condition for a unitary

matrix X = A + iB ∈ U(n) ⊆ GL(n,C), X∗X = XX∗ = I, translates to XTX = XXT = I in

GL(2n,R), which means X ∈ O(2n). But since X ∈ U(n) ⊆ GL(n,C), we also have XJ0 = J0X,

so J0 = IJ0 = XTXJ0 = XTJ0X, and X ∈ Sp(n,R), too. For the reverse inclusion, we reverse

the argument: Since XTX = XXT = I and XTJ0X = J0 imply X ∈ GL(n,C), the identity

XTX = XXT = I means X∗X = XX∗ = I under the identification of GL(n,C) with it’s image in

GL(2n,R), and X ∈ U(n).

Lastly, let H(n) denote the real vector space of n×n Hermitian matrices. The real dimension

of H(n) is n2: (A + iB)∗ = AT − iBT = A + iB iff A = AT and B = −BT , and dim Symn(R) =

n(n+ 1)/2 and dim Skewn(R) = n(n− 1)/2). Now define the smooth map

F : Mn(C)→ H(n)

F (A) := A∗A− I

We claim that F is a submersion at each point A ∈ U(n): its derivative at A ∈ U(n) is given by

the product rule,

DF (A) = A∗(·) + (·)∗A ∈ HomR
(
Mn(C),H(n)

)
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i.e. DF (A)B = A∗B+B∗A, and DF (A) is easily seen to be surjective, for if B ∈ H(n), let 1
2BA ∈

Mn(C) and since A ∈ U(n) we will have A∗A = I, so DF (A)(1
2AB) = 1

2(A∗AB + B∗A∗A) = B.

Consequently, (Lee [73, Proposition 4.1, Corollary 5.14]) F−1(0) = U(n) is a smooth embedded

submanifold of Mn(C) of codimension equal to dimH(n) = n2, therefore of dimension 2n2−n2 = n2.

�

Proposition 26 Sp(n,R) is homeomorphic to the product of the unitary operators and the space

of self-adjoint operators in sp(n,R), which is in turn homeomorphic to U(n)× Rn2+n,

Sp(n,R) ≈ U(n)×
(
Sym2n(R) ∩ sp(n,R)

)
(2.61)

≈ U(n)× Rn
2+n (2.62)

Consequently, Sp(n,R) is a connected (2n2 + n)-dimensional Lie group, and its fundamental group

is Z,

π1

(
Sp(n,R)

) ∼= Z (2.63)

Proof : Since all A ∈ Sp(n,R) can be uniquely written as A = UP where U ∈ U(n) = Sp(n,R) ∩

O(2n) and P ∈ Sp(n,R) ∩ Sym2n(R)+, and moreover P is positive iff P = eB for some B ∈

Sym2n(R)∩ sp(n,R), the first result follows. That
(
SA(R2n)∩ sp(n,R)

)
≈ Rn2+n is seen as follows:

If A ∈ Sym2n(R) ∩ sp(n,R), then A = AT and AJ0 + J0A
T = 0. Writing A as a block matrix,

A =

B C

D E


these conditions translate into

0 = AJ0 + J0A
T =

B C

D E


0 −I

I 0

+

0 −I

I 0


B C

D E

 =

C −B

E −D

+

−D −E

B C


which means

C = D, B = −E

i.e.

A =

B C

C −B


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But since A = AT , we must also have C = CT and B = BT , and therefore A is entirely deter-

mined by the two symmetric matrices B,C ∈ Symn(R). Since dim
(
Symn(R)

)
= n(n+1)

2 , we have

dim
(
Sym2n(R) ∩ sp(n,R)

)
= 2 dim

(
Symn(R)

)
= n(n + 1), and Sym2n(R) ∩ sp(n,R) is therefore

homeomorphic to Rn2+n.

Thus, A ∈ Sp(n,R) iff A = UeB for unique U ∈ U(n) and B ∈ Sym2n(R) ∩ sp(n,R) ≈ R2n,

and so

Sp(n,R) ≈ U(n)×
(
Sym2n(R) ∩ sp(n,R)

)
≈ U(n)× Rn

2+n

Since U(n) is connected and its fundamental group is Z, the theorem follows. (This last statement

follows from the long exact sequence of homotopy groups arising from the fibration U(n − 1) →

U(n) → S2n−1 and the observation that the inclusion U(1) → U(n) induces an isomorphism of

fundamental groups. See Theorem 4.55, p. 374, and Example 4.55, p. 381, in Hatcher [56]). �

Lemma 1 Let A ∈ Sp(n,R) and let σ(A) denote its spectrum. Then λ ∈ σ(A) iff λ−1 ∈ σ(A) and

they both have the same (even) multiplicity. In particular, if ±1 ∈ σ(A) then it occurs with even

multiplicity. Lastly, if λ, λ′ ∈ σ(A) and λλ′ 6= 1, then for all eigenvectors u ∈ Eλ and v ∈ Eλ′ we

have ω0(u,v) = 0. In particular ω0 vanishes on Eλ whenever λ 6= 1.

Proof : Any A ∈ Sp(n,R) satisfies ATJ0A = J0, or equivalently AT = J0A
−1J−1

0 , which shows

that AT is similar to A−1 and therefore A and A−1 have the same eigenvalues. If λ ∈ σ(A), then

λ ∈ σ(A−1), too, so if λ 6= ±1, it must have even multiplicity. If λ = −1 ∈ σ(A), then the fact

that 1 = det(A) =
∏
λ∈σ(A) λ implies that −1 must have even multiplicity, too, and therefore if

λ = 1 ∈ σ(A), it will also have even multiplicity. The last statement follows from the identity

λλ′ 〈u, J0v〉 = 〈Au, J0Av〉 = ω0(Au, Av) = ω0(u,v) = 〈u, J0v〉

Similarly, if λ 6= 1 and u,v ∈ Eλ, then |λ|2 〈u, J0v〉 = 〈u, J0v〉, which must therefore equal 0. �

Lemma 2 Let A ∈ Sp(n,R) ∩ Sym2n(R)+ be a symplectic, symmetric positive definite matrix.

Then Aα ∈ Sp(n,R) for all real α > 0.
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Proof : We must show that each (Aα)∗ω0 = ω0 for each α > 0. Diagonalizing A involves conju-

gating by a change-of-basis matrix g ∈ GL(2n,R), D = diag(λ1, . . . , λ2n) = gAg−1, and all λj > 0

(Proposition 5 and Theorem 7), so that Aα = g−1Dαg = g−1 diag(λα1 , . . . , λ
α
2n)g. Suppose Eλαj

is the eigenspace of Aα corresponding to λαj (this space is identical to the eigenspace Eλj of A

corresponding to λj , since Aα = g−1Dαg). Then whenever λiλj 6= 1 we will also have λαi λ
α
j 6= 1,

so Eλi ⊥ω0 Eλj implies Eλαi ⊥ω0 Eλαj . That lemma also guarantees that if λαj 6= 1, which is always

the case whenever λj 6= 1, then ω0 vanishes on Eλj . Thus, for λiλj 6= 1 or λi = λj 6= 1 we will have

ω0(Aαu, Aαv) = (λiλj)
αω(u,v) = 0 = ω0(u,v)

whenever u ∈ Eλαi and v ∈ Eλαj . The remaining possibility is λi = 1, in which case we trivially

have ω0(Aαu, Aαv) = ω0(u,v) for u,v ∈ E1. �

Proposition 27 U(n) is a deformation retract of Sp(n,R), so the quotient group Sp(n,R)/U(n)

is contractible.

Proof : In the polar decomposition of A (Proposition 14), A = UP , we have P = (A∗A)1/2 =

(ATA)1/2 ∈ Sp(n,R), which actually lies in Sp(n,R) ∩ Sym2n(R)+ ⊆ GL(2n,R) by the previous

lemma, so we can solve for U , namely U = A(ATA)−1/2 ∈ U(n). In fact, by that lemma all positive

real powers t of (ATA)−1/2 are also symplectic, so (ATA)−t/2A ∈ Sp(n,R) for all t ≥ 0. This allows

us to define the function:

H : Sp(n,R)× [0, 1]→ Sp(n,R)

H(A, t) := A(ATA)−t/2

We note thatH is continuous, and satisfiesH(A, 0) = A = idSp(n,R)(A) andH(A, 1) = A(ATA)−1/2 =

U ∈ U(n), so H defines a homotopy between the identity on Sp(n,R) and the retraction r :

Sp(n,R)→ U(n), r(A) = A(ATA)−1/2. That is, H is a deformation retract. �
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2.3.5 The Interaction between Inner Products, Symplectic Forms, and Complex

Structures

2.3.5.1 The Existence of Compatible Complex Structures

Let V be a 2n-dimensional real vector space, let g be an inner product on V , and let ω be

a symplectic form on V . That is, g is a symmetric bilinear form with signature (2n, 0) and ω is a

skew-symmetric, eqivalently alternating, bilnear form, and both g and ω are nondegenerate. We

sometimes use the isomorphism
∧2(V ) ∼= Hom2

skew(V ;R) to view ω as an abstract bivector, when

that is more convenient.

Proposition 28 Given an inner product g and a symplectic form ω on a finite dimensional real

vector space V , there exists a linear operator S ∈ End(V ) such that

(1) ω(u, v) = g(S(u), v), for all u, v ∈ V .

(2) S is skew self adjoint, that is S∗ = −S, or equivalently g(S(u), v) = g(u,−S(v)) for all

u, v ∈ V .

(3) S has matrix representation with respect to a symplectic basis β for ω as J0,

[S]β = J0 =

 0 −In

In 0

 .

(4) S is a complex structure on V , that is S2 = −I.

(5) S ∈ sp(V, ω), that is ω(S(u), v) + ω(u, S(v)) = 0 for all u, v ∈ V .

(6) S ∈ Sp(V, ω), that is S∗ω = ω, or explicitly ω(S(u), S(v)) = ω(u, v) for all u, v ∈ V .

(7) S ∈ O(V, g), that is S∗g = g, or explicitly g(S(u), S(v)) = g(u, v) for all u, v ∈ V .
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Proof : (1) and (3): Let β = (u1, . . . , un, v1, . . . , vn) be a symplectic basis for V with respect to ω.

Since M2n(R) ∼= End(V ), there is a unique S ∈ End(V ) such that [S]β = J0 = [ω]β. Then,



g(S(u1), u1) g(S(u2), u1) · · · g(S(vn), u1)

g(S(u1), u2) g(S(u2), u2) · · · g(S(vn), u2)

...
...

. . .
...

g(S(u1), vn) g(S(u2), vn) · · · g(S(vn), vn)



= [S]β = J0 = [ω]β =



ω(u1, u1) ω(u2, u1) · · · ω(vn, u1)

ω(u1, u2) ω(u2, u2) · · · ω(vn, u2)

...
...

. . .
...

ω(u1, vn) ω(u2, vn) · · · ω(vn, vn)


by virtue of β being a symplectic basis. Thus, since g◦(S×idV ) agrees with ω on the basis elements,

we must have g ◦ (S × idV ) = ω on all of V .

(2) From the skew symmetry of ω, we have

g(S(u), v) = ω(u, v) = −ω(v, u) = −g(S(v), u) = g(u,−S(v))

But we already know that, since V is finite dimensional, the adjoint of S exists, is unique, and

satisfies g(S(u), v) = g(u, S∗(v)) for all u, v ∈ V , so from the above equation we must have that

S∗ = −S.

(4) Since [S2]β = [S]2β = J2
0 = −I2n = [−I]β, we see that S2 = −I.

(5) By (1), (2) and (4) we have

ω(S(u), v) + ω(u, S(v)) = g(S2(u), v) + g(S(u), S(v))

= g(S2(u), v) + g(u,−S2(v))

= −g(u, v) + g(u, v)

= 0
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(6) Again by (1)-(2)

ω(S(u), S(v)) = g(S2(u), S(v))

= −g(u, S(v))

= −g(S(v), u)

= −ω(v, u)

= ω(u, v)

(7) By (1), (2) and (4), g(S(u), S(v)) = g(−S2(u), v) = g(u, v). �

The above proposition shows that if we are given a symplectic form ω and an inner product

g on V , we get a complex structure J on V which satisfies g(J(u), v) = ω(u, v) for all u, v ∈ V .

The next proposition shows that if we are given ω and J , then, as long as J ∈ Sp(V, ω), we get

g and this time g(u, v) = ω(u, J(v)). Since J ∈ Sp(V, ω), we automatically recover the previous

formula g(J(u), v) = ω(J(u), J(v)) = ω(u, v). Here g will be symmetric and nondegenerate, but

not necessarily positive definite. In other words, g may have signature (p, q) with q 6= 0.

Proposition 29 Let (V, ω) be a symplectic vector space and let J be a complex structure on V . If

in addition J ∈ Sp(V, ω), i.e. J∗ω = ω (that is ω(J(u), J(v)) = ω(u, v) for all u, v ∈ V , see the next

section 2.3.4), then there is a unique nondegenerate symmetric bilinear form gJ ∈ Hom2
sym(V ;R)

given by

gJ(u, v) := ω(u, J(v)) (2.64)

for all u, v ∈ V .

Proof : That gJ as defined in (2.64) is nondegenerate follows from the fact that J ∈ Sp(V, ω) ⊆

GL(V ) and the fact that ω is nondegenerate (and therefore a reflexive form). That gJ is symmetric

follows from the fact that J ∈ Sp(V, ω):

gJ(u, v) = ω(u, J(v)) = ω(J(u), J2(v)) = −ω(J(u), v) = ω(v, J(u)) = g(v, u) �
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Remark 17 We remark that gJ may not be positive definite, and so may not be an inner product.

For examle, on (R2, ω0) we can take J(x, y) = (y,−x), i.e.

J =

 0 1

−1 0


Then clearly J2 = −I, but

gJ
(
(x, y), (x, y)

)
= ω0

(
(x, y), J(x, y)

)
= ω0

(
(x, y), (y,−x)

)
= dx ∧ yx

(
(x, y), (y,−x)

)
= dx(x, y)dy(y,−x)− dx(y,−x)dy(x, y) = −x2 − y2

and so gJ is negative definite. �

Definition 4 When gJ = ω ◦ (idV ×J) is positive definite, that is

(1) g(v, v) = ω
(
v, J(v)

)
≥ 0 for all v ∈ V with equality only when v = 0. (J is tamed by ω)

then we say, following McDuff and Salamon [76], [77], that J is tamed by ω or is ω-tame. When

additionally J ∈ Sp(V, ω), i.e. when J∗ω = ω, explicitly

(2) ω
(
J(u), J(v)

)
= ω(u, v) for all u, v ∈ V . (J is calibrated by ω, cf Audin [12])

we say J is compatible with ω or is ω-compatible. Berndt [16] calls J satisfying (1)-(2) positive

compatible, but we will stick with the McDuff and Salamon terminology here. We will also say, in

this case, following Berndt, that g is compatible with ω. When J is ω-compatible we call the

triple (V, ω, J) a Khäler vector space (see Berndt [16]).

Let us follow Audin [12] and McDuff and Salamon [76] [77] in denoting the set of all complex

structures on V by

J (V )

and the set of all ω-tame, ω-calibrated, and ω-compatible complex structures on V , respectively,

by

Jτ (V, ω), Jc(V, ω), J (V, ω) = Jτ (V, ω) ∩ Jc(V, ω)
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Finally, let us also introduce the following notation, respectively, for the set of all inner products

(i.e. metrics, or positive definite symmetric bilinear forms) and the set of all symplectic forms on

V :

M(V ), Ω(V ) �

Remark 18 If J is ω-tame only, the bilinear form gJ(u, v) := ω(u, J(v)) is not necessarily sym-

metric, since we do not have the last equality in ω(u, J(v)) = −ω(J(v), u) = ω(v, J(u)). However,

if we average ω(u, J(v)) and ω(v, J(u)), then we do get symmetry: define

gJ(u, v) =
1

2

(
ω(u, J(v)) + ω(v, J(u))

)
Then clearly gJ(u, v) = gJ(v, u), and gJ is a metric. �

2.3.5.2 Interlude on Hermitian Inner Products on Symplectic Spaces

We pause here to note that, once we have a compatible almost complex structure J ∈ J (V, ω),

the symplectic form ω and the induced metric gJ combine to give a Hermitian inner product HJ

on the complexified space VJ , making (VJ , HJ) a Hermitian space.

Proposition 30 (Hermitian Inner Product) Given J ∈ J (V, ω), denote the associated posi-

tive definite metric gJ . From this metric we can construct a hermitian inner product HJ on

the complexified space VJ ,

HJ : VJ × VJ → C

HJ(v, w) := gJ(v, w) + iω(v, w)

Proof : We first show that HJ is sesquilinear and satisfies HJ(w, v) = HJ(v, w). Since additivity

in each coordinate follows from that of gJ and ω, we only need to show the scalar multiplication
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property to show that HJ is sesquilinear. Towards this end, let a+ ib, c+ id ∈ C, then

HJ((a+ ib)v, (c+ id)w)

= gJ((a+ ib)v, (c+ id)w) + iω((a+ ib)v, (c+ id)w)

= gJ(av + bJ(v), cw + dJ(w)) + iω(av + bJ(v), cw + dJ(w))

= acgJ(v, w) + bdgJ(J(v), J(w)) + adgJ(v, J(w)) + bcgJ(J(v), w)

+iacω(v, w) + ibdω(v, w) + iadω(v, J(w)) + ibcω(J(v), w)

= acgJ(v, w) + bdgJ(v, w)− adω(v, w) + bcω(v, w)

+iacω(v, w) + ibdω(v, w) + iadgJ(v, w)− ibcgJ(v, w)

=
[
(ac+ bd) + i(ad− bc)

][
gJ(v, w) + iω(v, w)

]
= (a− ib)(c+ id)HJ(v, w)

= (a+ ib)(c+ id)HJ(v, w)

Next,

HJ(w, v) = gJ(w, v) + iω(w, v)

= gJ(w, v)− iω(w, v)

= gJ(v, w) + iω(v, w)

= HJ(v, w)

Finally, we show that HJ is positive definite. If v ∈ VJ\{0}, then

HJ(v, v) = gJ(v, v) + iω(v, v) = gJ(v, v) > 0

since ω is skew-symmetric and gJ is positive definite. �

Example 6 Consider Cn with its standard Hermitian inner product

H(z,w) =

n∑
j=1

zjwj
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Writing zj = aj + ibj , wj = cj + idj , we have

zjwj = (aj − ibj)(cj + idj) = (ajcj + bjdj) + i(ajdj − bjcj)

so that the sum becomes

H(z,w) =

n∑
j=1

(ajcj + bjdj) + i(ajdj − bjcj)

= (a1, . . . , an, b1, . . . , bn) · (c1, . . . , cn, d1, . . . , dn)

i(−b1, . . . ,−bn, a1, . . . , an) · (c1, . . . , cn, d1, . . . , dn)

= (a,b) · (c,d) + i
(
J0(a,b)

)
· (c,d)

= gJ0((a,b), (c,d)) + iω0((a,b), (c,d)

That is, under the identification Cn ∼= R2n
J0

,

z = (a1 + ib1, . . . , an + ibn) 7→ (a1, . . . , an, b1, . . . , bn) = (a,b)

we have that

HJ0 = gJ0 + iω0 = H

so HJ0 is precisely H. �

Remark 19 Let us consider the unitary group

U(n) = {X ∈ GL(n,C) |X∗H = H} = {X ∈ GL(n,C) |X∗X = XX∗ = I}

under the identification Cn ∼= R2n
J0

with HJ0 ←→ H. Here, GL(n,C) is identified with the stabilizer

subgroup GL(2n,R)J0 of GL(2n,R) via the map

X = A+ iB 7→ f(X) :=

A −B

B A


(see Corollary 3 above) and the unitary group U(n) is identitfied with O(2n)∩Sp(n,R) (Proposition

25 above), so X ∈ U(n) iff f(X)∗gJ0 = gJ0 and f(X)∗ω0 = ω0. We now show that this relation
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holds for any symplectic space (V, ω) and any fixed J ∈ J (V, ω), where we use the Hermitian inner

product HJ = gJ + iω on VJ :

U(VJ , HJ) = O(V, gJ) ∩ Sp(V, ω) �

Definition 5 Given a symplectic vector space (V, ω) and an ω-compatible complex structure J ∈

J (V, ω), we may construct the Hermitian inner product HJ on VJ . Then we say that a C-linear

map T ∈ EndC(VJ) is HJ-Hermitian if HJ(T ·, ·) is Hermitian, HJ-skew-Hermitian if HJ(T ·, ·)

is skew-Hermitian, and HJ-unitary if T ∗HJ = HJ .

We have seen that a given T ∈ EndR(V ) lies in EndC(VJ) iff T ◦ J = J ◦ T . Under what

conditions is T also HJ -unitary?

Proposition 31 Let J ∈ J (V, ω) and T ∈ EndR(V ). Then T ∈ EndC(VJ) and is HJ -unitary iff

T ∈ O(V, gJ) ∩ Sp(V, ω), i.e.

U(VJ , HJ) = O(V, gJ) ∩ Sp(V, ω) (2.65)

which is the abstract analog of Proposition 25.

Proof : If T ∈ EndC(VJ) is HJ -unitary, then T ◦ J = J ◦ T and T ∗HJ = HJ , so T ∗gJ + iT ∗ω =

gJ + iω, which shows that T ∗gJ = gJ and T ∗ω = ω, so T ∈ O(V, gJ) ∩ Sp(V, ω). Conversely, if

T ∈ O(V, gJ) ∩ Sp(V, ω), then T ∗gJ = gJ and T ∗ω = ω, so in order to show that T ∗HJ we also

need to have that J ◦ T = T ◦ J . �

In the remainder of this section we will look at the topological and geometric properties of the

spaces J (V ), Jτ (V, ω), Jc(V, ω), J (V, ω), M(V ) and Ω(V ). Our first result, the fact that every

symplectic space is linearly symplectomorphic to the standard space (R2n, ω0), in fact naturally

with respect to each J ∈ J (V ), means it will suffice to study J (R2n), M(R2n) = Sym2n(R)+,

Ω(R2n) and related spaces.
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2.3.5.3 All Symplectic Vector Spaces (V, ω) are Linearly Symplectormorphic to

(R2n, ω0)

Proposition 32 Let (V, ω) be a 2n-dimensional symplectic space. Then, for every complex struc-

ture J ∈ J (V ) on V there is a linear symplectomorphism

Φ : R2n → V

such that the following diagram commutes

R2n Φ
- V

R2n

J0

?

Φ
- V

J

?

i.e. J ◦ Φ = Φ ◦ J0

and so (V, ω) ∼= (R2n, ω0) with the extra compatibility condition on complex structures specified

above. Moreover,

Φ∗ω = ω0

Proof : Let V 1,0 = ker(JC − iI), V 0,1 = ker(JC + iI) be the eigenspaces of the complexified JC

on V C = V 1,0 ⊕ V 0,1, where dim(V 1,0) = dim(V 0,1) = n (see Section 2.3.1). Then any basis

βC = {wj := uj + ivj | j = 1, . . . , n} for V 1,0 gives a basis β = (u1, . . . , un, v1, . . . , vn) for V , and

J(uj) = −vj , J(vj) = uj

on this basis, since J(wj) = iwj iff J(uj + ivj) = −vj + iuj . Let Φ : R2n → V be given by

Φ(x) = Φ(q1, . . . , qn, p1, . . . , pn) :=

n∑
j=1

(qjuj − pjvj)

where x =
∑n

j=1 qjej + pjen+j ∈ R2n. Then for all x ∈ R2n we have

(Φ ◦ J0)(x) = Φ(−p1, . . . ,−pn, q1, . . . , qn) = −
n∑
j=1

(pjuj + qjvj)

= −J
( n∑
j=1

(pjvj − qjuj)
)

= J

( n∑
j=1

(qjuj − pjvj)
)

= (J ◦ Φ)(x)
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Finally, note that Φ is a symplectomorphism, that is Φ∗ω = ω0, for if u = (u1,u2) where u1 =

(q1, . . . , qn) and u2 = (p1, . . . , pn), and similarly v = (v1,v2), then, supposing (as we may in light

of Theorem 10) that (u1, . . . , un, v1, . . . , vn) is a symplectic basis for (V, ω),

Φ∗ω(u,v) = ω(Φ(u),Φ(v))

= ω

( n∑
i=1

qiui − pivi,
n∑
j=1

q′juj − p′jvi
)

=

n∑
i,j=1

[
qiq
′
iω(ui, uj)− qip′jω(ui, vj)− piq′jω(vi, uj) + pip

′
jω(vi, vj)

]

=

n∑
i,j=1

piq
′
jω0(ej , ei)− p′jqiω0(ej , ei)

= 〈u1,v2〉 − 〈u2,u1〉

= ω0(u,v)

where the last equality follows from (4) of Proposition 18. �

In light of the above it is enough to consider (R2n, ω0, J0) in what follows.

2.3.5.4 The Space of Metrics M(R2n)

Let us begin with the simpler case, that of the space of metrics on R2n,

M(R2n) ∼= Sym2n(R)+

Understanding this space will motivate a similar study of the other spaces. We refer to Lang [39,

pp. 322-338] and Gil-Medrano and Michor [39] for a fuller account of what follows. To begin with,

M(R2n) is a convex cone in the vector space Sym2n(R) (it is closed under sums and positive real

scalar multiplication) and contains the identity, so it is trivially path-connected and contractible.

To see that it is an open submanifold of Sym2n(R) of dimension n(n+ 1)/2,2 note that

2 Sym2n(R) is itself a closed vector subspace, hence closed submanifold, of M2n(R), being finite-dimensional.
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Proposition 33 The exponential exp : M2n(R) → GL(2n,R), exp(A) :=
∑∞

k=0
1
k!A

k, restricts to

a C∞-diffeomorphism,

exp |Sym2n(R) : Sym2n(R)
∼−→ Sym2n(R)+

Consequently, Sym2n(R)+ is a smooth manifold of dimension n(n+ 1)/2, which is path connected

and contractible.

Proof : Note that any A ∈ Sym2n(R) is diagonalizable (Proposition 5 and Theorem 7) and its

eigenvalues are real (Av = λv and A = AT iff λ‖v‖2 = 〈λv, v〉 = 〈Av, v〉 = 〈v,Av〉 = 〈v, λv〉 = λ‖v‖2

implies λ = λ). But diagonalization is just conjugating by a change-of-basis matrix g ∈ GL(2n,R),

A = g diag(λ1, . . . , λ2n)g−1, which makes exponentiation very transparent,

eA = eg diag(λ1,...,λ2n)g−1
= gediag(λ1,...,λ2n)g−1 = g diag(eλ1 , . . . , eλ2n)g−1

Moreover, this expression gives an explicit diagonalization of eA, by the same change-of-basis ma-

trix, which shows that the eigenvalues of eA are positive, and therefore by Proposition 5 and The-

orem 7 demonstrates that eA is symmetric and positive definite. But more is true: exp |Sym2n(R) is

smooth and invertible, with smooth inverse

log : Sym2n(R)+ → Sym2n(R)

log(A) = log(g diag(α1, . . . , α2n)g−1) := g diag(logα1, . . . , logα2n)g−1

where g is the change-of-basis matrix diagonalizing A, which necessarily has positive eigenvalues

αj . �

Remark 20 There is a natural Riemannian structure to M(R2n), which uses the Riemannian

structure of Sym2n(R) given by3

〈·, ·〉tr : Sym2n(R)× Sym2n(R)→ R

〈A,B〉tr := tr(AB)

3 It is symmetric and bilinear by the properties of the trace map, and positive definite since if A is diagonalized
as A = gDAg

−1, then 〈A,A〉tr = tr(A2) = tr((gDg−1)(gDg−1)) = tr(gD2g−1) = tr(D2) =
∑2n
j=1 λ

2
j , and this equals

zero iff all λj = 0 iff A = 0.
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where we identified the tangent space to a point A ∈ Sym2n(R) with Sym2n(R) itself, since the

tangent bundle to any finite-dimensional vector space is trivial (vector spaces are parallelizable).

The norm induced by 〈·, ·〉tr is called the Frobenius norm. Using this metric, we can get a metric

on Sym2n(R)+, viewing it as an open submanifold of Sym2n(R) with the same tangent spaces above

each point: if P ∈ Sym2n(R)+ and A,B ∈ TP Sym2n(R)+ ∼= Sym2n(R), define

〈·, ·〉P : TP Sym2n(R)+ × TP Sym2n(R)+ → R

〈A,B〉P :=
〈
P−1A,P−1B

〉
tr

= tr(P−1AP−1B)

The symmetry and biliniearity follow as before, while the positive definiteness follows from

tr(P−1AP−1A) = tr
(
(P−1/1AP−1/2)(P−1/2AP−1/2)

)
) = tr(C2)

where C = P−1/2AP−1/2, since tr(C2) > 0 if A 6= 0, for we may suppose A diagonalized by an

appropriate choice of basis. If P : (−ε, ε) → Sym2n(R)+ is a curve, then its length from P (0) to

P (t) in the induced norm is

s(t) =

∫ t

0
‖P ′(s)‖ ds =

∫ t

0

√
tr
(
(P (s)−1P ′(s))2

)
ds

and the differential of this length is(
ds

dt

)2

= tr
(

(P (t)−1P ′(t)
)
, or, abbreviated, ds2 = tr

(
(P−1dP )2

)
This is called the trace metric on Sym2n(R)+, and makes it a Riemannian manifold. �

2.3.5.5 The Space of Symplectic Forms Ω(V )

Recall that Ω(V ) denotes the space of symplectic forms on a 2n-dimensional real vector space

V . We have an analogous description of Ω(V ) as we did of M(V ), via the same methods.

Proposition 34 The general linear group GL(V ) acts transitively on Ω(V ) by

GL(V )× Ω(V )→ Ω(V ) (2.66)

g · ω := (g−1)∗ω = ω
(
g−1(·), g−1(·)

)
(2.67)
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and the stabilizer of any ω ∈ Ω(V ) is the symplectic group Sp(V, ω), which is the group of isometries

on the symplectic vector space (V, ω),

GL(V )ω = Sp(V, ω) (2.68)

Consequently, by the orbit-stabilizer theorem for Lie groups we have the diffeomorphism

Ω(V ) ≈ GL(2n,R)/ Sp(n,R) (2.69)

and Ω(V ) is an embedded submanifold of End(V ) of dimension dim Ω(V ) = 2n2 − n.

Proof : To see that the GL(V )-action is transitive, let ω ∈ Ω(V ) and g ∈ GL(V ), and define

ω̃ := g∗ω = ω
(
g(·), g(·)

)
∈ Ω(V ) (g∗ω is clearly skew-symmetric, and it is nondegenerate since both

g and ω are nondegenerate). Then, clearly (g−1)∗ω̃ = ω. To understand this transitivity better,

note that if α = (q, p) is an ω-symplectic basis for V , then β = g−1α = (q′, p′) is an ω̃-symplectic

basis for V , for the relations (2.35) for ω imply

ω̃(q′i, q
′
j) = g∗ω(q′i, q

′
j) = ω(g(q′i), g(q′j)) = ω(qi, qj) = 0

and similarly ω̃(p′i, p
′
j) = 0 and ω̃(q′i, p

′
j) = δij . Thus, α = gβ, and g is a change-of-basis matrix

from β to α, and g−1 therefore changes α to β. Finally, it is clear that g ∈ GL(V )ω iff g · ω = ω iff

g∗ω = ω, iff g ∈ Sp(V, ω).

The fact that the orbit-stabilizer bijection is a diffeomorphism is analogous to the situation

with GL(2n,R) acting on J (R2n), as in Proposition 35 below: View Ω(V ) as a subset of the vector

space (hence manifold) Hom2
R(V ;R) ∼= End(V ), and view the action of GL(V ) as taking place on

all of End(V ). Then by the orbit theorem for Lie groups (see Kirillov [64, Theorem 3.29] and Lee

[73, Theorems 21.18, 21.20]) we have that the stabilizer GL(V )ω of ω is a closed Lie subgroup

of GL(V ) and the map ϕ : GL(V )/GL(V )ω → End(V ), ϕ(g · GL(V )ω) 7→ g · ω is an immersion

which is equivariantly diffeomorphic onto its image ω(V ). The dimension of Ω(V ) is therefore

dim GL(V )− dim GL(V )ω = 4n2 − (2n2 + n) = 2n2 − n. �
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2.3.5.6 The Space of Complex Structures J (R2n)

Let us now explore the case of J (R2n). We will tackle Jτ (R2n) and Jc(R2n) in the next

section.

Example 7 Consider the symplectic space (R2, ω0) and the associated spaces J (R2) and J (R2, ω0)

of complex structures and ω0-compatible complex structures. We have seen (Remark 17) that

for a given J ∈ J (R2) we do not always have gJ ∈ Sym2(R)+ (the space of positive definite

2 × 2 symmetric matrices), though, by Proposition 29, we do have that gJ ∈ Sym2(R) so long as

J ∈ Sp(1,R). In the 2× 2 case this is always true, because

J (R2n) ⊆ Sp(1,R)

To see this, write J =

a b

c d

 ∈ J (R2) and note that the condition J2 = −I translates to

−1 0

0 −1

 =

a b

c d


2

=

a2 + bc ab+ bd

ac+ cd bc+ d2


which in turn reduces to the equations

a2 = d2 = −1− bc, d(a+ b) = c(a+ d) = 0

We see from the first equation that neither b nor c can equal 0, so along with the second equation

this implies that a = −d. We thus have two possibilities, either d = −a 6= 0, in which case

d = b = −a and c = (a2 + 1)/a, or else d = a = 0 and c = −1/b:

J =

 a −a

a2+1
a −a

 or

 0 b

−1
b 0


If we use the characterization of Sp(1,R) given in Proposition 19, that A ∈ Sp(1,R) iff ATJ0A = J0,

then either form of J above is easily seen to satisfy this identity.

A second observation we make is that GL(2,R) acts transitively by conjugation on J (R2).

Indeed, J (R2) is the orbit of J0:

J (R2) = GL(2,R) · J0
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For clearly, if g ∈ GL(2,R), then J := gJ0g
−1 ∈ J (R2), since

J2 = (gJ0g
−1)2 = gJ0g

−1gJ0g
−1 = gJ2

0g
−1 = −gg−1 = −I

Conversely, if J ∈ J (R2), let b1 = (1, 0) and b2 := J(b1). Then (b1, b2) is a basis for R2, since

J ∈ GL(2,R) (indeed, b2 = (a, a
2+1
a ), if a 6= 0, or b2 = (0,−1

b ), if a = 0 in the expression for J

above). Let g be the change-of-basis matrix from the new basis β = (b1, b2) to the standard basis

ρ = (e1, e2): in the first case, a 6= 0, we have

g = Mβ,ρ =
(
[b1]ρ [b2]ρ

)
=

1 a

0 a2+1
a


so that

gJ0g
−1 =

1 a

0 a2+1
a


0 −1

1 0


1 −a2

a2+1

0 a
a2+1

 =

 a −a

a2+1
a −a

 = J

In the second case, when b = 0, we have

g =

1 0

0 −1
b


and similarly

gJ0g
−1 =

1 0

0 −1
b


0 −1

1 0


1 0

0 −b

 =

 0 b

−1
b 0

 = J

Finally, observe that the stabilizer of J0 under the GL(2,R)-action is the space of all real

2× 2 matrices of the type

g =

a −b

b a


which is isomorphic to C ∼= GL(1,C), which follows from Corollary 3 above. Thus, by the orbit-

stabilizer theorem,

J (R2) = GL(2,R) · J0 ≈ GL(2,R)/GL(2,R)J0
∼= GL(2,R)/GL(1,C) �

In fact, the above example generalizes to all (R2n, ω0):
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Proposition 35 The general linear group GL(2n,R) acts transitively by conjugation on space of

complex structures J (R2n), and the stabilizer of the standard complex structure J0 is isomorphic

to GL(n,C). Consequently, J (R2n) is an embedded submanifold of M2n(R) of dimension 2n2, and

the orbit-stabilizer bijection is a diffeomorphism,

J (R2n) = GL(2n,R) · J0 (2.70)

≈ GL(2n,R)/GL(2n,R)J0 (2.71)

∼= GL(2n,R)/GL(n,C) (2.72)

Moreover, the tangent space at J ∈ J (R2n) is

TJJ (R2n) ∼= g(2n,R)/g(n,C) = M2n(R)/Mn(C) ∼= R2n2

Proof : It is clear that if J = g · J0 = gJ0g
−1, then J2 = −I, so J ∈ J (R2n), which shows that

GL(2n,R) · J0 ⊆ J (R2n). For the reverse inclusion, let J ∈ J (R2n), and consider a J-complex

basis β = (b1, . . . , bn, J(b1), . . . , J(bn)) for R2n, for example let bj = ej be the first n coordinates

of the standard orthonormal basis ρ = (e1, . . . , e2n), and let the remaining n coordinates be J(ej).

Then let g = Mβ,ρ be the change-of-basis matrix changing β-coordinates into ρ-coordinates,

g := Mβ,ρ =
[
[b1]ρ · · · [bn]ρ [J(b1)]ρ · · · [J(bn)]ρ

]
∈ GL(2n,R)

and note that

gJ0g
−1 = J (2.73)

This is because the matrix representation of J in the basis β is

[J ]β =
[
[J(b1)]β · · · [J(J(bn))]β

]
= J0

so equation (2.73) means (cf Roman [92, Corollary 2.17])

J = [J ]ρ = Mβ,ρ[J ]βM
−1
β,ρ

which is, therefore, just J represented the standard basis ρ instead of the J-complex basis β. We

have thus shown that J (R2n) ⊆ GL(2n,R) · J0, and therefore J (R2n) = GL(2n,R) · J0.
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The statement GL(2n,R)J0
∼= GL(n,C) is just Corollary 3, and the bijection GL(2n,R) ·

J0 ≈ GL(2n,R)/GL(2n,R)J0 is just the orbit-stabilizer theorem. To see the manifold structure of

J (R2n), view J (R2n) as a subset of the vector space (hence manifold) M2n(R), and view the action

of GL(2n,R) as taking place on all of M2n(R). Then by the orbit theorem for Lie groups (see Kirillov

[64, Theorem 3.29] and Lee [73, Theorems 21.18, 21.20]) we have that the stabilizer GL(2n,R)J0
∼=

GL(n,C) of J0 is a closed Lie subgroup of GL(2n,R) and the map ϕ : GL(2n,R)/GL(2n,R)J0 →

M2n(R), ϕ(g ·GL(2n,R)J0) = g · J0 is an immersion which is equivariantly diffeomorphic onto its

image J (R2n). The dimension of J (R2n) is therefore dim GL(2n,R)−dim GL(n,C) = 4n2−2n2 =

2n2 (recall that GL(n,C) = det−1(C∗) is open in Mn(C) ∼= Mn(R)⊗Mn(R), so has dimension 2n2).

See Theorem 3.29 in Kirillov for the claim about tangent spaces. �

Remark 21 Another way to describe the inclusion GL(2n,R) · J0 ⊇ J (R2n) is via Proposition 32

above, by taking V = R2n and noting that AJ = J0A for some A ∈ GL(2n,R2n), which holds iff

J = A−1J0A = ϕ(A) for that same A. �

Recall that GL(2n,R) = GL+(2n,R)tGL−(2n,R) is disconnected with two connected com-

ponents, GL+(2n,R) = det−1(0,∞) containing the identity I and GL−(2n,R) = det−1(−∞, 0) not

containing it. The diffeomorphism ϕ : J (R2n) ≈ GL(2n,R)/GL(2n,R)J0 of the previous proposi-

tion therefore implies the disconnectedness of J (R2n) into two connected components, J ±(R2n).

Since det J0 = 1, we see that J0 ∈ GL+(2n,R), so that

J0 ∈ GL+(2n,R) · J0 = J +(R2n) and J0 /∈ GL−(2n,R) · J0 = J −(R2n)

We have thus shown:

Corollary 5 The space of complex structures J (R2n) is disconnected, with two connected compo-

nents, J +(R2n) containing J0 and J −(R2n) not containing it,

J (R2n) = J +(R2n) t J −(R2n)
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and where the connected components are diffeomeorphic to the two components GL±(2n,R) of

GL(2n,R) as

J +(R2n) ≈ GL+(2n,R)/GL(n,C) �

Finally, note that GL(2n,R) is homotopy equivalent to O(2n), GL+(2n,R) is homotopy

equivalent to SO(2n) and GL(n,C) is homotopy equivalent to U(n), each via Gram-Schmidt or-

thonormalization. We will demonstrate this on the example of O(2n). Define the continuous map

h : GL(2n,R)× I → GL(2n,R) as follows: for A = (a1, . . . ,a2n) ∈ GL(2n,R), with columns aj , let

B = (b1, . . . ,b2n) ∈ O(2n) be the result of applying the Gram-Schmidt process to the columns aj

of A,

b1 := `11a1

b2 := `21a1 + `22a2

...

b2 := `2n,1a1 + · · ·+ `2n,2na2n

where all `jj > 0, and define the vectors

cj := t(`j1a1 + · · ·+ `j,j−1aj−1) + (t`jj + 1− t)aj

Using these, we define the map h by letting h(A, t) be the matrix with columns the coordinates

of these vectors. Then, h is clearly continuous and satisfies h(A, 0) = A and h(A, 1) = B, and

h(B, t) = B for all B ∈ O(2n), so it defines a deformation. As a result:

Corollary 6 We have the following homotopy equivalence:

J +(R2n) ' SO(2n)/U(n)

The set J +(R2n) is therefore the space of all orientation-preserving complex structures on R2n. �
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2.3.5.7 The Spaces of Tame and Calibrated Complex Structures, Jτ (V, ω) and

Jc(V, ω)

The main statements about the manifold structure and homotopy type of the spaces Jτ (V, ω)

and Jc(V, ω) will be stated and proven in a single proposition.

Proposition 36

(1) Jτ (V, ω) is diffeomorphic to the open unit ball B1 of the 2n2-dimensionsl vector space

Y = {A ∈M2n(R) |AJ0 +J0A = 0}, and therefore is a 2n2-dimensional smooth contractible

manifold.

(2) Jc(V, ω) is diffeomorphic to the open unit ball B1 of the n(n+ 1)-dimensionsl vector space

Z = {A ∈ Sym2n(R) | AJ0 + J0A = 0}, and therefore is a n(n + 1)-dimensional smooth

contractible manifold.

Proof : There are at least three proofs of the contractibility of Jτ (V, ω), all found in McDuff and

Salamon [76, p. 65-67]. The first is due to Gromov [45], and uses fibrations, the second and third

are due to Sévennec and are found first in Audin [12] and later in McDuff and Salamon, with the

second and third being quite elementary and geometric. The third proof is also geometric, making

use of Lagrangian subspaces, but we will follow the second of these proofs, which has the benefit

of proving also the calibrated case in one extra step and also giving a manifold structure to both

spaces.

(1) By Proposition 32 it is enough to consider (R2n, ω0). Let Y = {A ∈M2n(R) |J0A+AJ0 =

0}, which is a real subspace of M2n(R), and let B1 := {A ∈ Y | ‖A‖ < 1} be the open unit ball in

Y . Consider the map F : Jτ (R2n, ω0)→ B1 given by

F (J) := (J + J0)−1(J − J0)

= (J−1
0 J + I)−1(J−1

0 J − I)

First, note that J + J0 ∈ GL(2n,R), since for all nonzero x ∈ R2n we have

ω0(x, (J + J0)(x)) = ω0(x, J(x)) + ω0(x, J0(x)) > 0
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since both J and J0 are ω-tame. Thus, ker(J + J0) = {0} and F is well defined. To see that its

image lies in B1, note first that F (J) satisfies ‖F (J)‖ < 1 iff ‖J−1
0 J − I‖2 < ‖J−1

0 J + I‖2, i.e.

‖ − J0Jx + x‖2 − ‖ − J0Jx− x‖2 = ‖J0Jx− x‖2 − ‖J0Jx + x‖2 > 0

for all nonzero x ∈ R2n. But this expression follows from the ω-tameness of J :

‖J0Jx− x‖2 − ‖J0Jx + x‖2 = gJ0(J0Jx− x, J0Jx− x)− gJ0(J0Jx + x, J0Jx + x)

= −4gJ0(J0Jx,x)

= 4gJ0(Jx, J0x)

= 4gJ0(J0x, Jx)

= 4ω0(x, Jx)

> 0

so ‖F (J)‖ < 1. Next, we show the identity J0F (J) + F (J)J0 = 0. First, note that (J + J0)J0 =

JJ0 + J2
0 = JJ0 + J2 = J(J + J0), so that

J0(J + J0)−1 = −J−1
0 (J + J0)−1 = −((J + J0)J0)−1

= −(J(J + J0))−1 = −(J + J0)−1J−1 = (J + J0)−1J

Similarly, J(J − J0) = J2 − JJ0 = J2
0 − JJ0 = −(J − J0)J0, and therefore

J0F (J) = J0(J + J0)−1(J − J0) = (J + J0)−1J(J − J0) = −(J + J0)−1(J − J0)J0 = −F (J)J0

Thus, F is well defined and imF ⊆ B1.

(2) In fact, we claim imF = B1 and F is invertible, because we can construct an inverse

G : B1 → Jτ (R2n, ω0) for F , as follows. If S ∈ B1, then I − S ∈ GL(2n,R), so we can define G by

G(S) := J = J0(I + S)(I − S)−1
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To see that imG ⊆ Jτ (R2n, ω0), note that the condition J0S + SJ0 = 0 implies

J2 = J0(I + S)(I − S)−1J0(I + S)(I − S)−1

= (J0 + J0S)(I − S)−1(J0 + J0S)(I − S)−1

= (J0 − SJ0)(I − S)−1(J0 − SJ0)(I − S)−1

= (I − S)J0(I − S)−1(I − S)J0(I − S)−1

= (I − S)J2
0 (I − S)−1

= −I

Moreover J is ω-tame, which again follows from the polarization identity: writing B = (I + S) ◦

(I − S)−1 we note that J = J0B, and J is ω-tame iff B is positive (not necessarily symmetric,

however), for gJ0(u, Bu) = ω0(u, Ju). Thus, it is enough to show that B is positive. Towards this

end, observe first that

B + I = 2(I − S)−1

B − I = 2S(I − S)−1

since B + I =
[
(I + S)(I − S)−1 + I

]
=
[
(I + S) + (I − S)

]
(I − S)−1 = 2(I − S)−1, and similarly

B− I =
[
(I+S)(I−S)−1− I

]
=
[
(I+S)− (I−S)

]
(I−S)−1 = 2S(I−S)−1. Since by assumption

‖S‖ < 1, applying the polar identity we get for all nonzero u ∈ R2n

gJ0(u, Bu) =
1

4
‖u +Bu‖2 − 1

4
‖u−Bu‖2

=
1

4
‖(B + I)u‖2 − 1

4
‖(B − I)u‖2

= ‖(I − S)−1u‖2 − ‖S(I − S)−1u‖2

≥ ‖(I − S)−1u‖2(1− ‖S‖2)

> 0
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Lastly, note that G ◦ 1
4I is the inverse of F :

G
(1

4
F (J)

)
= G

(1

4
(J + J0)−1(J − J0)

)
= G

(1

4
(B + I)−1J−1

0 J0(B − I)
)

= G
(1

4
2(I − S)2S(I − S)−1

)
= G(S)

= J

and similarly

F
(
G
(1

4
S
))

= F
(1

4
J0B

)
=

(1

4

(
J0(B + I)

)−1
J0(B − I)

)
= (I − S)J−1

0 J0S(I − S)−1

= S

Since F and G are smooth maps, this shows that Jτ (R2n, ω0) is diffeomorphic to the open ball

B1 in the vector space Y , which is a convex and therefore contractible set. Thus, Jτ (R2n, ω0) is

contractible.

(3) To see that Jc(R2n, ω0) is contractible as well, the same constructions of B1, F and G

apply, with only one modification to the definition of Y , namely we let Y = {S ∈ Sym2n(R) |SJ0 +

J0S = 0}. For if S = ST as well, then (I ±S)T = I ±S, and it is enough to show that JTJ0J = J0

for J = J0B = J0(I + S)(I − S)−1. But,

JTJ0J = (J0B)TJ0(J0B)

= BTJ0B

=
(
(I + S)(I − S)−1

)T
J0(I + S)(I − S)−1

= (I − S)−1(I + S)(I − S)(I + S)−1J0

= (I − S)−1(I − S)(I + S)(I + S)−1J0

= J0
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Conversely, if JTJ0J = J0, then BTJ0B = J0, so

J0 = BTJ0B

=
(
(I + S)(I − S)−1

)T
J0(I + S)(I − S)−1

= (I − ST )−1(I + ST )(I − S)(I + S)−1J0

which shows that I = (I − ST )−1(I + ST )(I − S)(I + S)−1. Therefore,

(I − ST )(I + S) = (I + ST )(I − S)

and this simplifies to S = ST . This shows that J ∈ Sp(n,R) iff S = ST . Finally, note that, since

JTJ0J = J0, or equivalently JT = J0JJ0, we have

F (J)T =
[
(J + J0)−1(J − J0)

]T
= (J − J0)T ((J + J0)T )−1

= (JT + J0)(JT − J0)−1

= (J0JJ0 + J0)(J0JJ0 − J0)−1

= (J0J + I)(J0J − I)−1

= (J0J − J2)(J0J + J2)−1

= (J0 − J)(J0 + J)−1

= (J + J0)−1(J − J0)

= F (J)

so imF = B1. The penultimate equality is straightforward: it holds iff (J + J0)(J0 − J) =

(J − J0)(J + J0), which is easily seen to hold.

(4) Finally, we note that a matrix S ∈M2n(R) satisfies SJ0 + J0S = 0 iff, after writing S in

block matrix form as

S =

A B

C D


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we have

0 = SJ0 + J0S =

A B

C D


0 −1

1 0

+

0 −1

1 0


A B

C D

 =

B − C −A−D

A+D B − C


which holds iff A = −D and B = C, and therefore iff

S =

A B

B −A


where A,B ∈Mn(R). Thus, the dimension of the vector space of such S is 2n2. If we additionally

require S to be symmetric, then we must also require A and B to be symmetric, and the dimension

of such matrices is 2n(n+ 1)/2 = n(n+ 1). �

Remark 22 Since J (V, ω) = Jτ (V, ω) ∩ Jc(V, ω), the last proposition offers another proof of the

contractibility of J (V, ω), which we will prove directly below. �

2.3.5.8 The Space of ω-Compatible Structures J (V, ω)

We recall that any symplectic space (V, ω) can be endowed with a metric g and an ω-

compatible complex structure J . The space of such complex structures is, moreover, path con-

nected, and in fact any two ω-compatible complex structures are smoothly homotopic:

Proposition 37 Every symplectic space (V, ω) can be given a compatible complex structure J and

a metric g, that is J (V, ω) is nonempty. Moreover, any two such structures J0 and J1 are smoothly

homotopic in the following sense: there is a map ϕ : [0, 1] × J (V, ω) → J (V, ω), which we denote

Jt, and which is differentiable in t and forms a path from J0 to J1 in J (V, ω).

Proof : We have already seen (Theorem 28) that given γ ∈ M(V ) (which is nonempty) and

ω we can find a Jγ ∈ J (V, ω), and (Theorem 29) given J ∈ J (V, ω) we get a gJ ∈ M(V ) by

gJ = ω ◦ (idV ×J). Finally, if J0, J1 ∈ J (V, ω), find g0 and g1 in M(V ) such that Ji = Jgi and

define

gt := tg1 + (1− t)g0

Then gt ∈M(V ), since M(V ) is a convex cone in Hom2
Sym(R2n;R), and Jt := Jgt ∈ J (V, ω). �
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Proposition 38 Let (V, ω) be any symplectic vector space. Then the space of ω-compatible complex

structures J (V, ω) is diffeomorphic to the space of symplectic positive definite forms (or their matrix

equivalents),4

J (V, ω) ≈ Sp(V, ω) ∩Hom2
R,Sym(V ;R)+ ∼= Sp(n,R) ∩ Sym2n(R)+ (2.74)

Proof : By Proposition 32 it will suffice to consider the case of (R2n, ω0, J0). In this case, J belongs

to J (R2n, ω0) iff J2 = −I2n, J ∈ Sp(n,R) and gJ ∈ HomR,Sym(R2n;R)+. By Propositions 19 and

18, these conditions hold true iff the following three conditions hold:

(1) J2 = −I2n

(2) JTJ0J = J0

(3) gJ0(v, (−J0J)(v)) = gJ0(J0(v), J(v)) = ω0(v, J(v)) = gJ(v, v) > 0, ∀v 6= 0

The matrix P := −J0J in the last condition is symmetric, for by condition (2) and the fact that

JT0 = −J0 and JT = −J we have

P T = (−J0J)T = −JTJT0 = JTJT0 J
2 = −(JTJ0J)J = −J0J = P

and, by condition (3) P is positive definite. P is also symplectic, because J and J0 are and because

Sp(n,R) is a group. This defines a map

ϕ : J (R2n, ω0)→ Sp(n,R) ∩ Sym2n(R)+

ϕ(J) := −J0J

This map is injective, for if −J0J = −J0J
′, the invertibility of J0 implies J = J ′. It is also

surjective, for if P ∈ Sp(n,R) ∩ Sym2n(R)+, then define J := −J−1
0 P = J0P and notice that

J2 = J0PJ0P = J0(P TJ0P ) = J2
0 = −I since P is symmetric and symplectic. Moreover, J is

symplectic (i.e. calibrates ω), for both J0 and P are and Sp(n,R) is a group. Finally, ϕ is smooth,

since it is left-multiplication-by-−J0, and it’s inverse, ϕ−1(P ) = J0P , is smooth for the same reason.

�
4 We used the notation of Section 2.1.5 here.
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Remark 23 In view of Proposition 36 and the fact that J (V, ω) is precisely the intersection of

Jτ (V, ω) with Jc(V, ω), we can see that the diffeomorphism above can be understood in terms of

the diffeomorphisms constructed in the proof of that proposition. There, Jc(R2n) was mapped

diffeomorphically onto the open unit ball B1 of

{S ∈ Sym2n(R) | SJ0 + J0S = 0} = sp(n,R) ∩ Sym2n(R)

via an analogue of the Cayley transform. The diffeomorphism G : B1 → Jc(R2n) was given by

J := G(S) = J0B, where B = (I+S)(I−S)−1. For then we see that B = −J0J , which is precisely

the positive symplectic matrix we called P in the proposition above.

To see this from another angle, note that the (necessary and sufficient) condition on B in

the case that S ∈ sp(n,R) ∩ Sym2n(R) was that B ∈ Sp(n,R), while the (necessary and sufficient)

condition on B in the case that S satisfes only SJ0 + J0S = 0 was that B be positive (but not

necessarily symmetric). However, if we add in the symmetry condition on S, then B = BT , too,

for then

BT = [(I + S)(I − S)−1]T = (I − S)−1(I + S) = (I + S)(I − S)−1 = B

the penultimate equality following from (I + S)(I − S) = I − S2 = (I − S)(I + S). Thus, we have

B = −J0J ∈ Sym2n(R)+ ∩ Sp(n,R). And since sending J to B is an invertible operation with

inverse B 7→ J0B = J , diffeomorphically so, we have the following diffeomorphisms:

(
sp(n,R) ∩ Sym2n(R)

)
1
≈ J (V, ω) ≈ Sp(n,R) ∩ Sym2n(R) (2.75)

By (2.52) of Proposition 20 we know that S =

A B

C D

 ∈ sp(n,R) ∩ Sym2n(R) iff A = −D,B =

C ∈ Symn(R), so the dimension of the manifold J (V, ω) is

dimJ (V, ω) = n(n+ 1) �

We end this section with a different and quite simple proof of the contractibility of J (V, ω).
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Proposition 39 (Contractibility of J (V, ω)) There is a continuous map

r :M(V )→ J (V, ω)

r(gJ) := J

for all J ∈ J (V, ω) and g ∈ M(V ). Using this map r we can construct a homotopy between the

identity map on J (V, ω) to the constant map c(J) = J0, thus demonstrating that the space J (V, ω)

of ω-compatible complex structures is contractible.

Proof : We follow the proof found in McDuff and Salamon [76, Proposition 2.50], with only minor

modifications. By Proposition 32 it will suffice to consider the case of (R2n, ω0, J0). To see that

the map r : M(R2n) → J (R2n, ω0) is continuous, let g ∈ M(R2n) and use Proposition 28 to

find a g-skew-adjoint J ∈ J (R2n, ω0) such that ω0(·, ·) = g(J(·), ·). If G = [g]ρ is the matrix

representation of g with respect to the standard basis ρ for R2n, then by Proposition 1 we will have

for all u,v ∈ R2n

−uTGJv = g(u,−J(v)) = g(J(u),v) = ω0(u,v) = gJ0(J0(u),v) = −uTJ0v

which shows that GJ = J0, and consequently J = G−1J0. Therefore, since J0 ∈ O(2n) by

Proposition 18, we will have, for any two metrics g, g′ ∈M(R2n), that

‖J − J ′‖ = ‖G−1J0 −G′−1
J0‖ = ‖G−1 −G′−1‖

Since the inversion map GL(2n,R) → GL(2n,R), G 7→ G−1, is continuous (it is in fact smooth

in GL(B) for any Banach space B, see for example Rudin [93, Corollaries 1 and 2, p. 353]), we

have that the map r, which is the composition of the inversion map with the isometry J0 and the

isometry identifying g with G, is also continuous.

Using r we can define the homotopy

H : J (R2n, ω0)× I → J (R2n, ω0)

H(J, t) := r
(
(1− t)gJ0 + tgJ

)
Then clearly H(J, 0) = J0 = c(J) and H(J, 1) = J = id(J), so H : id ' c is the required

deformation retraction. �
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Recall from Proposition 32 that any symplectic vector space (V, ω) is linearly symplecto-

morphic to (R2n, ω0) via a linear isomorphism Φ : R2n → V satisfying J ◦ Φ = Φ ◦ J0, or

J = Φ∗J0 := Φ ◦ J0 ◦ Φ−1. From the construction of Φ in that proposition we see its depen-

dence on J ∈ J (V ), which was used to find the symplectic basis β for V in terms of which defined

Φ. This justifies the notation ΦJ . If we consider (V, ω) = (R2n, ω0), then ΦJ ∈ Sp(n,R), and

this shows that the GL(2n,R)-action (by conjugation) of Proposition 35 restricts to a transitive

Sp(n,R)-action on J (R2n). Let us consider the Sp(n,R)-action on the subspace J (R2n, ω0) of

ω0-compatible complex structures. We claim that this action is transitive, and in particular, for

all J ∈ J (R2n, ω0) we have J = Φ∗J0 ∈ J (V, ω): recall Lemma 2 and Proposition 27, which tell

us that ΦΦT ,ΦTΦ ∈ Sp(n,R) ∩ Sym2n(R)+, and Proposition 19, which says that ΦJ0 = J0(ΦT )−1

and J0Φ−1 = ΦTJ0. Then,

ω0(u, Jv) = ω0(u,Φ∗J0v) = ω0(u,ΦJ0Φ−1v)

= ω0(u,ΦΦTJ0v) = gJ0(J0u,ΦΦTJ0v) = (J0u)TΦΦTJ0v

= −uTJ0ΦΦTJ0v = −uTJ2
0 (ΦΦT )−1v = uT (ΦΦT )−1v

Since ΦΦT ∈ Sp(n,R) ∩ Sym2n(R)+, we also have (ΦΦT )−1 ∈ Sp(n,R) ∩ Sym2n(R)+, and the

expression uT (ΦΦT )−1v defines a metric gJ(u, v) by Theorems 1 and 7 whose matrix representation

is precisely (ΦΦT )−1,

gJ(u, v) = uT (ΦΦT )−1v

This shows that gJ = ω0 ◦ I × J ∈ M(V ), and therefore that J ∈ J (R2n, ω0). Now consider

the stabilizer of J0 under the Sp(n,R)-action: it consists of A ∈ Sp(n,R) such that AJ0A
−1 = J0,

which is precisely the complex matrices in Sp(n,R) by Corollary 3. But Sp(n,R)∩GL(n,C) = U(n)

by Proposition 25. Thus, Sp(n,R)J0 = U(n). By the orbit-stabilizer theorem for Lie groups, we

therefore have a diffeomorphism,

J (R2n, ω0) ≈ Sp(n,R)/U(n)
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and the map

F : J (R2n, ω0)→ Sp(n,R)/U(n)

F (J) := ΦJ ·U(n)

is the very diffeomorphism of the orbit-stabilizer theorem.

Now consider (V, ω), and let Sp(V, ω) act on J (V, ω) by conjugation. Under the linear

symplectomorphism (V, ω) ∼= (R2n, ω0) we may transfer the whole argument above over to (V, ω),

and conclude that

J (V, ω) ≈ Sp(V, ω)/U(V,HJ) ∼= Sp(n,R)/U(n)

(in the notation of Proposition 31).

We summraize these results in the next proposition:

Proposition 40 The symplectic group acts transitively on J (R2n, ω0) by conjugation, and the

stabilizer subgroup of J0 under this action is the unitary group. Consequently, we have the diffeo-

morphism

J (R2n, ω0) ≈ Sp(n,R)/U(n) (2.76)

which is given explicitly by the map

F : J (R2n, ω0)→ Sp(n,R)/U(n) (2.77)

F (J) := ΦJ ·U(n) (2.78)

where ΦJ was constructed in the proof of Proposition 32. More generally, if (V, ω) is any symplectic

vector space, we have

J (V, ω) ≈ Sp(V, ω)/U(V,HJ) ∼= Sp(n,R)/U(n) (2.79)

using the notation of Proposition 31. This shows again that J (R2n, ω0) is a smooth manifold and

homogeneous space of dimension dim Sp(n,R)− dim U(n) = (2n2 + n)− n2 = n(n+ 1). �
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Remark 24 This provides yet another proof of the contractibility of J (V, ω), namely via the

contractibility of Sp(n,R)/U(n), Proposition 27 above. �

We end this section by asking a related question: instead of starting with ω and looking for

J which is compatible with ω, what if we started with J and asked for ω which is compatible with

J?

Proposition 41 Let V be a 2n-dimensional real vector space and let J ∈ J (V ). Define Ω(V, J)

to be the space of symplectic forms on V compatible with J , meaning that ω(·, J ·) ∈ M(V ) =

Hom2
R,Sym(V ;R)+ is a metric. Then Ω(V, J) is a nonempty convex subset of Ω(V ), and therefore

contractible.

Proof : Firstly, Ω(V, J) is nonempty, because given J , then as in the proof of Proposition 32 we

may take a basis β = (u1 + iv1, . . . , un + ivn) for V 1,0 = ker(JC − iI) and note that vj = Juj ,

which gives a basis β = (u1, . . . , un, v1, . . . , vn) for V such that Juj = vj and Jvj = −uj , that is

[J ]β = J0. Define ω by

ω(x, y) := −[x]Tβ [J ]β[y]β = −[x]Tβ J0[y]β

Then ω is skew-symmetric, since JT0 = −J0:

ω(y, x) = −[y]βJ0[x]β = −[x]Tβ J
T
0 [y]β = [x]βJ0[y]β = −ω(x, y)

and it is nondegenerate because J0 is its matrix representation with respect to β (Theorems 1 and

10). To see the compatibility of ω with J , note that

gJ(x, y) = ω(x, Jy) = −[x]Tβ J0[Jy]β = −[x]βJ
2
0 [y]β = [x]β · [y]β

which is symmetric and positive definite. Secondly, (Ω, J) is convex, let ω0, ω1 ∈ Ω(V, J), then for

all t ∈ [0, 1] we have that ωt := (1− t)ω0 + tω1 is also skew-symmetric, because Hom2
R,Skew(V ;R) is

a vector space, and ωt(·, J ·) is symmetric and positive definite because ω0(·, J ·) and ω1(·, J ·) are.

Finally, ωt is nondegenerate because ωt(·, J ·) is. �
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2.3.6 Sums and Subspaces of Symplectic Vector Spaces

In this section we look at direct sums and subspaces of symplectic vector spaces. The most

important type of subspace in this setting is the Lagrangian subspace, and we identify the main

properties of such subspaces and describe the manifold and homogeneous space structure of the

Lagrangian Grassmannian, the subspace L(V, ω) of G(n, V ) consisting of all Lagrangian subspaces

of (V, ω).

2.3.6.1 Direct Sums of Symplectic Vector Spaces

The direct sum of two symplectic vector spaces (V1, ω1) and (V2, ω2) can be made into a

symplectic vector space,

(V1 ⊕ V2, ω1 ⊕ ω2) (2.80)

by defining ω1 ⊕ ω2 as

ω1 ⊕ ω2 : (V1 ⊕ V2)× (V1 ⊕ V2)→ R

ω1 ⊕ ω2

(
(v1, v2), (v′1, v

′
2)
)

:= ω1(v1, v
′
1) + ω2(v2, v

′
2)

Then, ω1⊕ω2 is a symplectic form on V1⊕V2, for bilinearity and skew-symmetry follow from those

of ω1 and ω2, and nondegeneracy follows from the observation that, if ω1⊕ω2

(
(v1, v

′
1), (v′2, v2)

)
= 0

for all (v1, v2) ∈ V1 ⊕ V2, then ω1(v1, v
′
1) + ω2(v2, v

′
2) = 0, and therefore (by choosing v1 = 0 or

v2 = 0) ω1(v1, v
′
1) = ω2(v2, v

′
2) = 0 for all v1 ∈ V1 and v2 ∈ V2, and the nondegeneracy of ω1 and

ω2 then implies that v1 = v2 = 0, or (v1, v2) = (0, 0).

We can also introduce the symplectic form

ω1 	 ω2 : (V1 ⊕ V2)× (V1 ⊕ V2)→ R

ω1 	 ω2

(
(v1, v2), (v′1, v

′
2)
)

:= ω1(v1, v
′
1)− ω2(v2, v

′
2)

which is nondegenerate by the same argument, making

(V1 ⊕ V2, ω1 	 ω2) (2.81)
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a symplectic vector space. Of course, the symplectic forms ω1 ⊕ ω2 and ω1 	 ω2 both belong to

Ω(V1 ⊕ V2), and as we saw in Proposition 34 above, GL(V1 ⊕ V2) ∼= GL(4n,R) acts transitively on

Ω(V1⊕V2) by pulling back, g ·ω1⊕ω2 = (g−1)∗ω1⊕ω2, so in particular there is a g ∈ GL(V1⊕V2)

such that g · ω1 ⊕ ω2 = ω1 	 ω2, namely, with respect to symplectic bases βi for Vi,

g = I2n ⊕

 0 In

In 0


Indeed, if βi = (qi, pi) is a symplectic basis for Vi, then (q1, p1, q2, p2) is a symplectic basis for

V1 ⊕ V2, and applying g to this basis interchanges the last two pieces, which has the effect of using

the skew-symmetry of ω2 to put a minus sign in front of it.

2.3.6.2 Subspaces of Symplectic Vector Spaces

Recall the terminology of Section 2.1.2 on orthogonality in a bilinear space. We specialize

here to the case of a symplectic vector space (V, ω), and follow McDuff and Salamon [76] in our

terminology and notation for this specialization.

Since ω is skew-symmetric, orthogonality is a symmetric relation on V , that is u ⊥ v (i.e.

ω(u, v) = 0) iff v ⊥ u (i.e. ω(v, u) = 0) for all u, v ∈ V , and therefore ⊥W = W⊥ for any subspace

W of V .

Definition 6 We introduce the notation

Wω (2.82)

for W⊥, the orthogonal complement of W in V with respect to ω, which is called the symplectic

complement of W in V . We remark that it need not be the case that W ∩Wω = {0}, for it can

happen that W ⊆Wω or W ⊇Wω.

If W ⊆Wω, we say that W is isotropic. If W ⊇Wω, we say W is coisotropic. W is called

Lagrangian if W = Wω, i.e. if it is both isotropic and coisotropic. If W is neither isotropic nor

coisotropic, i.e. if W ∩Wω = {0}, then it is called symplectic.
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Example 8 Let us give some examples of each of these types of subspace of (R2n, ω0).

(1) Let (q1, q2, q3, p1, p2, p3) = (e1, e2, e3, e4, e5, e6) be the standard symplectic basis for R6,

and consider the subspace W = spanR(q1, q2). Then, the relations (2.35) ensure that

ω0(q1, q1) = ω0(q1, q2) = ω0(q2, q2) = 0

so that ω0(u, v) = 0 for all u, v ∈ W , whence W ⊆ Wω, making W an isotropic subspace.

In fact, the inclusion is strict, W (Wω, since q3 ∈Wω\W .

(2) The subspace W = spanR(q1, q2, p1) of R4 is coisotropic. For if v ∈Wω, then v ⊥ p1, v ⊥ p2

and v ⊥ p1. Writing v = aq1 + bq2 + cp1 +dp2 and recalling the relations (2.35), we see that

ω0(v, q1) = c, ω0(v, q2) = d, ω0(v, p1) = a

which must all equal 0 if v ∈ Wω. Therefore v = bq2 ∈ W , which shows that Wω =

spanR(q2) ⊆W , making W a coisotropic subspace.

(3) The subspace W = spanR(q1, p1) of R4 is symplectic, again by the relations (2.35), which

imply Wω = spanR(q2, p2).

(4) The subspace W = spanR(q1, q2) of R4 is Lagrangian, by the relations (2.35). �

Proposition 42 A subspace W of V is symplectic iff the restriction of ω to W ×W is nondegen-

erate.

Proof : This is just a special application of the general case for bilinear forms, Proposition 3. �

Proposition 43 For any subspace W of V , we have

(1) dimW + dimWω = dimV

(2) Wωω = W
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Proof : (1) Recall Remark 3, which, for a nondegenerate bilinear form B on a finite-dimensional

vector space V gives an isomorphism B[ : V → V ∗ by B[(v) := B(· , v). In our case, the flat

operator ω[ := ωL identifies Wω with the annihilator W 0 of W in V ∗, as follows: We note first

that V/W ∼= W 0, since any f ∈ V ∗ factors through V/W iff W ⊆ ker f . Therefore, since ω[ is an

isomorphism between V and V ∗ with inverse ω], and since W 0 ⊆ V ∗, we have

Wω = ω](W 0)

Consequently, dimWω = dimω](W 0) = dimW 0 = dim(V/W ) = dimV − dimW . (2) follows from

(1), since clearly W ⊆Wωω and dimW = dimV − dimWω = dimWωω. �

Corollary 7 Every Lagrangian subspace W of V has dimension

dimW = dimWω =
dimV

2
�

Proposition 44 Let L be a subspace of (V, ω). Then the following are equivalent:

(1) L ∈ L(V, ω).

(2) L is a maximal isotropic subspace (it is not properly contained in any isotropic subspace).

(3) L is isotropic and dimL = n.

Proof : (1) =⇒ (2) and (3): If L ∈ L(V, ω), then L = Lω, so L is isotropic and dimL = n by the

previous corollary. To see that it is maximally isotropic, note that the maximum dimension of an

isotropic subspace of V is n, because dimL + dimLω = 2n by the previous proposition, and any

other isotropic subspace W containing L would also have dimension n, so would have to equal L.

(2) =⇒ (3): If L is maximal isotropic, then as we saw dimL = n. (3) =⇒ (1) If L is isotropic and

dimL = n, then L ⊆ Lω and dimLω = 2n− dimL = n, so L = Lω. �
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2.3.6.3 Smooth Manifold and Homogeous Space Structure of L(V, ω)

Definition 7 We will pay special attention to Lagrangian subspaces, so we introduce the follow-

ing notation for the set of Lagrangian subspaces of (V, ω) and (R2n, ω0), called the Lagrangian

Grassmannian:

L(V, ω) := {L ∈ G(n, V ) | L = Lω} and L(n) := L(R2n, ω0) (2.83)

We single out a special Lagrangian subspace of R2n, the horizontal Lagrangian,

Lhor := Rn ⊕ {0} ∈ L(n) (2.84)

As we will see, the orbit of this Lagrangian is the whole Lagrangian Grassmannian L(n) under

the action of the unitary group described below. We will call Lvert := {0} ⊕ Rn the vertical

Lagrangian. Notice that Lhor⊕Lvert = R2n. This is an example of a Lagrangian decomposition of

R2n. A Lagrangian decomposition of any symplectic vector space (V, ω) is a pair of transversal

Lagrangian spaces L0, L1 ∈ L(n), that is, a pair satisfying V = L0 ⊕ L1. �

Lemma 3 Fix J ∈ J (V, ω). Then, any L ∈ L(V, ω) admits a Lagrangian complement giving V a

Lagrangian decomposition, and one such complement is JL. Moreover, with respect to the induced

metric gJ ∈M(V ), the direct sum V = L⊕ JL is orthogonal,

V = L⊥©JL

Proof : If v ∈ JL, then v = J(u) for some u ∈ L, and gJ(u, v) = gJ(u, J(u)) = ω(u, J2(u)) =

−ω(u, u) = 0, so L ⊥ JL. Note also that JL ∈ L(V, ω), since L = Lω and J∗ω = ω imply that

(JL)ω = JL. Explicitly, v = J(u) ∈ (JL)ω iff for all z = J(w) ∈ JL we have ω(v, z) = 0, which is

true iff u,w ∈ L since ω(J(u), J(w)) = ω(u,w) = 0 on account of L = Lω. �

Remark 25 Note that if HJ is the Hermitian inner product on VJ and L ∈ L(V, ω), then HJ(L×

L) ⊆ R, since if u, v ∈ L, then HJ(u, v) = gJ(u, v) + iω(u, v) = gJ(u, v). �
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Proposition 45 Fix J ∈ J (V, ω). Then, for any pair of Lagrangian subspaces L1, L2 ∈ L(V, ω)

there exists a T ∈ GLC(VJ) ∩U(VJ , HJ) such that L2 = T (L1).

Proof : Let β = (b1, . . . , bn) be a gJ -orthonormal basis for L1 and note that since V = L1⊥©JLω1 , β

is actually a complex basis for VJ , since complex scalar multiplication in VJ is given by (a+ ib)v :=

av+ bJ(v). Moreover, since HJ(L1×L1) ⊆ R, this basis is orthonormal with respect to HJ as well.

Similarly, a gJ -orthonormal basis γ = (c1, . . . , cn) for L2 yields a complex basis for VJ , and the map

T : L1 → L2 given on the basis elements by T (bj) := cj , j = 1, . . . , n, is a C-linear isomorphism.

Moreover, T ∈ U(VJ , HJ), since if u =
∑

j ajbj and v =
∑

j αjbj are vectors in VJ , then the fact

that HJ(bj , bk) = δjk = HJ(cj , ck) implies

HJ(Tu, Tv) =
∑
jk

ajαkHJ(T (bj), T (bk))

=
∑
jk

ajαkHJ(cj , ck) =
∑
jk

ajαkHJ(bj , bk) = HJ(u, v)

which completes the proof. �

Corollary 8 Since EndC(VJ)∩U(VJ , HJ) = O(V, gJ)∩Sp(V, ω) by Proposition 31, we have that any

pair of Lagrangian subspaces L1, L2 ∈ L(V, ω) are linearly symplectomorphic. Moreover, by choosing

oriented bases β and γ for L1 and L2, respectively, the restriction of the linear symplectomorphism

T |L1 : L1 → L2 may be assumed to be orientation-preserving. Finally, observe that the basis β may

be assumed to be adapted to J , so that β ∪ Jβ is a symplectic basis for V , and therefore we may

suppose all the elements V , ω, J , gJ , HJ and L1 to be put into canonical form. �

Take a Lagrangian decomposition (L0, L1) of (V, ω) and define the map

ρ01 : L1 → L∗0 (2.85)

ρ01(v) := v[|L0 = ω(v, ·)|L0 (2.86)

Then ρ01 is an isomorphism, because L0 ⊕ L1 = V and L1 and L2 are Lagrangian. Define also the
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isomorphism, for any Lagrangian subspace L ∈ L(V, ω),

ρL : V/L→ L∗ (2.87)

ρL(v + L) := v[|L = ω(v, ·)|L (2.88)

For a given Lagrangian decomposition, therefore, we have the following commutative diagram of

isomorphisms,

L1
ρ01 - L∗0

V/L0

ρL0

-

π|L1 -

Remark 26 Start by choosing a basis β = (b1, . . . , bn) for L0, then extend it to a symplectic

basis β ∪ γ = (b1, . . . , b2n) for V . If L1 is a complementary Lagrangian subspace for L0, then

define bn+j := −ρ−1
01 (b∗j ) and note that γ = (bn+1, . . . , b2n), is a basis for L1. Consequently, given

Lagrangian decompositions (L0, L1) and (L′0, L
′
1) of two symplectic vector spaces (V, ω) and (V ′, ω′),

we can find bases β ∪ γ and β′ ∪ γ′ for V and V ′, respectively, such that β and β′ are bases for L0

and L′0, and γ and γ′ are bases for L1 and L′1, respectively. By use of these bases we can take any

isomorphism from L0 to L′0 and extend it to a linear symplectomorphism T : V → V ′ in such a

way that

T (Li) = L′i, i = 1, 2

This shows in particular that every isomorphism of a Lagrangian subspace L extends to a linear

symplectomorphism of V . �

Let us return to our main task of showing that L(V, ω) is a submanifold of the Grassmannian

manifold G(2n, V ) and a homogeneous space under the action of the unitary and symplectic groups.

Recall the definition of the charts for Grassmannians G(k, V ): If V = W1⊕W2 where W1 ∈ G(k, V )

and W2 ∈ G(2n− k, V ), then

UW2 := {W ∈ G(k, V ) |W ∩W2 = {0}} (2.89)
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is the open neighborhood of W1 serving as the domain of the chart

φ12 : UW2 → HomR(W1,W2) ∼= Rk(2n−k) (2.90)

φ12(W ) := T = π2 ◦ π1|−1
W (2.91)

where πi : V →Wi is the projection onto Wi, i = 1, 2.

Lemma 4 If (L0, L1) is a Lagrangian decomposition of V , then a given n-dimensional subspace

L ∈ UL1 is Lagrangian iff the bilinear form

ρ01 ◦ φ01(L) ∈ HomR(L0, L
∗
0) ∼= Hom2

R(L0;R) (2.92)

is symmetric.

Proof : Since dimL = n, we have L ∈ L(V, ω) iff L is isotropic, so letting T := φ01(L) ∈

HomR(L0, L1) we have that L = Γ(T ), which means all elements of L are of the form v + T (v) for

v ∈ L0. Since L0 and L1 are Lagrangian, and therefore isotropic, ω(v, w) = ω(T (v), T (w)) = 0, so

for v + T (v), w + T (w) ∈ L we have

ω(v + T (v), w + T (w)) = ω(T (v), w)− ω(T (w), v)

On the other hand, ρ01(T (v)) = ω(T (v), ·), so the form ρ01(T (v))(w) is symmetric in v and w iff

ω(v + T (v), w + T (w)) = 0, i.e. iff L is isotropic, and therefore Lagrangian. �

Let L1 ∈ L(V, ω) and define the subset ΛL1 of UL1 to be that consisting of Lagrangian

subspaces of V transversal to L1:

ΛL1 := L(V, ω) ∩ UL1 (2.93)

Then, by the above lemma the charts on the domains ΛL1 are precisely those landing in the subspace

Hom2
R,Sym(L0;R) ∼= Symn(R) of HomR(L0, L1), for a fixed Lagrangian complement L0 ∈ ΛL1 of L1,

V = L0 ⊕ L1:

ψ01 : ΛL1 → Hom2
R,Sym(L0;R) ∼= Symn(R) (2.94)

ψ01(L) := ρ01 ◦ φ01(L) (2.95)
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Since ρ01 is a linear isomorphism and φ01 is a chart on G(n, V ), the transition functions are

automatically smooth, by Proposition 11 above, so L(V, ω) acquires a smooth manifold structure

of dimension n(n+ 1)/2. We summarize these results in the following proposition:

Proposition 46 For any symplectic vector space (V, ω), the Lagrangian Grassmannian L(V, ω) is a

smooth submanifold of the Grassmannian manifold G(n, V ) of dimension dimL(V, ω) = n(n+1)/2.

�

Let us now describe L(V, ω) as a homogeneous space under the Sp(n,R)-action, or, what

turns out to be the same thing, its restriction to a U(n)-action. As we saw above, Lemma 4, given

a Lagrangian decomposition (L0, L1) of R2n, the image of any L ∈ ΛL1 under ρ01 is a symmetric

matrix A ∈ Symn(R) whose graph, as a map from L0 to L1 is precisely L. We give here another,

simpler, proof of this fact, adapted to R2n, which has the benefit of describing the graph/Lagrangian

L in terms of the image of a matrix C ∈M2n,n(R) whose columns contain some extra information.

Lemma 5 Let A,B ∈Mn(R) and define

C :=

A
B

 ∈M2n,n(R) ∼= HomR(R2n,Rn)

Then, imC ∈ L(n) iff rankC = n and ATB = BTA. Such a C is called a Lagrangian frame.

Consequently, for any B ∈ Mn(Rn) ∼= EndR(Rn), since we may describe the graph of B as the

image of C where A = I and B = B,

Γ(B) = {(x, Bx) | x ∈ Rn} = im

In
B


we have

Γ(B) ∈ L(n) ⇐⇒ B ∈ Symn(R) (2.96)

Proof : imC ∈ L(n) iff imC = imCω0 iff ω0(u,v) = 0 for all u,v ∈ imC. Therefore, letting
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u = Cx and v = Cy, this is equivalent to

0 = ω0(Cx, Cy) = gJ0(J0Cx, Cy) = xT

−B
A


T A

B

y = xT (ATB −BTA)y

for all x,y ∈ Rn. �

Remark 27 Suppose C is a Lagrangian frame imC ∈ L(n). The columns of C form an orthonor-

mal basis for imC iff additionally ATA = BTB = In, which is the case iff the matrix

V =

A −B

B A


satisfies V TV = V V T = I2n. But by Proposition 25 and its proof this is equivalent to the complex

matrix U = A+ iB ∈ GL(n,C), which is identified with V by Proposition 17, being unitary. That

is,

im

A
B

 ∈ L(n) ⇐⇒ U := A+ iB ∈ U(n)

In this case we call C a unitary Lagrangian frame. �

Let Sp(n,R) act on L(n) by left multiplication,

Sp(n,R)× L(n)→ L(n) (2.97)

Φ · L := Φ(L) = im Φ|L (2.98)

or more generally let (V, ω) be a symplectic space and let Sp(V, ω) act on L(V, ω) by

Sp(V, ω)× L(V, ω)→ L(V, ω) (2.99)

Φ · L := Φ(L) = im Φ|L (2.100)

Clearly Φ(L) ∈ L(V, ω), by the definition of Sp(V, ω), for ω(Φ(u),Φ(v)) = Φ∗ω(u, v) = ω(u, v), and

this equals 0 iff u, v ∈ L.
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Proposition 47 The action of Sp(n,R) on L(n) is transitive. In fact, the unitary subgroup U(n)

of Sp(n,R) acts transitively on L(n), with

L(n) = U(n) · Lhor

The stabilizer of Lhor under this action is O(n), where we identify O(n) with the subgroup of O(2n)

by O(n) 3 O 7→ O ⊕O ∈ O(2n). Consequetly, we have the diffeomorphism

L(n) ≈ U(n)/O(n) (2.101)

which again confirms that dimL(n) = n2 − n(n− 1)/2 = n(n+ 1)/2.

Proof : Let L ∈ L(n) and find a unitary Lagrangian frame C as in the remark above, and identify

it with the unitary matrix

U(n) 3 U = A+ iB ∼= Φ =

A −B

B A

 ∈ O(2n) ∩ Sp(n,R)

as in Proposition 25. Then note that

L = imC = im

A
B

 = im Φ|Rn×{0} = Φ(Lhor)

Thus, if L1, L2 ∈ L(n), let Φ1,Φ2 ∈ U(n) be the respective unitary frames so that L1 = Φ1(Lhor)

and L2 = Φ2(Lhor). Then Φ2Φ−1
1 ∈ U(n) gives Φ2Φ−1

1 (L1) = L2.

Finally, note that if O ∈ O(n), then

O ⊕O · Φ =

O 0

0 O


A −B

B A

 =

OA −OB

OB OA


which gives another unitary Lagrangian frame OC for the same Λ. In particular, it leaves

note that if U = A+ iB ∈ U(n) is identified with Φ ∈ Sp(n,R)∩O(2n) and with the unitary

Lagrangian framd C as above, then right-multiplying C or its equivalent U by an orthogonal matrix

O ∈ O(n), CO, gives another unitary Lagrangian frame for the same Lagrangian subspace L. This

defines �
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2.4 Symplectic Manifolds

In this section we give an outline of nonlinear symplectic geometry, which consists of at-

taching the linear symplectic geometric structures of the previous section onto manifolds fiberwise.

The process is succinctly encapsulated in the notion of the symplectic vector bundle. Such a vector

bundle may potentially also be endowed with other structures, such as Riemannian metrics and

Hermitian inner products, but now, as one might suspect, the compatibility of these structures

with the symplectic structure may face some topological obstructions. The explication of these

intricacies of nonlinearity will occupy us for the remainder of this section. The most interesting

case will be that of the symplectic tangent bundle, which is the defining feature of a symplectic

manifold. Such manifolds have their origin in classical mechanics, where they figure as the phase

space of a classical system, the cotangent bundle to the configuration space of the system.

2.4.1 Symplectic Vector Bundles and Chern Classes

In what follows we put the symplectic linear algebra of the previous section onto a manifold

M in the most general way possible, as fibers of a vector bundle E over M . The natural construction

for this operation is the symplectic vector bundle. We largely follow the treatment in McDuff and

Salamon [76] and Audin [12].

Definition 8 A symplectic vector bundle (E,ω) over a smooth manifold M is a real rank 2n

vector bundle E → M with typical fiber a 2n-dimensional symplectic vector space (V, ω). This

means:

(1) E is locally trivializable with 2n-dimensional fiber Ep over each p ∈M isomorphic to V .

(2) E comes equipped with a symplectic form ω ∈ Ω2(E), a nondegenerate section of the vector

bundle
∧2E∗ →M of 2-covectors in E.

These conditions formalize the intuitive picture of the pair (Ep, ωp) ∼= (V, ω) varying smoothly with

p ∈M , or parametrized smoothly by M . Two symplectic bundles (E1, ω1) and (E2, ω2) over M are
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said to be (symplectically) isomorphic if there is a vector bundle map F : E1 → E2 covering

the identity of M such that F ∗ω2 = ω1.

Let us also introduce the vector bundle analogs of the spaces of metrics, symplectic forms,

and (tame, calibrated, and compatible) complex structures. A (Riemannian) metric on E is a

global section g ∈ Γ(
⊙2E∗) ∼= Hom2

C∞(M),Sym(Γ(E);R). Similarly, a symplectic form is a section

ω ∈ Ω2(E) = Γ(
∧2E∗), and the fiber bundle of such sections will be denoted Symp(E) → M .

A complex structure J on E is a bundle endomorphism J ∈ End(E) satisfying J2 = −I.

Alternatively, a complex structure a field of E-valued complex structures, J2
p = −Ip on Ep for all

p ∈M , that is a section of a certain fiber bundle

J (E)→M

whose fibers are J (E)p := J (Ep), the space of complex structures on the vector space Ep ∼= R2n.

We similarly define tame, calibrated and compatible complex structures, fiberwise, as sections

of the fiber bundles Jτ (E), Jc(E) and J (E,ω) whose fibers are Jτ (Ep), Jc(Ep) and J (Ep, ωp),

respectively. Lastly, a Hermitian structure on E is a triple (ω, J, g) with J ∈ J (E,ω) and

g = gJ = ω ◦ I × J , from which, when it exists, we can construct a Hermitian inner product

HJ := g + iω for E as in Proposition 30. The existence of these fiber bundles over an arbitrary

2n-dimensional manifold M is not guaranteed (see Example 12 below), though by Proposition 48

below we have that whenever M is equipped with a symplectic form ω, J (E,ω) is nonempty and

contractible, and conversely whenever there exists J ∈ Γ(J (E)), then there is a symplectic form

ω ∈ Ω2(E) such that J ∈ Γ(J (E,ω)). �

Theorem 15 The structure group of any rank 2n symplectic vector bundle (E,ω) may be reduced

from GL(2n,R) to Sp(n,R).

Proof : The typical fiber V of E may, without loss of generality, be chosen to be (R2n, ω0), for

locally we can trivialize E by a diffeomorphism Φ : EU → U × V which restricts to a linear

isomorphism on fibers, Ep ∼= {p} × V , and then follow this with idU ×α where α is a linear
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symplectomorphism between (V, ω) and (R2n, ω0) as in Proposition 32. We may rephrase this by

saying that locally, over U , there exist sections of a symplectic frame bundle for E, the principal

Sp(n,R)-bundle PSp(n,R) →M . Namely, let β ∈ V Sp
2n (R2n) ≈ Sp(n,R) be a symplectic frame for R2n

(cf Proposition 14 of Section 2.2.3), and use Φ−1 ◦ idU ×α−1 to pull it back to a frame β̃ ∈ V Sp
2n (Ep)

for Ep. Since this same frame works for all p ∈ U , β̃ ∈ Γ(U,PSp(n,R) is a local frame for all of EU .

Now consider two local trivializations Φi : EUi → Ui × R2n and Φj : EUj → Uj × R2n with

Ui ∩Uj nonempty, and let si, sj ∈ Γ(Ui ∩Uj , PSp(n,R)) be the corresponding local symplectic frames

over Ui and Uj , respectively. Then the linear map taking si to sj fiberwise must be a symplectic

matrix by the discussion preceding Proposition 14. Consequently, by using the symplectic frame

bundle PSp(n,R) instead of the general frame bundle PGL(2n,R) we may reduce the structure group

of E from GL(2n,R) to Sp(n,R).5 �

Proposition 48 Let E →M be a real rank 2n vector bundle.

(1) For every symplectic form ω ∈ Ω2(E) on E there exists an ω-compatible complex structure

J ∈ J (E,ω). The space J (E,ω) is therefore nonempty and contractible.

(2) For each complex structure J ∈ J (E) there exists a symplectic form ω ∈ Ω2(E) which

is compatible with J . Let us denote by Symp(E, J) the fiber bundle of complex structures

compatible with ω. Then Symp(E, J) is nonempty and contractible.

Proof : These statements follow from their vector space analogs, Propositions 37, 38 and 41 applied

fiberwise to Ep and then over open sets U to EU = π−1(U). �

Recall the construction of characteristic classes via classifying spaces, as described, for ex-

ample, in Milnor and Stasheff [79]. Fix M a paracompact space (M can safely be taken to be a

manifold or CW complex). Then for each topological group G there exists a connected topological

5 The formalism for this reduction is the existence a principal bundle morphism ι : PSp(n,R) → PGL(2n,R) (the
inclusion fiberwise of Sp(n,R) in GL(2n,R)) covering the identity which is equivariant with respect to the Lie group
inclusion homomorphism i : Sp(n,R) ↪→ GL(2n,R), i.e. satisfies ι(β̃ · g) = ι(β̃) · i(g). The discussion above gives us
a method for constructiong this bundle morphism: ι is the inclusion, which fiberwise is just i, and the equivariance
is an easy consequence of the fact that Sp(n,R) is a subgroup of GL(2n,R).



110

space BG, the classifying space for G, and a weakly contractible (all homotopy groups are triv-

ial) principal G-bundle EG → BG such that the following holds: The set of equivalence classes

PrinG(M) of principal G-bundles over M is in bijective correspondence with the set [M,BG] of

homotopy classes of continuous maps f : M → BG, sending [f ] ∈ [M,BG] to [f∗EG] (in fact

the contravariant functors PrinG and [ · , BG] from hTop to Sets are naturally equivalent, see

Husemoller [58, Proposition 10.4, Theorem 12.12]). If in addition G is any connected or semi-

simple Lie group G, then G is topologcially the product of a compact subgroup H and a Euclidean

space E, G ≈ H × E (this is the case with Sp(n,R), according to Proposition 26, which gives

Sp(n,R) ≈ U(n) × Rn2+n), which means H is a deformation retract of G. This is the case for

G = GL(n,R) or GL(n,C) with H the maximal compact subgroup O(n) or U(n), respectively, but

it applies elsewhere, too, as with G = Sp(n,R). In such a case, the structure group of a principal

G-bundle PG → M may be reduced to H (see Remarks 12.13 and 12.14 following Theorem 12.7

in Steenrod [96]). This broad result is due to Iwasawa [60], the original statement holding for G

semi-simple and due to Elie Cartan [24] in 1927, with a simplified proof by Mostow [83] in 1949.

Moreover, by Theorem 5.1 in Husemoller [58], given a Lie group G and a closed Lie subgroup H,

the principal H-bundle reductions of a given principal G-bundle PG are in bijective correspondence

with the homotopy classes of maps f : M → BH such that f0 ◦ f ' g, where g : M → BG and

f0 : BH → BG is covered by the bundle map h0 : PH ×i G → PG, with i : H ↪→ G the inclusion.

If H is a deformation retract of G, therefore, there is only one such homotopy class, and so there

is only one homotopy class of f0, which means BH and BG are homotopy equivalent.

Now, let us apply these facts to the structure group G = Sp(n,R) for a symplectic vector

bundle (E,ω) over a smooth manifold M , recalling that Sp(n,R) is topologically the product of its

maximal compact subgroup U(n) and a Euclidean space Rn2+n (Proposition 26) and deformation

retracts onto U(n) (Proposition 27):

Theorem 16 The structure group of any symplectic vector bundle (E,ω) may be further reduced

from Sp(n,R) to its maximal compact subgroup U(n), and these reductions are in one-to-one corre-
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spondence with the space of ω-compatible complex structures J (E,ω). As a result, every symplectic

vector bundle has an underlying complex structure and a Hermitian inner product, and any two

symplectic bundles (E1, ω1) and (E2, ω2) over M are symplectically isomorphic iff their underlying

complex vector bundles are isomorphic.

Proof : Then the set of equivalence classes PrinSp(n,R)(M) of principal Sp(n,R)-bundles is in

bijective correspondence with the set of homotopy classes [M,B Sp(n,R)] of maps from M to the

classifying space B Sp(n,R). The fact that Sp(n,R) deformation retracts onto its maximal compact

subgroup U(n) (Proposition 27) means that BU(n) is homotopy equivalent to B Sp(n,R), and any

principal Sp(n,R)-bundle is equivalent to a principal U(n)-bundle, whose associated vector bundle

E ∼= PU(n) ×U(n) Cn is by nature a complex Hermitian vector bundle (transition functions taking

values in U(n) preserve the Hermitian inner product on overlaps). Since principal Sp(n,R)-bundles

are in one-to-one correspondence with symplectic vector bundles (send PSp(n,R) to its associated

vector bundle PSp(n,R) ×Sp(n,R) R2n), we see that E admits a complex Hermitian structure.

Now recall Proposition 40, which gave J (R2n, ω0) the structure of a homogeneus space,

J (R2n, ω0) ≈ Sp(n,R)/U(n), sending J to ΦJ · U(n), where ΦJ ∈ Sp(n,R) was defined in Propo-

sition 32, using J . The contractibility of Sp(n,R)/U(n) was shown in Proposition 27, where the

explicit homotopy H : idSp(n,R) → r, with r : Sp(n,R) → U(n) the retract r(A) := A(ATA)−1/2,

was given by

H : Sp(n,R)× [0, 1]→ Sp(n,R)

H(A, t) := A(ATA)−t/2

Now, each nonunitary A ∈ Sp(n,R) corresponds to a unique J ∈ J (R2n, ω0), via the map J 7→ ΦJ =

A, so the homotopy H above applies to this ΦJ . The argument generalizes in the obvious way to any

arbitrary symplectic vector space (V, ω). As a consequence, we have the following important fact:

The ω-compatible complex structures J (E,ω) on a symplectic vector bundle (E,ω) over M are in

one-to-one correspondence with U(n)-reductions of the structure group Sp(n,R), each nonunitary

symplectic frame β ∈ PSp(n,R) being sent to γ = H(β, 1) ∈ PU(n) by the unique J ∈ J (E,ω)
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satisfying ΦJ = β (recalling that V Sp
2n (R2n) ≈ Sp(n,R), Proposition 14).

For the last statement, suppose first that (E1, ω1) and (E2, ω2) are symplectically isomorphic.

Then, there is a map F : E1 → E2 such that F ∗ω2 = ω1. Choose Ji ∈ J (Ei, ωi) and note

that J1, F
∗J2 ∈ J (E1, ω1) (since F ∗J2 = F−1 ◦ J2 ◦ F implies (F ∗J2)2 = F−1 ◦ (−I) ◦ F = −I

and ω1(u, F ∗J2v) = F ∗ω2(u, (F−1 ◦ J2 ◦ F )v) = ω2(Fu, J2Fv) ≥ 0), so that by convexity we

have a smooth family Jt ∈ J (E1, ω1) joining J0 := F ∗J2 and J1, which by the bundle analog of

Propositions 32 and 37 means there is a smooth family of bundle isomorphisms Ft : E1 → E1 such

that F ∗t Jt = J1. Therefore F ◦ F0 : E1 → E2 is a bundle isormorphism which intertwines J1 and

J2, and this is our complex bundle isomorphism. The converse follows from an application of (2)

of the previous proposition. �

Remark 28 Since the set of isomorphism classes Vect2k
Sp(M) of symplectic vector bundles over

M coincides with the set of isomorphism classes VectkC(M) of complex vector bundles over M ,

symplectic vector bundles have the same characteristic classes as complex vector bundles. These

are the Chern classes. �

Remark 29 (Hermitian Vector Bundles) Of course complex vector bundles are not necessar-

ily holomorphic. They are merely smooth vector bundles with typical fiber a complex vector space

and complex linear transition functions. Holomorphic vector bundles π : E →M additionally

require E and M to be complex manifolds (meaning atlas charts (U,ϕ) are holomorphic: they are

homeomorphisms onto open subsets of Cn and transition functions ϕi ◦ ϕ−1
j are holomorphic), π

to be holomorphic, and the local trivializations Φ : π−1(U)→ U × Cn to be biholomorphic. Anal-

ogously to the real vector bundle case, holomorphic vector bundles determine and are determined

by cocycles ϕij := ϕi ◦ϕ−1
j : Ui ∩Uj → GL(n,C), which in this case are additionally required to be

holomorphic (Huybrechts [59, Remark 2.2.2]).

Given a complex vector bundle E → M , its structure group GL(n,C) can be reduced to

its maximal compact subgroup U(n), which is a deformation retract of GL(n,C) (via the Gram-

Schmidt process, see the remarks following Corollary 5), and thus we may suppose E endowed with
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a Hermitian inner product H. From this Hermitian inner product we can get both a Riemannian

metric g and a symplectic form ω on E, as follows:

g :=
1

2
(H +H)

ω := − i
2

(H −H)

Then g is symmetric and ω is skew-symmetric:

g(u, v) =
1

2
(H(u, v) +H(u, v)) =

1

2
(H(v, u) +H(v, u)) = g(v, u)

ω(u, v) = − i
2

(H(u, v)−H(u, v)) =
i

2
(H(v, u)−H(v, u)) = −ω(v, u)

and both are nondegenerate: to see that ω is nondegenerate, note that it can be represented as

J0 with respect to a well-chosen (symplectic) basis β. For let J be the given complex structure

i on E, viewed momentarily as a real 2n-dimensional real vector bundle, and decompose E into

the subbundles E1,0 and E0,1, the ±1 eigenbundles of J . Then, as in the proof of Proposition 32,

any complex basis (uj + ivj)
n
j=1 for E1,0 gives a real basis (v1, . . . , vn, u1, . . . , un) for E with the

property that vj = J(uj) and J(vj) = −uj , so [ω]β = J0. Moreover, this J is ω-compatible, for

ω(u, Jv) = − i
2

(H(u, Jv)−H(u, Jv)) = − i
2

(iH(u, v) + iH(u, v))

=
1

2
(H(u, v) +H(u, v)) = g(u, v)

This incidentally also shows that g is nondegenerate, for the symplectic basis will diagonalize g, in

view of g(ui, uj) = ω(ui, Juj) = ω(ui, vj) = δij , g(vi, vj) = ω(vi, Jvj) = −ω(vi, uj) = ω(uj , vi) =

δij . Lastly, it is clear that

H = g + iω

If we replace − i
2(H−H) with its positive counterpart i

2(H−H), which is called the fundamental

form, then we need to replace J = i with J = −i, and in this case H becomes H = g − iω. �

Our interest, of course, is in the case of E the tangent bundle TM of an even-dimensional

manifold M .
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2.4.2 Symplectic Manifolds: Definitions and Examples

2.4.2.1 Definitions and Basic Properties

Definition 9 A symplectic manifold (M,ω) is a smooth manifold M of real dimension 2n

equipped with a symplectic form, that is a nondegenerate closed 2-form ω ∈ Ω2(M). Explicitly,

this means ω satisfies

(1) dω = 0

(2) ωp ∈
∧2 T ∗pM

∼= Hom2
R,Skew(TpM ;R) is symplectic for each p ∈ M , that is ωp is a skew-

symmetric and nondegenerate bilinear form on each tangent space.

Let (M,ωM ) and (N,ωN ) be two symplectic manifolds. A smooth map f : M → N is said to be

symplectic or a morphism of symplectic manifolds if f preserves the form,

f∗ωN = ωM , i.e.

ωM (X,Y ) = ωN
(
Tf(X), T f(Y )

)
∀X,Y ∈ Γ(TM)

This means that, fiberwise, Tpf is a linear symplectic morphism from (TpM,ωMp) to (Tf(p)N,ωNf(p)
).

A symplectomorphism is a symplectic diffeomorphism.6 Clearly f is a symplectomorphism iff

f−1 is, since Tpf is invertible and symplecitc fiberwise. In the case M = N the collection of

symplectomorphisms of M forms a group under composition, called the symplectic group of M ,

denoted

Sp(M,ω) or Sp(M) := {f ∈ Diff(M) | f∗ω = ω}

Obviously, if f ∈ Sp(M,ω), then fiberwise Tpf is an element of the group of linear symplectomor-

phisms under the identification Sp(TpM,ωp) ∼= Sp(n,R). �

Remark 30 If ω ∈ Ω2(M) is not closed, then we say (M,ω) is an almost symplectic manifold,

and in this case (TM,ω) is merely a symplectic vector bundle over M , and consequently a complex

vector bundle, by Proposition 48 and Theorem 16. �

6 To distinguish the manifold case from the linear case, we shall write ’linear’ in front of ’symplectic’ and ’sym-
plectomorphism’ to clarify the meaning.
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Proposition 49

(1) Any almost symplectic manifold (M,ω) is orientable.

(2) No symplectic form ω on a closed (compact without boundary) manifold is exact. More-

over, in such a case ω, being closed, induces a nonzero cohomology class [ωn] = [ω]n ∈

H2n
dR(M ;R).

Proof : Since a 2-form ω ∈ Ω2(M) is nondegenerate iff ωn ∈ Ω2n(M) is nonzero (Theorem 13),

we see that in such a case ωn is a volume form and so every almost symplectic manifold (M,ω) is

orientable. If ω is additionally closed, then it defines a nonzero cohomology class [ω] ∈ H2
dR(M ;R).

When M is a closed manifold, then [ω]n := [ω] ^ · · · ^ [ω] = [ωn] ∈ H2n
dR(M ;R) is also nonzero

(Salamon and McDuff [76, p. 83]), and this furnishes us with many examples of non-symplectic

even-dimensional manifolds (see Remark 32 below). To see that ω cannot be exact on a closed

manifold, use Stokes’ Theorem: if ω = dα, then

ωn = (dα)n = dα ∧ (dα)n−1 = dα ∧ (dα)n−1 + dα ∧ d(dα)n−1 = d(α ∧ ωn−1)

so ∫
M
ωn =

∫
∂M

dω =

∫
∂M

d2(α ∧ ωn−1) =

∫
∂M

0 = 0

which is impossible since ωn is a volume form, which must give nonzero volume for M . �

Definition 10 Let (M,ω) be a symplectic manifold. A bundle endomorphism J ∈ End(TM) is

called an almost complex structure if J2 = −I, where I is the idenitity element of End(TM).

This means that fiberwise, on TpM , we have J2
p = −Ip, i.e. Jp is a complex structure on each vector

space TpM ∼= R2n. As in the case of vector spaces, we say that J is tamed by ω if the bilinear

form gJ := ω ◦ (I × J) is symmetric and positive definite on Γ(TM),

gJ(X,Y ) = gJ(Y,X),

gJ(X,X) := ω(X, JX) ≥ 0, ∀X ∈ Γ(TM), and gJ(X,X) = 0 iff X = 0
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(gJ is always symmetric, but not always positive definite.) We say J is calibrated by ω if addi-

tionally J ∈ Sp(M,ω), i.e. J∗ω = ω, or

ω(JX, JY ) = ω(X,Y ), ∀X,Y ∈ Γ(TM)

If J is both tamed and calibrated by ω, then we say that J is compatible with ω. In this case,

gJ is a Riemannian metric on M and J ∈ Sp(M,ω) ∩ O(M, gJ), i.e. J also preserves the metric,

J∗gJ = gJ , for

gJ(JX, JY ) = ω(JX, J2Y ) = −ω(JX, Y ) = ω(Y, JX) = gJ(Y,X) = gJ(X,Y )

because these relations hold fiberwise (see Sections 2.3.3 and 2.3.5 above). �

Now, fiberwise Jp ∈ J (TpM), so we can also view J as a field of complex structures, or a

section of a certain bundle, p 7→ Jp ∈ J (TpM). To formalize this idea we introduce the following

fiber bundles over the symplecic manifold (M,ω), and which are indeed fiber bundles over M

by Darboux’s theorem, which allows for the construction of local trivializations (see Bieliavsky

et al. [17], and Proposition 50 below; these bundles do not necessarily exist over arbitrary even

dimensional manifolds).

Definition 11 The bundle of almost complex structures is the fiber bundle

J (TM)→M (2.102)

whose typical fiber is the 2n2-dimensional manifold J (R2n) ≈ GL(2n,R)/GL(n,C) of complex

structures (Proposition 35). We can thus think of J (TM) as a principal GL(2n,R)/GL(n,C)-

bundle, J (TM) = PGL(2n,R)/GL(n,C). We also have the bundle of ω-tame almost complex

structures,

Jτ (TM,ω)→M (2.103)

which is a fiber bundle with typical fiber the 2n2-dimensional manifold Jτ (R2n, ω0) ≈ {A ∈

M2n(R) |AJ0 + J0A = 0} ≈ R2n2
(Propositon 36), as well as the bundle of ω-calibrated almost
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complex structures,

Jc(TM,ω)→M (2.104)

a fiber bundle with typical fiber the n(n + 1)-dimensional manifold Jc(R2n, ω0) ∼= sp(n,R) ∩

Sym2n(R) ∼= Rn(n+1). Lastly, we have the bundle of ω-compatible almost complex struc-

tures,

J (TM,ω)→M (2.105)

which is a fiber bundle with typical fiber the n(n + 1)-dimensional manifold J (R2n) ≈ sp(n,R) ∩

Sym2n(R) ∼= Rn(n+1) (Remark 23). �

Remark 31 The bundle J (TM,ω) can also be viewed (Bieliavsky et al [17]) as the associated

bundle to the symplectic frame bundle,

J (TM,ω) ∼= PSp(n,R) ×Sp(n,R) J(R2n, ω0) (2.106)

with typical fiber the space of vector-space complex structures J(R2n, ω0) ≈ Sp(n,R)/U(n), by

Proposition 40, which specifies the R2n-action on the homogeneous space J(R2n, ω0). Indeed,

J (TM,ω) is also a homogeneous space,

J (TM,ω) ≈ PSp(n,R)/U(n) (2.107)

p ◦ J0 ◦ p−1 ←→ p ·U(n) (2.108)

In other words, the conjugation action of Sp(n,R) on J (R2n, ω0) of Proposition 40 can be lifted to

the symplectic frame bundle J (TM,ω) fiberwise.

Another observation worth making is that the symplectic frame bundle PSp(n,R) has an R2n-

valued 1-form called the soldering form

θ ∈ Ω1(PSp(n,R);R2n)

θp(X) := p−1(Tπ(X)), p ∈ Sp(M,ω), π : PSp(n,R) →M
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To understand this form, consider the vertical bundle of PSp(n,R),

V PSp(n,R) := kerTπ →M

Then V PSp(n,R) = ker θ. A horizontal 1-form is one which vanishes on V PSp(n,R), and we note

that the components of θ are therefore horizontal forms. Given X ∈ sp(n,R), we may define the

vertical vector field X̃ on PSp(n,R) by

X̃p :=
d

dt

∣∣∣∣
t=0

(
p ◦ exp(tX)

)
and from this we obtain the trivialization of the vertical bundle,

PSp(n,R) × sp(n,R) ∼= V PSp(n,R)

(p,X) 7→ X̃p

This is a standard construction, of course, and applies to any principal G-bundle PG → M . Note

that the pullback bundle π∗TM is also trivial, via (p,X) 7→ (p, p−1X), so θ imay be viewed as a

map

θ : TPSp(n,R) → PSp(n,R) × R2n

θp(X) =
(
p, p−1(Tπ(X))

)
We also get an exact sequence of bundles,

0 - PSp(n,R) × sp(n,R) - TPSp(n,R)
- PSp(n,R) × R2n - 0

Splitting this exact sequence trivializes the tangent bundle of PSp(n,R). �

Proposition 50 Let M be a 2n-dimensional manifold.

(1) For each nondegenerate 2-form ω ∈ Ω2(M) there exsits an ω-compatible almost complex

structure J ∈ Γ(J (TM,ω)), and moreover the space Γ(J (TM,ω)) is path connected and

contractible.
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(2) For each almost complex structure J ∈ Γ(J (TM)) there exists a nondegenerate 2-form

ω ∈ Ω2(M) which is compatible with J , i.e. J ∈ Γ(J (TM,ω)). The space ΩJ(M) of such

forms is path connected and contractible.

Proof : This is just a special case of Theorem 48 with E = TM . �

Remark 32 As a result of this proposition, we see that an even dimensional manifold M admits

an almost complex structure iff it carries a nondegenerate 2-form (not necessarily closed). That is,

M is an almost complex manifold iff it is an almost symplectic manifold. The former condition,

however, does not hold for certain even dimensional manifolds. For example, the connected sum

CP2#CP2 does not admit any almost complex structure by a result due to Taubes and Wu (see

[12, Proposition 1.5.1, Ex. 1.5.2] and [76, Ex. 4.7]). Less exotic examples are even-dimensional

spheres S2n for n ∈ N\{1, 3}, a result known since the early 1950s (see Borel and Serre [19], and

Wu [111]). Of course, since H2n
dR(S2n;R) = 0, by we know Proposition 49 that no even-dimensional

spheres S2n for n ≥ 2 carries a symplectic structure, though by the Borel and Serre result we know

that S2n carries no nondegenerate 2-form whatsoever. For the cases S2 and S6 see Examples 13

and 9 below. �

Remark 33 In his doctoral dissertation [46] of 1969, Mikhail Gromov proved that any open

(boundaryless and containing no compact component) even dimensional almost symplectic (equiv-

alently almost complex) manifold M is actually symplectic. The precise statement is: Any open

almost complex manifold (M,J) (equivalently almost symplectic manifold (M,ω)) admits a sym-

plectic structure ω which belongs to any prescribed cohomology class a ∈ H2(M) and such that

J ∈ [Jω] where [Jω] is the homotopy class of almost complex structures compatible with ω. The

situation for closed (compact without boundary) manifolds was rather different, and Gromov’s

h-principle could not be applied. Taubes, in his 1994-5 papers [98] and [99] showed by means of

Seiberg-Witten invariants that in the case of closed almost symplectc/almost complex manifolds the

situation was different. He produced the example of CP2#CP2#CP2, an almost complex/almost
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symplectic manifold carrying a cohomology class a ∈ H2(M) such that an 6= 0 and yet having no

symplectic structure. �

Thus, if we are given a symplectic manifold (M,ω), we automatically have an almost complex

structure J ∈ Γ(J (M,ω)) compatible with ω and giving the tangent bundle TM the structure of

a complex vector bundle. The obvious questions that arise are: (1) Does J make M a complex

manifold, at least under certain circumstances? Or, to put it differently, does J come from a

complex manifold structure on M? (2) Suppose M has at least one almost complex structure J .

Is M a complex manifold? That is, do any of its almost complex structures come from a complex

manifold structure? (3) If M is a complex manifold, under what conditions is it symplectic or

Kähler?

There is a relatively easy answer to (1), namely (M,J) is complex precisely when J ’s Nijenhuis

tensor NJ vanishes. This is the Newlander-Nirenberg theorem, which we describe below. However,

the Newlander-Nirenberg theorem is not enough to answer (2), which seems to be an open question.

The example of S6 is the most likely to produce an instance of an almost complex manifold without

a complex manifold structure, but is currently unresolved (see Example 9 below). (3) has been

answered many times over, there are many non-Kähler symplectic and complex manifolds (see

Example below).

Definition 12 An almost complex manifold (M,J) is a real 2n-dimensional smooth manifold

M equipped with an almost complex structure J ∈ Γ(J (TM)). By the previous proposition such

manifolds always possess a nondegenerate 2-form ω which is compatible with J . If ω were closed,

this would make (M,ω) a symplectic manifold. �

Definition 13 A complex manifold of complex dimension n is a real 2n-dimensional real smooth

manifold equipped with a holomorphic structure, an equivalence class of holomorphic atlases.

A holomorphic atlas is an atlas {(Ui, ϕi)}i∈I on M with each ϕi a homoemorphism onto an open
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set ϕ(Ui) in Cn, usually taken to be the open unit disk, and such that the transition functions

ϕij := ϕi ◦ ϕ−1
j : ϕj(Ui ∩ Uj)→ ϕi(Ui ∩ Uj)

are biholomorphic. Two holomorphic atlases {(Ui, ϕi)}i∈I and {(Vj , ψj)}i∈J are called equivalent if

all maps ϕi ◦ ψ−1
j : ψj(Ui ∩ Vj)→ ϕi(Ui ∩ Vj) are holomorphic.

Define the differential operators

∂

∂zj
:=

1

2

(
∂

∂xj
− i ∂

∂yj

)
,

∂

∂zj
:=

1

2

(
∂

∂xj
+ i

∂

∂yj

)

on C∞(Cn,C), and their associated dual forms,

dzj := dxj + idyj , dzj := dxj − idyj

If U ⊆ Cn, then by Huybrechts [59, Proposition 1.3.1] the complexified tangent bundle TUC :=

TU ⊗R C :=
⊔
p∈U TpU ⊗R C splits as

TUC = T 1,0U ⊗ T 0,1U

where T 1,0 is the +1-eigenbundle and T 0,1 is the −1-eigenbundle of the natural complex structure

i on TUC (see Section 2.3.1 for the algebraic necessaries), with (∂/∂z1, . . . , ∂/∂zn) a global frame

for T 1,0 and (∂/∂z1, . . . , ∂/∂zn) a global frame for T 0,1. The complexified cotangent bundle T ∗UC

splits analogously,

T ∗UC = (T ∗U)1,0 ⊕ (T ∗U)0,1

and (dz1, . . . , dzn) is a global frame for (T ∗U)1,0 and (dz1, . . . , dzn) is a global frame for (T ∗U)0,1.

Let

Ωk
C(U) := Γ(U,

∧k
TUC)

denote the space of complex k-forms on U , which splits as

Ωk
C(U) =

⊕
p+q=k

Ωp,q(U)
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where Ωp,q(U) = Γ
(
U, (
∧p(T ∗U)1,0) ⊗ (

∧q(T ∗U)0,1)
)
. Let Πp,q : Ωk

C(U) → Ωp,q(U) be the (p, q)th

projection, and note that the ordinary real exterior derivative d : Ω•(U)→ Ω•+1(U) extends to the

complexification Ω•C(U) by d(α⊗ z) := (dα)⊗ z, and satisfies

d : Ωp,q →
⊕

r+s=p+q+1

Ωr,s

dα =
∑

r+s=p+q+1

Πr,s ◦ dα

By means of the complexified d we may define the Dolbeault operators,

∂ := Πp+1,q ◦ d : ωp,qC (U)→ ωp+1,q
C (U)

∂ := Πp,q+1 ◦ d : ωp,qC (U)→ ωp,q+1
C (U)

which satisfy (Huybrechts [59, Lemma 1.3.6])

d = ∂ + ∂

∂2∂
2

= 0

∂(α ∧ β) = ∂α ∧ β + (−1)p+qα ∧ ∂β

∂(α ∧ β) = ∂α ∧ β + (−1)p+qα ∧ ∂β

If H is the standard Hermitian inner product on TU = U × Cn, then letting g = 1
2(H + H)

and ω := i
2(H −H) be the induced Riemannian metric and symplectic form, respectively, so that

H = g − iω, then ω may be expressed in complex coordinates as

ω =
i

2

n∑
i,j=1

Hijdzj ∧ dzj

where Hij = H( ∂
∂xi
, ∂
∂yj

), and dω = 0 iff for any point z ∈ U there exist a neighbourhood U ′ of

0 ∈ Cn and a local biholomorphic map f : U ′ = f(U ′) ⊆ U with f(0) = z and such that f∗g

osculates in the origin to order two to the standard metric (Huybrechts [59, Proposition 1.3.12]).

To put all of this on the complex manifold M we need to define the holomorphic tangent

bundle. Let ψij : Ui∩Uj → GL(n,C) be the cocycle gotten from the transition map ϕij = ϕi ◦ϕ−1
j



123

by application of the Jacobian of ϕij at the point ϕj(z) ∈ ϕj(Ui∩Uj) ⊆ C, Jϕij(ϕj(z)) :=
(∂ϕkij
∂z`

)
k,`

:

ψij : Ui ∩ Uj → GL(n,C)

ψij(ϕj(z)) := Jϕij(ϕj(z))

These cocycles glue together to form a holomorphic vector bundle TM →M , called the holomorphic

tangent bundle. It is (complex-)isomorphic to T 1,0M (Voisin [106, Proposition 2.13], Huybrechts

[59, Proposition 2.6.4]), and in fact equal to it as a subbundle of TMC if we view TM1,0 as a

complex vector bundle with complex structure J the natural complex structure i coming from the

complexification of TM . For this reason, TM1,0 is sometimes itself called the holomorphic tangent

bundle. The realification of TM is clearly real-isomorphic to the real tangent bundle TM of the

underlying real manifold M :

TM ∼=C TM
1,0 ∼=R TM

Given a complex manifold M with holomorphic tangent bundle TM ∼=C TM
1,0, we know that TM1,0

locally, over a chart domain U , possesses complex coordinates (∂/∂z1, . . . , ∂/∂zn), and so over U we

can apply the whole algebraic apparatus we constructed over U ⊆ Cn: forms, complexified forms,

their bi-grading, and the operators d, ∂, ∂, as well as the form ω. All of these glue together over

M , but some of the conditions on d, ∂, ∂, J , and ω may fail to hold globally. We will describe

these below. The main interest will be the condition on ω that it be closed, for in that case (M,ω)

will also be symplectic. �

Definition 14 A complex structure J ∈ Γ(J (TM)) on a 2n-dimensional real smooth manifold M

is called integrable if it is induced by a holomorphic structure on M , that is if J is multiplication

by i coordinate-wise in a way compatible with changes of coordinates. This is the case precisely

when M is equipped with an atlas {(Ui, ϕi)}i∈I such that J is represented by J0 ∈ J (R2n) locally,

Tpϕi ◦ Jp = J0 ◦ Tpϕi : TpM → R2n

(Salamon and McDuff [76, p. 123]). In this case, the almost complex manifold (M,J) acquires the

structure of a complex manifold, and J is called a complex structure. �
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In order to understand this integrability condition, we need to define an ancillary tool, the

Nijenhuis tensor.

Definition 15 Let J ∈ Γ(J (TM)) be an almost complex structure on M . The Nijenhuis tensor

NJ is a (1, 2)-tensor field, given in terms of the Lie bracket on Γ(TM),

NJ ∈ T 1
2 (M) = Γ(TM ⊗ T ∗M ⊗ T ∗M) ∼= Hom2

C∞(M)(TM ;TM)

NJ(X,Y ) := [JX, JY ]− J [JX, Y ]− J [X, JY ]− [X,Y ]

More generally, given any A ∈ EndTM we may define NA as

NA(X,Y ) := [AX,AY ]−A[AX,Y ]−A[X,AY ] +A2[X,Y ]

which is one-half of the Frölicher-Nijenhuis bracket, NA = 1
2 [A,A]FN . �

The following proposition characterizes the integrability condition. It’s proof may be found

in Propositions 2.6.15 and 2.6.17, Corollary 2.6.18 of Huybrechts [59], except for the Newlander-

Nirenberg (the equivalence of statements (1) and (5)), whose proof may be found in the original

1957 article of Newlander and Nirenberg [84], with a more modern proof in, e.g. Webster [108].

Proposition 51 Let J ∈ Γ(J (TM)) be an almost complex structure on an even-dimensional real

smooth manifold M . Then the following are equivalent:

(1) J is integrable.

(2) d = ∂ + ∂ on Ω•C(M).

(3) Π0,2 ◦ d = 0 on Ω1,0(M).

(4) [TM1,0, TM1,0] ⊆ TM1,0, that is the Lie bracket preserves the bundle TM1,0.

(5) NJ ≡ 0. (Newlander-Nirenberg Theorem)

Moreover, if ∂
2

= 0, then J is integrable. Conversely, if J is integrable, then ∂2 = ∂
2

= 0 and

∂ ◦ ∂ = −∂ ◦ ∂. �
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Example 9 It is well known that the 6-sphere S6 carries a non-integrable almost complex structure

J (Calabi [23], Steenrod [96, Remark 41.21, p. 217]), but it remains an open question whether all

J ∈ Γ(J (TS6)) are non-integrable. We know, of course, that S6 admits no symplectic structure

(Proposition 49), so in any case (S6, J) is an example of an almost complex manifold, possibly a

complex manifold, which is not a symplectic manifold. A recent paper of Gábor Etesi [31] claiming

to prove the existence of a an integrable complex structure on S6 has an erratum pending review

at the time of this writing. �

Definition 16 A Kähler manifold is a symplectic manifold (M,ω) which is also a complex

manifold (M,J) with J ∈ Γ(J (TM,ω)) an integrable and compatible almost complex structure.

Alternatively, a Kähler manifold is a complex manifold M endowed with a Kähler structure: a

Riemannian metric g, which is compatible with the induced complex structure J ∈ Γ(J (TM)),

multiplication by i, meaning that the fundamental form ω is compatible, ω := g(J ·, ·), and closed

dω = 0. The Riemannian metric g is here called a hermitian structure, and (M, g) a hermitian

manifold. In this case g = ω(·, J ·), too, by compatibility. �

Example 10 There are many examples of complex manifolds which are symplectic yet not Kähler,

beginning with those in Thurston’s article [101]. Gompf [41] has examples of compact symplectic

non-Kähler manifolds for every dimension ≥ 4, and Guan [49] has constructed examples of compact

simply connected symplectic and complex but non-Kähler manifolds. Angella’s recent book [2]

contains many more, along with the cohomological theory underlying the production of many of

these examples. �

2.4.2.2 Examples of Symplectic Manifolds

Example 11 The standard vector space (R2n, ω0) of Section 2.3.3 can be viewed as a symplectic

manifold with trivial tangent bundle TR2n = R2n × R2n. Here, we think of ω0 not merely as an

element of
∧2(R2n)∗ ∼= Hom2

R,Skew(R2n;R) ∼= Skew2n(R), but as a section of the bundle
∧2 T ∗R2n ∼=
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Hom2
R,Skew(TR2n;R)→ R2n, i.e.

ω0 ∈ Ω2(R2n) = Γ
(∧2

T ∗R2n
)

In other words, ω0 sends a point x ∈ R2n to a symplectic form in TxR2n = {x} × R2n,

ω0x = (x, ω0) =
(
x,

n∑
j=1

dqj ∧ dpj
)

as an element of {x}×
∧2(R2n)∗ =

∧2 T ∗xR2n. Notice that ω0 is closed, since the exterior derivative

of each dqi ∧ dpj is 0.

Considering R2n as a manifold rather than just a vector space already introduces new features.

For example, the class of morphisms is much larger. Let us identify TxR2n with R2n to simplify

notation, and consider the following example of a nonlinear symplectic morphism:

f : R2 → R2

f(x, y) = (x2 + x+ y, x2 + y)

Its tangent map is

Df(x, y) =

2x+ 1 1

2x 1


which is easily seen to be symplectic on R2—it satisfies Df(x, y)TJ0Df(x, y) = J0 (see Proposition

19). It is, of course, not a symplectomorphism because it fails to be injective. An example of a

symplectomorphism is

f : R2 → R2

f(x, y) = (ex + x+ y, ex + y)

whose tangent map is

Df(x, y) =

ex + 1 1

ex 1


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which is easily verified to be an element of Sp(1,R) for all (x, y) ∈ R2. It is, moreover, invertible,

for we can solve the equations u = ex + x+ y, v = ex + y, namely x = u− v and y = v − eu−v, so

f−1(u, v) = (u− v, v − eu−v)

D(f−1)(u, v) =

 1 −1

−eu−v 1 + eu−v


which is also easily seen to be symplectic. This shows that the symplectomorphism group

Sp(R2, ω0) = {f ∈ Diff(R2) |Df(x) ∈ Sp(n,R), ∀x ∈ R2}

is strictly larger than the linear symplectomorphism group Sp(1,R). �

Example 12 More generally, any symplectic vector space (V, ω) can be viewed as a symplectic

manifold with trivial tangent bundle TV = V×V and ω ∈ Ω2(V ) = Γ(
∧2 T ∗V ) ∼= Hom2

R,Skew(T ∗V ;R),

v 7→ ωv := {v} × ω ∈ TvV = {v} × V , and as with R2n, to which V is linearly symplectomorphic,

we will have a much larger class of morphisms in the manifold category over the vector space cat-

egory. �

Example 13 The 2-sphere S2 may be endowed with a symplectic form ω as follows. View S2 as

embedded in R3, so that the tangent space TpS
2 above a point p ∈ S2 may be identified with the

subspace of the tangent space TpR3 = {p}×R3, whereby we also get the subsapce normal to TpS
2,

NpS
2 := (TpS

2)⊥, which can be identified with the span of the vector (p,p) in {p} × R3, as

NpS
2 = {p} × span(p)

Then, given any two vectors in (p,u), (p,v) ∈ TpS2, we have that (p,u× v) ∈ NpS
2, and we can

take the (standard R3) inner product of this vector with (p,p),

〈(p,p), (p,u× v)〉p := 〈p,u× v〉
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which is positive whenever u and v are nonzero and linearly independent, and represents the volume

of the parallelpiped P (p,u,v) spanned by p, u and v—in fact it equals the absolute value of the

determinant of the 3× 3 matrix AP with columns are these three vectors,

〈p,u× v〉 = Vol(P (p,u,v)) = | detAP | = det
√
ATPAP = ‖u× v‖ = Area(u,v)

which, since p ⊥ span(u,v) and ‖p‖ = 1, also gives the area of the parallelogram spanned by u

and v. Using this inner product we define the symplectic form

ω ∈ Ω2(S2)

ωp

(
(p,p), (p,u× v)

)
:= 〈(p,p), (p,u× v)〉p =

∣∣det
(
(p u v)

)∣∣ = ‖u× v‖

and we notice that the skew-symmetry of the cross product ensures the skew-symmetry of ω, while

nondegeneracy can be shown by choosing a symplectic basis: let u ∈ p⊥ be any unit vector, and

define v = u× p. Then, ω(u,u) = ω(v,v) = 0, while ω(u,v) = 〈p,u× (u× p)〉 = 〈p,−p〉 = −1,

whence [ω](u,v) = J0. Note that ω is just the standard area form, whose integral gives the surface

area of the sphere, ∫
S2

ω = 4π

For if we choose u latitudinal, that is tangent to the latitudinal circles and so represented by the

vector field ∂θ, then v = u×p is the tangent vector to a longitudinal great circles and so represented

by ∂ϕ, where (θ, ϕ) are the standard spherical coordinates, 0 < θ < 2π, 0 < ϕ < π. Of course, the

collection of points (sinϕ, 0, cosϕ) for 0 ≤ ϕ ≤ π are not covered by this chart, but this is a set of

measure zero so does not affect the integral.

Now, consider a symplectomorphism ϕ ∈ Sp(S2, ω). The requirement ϕ∗ω = ω means

ωϕ(p)(Tpϕ(u), Tpϕ(v)) = ωp(u,v), which is equivalent to the area of the parallelogram spanned by

Tpϕ(u) and Tpϕ(v) being the same as the area of the parallelogram spanned u and v. Thus,

Sp(S2, ω) = {area- and orientation-preserving ϕ ∈ Diff(S2)}

Of course, SO(3) ⊆ Sp(S2, ω), since any special orthogonal matrix A is just a rotation matrix, so
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is its own derivative and therefore preserves areas and orientation. Indeed, since

TpA : TpS
2 → TApS

2

TpA(p,u) = (Ap, Au)

and A preserves the dot product, and therefore angles and lengths, we have

A∗ωp(u,v) = ωAp(Au, Av) = ‖(Au)× (Av)‖

= ‖Au‖‖Av‖ sin θ = ‖u‖‖u‖ sin θ = ‖u× v‖ = ωp(u,v)

However, the group Sp(S2, ω) is strictly larger than SO(3). �

Example 14 The sphere was an example of an orientable surface. More generally, any oriented

surface S is a symplectic manifold (S, dA), with symplectic form its area form dA. For dA ∈ Ω2(S)

is trivially closed by dimension count, and it is nondegenerate by reason of orientability, which

requires the area form to be a nonvanishing top-form. This produces a large class of 2-dimensional

examples. �

Example 15 Consider the 2-torus T2 = R2/Z2. We know from the previous example that it is a

symplectic manifold, being an orientable surface, whether we view it as a quotient R2/Z2, a product

S1× S1, or an embedding into R3. But viewing it as a quotient gives an explicit description of the

symplectic form ω. Namely, take the standard symplectic form ω0 on R2 and note that it descends

to the quotient because it is translation-invariant on R2, which has trivial tangent bundle on which

ω0 is constant, by Example 11. Alternatively, viewing T2 as S1×S1, we may define ω = dθ ∧ dϕ7 ,

though note that this expression suffers from the restrictions on θ and ϕ which require them to lie

in (0, 2π) and so not covering the points (1, eiϕ), (eiθ, 1) ∈ T2.

The same constructions work to make the 2n-torus T2n = R2n/Z2n ≈ S1×· · ·×S1 symplectic.

Viewing it as a lattice, we let ω0 descend from R2n to the quotient, while viewing it as the product

7 Strictly speaking, ω(eiθ,eiϕ) =
(
(eiθ, eiϕ), dθ ∧ dϕ

)



130

of 2n circles, T2n = (T2)n, we let ω = π∗1(dθ1 ∧ dϕ1) + · · ·+ π∗n(dθn ∧ dϕn), where πj : T2n → T2
j is

the projection onto the jth factor. This is a general type of construction for products of symplectic

manifolds, which we describe next. �

Example 16 Let (M,ωM ) and (N,ωN ) be symplectic manifolds of dimensions 2m and 2n, re-

specively. Then their product M × N is also a symplectic manifold, with product symplectic

form

ωM ⊕ ωN := π∗1ωM + π∗2ωN

where π1 : M×N →M and π2 : M×N → N are the projections onto each factor. Skew-symmetry

is clear, and nondegeneracy follows from the observation that

1

(m+ n)!
ωM ⊕ ωN =

1

(m)!(n)!
(π∗1ωM )m ∧ (π∗2ωN )n

and this latter form is nondegenerate because each of (π∗1ωM )m and (π∗2ωN )n are.

We also have a twisted product symplectic form

ωM 	 ωN := π∗1ωM − π∗2ωN

which will be needed in the study of symplectomorphisms of a symplectic manifold.

These forms allows us to construct new symplectic manifolds out of old. For example, S2×T2

and S2 × S2 × T2 are symplectic manifolds. �

Example 17 Not every complex manifold M is a symplectic manifold. If M is complex, then

it is also Hermitian (Remark 29), so TM has a Hermitian inner product H from which we get a

Riemannian metric g := 1
2(H +H) and a nondegenerate skew-symmetric 2-form ω := − i

2(H −H),

called the fundamental form, and clearly satisfying H = g + iω. However, ω is not necessarily

closed.
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Example 18 (The Cotangent Bundle) The canonical example of a symplectic manifold is the

cotangent bundle T ∗M of an n-manifold M . Consider the projection map π : T ∗M → M and it’s

tangent map Tπ : T (T ∗M)→ TM . Define a 1-form η ∈ Ω1(T ∗M), called the tautological 1-form

(or canonical or symplectic or Liouville or Poincaré 1-form), as follows: if ξ ∈ T (T ∗M) and

α ∈ T ∗M is a ’point’ in the cotangent bundle, then ξα ∈ Tα(T ∗M), and Tαπ : Tα(T ∗M)→ Tπ(α)M ,

so let η act on ξα as

ηα(ξα) := (π∗α)α(ξα) = α(Tαπ(ξα))

If (U,ϕ) be a chart on M , with ϕ = (q1, . . . , qn) in components (we think of the qi as position

coordinates), then Φ = (q1, . . . , qn, p1, . . . , pn) is a chart on T ∗M . A point α ∈ T ∗M then looks

locally like α = (a, b) :=
∑n

i=1 aiqi+bipi, where ai, bj ∈ R, and a tangent vector ξα ∈ Tα(T ∗M) then

is expressed locally as ξα = (A,B) :=
∑n

i=1Ai
∂
∂qi

+ Bi
∂
∂pi

. Consequently, Tαπ(ξα) =
∑n

i=1Ai
∂
∂qi

,

and so, since pi = dqi, we have

ηα(ξα) = α

( n∑
i=1

Ai
∂

∂qi

)
=

n∑
j=1

(ajqj + bjdq
j)

( n∑
i=1

Ai
∂

∂qi

)
=

n∑
i=1

biAi

Therefore,

η = p dq :=
n∑
i=1

pi dq
i

is the coordinate expression of the tautological 1-form. �

2.4.3 Darboux’s Theorem

Recall Proposition 32, which says that all symplectic vector spaces (V, ω) of dimension 2n are

linearly symplectomorphic to (R2n, ω0). Our first major result is a generalization of this statement

to manifolds: all symplectic manifolds are locally symplectomorphic to the symplectic manifold

(R2n, ω0). This means that about every point p in M there are canonical or symplectic coordinates,

i.e. there is a chart (U,ϕ) with ϕ = (x1, . . . , xn, y1, . . . , yn) : U → ϕ(U) ⊆ R2n such that ω has the

local expression ω =
∑n

i=1 dx
i ∧ dyi in these coordinates, and moreover ϕ is a symplectomorphism,

i.e. ϕ∗ω0 = ω. This is the content of Darboux’s theorem.
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Lemma 6 Let M and N be smooth manifolds and let {Ft : M → N | t ∈ R} be a smooth 1-

parameter family of diffeomeorphisms (F : M ×R→ N is a smooth map). Let Xt ∈ XFt(M) be the

tangent field along Ft, that is find Xt making the following diagram commute,

TN

M
Ft
-

Xt
-

N

πN
?

That is, Xt(p) is the tangent vector to the curve c : R → N given by c(s) := Fs(p) at the point

q = Ft(p) in N . Then, if (αt)t∈R ∈ Ω(N) × R is a 1-parameter family of differential forms on N ,

we have

d

dt
(F ∗t αt) = F ∗t

(
dαt
dt

+ iXtdαt

)
+ d
(
F ∗t (iXtαt)

)
= F ∗t

(
dαt
dt

+ (iXt ◦ d+ d ◦ iXt)αt
)

When M = N , Ft is the flow of X ∈ X(M), and αt is independent of t, i.e. αt = α ∈ Ω(M), the

last equality at t = 0 may be formulated in terms of the Lie derivative as Cartan’s magic formula,

d
dt

∣∣
t=0

(F ∗t α) = LXα = (iX ◦ d+ d ◦ iX)α.

Proof : This is Lemma 2.3, Berndt [16]. �

Theorem 17 (Darboux’s Theorem) Let M be a 2n-dimensional smooth manifold and let ω0, ω1 ∈

Ω2(M) be symplectic forms agreeing at some point p ∈ M . Then there is a neighborhood U of p

and a diffeomorphism F : U → F (U) fixing p and satisfying F ∗ω1 = ω0 on U .

Proof : Define ωt := (1 − t)ω0 + tω1 for all t ∈ I = [0, 1], and note that it is closed since ω0 and

ω1 are. Define σ := ω0 − ω1 = − d
dtωt. Since σ is also closed, Poincaré’s Lemma implies that it is

locally exact, i.e. there exists a neighborhood U1 of p and a 1-form α ∈ Ω1(U1) such that dα = σ

on U1. Since ωt(p) = ω0(p) for all t ∈ I and ω0 is nondegenerate, so is ω1 on a neighborhood U0 of

p, which we may suppose lies inside U1. Use the nondegeneracy of ωt on U0 to obtain the vector

field Yt := ω]t(α), which means iYtωt = α on U0. Then the flows Ft of the vector fields Yt exist on

a neighborhood U ⊆ U0 of p, and satisfy Ft(U) ⊆ U0 and Ft(p) = p. Moreover, by construction we
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have dωt
dt + d(iYtωt) = dωt

dt + dα = dωt
dt + σ = 0 and by the closedness of ωt and Lemma 6 applied to

the Ft and ωt we see that

d

dt

(
F ∗t ωt) = F ∗t

(
dωt
dt

+ iYt(dωt) + d(iYtωt)

)
= F ∗t 0 = 0

Consequently, since F0 = idU , we have that F ∗t ωt = F ∗0ω0 = ω0 for all t, including t = 1. �

Corollary 9 If (M,ω) is a symplectic manifold, then each point p ∈M has an open neighborhood

U which is symplectomorphic to an open subset of (R2n, ω0). This means that about every point

p ∈M there is a chart (U,ϕ) with ϕ = (x1, . . . , xn, y1, . . . , yn) : U → ϕ(U) ⊆ R2n such that

ω =

n∑
i=1

dxi ∧ dyi

Proof : If (U,ϕ) is a chart about p, then define ψ := ϕ−1 and define the symplectic form ω1 := ψ∗ωp

on U1 := ϕ(U) ⊆ R2n. By applying a linear transformation if necessary we may assume that U1 is

a neighborhood of 0 in R2n and ω1(0) = ω0(0). Then use Darboux’s theorem to get a neighborhood

U0 of 0 ∈ R2n and diffeomorphism F0 : U0 → F (U0) ⊆ U1 such that F ∗0ω1 = ω0 and F0(0) = 0.

Finally, set F := (ψ ◦ F0)−1 : V → F (V ) = U0, where V = ψ(F0(U0)), which is the desired

symplectomorphism and chart (V, F ). �

2.4.4 The Poisson Bracket

Let (M,ω) be a symplectic manifold. Recall the isomorphisms ω[ : X(M) → Ω1(M) and

ω] = (ω[)−1 : Ω1(M) → X(M), given, as in the linear case, by ω[(X) := iXω = ω(X, ·), which we

also denote by X[, and we also write α] for ω](α). Using these, we define the Poisson bracket of

two 1-forms α, β ∈ Ω1(M) by

{α, β} := −[α], β]][ = −i[α],β]]ω (2.109)

where [·, ·] is the Lie bracket on X(M). As a consequence, {·, ·} is a Lie bracket on Ω1(M).
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Theorem 18 For all α, β ∈ Ω1(M) we have the following characterization of the Poisson bracket

in terms of the Lie, exterior, and interior derivatives:

{α, β} = −Lω](α)β + Lω](β)α+ d(iω](α)iω](β)ω) (2.110)

Proof : This follows from the fact that ω is closed, so that for X1, X2, X3 ∈ X(M)

0 = dω(X1, X2, X3) =

3∑
i=1

(−1)i−1Xi

(
ω(. . . X̂i . . . )

)
+
∑
i<j

(−1)i+jω
(
[Xi, Xj ], Xk

)
Taking X1 = α] := ω](α), X2 = β] := ω](β), we get that

0 = (−1)1−1X1

(
ω(X2, X3) + (−1)2−1X2

(
ω(X1, X3)

)
+ (−1)3−1X3

(
ω(X1, X2)

)
+(−1)1+2ω

(
[X1, X2], X3

)
+ (−1)1+3ω

(
[X1, X3], X2

)
+ (−1)2+3ω

(
[X2, X3], X1

)
= Lα]

(
iβ]ω(X3)

)
− Lβ]

(
iα]ω(X3)

)
− LX3

(
iα]iβ]ω

)
−ω
(
[α], β]], X3

)
− ω

(
β], [α], X3]

)
− ω

(
[X1, X2], X3

)
− ω

(
[β], X3], α]

)
= Lα]

(
β(X3)

)
− Lβ]

(
α(X3)

)
− LX3

(
iα]iβ]ω

)
+{α, β}(X3)− β

(
Lα]X3

)
+ α

(
Lβ]X3

)
= Lα]

(
β(X3)

)
− Lβ]

(
α(X3)

)
+ {α, β}(X3)− d(iα]iβ]ω)(X3)

since, e.g. iα]ω = ω[(α]) = ω[(ω](α)) = α. This is true for all X3. �

2.4.4.1 The Poisson Bracket on Smooth Functions on (R2n, ω0)

Let us now look at the special case of (R2n, ω0). Let f ∈ C∞(R2n) ∼= C∞(T ∗Rn), which in

this context we call an observable (cf. Folland [34]). Then df ∈ Ω1(R2n), so we can use ω]0 to get

a vector field Xf ∈ X(R2n),

Xf := ω]0(df), so that df = −iXfω0 (2.111)

and therefore, for all Y ∈ X(M), df(Y ) = −iY iXfω0 = ω[0(Xf )(Y ) = ω0(Y,Xf ). We can also define

the Poisson bracket {f, g} of two functions/observables f, g ∈ C∞(R2n) ∼= C∞(T ∗Rn), as

follows,

{f, g} := −iXf iXg ]ω0 = ω0(Xf , Xg) (2.112)
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Let us see what Xf and {f, g} looks like in symplectic coordinates, (x1, . . . , xn, y1, . . . , xn).

Proposition 52 If f ∈ C∞(R2n) then in canonical symplectic coordinates we have

Xf =
∂f

∂xi
∂

∂yi
− ∂f

∂yi
∂

∂xi
(2.113)

where we used Einstein summation notation.

Proof : If we write Xf = Xi ∂
∂xi

+Xn+i ∂
∂yi

and Y = Y i ∂
∂xi

+ Y n+i ∂
∂yi

, then

df(Y ) =

(
∂f

∂xi
dxi +

∂f

∂yi
dyi
)(

Y j ∂

∂xj
+ Y n+j ∂

∂yj

)
= Y i ∂f

∂xi
+ Y n+i ∂f

∂yi

On the other hand,

ω0(Y,Xf ) = (dxi ∧ dyi)
(
Y j ∂

∂xj
+ Y n+j ∂

∂yj
, Xk ∂

∂xk
+Xn+k ∂

∂yk

)
= Y iXn+i − Y n+iXi

These two expressions are equal, since df(Y ) = ω0(Y,Xf ), so comparing components we see that

Xi = − ∂f
∂yi

and Xn+i = ∂f
∂xi

. �

Corollary 10 For all f, g ∈ C∞(R2n) we have the coordinate expression in symplectic coordinates

{f, g} = ω0(Xf , Xg) =
∂f

∂xi
∂g

∂yi
− ∂f

∂yi
∂g

∂xi
(2.114)

Proof : This follows from the previous corollary, using the coordinate expressions for Xf and

Y = Xg and the formula ω0(Xf , Xg) = Y i ∂f
∂xi

+ Y n+i ∂f
∂yi

. �

Remark 34 Let xi, yj ∈ (R2n)∗ be the dual vectors of the symplectic basis vectors of R2n. Then,

xi, yj ∈ C∞(R2n) as well, so we may consider their Poisson bracket, {xi, yj} = ω0(Xxi , Yyj ) =

ω0(xi, yj). Then, clearly, the xi and yj satisfy the following relations:

{xi, xj} = 0

{yi, yj} = 0

{xi, yj} = δij

(2.115)

We shall return to these relations later. �
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2.4.4.2 The Poisson Bracket on Smooth Functions on (M,ω)

Let us now consider the general case of an arbitrary symplectic manifold (M,ω). We remark

first that a smooth function f ∈ C∞(M) is also here called an observable sometimes. The Poisson

bracket of two functions/observables f, g ∈ C∞(M) is then given as in the real case, namely

by

{f, g} := −iXf iXgω = ω(Xf , Xg) (2.116)

where Xf ∈ X(M) is the vector field associated to f given by

Xf := ω]0(df), and so df = −iXfω (2.117)

Since by Darboux’s theorem any symplectic manifold (M,ω) is locally symplectomorphic to (R2n, ω0),

the above local expressions (2.113) and (2.114) are also true for f, g ∈ C∞(M).

We refer to Berndt [16] for proofs of the following facts, which are straightforward, if tedious,

calculations.

Proposition 53 Let (M,ω) be a symplectic manifold. If f, g ∈ C∞(M), then

{f, g} = −LXf g = LXgf (2.118)

�

Corollary 11 Let (M,ω) be a symplectic manifold. If f, g ∈ C∞(M), then {f, g} = 0 iff f is

constant on the integral curves of Xg iff g is constant on the integral curves of Xf . �

Proposition 54 Let (M,ω) be a symplectic manifold. If f, g ∈ C∞(M), then

d{f, g} = {df, dg} (2.119)

�

The Jacobi identity in the next proposition may be checked in local coordinates, or using the

Lie derivative expressions introduced above (Proposition 53).
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Proposition 55 Let (M,ω) be a symplectic manifold. The Poisson bracket {·, ·} on C∞(M) makes

C∞(M) into a Lie algebra. Moreover, if f, g ∈ C∞(M), we have

X{f,g} = −[Xf , Xg] �

Theorem 19 Let (M,ωM ) and (N,ωN ) be symplectic manifolds. If F : M → N is a dif-

feomeorphism, then F is symplectic, i.e. F ∗ωN = ωM iff the pullback F ∗ : Ω(N) → Ω(M),

F ∗α = α◦(TF×· · ·×TF ), is a Lie algebra homomorphism, iff the pullback F ∗ : C∞(N)→ C∞(M),

F ∗f = f ◦ F , is a Lie algebra homomorphsm. Here the Lie brackets are the Poisson brackets. �

2.4.5 Hamiltonian Vector Fields

Let (M,ω) be a symplectic manifold. We saw in the last section that to each smooth function

f ∈ C∞(M) there is an associated vector field Xf ∈ X(M), called the Hamiltonian vector field

associated to f , given by Xf = ω](df), so that iXfω = df , and in local canonical/symplectic

coordinates Xf = ∂f
∂xi

∂
∂yi
− ∂f

∂yi
∂
∂xi

(Theorem 52 and the corollary to Darboux’s Theorem, 9).

Definition 17 Fix a function H ∈ C∞(M) and call it the energy function, and consider the

associated vector field XH ∈ X(M). Then the triple (M,ω,XH) is called a Hamiltonian system,

and XH is called the Hamiltonian vector field of the system. The terminology comes from

classical mechanics, and in that setting symplectic coordinates are denoted with p’s and q’s (as

in Section 2.3.3, especially equation (2.37)), with the qi being the position coordinates and the

pj being the momentum coordinates. With this terminology and notation, locally we know by

Darboux’s theorem that ω has coordinate expression

ω =

n∑
i=1

dqi ∧ dpi and XH =

n∑
i=1

∂H

∂qi
∂

∂pi
− ∂H

∂pi
∂

∂qi

The last expression can be summarized in what are called Hamilton’s or the Hamiltonian equa-

tions for the system (M,ω,XH). Let γ : I → M be an integral curve of XH which has local
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coordinate expression γ̂(t) = (q(t), p(t)) in canonical coordinates. Then, Hamilton’s equations

∂H

∂pi
= q̇i =

dqi
dt

∂H

∂qi
= −ṗi = −dpi

dt

(2.120)

are just a restatement of the coordinate expression of XH given above. �

Theorem 20 (Conservation of Energy) If (M,ω,H) is a Hamiltonian system, then the energy

function H is constant on any integral curve of its associated Hamiltonian vector field XH .

Proof : If γ is an integral curve of XH , then γ′(t) = XH(γ(t)) for all t in the domain of γ, and

so Hamilton’s equations (2.120) hold in local canonical coordinates. But dH(γ′(t)) := γ′(t)(H) :=

(H ◦ γ)′(t), and

(H ◦ γ)′(t) = dH(γ′(t)) = dH
(
(XH)γ′(t)

)
= i(XH)γ′(t)

ω
(
(XH)γ′(t)

)
= ω

(
(XH)γ′(t), (XH)γ′(t)

)
= 0

so H(γ(t)) is constant. �

Theorem 21 (Liouville) If (M,ω,H) is a Hamiltonian system, then the flow F of the Hamil-

tonian vector field XH forms a one parameter family of symplecticomorphisms of M , that is

Ft ∈ Sp(M) for all t in the flow domain.

Proof : Since ω is closed and ωt = ω for all t, so that dω/dt = 0, we have by Lemma 6 that

d

dt

(
F ∗t ω

)
= F ∗

(
iXHdω + d(iXHω)

)
= F ∗

(
d(dH)

)
) = 0

so F ∗t ω is independent of t. But F0 = idM , because it is the flow of XH , so we must have

F ∗t ω = F ∗0ω = ω for all t, which shows that Ft ∈ Sp(M). �

Corollary 12 The symplectomorphisms Ft of the flow of XH preserve the volume form τω :=

(−1)[n/2]

n! ωn. �
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Definition 18 Let

Ham(M)

denote the vector subspace of X(M) consisting of Hamiltonian vector fields on (M,ω). We call a

vector field X locally Hamiltonian if for each p ∈ M there is a neighborhood U of p such that

X|U ∈ Ham(U). The space of all locally Hamiltonian vector fields is denoted

Ham0(M)

We say that a vector field X ∈ X(M) is a symplectic vector field if its flow F gives a 1-parameter

family of symplectomorphisms, i.e. Ft ∈ Sp(M) for all t. We thus have, by Liouville’s theorem that

all Hamiltonian vector fields are symplectic. �

With this terminology, we can state the following:

Theorem 22 Let (M,ω) be a symplectic manifold. Then, for any vector field X ∈ X(M) the

following are equivalent:

(1) X ∈ Ham0(M).

(2) iXω is closed.

(3) X is symplectic.

(4) LXω = 0.

Proof : (1) =⇒ (2) is simply d(iXω) = d(dH) = 0. (1) =⇒ (3) is Liouville’s theorem, and

(1) =⇒ (4) is found in the proof of Liouville’s theorem, since d
dt

∣∣
t=0

(
F ∗t ω

)
= 0. (3) =⇒ (4)

is the observation that F ∗t ω = ω implies LXω = d
dt

∣∣
t=0

(
F ∗t ω

)
= d

dt

∣∣
t=0

ω = 0, while conversely

LXω = 0 means F ∗t ω is a constant, which, since F0 = idM , implies that F ∗t ω = F ∗0ω = ω.

(2) =⇒ (1) Poincaré’s lemma says that iXω being closed implies that it is locally exact, which

means that around each point p ∈ M there is a neighborhood U and a function H ∈ C∞(U) such

that iXω|U = dH|U , i.e. that X ∈ Ham0(M). (4) =⇒ (2) Suppose LXω = 0. Then, by Cartan’s

formula 0 = d(iXω) + iX(dω) = d(iXω) since ω is closed by assumption. �
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Corollary 13 Ham0(M) is a Lie subalgebra of X(M).

Proof : This follows from LXω = 0 and L[X,Y ] = [LX ,LY ]. �

Remark 35 Ham(M) = Ham0(M) iff H1(M,R) = 0, since that is exactly the statement that

closed 1-forms are globally exact, which is needed to have (2) =⇒ (1) in the proof of Theorem

22. �

Remark 36 Let i : R → C∞(M) be the inclusion, i(c) = c, where the right-hand-side is the

constant function c : M → R with value c ∈ R. Let j : C∞(M) → Ham(M) be given by

j(f) := Xf , i.e. j associates to each observable f its Hamiltonian vector field Xf . Then we have

an exact sequence,

0 −−→ R i−→ C∞(M)
j−−→ Ham(M) −−→ 0 (2.121)

called the fundamental exact sequence. This follows from the fact that

ker j = {Xf |Xf = 0}

= {Xf | df = iXfω = ω(0, ·) = 0}

= {Xf | f = i(c) for some c ∈ R}

= im i

= C∞(M)

Consequently, we have

Ham(M) ∼= C∞(M)/R (2.122)

which is a restatement in terms of the First Isomorphism Theorem. �

2.4.6 Symplectic Connections

This section treats the basic object in the study of symplectic geometry, the symplectic

connection. Though it is the natural analog to the Levi-Civitta connection on a Riemannian

manifold, the symplectic connection is not unique, and in fact the space of symplectic connections is
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an affine space. To have a canonical choice of symplectic connection on (M,ω) one needs additional

structure, such as a (pseudo-)Kähler structure or a symmetric space structure on M . The former

case is equivalent to the condition that ∇ preserves an ω-calibrated almost complex structure

J ∈ Γ(Jc(TM,ω)), ∇J = 0. Our treatement follows those of Bieliavsky et al. [17], Vaisman [103],

Habermann [55], [54], and Gel’fand, Ratekh and Shubin [37].

2.4.6.1 Definition and Basic Properties

Definition 19 Let (M,ω) be a symplectic manifold. A symplectic connection ∇ : Γ(TM) →

Γ(TM⊗T ∗M) on M is one which respects the symplectic form or keep the symplectic form parallel,

meaning that its extension to Ω•(M) satisfies

∇ω = 0 (2.123)

Equivalently, for vector fields X,Y, Z ∈ Γ(TM), this means

X
(
ω(Y,Z)

)
= ω(∇XY,Z) + ω(Y,∇XZ) (2.124)

Associated to each symplectic connection are some auxiliary tensors: First, the torsion tensor

T ∈ Γ(T ∗M⊗2 ⊗ TM) = Ω2(M ;TM), the (2, 1) tensor given by

T∇(X,Y ) := ∇XY −∇YX − [X,Y ]

If (e1, . . . , en, f1, . . . , fn) ∈ Γ(U,PSp(n,R)) is a local symplectic frame over U ⊆ M , then, following

Habermann and Habermann [54], we can also define the associated torsion vector field T of ∇,

T =

n∑
j=1

T∇(ej , fj) �

Remark 37 Some authors, e.g. [17], also require a symplectic connection to be torsion-free, in

which case the connection with torsion is called an almost symplectic connection. Following Haber-

mann and Habermann [54] we prefer to use the term symplectic for connections only satisfying

∇ω = 0. �
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Remark 38 Recall Remark 31 on the trivialization of the vertical bundle of the symplectic frame

bundle, PSp(n,R) × sp(n,R) ∼= V PSp(n,R). A principal connection in PSp(n,R) is an sp(n,R)-valued

1-form α ∈ Ω1(PSp(n,R); sp(n,R)) which satisfies α(X̃) = X and S∗α = AdS α for all X ∈ sp(n,R)

and S ∈ Sp(n,R), and has kerα = HPSp(n,R), the complementary horizontal bundle to the vertical

bundle V PSp(n,R), that is

PSp(n,R) = HPSp(n,R) ⊕ V PSp(n,R) = kerα⊕ kerTπ

where π : PSp(n,R) → M . Now, α determines and is determined by a symplectic connection ∇ as

follows: Over a trivializing open subset U of M for PSp(n,R), take a section s : U → PSp(n,R) (a local

frame) and note that for any fixed u ∈ Rn the vector su is a vector field on U , su ∈ Γ(U, TM),

and s∗α ∈ Ω1(U ; sp(n,R)), and these are related by

∇X(su) = s
(
(s∗α)(X)u

)
, i.e. s−1∇s = s∗α

Moreover, the components of α and the soldering form θ are linearly independent and sapne the

cotangent spaces of PSp(n,R) at each point, making PSp(n,R) parallelizable. This makes PSp(n,R)

simpler to work with than M for many purposes. See Bieliavsky et al. [17] for applications of this

observation. �

To see the equivalence of the two conditions (2.123) and (2.124) in the definition above we

need to unravel the definition of ∇ω.

Definition 20 As a map ∇ : Ω•(M) → Ω•(M), the extension of a connection ∇ : Γ(TM) →

Γ(T ∗M ⊗ TM) is defined as follows:

(1) On functions, or 0-forms f ∈ Ω0(M) = C∞(M), we define ∇ : Ω0(M)→ Ω1(M) by

(∇f)(X) := ∇Xf := df(X) = Xf

(2) On 1-forms α ∈ Ω1(M), we define ∇ : Ω1(M)→ Ω2(M) by

(∇α)(X,Y ) := ∇X(α(Y ))− α(∇XY )

= d(α(Y ))(X)− α(∇XY )

= X(α(Y ))− α(∇XY )
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(3) Then we extend ∇ to all other forms by requiring ∇ to be a derivation with respect to the

wedge product:

∇(α ∧ β) := (∇α) ∧ β + α ∧ (∇β)

Then we extend ∇ linearly over all Ω•(M). �

For example, on simple 2-forms α ∧ β ∈ Ω2(M), where α, β ∈ Ω1(M), we have

∇(α ∧ ω)(X,Y, Z) =
(
(∇α) ∧ β + α ∧ (∇β)

)
(X,Y, Z)

=
(
(∇X(α(Y ))− α(∇XY )) ∧ β(Z)

+α(Y ) ∧ ((∇X(β(Z))− β(∇XZ))
)

= X(α(Y )) · β(Z)− α(∇XY ) · β(Z)

+α(Y ) · (Xβ(Z))− α(Y ) · β(∇XZ)

Remark 39 Let us explain the second of the conditions, the behavior of ∇ on 1-forms, for then

we will see how to calculate the covariant derivative of a 2-form like ω as a function on vector

fields. First, recall that for any connection ∇ on M the principled way to extend it to tensor fields

Γ(TM⊗n) is by requiring it to behave as a derivation with respect to the tensor product,

∇X(Y1 ⊗ Y2 ⊗ · · · ⊗ Yn) :=

n∑
j=1

Y1 ⊗ · · · ⊗ (∇XYj)⊗ · · · ⊗ Yn

To extend it to forms, or covectors, we additionally require it to commute with contraction. So let

us explain contraction: Contraction or trace is a pairing function,

tr : Γ(T ∗M)⊗ Γ(TM)→ C∞(M)

tr(α⊗X) := α(X)

This coordinate-free definition of contraction/trace is just the usual trace on square matrices, via the

isomorphism EndV ∼= V ∗ ⊗ V , α⊗ v 7→ α(·)v. Given any α ∈ Ω1(M) = Γ(T ∗M) and X ∈ Γ(TM)

we thus require of ∇ that

d(α(Y )) = ∇(tr(α⊗ Y )) = tr(∇(α⊗ Y ) = tr((∇α)⊗ Y + α⊗ (∇Y )) = (∇α)(Y ) + α(∇Y )
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from which we get an expression of ∇α as a 2-form:

(∇α)(X,Y ) = d(α(Y ))(X)− α(∇XY ) = X(α(Y ))− α(∇XY )

which is precisely condition (2) in the definition of ∇ on 1-forms above.

Proof of the equivalence of (2.123) and (2.124): Consider ω ∈ Ω2(M), and let X,Y ∈

Γ(TM). Then ω(X, ·), ω(·, Y ) ∈ Ω1(M), and we write

tr1(ω ⊗X) := ω(X, ·)

tr2(ω ⊗ Y ) := ω(·, Y )

Then,

ω(Y,Z) = tr1 ◦ tr2(ω ⊗ Z ⊗ Y ) = tr2 ◦ tr1(ω ⊗ Y ⊗ Z)

Therefore

d
(
ω(Y, Z)

)
= ∇(tr1 ◦ tr2(ω ⊗ Z ⊗ Y )

= tr1 ◦ tr2

(
∇(ω ⊗ Z ⊗ Y )

)
= tr1 ◦ tr2

(
(∇ω)⊗ Z ⊗ Y + ω ⊗ (∇Z)⊗ Y + ω ⊗ Z ⊗ (∇Y )

)
= (∇ω)(Y,Z) + ω(Y,∇Z) + ω(∇Y,Z)

That is, as a 3-form, ∇ω is given by

(∇ω)(X,Y, Z) = (∇Xω)(Y,Z)

= X
(
ω(Y,Z)

)
− ω(∇XY,Z)− ω(Y,∇XZ)

The condition (2.123) on a symplectic for ω, that ∇ω = 0, therefore means

X
(
ω(Y,Z)

)
= ω(∇XY,Z) + ω(Y,∇XZ)

which completes the proof. �
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Notation 3 Let us introduce the following notation for the different spaces of connections we are

likely to encounter. Let

C(M) = {connections on M} (2.125)

C0(M) = {torsion-free connections on M} (2.126)

denote the space of all connections on M , an affine space modelled on the vector space Ω1(M ; EndTM),

i.e. C(M) = ∇+ Ω1(M ; EndTM). Let

C(M, g) = {∇ ∈ C(M) | ∇g = 0} (2.127)

C0(M, g) = C(M, g) ∩ C0(M) = {Levi-Civita connection} (2.128)

denote, respectively, the space of metric connections and torsion-free metric connections, that

is those ∇ ∈ C(M) preserving the metric g (equivalently, satisfying Xg(Y, Z) = g(∇XY, Z) +

g(Y,∇XZ) for all X,Y, Z ∈ Γ(TM)), the former an affine space modelled on the vector space

E1(M, g) := {A ∈ EndTM | g(A(X)Y, Z) = −g(A(X)Z, Y )},

C(M, g) = ∇+ E1(M, g)

The affine map

Ψ : C(M)→ Ω2(M ;TM), Ψ(∇) := T∇

sending a connection to its torsion tensor has an underlying linear map

Φ : Ω1(M ; EndTM)→ ω2(M ;TM), Φ(A)(X,Y ) := A(X)Y −A(Y )X

It is well-known (cf Lemma 2.1 and Corollary 2.2 of Habermann [55]) that the restriction of the

linear map Φ to E1(M, g) is an isomorphism onto Ω2(M ;TM),

Φ ∈ GL
(
E1(M, g), ω2(M ;TM)

)
and the associated affine map Ψ is injective. In particular, the preimage of 0 under Ψ is the

Levi-Civita connection,

Ψ−1(0) = ∇LC (Levi-Civita connection)
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Next, we introduce the following subspaces of C(M) needed in the symplectic category: Let

(M,ω) be a symplectic space, and let

C(M,ω) = {∇ ∈ C(M) | ∇ω = 0} (2.129)

denote the space of symplectic connections (we will see below that it is a nonempty affine space

modelled on a certain vector space). Let

C0(M,ω) := {∇ ∈ C(M) | ∇ω = T∇ = 0} (2.130)

denote the space of torsion-free symplectic connections. If J ∈ Γ(J (TM,ω)) is an ω-compatible

almost complex structure, let

C(M,ω, J) = {∇ ∈ C(M,ω) | ∇J = 0} (2.131)

denote the space of symplectic connections preserving the almost complex structure J . The torsion-

free analog of C(M,ω, J) is denoted

C0(M,ω, J) = {∇ ∈ C0(M,ω) | ∇J = 0} (2.132)

�

Proposition 56 Let (M,ω) be a symplectic manifold. The space C(M,ω) of symplectic connections

is a nonempty affine subspace of C(M) modelled on the vector space of (1, 2)-tensors E1(M,ω) =

{S ∈ Γ(T ∗M⊗2 ⊗ TM) | ω(S(X,Y ), Z) = ω(S(X,Z), Y )},

C(M,ω) = ∇+ E1(M,ω) (2.133)

for any given symplectic connection ∇ ∈ C(M,ω). The space C0(M,ω) of torsion-free symplectic

connections is a nonempty affine space modelled on the vector space of symmetric (0, 3)-tensor

Γ(T ∗M�3),

C0(M,ω) = ∇+ Γ(T ∗M�3) (2.134)
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Proof : (1) Let us show existence first. Choose any connection ∇0 ∈ C(M), which we may suppose

to be torsion-free so that we cover both cases, for instance the Levi-Civita connection, and use the

nondegeneracy of ω to define the (1, 2)-tensor N on M by

(∇0
Xω)(Y,Z) = ω(N(X,Y ), Z)

In other words N(X,Y ) = ω]
(
∇0
Xω)(Y, ·)

)
. Now, the skew-symmetry of ω implies

ω(N(X,Z), Y ) = (∇0
X)(Z, Y ) = X

(
ω(Z, Y )

)
− ω(∇0

XZ, Y )− ω(Z,∇0
XY )

= −X
(
ω(Y, Z)

)
+ ω(∇0

XY, Z) + ω(Y,∇0
XZ) = −(∇0

Xω)(Y, Z) = −ω(N(X,Y ), Z)

while the closedness of ω implies that

ω(N(X,Y ), Z) + ω(N(Y, Z), X) + ω(N(Z,X), Y )

= (∇0
Xω)(Y,Z) + (∇0

Y ω)(Z,X) + (∇0
Zω)(X,Y )

= X(ω(Y,Z))− ω(∇0
XY,Z)− ω(Y,∇0

XZ)

+ Y (ω(Z,X))− ω(∇0
Y Z,X)− ω(Z,∇0

YX)

+ Z(ω(X,Y ))− ω(∇0
ZX,Y )− ω(X,∇0

ZY )

= X(ω(Y,Z))− ω(∇0
XY −∇0

YX,Z)

+ Y (ω(Z,X))− ω(∇0
Y Z −∇0

ZY,X)

+ Z(ω(X,Y ))− ω(∇0
ZX −∇0

XZ, Y )

= X(ω(Y, Z))− ω([X,Y ], Z)

− Y (ω(X,Z))− ω([Z, Y ], X)

+ Z(ω(X,Y )) + ω([X,Z], Y )

= dω(X,Y, Z)

= 0

Now, define ∇ ∈ C(M) by

∇XY := ∇0
XY +

1

3
N(X,Y ) +

1

3
N(Y,X) (2.135)



148

and notice that T∇ = T∇
0

= 0 since in the expression for T∇ the N terms cancel and ∇0 is

torsion-free. Moreover, ∇ is symplectic:

(∇Xω)(Y,Z) = X(ω(Y, Z))− ω(∇XY,Z)− ω(Y,∇XZ)

=
[
(∇0

Xω)(Y, Z) + ω(∇0
XY, Z) + ω(Y,∇0

XZ)
]

−
[
ω(∇0

XY,Z) +
1

3
ω(N(X,Y ), Z) +

1

3
ω(N(Y,X), Z)

]
−
[
ω(Y,∇0

XZ) +
1

3
ω(Y,N(X,Z)) +

1

3
ω(Y,N(Z,X)

]
= (∇0

Xω)(Y,Z)− 1

3
ω(N(X,Y ), Z)− 1

3
ω(N(Y,X), Z)

−1

3
ω(Y,N(X,Z))− 1

3
ω(Y,N(Z,X))

= 0

the last equality following from

(a) (∇0
Xω)(Y,Z) = ω(N(X,Y ), Z)

(b) − ω(Y,N(X,Z)) = ω(N(X,Z), Y ) = −ω(N(X,Y ), Z)

(c) − ω(N(Y,X), Z)− ω(Y,N(Z,X)) = ω(N(Y,Z), X)) + ω(N(Z,X), Y )

= −ω(N(X,Y ), Z)

(2) ∇′ = ∇+S is symplectic iff ∇′−∇ = S is symplectic, which means that for all X,Y, Z ∈

Γ(TM) we have

0 = Xω(Y, Z)−Xω(Y, Z)

=
(
ω(∇′XY,Z) + ω(Y,∇′XZ)

)
−
(
ω(∇XY,Z) + ω(Y,∇XZ)

)
= ω

(
∇′XY −∇XY, Z

)
+ ω

(
Y, ∇′XZ −∇XZ

)
= ω(S(X,Y ), Z) + ω(Y, S(X,Z))

= ω(S(X,Y ), Z)− ω(S(X,Z), Y )
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(3) If additionally T∇ = 0, then the requirement that T∇
′

= 0 means

0 = T∇
′
(X,Y ) = ∇′XY −∇′YX − [X,Y ]

= ∇XY −∇YX + S(X,Y )− S(Y,X)− [X,Y ] = S(X,Y )− S(Y,X)

or S(X,Y ) = S(Y,X), so that S ∈ Γ(T ∗M�2 ⊗ TM). Since also ω(S(X,Y ), Z) = ω(S(X,Z), Y ),

we have that ω(S(X,Y ), Z) is totally symmetric. Thus, we can view ω(S(X,Y ), Z), and hence S,

as an element of T ∗M�3. �

Remark 40 For any symplectic connection ∇ ∈ C(M,ω), the fact that dω = 0 implies

0 = dω(X,Y, Z)

= X(ω(Y, Z))− Y (ω(X,Z)) + Z(ω(X,Y ))

−ω([X,Y ], Z) + ω([X,Z], Y )− ω([Y,Z], X)

= ω(∇XY,Z) + ω(Y,∇XZ)− ω(∇YX,Z)− ω(X,∇Y Z) + ω(∇ZX,Y ) + ω(X,∇ZY )

−ω([X,Y ], Z) + ω([X,Z], Y )− ω([Y,Z], X)

= ω(∇XY −∇YX − [X,Y ], Z) + ω(∇Y Z −∇ZY − [Y, Z], X)

+ω(∇ZX −∇XZ − [Z,X], Y )

= ω(T∇(X,Y ), Z) + ω(T∇(Y, Z), X) + ω(T∇(Z,X), Y )

That is, the sum over a cyclic permutation is zero:

∑
σ=(1 2 3)∈S3

ω(T∇(Xσ1, Xσ2), Xσ3) = 0

If we are given a torsion-free connection ∇0 ∈ C(M), we can alternatively define the (1, 2)-tensor

N by

ω(N(X,Y ), Z) =
1

3

[
(∇0

Xω)(Y,Z) + (∇0
Y ω)(X,Z)

]
then the connection ∇ + N ∈ C(M) is also torsion free (since the Ns cancel in the expressin for

T∇) and satisfies

X(ω(Y, Z))− ω(∇XY,Z)− ω(Y,∇XZ) =
1

3
dω(X,Y, Z)
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which is symplectic if ω is a symplectic form, since the right-hand side vanishes. This is an

alternative construction of a symplectic connection, [55, Proposition 2.5]. �

Corollary 14 Let (M,ω) be a symplectic manifold. If we define the maps

Φ : C(M,ω)→ Ω2(M ;TM), Φ(∇) := T∇

and

Ψ : Γ(TM ⊗ T ∗M⊗2)→ Ω2(M ;TM), Ψ(N)(X,Y ) := N(X,Y )−N(Y,X)

then

(1) Ψ(N) = 0 iff ω(N(·, ·), ·) ∈ Γ(T ∗M�3)

(2) Ψ(E1(M,ω)) = {A ∈ Ω2(M ;TM) | ω(A(X,Y ), Z) + ω(A(Y,Z), X) + ω(A(Z,X), Y ) =

0, ∀X,Y, Z ∈ Γ(TM)}

(3) Φ is neither injective nor bijective, and the preimage Φ−1(A) of any A ∈ Ω2(M ;TM) is

either empty or infinite-dimensional.

�

Proposition 57 Let (M,ω) be a symplectic manifold, let J ∈ J (M,ω), and let gJ := ω(·, J ·) be

the induced Riemannian metric. If ∇0 ∈ C(M, gJ) ∪ C(M,ω) is either metric or symplectic, then

the connection ∇ ∈ C(M) defined by

∇XY := ∇0
XY +

1

2
(∇0

XJ)(JY )

satisfies

∇ω = ∇gJ = ∇J = 0

i.e. ∇ ∈ C(M, gJ) ∩ C(M,ω) and ∇J = 0. In this case, moreover, J commutes with ∇,

J(∇XY ) = ∇X(JY )
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Proof : (1) Let us write g for gJ in what follows, to avoid cumbersome notation. Recall that if

J ∈ End(TM), then

(∇0
XJ)(Y ) = ∇0

X(JY )− J(∇0
XY )

which follows from the requirement that ∇0 commute with trace:

∇0
X(J(Y )) = ∇0

X(tr(J ⊗ Y )) = tr(∇0
X(J ⊗ Y ))

= tr((∇0
XJ)⊗ Y + J ⊗ (∇0

XY )) = (∇0
XJ)(Y ) + J(∇0

XY )

Also, since J ∈ J (M,ω) we must have J∗g = g, J∗ω = ω, and J skew-adjoint with respect to g

(Proposition 28), so

ω(∇XY,Z) = ω(∇0
XY,Z) +

1

2
ω((∇0

XJ)(JY ), Z)

= ω(∇0
XY,Z) +

1

2
ω(∇0

X(J2Y ), Z)− 1

2
ω(J(∇0

X(JY )), Z)

= ω(∇0
XY,Z)− 1

2
ω(∇0

XY,Z) +
1

2
g(Z,∇0

X(JY ))

=
1

2
ω(∇0

XY,Z) +
1

2
g(Z,∇0

X(JY ))

= −1

2
g(∇0

XY, JZ) +
1

2
g(Z,∇0

X(JY ))

Thus also

ω(Y,∇XZ) = −ω(∇XZ, Y )

=
1

2
g(∇0

XZ, JY )− 1

2
g(Y,∇0

X(JZ))

=
1

2
g(JY,∇0

XZ)− 1

2
g(∇0

X(JZ), Y )
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(2) Suppose now that ∇0g = 0. Then, by (1)

ω(∇XY,Z) + ω(Y,∇XZ) = −1

2
g(∇0

XY, JZ) +
1

2
g(Z,∇0

X(JY ))

+
1

2
g(JY,∇0

XZ)− 1

2
g(∇0

X(JZ), Y )

=
1

2
X(g(JY, Z))− 1

2
X(g(Y, JZ))

= −1

2
X(g(Y, JZ))− 1

2
X(g(Y, JZ))

= −X(g(Y, JZ))

= X(g(JY, Z))

= X(ω(Y,Z))

which shows that ∇ω = 0. To see that ∇g = ∇J = 0 as well, note that

∇X(JY ) = ∇0
X(JY ) +

1

2
(∇0

XJ)(J2Y )

= ∇0
X(JY )− 1

2
∇0
X(JY ) +

1

2
J(∇0

XY )

=
1

2
∇0
X(JY ) +

1

2
J(∇0

XY )

and

J(∇XY ) = J(∇0
XY ) +

1

2
J
(
(∇0

XJ)(JY )
)

= J(∇0
XY ) +

1

2
J
(
∇0
X(J2Y )− J(∇0

X(JY ))
)

= J(∇0
XY )− 1

2
J(∇0

XY ) +
1

2
∇0
X(JY )

=
1

2
J(∇0

XY ) +
1

2
∇0
X(JY )

Therefore,

(∇XJ)(Y ) = ∇X(JY )− J(∇XY )

=
[1

2
∇0
X(JY ) +

1

2
J(∇0

XY )
]
−
[1

2
J(∇0

XY ) +
1

2
∇0
X(JY )

]
= 0
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Moreover, since J is ω-compatible and ∇J = 0, we have J(∇XY ) = ∇X(JY ) − (∇XJ)(Y ) =

∇X(JY ), showing that J commutes with ∇. As a result,

g(∇XY,Z) + g(Y,∇X , Z) = ω(∇XY, JZ) + ω(Y, J(∇XZ))

= ω(∇XY, JZ) + ω(Y,∇X(JZ))

= X(ω(Y, JZ))

= X(g(Y, Z))

i.e. ∇g = 0.

(3) If ∇0ω = 0, then by an analogous procedure we conclude that ∇g = ∇ω = ∇J = 0. �

Corollary 15 Let ∇ ∈ C0(M,ω) be a torsion-free symplectic connection and let J ∈ J (M,ω).

Then ∇J = 0 iff ∇ is the unique Levi-Civita connection on (M, gJ). If J ∈ J (TM) only, then

∇J = 0 iff ∇ is the unique Levi-Civita connection associated to the pseudo-Riemannian metric

gJ . �

2.4.6.2 Divergence

Definition 21 If ∇ ∈ C(M) is any connection, we can define the trace of the endomorphism

∇Y ∈ EndTM , (∇Y )(X) := ∇XY . By means of this trace we can define the divergence of a

vector field X ∈ Γ(TM),

div(X) := tr(∇X)

In local coordinates ∂j , the divergence takes the form div(X) =
∑n

j=1 dx
j(∇∂jX). �

Lemma 7 If X ∈ Γ(TM), then locally, with respect to a local symplectic frame (e1, . . . , en, f1, . . . , fn) ∈

Γ(U,PSp(n,R)), the divergence may be expressed as

div(X) =
n∑
j=1

(
ω(∇ejX, fj)− ω(∇fjX, ej)

)
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Proof : This follows from the relations (2.35), which here appear as

ω(ei, ej) = ω(fi, fj) = 0 and ω(ei, fj) = δij

If we denote by e∗j and f∗j the duals basis vectors, then

e∗j (X) = ω(X, fj) and f∗j (X) = ω(ej , X) = −ω(X, ej)

so div(X) = tr(∇X) =
∑n

j=1 e
∗(∇ejX) + f∗(∇fjX) =

∑n
j=1

(
ω(∇ejX, fj)− ω(∇fjX, ej)

)
. �

Notation 4 Let us write X[ := ω[(X) = ω(X, ·) ∈ Ω1(M) for any X ∈ Γ(TM), and denote the

volume form on M induced by ω by

dV :=
1

n!
ωn �

Proposition 58 For any symplectic connection ∇ ∈ C(M,ω) and any vector field X ∈ Γ(TM),

we have

d(X[ ∧ ωn−1) = 2 · (n− 1)!
(

div(X) + ω(X,T)
)
dV

Proof : Let β = (e1, f1, . . . , en, fn) ∈ Γ(U,PSp(n,R)) be a local symplectic frame and note that

dV (β) = 1. Since ω is closed, d(X[∧ωn−1) = dX[∧ωn−1, and since there are (n−1)! permutations

of (n− 1) of the n pairs (ej , fj) and 2 (signed) permuations of each remaining pair, we have

d(X[ ∧ ωn−1)(β) =
∑
σ∈Sn

sgn(σ)dX[ ∧ ωn−1(β) = 2 · (n− 1)!
n∑
j=1

dX[(ej , fj)

Now, for any Y,Z ∈ Γ(TM),

dX[(Y,Z) = Y (X[(Z))− Z(X[(Y ))−X[([Y,Z])

= Y (ω(X,Z))− Z(ω(X,Y ))− ω(X, [Y,Z])

= ω(∇YX,Z) + ω(X,∇Y Z)− ω(∇ZX,Y )− ω(X,∇ZY )− ω(X, [Y,Z])

= ω(∇YX,Z)− ω(∇ZX,Y ) + ω(X,∇Y Z −∇ZY − [Y,Z])

= ω(∇YX,Z)− ω(∇ZX,Y ) + ω(X,T∇(Y, Z))
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so

n∑
j=1

dX[(ej , fj) =
n∑
j=1

(
ω(∇ejX, fj)− ω(∇fjX, ej)

)
+ ω

(
X,

n∑
j=1

T∇(ej , fj)
)

= div(X) + ω(X,T)

�

Corollary 16 For any symplectic connection ∇ ∈ C(M,ω) and any compactly supported vector

field X ∈ Γc(TM) we have ∫
M

(
div(X) + ω(X,T)

)
dV = 0

Proof : By Stokes’ Theorem, the previous proposition, and the compact support of X we have∫
M

(
div(X) + ω(X,T)

)
dV =

1

2(n− 1)!

∫
M
d(X[ ∧ ωn−1) =

1

2(n− 1)!

∫
∂M

X[ ∧ ωn−1 = 0 �

2.4.6.3 Curvature Tensor of a Symplectic Connection

If (M,ω) is a symplectic manifold of dimension 2n and∇ ∈ C(M,ω) is a symplectic connection

on M , then we have the usual curvature tensor of ∇,

R∇ ∈ Ω2(M ; EndTM)

R∇(X,Y )Z = ([∇X ,∇Y ]−∇[X,Y ])Z

and the usual Ricci tensor

ric∇ or r∇ ∈ Γ(T ∗M�2)

ric∇(X,Y ) := trR∇(·, X)Y

the symmetry of ric∇ following from the Bianchi identities,

R∇(X,Y )Z +R∇(Y,Z)X +R∇(Z,X)Y = 0 (Bianchi I)

(∇XR∇)(Y,Z) + (∇YR∇)(Z,X) + (∇ZR∇)(X,Y ) = 0 (Bianchi II)
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Since the Ricci tensor is symmetric and our only natural tensor on M is the skew-symmetric Poisson

2-tensor, we conclude that symplectic manifolds have no ’scalar curvature’ (see Bieliavsky et al.

[17]), though we will introduce something with that name which will nevertheless be useful for our

purposes. We thus introduce the symplectic counterparts of the curvature and Ricci tensors.

Definition 22 The symplectic curvature tensor is the (0, 4)-tensor

S∇ ∈ Γ(T ∗M⊗4)

S∇(X,Y, Z,W ) := ω(R∇(X,Y )Z,W )

and the (0, 2)-tensor symplectic Ricci tensor (see Habermann and Habermann [54])

sric∇ ∈ Γ(T ∗M⊗2)

sric∇(X,Y ) :=

n∑
j=1

S∇(ej , fj , X, Y )

in a local symplectic frame (e1, . . . , en, f1, . . . , fn). Finally, the symplectic scalar curvature of ∇

with respect to an ω-compatible almost complex structure J ∈ J (M,ω) is

sR∇ :=
2n∑
j=1

sric∇(ej , ej)

in a local unitary frame (e1, . . . , e2n) ∈ PU(n) for M . �

To see the first Bianchi identity for the symplectic curvature tensor, recall the Koszul long

exact sequence for any vector space V (see Bieliavsky et al. [17]):

0→ SqV
a−→ V ⊗ Sq−1V

a−→
∧2V ⊗ Sq−2V

a−→ · · · a−→
∧q−1V ⊗ V a−→

∧qV → 0

where a is the skew-symmetrization operator

a :
∧r V ⊗ SsV →

∧r+1 V ⊗ Ss−1V

a
(
(v1 ∧ · · · ∧ vr)⊗ (w1 � · · · � ws)

)
:=

s∑
j=1

(v1 ∧ · · · ∧ vr ∧ wj)⊗ (w1 � · · · � ŵj � · · · � ws)
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and satisfies a2 = 0. The associated symmetrization operator s is given by

s :
∧r V ⊗ SsV →

∧r+1 V ⊗ Ss−1V

s
(
(v1 ∧ · · · ∧ vr)⊗ (w1 � · · · � ws)

)
:=

s∑
j=1

(v1 ∧ · · · ∧ v̂j ∧ · · · ∧ vr ∧ wj)⊗ (vj � w1 � · · · � ws)

Then s2 = 0 and (a ◦ s+ s ◦ a)|∧r V ⊗ SsV = (r + s) id, and the first Bianchi identity for S∇

at a point p ∈M

S∇p (X,Y, Z,W ) + S∇p (Y, Z,X,W ) + S∇p (Z,X, Y,W ) = 0 (2.136)

becomes

S∇p ∈ ker a ⊆
∧2 T ∗pM ⊗ S2T ∗pM

and the space of 4-tensors satisfying this relation is isomorphic to (TpM ⊗ S3TpM)/S4TpM , as

can be seen by the action of Sp(TpM,ω) on TpM ⊗ S3TpM . If dimTpM = 2n ≥ 4, this action

decomposes into three irreducible subspaces

S4TpM ⊕ S′2TpM ⊕W

where S′2TpM = a(s(ωp ⊗ S2TpM)) ∼ S2TpM , so that

S∇p = Ep ⊕Wp

The decomposition of the symplectic curvature tensor into its Ep-component, denoted sE∇p and its

Wp-component, denoted sW∇p ,

S∇p = sE∇p + sW∇p

is given by

sE∇(X,Y, Z,W ) =
1

2(n+ 1)

[
2ωp(X,Y )ric∇p (Z,W ) + ωp(X,Z)ric∇p (Y,W )

+ ωp(X,W )ric∇(Y,Z)− ωp(Y,Z)ric∇(X,W )− ωp(Y,W )ric∇(X,Z)
]

The corresonding curvature tensor then has the form

R∇p = E∇p +W∇p
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where

E∇(X,Y )Z

=
1

2(n+ 1)

[
2ω(X,Y )ρ∇Z + ω(X,Z)ρ∇Y − ω(Y,Z)ρ∇X + ω(X, ρ∇Z)Y − ω(Y, ρ∇Z)X

]
with ρ∇ ∈ Γ(EndTM) is given by

ω(X, ρ∇Y ) = ric∇(X,Y )

For the next lemma we refer to Habermann and Habermann [54].

Lemma 8 For any X,Y, Z ∈ Γ(TM) and any connection ∇ ∈ C(M), the relation between curva-

ture and torsion is:

R∇(X,Y )Z+R∇(Y,Z)X +R∇(Z,X)Y

= (∇XT∇)(Y,Z) + (∇Y T∇)(Z,X) + (∇ZT∇)(X,Y )

T∇
(
T∇(X,Y ), Z

)
+ T∇

(
T∇(Y, Z), X

)
+ T∇

(
T∇(Z,X), Y

)
�

Lemma 9 In a local symplectic frame (e1, . . . , en, f1, . . . , fn) we have

ric∇(X,Y ) =

n∑
j=1

S∇(ej , X, Y, fj)− S∇(fj , X, Y, ej)

That is, the Ricci tensor is obtained by contracting the symplectic curvature tensor S∇ with respect

to ω.

Proof : We have

ric∇(X,Y ) = tr(R∇(·, X)Y

=

n∑
j=1

jR∇(ej , X)Y + jR∇(fj , X)Y

=

n∑
j=1

ω
(
R∇(ej , X)Y, fj

)
− ω

(
R∇(fj , X)Y, ej

)
=

n∑
j=1

S∇(ej , X, Y, fj)− S∇(fj , X, Y, ej)

which proves the claim. �
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For the next proposition, we follow the proofs of Vaisman [103] and Habermann and Haber-

mann [54].

Proposition 59 Let (M,ω) and let ∇ ∈ C(M) be any connection. Then,

(1) If ∇ ∈ C(M) is any connection, then S is skew-symmetric in its first two terms,

S∇(X,Y, Z,W ) = −S∇(Y,X,Z,W )

(2) If ∇ ∈ C(M,ω) is symplectic, then S is symmetric in its last two terms,

S∇(X,Y, Z,W ) = S∇(X,Y,W,Z)

(3) If ∇ ∈ C0(M,ω) is symplectic and torsion-free, then the sum of S with values cyclically

permuted is zero:

S∇(X,Y, Z,W ) + S∇(Y,Z,W,X) + S∇(Z,W,X, Y ) + S∇(W,X, Y, Z) = 0

(4) If ∇ ∈ C(M,ω) and ∇J = 0 for some J ∈ J (M,ω), then

S∇(X,Y, JZ, JW ) = S∇(X,Y, Z,W ) and S∇(X,Y, JZ,W ) = −S∇(X,Y, JW,Z)

(5) If ∇ ∈ C(M,ω), the sric∇ is symmetric.

(6) If ∇ ∈ C0(M,ω), then

ric∇ = sric∇

in which case sric∇ is symmetric.

�
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Proof : (1) This follows from the corresponding property of R∇. (2) If ∇ ∈ C(M,ω) is symplectic,

then

0 = XY
(
ω(Z,W )

)
− Y X

(
ω(Z,W )

)
− [X,Y ]

(
ω(Z,W )

)
= X

(
ω(∇Y Z,W ) + ω(Z,∇YW )

)
− Y

(
ω(∇XZ,W ) + ω(Z,∇XW )

)
− Y

(
ω(∇[X,Y ]Z,W )− ω(Z,∇[X,Y ]W )

)
= ω(∇X∇Y Z,W ) + ω(Z,∇X∇YW )− ω(∇Y∇XZ,W )

− ω(X,∇Y∇XW )− ω(∇[X,Y ]Z,W )− ω(Z,∇[X,Y ]W )

= ω(R∇(X,Y )Z,W ) + ω(Z,R∇(X,Y )W )

= S∇(X,Y, Z,W )− S∇(X,Y,W,Z)

(3) If additionally ∇ ∈ C0(M,ω), then by Bianchi I

S∇(X,Y, Z,W ) + S∇(Y,Z,X,W ) + S∇(Z,X, Y,W ) = 0,

S∇(X,Z,W, Y ) + S∇(Z,W,X, Y ) + S∇(W,X,Z, Y ) = 0

Then, applying (2),

S∇(X,Y, Z,W ) + S∇(Y,Z,W,X) = −S∇(Z,X, Y,W ),

S∇(Z,W,X, Y ) + S∇(W,X, Y, Z) = −S∇(X,Z, Y,W )

Together with (1) this yields (3). (4) ∇J = 0 implies that J commutes with ∇, so we immediately

have R∇(X,Y ) ◦ J = J ◦R∇(X,Y ) for all X,Y ∈ Γ(TM), and therefore

S∇(X,Y, JZ, JW ) = ω
(
R∇(X,Y )(JZ), JW

)
= ω

(
J(R∇(X,Y )Z), JW

)
= ω

(
R∇(X,Y )Z),W

)
= S∇(X,Y, Z,W )

Consequently, by (2),

S∇(X,Y, JZ,W ) = −S∇(X,Y, Z, JW ) = −S∇(X,Y, JW,Z)
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(5) This follows from (2) and the last lemma. (6) Again, by the last lemma and Bianchi I,

ric∇ = −
n∑
j=1

(
S∇(X, ej , fj , Y )− S∇(fj , X, ej , Y )

)
=

n∑
j=1

S∇(ej , fj , X, Y ) = sric∇(X,Y ) �

Thus the symplectic curvature tensor S∇ is an element of Γ(
∧2 T ∗M⊗T ∗M�2) = Ω2(T ∗M�2).



Chapter 3

Self-Adjoint and Elliptic Operators

3.1 Function Spaces and Differential Operators on Manifolds

We review, in this section, the definitions and basic properties of Sobolev spaces and distribu-

tions on manifolds, as well as (pseudo-)differential operators on these spaces and their symbols. We

begin with a review of the situation in Rn before looking at the sheaf-theoretic extension to man-

ifolds and vector bundles. The main sources for the standard theory of distributions and Sobolev

spaces on Euclidean space were Leoni [74], Treves [102], Duistermaat and Kolk [29] and Adams [1].

For distributions and Sobolev spaces on manifolds, we used Ban and Crainic [104] and Shubin [95].

For differential operators and elliptic theory the major sources were Liviu Nicolaescu [85], Ban and

Crainic [104] and Michael Taylor [100].

3.1.1 Function Spaces in the Euclidean Space Setting

We will give a brief review of the constructions and basic properties of distributions and

Sobolev spaces in open sets Ω of Rn, referring to the sources mentioned above for detailed proofs.

3.1.1.1 Distributions

Let Ω ⊆ Rn be an open subset, and let us consider the spaces C∞c (Ω) and C∞(Ω). C∞c (Ω), for

example, may be given various topologies, such as the uniform norm topology generated by ‖·‖∞, or

the norm topology generated by the L2-norm induced by the L2-inner product (f, g)L2 :=
∫

Ω fg dµ.

The first topology is not complete, because, for example, it is dense in Cc(Ω) with the uniform
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topology, while the second is not complete because it is dense in L2(Ω). Similar problems arise

with C∞(Ω). What is needed is a topology on these spaces that makes them complete. This is the

motivation for introducing locally convex topologies and inductive limit topologies. After reviewing

this basic theory, we consider the dual spaces of these spaces, the spaces of distributions.

Definition 23 Given an open set Ω in Rn, let KΩ denote the set of all compact subsets K of Ω.

For fixed K ∈ KΩ, define

DK(Ω) := {f ∈ C∞c (Ω) | supp(f) ⊆ K} (3.1)

and define a countable family of seminorms ‖ · ‖K,j on DK(Ω) indexed by j ∈ N0,

‖f‖K,j := sup
x∈K,|α|≤j

|Dαf(x)| (3.2)

Equipped with the locally convex topology generated by these seminorms, DK(Ω) becomes a Fréchet

space, a locally convex space that is a complete metric spaces, with metric

dK(f, g) := max
j∈N0

1

2j

(
‖f − g‖K,j

1 + ‖f − g‖K,j

)
or

∑
j∈N0

1

2j

(
‖f − g‖K,j

1 + ‖f − g‖K,j

)
(see Reed and Simon [89, Theorem V.5], Leoni [74, p. 257]). Taking the union over all K ∈ KΩ we

get C∞c (Ω) as a set, whcih we denote by

D(Ω) :=
⋃

K∈KΩ

DK(Ω) (3.3)

because we put a different topology on it, the inductive limit topology on it (Reed and Simon [89,

Theorem V.15, p. 146]). With this topology D(Ω) becomes complete but not metrizable, hence

not Fréchet, space, though it is a Montel space (Leoni [74, Theorem 9.8], Treves [102, Proposition

34.4]). �

Definition 24 Putting the same seminorms ‖ · ‖K,j directly on C∞(Ω) we get a locally convex

topology that makes C∞(Ω) a locally convex space which is also complete, hence metrizable (Treves

[102, pp. 85-89]). The space C∞(Ω) equipped with this topology is denoted

E(Ω) (3.4)
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It is also a Montel space (Treves [102, Proposition 34.4]). We remark that, while D(Ω) was con-

structed as a union of the spaces DK(Ω), E(Ω) is not such a union, though it is the intersection of

all Ck(Ω), where k ∈ N. The spaces Ck(Ω) can also be given the locally convex topology generated

by the seminorms ‖ · ‖K,j where j ≤ k, which will make them Fréchet spaces (Treves [102, pp.

85-89]), and by letting C∞(Ω) =
⋂
k∈N0

Ck(Ω) we get the completeness of C∞(Ω). �

Definition 25 When Ω = Rn, there is a locally convex function space lying between the space

E(Rn) of smooth functions (whose derivatives may be unbounded at infinity) and the space D(Rn)

of smooth functions that are identically zero outside of a compact set. This space is the Schwartz

space or space of rapidly decreasing functions, which is a subspace of C∞(Rn) defined as

follows: for all α, β ∈ Nn0 , define the (extended-real valued) seminorms ‖ · ‖α,β on C∞(Rn) by

‖f‖α,β := sup
x∈Rn

|xαDβf(x)| (3.5)

Then the Schwartz space is defined to be the subset of smooth functions f ∈ C∞(Rn) for which

‖f‖α,β is finite for all α, β ∈ Nn0 ,

S(Rn) := {f ∈ C∞(R) | ‖f‖α,β <∞, ∀α, β ∈ Nn0} (3.6)

Thus, like the compactly supported smooth functions, Schwartz functions decay at infinity, though

they are not necessarily identically zero there. They decay only polynomially at infinity. The family

of seminorms ‖ · ‖α,β makes S(Rn) a locally convex space, and since this collection is countable,

S(Rn) is metrizable, and in fact complete with respect to the metric, making it a Fréchet space

(Theorems V.5 and V.9, Reed and Simon [89]). �

Remark 41 Clearly we have C∞c (R) ⊂ S(Rn) ⊂ C∞(Rn), so as sets

D(Rn) ⊂ S(Rn) ⊂ E(Rn)

Now, Cc(Rn) is dense in Lp(Rn) for all p ∈ [1,∞) (Theorem 7.9, Folland [35]), and C∞c (Rn)

is dense in Cc(Rn) (Theorem 8.14 (b), Folland [34]). As a result C∞c (Rn) is dense in Lp(Rn)
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(Proposition 8.17, Folland [34], though the denseness of C∞c (Rn) can also be shown directly by

means of convolution with bump function). Since C∞c (Rn) ⊂ S(Rn), we must have that S(Rn) is

dense in Lp(Rn) as well, once we know that S(Rn) ⊂ Lp(Rn) for all p ∈ [1,∞) (in fact, p ∈ [1,∞]).

To see this, consider the cases p = 1, p = ∞ and p ∈ (1,∞), separately. For p = ∞, take

α = β = (0, . . . , 0), then ‖f‖∞ = ‖f‖α,β < ∞ for any f ∈ S(Rn). For p = 1, note that 1/(1 + x2)

is in L1(R) (being the derivative of tan−1, which is improper-Riemann integrable), so Fubini’s

theorem gives for any f ∈ S(Rn) that

‖f‖1 =

∫
Rn
|f | dµ =

∫
Rn

( n∏
i=1

(1 + x2
i )|f |

)( n∏
i=1

1

1 + x2
i

)
dµ

≤
( n∏
i=1

‖f‖∞ + ‖x2
i f‖∞

)( n∏
i=1

∫
R

1

1 + x2
i

dxi

)

=

( n∏
i=1

‖f‖∞ + ‖x2
i f‖∞

)
πn <∞

which shows that f ∈ L1(Rn). For p ∈ (1,∞) and f ∈ S(Rn) we have

‖f‖p =

(∫
Rn
|f |p dµ

)1/p

=

(∫
Rn

(|f |1/p|f |1−1/p)p dµ

)1/p

≤
(∫

Rn
(|f |1/p‖f‖1−1/p

∞ )p dµ

)1/p

= ‖f‖1−1/p
∞ ‖f‖1/p1 <∞

so f ∈ Lp(Rn). �

Remark 42 The importance of the denseness of S(Rn) in L2(Rn) lies in the fact that the Fourier

transform, which is continuous and invertible on S(Rn), extends to a unitary operator on L2(Rn),

which we will describe below. �

Definition 26 Now that we have the spaces of test functions D(Rn) ⊂ S(Rn) ⊂ E(Rn), with

D(Rn) ⊂ S(Rn) ⊂ Lp(Rn) for all p ∈ [1,∞), so in particular for p = 2, with appropriate locally

convex topologies making them complete spaces, we can consider their continuous duals, which are

the different spaces of distributions: The continuous dual

D′(Ω) := B(D(Ω),C) (3.7)
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of the compactly supported smooth test functions is called the space of distributions or gener-

alized functions, and we put the w∗-topology of pointwise convergence on D′(Ω),

σ
(
D(Ω)∗,D(Ω)

)
(3.8)

which is the weak topology on D(Ω)∗ generated by the double dual D(Ω)∗∗ of D(Ω). This topology

has the property that, if (fα)α∈A is a net in D(Ω)∗, then fα
w∗−−→ f , i.e. fα w

∗-converges to f , iff

fα(ϕ) → f(ϕ) for all ϕ ∈ D(Ω). This w∗-convergence is called convergence in the sense of

distributions.

Next, consider the continuous dual of the Schwartz space, called the space of tempered

distributions,

S ′(Rn) := B(S(Rn),C) (3.9)

which is also given the w∗-topology. Finally, the continuous dual of E(Ω),

E ′(Ω) := B(E(Ω),C) (3.10)

is called the space of compactly supported distributions. Since dualizing inverts the inclusions,

we have

D(Rn) ⊂ S(Rn) ⊂ E(Rn) (3.11)

E ′(Rn) ⊂ S ′(Rn) ⊂ D′(Rn) (3.12)

Moreover, there are inclusions E(Ω) ↪→ D′(Ω) and D(Ω) ↪→ E ′(Ω), given by

f 7→ Tf :=

∫
Rn

(·)f dµ

Combined with the inclusions D(Ω) ↪→ E(Ω) and E ′(Ω) ↪→ D′(Ω), we have the following commuta-

tive diagram:

D(Ω) ⊂ - E(Ω)

E ′(Ω)

f 7→ Tf

?

∩

⊂ - D′(Ω)

g 7→ Tg

?

∩
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The arrows are continuous algebraic inclusions, and the spaces on the left are topologically the

compactly supported version of the spaces on the right (see van den Ban and Crainic [104, p.

27]). �

The following theorem is proved in Leoni, [74, Theorems 9.8, 9.10].

Theorem 23 The inductive limit topology on C∞c (Ω) defining D(Ω) has the following equivalent

properties for any (not necessarily bounded/continuous) linear functional u : D(Ω)→ C:

(1) u is continuous, i.e. u ∈ D(Ω)∗.

(2) u is bounded, i.e. u sends topologically bounded sets to topologically bounded sets (a subset

E of a topological vector space V is topologically bounded if for every neighborhood U of 0

there is a t > 0 such that E ⊆ tU).

(3) If ϕn → ϕ in D(Ω), then u(ϕn)→ u(ϕ), i.e. u preserves limits.

(4) u|DK(Ω) is continuous for all K ∈ KΩ.

(5) For every K ∈ KΩ there is a j ∈ N0 and a constant CK > 0 such that

|u(ϕ)| ≤ CK‖ϕ‖K,j , ∀ϕ ∈ DK(Ω)

That is, u is equivalently continuous, bounded, and convergence-preserving in a way compatible with

restriction to each DK(Ω) for all K ∈ KΩ. Furthermore, a sequence ϕn in D(Ω) converges in the

inductive limit topology to ϕ ∈ D(Ω) iff the following two conditions hold:

(a) There exists a K ∈ KΩ such that supp(ϕn) ⊆ K for all n ∈ N.

(b) Dαϕn → Dαϕ uniformly for all α ∈ N n
0 .

�

Remark 43 The assignment Ω 7→ D′(Ω) defines a sheaf, for if {Ωi}i∈I is an open cover of Ω and

ui ∈ D′(Ωi) are distributions on Ωi satisfying ui|Ωi∩Ωj = uj |Ωi∩Ωj , then by using partition of unity

{ρi}i∈I subordinate to the open cover there exists a unique distribution on Ω such that u|Ωi = ui,

namely u =
∑

i∈I ui(ρi·), by which we mean u(ϕ) :=
∑

i∈I ui(ρiϕ). Now, as with any sheaf,
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one can talk about sections with compact support. Note that u ∈ D′(Ω) has compact support

supp(u) ∈ KΩ iff u(ϕ) = 0 for ϕ with support outside of the compact set supp(u). This is equivalent

(see Knapp [67, Theorem 5.1]) to u being an element of E ′(Ω), or equivalently in the image of the

inclusion E ′(Ω) ↪→ D′(Ω), hence the name ’compactly supported distributions’ for E ′(Ω). �

Remark 44 D′(Ω) is an E(Ω)-module,

E(Ω)×D′(Ω)→ D′(Ω)

(f, u) 7→ fu := u ◦ f

that is, (fu)(ϕ) := u(fϕ) for all ϕ ∈ D(Ω). �

Definition 27 Let us now introduce the derivative of a distribution, also called the distribu-

tional or weak derivative. To motivate the definition, note that the partial derivative Dj = ∂/∂xj

operator is skew-symmetric on L2(Rn), with domain D(Dj) := C∞c (Rn)1 , which follows from inte-

gration by parts,

(Djf, g)L2(Rn) = −(f,Djg)L2(Rn)

for all f, g ∈ C∞c (Rn). Consequently, for all multi-indices α ∈ Nn0 we have

(Dαf, g)L2(Rn) = (−1)|α|(f,Dαg)L2(Rn)

on C∞c (Rn). Now, if u ∈ D′(Ω) is a distribution, then we emulate this identity, taking it as the

definition of Dαu:

Dαu := (−1)|α|T ◦Dα (3.13)

that is,

(Dαu)(ϕ) := (−1)|α|u(Dαϕ), ∀ϕ ∈ D(Ω) (3.14)

1 Dj is, in fact, sekw-adjoint, since iDj is self-adjoint (see Theorem 37 below), on an appropriate enlargement of
C∞c (Rn).
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Since L1
loc(Ω) embeds into D′(Ω) via f 7→ Tf :=

∫
Ω(·)f dµ, we can adapt this notion of a

derivative to locally integrable functions. This time, however, we do not simply say that Dαf :=

Tf ◦Dα, but require the extra condition that there be a function g ∈ L1
loc(Ω) such that

Dαf = g weakly (3.15)

or g is the αth weak derivative of f , meaning, by definition,

Dαf := (−1)|α|Tf ◦Dα = Tg ∈ D′(Ω) (3.16)

as distributions. In full, this means

(f,Dαϕ)L2(Rn) = (−1)|α|(g, ϕ)L2(Rn), ∀ϕ ∈ D(Ω) (3.17)

That is, the weak derivative of f can be interpreted in terms of the adjoint of Dα, which is thought

of as an operator on L2(Ω) with core or perhaps initial domain D(Ω). We thus say that f ∈ L1
loc(Ω)

is weakly differentiable if f lies in the domain D((Dα)∗) of (Dα)∗, in which case the weak αth

derivative g of f is the image of f under the adjoint (Dα)∗,

g := (Dα)∗f

(see Section 3.2 for a fuller description of adjoints and self-adjointness). Since iDj is self-adjoint

(see Theorem 37 below), Dj is skew-adjoint, and Dα
j is either self-adjoint or skew-adjoint depending

on the parity of |α|, since by taking the Fourier transform of Dα
j we get a multiplication operator

times (−i)|α| (Proposition 60 below), and any multiplication operator by a real-valued map f is

self-adjoint (Proposition 1, p. 259, Reed and Simon [89]), while if is skew-adjoint. Thus, on

the domain of Dα, viewed as an unbounded operator acting on L2(Ω), there always exist weak

derivatives, namely all the functions in the extended domain of Dα. �

The Schwartz representation theorem characterizes distributions in terms of weak derivatives.

It ways that any distribution is the weak derivative of some continuous function. Its proof may be

found in Leoni [74, Theorem 9.21].



170

Theorem 24 (Schwartz Representation Theorem) Let Ω ⊆ Rn be open. For any u ∈ D′(Ω)

and any K ∈ KΩ there is an f ∈ C(Ω) and a multi-index α ∈ Nn0 such that

u = DαTf = (−1)|α|(Dα(·), f)L2(Ω)

on DK(Ω). That is,

u(ϕ) = (−1)|α|
∫

Ω
fDαϕ dµ

for all ϕ ∈ DK(Ω). �

Let us now define the tensor product of distributions, and state the Schwartz kernel theo-

rem, before we move on to Sobolev spaces. There are, of course, many other constructions with

distributions, such as convolution and Fourier transform on distributions, but we do not need all

of these for our purposes.

Definition 28 Let X ⊆ Rn and Y ⊆ Rm be open sets, and consider distributions u ∈ D′(X) and

v ∈ D′(Y ). If we had just continuous functions u ∈ C(X) and v ∈ C(Y ), then we could define their

tensor product u ⊗ v ∈ C(X × Y ) by (u ⊗ v)(x, y) := u(x)v(y). This idea works for distributions

as well: by Theorem 5.5.1 in Hörmander [57], for each u ∈ D′(X) and v ∈ D′(Y ) there is a unique

distribution w ∈ D′(X × Y ) such that

w(f ⊗ g) = u(f)v(g)

for all f ∈ D(X) and g ∈ D(Y ). On an arbitrary ϕ ∈ D(X × Y ) we have

w(ϕ) = u ◦ v ◦ ϕ = v ◦ u ◦ ϕ

i.e. u(v(ϕ(·, ·))) = v(u(ϕ(·, ·))). �

Consider the open sets X ⊆ Rn and Y ⊆ Rm again. Given any K ∈ Cc(X × Y ), we can

define an (integral) linear operator

K : Cc(Y )→ Cc(X)

(Kϕ)(x) :=

∫
Y
K(x, y)ϕ(y) dy
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If we embed Kϕ into D(X), by Kϕ 7→ TKϕ, then for any ψ ∈ D(X) we can write

(Kϕ,ψ) =

∫
X

∫
Y
K(x, y)ϕ(y)ψ(x) dy dx = (K,ϕ⊗ ψ)

by Fubini’s theorem. Thus, given a K, we get the above pairing equality. There are two questions

that arise: (1) Can we generalize this to distributions, that is can we let K ∈ D′(X × Y )? (2) If

we start with K : D(Y )→ D′(Y ), is there a K ∈ D′(X × Y ) for which the pairing equality holds?

The answers to both these questions are ’Yes’, and they are the content of the Schwartz Kernel

Theorem (see Theorems 5.2.1, pp. 128-130, Hörmander [57], or Theorem 6.1, p. 345, Taylor [100]).

The distribution K is called an integral kernel, hence the term ’kernel’ in the name of the theorem.

Theorem 25 (Schwartz Kernel Theorem) Let X ⊆ Rn and Y ⊆ Rm be open sets. Given a

continuous map K : D(Y ) → D′(Y ) there exists a unique K ∈ D′(X × Y ), called the Schwartz

kernel of K, such that

(Kϕ,ψ) = (K,ϕ⊗ ψ) (3.18)

and conversely, given K ∈ D′(X × Y ), there is a unique continuous K : D(Y )→ D′(Y ) giving the

pairing equality above. �

3.1.1.2 The Fourier Transform

Definition 29 We define the Fourier transform of a Schwartz function f ∈ S(Rn) to be the

function Ff ≡ f̂ : Rn → C given by

(Ff)(ξ) ≡ f̂(ξ) :=
1

(2π)n/2

∫
Rn
e−ix·ξf(x) dx (3.19)

and we define the inverse Fourier transform of a Schwartz function f ∈ S(Rn) to be the function

F−1f ≡ f̌ : Rn → C given by

(F−1f)(x) ≡ f̌(x) :=
1

(2π)n/2

∫
Rn
eix·ξf(ξ) dξ (3.20)

By the Fourier Inversion Theorem (Reed and Simon [89, Theorem IX.1, p. 320], F is a bicontinous

bijection of S(Rn) onto itself, and its inverse map is the inverse Fourier transform F−1, and by the
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Parseval theorem (the Corollary to Theorem IX.1 in Reed and Simon [89]), for any f ∈ S(Rn) we

have ‖Ff‖L2(Rn) = ‖f‖L2(Rn). By the Plancherel theorem (Theorem IX.6, p. 327, Reed and Simon

[89]) F extends to a unitary map of L2(Rn),

F ∈ U(L2(Rn)) (3.21)

This is proved by first extending F to the space S ′(Rn) of tempered distributions by

F : S ′(Rn)→ S ′(Rn) (3.22)

Fu := u ◦ F , i.e. (Fu)(ϕ) := u(Fϕ), ∀ϕ ∈ S(Rn) (3.23)

then showing that resulting map is a linear bijection of S ′(Rn) into itself (Theorem IX.2, p. 322,

Reed and Simon [89]) and S(Rn) is w∗-dense in S ′(Rn) (Corollary 1, p. 144, Reed and Simon [89])

and dense in L2(Rn) in the L2 Hilbert space topology (which follows from the denseness of C∞c (Rn)

and the fact that C∞c (Rn) ⊂ S(Rn) ⊂ L2(Rn)), so since F is an isometry when restricted to the

dense set S(Rn) the result follows.

Proposition 60 The Fourier transform is an intertwining operator between the position and mo-

mentum operators Qjf = xjf and Pjf = −i∂f/∂xj on S(Rn), and so on the intersection of the

domains of Qj and Pj in L2(Rn) (see Section 3.2.2 below),

Pj ◦ F = −F ◦Qj and Qj ◦ F = −Pj ◦ F

that is

i
∂

∂ξj
◦ F = F ◦ xj and iξ ◦ F = F ◦ ∂

∂xj

As a result, if P (D) is a constant-coefficient differential operator, a polynomial in Dj = −i∂/∂xj,

j = 1, . . . , n, then

P (D) ◦ F = F ◦ P (−x)

and

P (x) ◦ F = F ◦ P (−D)
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Proof : If f ∈ S(Rn), then

−i ∂
∂ξj

(Ff)(ξ) = −i 1

(2π)n/2
∂

∂ξj

∫
Rn
e−ix·ξf(x) dx

= − 1

(2π)n/2

∫
Rn

∂

∂ξj
e−ix·ξf(x) dx

= − 1

(2π)n/2

∫
Rn
xje
−ix·ξf(x) dx

= −F(xjf)(ξ)

Similarly,

iξj(Ff)(ξ) =
1

(2π)n/2

∫
Rn
iξje

−ix·ξf(x) dx

= − 1

(2π)n/2

∫
Rn

∂

∂xj

(
e−ix·ξf(x)

)
dx

= −F
(

∂

∂xj
f

)
(ξ)

which completes the proof. �

3.1.1.3 Sobolev Spaces

Let Ω ⊆ Rn be an open set, and let p ∈ [1,∞]. Recall the distributional derivative, which

can potentially work on Lp(Ω) just as well as L1
loc(Ω): if u ∈ Lp(Ω), then we say that Dαu = g

weakly, for some g ∈ Lp(Ω) if for all ϕ ∈ D(Ω) we have

(u,Dαϕ)L2(Ω) = (−1)|α|(g, ϕ)L2(Ω)

i.e. ∫
Ω
uDαϕ dµ = (−1)|α|

∫
Ω
gϕ dµ

Definition 30 The Sobolev space W 1,p(Ω) is defined to be the space of all u ∈ Lp(Ω) such that

Diu ∈ Lp(Ω) for all i = 1, . . . , n, where Di = ∂/∂xi and Diu is the weak derivative,

W 1,p(Ω) = {u ∈ Lp(Ω) |Diu ∈ Lp(Ω), ∀i = 1, . . . , n} (3.24)
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Given u ∈W 1,p(Ω) we define its distributional gradient

gradu :=

(
∂u

∂x1
, . . . ,

∂u

∂xn

)
and using it we may define recursively the other Sobolev spaces W k,p(Ω). First, let

W 1,p(Ω,Rd) := {u = (u1, . . . , ud) ∈ Lp(Ω,Rd) | ui ∈W 1,p(Ω), ∀i = 1, . . . , d} (3.25)

then define, recursively,

W k,p(Ω) = {u ∈ Lp(Ω) | gradu ∈W k−1,p(Ω,Rn)} (3.26)

Alternatively,

W k,p(Ω) = {u ∈ Lp(Ω) |Dαu ∈ Lp(Ω), ∀|α| ≤ k} (3.27)

When p = 2, we use the standard notation

Hk(Ω) := W k,2(Ω) = {u ∈ Lp(Ω) |Dαu ∈ L2(Ω), ∀|α| ≤ k} (3.28)

For p ∈ [1,∞) we have the following equivalent norms on W 1,p(Ω),

(1) ‖u‖W 1,p(Ω) = ‖u‖Lp(Ω) + ‖ gradu‖Lp(Ω,Rn).

(2) ‖u‖W 1,p(Ω) = ‖u‖Lp(Ω) +
∑n

i=1 ‖Diu‖Lp(Ω).

(3) ‖u‖W 1,p(Ω) =
(
‖u‖pLp(Ω) +

∑n
i=1 ‖Diu‖pLp(Ω)

)1/p
while for p =∞ we have

‖u‖W 1,∞(Ω) = max{‖u‖L∞(Ω), ‖D1u‖L∞(Ω), . . . , ‖Dnu‖L∞(Ω)}

For k > 1 we have, analogously, the equivalent norms

(1) ‖u‖Wk,p(Ω) =
∑n

i=1 ‖Dαu‖Lp(Ω).

(2) ‖u‖W 1,p(Ω) =
(∑n

i=1 ‖Dαu‖Lp(Ω)

)1/p
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For p ∈ [1,∞) these norms make W k,p(Ω) into Banach spaces (Theorem 10.5, Leoni [74], Theorem

3.2, Adams [1]) which are separable and reflexive (Theorem 3.5, Adams [1]), while for p = 2 they

are even Hilbert spaces, with inner product

(u, v)Hk(Ω) :=
∑
|α|≤k

∫
Ω

(Dαu)(Dαv) dµ (3.29)

�

The Sobolev spaces W k,p(Rn) and Hk(Rn) were defined for only positive integers k. However,

we can extend the definitions to W s,p(Rn) and Hs(Rn) for all s ∈ R.

Since the Fourier transform is a unitary operator on L2(Rn), and Dα ◦Ff = F ◦ (−x)αf , we

have for any f ∈W k,2(Rn) = Hk(Rn) and k an even integer

(1 + ‖ξ‖2)k/2 ◦ Ff(ξ) =
(

1 +
n∑
j=1

ξ2
j

)k/2
◦ Ff(ξ) = −F ◦

(
1 +

n∑
j=1

D2
j

)k/2
f(ξ)

since (1 +
∑n

j=1D
2
j )
k/2f ∈ L2(Rn) because the operator (1 +

∑n
j=1D

2
j )
k/2 has order k and f ∈

Hk(Rn). Thus, we see that for all |α| ≤ k

Dα
ξ

(
(1 + ‖ξ‖2)k/2 ◦ Ff(ξ)

)
∈ L2(Rn)

whence (1+‖ξ‖2)k/2 ◦Ff ∈ Hk(Rn). Conversely, if (1+‖ξ‖2)k/2 ◦Ff ∈ Hk(Rn), then applying the

Fourier transform to (1 +
∑n

j=1D
2
j )
k/2f shows that (1 +

∑n
j=1D

2
j )
k/2f ∈ L2(Rn, so in particular

F ◦Dα
xf = (−ξ)α ◦ Ff , whence

Dα
(
(1 + ‖ξ‖2)k/2 ◦ Ff

)
(ξ) = Dα

ξ

(
(1 + ‖ξ‖2)k/2

)
◦ Ff(ξ) + (1 + ‖ξ‖2)k/2 ◦Dα

ξ Ff ∈ L2(Rn)

which implies that f ∈ Hk(Rn). Thus,

f ∈ Hk(Rn) ⇐⇒ (1 + ‖ξ‖2)k/2 ◦ Ff ∈ L2(Rn (3.30)

Recalling that the Laplacian ∆ξ =
∑n

j=1
∂2

∂ξ2
j

= −
∑n

j=1

(
−i ∂

∂ξj

)2
= −

∑n
j=1D

2
j , or−∆ξ =

∑n
j=1D

2
j ,

we can rephrase this condition as

f ∈ Hk(Rn) ⇐⇒ F ◦ (I −∆)k/2f and F−1 ◦ (1 + ‖ξ‖2)k/2 ◦ Ff ∈ L2(Rn) (3.31)
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Since ∆ is self-adjoint (its Fourier transform is a multiplication operator, which is self-adjoint), we

can define

(I −∆)k/2

for any real k. This is our definition of Hs(Rn), s ∈ R (see Shubin [95] for a fuller account):

Definition 31 For any s ∈ R, define the Sobolev space of real order s ∈ R to be

Hs(R) := {f ∈ L2(Rn) | F ◦ (I −∆)s/2f ∈ L2(Rn)} (3.32)

More generally, for p 6= 2 and s ∈ R, we define

W s,p(Rn) := {f ∈ Lp(Rn) | F ◦ (I −∆)s/2f ∈ Lp(Rn)} (3.33)

These spaces are sometimes called Bessel potential spaces, since the operator (I − ∆)s/2 on

L2(Rn) is also called a Bessel potential of order s. These spaces are also Banach spaces, with

norm

‖f‖W s,p(Rn) := ‖F ◦ (I −∆)s/2f‖Lp(R) (3.34)

The spaces Hs(R) are Hilbert spaces, with inner product

(u, v) := (Jsu, Jsv)L2(Rn) (3.35)

where Js = F ◦ (I −∆)s/2. We thus have

Hs(Rn) = (I −∆)s/2L2(Rn) (3.36)

and

W s,p(Rn) = (I −∆)s/2Lp(Rn) (3.37)

These are sometimes taken as the definitions of Hs and W s,p. �

Remark 45 The condition that f ∈ L2(Rn) in the definition of H2(Rn) can be weakened substan-

tially. For exaple, Taylor [100, p. 316] takes f ∈ S ′(Rn), while van den Ban and Crainic [104, p.

39] take f ∈ D′(Rn). �
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Remark 46 Clearly we have Dj : Hs(Rn)→ Hs−1(Rn), in fact f ∈ Hs(Rn) iff Djf ∈ Hs−1(Rn),

so in general we have

Dα : Hs(Rn)→ Hs−|α|(Rn)

and therefore f ∈ Hs(Rn) iff Dα ∈ Hs−|α|(Rn). �

We also have the following special Sobolev space, which is a type of local version of W 1,p.

Definition 32 Let p ∈ [1,∞), Ω ⊆ Rn an open set, and define the Sobolev space

L1,p(Ω) := {u ∈ L1
loc(Ω) | gradu ∈ Lp(Ω,Rn)} (3.38)

When Ω is connected, then fixing a nonempty open subset Ω′ b Ω we can define a norm on L1,p(Ω)

by

‖u‖L1,p(Ω) := ‖u‖L1(Ω′) + ‖ gradu‖Lp(Ω,Rn) (3.39)

which makes L1,p(Ω) a Banach space, and clearly W 1,p(Ω) ⊆ L1,p(Ω). �

Definition 33 For an open set Ω in Rn, consider the space Ck(Ω) consisting, by definition, of

bounded Ck functions f ∈ Ckb (Ω) whose derivatives are bounded and uniformly continuous on Ω

for all |α| ≤ k,

Ck(Ω) := {f ∈ Ckb (Ω) |Dαf ∈ UCb(Ω), ∀|α| ≤ k} (3.40)

It is a Banach space under the norm

‖f‖Ck(Ω) := max
|α|≤k

sup
x∈Ω
|Dαf(x)| (3.41)

(Adams [1, p. 9]). By the recent results of Fefferman [33], which extends those of Whitney [109],

we may also define Ck(Ω) to be those f ∈ Ck(Ω) which can be extended to f̃ ∈ Ck(Rn),

Ck(Ω) := {f ∈ Ckb (Ω) | f can be extended to f̃ ∈ Ck(Rn)} (3.42)

The space C∞(Ω) is similarly defined to be the space

C∞(Ω) := {f ∈ C∞(Ω) | f can be extended to f̃ ∈ C∞(Rn)} (3.43)

(see Leoni [74, pp. 560-564]). �



178

To see the relationship between C∞c (Ω), Ck(Ω), and W k,p(Ω), consider the following Sobolev

spaces:

Definition 34 Let Ω be an open subset of Rn, and define the space

Hk,p(Ω) = C∞(Ω) ∩W k,p(Ω) (3.44)

where the closure is in W k,p(Ω) with respect to the norm ‖ · ‖Wk,p(Ω), or equivalently (see Adams

[1]) to be the completion of the subset {f ∈ Ck(Ω) | ‖f‖Wk,p(Ω) <∞} with respect to the Sobolev

norm ‖ · ‖Wk,p(Ω). Define also

W k,p
0 (Ω) := C∞c (Ω) (3.45)

the closure being in W k,p(Ω) with respect to the norm ‖ · ‖Wk,p(Ω). �

By Corollary 3.4, Adams [1], we know that Hk,p(Ω) ⊆ W k,p(Ω). The Meyers and Serrin

theorem [78] says that, for p ∈ [1,∞) the space C∞(Ω) ∩ W k,p(Ω) is dense in W k,p(Ω), and

therefore

Hk,p(Ω) = W k,p(Ω) (3.46)

with no conditions on the boundary ∂Ω! When dealing with C∞c (Ω), however, we do need to worry

about boundary conditions (called the segment property or the class C property, see Adams [1, p.

54], Leoni [74, p. 286-287]). Under these extra conditions, we also have (Adams [1, Theorem 3.18],

Leoni [74, Theorem 10.29]) that, if rΩ,Rn is the restriction map to Ω, then rΩ,Rn(C∞(Rn)) is dense

in W k,p(Ω), i.e.

W k,p(Ω) = rΩ,Rn(C∞(Rn)) (3.47)

the closure being in W k,p(Ω) with respect to the norm ‖ · ‖Wk,p(Ω). As a corollary, we have

W k,p
0 (Rn) = W k,p(Rn) (3.48)

Let us now describe the embedding theorems. There are, of course, many variations on the

basic themes, but we do not need the full power of the theory. Our interest in the Sobolev and
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Rellich embedding theorems is mainly as a tool for reaching elliptic regularity. The simplest version

of a Sobolev embedding theorem is the following (found in Taylor [100, Prop. 1.3, Cor. 1.4]). It

says that for sufficiently large s, the elements of Hs(Rn) are Ck in the classical sense:

Theorem 26 (Sobolev Embedding I) If s > n/2, then all functions f in Hs(Rn) are bounded

and continuous, i.e.

Hs(Rn) ⊆ Cb(Rn)

If s > n/2 + k, then

Hs(Rn) ⊆ Ck(Rn)

and consequently ⋂
s∈R

Hs(Rn) = C∞(Rn) �

More enerally (Nicolaescu [85, Theorem 10.2.21]),

Theorem 27 (Sobolev Embedding II) If r < s and r − n/p = s − n/q < 0, then W r,p(Rn) ⊂

W s,q(Rn), and the inclusion is continuous, which follows from the inequality

‖f‖W s,q(Rn) ≤ C‖f‖W s,q(Rn)

for all f ∈W r,p(Rn), for some C > 0 depending on r, s, p, q and n. �

Finally, we have the Rellich-Kondrachov compactness theorem,

Theorem 28 (Rellich-Kondrachov) Let Ω be an open bounded Lipschitz domain in Rn (i.e. ∂Ω

is of class C, see Leoni [74]). If r < s and s− n/p > r − n/q, the inclusion

W s,p(Ω) ↪→W r,q(Ω)

is compact, in the sense of operator theory. In particular,

Hs(Ω) ↪→ Hr(Ω)

is compact. �
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3.1.2 Function Spaces in the Manifold Setting

We wish to define analogs of the locally convex spaces of test functions D(Ω), E(Ω), and

their continuous duals, the space of distributions D′(Ω) and the space of compactly supported

distributions E ′(Ω), to spaces of sections Γ(E) of complex vector bundles E →M . Then we would

like to define analogs Sobolev spaces of such sections, as well. We begin with the first task.

3.1.2.1 Test Functions and Distributions on Manifolds

Let E be a complex (or real) rank p smooth vector bundle over a smooth n-manifold M .

We want to think of the space of smooth sections Γ(E) in the same way as we do the space of

smooth functions C∞(Ω), Ω an open subset of Rn, namely equipped with a locally convex topology

generated by a family of seminorms, giving the test functions E(Ω). We can proceed locally, over

chart domains (Uj , ϕj) trivializing E.

Definition 35 (Locally Convex Topology on Γ(E)) Let {(Uj , ϕj)}j∈J be a vector bundle at-

las for M , that is, an atlas which also gives local trivializations for E,

τj : E|Uj → Uj × Cp

then let

γ := (j, l,K, r), where j ∈ J, q ≤ ` ≤ p, K ∈ Kϕj(Uj), r ∈ N0

Here the notation KV denotes the set of compact subsets K of any open set V in Rn. If s ∈ Γ(E),

let sj := s|Uj denote its restriction to Uj , let π` : Cp → C denote the `th projection, and then define

the seminorm ‖ · ‖γ by

‖s‖γ := ‖π`(sj)‖K,r (3.49)

where ‖ · ‖K,r is the seminorm on C∞(Ω), Ω ⊆ Rn open,

‖f‖K,j := sup
x∈K,|α|≤j

|Dαf(x)|
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Equipped with this locally convex topology, the space Γ(E) becomes a locally convex space, which

we denote by

E(E) (3.50)

It is an easy check that the locally convex topology does not depend on the choices involved in the

construction of the seminorms, and basically boils down to taking a refinement of any two different

trivializing covers of M . Also, as in the Euclidean case, E(E) becomes a Fréchet space, since the

cover can always be chosen to be countable. �

Remark 47 We observe that a sequence (sn)n∈N in E(E) converges to s in this topology iff, for any

open set U in the domain of a chart (Uj , ϕj), and for any compact K ⊆ U , writing sn = (s1
n, . . . , s

p
n)

and s = (s1, . . . , sp) in a local frame, we have that all the derivatives Dαsin converge uniformly in

K to Dαsi in the local coordinates ϕj . This is just a local coordinate description of the Euclidean

case, which is applied componentwise. �

Definition 36 (Test Sections: Locally Convex Topology on Γc(E)) For each compact sub-

set K of M , define

EK(E) := {s ∈ Γc(E) | supp(s) ⊆ K} (3.51)

with the locally convex topology induced from E(E), i.e. generated by the same seminorms ‖ ·‖γ as

in the noncompact case E(E). Letting KM be the set of all compact subsets of M , we then define

the space of test sections

D(E) :=
⋃

K∈KM

EK(E) (3.52)

endowed with the inductive limit topology, as in the Euclidean case. This is just Γc(E) endowed

with a complete topology. �

Definition 37 To define the duals of E(E) and D(E), we employ the integral over M . If M is

orientable, we may suppose this integral to be with respect to some volume/top form (this will be
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the situation for us, on a symplectic manifold, since these are always orientable), otherwise we must

define the integral with respect to some density of a density bundle. Let us suppose our manifold

M orientable for simplicity. Then, the integral defines a linear functional on the space of compactly

supported top forms Ωn
c (M) = Γc(

∧n T ∗M), taking a top form and integrating it:∫
M

: Ωn
c (M)→ C (3.53)

α 7→
∫
M

α (3.54)

Let us denote by E∨ the ”functional dual”,

E∨ := E∗ ⊗ Ωn
c (M) ∼= HomC∞(M)(E; Ωn

c (M)) (3.55)

From E∨ we get a pairing map

Γ(E∨)× Γ(E)→ Ωn
c (M) (3.56)

(σ∗ ⊗ α, τ) 7→ σ∗(τ)α (3.57)

and from this we get the canonical pairing

[·, ·] : Γc(E
∨)× Γ(E)→ C (3.58)

[σ∗ ⊗ α, τ ] :=

∫
M

(σ∗ ⊗ α, τ) =

∫
M

σ∗(τ)α (3.59)

Using this pairing, we define the space of distributional or generalized sections of E to be

the continuous dual of D(E∨),

D′(E) := D(E∨)∗ (3.60)

endowed with the strong topology. By the way E∨ was constructed we have the canonical inclusion

E(E) ↪→ D′(E), namely via s 7→ Ts := [·, s]. And as in the Euclidean case, D′(E) is an E(E)-

module, via (sα)(f) = α(sf). �

Definition 38 The space of compactly supported distributional or generalized sections

of E, is similarly defined bo be the continuous dual of E(E∨),

E ′(E) := E(E∨)∗ (3.61)
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and in the same way we get the inclusion D(E) ↪→ E ′(E), s 7→ [·, s]. �

3.1.2.2 Generalized Function Spaces on Manifolds

Before we introduce Sobolev spaces on manifolds, we want to explain the general principle.

This principle is observed in most texts on analysis on manifolds, but is most clearly articulated in

the book by van den Ban and Crainic [104], and it is this treatement that we follow here.

Definition 39 In the Euclidean case we have seen a variety of function spaces, from Schwartz

functions to Sobolev spaces to distributions. Some are locally convex only, some are Fréchet, some

are Banach spaces, and some are Hilbert spaces. In all these cases, the function space, call it F ,

sits between the test functions and the distributions, D(Rn) ⊆ F ⊆ D′(Rn). Since all these spaces

are in particular locally convex topological vector spaces, we begin with this as our notion of a

function space on Rn. We add only the mild requirement that, in addition to F being a locally

convex TVS (topological vector space), the multiplication-by-test-function map, mϕ : F → F ,

mϕ(f) := ϕf , be continuous. Explicitly, then, a general function space F on Rn satisfies

(1) F is a locally convex TVS, with generating family Γ of seminorms.

(2) D(Rn) ⊆ F ⊆ D′(Rn)

(3) mϕ : F → F , mϕ(f) := ϕf , is continuous for all ϕ ∈ D(Rn).

Let us also introduce some variations and notation. Recall that for any topological space X the

notation KX means the set of all compact subsets of X.

(1) FK := {u ∈ F | supp(u) ⊂ K} for any K ∈ KRn , with the topology induced from F .

(2) FK :=
⋃
K∈KRn

FK , with the inductive limit topology.

(3) Floc := {u ∈ D′(Rn) | ϕu ∈ F , ∀ϕ ∈ D(Rn)}, with the locally convex topology induced

by the seminorms qp,ϕ := p(ϕu), where p ∈ Γ. That is, the weakest topology making the

multiplication map mϕ : Floc → F continuous.
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Example 19

(1) D := D(Rn) = DK(Rn) = EK(Rn).

(2) E := E(Rn) = Dloc(Rn) = Eloc(Rn).

(3) S := S(Rn) = Sloc(Rn)

(4) D′ := D′(Rn) = D′loc(Rn) = E ′loc(Rn).

(5) E ′ := E ′(Rn) = E ′K(Rn) = D′K(Rn)

The Sobolev spaces satisfy only the strict inclusions

Hs
K(Rn) ⊂ Hs(Rn) ⊂ Hs

loc(Rn)

Here, Hs
loc := Hs

loc(Rn) = {u ∈ D′ | ϕu ∈ Hs(Rn), ∀ϕ ∈ D} is equipped with the seminorms

q‖·‖s,ψ(f) := ‖ψf‖s, where ‖ · ‖s is the Sobolev norm induced by the innder product on Hs.

To put such a function space on a complex (or real) vector bundle E over a manifold M

which is not necessarily compact, we require extra structure of our function spaces F on Rn, which

we take as axioms, in the sense that some or all of these axioms will be satisfied by the function

spaces we are most interested in.

(1) (Banach Axiom) We say that F is Banach if its topology is a Banach topology. Oth-

erwise, we say that F is locally Banach if for each K ∈ KRn the topology of FK is

Banach.

(2) (Fréchet Axiom) We similarly say that F is Fréchet if its topology is a Fréchet topology,

and we say F is locally Fréchet if each FK is Fréchet.

(3) (Hilbert Axiom) We say that F is Hilbert if its topology is a Hilbert space topology.

Otherwise, we say that F is locally Hilbert if for each K ∈ KRn the topology of FK is

Hilbert.

(4) (Diffeomorphism Invariance Axiom) If χ ∈ Diff(Rn), we require that χ∗ : D′ → D′,

χ∗(u)ϕ := u(ϕ◦χ−1), restrict to a topological isomorphism on F . We say that F is locally
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invariant if for all χ ∈ Diff(Rn) the map χ∗ restricts to a topological isomorphism on FK

for all K ∈ KRn ,

χ∗ : FK
∼−→ Fχ(K)

(5) (Density Axiom) We that F is normal if D is dense in F , and we say that F is locally

normal if FK ⊆ D ⊆ F for all K ∈ KRn , where the closure is in F . This axiom becomes

significant when we consider dualizing. Indeed, it follows that the duality between Floc and

FK becomes

(Floc)
∗ = (F∗)K and (FK)∗ = (F∗)loc

(6) (Locality Axiom) We say that F is local if, as a locally convex TVS we have F = Floc.

Remark 48 If F is locally Banach or locally Fréchet, the FK is a complete locally convex TVS

which is not Fréchet. This follows from the properties of the inductive limit topology, which require

it to restrict to the topologies on each FK . �

Example 20 E is Fréchet, but not Banach or even locally Banach. D is not Fréchet, but it is

locally Fréchet. The Sobolev spaces Hs are Hilbert, and so Banach, but their local versions Hs
loc

are just Fréchet and locally Hilbert. S is Fréchet but not Banach. All the standard spaces D, E , S,

D′, E ′, and S ′ are diffeomorphism invariant, but the Sobolev spaces Hs are not, though they are

locally diffeomorphism invariant (a non-trivial result which requires pseud-differential operators to

prove, Theorem 9.2.3, van den Ban and Crainic [104]). The spaces D, E , S, D′, E ′, and S ′ are

normal, as is Hs, though Hs(Ω) not so for arbitrary open sets Ω ⊆ Rn, though these are locally

normal. E and D′ are local, but D and E ′ are not. Nor is Hs local, which is why we introduced

Hs
loc.

The usefulness of these notions is nicely captured in the following Theorem, see van den Ban

and Crainic [104, Theorem 3.5.4] for a proof.
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Theorem 29 If F = Floc, then F is locally Fréchet iff it is Fréchet, locally invariant iff it is

invariant, and locally normal iff it is normal. On the other hand, if F is locally Fréchet, then it is

local iff the following two test conditions are satisfied:

(1) Let u ∈ D′. Then u ∈ F iff ϕu ∈ F for all ϕ ∈ D.

(2) un → u in F iff ϕun → ϕu for all ϕ ∈ D.

�

Now, in order that F be transferrable to a manifold, we need compatibility with restricitons

to open sets and with local diffeomorphisms. The localization axiom implies that we can restrict

distributions to opens, for the restriction map

rΩ,Rn : C∞(Rn)→ C∞(Ω)

dualizes to the inclusion

iΩ,Rn : E ′(Ω) ↪→ E ′(Rn) ↪→ D′(Rn)

which may be thought of as ’extension by zero’. Given a local function space F = Floc, therefore,

we define, for each open Ω ⊆ Rn the space

F(Ω) := {u ∈ D′(Ω) | ϕu ∈ F , ∀ϕ ∈ D(Ω)} (3.62)

endowed with the topology generated by the family of seminorms ΓΩ = {qp,ϕ | p ∈ ΓF , ϕ ∈ D(Ω)}.

By Theorem 3.6.2, van den Ban and Crainic [104], we have that F(Ω) is invariant, normal, or

locally Banach/Hilbert/Fréchet if F is. Moreover, since F is local, so is F(Ω), and for such a local

function space the assignment

Ω 7→ F(Ω) (3.63)

defines a sheaf, called the sheaf of distributions, which has the diffeomorphism invariance prop-

erty

χ∗ : F(Ω1)
∼−→ F(Ω2)

for all χ ∈ Diff(Ω1,Ω2).
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Definition 40 Fix, now, a local invariant function space F , and let E → M be a rank p smooth

complex vector bundle over a smooth n-manifold M , and consider a trivializing atlas {(Ui, ϕi)}i∈I

for E, with local trivializations τi : E|Ui → Ui×Cp. From these trivializations we get isomorphisms

hϕi,τi : D′(Ui, E|Ui)
∼−→ D′(ϕ(U))p

and similarly with D, E , E ′ and the others. Using these, we define a function space of sections

of a vector bundle by

F(E) := {u ∈ D′(E) | hϕ,U (u|U ) ∈ F(ϕ(U)), ∀U ∈ U} (3.64)

where U = {Ui}i∈I is the open cover by the chart domains. Note that by locality u ∈ F(E)

iff u|Ui ∈ F(Ui, E|Ui) for all i ∈ I. By Theorem 3.7.4, van den Ban and Crainic [104], we have

that F(E) = Floc(E) is local, and is locally Banach/Fréchet/Hilbert if F is, and normal if F

is. Moreover, any isomorphism h : E → F of vector bundles over M induces an isomorphism

h∗F(E)→ F(F ) of function spaces. As a consequence, if F is locally Banach or Hilber, and M is

compact, then F(E) is Banach or Hilbert, respectively, and D(E) is dense in F(E).

Remark 49 Consider now Hs
loc := Hs

loc(Rn) = {u ∈ D′ | ϕu ∈ Hs(Rn), ∀ϕ ∈ D}. It is locally

Hilbert, invariant (as mentioned above), and normal, with

E := E(Rn) =
⋂
s∈R

Hs
loc(Rn)

Thus, Hs
loc(E) is Fréchet, locally Hilbert (and Hilbert if M is compact), D(E) is dense in Hs

loc(E),

and ⋂
s∈R

Hs
loc(E) = E(E) (3.65)

since any u ∈ D′(E) such that u ∈ Hs
loc(E) for all s ≥ 0 lies in E . Moreover, the Rellich-Kondrachov

theorem extends to the compact setting: if r < s and M is compact, then the inclusion

Hs
loc(E) ↪→ Hr

loc(E) (3.66)

is compact, which follows from a partition of unity argument. �
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3.1.3 Differential Operators on Manifolds

A linear differential operator in Euclidean space with variable coefficients is a polynomial in

Dα = ∂|α|

∂xα with smooth matrix-valued coefficients,

P (x,D) : C∞(Rn,Rm)→ C∞(Rn,Rr)

P (x,D)f =
∑
|α|≤k

Aα(x)Dαf

where

Dα


f1

...

fm

 :=


Dαf1

...

Dαfm


and the coefficient matrices

Aα : Rn →Mr,m(R) ∼= HomR(Rm,Rr)

Aα(x) =


aα11 · · · aα1m
...

. . .
...

aαr1 · · · aαrm


act on each Dαf by multiplication.

Remark 50 Of course, we could generalize this definition to complex-valued functions,

P (x,D) : C∞(Rn,Cm)→ C∞(Rn,Cr)

P (x,D)f =
∑
|α|≤k

Aα(x)Dαf

where the Dα act on the real and imaginary parts of f = f1 + if2,

Dαf = Dαf1 + iDαf2 �

The following well-known examples illustrate this definition, though in some sense they are

simpler, because the coefficient matrices are constant.
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Example 21 The gradient is a differential operator on Rn,

grad : C∞(Rn,R)→ C∞(Rn,Rn)

which is given by

grad f :=



1

0

...

0


∂

∂x1
f + · · ·+



0

...

0

1


∂

∂xn
f =


∂f

∂x1
...

∂f

∂xn


It is a first order operator. �

Example 22 The divergence is a differential operator on Rn,

div : C∞(Rn,Rn)→ C∞(Rn,R)

given by

div f = div


f1

...

fm



:=

(
1 0 · · · 0

)
∂

∂x1


f1

...

fm

+ · · ·+
(

0 · · · 0 1

)
∂

∂xn


f1

...

fm


=

∂f1

∂x1
+ · · ·+ ∂fn

∂xn

It is a first order operator. �

Example 23 The Laplacian on real-valued functions is a second order differential operator

∆ : C∞(Rn,R)→ C∞(Rn,R)

given by

∆f := (1)
∂2

∂x2
1

f + · · ·+ (1)
∂2

∂x2
n

f

=
∂2f

∂x2
1

+ · · ·+ ∂2f

∂x2
n



190

It is a second order operator. The coefficient matrices Aα = (1) are 1× 1 identity matrices. Note

that the Laplacian is the composition of the divergence and gradient operators,

C∞(Rn,R)
∆

- C∞(Rn,R)

C∞(Rn,Rn)

div

-

grad -

i.e. ∆f = div(grad f). �

Example 24 The Laplacian on vector-valued functions is a second order differential operator,

∆m := Im∆ : C∞(Rn,Rm)→ C∞(Rn,Rm)

where Im is the identity matrix in Mm(R), and so ∆m is given by

∆mf = ∆m


f1

...

fm



:= Im
∂2

∂x2
1


f1

...

fm

+ · · ·+ Im
∂2

∂x2
n


f1

...

fm



=



∂2f1

∂x2
1

+ · · ·+ ∂2f1

∂x2
n

0 · · · 0

0 ∂2f2

∂x2
1

+ · · ·+ ∂2f2

∂x2
n
· · · 0

...
...

. . .
...

0 0 · · · ∂2fm
∂x2

1
+ · · ·+ ∂2fm

∂x2
n



=


∆f1 · · · 0

...
. . . 0

0 · · · ∆fm


We will usually omit the superscript m and simply write ∆. �

Let us try to reformulate the definition of P (x,D) in terms of manifolds and vector bundles.

First, we may view Rn as a manifold equipped with the trivial vector bundle E = Rn × Rm → Rn
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and similarly with F = Rn × Rr → Rn (or E = Rn × Cm → Rn and E = Rn × Cr → Rn in the

complex case). The space of smooth functions C∞(Rn,Rm) is then identically the space of sections

of E, and similarly with C∞(Rn,Rr),

Γ(F ) = C∞(Rn,Rm),

Γ(F ) = C∞(Rn,Rr)

Then, a linear differential operator P (x,D) is a map of sections,

P (x,D) : Γ(E)→ Γ(F )

where x ∈ Rn is an element of the base manifold and the derivatives Dα act on sections of the vector

bundle E componentwise, the differentiation being with respect to the base coordinates x. The

coefficient matrices Aα : Rn →Mr,m(R) ∼= HomR(Rm,Rr) act on the result of Dα by multiplication.

Thus, in full, if f ∈ Γ(E),

P (x,D)f =
∑
|α|≤k

Aα(x)Dαf =
∑
|α|≤k


aα11 · · · aα1m
...

. . .
...

aαr1 · · · aαrm




∂|α|f1

∂xα

...

∂|α|fm
∂xα


Abstracting the above construction to real or complex vector bundles E →M and F →M involves

two changes: (1) The base manifold Rn is changed to a smooth manifold M which is only locally

like Rn, though it may possess different local and global topological properties, and (2) The vector

bundles E and F are no longer globally trivial, but only locally trivial. Thus, the generalization

to manifolds involves adding additional topological structure to M , which manifests itself also in

the twisting of the vector bundles attached to M . As it turns out, however, this extra structure

doesn’t affect the definition of a differential operator, though, as we will see, certain differential

operators (the elliptic self-adjoint operators particularly) are affected by the topology of M . This

is the content of the index theorems.

Definition 41 (Local Definition) The simplest generalization of a linear differential operator to

manifolds is the local coordinate definition, and may be found in Hörmander’s book [57, p. 151].
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Let E and F be real or complex smooth vector bundles over a smooth manifold M , of rank m

and r, respectively. A linear differential operator is an R- or C-linear operator (depending on

whether the vector bundles are real or complex) map of sections

P : Γ(E)→ Γ(F )

which is locally a differential operator from C∞(Ω,Rm) to C∞(Ω,Rk), where Ω ⊆ Rn is an open

subset. That is, in any trivializing charts (U,ϕ) for E and (V, ψ) for F about any point s(p) ∈ Ep

and Ps(p) ∈ Fs(p) we have that ψ ◦ P ◦ ϕ−1 is of the form
∑
|α|≤k A

α(x)Dα. �

Definition 42 (Sheaf Morphism Definition) Closely connected to the local definition is the

sheaf-theoretic definition. Let E and F be real or complex smooth vector bundles over a smooth

manifold M , of rank m and r, respectively, and define a linear differential operator to be an

R- or C-linear map of sections

P : Γ(E)→ Γ(F )

which is support decreasing,

supp(Ps) ⊆ supp(s)

for all compactly supported sections s ∈ Γc(E). If we consider the restriction map rV,U : U → V ,

where V ⊆ U are open sets of M , then we can rephrase this condition as commutation with

restriction rV,U : a linear differential operator is an R- or C-linear map of sections commutig with

restriction,

P ◦ rV,U = rV,U ◦ P

i.e. (P |V )s = (Ps)|V for all local sections s ∈ Γ(U,E). �

Remark 51 The equivalence of these two definitions is known as Peetre’s Theorem [88]. The order

of the operator P is the integer k in its local description, P (x,D)s =
∑
|α|≤k A

α(x)Dαs. It must

be checked that this order is invariant under chart transitions, though this is intuitively clear, since

chart transitions are elements of GL(n,R) or GL(n,C). �
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A more invariant, global definition is the following, found in, for example, Guillemin and

Sternberg [48]. Its form is similar to that of the universal enveloping algebra of a Lie algebra, and

likely has that as a model for its construction.

Definition 43 We define the space of linear differential operators simultaneously with the linear

differential operators themselves, and we do this inductively over k, the order of the operator. This

has the advantage of telling us how to view differential operators globally and invariantly, and also

provides a mechanism for defining and calculating the symbol of an operator. Towards this end, let

E and F be real or complex smooth vector bundles over a smooth manifold M . A zeroth order

linear differential operator is defined to be a bundle map, P : E → F ,

E
P

- F

M
πE�πE

-

Now, a bundle morphism is by definition a C∞(M)-linear smooth map from E to F which is

fiberwise R- or C-linear, as the case may be. In other words, P is a section of the bundle

Hom(E,F ) → M , or, what is equivalent since they are isomorphic, a C∞(M)-linear homomor-

phism from the sections Γ(E) to the sections Γ(F ),

P ∈ Γ
(
Hom(E,F )

) ∼= HomC∞(M)(Γ(E),Γ(F )) (3.67)

(recall that Γ(Hom(E,F )) is a C∞(M)-module). The C∞(M)-linearity can be expressed in terms

of commutators: If s ∈ Γ(E) and f ∈ C∞(M), then

P (fs) = fP (s) ⇐⇒ [P, f ](s) := (P ◦ f − f ◦ P )(s) = 0 (3.68)

Here f means multiplication by f . Then define the space of zeroth order linear differential

operators to be the space of bundle maps,

D0(E,F ) := HomC∞(M)(Γ(E),Γ(F )) = {P ∈ Hom(Γ(E),Γ(F )) | [P, f ] = 0, ∀f ∈ C∞(M)} (3.69)

Analogously, we define the space of differential operators of order at most one to be

D1(E,F ) := {Hom(Γ(E),Γ(F )) | [P, f ] ∈ D0(E,F ), ∀f ∈ C∞(M)} (3.70)
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and, continuing inductively, we define the space of linear differential operators of order at

most k + 1 by

Dk+1(E,F ) := {Hom(Γ(E),Γ(F )) | [P, f ] ∈ Dk(E,F ), ∀f ∈ C∞(M)} (3.71)

Then we define the space of all linear differential operators from E to F to be the union of

these spaces,

D(E,F ) :=

∞⋃
k=0

Dk(E,F ) (3.72)

�

We follow the discussion in Nicolaescu [85] for the rest of this section.

Remark 52 The appearance of the commutator here is analogous to the situation of the adjoint

representation of a Lie algebra, ad : g → End(g), which satisfies adu(v) = [u, v]. Let us use this

notation in this context, as

ad : C∞(M)→ EndC
(
HomC(Γ(E),Γ(F ))

)
adf = [·, f ]

where we insert a map P ∈ HomC(Γ(E),Γ(F )) into the open slot

adf (P ) = [P, f ]

Here C may be replaced with R, if E and F are real vector bundles. Then we can see that the

zeroth order linear differential operators are the kernel of this adjoint map,

D0(E,F ) = ker ad (3.73)

Similarly, if adf (P ) = [P, f ] ∈ D0(E,F ) = ker ad for all f ∈ C∞(M), then P ∈ D1(E,F ). But this

is equivalent to saying

P ∈ ker ad2
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where ad2 : C∞(M)2 → EndC
(
HomC(Γ(E),Γ(F ))

)
is given by

ad2(f, g)(P ) := adf ◦ adg(P ) = adf [P, g] = [[P, g], f ]

Thus,

D1(E,F ) = ker ad2 (3.74)

More generally, if we define, for all k ∈ N,

adk : C∞(M)k → EndC
(
HomC(Γ(E),Γ(F ))

)
(3.75)

adk(f1, . . . , fk)(P ) := adf1 ◦ · · · ◦ adfk(P ) = [· · · [[P, fk], fk−1] · · · , f1] (3.76)

Then we have

Dk(E,F ) := ker adk+1 (3.77)

for all k ∈ N, and we no longer require recursion to define Dk(E,F ). �

By the following proposition, the local and global definitions 42 and 43 are equivalent. We

follow the proof in Nicolaescu [85, Lemma 10.1.3].

Proposition 61 Any P ∈ D(E,F ) is support decreasing, supp(Ps) ⊆ supp(s) for all s ∈ Γ(E),

and conversely.

Proof : The proof is by induction over k, the order of P . If k = 0, this is clear since P is a bundle

map. Now suppose that P ∈ Dk+1(E,F ) and that the result holds for all L ∈ Dr(E,F ), 0 ≤ r ≤ k.

Then, for all f ∈ C∞(M) and all s ∈ Γc(U,E)

P (fs) = [P, f ](s) + fP (s)

so since supp(P (fs)) ⊆ supp(f) ∪ supp(s), by choosing f to be a bump function with support

containing supp(s) and zero outside any open set V containing supp(s), with fs ≡ s, the result

follows from the induction hypothesis, since [P, f ] ∈ Dk(E,F ). Conversely, if supp(Ps) ⊆ supp(s),

the by Peetre’s theorem we know that P is a local linear differential operator of some order k. Any

such operator satisfies P ∈ ker adk+1 locally, and hence, by use of a partition of unity subordinate

to an open cover by trivializing charts, globally on M . �
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Proposition 62 adk is symmetric in the entries fj ∈ C∞(M),

adk(fσ(1), . . . , fσ(k))(P ) = adk(f1, . . . , fk)(P )

for all permutations σ ∈ Sk on k letters.

Proof : Since any permutation σ ∈ Sk decomposes into transpositions, it is enough to prove it for

transpositions τ(i j). First, note that on C∞(M), viewed as embedded inD0(E,F ) as multiplication

operators, we have [f, g] = 0, so by the Jacobi identity

[[L, f ], g] = [L, [f, g]] + [[L, g], f ] = [[L, g], f ]

whence, for all f, g, h ∈ C∞(M),

[[[L, f ], g], h] = [[[L, g], f ], h] = [[[L, g], h], f ] = [[[L, h], g], f ] = [[[L, h], g], f ] = [[[L, h], f ], g]

and so on. The general result follows by induction and the application of transpositions. �

Proposition 63 Let E, F , and G be complex (or real) smooth vector bundles over M . If P ∈

Dm(F,G) and Q ∈ Dn(E,F ), then P ◦Q ∈ Dm+n(E,G).

Proof : The proof is by induction over m + n. For m + n = 0 we have m = n = 0, so the result

follows from the fact that bundle maps compose to form bundle maps. Suppose the result true for

some m+ n ≥ 0, then, and consider the case m+ n+ 1. For all f ∈ C∞(M) we have

[P ◦Q, f ] = P ◦Q ◦ f − f ◦ P ◦Q+ P ◦ f ◦Q− P ◦ f ◦Q

= (P ◦ f − f ◦ P ) ◦Q+ P ◦ (Q ◦ f − f ◦Q)

= [P, f ] ◦Q+ P ◦ [Q, f ]

But the operators [P, f ] ◦ Q and P ◦ [Q, f ] have orders ≤ m + n, so by the induction hypothesis

[P ◦ Q, f ] ∈ Dm+n(E,F ). But since this is true for all f , we must have P ◦ Q ∈ Dm+n+1(E,F ),

and by induction we conclude that the statement holds for all m,n ∈ N0. �
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The discussion so far has centered on linear differential operators defined as maps of smooth

sections. However, we would like to think of differential operators as densely defined operators on a

Hilbert space generally, and we really need this generality in order to be able to use the techniques

of functional analysis and PDE theory. Indeed, we need the full framework of distributions and

Sobolev spaces to be able to do this. Let us describe this generalization now.

Definition 44 Let E and F be complex (or real) smooth vector bundles over a smooth manifold

M , and let D(E) and D(F ) be the spaces of smooth sections Γ(E) and Γ(F ), respectively, considered

as locally convex spaces endowed with the inductive limiti topology induced from the locally convex

spaces DK(E) and DK(F ), as explained in the previous section. A generalized linear differential

operator is then a continuous C-linear map

P : D(E)→ D′(F ) (3.78)

Letting F1,F2 ∈ {D, E ,D′, E ′, Hs
loc} be among the local invariant function spaces on Rn, which we

transfer to the bundles E and F , the inclusion of D in each Fi implies that P extends to a C-linear

operator

P : F1(E)→ F2(F ) (3.79)

and conversely this operator induces the former by the denseness of D in the other spaces. By

Proposition 3.8.4, van den Ban and Crainic [104]) any operator P ∈ Dk(E,F ), thought of as

P : D(E)→ D(F ), extends uniquely to an operator

P : Hs
loc(E)→ Hs−k

loc (F )

for any s ≥ k ≥ 0. But by viewing D(F ) as contained in D′(F ), we can extend P to any local

invariant function space, in fact. The idea here is that a generalized operator P takes smooth

sections and gives generalized sections, possibly non-smooth. Our main interest will by in Sobolev

spaces and L2, for our symplectic Dirac operators.

A smoothing operator, by contrast, should take generalized sections to smooth sections,
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and so we define it as a continuous C-linear map

P : E ′(E)→ E(F ) (3.80)

A smoothing operator, then, is generalized operator taking values in E(F ) which extends to a

continuous/bounded operator on E ′(E). The space of all smoothing operators is denoted

Ψ−∞(E,F ) := {P : D(E)→ D′(F ) | P extends to E ′(E)→ E(F )} (3.81)

= B
(
E ′(E), E(F )

)
(3.82)

⊆ B
(
D(E),D′(F )

)
(3.83)

�

Remark 53 Recalling the Schwartz Kernel Theorem 25, we can begin to see the significance

of these definitions, and their relationship. In the manifold setting, this takes the form of an

isomorphism of locally convex topological vector spaces. Let E → M and F → N be complex (or

real) smooth vector bundles, and consider the bundle : E∨ = E∗⊗Ωn
c (M)→M . If π1 : N×M → N

and π2 : N ×M →M are the projections onto each component, define

F � E∨ := π∗1(F )⊗ π∗2(E∨)

Then, the Schwartz Kernel Theorem then takes the form

D′(N ×M,F � E∨) ∼= B
(
D(E),D′(F )

)
(3.84)

as in the Euclidean case (Theorem 2.4.5, van den Ban and Crainic [104]). The subspace Ψ−∞(E,F )

of B
(
D(E),D′(F )

)
therefore has a corresponding subspace in D′(N ×M,F � E∨) to which it is

isomorphic, called the space of generalized sections of F � E∨, namely E(N ×M,F � E∨),

E(N ×M,F � E∨) ∼= Ψ−∞(E,F ) (3.85)

�
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3.1.3.1 The Symbol of a Differential Operator

We now describe the principal symbol of a differential operator, which gives, roughly, a coarse

estimate of the behavior of the operator in by isolating its highest order terms. To get an invariant,

non-local analog of this quantity, we observe that in the Euclidean setting, the highest order terms∑
|α|=k A

α(x)Dα of an operator P (x,D) =
∑
|α|≤k A

α(x)Dα are captured by the adjoint operator

ad given above,

1

k!
adk(f, . . . , f)(P ) =

∑
|α|=k

Aα(x)Dαf

As we can see, this quantity depends only on the value of df(x0) =
∑n

j=1
∂f
∂xj

dxj , and therefore

describes the fiberwise behavior of P , encoded in terms of an element of (Rn)∗. This gives us an

invariant, coordinate-free way to define the symbol of any operator P ∈ Dk(E,F ). When this

quantity is a linear isomorphism of the fibers E∗x0
, the operator is called elliptic. Elliptic operators

are such nicely behaved operators that they occupy a special place in PDE and operator theory.

For example, an elliptic operator is ’regular’, in the sense that, even when it satisfies an equality

Pu = v weakly, if we know that v has a certain amount of smoothness, then we can conclude

that so, too, does u. A symmetric elliptic operator also has very good spectral properties, with

discrete spectrum consisting only of real eigenvalues, while elliptic regularity guarantees that the

corresponding eigenspaces, which are finite-dimensional, consist of smooth functions. We study

elliptic operators more closely in the following section. In this section we follow the treatement in

Nicolaescu [85].

Our first task is to show that the symbol, whose definition we have only sketched, only depends

on the value of df at a point p0, so that if we take two functions f and g whose differentials agree

at p0, then the symbol will agree if evaluated at f and g.

Lemma 10 Let p0 ∈M and define the ideals

mp0 := {f ∈ C∞(M) | f(p0) = 0}

Ip0 := {f ∈ C∞(M) | f(p0) = df(p0) = 0}
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in C∞(M). Then,

Ip0 = m2
p0

which means that each f ∈ Ip0 can be written as a finite sum f =
∑r

i=1 figi for fi, gi ∈ mp0.

Proof : Since df =
∑n

j=1
∂f
∂xj

dxj , we see that df(p0) = 0 iff ∂f
∂xj
|p0 = 0 for all i, in which case we

can write f(p) =
∫
γ df for any path γ : I →M from p0 to p. In particular,

f(p) =
n∑
i=1

∫
γ

∂f

∂xj
dxi =

n∑
i=1

∫ 1

0

∂f

∂xj
(γ(t))γ′(t) dt

=
n∑
i=1

∫ 1

0

∂(f ◦ ϕ−1)

∂xj
(ϕ ◦ γ(t))

d

dt
(ϕ ◦ γ)(t) dt

for any chart (U,ϕ) about γ(t). Now, if we choose γ carefully, for example so that (ϕ ◦ γ)(t) =

t(ϕ(p)− ϕ(p0)) + ϕ(p0), i.e.

γ(t) = ϕ−1
(
t(ϕ(p)− ϕ(p0)) + ϕ(p0)

)
then

γ′(t) :=
d

dt
(ϕ ◦ γ)(t) = ϕ(p)− ϕ(p0) =

(
x1(p)− x1(p0), . . . , xn(p)− xn(p0)

)
and therefore

f(p) = f(p)− f(p0)

= f(γ(1))− f(γ(0))

=

∫ 1

0
(f ◦ γ)′(t) dt

=

∫ 1

0
df(γ(t)) γ′(t) dt

=

∫ 1

0

n∑
i=1

∂f

∂xi
(γ(t))dxi ◦

(
x1(p)− x1(p0), . . . , xn(p)− xn(p0))

)
dt

=

n∑
i=1

(xi(p)− xi(p0))

∫ 1

0

∂f

∂xi
(γ(t)) dt

=
∑
i=1

fi(p)gi(p)

where fi(p) = xi(p)− xi(p0) and gi(p) = gi(γ(t)) =
∫ 1

0
∂f
∂xi

(γ(t)) dt, which clearly vanish at p0. �
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Proposition 64 Let P ∈ Dk(E,F ) be a kth order linear differential operator. If there are functions

fi, gi ∈ C∞(M), i = 1, . . . , k, such that dfi(p) = dgi(p) for all i at a point p0 ∈M , then

adk(f1, . . . , fk)(P )|p0 = adk(g1, . . . , gk)(P )|p0

as zeroth order operators at p0, i.e. as C-linear maps of vector spaces Ep0 to Fp0.

Proof : Since adc(P ) = [P, c] = 0 for any constant c ∈ C, by the C-linearity of P , we may assme,

by adding constants to the fi and gi, that fi(p0) = gi(p0) for all i. Then, let ψ := f1 − g1 and

let Q = adk−1(f2, . . . , fk)(P ) ∈ D1(E,F ) and note that adψ(Q)|p0 = 0 in Hom(Ep0 , Fp0): since

ψ ∈ I)p0, we must have ψ =
∑n

j=1 ajbj for aj , bj ∈ mp0 , which means

adψ(Q)|p0 =
n∑
j=1

adajbj (Q)|p0 =

n∑
j=1

[Q, ajbj ] =

n∑
j=1

(
aj [Q, bj ] + [Q, aj ]bj

)∣∣∣
p0

= 0

since the aj and bj belong to mp0 . Letting ψi = fi − gi and repeating the above procedure for all i

shows that adk(ψ1, . . . , ψn)(P )|p0 = 0. �

Definition 45 If P ∈ Dk(E,F ) and f1, . . . , fk ∈ C∞(M), then at any point p0 ∈ M we have a

linear map

1

k!
adk(f1, . . . , fk)(P )|p0 =

1

k!
adf1 ◦ · · · ◦ adfk(P )|p0 ∈ HomC(Ep0 , Fp0)

which dependes on the values of the differentials dfi(p0) ∈ T ∗p0
M at p0. If ξi ∈ T ∗p0

M are 1-forms

evaluated at p0, then locally, in a neighborhood about p0, the Poincaré lemma says ξi = dfi near

p0, and by the above proposition the choice of such fi is immaterial so long as two choices agree at

p0. Thus, for any P ∈ Dk(E,F ) we get a unique map,

σ(P )(ξ1, . . . , ξk) ∈ HomC(Ep0 , Fp0) (3.86)

which is, moreover, symmetric in the ξi by Proposition 62. Since for any vector space V we have

the isomorphisms Homk
R,Sym(V ;R) ∼= (V ∗)�k = Rk[x1, . . . , xn], and for any such symmetric form f

we have the polarization formula (Nicolaescu [85, p. 329])

f(v1 . . . , vk) =
1

k!

∂k

∂t1 · · · ∂tk
f(t1v1 + · · ·+ tkvk, . . . , t1v1 + · · ·+ tkvk)
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because the right-hand-side equals 1
k!

∑n
i=1

∂f
∂vi
vi and f is a polynomial. By means of this polar-

ization formula we see that σ(P ) may just as well be defined, not in terms of k different fi, but in

terms of a single f , which gives a single ξ = df(p0) ∈ T ∗p0
M ,

σ(P )(ξ, . . . , ξ) ∈ HomC(Ep0 , Fp0) (3.87)

This is the principal symbol of P . Clearly, then σ(P ) induces a map

σ(P ) : (T ∗M)�k → Hom(E,F ) (3.88)

which we call the symbol map. We can describe this in terms of a short exact sequence,

0→ Dk−1(E,F )→ Dk(E,F )
σ−→
(
π∗(Hom(E,F ))→ S∗M�k)→ 0 (3.89)

where the space on the right is the space of all sections of π∗(Hom(E,F )) restricted to the cosphere

bundle (meaning the nonzero, unit-length ξ in T ∗M), the pullback being via the projection π :

T ∗M →M . For since π∗(E) ⊆ T ∗M × E, we can view the symbol map as taking nonzero (hence,

why not unit-length) elements ξ � · · · � ξ of (T ∗M)�k into Hom(E,F ), viewed as pulled back over

T ∗M by π. �

Definition 46 If the symbol σ(P ) of an operator P ∈ Dk(E,F ) is invertible for all nonzero ξ,

then we say that P is elliptic. �
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3.2 Essentially Self-Adjoint Operators

3.2.1 The General Theory of Essential Self-Adjointness on a Hilbert Space

Given a symmetric unbounded operator (T,D(T )) on a Hilbert space H, where D(T ) ⊆ H

is the dense domain of T and T ⊂ T ∗, that is D(T ) ⊆ D(T ∗), we are interested to know the

conditions under which T is self-adjoint, T = T ∗, or at least under which T admits a unique self-

adjoint extension T = T
∗ ⊃ T ; in the language of functional analysis, such a T is called essentially

self-adjoint. A major reason for this interest is the spectral theorem (Theorem VIII.6 Reed and

Simon [89]), which says that if T is self-adjoint, then it has an integral representation T =
∫
R λdPλ,

where Pλ is a spectral measure, or projection-valued measure, onH, and this allows us to define g(T )

for any real-valued Borel measurable function g on R, by letting g(T ) =
∫
R g(λ)dPλ. In particular,

applying this to the real and imaginary parts of g(x) = eix we can define the exponential eiT .

Indeed, we can do more: for any t ∈ R we can define eitT , and it is rather immediate that this

operator behaves much like the usual exponential: (1) ei(s+t)T = eisT ◦ eitT for all s, t ∈ R, (2)

eitT is continuous and even differentiable in t. Moreover, eitT is a unitary operator, an element

of U(H), and by Stone’s Theorem (Theorems VIII.7-VIII.8 Reed and Simon Vol.1 [89]) any such

unitary operator-valued map U : R → U(H) satisfying U(s + t) = U(s) ◦ U(t) and limt→t0 U(t) =

U(t0) is generated by a self-adjoint operator T , so U(t) = eitT . Thus, self-adjoint operators,

spectral measures, and exponentials are intimately connected. And the distinction between merely

symmetric operators, which only satisfy T ⊂ T ∗, and self-adjoint operators becomes apparent here.

The spectrum of a self-adjoint operator is a subset of the reals, and it is from this spectrum that we

can construct our spectral measures and the functional calculus which gives us the one-parameter

group of unitary operators eitT . Symmetric operators, by contrast, generally have spectra lying

outside of the reals, and it is impossible to construct their integral representations and the functional

calculus. However, in certain cases it is possible to extend a given symmetric operator to a unique

self-adjoint operator, and we will look for means of achieving this in our case, for our symmetric

symplectic Dirac operators D and D̃.
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From our point of view, and from the point of view of index theory generally, the relevance

of self-adjointness lies in the connection between the index of a certain self-adjoint first order

differential operator (the Dirac operator acting on the L2-closure of the space of spinors) and its

exponential, which is used to construct an integral kernel called the heat kernel. The first few

terms in the asymptotic expansion this heat kernel yield highly interesting topological information

about the underlying spin manifold over which the spinors lie, and this information is related back

to the purely analytic index of the Dirac operator by the famous Atiyah-Singer Index Theorem.

This, at least, is the case for the Dirac operator on a Riemannian spin manifold. Our interest is

in a similar idea, which concerns a slightly different, though neighboring, area, that of symplectic

geometry. Over any symplectic manifold (M,ω) we have two symplectic Dirac operators D and D̃

acting on the L2-closure of the space of symplectic spinors sitting over M . If we wish to proceed

along similar lines to the Riemannian case, we need to first assure ourselves of the self-adjointness

of our Dirac operators, and that is the purpose of these notes.

In this section we review the theory of unbounded symmetric operators and essentially self-

adjoint operators on a Hilbert space, culminating in the theorems of von Neumann characterizing

the domain of an essentially self-adjoint symmetric operator. We will use these theorems below in

our proof of the essential self-adjointness of the symplectic Dirac operators D and D̃.

Notation 5 Throughout this section we denote an abstract Hilbert space by H and the innner

product on H by (·, ·), unless there is a need to be specific about the Hilbert space to which (·, ·)

belongs, in which case we will indicate the dependence by (·, ·)H. �

Definition 47 Let T be a densely defined unbounded linear operator on a Hilbert space H, with

dense domain D(T ). Now, H⊕H is also a Hilbert space, with inner product

(
(x1, y1), (x2, y2)

)
H⊕H := (x1, x2)H + (y1, y2)H

and norm

‖(x, y)‖H⊕H =
(
‖x‖2 + ‖y‖2

)1/2
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The graph of T is the subspace of H⊕H

Γ(T ) := {(x, Tx) | x ∈ D(T )}

and we say that T is closed if Γ(T ) is closed in H ⊕ H. By the Closed Graph Theorem (Reed

and Simon [89, Theorem III.2, p. 83]) we know that when D(T ) = H, the operator T is closed iff

it is bounded. Therefore a closed operator T is undbounded iff D(T ) ( H. An extension of T

is an operator T1 with domain D(T1) ⊇ D(T ) and agreeing with T on D(T ), which makes T the

restriction of T1. We denote this relationship by

T ⊂ T1

An example of an extension of T is its closure T , which, when it exists, is by definition the operator

obtained from T by taking the closure of its graph. Since closedness can be interpreted in terms of

limits of sequences, if we take a Cauchy sequence (xn, Txn)n∈N in Γ(T ), then its limit lies in Γ(T ).

By the definition of the norm on H⊕H, this means

lim
n→∞

(xn, T (xn)) =: (x, y) ∈ Γ(T ) ⇐⇒ lim
n→∞

(
‖xn − x‖2 + ‖T (xn)− y‖2

)1/2
= 0

⇐⇒ lim
n→∞

‖xn − x‖ = 0 and lim
n→∞

‖T (xn)− y‖ = 0

so if we define T (x) := limn→∞ T (xn), then we see that

T ( lim
n→∞

xn) = T (x) = lim
n→∞

T (xn)

That is, T is the operator whose domain is precisely the set of limits x = limn→∞ xn which are

preserved by T ,

D(T ) = { lim
n→∞

xn ∈ H | (xn)n∈N is Cauchy in D(T ) and (Txn)n∈N is Cauchy in H}

= {x ∈ H | x = lim
n→∞

xn for some (xn)n∈N in D(T ) and lim
n→∞

Txn exists in H}

It is one of the basic facts of life that unbounded operators do not preserve all limits, else they

would be continuous and bounded. Closed operators at least preserve some limits, the ones which
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can exist, namely those for which (T (xn))n∈N converges whenever (xn)n∈N does. Of course, the

closure of Γ(T ) need not produce an operator whose graph is Γ(T ), since, as we will see, this can

only happen of the adjoint of T has a dense domain, and there are cases where this fails (see Reed

and Simon [89, Ex. 4, p. 252]). In the case that Γ(T ) is the graph of an operator T , we say that

T is closable. A core for a closable operator T is a subset C of D(T ) such that T |C = T . This is

a useful notion, since we may know something about C though not much about D(T ), and this is

sometimes enough to begin studying T . �

To understand closed and closable operators, then, we need to understand the other object

to which these notions are attached, the adjoint operator T ∗ of an operator T .

Definition 48 Let T be a densely defined unbounded operator on a Hilber space H with dense

domain D(T ). The adjoint T ∗ of T is the (not necessarily densely defined) linear operator on H

with domain

D(T ∗) = {y ∈ H | ∃z ∈ H s.t. (Tx, y) = (x, z) ∀x ∈ D(T )}

It is not immediately obvious that we can define T ∗y to be this z ∈ H, because z may not be

unique. However, the following proposition shows that the denseness of D(T ) in H guarantees the

uniqueness of z, as a simple consequence of the the Riesz Representation Theorem. We remark

that D(T ∗) may not be dense even if D(T ) is, as mentioned above. �

Proposition 65 The denseness of D(T ) in H implies the uniqueness of the element z ∈ H for

each y ∈ D(T ∗), making T ∗ a well-defined operator. As a byproduct, we have the following char-

acterization of D(T ∗): An element y ∈ H belongs to D(T ∗) iff the associated linear functional

(T ·, y) is bounded/continuous on D(T ), meaning that there exists a constant C > 0 such that

|(Tx, y)| ≤ C‖x‖ for all x ∈ D(T ).

Proof : First, we observe that y ∈ D(T ∗) iff the linear functional (T ·, y) is bounded on D(T ).

For suppose that for some y ∈ H we know that (T ·, y) ∈ D(T )∗, i.e. is bounded on D(T ). Then
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the denseness of D(T ) in H means we can extend (T ·, y) to a unique bounded linear extension

η ∈ H∗ on all of H (without denseness we would have to use the Hahn-Banach Extension Theorem,

Reed and Simon [89, Corollary 1, p. 77], Kadison and Ringrose [62, p. 10], which would give the

existence but not the uniqueness of η). By the Riesz Representation Theorem (Reed and Simon

[89, Lemma II.2, p. 42]) there is a unique element z ∈ H such that

η(x) = (x, z), ∀x ∈ H

Restricting η to D(T ) then gives

(Tx, y) = η(x) = (x, z), ∀x ∈ H

But then y ∈ D(T ∗) by the definition of D(T ∗). Conversely, suppose that y ∈ D(T ∗). Then there

is a z ∈ H such that for all x ∈ D(T ) we have (Tx, y) = (x, z). The Cauchy-Schwarz inequality

gives the boundedness of (T ·, y),

|(Tx, y)| = |(x, z)| ≤ ‖z‖‖x‖ = C‖x‖, where C = ‖z‖

This proves our claim that y ∈ D(T ∗) iff (T ·, y) ∈ D(T )∗.

Now we can prove that z is unique. If z and z′ are two such elements of H for a given y, i.e.

satisfying

(·, z) = (T ·, y) = (·, z′) ∈ D(T )∗

then by this assumption their associated bounded functionals agree on the dense space D(T ), and

this bounded functional extends by continuity to a unique bounded linear functional η on H, so

using the Riesz Representation Theorem we know that η can be represented by a unique vector

w ∈ H, i.e. η(x) = (x,w) for all x ∈ H. Restricting η to D(T ) we then conclude that z = w = z′

by the uniqueness of w. �

The following theorem characterizes closability, and our proof follows those in Reed and

Simon [89, Theorem VIII.1, p. 252] and Kadison and Ringrose [62, 2.7.8].
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Theorem 30 Let T be a densely defined unbounded linear operator on a Hilbert space H. Then

the following hold:

(1) T ∗ is closed.

(2) If T is closable, then (T )∗ = T ∗.

(3) T is closable iff D(T ∗) is dense. In this case, T = T ∗∗.

(4) Let V : H⊕H → H⊕H be given by V (x, y) = (−y, x). Then

Γ(T ∗) = V (Γ(T ))⊥

Proof : We start by proving (4), since we will use the map V to prove the other assertions.

First note that the map V is unitary: ‖V (x, y)‖2 = ‖(−y, x)‖2 = ‖ − y‖2 + ‖x‖2 = ‖(x, y)‖2,

for all x, y ∈ H. To prove the first assertion, note first that if E is a subspace of H ⊕ H, then

V (E⊥) = V (E)⊥, because V is unitary. Taking E = Γ(T ), we see that V (Γ(T )⊥) = V (Γ(T ))⊥, so

for any (x, Tx) ∈ Γ(T ), i.e. for all x ∈ D(T ), and any (k, h) ∈ H ⊕H we have that

(k, h) ⊥ V (x, Tx) = (−Tx, x) ⇐⇒
(
(k, h), (−Tx, x)

)
H⊕H = 0

⇐⇒ −(k, Tx) + (h, x) = 0

⇐⇒ (x, h) = (Tx, k)

⇐⇒ (k, h) = (k, T ∗k) ∈ Γ(T ∗)

which shows that (k, h) ∈ Γ(T ∗) iff (k, h) ∈ V (Γ(T ))⊥, and thus

Γ(T ∗) = V (Γ(T ))⊥

(1) Now, V (Γ(T ))⊥ is closed in H⊕H (the orthogonal complement of any subset S of H is

always closed, since the inner product (·, ·) is continuous in each variable by the Cauchy-Schwarz

inequality and S⊥ =
⋂
s∈S(s, ·)−1(0) is the intersection of the closed spaces (s, ·)−1(0) for each

s ∈ S), so we conclude that T ∗ is closed.

(2) Suppose T is closable, and observe that T ⊆ T implies (T )∗ ⊆ T ∗, so we need only

prove the reverse inclusion. Let y ∈ D(T ∗), so that (Tx, y) = (x, z) for some z =: T ∗y ∈ H



209

and all x ∈ D(T ). To show that y ∈ D(T
∗
) we must show that for all x ∈ D(T ) we have

(Tx, y) = (x, z) for some unique z ∈ H depending on y. By definition of T as the closure of

Γ(T ), any x ∈ D(T ) is the limit of a sequence (xn)n∈N in D(T ) for which the sequence (T (xn))n∈N

converges to Tx := limn→∞ T (xn). Moreover, since y ∈ D(T ∗), Proposition 65 tells us that

(T ·, y) = (·, T ∗y) is bounded/continuous on D(T ), and extends to a bounded linear functional on

H, so it preserves limits of sequences in D(T ). Thus, we have for our x = limn→∞ xn that

(Tx, y) = ( lim
n→∞

Txn, y) = lim
n→∞

(Txn, y) = lim
n→∞

(xn, T
∗y) = ( lim

n→∞
xn, T

∗y) = (x, T ∗y)

which shows that y ∈ D(T ).

Alternatively, (2) follows from (3) by noting that if T is closable, then T = T ∗∗, so T ∗ =

T ∗ = T ∗∗∗ = (T ∗∗)∗ = (T )∗.

(3) Since Γ(T ) is a subspace of H⊕H, we have by (4) that

Γ(T ) =
(
Γ(T )⊥

)⊥
= V 2

(
Γ(T )⊥

)⊥
= V

(
Γ(T ∗)

)⊥
If D(T ∗) is dense, then (4) applies again to give Γ(T ) = V

(
Γ(T ∗)

)⊥
= Γ(T ∗∗), which shows that

T = T ∗∗, and since T ∗∗ is an operator, we see that T is closable with closure T ∗∗. We will prove the

converse, T is closable implies D(T ∗) is dense, by proving its contrapositive: Suppose that D(T ∗)

is not dense. Then D(T ∗)⊥ is nontrivial and H = D(T ∗) ⊕ D(T ∗)⊥, so we may take a nonzero

y ∈ D(T ∗)⊥. Then (y, 0) ∈ Γ(T ∗)⊥, since for all x ∈ D(T ∗) we have x ⊥ y, which means

(
(x, T ∗x), (y, 0)

)
= (x, y) + (T ∗x, 0) = 0

But then (0, y) ∈ V
(
Γ(T ∗)

)⊥
, yet (0, y) clearly cannot be in the graph of any linear operator since

y 6= 0. In particular (0, y) /∈ Γ(T ), and since V
(
Γ(T ∗)

)⊥
= Γ(T ), this shows that T does not exist

as a linear operator. �

Definition 49 A densely defined operator T on a Hilbert space H with domain D(T ) is called

symmetric or formally self-adjoint if T ⊆ T ∗, that is if D(T ) ⊆ D(T ∗) and T ∗|D(T ) = T . By

the previous proposition we see that all symmetric operators are closable, with one closed extension
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being T ∗, since the denseness of D(T ) implies the denseness of D(T ∗). Since T is the smallest closed

extension of T , we have

T ⊆ T = T ∗∗ ⊆ T ∗

If additionally T ⊇ T ∗, so that T = T ∗, then we say that T is self-adjoint. In this case, the above

inclusions become equalities,

T = T = T ∗∗ = T ∗

Thus, self-adjoint operators are necessarily closed. Finally, a symmetric operator T ⊆ T ∗ is called

essentially self-adjoint if its closure T is self-adjoint, T = (T )∗. The importance of this idea lies

in the fact that we do not always know the domain D(T ) of T , whereas sometimes we can at least

say something about a core C for T on which T is symmetric, i.e. T |C ⊆ T |∗C . �

Lemma 11 T is symmetric iff (Tx, x) is real for all x ∈ D(T ).

Proof : If T is symmetric, then (Tx, x) = (x, Tx) = (Tx, x), so (Tx, x) ∈ R for all x ∈ D(T ).

Conversely, if (Tx, x) ∈ R for all x ∈ D(T ), then by the polarization identity in the form

4(Tx, y) = (T (x+ y), x+ y)− (T (x− y), x− y) + i(T (x+ iy), x+ iy)− i(T (x− iy), x− iy)

(which is proved by computing the right-hand-side, see Schmüdgen [94, p. 5]), we have for all

x, y ∈ D(T ) that

4(Tx, y) = (T (x+ y), x+ y)− (T (x− y), x− y)

+i(T (x+ iy), x+ iy)− i(T (x− iy), x− iy)

= (x+ y, T (x+ y))− (x− y, T (x− y))

+i(x+ iy, T (x+ iy))− i(x− iy, T (x− iy))

= 4(x, Ty)

and T is symmetric. �
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Lemma 12 Let T ⊆ T ∗ be a symmetric operator on a Hilbert space H. Then im(T ± iI) is closed

in H.

Proof : Let (xn)n∈N be a sequence in D(T ) such that
(
(T ± iI)(xn)

)
n∈N converges to y ∈ H, so by

the previous lemma we have that (Tx, x) is real for all x ∈ D(T ), and therefore

‖x‖2 =
(
(x, x)2

)1/2 ≤ ((Tx, x)2 + (x, x)2
)1/2

= |(Tx, x)± i(x, x)| = |((T ± iI)x, x)| ≤ ‖(T ± iI)x‖‖x‖

which implies ‖x‖ ≤ ‖(T ± iI)x‖. Consequently, ‖xn − xm‖ ≤ ‖(T ± iI)(xn − xm)‖ → 0 which

shows that (xn)n∈N is Cauchy and therefore convergent, say with limit x ∈ H. Since by assumption

(T (xn))n∈N converges to y ∓ ix because (T ± iI)xn → y, and by assumption T is closed, we must

have x ∈ D(T ) and y ∓ ix = Tx, so (T ± iI)x = y, and T ± iI have closed ranges. �

The following theorem and its corollary give the basic criterion for essential self-adjointness

of a symmetric operator. It was first proved by von Neumann in the foundational 1929-1930 paper

[107], and may now be found in every standard textbook on functional analysis, for example Reed

and Simon [89, Theorem VIII.3, p. 256], or Kadison and Ringrose [62, 2.7.10].

Theorem 31 Let T be a closed symmetric operator on a Hilbert space H. Then the following are

equivalent:

(1) T is self-adjoint, that is T = T ∗.

(2) im(T ± iI) = H.

(3) im(T ± iI) = H.

(4) ker(T ∗ ± iI) = {0}

Proof : (1) =⇒ (4): Suppose T = T ∗. If x ∈ D(T ) = D(T ∗) also lies in ker(T ∗ ± iI), then

Tx = T ∗x = ∓ix, so

∓i‖x‖2 = ∓i(x, x) = (∓ix, x) = (Tx, x) = (x, Tx) = (x,∓ix) = ±i(x, x) = ±i‖x‖2
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which shows that ‖x‖ = 0 and therefore x = 0.

(4) =⇒ (2) ⇐⇒ (3): Suppose ker(T ∗ ± iI) = {0}. By Lemma 12, T ⊆ T ∗ implies

that im(T ± iI) is closed, hence it suffices to show that it is dense in H, or equivalently that the

orthogonal complement of im(T ± iI) is trivial, since in general M⊥ = M
⊥

for any subspace M

of H. Now, if y ∈ im(T ± iI)⊥, then ((T ± iI)x, y) = 0 for all x ∈ D(T ), which means that

(Tx, y) = ∓i(x, y) = (x,±iy), or y ∈ D(T ∗) and therefore T ∗y = ±iy, i.e. y ∈ ker(T ± iI) = {0},

or y = 0. Thus (4) implies (2).

(2) =⇒ (1): Suppose im(T ± iI) = H. Since T ⊆ T ∗ and T is closed, Γ(T ) is closed and

contained in Γ(T ∗). Thus, let V be the orthogonal complement of Γ(T ) in Γ(T ∗),

Γ(T ∗) = Γ(T )⊥©V

Then, for all (y, T ∗y) ∈ V we will have (y, T ∗y) ⊥ (x, Tx) for all x ∈ D(T ), so

0 =
(
(y, T ∗y), (x, Tx)

)
= (y, x) + (T ∗y, Tx)

But by assumption im(T ± iI) = H, so there is some x ∈ D(T ) for which

(T 2 + I)x = (T + iI) ◦ (T − iI)x = y

so from this and the previous equality we have

‖y‖2 = (y, y) = (y, (T 2 + I)x) = (y, T 2x) + (y, x) = (T ∗y, Tx) + (y, x) = −(y, x) + (y, x) = 0

Therefore, y = 0 and T ∗y = T ∗0 = 0, so V = {0} and Γ(T ) = Γ(T ∗), or T = T ∗. �

Corollary 17 If T is a symmetric operator on a Hilbert space H, then the following are equivalent:

(1) T is essentially self-adjoint.

(2) ker(T ∗ ± iI) = {0}.

(3) im(T ± iI) = H. �
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Proof : If T is essentially self-adjoint, then it is closable, so by Proposition 30 we have T = (T )∗ =

T ∗, and since the previous theorem applies to T , we get

T = (T )∗ ⇐⇒ ker(T ∗ ± iI) = ker(T
∗ ± iI) = {0}

⇐⇒ im(T ± iI) = ker(T ∗ ∓ iI)⊥ = {0}⊥ = H

which completes the proof. �

To determine whether any (not-necessarily unique) self-adjoint extensions of a given sym-

metric operator T exist, we need a further criterion (which has the additional benefit of giving us a

second criterion for essential self-adjointness). The deficiency subspaces of H for T are defined

to be

ker(T ∗ − iI) = im(T + iI)⊥

ker(T ∗ + iI) = im(T − iI)⊥

and their dimensions

n+ = dim ker(T ∗ − iI)

n− = ker(T ∗ + iI)

are called the deficiency indices of T . Then, assuming that T is closed (which is not a severe

restricition as symmetric operators are always closable), we have:

Theorem 32 If T is a closed symmetric operator on a Hilbert space H with deficiency indices n±,

then T has self-adjoint extensions iff n+ = n−, and T is self-adjoint iff n+ = n− = 0. �

This theorem was first proved by von Neumann in the same 1929-1930 paper [107] cited

above. The proof we follow is found in Reed and Simon Vol.2 [90, p. 141], who credit it to Dunford

and Schwartz [30], and requires the following proposition (Reed and Simon Vol.2 [90, p. 138]),

which we need to preface with some terminology.
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Definition 50 The graph inner product on D(T ∗), for a given closed symmetric operator T , is

defined by

(x, y)T := (x, y)H + (T ∗x, T ∗y)H

where (·, ·)H is the inner product on H. We say that vectors u, v ∈ D(T ∗) are T -orthogonal if

they are so with respect to (·, ·)T , and likewise subspaces U and V of D(T ∗) are T -orthogonal,

denoted U ⊕T V , if they are so with respect to (·, ·)T . Analogously, we say that a subspace U of

D(T ∗) is T -closed in D(T ∗) if it is so with respect to the metric topology derived from the graph

inner product. We also introduce the sesquilinear form

[x, y]T := (T ∗x, y)H − (x, T ∗y)H

and we say that a subspace X of D(T ∗) is T -symmetric if [x, y]T = 0 for all x, y ∈ X. �

With this terminology in hand, we can state the preliminary theorem:

Proposition 66 If T is a closed symmetric operator with dense domain D(T ) in a Hilbert space

H, then

D(T ∗) = D(T )⊕T ker(T ∗ − iI)⊕T ker(T ∗ + iI) �

We begin the proofs of Theorems 66 and 32 with some brief observations. From their state-

ments and the statement of Theorem 31 we can see the importance of the kernles ker(T ∗± iI). Let

us suppose for a minute that one of these was nontrivial, say ker(T ∗− iI). Then a nonzero element

x of ker(T ∗ − iI) satisfies T ∗x = ix, which shows that i is an eigenvalue of T ∗. It is, of course,

possible that i is also an eigenvalue of T , or, if not an eigenvalue, then perhaps an element of its

continuous or residual spectrum. Were T self-adjoint, this would be impossible, as we are about

to show. In any case, it appears that there is a connection between the spectrum of a symmetric

operator T , the kernels ker(T ∗ ± iI), and the possible self-adjoint extensions of T . The precise

connection will be the content of the proofs of the theorems stated above. Let us first lay down

the necessary terminology concerning spectra and eigenvalues for unbounded operators, as we will

need these later anyway, before we employ them to prove our main theorems.
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Definition 51 Let T be a closed unbounded operator, and define the resolvent set of T to be

the subset of C

ρ(T ) := {λ ∈ C | T − λI : D(T )→ H is bijective and (T − λI)−1 ∈ B(H,D(T ))}

and define the spectrum of T to be the complement of ρ(T ) in C,

σ(T ) := C\ρ(T ) = {λ ∈ C | T − λI is not a bijection between D(T ) and H}

Thus,

C = σ(T ) t ρ(T )

By Theorem VIII.2, p. 254, in Reed and Simon Vol. I [89] we know that ρ(T ) is an open subset of

C, and therefore σ(T ) is a closed subset of C. Let us consider the ways in which a complex number

λ can lie in σ(T ). There are three possibilities: (1) T − λI is not injective, (2) T − λI is injective,

not surjective, but has dense image, and (3) T −λI is injective, not surjective nor has dense image.

These three possibilities correspond to the three classes of spectral values, the point spectrum

σp(T ), which consists of eigenvalues of T , the continuous spectrum σc(T ), which consists of

spectral values whose associated ”resolvent operators” Rλ(T ) : im(T − λI)−1 → D(T ) (see below)

are densely defined unbounded operators with domains im(T −λI)−1, and the residual spectrum

σr(T ) whose spectral values do not give densely defined resolvent operators at all. Thus,

C = σ(T ) t ρ(T )

= σp(T ) t σc(T ) t σr(T ) t ρ(T )

gives the set of all possible spectral and resolvent values for T . �

Remark 54 The two definitions of σ(T ) may not at first sight seem to be equivalent, but they

are. To see this, take the second definition of σ(T ), and consider some λ ∈ C\σ(T ). Then T − λI

is a bijection between D(T ) and H, and (T − λI)−1 : H → D(T ) is also a bijection. Since Γ(T )

is closed, Γ(T − λI) is closed, too, for if we take a sequence (xn, Txn) converging to (x, Tx), then
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(xn, (T − λI)xn) converges to (x, (T − λI)x). Clearly Γ((T − λI)−1) is also closed, because if

F ∈ End(H⊕H) is the map F (x, y) := (y, x), then F is unitary and Γ((T −λI)−1) = F (Γ(T −λI))

is the image of a closed set under a unitary map. The Closed Graph Theorem then applies to give

the boundedness of the everywhere-defined closed operator (T − λI)−1. Thus, we have λ ∈ ρ(T ),

and as a corollary, we always have (T − λI)−1 ∈ B(H,D(T )). �

Definition 52 From the observation above, we see that to each λ ∈ ρ(T ) in the resolvent set of a

closed unbounded operator T we may assign the bounded operator (T − λI)−1 ∈ B(H,D(T )), and

this assigment is called the resolvent operator of T :

R : ρ(T ) ⊆ C→ B(H,D(T ))

R(λ) ≡ Rλ(T ) := (T − λI)−1

This operator-valued map is readily seen to be analyitic in λ on the open set ρ(T ) (Theorem VIII.2,

p. 254, in Reed and Simon Vol. I [89]). �

Notation 6 Let us denote the open upper and lower half planes of the complex plane, respectively,

by

H+ = {z ∈ C | Im z > 0}, H− = {z ∈ C | Im z < 0}

and the closed upper and lower half planes, respectively, by

H+ = {z ∈ C | Im z ≥ 0}, H− = {z ∈ C | Im z ≤ 0}

�

The proof of the next theorem follows that in Reed and Simon [90, Theorem X.I, p. 136].

Theorem 33 Let T ⊆ T ∗ be a closed symmetric unbounded operator on a Hilbert space H. Then,

(1) (a) dim ker(T ∗ − λI) is constant on the open upper half plane H+.
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(b) dim ker(T ∗ − λI) is constant on the open lower half plane H−.

(2) σ(T ) ∈ {H+, H−, C, some subset X ⊆ R}

(3) T = T ∗ iff σ(T ) ⊆ R iff dim ker(T ∗ − λI) = 0 on C\R = H+ tH−.

Proof : (1) Let λ = a+ ib, with b 6= 0, and note that for all x ∈ D(T ) the symmetry of T implies

‖(T − λI)x‖2 =
(
(T − λI)x, (T − λI)x

)
= (Tx, Tx)− λ(Tx, x)− λ(x, Tx) + λλ(x, x)

= (Tx, Tx)− (λ+ λ)(Tx, x) + |λ|2(x, x)

= (Tx, Tx)− 2a(Tx, x) + (a2 + b2)(x, x)

=
(
(T − aI)x, (T − aI)x)

)
+ b2(x, x)

= ‖(T − aI)x‖2 + b2‖x‖2

≥ b2‖x‖2

From this inequality and the closedness of T we get, as in Lemma 12, that im(T − λI) is closed in

H. Since y ∈ ker(T ∗ − λI) iff T ∗y = λy iff for all x ∈ D(T ) we have (Tx, y) = (x, T ∗y) = (x, λy) =

λ(x, y) iff ((T − λI)x, y) = 0, we see that

ker(T ∗ − λI) = im(T − λI)⊥ (3.90)

With this in mind, we will show that for small enough η ∈ C, namely |η| < |b|, we have

dim ker(T ∗ − (λ+ η)I) = dim ker(T − λI) (3.91)

We will prove this in two stages, showing ≤, then ≥. Towards this end, suppose first that u ∈

D(T ∗) ∩ ker(T − (λ + η)I), ‖u‖ = 1, and note that if u ⊥ ker(T ∗ − λI), then u ∈ im(T − λI), so

there is an x ∈ D(T ) for which u = (T − λI)x, and consequently

0 = (0, x) =
(
(T ∗ − (λ+ η)I)u, x

)
=
(
u, (T − (λ+ η)I)x

)
=
(
u, (T − λI)x

)
+ η(u, x) = (u, u) + η(u, x)
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or ‖u‖2 = −η(u, x). Now, since b2‖x‖2 ≤ ‖(T − λI)x‖2 = ‖u‖2, we have ‖x‖ ≤ ‖u‖/|b|, so if

|η| < |b|, then we reach a contradiction, because

‖u‖2 = −η(u, x) = −η
(
(T − λI)x, x

)
≤ |η|

∣∣((T − λI)x, x
)∣∣

|η|‖(T − λI)x‖‖x‖ = |η|‖u‖‖x‖ < |b|‖u‖‖x‖

which means ‖u‖ < |b|‖x‖, though by supposing u ⊥ ker(T ∗−λI) we had concluded ‖x‖ ≤ ‖u‖/|b|.

Thus, for u ∈ D(T ∗) ∩ ker(T − (λ + η)I), ‖u‖ = 1, if |η| < |b|, we cannot have u ⊥ ker(T ∗ − λI),

i.e. the space ker(T ∗ − (λ+ η)I) cannot ”stick out” of ker(T ∗ − λI). We conclude, then, that

dim ker(T ∗ − (λ+ η)I) ≤ dim ker(T ∗ − λI)

This is a general sort of conclusion whose proof is as follows: if M and N are closed subspaces of a

separable Hilbert space H, then dimM > dimN implies that there is a unit vector u ∈ M ∩N⊥.

For since M and N are closed, so is M ∩N , and M = (M ∩N)⊥©(M ∩N)⊥, where the ⊥ is with

respect to the restriction of the inner product of H to M . But (M ∩ N)⊥ is nontrivial, because

dimM > dimN ≥ dim(M ∩N), which completes the proof of this basic fact. The contrapositive

of this statement is, if there is no unit vector u ∈ N⊥, then dimM ≤ dimN , which is what we

concluded above for M = ker(T ∗− (λ+η)I) and N = ker(T ∗−λI). The other inequality follows as

above by supposing |η| < |b|/2, and this shows the equality (3.91). This shows that the dimension

of ker(T ∗ − λI) is locally constant, and therefore constant in H+. The same proof applies to H−,

though the constants dim ker(T − λI) may differ for H+ and H−.

(2) From the inequality |b|‖x‖ ≤ ‖(T −λI)x‖, b 6= 0, proved above we must have that T −λI

is left-invertible with bounded inverse, and from the equality ker(T ∗ − λI) = im(T − λI)⊥ we can

see that this inverse is everywhere defined iff dim ker(T ∗ − λI) = 0. We therefore have that

λ ∈ ρ(T ), Imλ 6= 0 ⇐⇒ dim ker(T ∗ − λI) = 0

and we see that therefore H± ⊆ σ(T ) or H± ⊆ ρ(T ). Since ρ(T ) is open and σ(T ) is closed, we

must have σ(T ) = H+, H−, or H+ tH− = C, or the only remaining alternative, a closed subset of

R.
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In view of (1) and (2), (3) and (4) are restatements of Theorem 31. �

Corollary 18 Let T ⊆ T ∗. If ρ(T ) ∩ R = ∅, then T = T ∗.

Proof : Since ρ(T ) is open in C, if there is an x ∈ ρ(T )∩R then we know that ρ(T )∩H± 6= ∅, so

σ(T ) 6= H±, and therefore σ(T ) ⊆ R, and T = T ∗. �

The following theorem includes Proposition 66 as a special case. We follow the proof in Reed

and Simon [90, p. 138].

Theorem 34 Let T ⊆ T ∗ be a closed symmetric operator on a Hilbert space H. Then,

(1) The closed symmetric extensions of T ,

T ⊆ S ⊆ S∗ ⊆ T ∗

are the restrictions of T ∗ to T -closed, T -symmetric subspaces of D(T ∗),

T ⊆ · · · ⊆ S ⊆ · · · ⊆ S∗ ⊆ · · · ⊆ T ∗

D(T )
?

6

⊆ · · · ⊆ D(S)
?

6

⊆ · · · ⊆D(S∗)
?

6

⊆ · · · ⊆D(T ∗)
?

6

(2) D(T ), ker(T ∗−iI) and ker(T ∗+iI) are T -closed, mutually T -orthogonal subspaces of D(T ∗),

and

D(T ∗) = D(T )⊕T ker(T ∗ − iI)⊕T ker(T ∗ + iI)

(3) There is a one-to-one correspondence between T -closed, T -symmetric subspaces Y of D(T ∗)

containing D(T ) and the T -closed, T -symmetric subspaces Y1 of the direct sum of the

deficiency subspaces ker(T ∗ − iI)⊕T ker(T ∗ + iI), namely

D(T ) ⊆ Y ⊆ D(T ∗) ←→ Y = D(T )⊕T Y1

Proof : (1) Recall Definition 50 for the terms T -closed and T -symmetric. Because T ⊆ S ⊆ S∗ ⊆

T ∗ (which is a basic property of the adjoint: T ⊆ S iff S∗ ⊆ T ∗, every symmetric extension of T is

contained in T ∗, and this extension is closed iff its domain is T -closed and this extension is symmetric

iff its domain is T -symmetric. For S is closed iff Γ(S) is closed in H ⊕H iff D(S) is closed under
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the graph inner product (·, ·)T := (·, ·) + (T ∗·, T ∗·), since S ⊆ T ∗, and similarly S is symmetric

iff S ⊆ S∗ iff for all x, y ∈ D(S) we have (Sx, y) = (x, Sy) iff [x, y]T = (T ∗x, y) − (x, T ∗y) =

(Sx, y)− (x, Sy) = 0.

(2) Since T is closed, D(T ) is T -closed, and ker(T ∗ ± iI) are closed since they are closed in

the weaker topology of H. The fact that the three subspaces are T -orthogonal is a straightforward

calculation: if x ∈ D(T ) and y ∈ ker(T ± iI), then

(x, y)T = (x, y) + (T ∗x, T ∗y) = (x, y) + (Tx,±iy) = (x, y) + (x,±iT ∗y) = (x, y)− (x, y) = 0

while if x ∈ ker(T − iI) and y ∈ ker(T + iI), then

(x, y)T = (x, y) + (T ∗x, T ∗y) = (x, y) + (ix,−iy) = (x, y)− (x, y) = 0

To show that D(T ∗) = D(T )⊕T ker(T ∗ − iI)⊕T ker(T ∗ + iI) we need only show the inclusion ⊆,

since the other inclusion is obvious. Suppose, then, that x ∈ D(T ∗). If x ⊥T D(T ) ⊕T ker(T ∗ −

iI)⊕T ker(T ∗+iI), then in particular for each y ∈ D(T ) we have 0 = (x, y)T = (x, y)+(T ∗x, T ∗y) =

(x, y) + (T ∗x, Ty), so that

(y, x) = −(Ty, T ∗x) = (Ty,−T ∗x)

and therefore T ∗x ∈ D(T ∗). Moreover, T ∗T ∗x = −x, and we find that

(T ∗ + iI)(T ∗ − iI)x = (T ∗T ∗ + I)x = −x+ x = 0

so we conclude that (T ∗−iI)x ∈ ker(T ∗+iI). Suppose now that y ∈ ker(T ∗+iI). Then, T ∗y = −iy,

so that

i
(
(T ∗ − iI)x, y

)
= (T ∗x,−iy) + (x, y) = i(T ∗x, T ∗y) + (x, y) = (x, y)T = 0

Thus, (T ∗ − iI)x ∈ ker(T ∗ + iI) and (T ∗ − iI)x ⊥ ker(T ∗ + iI), which means (T ∗ − iI)x = 0, or

x ∈ ker(T ∗− iI). Since x ⊥ ker(T ∗− iI), we must have x = 0. Thus, D(T ∗) is not contained in the

T -orthogonal complement of D(T )⊕T ker(T ∗− iI)⊕T ker(T ∗+ iI), so must be contained inside it.

(3) Let Y1 be a T -closed, T -symmetric subspace of ker(T ∗ − iI) ⊕T ker(T ∗ + iI), and let

x, y ∈ D(T ) ⊕ Y1. Writing x = x0 + x1 and y = y0 + y1, where x0, y0 ∈ D(T ) and x1, y1 ∈ Y1,
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we have [x0, y0]T = 0 since T is symmetric, and likewise [x0, y1]T = (T ∗x0, y1) − (x0, T
∗y1) = 0

and [x1, y0]T = 0. Thus, [x, y]T = 0, so Y = D(T ) ⊕T Y1 is T -symmetric and T -closed since D(T )

and Y1 are T -closed and T -orthogonal. Conversely, let Y be a T -closed, T -symmetric subspace of

D(T ∗), and define Y1 := Y ∩ (ker(T ∗ − iI)⊕T ker(T ∗ + iI)). Then clearly Y = D(T )⊕T Y1. �

We are now nearing our main theorem for this section. In fact, that theorem is a corollary of

the following theorem, which contains the key ingredients. Recall, however, the following definition.

Definition 53 An isometry of a Hilbert space H is a (necessarily bounded) linear operator U

on H satisfying ‖Ux‖ = ‖x‖ for all x ∈ H. An isometry is clearly bijective, and thereofre unitary.

A partial isometry is an operator U which is not necessarily bijective, but is an isometry when

restricted to (kerU)⊥. If U is a partial isometry, then writing H = kerU⊥©(kerU)⊥, we see that U

is a unitary operator from (kerU)⊥ to imU , which we shall denote by

U ∈ U
(
(kerU)⊥, imU

)
or

U ∈ PU(H)

Here, (kerU)⊥ is called the initial subspace of U and imU is called the final subspace of U .

The adjoint U∗, which is also the inverse of U , is then a partial isometry with initial subspace imU

and final subspace (kerU)⊥,

U∗ ∈ U
(
imU, (kerU)⊥

)
�

Theorem 35 Let T ⊆ T ∗ be a closed symmetric operator on a Hilbert space H. Then, the closed

symmetric extensions of T are in one-to-one correspondence with the partial isometries of ker(T ∗−

iI) into ker(T ∗ + iI),

{S ⊇ T | S ⊆ S∗ and S is closed } ∼= U
(
ker(T ∗ − iI), ker(T ∗ + iI)

)
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Moreover, if U ∈ U
(
ker(T ∗ − iI), ker(T ∗ + iI)

)
, write (kerU)⊥ for the initial space of U in

ker(T ∗ − iI), and write TU for the associated closed symmetric extension of T . Then, TU has

domain

D(TU ) = D(T )⊕T (kerU)⊥ ⊕T imU

= {x+ x+ + U(x+) | x ∈ D(T ), x+ ∈ (kerU)⊥}

and

TU (x+ x+ + U(x+)) = Tx+ ix− iUx+ (3.92)

If dim(kerU)⊥ <∞, then the deficiency indices of TU are related to those of T by

n±(TU ) = n±(T )− dim(kerU)⊥ (3.93)

Proof : If S1 ⊆ S∗1 is a closed symmetric extension of T , then by (3) of Theorem 34 we know that

D(S∗1) = D(T )⊕T Y1 for some T -closed, T -symmetric subspace Y1 of ker(T ∗ − iI)⊕T ker(T ∗ + iI).

Thus, any x ∈ D(S∗1) can be written uniquely as x = x0 + x+ + x− with x0 ∈ D(T ), x+ + x− ∈ Y1,

and x+ ∈ ker(T ∗ − iI), x− ∈ ker(T ∗ + iI), and since Y1 is T -symmetric, we have

0 = [x+ + x−, x+ + x−]T

= (T ∗(x+ + x−, x+ + x−)− (x+ + x−, T
∗(x+ + x−))

= i(x+ − x−, x+ + x−) + i(x+ + x−, x+ − x−)

= 2i(x+, x+)− 2i(x−, x−)

= 2i‖x+‖2 − 2i‖x−‖2

so ‖x+‖ = ‖x−‖. Define the map

U : Y1 ∩ ker(T ∗ − iI)→ Y1 ∩ ker(T ∗ + iI)

U(x+) := x−

and note that by the above considerations U is an isometry. If we extend U to all of ker(T ∗ − iI),

then U is a partial isometry with initial space Y1 ∩ ker(T ∗ − iI) = (kerU)⊥,

U ∈ PU(ker(T ∗ − iI), ker(T ∗ + iI))
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and note that

D(S1) = {x0 + x+ + U(x−) | x0 ∈ D(T ), x+ ∈ (kerU)⊥}

and S1(x0+x++U(x+)) = S1(x0)+ix+−iU(x+). Conversely, if U ∈ PU(ker(T ∗−iI), ker(T ∗+iI))

with initial subspace (kerU)⊥, define S1 and D(S1) by (3.92) and (3.93), respectively, and note that

D(S1) is a T -closed, T -symmetric subspace of D(T ∗), so by the previous theorem S1 is a closed,

symmetric extension of T .

Finally, to see the statement about the deficiency indices, note that

n+(T ) = dim(ker−iI) = dim kerU + dim imU = dim kerU + dim(kerU)⊥

= dim ker(S1 − iI) + dim(kerU)⊥ = n+(S1) + dim(kerU)⊥

and similarly with n−(T ). �

Corollary 19 Let T ⊆ T ∗ be a closed symmetric operator on a Hilbert space H. If n± =

dim ker(T ∓ iI) are the deficiency indices of T , then

(1) T = T ∗ iff n± = 0.

(2) T has self-adjoint extensions iff n+ = n−, and these extensions are in one-to-one cor-

respondence between self-adjoint extensions of T and unitary maps from ker(T − iI) to

ker(T + iI),

{S ⊇ T | S = S∗} ∼= U
(
ker(T ∗ − iI), ker(T ∗ + iI)

)
(3) If either n+ = 0 6= n− or n− = 0 6= n+, then T is maximal symmetric, i.e. has no

nontrivial symmetric extensions. �

Proof : (1) If T = T ∗, then T ∗ is the only symmetric extension of T , and corresponding to it is

the trivial partial isometry between ker(T ∗− iI) and ker(T ∗+ iI). The corresponding subspace Y1

of ker(T ∗ − iI) ⊕T ker(T ∗ + iI) is therefore trivial, so we clonclude that ker(T ∗ ± iI) = {0}, and

therefore n±(T ) = 0.

(2) If S is a self-adjoint extension of T , then by (1) we must have n±(S) = 0, so n±(T ) =

dim ker(US)⊥ for the corresponding partial isometry US , and conversely. Since this is the case
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for all S, we see that dim(kerUS)⊥ is the same for all self-adjoint extensions S of T , and since

dim ker(S∗ ± iI) = 0 because S = S∗, we must have (kerUS)⊥ = ker(T ∗ − iI), and all such US are

in fact unitary, US ∈ U(ker(T ∗ − iI), ker(T ∗ + iI)).

(3) If n+(T ) = 0 and n−(T ) 6= 0, then by (1) and (2) we see that the associated partial

isometry U to a symmetric extensions S of T is the zero map, and cannot therefore be a unitary

map, so cannot correspond to a self-adjoint operator. Thus, S is not self-adjoint. In fact, S itself

must equal T , for otherwise we would reach a contradiction, with U having nontrivial kernel and

a trivial kernel at the same time. Similarly, if n+(T ) 6= 0 and n−(T ) = 0, then the corresponding

partial isometry must be the zero map and satisfy kerU = ker(T ∗− iI), which would make S = T .

Thus, T is maximal symmetric. �

Corollary 20 A symmetric operator T is essentially self-adjoint iff T has exactly one self-adjoint

extension, its closure T . Moreover, a self-adjoint operator T is maximally symmetric, in that it

has no proper symmetric extension.

Proof : Suppose S is a self-adjoint extension of T , that is T ⊆ S = S∗. Then S is closed and

S ⊇ T = T ∗∗ because T is the smallest closed extension of T . On the other hand, since T is closable

we have (T ∗∗)∗ = (T )∗ = T∗, so taking adjoints of both sides of T ⊆ S and of T ∗∗ ⊆ T ∗, we have

S = S∗ ⊆ T ∗ ⊆ (T ∗∗)∗ = T ∗∗, so S = T ∗∗. The converse follows from the previous corollary. �

3.2.2 The Position and Momentum Operators

In this section we give two important applications of the above theorems, by showing that

the position and momentum operators,

(Qjf)(x) = xjf(x)

(Pjf)(x) = −i ∂f
∂xj

(x) (weak derivative)

are essentially self-adjoint on the Hilbert space L2(Rn) if defined initially on the dense subspace

D(Rn) (the space of test functions C∞c (Rn) equipped with the inductive limit topology) or S(Rn).
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These results are intrinsically important, of course, but the significance for us is that Pj and Qj are

the building blocks of our symplectic Dirac operators D and D̃ considered below, at least locally.

The difficulty with the local description of D and D̃ is that, while Pj and Qj are individually

essentially self-adjoint, compositions and linear combinations of these operators are not necessarily

self-adjoint. The best illustration of this fact is the Harmonic oscillator H0f = 1
2(∆ − x · x)f ,

which is a linear combination of compositions of the position and momentum operators, and turns

out to be essentially self-adjoint, but the proof of this requires completely different means. This is

similar to our situation, as we will see below. It is at least clearl that not every linear combination

of various compositions of the position and momentum operators is essentially self-adjoint; this is

simply the observation that, when dealing with unbounded operators like Pj and Qj , self-adjoint

operators do not form an algebra.

In the process of proving the essential self-adjointness of Pj and Qj , moreover, we will give

the domains on which they are actually self-adjoint. Our treatment follows that of Moretti [82, pp.

219-224].

Remark 55 Note that these operators differ from those defined above in (4.29)-(4.30) by a factor

of −i. This factor will have the effect of making those earlier operators skew-adjoint instead of

self-adjoint. All of this will be explained clearly in what follows. �

Theorem 36 (Self-Adjointness of the Position Operator) For j = 1, . . . , n let Qj be the po-

sition operator, the (unbounded) multiplication operator on L2(Rn) given by

(Qjf)(x) := xjf(x)

with domain

D(Qj) := {f ∈ L2(Rn) |Qjf ∈ L2(Rn)}

= {f ∈ L2(Rn) |
∫
Rn
|xjf(x)|2 dµ <∞}

Then the Qj are all self-adjoint. Moreover, D(Rn) and S(Rn) are cores for the Qj (so that if we
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had defined them initially on these spaces the Q′j would be essentially self-adjoint, with self-adjoint

extensions Q′j = Qj on D(Qj) as defined above).

Proof : Since D(Rn) and S(Rn) are dense in L2(Rn) and contained in D(Qj), we know that Qj is

densely defined. Moreover, if f, g ∈ D(Qj), we have by an integration by parts that

〈Qjf, g〉 =

∫
Rn
xjfg dµ =

∫
Rn
fxjg dµ = 〈f,Qjg〉

so that Qj is symmetric, Qj ⊂ Q∗j . But we can also show that Q∗j ⊂ Q, since by the definition of the

adjoint, f ∈ D(Q∗j ) iff ∃h ∈ L2(Rn), coinciding with Q∗jf by definition, such that for all g ∈ D(Qj)∫
Rn
xjgf dµ = 〈Qjg, f〉 = 〈g, h〉 =

∫
Rn
gh dµ

i.e. ∫
Rn
g(xjf − h) dµ = 0, ∀g ∈ D(Qj)

Since D(Q∗j ) is dense in L2(Rn), however, we have that f ∈ D(Q∗j ) iff xjf(x) = h(x) a.e. on Rn,

i.e. h = Qjf in L2(Rn). Thus,

D(Q∗j ) = {f ∈ L2(Rn) |Qjf ∈ L2(Rn)} = D(Qj)

which shows that Qj = Q∗j .

Restricting Qj to D(Rn) or S(Rn) (or defining them on these spaces initially) we still have

that Qj ⊂ Q∗j , but we no longer have equality. We do, however, have ker(Q∗j ± iI) = {0}, for if

xjf(x) = (Q∗jf)(x) = ±if(x) on Rn for some f ∈ D(Q∗j ), then clearly we must have f = 0 a.e. on

Rn, or f = 0 ∈ L2(Rn), and so f = 0 ∈ D(Q∗j ). Thus, we know that Qj is essentially self-adjoint in

this case, and D(Rn) and S(Rn) are cores for Qj . �

Lemma 13 Let h ∈ L1
loc(Rn). Then its weak partial derivative ∂h/∂xj satisfies

∂h

∂xj
= 0 ⇐⇒ h is a.e. on Rn constant in xj
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Proof : Without loss of generality we may assume j = 1, and we write x = (x,y) for x = x1 ∈ R

and y = (x2, . . . , xn) ∈ Rn−1. By definition of the weak derivative, we have for all g ∈ D(Rn) that

〈h, ∂xg〉 =: 〈∂xh, g〉 = 〈0, g〉 = 0, i.e.∫
Rn
h(x,y)∂xg(x,y) dx⊗ dy = 0 (3.94)

Choose f ∈ D(Rn) and a > 0 so large that supp(f) ⊆ [−a, a]n and a bump function ξ ∈ D(R) with

supp(ξ) ⊆ [−a, a] and
∫
R ξ dµ = 1, and note that the map

g ∈ D(Rn)

g(x,y) :=

∫ x

−∞
f(u,y) du−

(∫ x

−∞
ξ(ν) dν

)∫
R
f(u,y) du

satisfies

∂g

∂x
= f(x,y)− ξ(x)

∫
R
f(u,y) du

Clearly supp(g) ⊆ [−a, a]n, too. Therefore, using this g in (3.94) we get, after an application of

Fubini-Tonelli and a relabeling of variables,

0 =

∫
Rn
h(x,y)∂xg(x,y) dx⊗ dy

=

∫
Rn
h(x,y)

(
f(x,y)− ξ(x)

∫
R
f(u,y) du

)
dx⊗ dy

=

∫
Rn
h(x,y)f(x,y) dx⊗ dy −

∫
Rn

(∫
R
h(x,y)ξ(x) dx

)
f(u,y) du⊗ dy

=

∫
Rn

{
h(x,y)−

(∫
R
h(u,y)ξ(u) du︸ ︷︷ ︸
∈L1

loc(Rn)

)}
f(x,y) dx⊗ dy

Since f ∈ D(Rn) was arbitrary, we conclude that h(x,y) −
∫
R h(u,y)ξ(u) du = 0 a.e. on Rn, and

therefore

h(x,y) = k(y) :=

∫
R
h(u,y)ξ(u) du

a.e. on Rn. �
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Theorem 37 (Self-Adjointness of the Momentum Operator) For j = 1, . . . , n let Pj be the

momentum operator, the partial differential operator on L2(Rn) given by

(Pjf)(x) := −i ∂f
∂xj

(x) (weak erivative)

with domain

D(Pj) := {f ∈ L2(Rn) | ∂f/∂xj ∈ L2(Rn)}

Then the Pj are all self-adjoint. Moreover, D(Rn) and S(Rn) are cores for the Pj (so that if we

had defined them initially on these spaces the Pj would be essentially self-adjoint, with self-adjoint

extensions Pj on D(Qj) as defined above).

Proof : We will first prove that on D(Rn) we have ker(P ∗j ± iI) = {0}, which will show that each

Pj essentialy self-adjoint. Now,

ker(P ∗j ± iI) = {f ∈ L2(Rn) | P ∗j f ± if = 0} = {f ∈ L2(Rn) | ∂jf ± f = 0 weakly}

since the weak derivative ∂jf is by definition a function h ∈ L1
loc(Rn) such that∫

Rn
hg dµ = −

∫
Rn
f∂jg dµ

or all g ∈ D(Rn). Multiplying any f ∈ ker(P ∗j ± iI) by an exponential e±xj we get

∂j(e
±xjf) = ±e±xjf + e±xj∂jf = ±e±xjf ∓ e±xjf = 0

so by the above lemma we must have f ∈ ker(P ∗j ± iI) iff e±xjf is a.e. a constant function in xj ,

and therefore must be a function of the form f = e∓xjh where h does not depend on xj . Therefore,

by Fubini-Tonelli we have

‖f‖2L2(Rn) = ‖h‖2L2(Rn−1)

∫
R
e∓2xj dxj

and since e∓2xj /∈ L2(R) but f ∈ L2(Rn), we must have ‖h‖L2(Rn−1) = 0 and therefore ‖f‖L2(Rn) = 0,

and so f = 0 ∈ L2(Rn). This shows that ker(P ∗j ± iI) = {0}.
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A similar argument shows that ker(P ∗j ± iI) = {0} if instead we first define Pj on S(Rn).

The domain D(Pj) given in the statement of the theorem is precisely the domain of P ∗j , however,

as we have demonstrated in the course of this proof, and so on D(Pj) ⊃ S(Rn) ⊃ D(Rn) we have

that Pj = P ∗j , completing the proof. �
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3.3 Elliptic Differential Operators

In this section we describe an important class of linear differential operators, the elliptic

operators. Let E and F be complex vector bundles over a smooth manifold M . If Γc(E) is

the space of compactly supported sections of E and Γc(F ) the space of compactly supported

sections of F , then the Hermitian strucures on E and F give a natural L2 inner product on

these spaces, by (σ, τ) :=
∫
M hE(σ, τ) dV on Γc(E) for example. An elliptic differential operator

P : L2(E) → L2(F ) is an unbounded operator acting on the L2-closure of Γc(E) with fiberwise

invertible symbol σ(P )(x, ξ) ∈ GL(Ex, Fx) for nonzero ξ ∈ T ∗xM . Let Ellk(E,F ) denote the space

of all kth order elliptic operators from E to F .

Let us list the extremely nice properties satisfied by elliptic operators:

(1) Elliptic operators always satisfy a particularly nice condition, which is local in nature,

called elliptic regularity. This says that if u ∈ L2(E) satisfies an equation Pu = v weakly

and v is known to be smooth, then u must be smooth. In particular, kerP ⊆ Γ(E).

(2) If M is compact, any P ∈ Ellk(E,F ) is Fredholm, so the index of P

indexP := dim kerP − dim cokerP

is well-defined. Once we put a topology on the space Ellk(E,F ), the index extends to a

continuous map

index : Ellk(E,F )→ Z

(3) If M is compact and P ∈ Ellk(E,F ), the spaces L2(E) and L2(F ) acquire orthogonal

decompositions via

L2(E) = kerP ⊥© imP ∗ and L2(F ) = kerP ∗⊥© imP

which is a kind of analog of the Hodge decomposition.

(4) If M is compact and P ∈ Ellk(E,E) is symmetric (on the core Γc(E) = Γ(E), which we

usually take to be its domain), then P is essentially self-adjoint with self-adjoint exten-
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sion having domain Hk(E). Elliptic self-adjoint operators over compact manifolds have

particularly nice spectral properties. Let σ(P ) denote the spectrum of P . Then,

(a) The spectrum σ(P ) of P is a closed, discrete, countable and unbounded subsets of R.

(b) σ(P ) equals the point spectrum σp(P ) of P , that is σ(P ) contains only eigenvalues of

P , each eigenvalue having finite geometric multiplicity, that is dim ker(P − λI) < ∞

for each λ ∈ σ(P ).

(c) The finite-dimensional, hence closed, eigenspaces ker(P − λI) form an orthogonal

decomposition of L2(E),

L2(E) =
⊕

λ∈σ(P )

ker(P − λI)

so that we have a particularly simple resolution of the identity

idE =
∑

λ∈σ(P )

Pλ

where Pλ : L2(E) → ker(P − λI) is the orthogonal projection onto the closed λ-

eigenspace. Therefore any L2-section σ of E may be uniquely expressed as

σ =
∑

λ∈σ(P )

σλ, where σλ := Pλ(σ)

Moreover, P also neatly decomposes as

P =
∑

λ∈σ(P )

λPλ

Let us begin with elliptic regularity.

Theorem 38 Let P ∈ Ellk(E,F ), thought of as a generalized operator P : D(E) → D′(F ). If

Pu = v weakly for u ∈ Lploc(E) and v ∈ Lploc(F ), p ∈ (1,∞), then in fact u ∈ W k,p
loc (E). More

generally, if v ∈ W s,p
loc (F ), then u ∈ W s+k,p(E), and we have the following local elliptic estimate:

for all 0 < r < R,

‖u‖W s+k,p(E|Br ) ≤ C
(
‖v‖W s,p(F |BR ) + ‖u‖Lp(E|Br )

)
As a result, if v ∈ E(F ), i.e. v is smooth, then u ∈ E(E), i.e. u is smooth. In particular, kerP

consists of smooth sections.
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Proof : Nicolaescu [85], Theorem 10.3.6, Corollaries 10.3.9-10.3.10. �

Theorem 39 Let P ∈ Ellk(E,F ), thought of as a generalized operator P : D(E) → D′(F ). Ex-

tending it to L2(E) → L2(F ) as a densely defined operator on a Hilbert space, P is Fredholm, so

has a well-defined index

indexP := dim kerP − dim cokerP

and the index map

index : Ellk(E,F )→ Z, P 7→ index(P )

is continuous, once we put the following metric topology on Ellk(E,F ): if P,Q ∈ Ellk(E,F ), let

δ(E,F ) = sup
‖u‖

Hk
loc

(E)
=1
‖Pu−Qu‖L2(F )

and let d(P,Q) := max{δ(P,Q), δ(P ∗, Q∗)}, then we have that (Ellk(E,F ), d) is a metric space.

Moreover, the spaces L2(E) and L2(F ) acquire orthogonal decompositions via

L2(E) = kerP ⊥© imP ∗ and L2(F ) = kerP ∗⊥© imP

Proof : Nicolaescu [85], Theorem 10.4.7, Corollary 10.4.10, Theorem 10.4.13. �

Theorem 40 If M is compact and P ∈ Ellk(E,E) is symmetric (on the core Γc(E) = Γ(E), which

we usually take to be its domain), then P is essentially self-adjoint with self-adjoint extension

having domain Hk(E). Elliptic self-adjoint operators over compact manifolds have particularly

nice spectral properties. Let σ(P ) denote the spectrum of P . Then,

(1) The spectrum σ(P ) of P is a closed, discrete, countable and unbounded subsets of R.

(2) The spectrum σ(P ) equals the point spectrum σp(P ) of P , that is σ(P ) contains only eigen-

values of P , each eigenvalue having finite geometric multiplicity, that is dim ker(P −λI) <

∞ for each λ ∈ σ(P ).

(3) The finite-dimensional, hence closed, eigenspaces ker(P − λI) form an orthogonal decom-

position of L2(E),

L2(E) =
⊕

λ∈σ(P )

ker(P − λI)
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so that we have a particularly simple resolution of the identity

idE =
∑

λ∈σ(P )

Pλ

where Pλ : L2(E)→ ker(P − λI) is the orthogonal projection onto the closed λ-eigenspace.

Therefore any L2-section σ of E may be uniquely expressed as

σ =
∑

λ∈σ(P )

σλ, where σλ := Pλ(σ)

Moreover, P also neatly decomposes as

P =
∑

λ∈σ(P )

λPλ

Proof : Nicolaescu [85], Theorem 10.4.19. �



Chapter 4

The Metaplectic Representation

4.1 The Weyl Algebra

By analogy with the definition of the Clifford algebra Cl(V, q) on a quadratic space (V, q), we

define the Weyl algebra, or symplectic Clifford algebra, Cl(V, ω) on a symplectic space (V, ω)

as the solution to a universal problem, namely as the pair (Cl(V, ω), j) consisting of

(1) an associative unital R-algebra Cl(V, ω)

(2) an R-linear map j ∈ L
(
V,Cl(V, ω)

)
satisfying

(a) j(u)j(v)− j(v)j(u) = −ω(u, v) · 1Cl(V,ω)

(b) (universal property) If A is any other associative unital R-algebra, and f is any real-

linear map f ∈ L(V,A) satisfying f(u)f(v) − f(v)f(u) = −ω(u, v) · 1A, then there

is a unique R-algebra homomorphism F ∈ Hom
(
Cl(V, ω), A

)
making the following

diagram commute:

Cl(V, ω)

V

j -

A

F

?f -

Remark 56 As with any object satisfying a universal property, if it exists, the Weyl algebra is

unique up to isomorphism, since if (C1, j1) and (C2, j2) are two solutions to the universal problem

outlined above, then for the first we can take A = C2 and for the second we can take A = C1,

and thus we get unique algebra homomorphisms F1 : C1 → C2 and F2 : C2 → C1, satisfying,
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respectively, F1 ◦ j1 = j2 and F2 ◦ j2 = j1. Combining these we get that F2 ◦ F1 : C1 → C1 and

F1 ◦F2 : C2 → C2 satisfy F1 ◦F2 ◦ j1 = j1. But since the universal property applied to (C1, j1) and

A = C1 is clearly solved uniquely by idC1 , we must have F2 ◦ F1 = idC1 , and for similar reasons we

have F1 ◦ F2 = idC2 , which shows that F2 = F−1
1 and therefore F1 is an isomorphism. �

Theorem 41 (Existence) Let T (V ) :=
⊕∞

n=0 T
n(V ) be the tensor algebra of a symplectic vector

space (V, ω), and define the quotient algebra of T (V ) by the ideal generated by vectors in T 1(V ) of

the form u⊗ v − v ⊗ u+ ω(u, v) · 1

Cl(V, ω) := T (V )/(u⊗ v − v ⊗ u+ ω(u, v) · 1)

where 1 ∈ T 0(V ) ⊆ T (V ) is the identity element of T (V ). Let i : V ↪→ T (V ) be the inclusion map,

i(V ) = T 1(V ), and let π : T (V )→ Cl(V, ω) be the quotient map, and define j : V → Cl(V, ω) to be

their composition, j = π ◦ i. Then
(
Cl(V, ω), j

)
is a Weyl algebra.

Proof : First, note that j satisfies property (2)(a): The identity element of Cl(V, ω) is 1Cl(V,ω) =

j(1R), and if we write I for the ideal (u⊗ v − v ⊗ u+ ω(u, v) · 1) we have for all u, v ∈ V that

j(u)j(v)− j(v)j(u) = π(i(u))π(i(v))− π(i(v))π(i(u))

=
(
i(u) + I

)
⊗
(
i(v) + I

)
−
(
i(v) + I

)
⊗
(
i(u) + I

)
=

(
i(u)⊗ i(v)− i(v)⊗ i(u)

)
+ I

= π(i(u)⊗ i(v)− i(v)⊗ i(u))

= π(−ω(u, v))

= −ω(u, v)π(i(1R)

= −ω(u, v)j(1R)

= −ω(u, v) · 1Cl(V,ω)

Next,
(
Cl(V, ω), j

)
satisfies the universal property of (2)(b): Suppoe A is an associative unital

R-algebra and f ∈ L(V,A) is a linear map satisfying f(u)f(v) − f(v)f(u) = −ω(u, v) · 1A for all

u, v ∈ V . By the universal property of the tensor algebra T (V ), if t : V ↪→ T (V ) is the tensor
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map (the inclusion), then for this A and this f we know that there exists a unique R-algebra

homomorphism F ∈ Hom(T (V ), A) such that the following diagram commutes:

T (V )

V

t -

A

F

?f -

Consequently, since f(u)f(v)− f(v)f(u) = −ω(u, v) · 1A and F ◦ i = f

F
(
i(u)⊗ i(v)− i(v)⊗ i(u) + ω(u, v) · 1)

)
= f(u)f(v)− f(v)f(u) + ω(u, v) · 1A = 0

which shows that I ⊆ kerF . As a consequence, there is a unique R-algebra homomorphism F̃ ∈

Hom(T (V ), A) such that the following diagram commutes:

T (V )
F

- A

T (V )/I
F̃

-

π -

Indeed, we define F̃ by F̃ (τ+I) := F (τ), and the fact that I ⊆ kerF ensures that F̃ is well defined.

Thus, we have

F̃ ◦ j = F̃ ◦ (π ◦ i) = (F̃ ◦ π) ◦ i = F ◦ i = f

i.e., since Cl(V, ω) = T (V )/I, we have shown that the diagram below commutes:

Cl(V, ω)

V

j -

A

F̃

?f -

�

Notation 7 In the special case of R2n with the standard symplectic form ω0 we will write Cln for

Cl(R2n, ω0). �

Theorem 42 Let (V, ωV ) and (W,ωW ) be symplectic vector spaces, and let Cl(V, ωV ) and Cl(W,ωW )

be their respective Weyl algebras. If Cl(V ⊕W,ωV ⊕ ωW ) is the Weyl algebra of the direct sum

(V ⊕W,ωV ⊕ ωW ), then we have the following isomorphism of algebras:

Cl(V ⊕W,ωV ⊕ ωW ) ∼= Cl(V, ωV )⊗ Cl(W,ωW ) (4.1)
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Proof : Define the map f : V ⊕W → Cl(V, ωV )⊗ Cl(W,ωW ) by

f(u+ v) := u⊗ 1 + 1⊗ v

Then f satisfies the distinguishing property: for all (u+ v), (u′ + v′) ∈ V ⊕W ,

f(u+ v)f(u′ + v′)− f(u′ + v′)f(u+ v) = (u⊗ 1 + 1⊗ v)(u′ ⊗ 1 + 1⊗ v′)

−(u′ ⊗ 1 + 1⊗ v′)(u⊗ 1 + 1⊗ v)

= uu′ ⊗ 1 + u⊗ v′ + u′ ⊗ v + 1⊗ vv′ − u′u⊗ 1

−u′ ⊗ v − u⊗ v′ − 1⊗ v′v

= (uu′ − u′u)⊗ 1 + 1⊗ (vv′ − v′v)

= (−ωV (u, u′)1)⊗+1⊗ (−ωW (v, v′))

= −(ωV (u, u′) + ωW (v, v′))1⊗ 1

= −(ωV ⊕ ωW )((u+ v), (u′ + v′))1⊗ 1

The universal property of the Weyl algebra Cl(V ⊕W,ωV ⊕ωW ) then implies that there is a unique

R-algebra homomrphims F : Cl(V ⊕W,ωV ⊕ ωW )→ Cl(V, ωV )⊗Cl(W,ωW ) making the following

diagram commute:
Cl(V ⊕W,ωV ⊕ ωW )

V ⊕W

j
-

Cl(V, ωV )⊗ Cl(W,ωW )

F

?f -

But this map is invertible, for we can construct its inverse G : Cl(V, ωV ) ⊗ Cl(W,ωW ) → Cl(V ⊕

W,ωV ⊕ωW ). Note first that the embeddings of V and W into V ⊕W induce unique homomorphisms

g : Cl(V, ωV )→ Cl(V ⊕W,ωV ⊕ωW ) and h : Cl(W,ωW )→ Cl(V ⊕W,ωV ⊕ωW ), satisfying g(u+0) =

u and h(0+v) = v for all u ∈ V and v ∈W . Since the images of these homomorphisms commute, we

obtain a homomorphism homomorphism G = g⊕h : Cl(V, ωV )⊗Cl(W,ωW )→ Cl(V ⊕W,ωV ⊕ωW ).

Finally, note that F ◦G = id, for F (G(u⊗ v)) = F ((g ⊕ h)(u⊗ v)) = F (u+ v) = u⊗ v. �
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Theorem 43 Let (V, ω) be a symplectic vector space and let (q1, . . . , qn, p1, . . . , pn) be a symplectic

basis for V . Then in the Weyl algebra Cl(V, ω) the set of all monomials of the form

qa1
1 qa2

2 · · · q
an
n pb11 p

b2
2 · · · p

bn
n , where ai, bj ∈ N0

forms a basis for Cl(V, ω). Consequently, Cl(V, ω) is infinite-dimensional.

Proof : By the previous theorem it is enough to prove the statement for the case n = 1, i.e.

dim(V ) = 2. If (p, q) is the symplectic basis for V , then note first that the set of monomials paqb,

for a, b ∈ N0, form a spanning set, for, first of all, {x1 ⊗ · · · ⊗ xn | xi = p or q, n ∈ N0} forms a

basis for T (V ) =
⊕∞

n=0

⊗n V , and therefore all elements of Cl(V, ω) = T (V )/I are words in p and

q. But any word in p and q in Cl(V, ω) can be reordered to have all ps on the left and all qs on the

right, by use of the relation pq− qp = −ω(p, q) · 1, at the cost of introducing extra monomials with

fewer letters.

Secondly, this set of monomials is linearly independent. To see this, we represent Cl(V, ω) on

the real vector space R[x, y] of polynomials in two variables, namely by letting q act by multiplica-

tion by x and letting p act by differentiation with respect to x plus multiplication by y,

p(xayb) = xa+1yb

q(xayb) = axa−1yb + xayb+1

That is, if ϕ : Cl(V, ω)→ EndRR[x, y] is the representation, then

ϕ(q) = x

ϕ(p) =
d

dx
+ y

where x and y here denote multiplication, that is ϕ(q) and ϕ(p) are differential operators of order

0 and 1, respectively, on R[x, y]. Now, the set of monomials xayb for a, b ∈ N0 is a basis for R[x, y],

and we note that ϕ is indeed a representation, for thinking of ϕ as a map from V to R[x, y], on



239

these basis vectors ϕ satisfies

(ϕ(q) ◦ ϕ(p)− ϕ(p) ◦ ϕ(q))xayb = x

(
d

dx
+ y

)
xayb −

(
d

dx
+ y

)
xxayb

= x(ax−1yb + xayb+1)−
(
d

dx
+ y

)
xa+1yb

= axayb + xa+1yb+1 − (a+ 1)xayb − xa+1yb+1

= −xayb

= −ω(p, q)xayb

i.e. ϕ(q) ◦ ϕ(p) − ϕ(p) ◦ ϕ(q) = −ω(p, q)1. Therefore, by the universal property there is a unique

homomorphism Φ : Cl(V, ω) → R[x, y] satisfying Φ ◦ j = ϕ, and we can think of this map as our

representation. In particular, this representation is faithful, as ϕ sends distinct basis elements to

distinct operators and is R-linear. Thus, Φ is injective. As a consequence, since the monomials

xayb form a basis for R[x, y], and therefore linearly independent, if we suppose

∑
a,b

cabx
ayb = 0

then of necessity cab = 0. If, therefore,

∑
a,b

cabq
apb = 0

then applying Φ gives
∑

a,b cabx
a
(
d
dx + y

)b
= 0 in EndRR[x, y], so applying it to the identity

1 ∈ R[x, y] (whose x-derivative is 0) gives 0 =
∑

a,b cabx
a
(
d
dx + y

)b
1 =

∑
a,b cabx

ayb, which means

cab = 0. �

Remark 57 This is in contrast to the symmetric case, where the Clifford algebra Cl(V, q) has finite

dimension 2n. In that case we embedded the spin group Spin(V, q), the double cover of the special

orthogonal group SO(V, q), into Cl(V, q) and obtained thereby a faithful and irreducible matrix

representation in Mk(F) for some k, where F = R, C or H depending on the choice of n. This

was possible because Cl(V, q) was finite-dimensional and Spin(V, q) ↪→ Cl(V, q) therefore was also

finite-dimensional. In the present case we do not have this finite-dimensionality at our disposal,
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and as it turns out the metaplectic group Mp(n,R), the analogue of the spin group Spin(n), does

not have any faithful matrix representation. We will represent Mp(n,R) faithfully and irreducibly

on L2(Rn), via a unitary representation called the Segal-Shale-Weil representation or metaplectic

representation. It happens that the the Lie algebra mp(n,R) of the metaplectic group embeds

into the Weyl algebra Cl(n) = Cl(R2n, ω0), which is linearly mapped into End(S(Rn)) via an

identification of the symplectic basis elements of R2n with the quantum position and momentum

operators. Hence, the groups Mp(n,R) and Sp(n,R), as well as their Lie algebras, and the Weyl

algebra into which the Lie algebras are embedded, end up in End(S(Rn)), if not in U(L2(Rn)). �

4.2 The Harmonic Oscillator and the Hermite Functions

In this section we review the Harmonic oscillator and its eigenfunctions, the Hermite func-

tions. The Harmonic oscillator is an unbounded self-adjoint operator, densely defined on L2(Rn),

whose spectrum a fortiori consists of real eigenvalues. The associated eigenspaces are finite di-

mensional and spanned by the corresponding Hermite functions. The set of all Hermite functions

forms a complete orthonormal systerm for L2(Rn), so L2(Rn) has an orthogonal decomposition

into the finite-dimensional eigenspaces of the Harmonic oscillator. The Hermite functions are also

eigenfunctions of the Fourier transform, and since the Fourier transform is a unitary operator on

L2(Rn), it restricts to a unitary operator on each eigenspace. This will prove to be a very useful

fact for us, and we will make good use of these properties of F .

Definition 54 Define the Harmonic oscillator (also called the Hamiltonian or Schrödinger

operator in the literature) to be the unbounded operator with initial domain the Schwartz space

of rapidly decreasing functions S(Rn) (Definition 25),

H0 : S(Rn)→ S(Rn) (4.2)

(H0f)(x) :=
1

2

(
∆− 〈x,x〉

)
f(x) (4.3)



241

where ∆ =
∑n

j=1
∂2f
∂x2
j

is the standard Laplacian. That is,

(H0f)(x) =
1

2

n∑
j=1

(
∂2f

∂x2
j

(x)− x2
jf(x)

)
That is, H0 is just the Laplacian ∆ plus a potential V (x) = −〈x,x〉, which is easily seen to lie

in L2
loc(Rn). A simple integration by parts shows that H0 is symmetric, so that (H0f, g)L2(Rn) =

(f,H0g)L2(Rn) for all f, g ∈ S(Rn), but it was not until 1951 that Kato [63] proved that it is essen-

tially self-adjoint, which was a major breakthrough in the mathematical formalization of quantum

mechanics (see Cycon et al. [26]). �

Remark 58 Physically, the Laplacian describes the position of a free particle, in the sense that a

solution ϕ of the simple non-relativistic Schrödinger equation

i~
∂

∂t
ϕ = −∆ϕ

ϕ(x, 0) = ϕ0(x)

has an associated probability, ‖ϕ(·, t)‖2L2(Ω) =
∫

Ω |ϕ(x, t)|2dx, which is interpreted as the probability

of the particle lying in a region Ω ⊆ Rn (here, of course, ϕ(·, t) is assumed to be an element of

L2(Rn) for each t ∈ R).

Now, ∆ is a symmetric operator (via integration by parts), and it is in fact essentially self-

adjoint, which can be shown as follows: let f ∈ ker(∆∗±iI). Then, since the Fourier transform F is

a unitary operator on L2(Rn) which intertwines the position and momentum operators, xj and −i∂j

(Proposition 60), we can apply F to the weak equality ∆∗f = ±if gives 〈x,x〉 f̂ = if̂ , which is only

possible if f̂ = 0. Applying F−1 to this equality shows that f = 0. Thus, by Corollary 17 above we

see that ∆ is essentially self-adjoint. In other words, ∆ is unitarily equivalent to a multiplication

operator, which is known to be essentially self-adjoint. Consequently, we may exponentiate ∆, and

all solutions of the Schrödinger equation are given in terms of an initial condition ϕ0 by

ϕ(x, t) = e−it∆ϕ0(x)
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where e−it∆ is defined via the functional calculus, as e−it∆ =
∑∞

n=0 e
−iλntPn, with Pn the projection

onto the λn-eigenspace Eλn . The fact that this is possible is a result of the self-adjointness and

ellipticity of ∆ (Theorem 40).

The harmonic oscillator H0 has the additional term V ∈ L2
loc(Rn) added to ∆. Physically, V

is interpreted as an electric potential, and the resulting non-relativistic Schrödinger equation

i~
∂

∂t
ϕ = H0ϕ

ϕ(x, 0) = ϕ0(x)

has solutions which describe the (probable) position of a single particle moving in an electric field.

If we wish to solve this equation by the same methods, exponentiating H0, we need to ensure that

H0 is self-adjoint. Now, H0 is symmetric, being the sum of the symmetric operators ∆ and V , but

even though H0 differs from ∆ only by a potential function V ∈ L2
loc(Rn), it is much harder to

show that it is essentially self-adjoint—-self-adjoint operators do not necessarily add to self-adjoint

operators. This is a feature of the more general fact that self-adjoint operators do not form an

algebra. Kato’s method of proof of the essential self-adjointness of H0 relies on a novel method,

an inequality called the ∆-boundedness of V , which is the existence of real numbers a, b ≥ 0 such

that ‖V f‖ ≤ a‖∆f‖ + b‖f‖. This inequality is then combined with von Neumann’s basic idea,

Corollary 17, to show essential self-adjointness by showing that ker(H∗0 ± iI) = {0}. �

Definition 55 Let α = (α1, . . . , αn) ∈ Nn0 be a multi-index, and define the Hermite functions

on Rn by

hα ∈ S(Rn) (4.4)

hα(x) := hα1(x1)hα2(x2) · · ·hαn(xn) (4.5)

where x = (x1, . . . , xn) ∈ Rn and each hαj ∈ S(R) is a Hermite function on R,

hαj (xj) := ex
2
j/2

∂αj

∂x
αj
j

e−x
2
j (4.6)
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As we will show below, the Hermite functions form a complete orthonormal system for L2(Rn), and

serve as eigenfunctions for both the Harmonic oscillator H0 and the Fourier transform F . �

To see that the Hermite functions are eigenfunctions of H0, we need to make some preliminary

observations. Let

Dj :=
∂

∂xj

Xj := xj (multiplication by xj)

and define

Zj := Dj +Xj

Z∗j := Dj −Xj

These Zj and Z∗j operators are not to be confused with our operators Z and Z∗ on symplectic spinors

defined below. For simplicity, consider the case n = 1 first, so that we may write Z = D +X and

Z∗ = D −X. Let us also define hn ≡ 0 for n < 0 so as to simplify matters below.

Proposition 67 For all n ∈ N0 we have

(1) Z∗hn(x) = hn+1(x). More generally,

Z∗j hα(x) = hα+ε(j)(x) (4.7)

where ε(j) = (0, . . . , 1, . . . , 0) ∈ Nn has a 1 in the jth slot and 0 elsewhere.

(2) Zhn(x) = −2nhn−1(x). More generally,

Zjhα(x) = −2αjhα−ε(j)(x) (4.8)

(3) 1
2 [Z,Z∗] = −I. Consequently,

1

2
ZZ∗ =

1

2
Z∗Z − I =

1

2
(D2 −X2)− 1

2
I = H0 −

1

2
I
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where H0 = 1
2(D2 − x2) is the 1-dimensional harmonic oscillator. More generally, the

n-dimensional harmonic oscillator is given by

H0 =
1

2

n∑
j=1

(D2
j −X2

j ) (4.9)

=
1

2

n∑
j=1

(ZjZ
∗
j + I) (4.10)

=
1

2

n∑
j=1

(Z∗jZj − I) (4.11)

Proof : (1) For any f ∈ C∞(R) we have

D
(
e−x

2/2f(x)
)

= −xe−x2/2f(x) + e−x
2/2Df(x)

so applying this to f(x) = hn(x) = ex
2/2Dne−x

2
we have

Dn+1e−x
2

= D
(
Dne−x

2)
= D

(
e−x

2/2
[
ex

2/2Dne−x
2])

= D
(
e−x

2/2hn(x)
)

= −xe−x2/2hn(x) + e−x
2/2Dhn(x)

which implies that

hn+1(x) = ex
2/2Dn+1e−x

2

= ex
2/2
[
−xe−x2/2hn(x) + e−x

2/2Dhn(x)
]

= −xhn(x) +Dhn(x)

= (D −X)hn(x)

= Z∗hn(x)
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(2) We will prove this by induction. For n = 1, we have

Zh1(x) = (D +X)h1(x)

= D
(
ex

2/2De−x
2)

+ xex
2/2De−x

2

= −2D
(
xe−x

2/2
)
− 2x2e−x

2/2

= −2(e−x
2/2 − xDe−x2/2)− 2x2e−x

2/2

= −2e−x
2/2 + 2x2e−x

2/2 − 2x2e−x
2/2

= −2e−x
2/2

= −2 · 1h0(x)

Now assume that (D + X)hk(x) = −2khk−1(x) for all n ≥ k ≥ 1 and consider the (n + 1)st case.

Then

− 2nhn−1(x) = (D +X)hn(x) = Dhn(x) + xhn(x) = D(ex
2/2Dne−x

2
) + xhn(x)

= xex
2/2Dne−x

2
+ ex

2
Dn+1e−x

2
+ xhn(x) = 2xhn(x) + hn+1(x)

which is a recurrence relation that may be solved for hn+1,

hn+1(x) = −2nhn−1 − 2xhn(x) (4.12)

Also, from −2nhn−1(x) = (D +X)hn(x) = Dhn(x) + xhn(x) we have

Dhn(x) = −2nhn−1(x)− xhn(x) (4.13)
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From these we get

(D +X)hn+1 = (D +X)(−2nhn−1(x)− 2xhn(x))

= −2nDhn−1(x)− 2nxhn−1(x)− 2D(xhn(x))− 2x2hn(x)

= −2nDhn−1(x)− 2nxhn−1(x)− 2hn(x)− 2xDhn(x)− 2x2hn(x)

= −2nDhn−1(x)− 2nxhn−1(x)− 2hn(x)− 2x(−2nhn−1(x)− xhn(x))− 2x2hn(x)

= −2nDhn−1(x)− 2nxhn−1(x)− 2hn(x) + 4nxhn−1(x) + 2x2hn(x)− 2x2hn(x)

= −2nDhn−1(x)− 2nxhn−1(x)− 2hn(x) + 2nxhn−1(x)

= −2n(D − x)hn−1(x)− 2hn(x)

= −2nhn(x)− 2hn(x)

= −2(n+ 1)hn(x)

where we used (1) in the penultimate equality. This completes the induction and proves (2).

(3) For any f ∈ C∞(Rn) we have

[Z,Z∗]f = (D +X)(D −X)f − (D −X)(D +X)f

= D2f + xDf −D(xf)− x2f −D2f + xDf −D(xf) + x2f

= 2xDf − 2D(xf)

= 2xDf − 2f − 2xDf

= −2f

The other statements follow by applying these results to each coordinate xj . �

Corollary 21 The Hermite functions hα ∈ S(Rn) are eigenfunctions of the harmonic oscillator

H0, and

H0hα = −
(
|α|+ n

2

)
hα (4.14)

for all α ∈ Nn0 . The −
(
|α|+ n

2

)
-eigenspaces wiill be denoted W`, where ` = |α| ∈ N0. These are all

finite dimensional of dimension

dimW` =

(
n+ `− 1

`

)
(4.15)



247

which is just the number of n-tuples α ∈ Nn0 of size |α| = `.

Proof : Since Zjhα = −2αjhα−ε(j) and Z∗j hα = hα+ε(j), we have

(ZjZ
∗
j + I)hα = Zjhα+ε(j) + hα =

(
−2(αj + 1) + 1

)
hα = −(2αj + 1)hα

so

H0hα =
1

2

n∑
j=1

(ZjZ
∗
j + I)hα =

n∑
j=1

−1

2
(2αj + 1)hα = −

(
|α|+ n

2

)
hα

The dimension of the eigenspace W` for the eigenvalue −
(
` + n

2

)
of H0 is thus the size of the set

S = {α ∈ Nn0 | |α| = `}, which is
(
n+`−1

`

)
by the method of stars and bars in combinatorics. �

Notation 8 Let Zj = Dj +Xj and Z∗j = Dj −Xj as above, and let us define the operators

Zα := Zα1
1 Zαx2 · · ·Z

αn
n

(Z∗)α := (Z∗1 )α1(Z∗2 )αx · · · (Z∗n)αn

�

As in the proof of (1) in Proposition 67, D
(
e−x

2/2f(x)
)

= −xe−x2/2f(x) + e−x
2/2Df(x), so

multiplying both sides by ex
2/2 we have

Z∗f(x) = (D −X)f(x) = −xf(x) +Df(x) = ex
2/2D

(
e−x

2/2f(x)
)

Therefore, in n dimensions,

Z∗j f(x) = ex
2
j/2Dj

(
e−x

2
j/2f(x)

)
We have also that [Zi, Z

∗
j ] = −2δijI, so from all this we get

[Zi, (Z
∗)α] = −2αi(Z

∗)α−εi

by induction on |α|. Let us use this observation to show the following:

Theorem 44 The Hermite functions hα ∈ S(Rn) form an orthonormal basis (or a complete or-

thonormal system) for L2(Rn).
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Proof : Consider the one-dimensional case first. Since Z∗hn = hn+1 for all n, we have (Z∗)nh0 =

hn. In general, then, (Z∗)αh0 = hα. In the L2 inner product, therefore, since the hα are real-valued,

we have (hα, hβ)L2(Rn) = ((Z∗)αh0, (Z
∗)βh0)L2(Rn) = −(h0, Z

α, (Z∗)βh0)L2(Rn), since Zj and −Z∗j

are formal adjoints since Dj is skew-symmetric and Xj is symmetric. If αj 6= βj for any j, then

(hα, hβ)L2(Rn) = 0, while if α = β, then

(hα, hβ)L2(Rn) = −(h0, Z
α(Z∗)βh0)L2(Rn) = −(−2)|α|α!

which we can accordingly normalize to unit length. Thus, at the very least the hα are orthogonal in

L2(Rn). They are also linearly independent, for if hα1 , . . . , hαk are distinct Hermite functions and∑k
j=1 ajhαj = 0 in S(Rn), then writing hαj = (Z∗)α

j
h0 we see that (

∑k
j=1 aj(Z

∗)α
j
)h0 = 0. But

this can only happen if all aj = 0, by (1) of Proposition 67. Finally, let V = spanC(hα |α ∈ Nn0 , n ∈

N), and note that V ⊥ = {0}, or equivalently V = L2(Rn): If f ∈ V ⊥, then (f, hα)L2(Rn) = 0

for all α, which means, expanding the expressions for hα by taking the derivative Dα of e−〈x,x〉,

that e〈x,x〉/2hα(x) is a degree |α| polynomial, call it Hα(x) ∈ R[x] (a Hermite polynomial). An

induction argument over |α| shows that these polynomials span all polynomials in R[x]. Since

polynomials are dense in L2(Rn), the result follows. �

4.3 The Metaplectic Representation

Definition 56 By Proposition 26 we have that Sp(n,R) is connected and has fundamental group

π1

(
Sp(n,R)

) ∼= Z. Of course Sp(n,R) is actually path connected and semi-locally simply connected

(because the unitary group is, since it has a universal cover). The Galois correspondence between

the subgroups of π1

(
Sp(n,R)

)
and the covers of Sp(n,R) then implies that, in particular, there

corresponds to the subgroup 2Z of Z, which has index [Z : 2Z] = 2, a unique cover of Sp(n,R) of

multiplicity 2, known as the metaplectic group,

ρ : Mp(n,R)→ Sp(n,R) (4.16)
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Here Mp(n,R) is the metaplectic group and ρ is the covering map. It’s derivative

dρ : mp(n,R)→ sp(n,R) (4.17)

which of course satisfies

dρ(u)(v) = [u,v] (4.18)

is an isomorphism of Lie algebras, mp(n,R) ∼= sp(n,R). These Lie algebras are characterized by

Proposition 20. �

Definition 57 Let Cln be the Weyl algebra, or symplectic Clifford algebra, and define

a(n) := span({u · v + v · u | u,v ∈ R2n}) ⊆ Cln (4.19)

Put a Lie bracket on Cln is by

[u, v] := u · v − v · u

for all u, v ∈ Cln. We will show that a(n) is a Lie subalgebra of Cln which is isomorphic to

sp(n,R), so that we may view sp(n,R) as embedded in the Weyl algebra. As we will see in the next

section, Cln acts on S(Rn) by polynomials in the position and momentum operators, an extension

of the symplectic Clifford multiplication on S(Rn)—the Cln-module structure on S(Rn)—hence

span(n,R), too, will act on S(Rn). �

Proposition 68 We have the isomorphisms

a(n) ∼= (R2n)�2 ∼= sp(n,R) (4.20)

given by

u · v + v · u 7→ u� v 7→ ω0(·,u)v + ω0(·,v)u (4.21)

and using these we can see that

dρ(u · v + v · u)(x) = (u� v)(x) = ω0(x,u)v + ω0(x,v)u (4.22)
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for any x ∈ R2n. Consequently, the inverse of dρ may be expressed as

dρ−1(A) =
1

2

n∑
j=1

(
pj · (Aqj)− qj · (Apj)

)
(4.23)

in terms of the standard symplectic basis (q, p) = (q1, . . . , qn, p1, . . . , pn) of R2n.

Proof : The second isomorphism was already given in Propositions 22 and 23, so it remains to

prove the first. Consider a basic vector v1 ·v2 +v2 ·v1 in a(n) and a vector v ∈ R2n. We first show

that the commutator [v1 · v2 + v2 · v1, v] may be identified with the action of 2(v1 � v2) on v.

This will show that a(n) is isomorphic to sp(n,R), since we have the obvious isomorphism between

a(n) and R2n � R2n, in view of the fact that the map ψ : a(n)→ R2n � R2n has trivial kernel and

is surjective.

To see the identity, note first that

[v1 · v2,v] = v1 · v2 · v − v · v1 · v2

= v1 · v · v2 + ω0(v,v2)v1 − v · v1 · v2

= ω0(v,v1)v2 + ω0(v,v2)v1

= (v1 � v2)(v)

where (v1�v2)(v) means ϕ(v1�v2)(v) for ϕ the isomorphism (R2n)�2 → sp(n,R) of Proposition

22. Consequently,

[v1 · v2 + v2 · v1, v] = 2(v1 � v2)(v)

which is an element of R2n. Extending by linearity we get that [u,v] ∈ R2n for all v ∈ a(n), and

as a consequence we may apply the Clifford product to such elements, which, by the derivation

property of the commutator, gives

[v1 · v2, v] = v1 · [v2, v] + [v1, v] · v2

and therefore

[v1 · v2 + v2 · v1, v] = v1 · [v2, v] + [v1, v] · v2 + v2 · [v1, v] + [v2, v] · v1

=
(
v1 · [v2, v] + [v2, v] · v1

)
+
(
v2 · [v1, v] + [v1, v] · v2

)
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which is clearly a sum of elements in a(n), and therefore in a(n). Thus, a(n) is closed under the

Lie bracket of Cln. �

Remark 59 Since the unitary group U(n) is a subgroup of the symplectic group Sp(n,R) (Propo-

sition 25), we can pull U(n) back via the double-covering map ρ to the double cover Û(n) of U(n):

Û(n) := ρ−1
(
U(n)

)
⊂
i

- Mp(n,R)

U(n)

ρ

?
⊂

i
- Sp(n,R)

ρ

?

and we can then look at the Lie algebras u(n) and û(n) of U(n) and Û(n), respectively. �

Since U(n) ⊂ Sp(n,R), we have u(n) ⊆ sp(n,R) as well. Let us now characterize u(n) and

û(n).

Proposition 69 We have the following characterizations of u(n), the Lie algebra of U(n), under

the isomorphisms a(n) ∼= (R2n)�2 ∼= sp(n,R),

u(n) = sp(n,R) ∩ o(n)

= span({X − J0XJ0 |X ∈ sp(n,R)})

∼= span({u� v + J0u� J0v | u,v ∈ R2n})

∼= span({u · v + v · u + J0u · J0v + J0v · J0u | u,vR2n})

∼= Mn(C)

while the Lie algebra û(n) of Û(n) is characterized by

û(n) = dρ−1(u(n))

= span({u · v + v · u + J0u · J0v + J0v · J0u | u,v ∈ R2n})

= span({qi · qj + pi · pj | 1 ≤ i ≤ j ≤ n} ∪ {qj · pi − pi · qj | 1 ≤ i < j ≤ n})
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Proof : The first characterization follows from the observation that U(n) is identified as a subgroup

of Sp(n,R) (Proposition 25), so it satisfies both the characterizations its own Lie algebra and that

of Sp(n,R). Thus, for any X ∈ u(n) we have both

〈Xu,v〉+ 〈u, Xv〉 = 0

and

ω0(Xu,v) + ω0(u, Xv) = 0

Now, the first can be rewritten as vTXu + uTXv = 0, or vTXu + vTXTu = 0, for all u,v ∈ R2n,

i.e.

X +XT = 0

while the second implies that

J0X +XTJ0 = 0

by the same reasoning (see Proposition 20). Combining these we get that

u(n) = {X ∈ EndR2n | J0X = XJ0}

= {X ∈ EndR2n | J0XJ
−1
0 = X}

That is, u(n) is the set of (not necessarily invertible) endomorphisms of R2n which commute with

J0. By Theorem 12 we conclude that

u(n) = EndC(R2n
J ) ∼= EndC(Cn) ∼= Mn(C)

Of course, this is natural, since the unitary group is the maximal compact subgroup not only of

Sp(n,R), but of GL(n,C).

Notice, too, that if A = X − J0XJ0 for any X ∈ End(R2n), then A ∈ u(n), for

J0A = J0(X − J0XJ0) = J0X − J2
0X = J0X +XJ0 = (X − J0XJ0)J0 = AJ0

so we also have

u(n) = span({X − J0XJ0 |X ∈ sp(n,R)})
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Now, under the identification sp(n,R) ∼= (R2n)�2, u � v 7→ ω0(·,u)v + ω0(·,v)u, whose inverse is

X 7→ 1
2

∑n
j=1(Xqj � pj − qj �Xpj), the fact that J0 ∈ sp(n,R) means

0 = 0 · J0v2 =
(
ω0(J0v,v1) + ω0(v, J0v1)

)
J0v2

or

ω0(v, J0v1)J0v2 = −ω0(J0v,v1)J0v2 = ω0(v, J0v1)J0v2 = −J0

(
ω0(J0v,v1)v2

)
Therefore, the expression X − J0XJ0 in sp(n,R) becomes v1 � v2 + J0v1 � J0v2, since

v1 � v2 + J0v1 � J0v2 ↔ ω0(·,v1)v2 + ω0(·,v2)v1 + ω0(·, J0v1)J0v2 + ω0(·, J0v2)J0v1

= ω0(·,v1)v2 + ω0(·,v2)v1 − J0

(
ω0(J0·,v1)v2

)
− J0

(
ω0(J0·,v2)v1

)
↔ X − J0XJ0

Finally, recall the isomorphism sp(n,R) ∼= a(n), which gives for all u,v ∈ R2n

v1 � v2 + J0v1 � J0v2 7→ (v1 · v2 + v2 · v1) + (J0v1 · J0v2 + J0v2 · J0v1)

and this gives the last characterization of u(n). Another way to see this characterization, which

will also apply to ˆu(n) = dρ−1(u(n)), is precisely by applying dρ−1 to v1 � v2 + J0v1 � J0v2 and

using Proposition 68. The last characterization of ˆu(n) follows from the canonical relations among

the symplectic basis vectors (2.39), by noting that

qi · qj + qj · qi + J0qi · J0qj + J0qj · J0qi = 2(qi · qj + pipj)

and

qi · pj + pj · qi + J0qi · J0pj + J0pj · J0qi = 2(qi · pj − qj · pi)

This completes the proof. �

Our interest in these groups and their Lie algebras naturally has to do with their represen-

tations, for ultimately we wish to use the representations to construct associated vector bundles to
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the principal bundles with structure groups Mp(n,R) and Û(n). The important representation of

Mp(n,R) (and so its subgroup Û(n)) is the metaplectic, or Segal-Shale-Weil, representation,

m : Mp(n,R)→ U(L2(Rn)) (4.24)

which is the unique unitary representation of Mp(n,R) commuting with the Schrödinger represen-

tation rS : H(n)→ U(L2(Rn)) of the Heisenberg group, in the sense that

m(q) ◦ rS(v, s) = rS(ρ(q)v, s) ◦m(q)

for all q ∈ Mp(n,R) and (v, s) ∈ H(n). The unitary representation is faithful, and the space of

smooth vectors of m, i.e. those f ∈ L2(Rn) such that the map rS(·)f : Mp(n,R)→ L2(Rn) given

by
(
rS(·)f

)
(q) := rS(q)f is smooth, consists precisely of the Schwartz space S(Rn).

Theorem 45 (Metaplectic Representation) There exists a unique unitary representation

m : Mp(n,R)→ U(L2(Rn)) (4.25)

which satisfies

m(q) ◦ rS(v, s) = rS
(
ρ(q)v, s

)
◦m(q) (4.26)

for all q ∈ Mp(n,R) and (v, s) ∈ H(n), where H(n) is the Heisenberg group, rS(v, s) is its

Schrödinger representation, and ρ : Mp(n,R)→ Sp(n,R) is the double covering map. �

Theorem 46 The metaplectic representation m is faithful. It decomposes into the sum of two

inequivalent irreducible unitary representations, which are the restrictions of m to the spaces of

even and odd functions, respectively. Furthermore, S(Rn) is precisely the space of smooth vectors

of m. In particular, S(Rn) is m-invariant. �

The significance of the above fuss over the unitary subgroup U(n) of Sp(n,R) and it’s lift

Û(n) to a subgroup of Mp(n,R) is that, when we work out our operators on the m-bundle associated

to the principal Mp(n,R)-bundle, we can advantageously reduce the structure group to Û(n) and
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consider the associated m|Û(n)-bundle. This is why we consider the restriction of the metaplectic

representation to Û(n):

u := m|Û(n) : Û(n)→ U(L2(Rn)) (4.27)

Of course, we also note that, in order to work with smooth vectors only, we may consider the

representations u and m on S(Rn). That is we may advantageously ’reduce’ the vector space on

which we represent our groups, in addition to reducing the group.

4.4 Symplectic Clifford Multiplication

This bring us to the last technical point, the quantization of the symplectic coordinates which

finds use in the definition of symplectic Clifford multiplication. This quantization is achieved first

by means of the linear map

σ : R2n → End(S(Rn)) (4.28)

defined on the symplectic basis vectors by

Qj := σ(qj) := ixj (multiplication operator) (4.29)

Pj := σ(pj) :=
∂

∂xj
(differential operator) (4.30)

σ(1) := i (multiplication operator) (4.31)

That is, if q = (q1, . . . , qn) and p = (p1, . . . , pn), then

(q, p)
σ−→ (Q,P ) = (ix, grad) (4.32)

We refer to Section 3.2.2 above for the analytical properties of Pj and Qj (which differ by an i

from our operators here, making the above operators skew -symmetric, and even skew-adjoint by

the results of that section).

Recall now the definition of the Weyl algebra on a symplectic vector space (which we may take

to be (R2n, ω0) without loss of generality by Proposition 32): it is a pair (Cl(R2n, ω0), j) consisting
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of an associative unital R-algebra Cl(R2n, ω0) and an R-linear map j : R2n → Cl(R2n, ω0) satisfying

j(u)j(v)− j(v)j(u) = −ω0(u,v) · 1

for all u,v ∈ R2n, and the following universal property: if A is any other associative unital R-

algebra and f : R2n → A is linear map satisfying f(u)f(v) − f(v)f(u) = −ω0(u,v) · 1 for all

u,v ∈ R2n, then there is a unique algebra homomorphism F : Cl(R2n, ω0)→ A such that f = F ◦ j

Cl(R2n, ω0)

R2n

j -

A

F

?f -

Our map σ extends by linearity to all of R2n, of course. We now want to show that it satisfies these

extra two conditions, and so extends to a linear map (but not an algebra homomorphism)

σ̃ : Cl(R2n, ω0)→ End(S(Rn)) (4.33)

To see this, recall first the canonical commutation relations

[Pi, Pj ] = [Qi, Qj ] = 0, [Pi, Qj ] = iδij (4.34)

(these are immediate, but see Folland [34, pp. 12-17] for further discussion). From these relations

we get (Habermann and Habermann [54, Lemmas 1.4.1-1.4.2]) the following proposition.

Proposition 70 The quantization map σ : R2n → End(S(Rn)) satisfies

(1) For all u,v ∈ R2n we have

σ(u) ◦ σ(v)− σ(v) ◦ σ(u) = −iω0(u,v) (4.35)

Consequently, since we have already shown the existence of Cl(R2n, ω0) (Theorem 41), we

have that σ extends to an R-linear map σ̃ : Cl(R2n, ω0)→ End(S(Rn)) making the following

diagram commute:

Cl(R2n, ω0)

R2n

j -

End(S(Rn))

σ̃

?σ
-
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It is this extended σ̃ which appears in (4)-(6) below (we shall use σ for σ̃ understanding it to

be the extended map). For future purposes also require the extended σ to respect symplectic

Clifford mutliplication,

σ(v1 · v2 · · · · · vk) := σ(v1) ◦ σ(v2) ◦ · · · ◦ σ(vk) (4.36)

(2) With respect to the L2-inner product on S(Rn) the map σ sends vectors in R2n to skew-

symmetric operators, (
σ(u)f, g

)
L2 = −

(
f, σ(u)g

)
L2 (4.37)

for all f, g ∈ S(Rn) and all u ∈ Rn.

(3) The Fourier transform interacts with σ as

F ◦ σ(J0u) = σ(u) ◦ F (4.38)

for all u ∈ Rn.

(4) If ρ : Mp(n,R) → Sp(n,R) is the double cover and dρ : mp(n,R) → sp(n,R) is its deriva-

tive, dρ(u)(v) = [u,v], then

σ(u) ◦ σ(v)− σ(v) ◦ σ(u) = iσ
(
dρ(u)v

)
(4.39)

for all u ∈ mp(n,R) and all v ∈ R2n.

(5) With respect to the L2-inner product on S(Rn), the map σ sends the metaplectic lie algebra

into symmetric operators: (
σ(u)f, g

)
L2 =

(
f, σ(u)g

)
L2 (4.40)

for all f, g ∈ S(Rn) and all u ∈ mp(n,R). Here, we use the isomorphism mp(n,R) ∼=

sp(n,R) ∼= a(n) ⊆ Cl(R2n, ω0).

(6) The kernel of the extended homomorphism σ : Cl(Rn, ω0)→ End(S(Rn)) is trivial,

kerσ = {0} (4.41)
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Proof : (1) Write any u,v ∈ R2n in the standard symplectic coordinates as

u = (a,b) =

n∑
j=1

ajqj + bjpj and u = (a′,b′) =

n∑
j=1

a′jqj + b′jpj

By the canonical commutation relations, we then have

σ(u) ◦ σ(v)− σ(v) ◦ σ(u)

=
n∑

i,j=1

[
aiQi + biPi

]
◦
[
a′jQj + b′jPj

]
−
[
a′jQj + b′jPj

]
◦
[
aiQi + biPi

]
=

n∑
i=1

(ajb
′
j − a′jbj)[Qj , Pj ]

= −i
n∑
i=1

(ajb
′
j − a′jbj)

= −i
[〈

a,b′
〉
−
〈
a′,b

〉]
= −iω0(u,v)

the last equality by (4) of Proposition 18.

(2) This statement follows by integration by parts, noting that xj and i∂/∂xj are symmetric

operators (in fact essentially self-adjoint, by Theorems 36 and 37), so that ixj and ∂/∂xj are

skew-symmetric.

(3) This statement follows from the fact that the Fourier transform intertwines the position

and momentum operators, Qj ◦F = F ◦Pj and Pj ◦F = −F ◦Qj (Proposition 60), along with the

fact that J0 operates on a symplectic basis as J0qj = pj and J0pj = −qj .

(4) From (1) we have for all v1,v2,v ∈ R2n

σ(v1) ◦ σ(v2) ◦ σ(v) = σ(v1) ◦ σ(v) ◦ σ(v2)− iω0(v2, v)σ(v1)

= σ(v) ◦ σ(v1) ◦ σ(v2)− iω0(v1,v)σ(v2)− iω0(v2,v)σ(v1)

Using the isomorphism mp(n,R) ∼= a = span(v1 · v2 + v2 · v1 | v1,v2 ∈ R2n), we therefore have for
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all u = v1 · v2 + v2 · v1 ∈ mp(n,R) that

σ(u) ◦ σ(v)− σ(v) ◦ σ(u) = σ(v1 · v2 + v2 · v1) ◦ σ(v)− σ(v) ◦ σ(v1 · v2 + v2 · v1)

= 2iσ(ω0(v,v1)v2 + ω0(v,v2)v1)

= iσ(dρ(v1 · v2 + v2 · v1)v)

(5) This follows by two applications of (2), in view of the isomorphism mp(n,R) ∼= a.

(6) Suppose u ∈ kerσ. Then σ(u)f = 0 for all f ∈ S(Rn). Let us express v in the basis

described in Theorem 43, which consists of monomials of the form qa1
1 qa2

2 · · · qann pb11 p
b2
2 · · · pbnn , which

we can write more succinctly using multi-index notation as qαpβ. Since σ respects symplectic

Clifford multiplication by definition (see (1)), we have that σ(qαpβ) = σ(q)ασ(p)β. Applying σ(u)

thus to functions f that are polynomial near 0, which are dense in L2(Rn) and therefore in S(Rn),

we see that u must be 0. �

Definition 58 In what follows, we write v · f for σ(v)f whenever v ∈ mp(n,R) and f ∈ S(Rn).

Thus, symplectic Clifford multiplication of a Schwartz function is understood to be the induced

action of Cln := Cl(R2n, ω0) on S(Rn) applied to f . We consequently get a Cln-module structure

on S(Rn), whose associated action we call symplectic Clifford multiplication:

µ0 : Cln⊗ S(Rn)→ S(Rn) (4.42)

µ0(v ⊗ f) ≡ v · f := σ(v)f (4.43)

This is the symplectic analog to ’Clifford module’ and ’Clifford multiplication’ on quadratic spaces

and thence on Riemannian manifolds. Notice that if u ∈ R2n is written in the standard symplectic

basis as (a,b), i.e. u =
∑n

j=1 ajqj+bjpj , then symplectic Clifford multiplication takes a particularly

simple form,

(u · f)(x) =

n∑
j=1

(
ajσ(qj) + bjσ(pj)

)
f(x)

=

n∑
j=1

(
iajxjf(x) + bj

∂f

∂xj
(x)
)

= i 〈a,x〉+ 〈b, grad f(x)〉
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This makes clear that symplectic Clifford multiplication is an application of a linear combination

of the standard multiplication and differentiation operators. This will come in handy later, when

we look at the local behavior of the symplectic Dirac operators. �

Remark 60 One nice immediate result of this symplectic Clifford module construction for S(Rn)

is that we may express the harmonic oscillator in terms of symplectic Clifford products:

H0 :=
1

2

( n∑
j=1

∂2

∂x2
j

− x2
j

)
= σ

(
1

2

n∑
j=1

qj · qj + pj · pj
)

(4.44)

i.e.

σ−1(H0) =
1

2

n∑
j=1

qj · qj + pj · pj (4.45)

which is an element of û(n). The operator H0 is interesting for us, of course, because of its action

on L2(Rn) and S(Rn). It’s spectral analysis gives us a decomposition of L2(Rn) into countably

many finite-dimensional eigenspaces W` (Corollary 21 and Theorem 44 above), and since its eigen-

functions are the Hermite functions hα, which are elements of S(Rn), we also get a decomposition

of S(Rn) into countably many finite-dimensional subspaces S` = S(Rn) ∩W`. �

Remark 61 Two smaller results about σ are:

σ = idρ (4.46)

on R2n, which is just the observation that (1) and (4) give the same expression on R2n, and

σ−1(J0) = σ−1(H0) (4.47)

as elements of û(n). The left-hand side follows from Proposition 23. �



Chapter 5

The Symplectic Dirac Operators

5.1 The Symplectic Spinor Bundle

The Lie groups Sp(n,R), U(n), Mp(n,R) and Û(n) each gives rise to a principal bundle:

(1) The symplectic frame bundle, an analog of the orthonormal frame bundle PO(n) on a

Riemannian manifold,

PSp(n,R) (5.1)

(2) The unitary frame bundle, a reduction of the PSp(n,R), perhaps analogous to the SO(n)-

reduction of the PO(n) bundle (the oriented orthonormal frame bundle on a Riemannian

manifold),

PU(n) (5.2)

(3) The principal Mp(n,R)-bundle,

PMp(n,R) (5.3)

(4) The principal Û(n)-bundle,

PÛ(n) (5.4)

Locally on (M,ω), over a small enough local trivializaton, it is always possible to double

cover the symplectic frame bundle by the metaplectic bundle, that is locally we can have both the

PSp(n,R)|U and PMp(n,R)|U bundles and a fiber-preserving map between the two, but globally there

may be topological obstructions. These obstructions are encoded in the second Stiefel-Whitney
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class w2 ∈ H2(M ;Z2), which is zero if and only if there is a globally defined bundle map

F : PMp(n,R) → PSp(n,R) (5.5)

which we call a metaplectic structure on (M,ω).

Remark 62 Consider an ω-compatible almost compatible J , that is ω(X, JY ) defines a Rieman-

nian metric g on M . By Darboux’s theorem we know that, locally, with respect to a local sym-

plectic frame (e, f) = (e1, . . . , en, f1, . . . , fn), J looks like the standard almost complex structure

J0 =

 0 −In

In 0

, so

Jej = fj , and Jfj = −ej

Hence, the relations

ω0(ej , ek) = ω0(fj , fk) = 0, ω0(ej , fk) = δjk

imply the relations ω0(ej , Jfk) = ω0(fj , Jek) = 0 and ω0(ej , Jek) = δjk, i.e.

g(ej , fk) = 0, g(ej , ek) = δjk

Thus, if we reduce the structure group from Sp(n,R) to U(n), then any local unitary frame

(e1, . . . , e2n) is completely determined by the relations

g(ej , fk) = 0, g(ej , ek) = δjk, Jej = en+j

which obviously involve the choice of J . We conclude, therefore, that there is a one-to-one corre-

spondence between unitary reductions of the symplectic frame bundle and the set of almost complex

structures J on (M,ω). We accordingly denote by

P JU(n) (5.6)

the unitary reduction of PSp(n,R) associated to J . �

The representations m : Mp(n,R) → U(L2(Rn)) and u = m|Û(n) : Û(n) → U(L2(Rn)) now

allow us to construct the associated vector bundles with typical fiber L2(Rn) or S(Rn):
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(1) Q := PMp(n,R) ×m L
2(Rn)

(2) S := PMp(n,R) ×m S(Rn)

(3) QJ := PÛ(n) ×u L
2(Rn)

(4) SJ := PÛ(n) ×u S(Rn)

These bundles all have a Hermitian structure, via the L2 inner product on L2(Rn):

h([p, f ], [p, g]) := 〈f, g〉L2(Rn) :=

∫
Rn
fg dµL (5.7)

Thus, (Q, h), for example, is a hermitian vector bundle.

Let us brienfly describe the sections of these bundles. It is a general feature of vector bundles

PG ×ρ V associated to principal G-bundles PG that sections s ∈ Γ(PG ×ρ V ) are in one-to-one

correspondence with G-equivariant maps from PG to V , that is maps ŝ : PG → V satisfying

ŝ(pg) = ρ(g−1)ŝ(p) for all p ∈ PG and g ∈ G, with ρ : G → GL(V ) the given representation.

Locally, over an open set U ⊆M , sections s, or their equivariant counterparts ŝ, can be described

as follows: Let ϕ ∈ Γ(U,PSp(n,R)) be a local symplectic frame, and let ϕ ∈ Γ(U,PMp(n,R)) be its lift

to the metaplectic bundle,

PMp(n,R)

M ⊇ U
ϕ
-

ϕ
-

PSp(n,R)

F

?

Elements of PG×ρV are equivalence classes [p, f ] under the equivalence relation (pg, f) ∼ (p, ρ(g)f),

i.e. orbits of the G-action on PG × V given by (p, f) · g := (pg, ρ(g−1)f). Locally, in our case, we

therefore have

ŝ ◦ ϕ : U → S(Rn)

and so

s = [ϕ, ŝ ◦ ϕ] ∈ Γ(U,S) = Γ(U, PMp(n,R) ×m S(Rn)) (5.8)

and similarly with the other associated vector bundles.
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We need this description of the sections in order to understand how the differential operators

acting on such sections behave. Before we do this, however, let us note two further features of the

spaces of sections of Q, S, QJ and SJ . First of all, the compactly supported sections s ∈ Γc(Q) (or

Γc(S)) have a natural L2 inner product defined using the hermitian structure h on Q (5.7) given

above:

(s, t) :=

∫
M
h(s, t) dV =

∫
M
〈fs(x), ft(x)〉L2(Rn) dV (x) (5.9)

where dV is the volume density on M (using its metric structure) and fs(x) := (ŝ ◦ϕ)(x), ft(x) :=

(t̂ ◦ ϕ)(x) ∈ L2(Rn) or S(Rn) for x ∈ U ⊆ M and ϕ ∈ Γ(U,PSp(n,R)) a local symplectic frame (or

more generally a local frame ϕ = (x1, . . . , x2n) : U → F (TM) = PGL(2n,R)). Secondly, the Hermite

functions

hα(x) = hα1(x1)hα2(x2) · · ·hαn(xn)

with hαj (xj) = ex
2
j/2
(
∂αj

∂x
αj
j

e−x
2
j
)
, are the eigenfunctions of the harmonic oscillator,

H0hα(x) = −
(
|α|+ n

2

)
hα(x)

and they form a complete orthonormal set for L2(Rn),

L2(Rn) =
⊕
α∈Nn0

span(hα) =
∞⊕
`=0

(⊕
|α|=`

span(hα)
)

=
∞⊕
`=0

W` (5.10)

and dimW` =
(
n+`−1

`

)
. Of course ` here corresponds to the eigenvalue λ = −(`+ n/2) of H0, thus

W` = E−(`+n/2) is the corresponding eigenspace. It is clear that the harmonic oscillator can be

defined on the Schwartz space bundles in a natural way, fiberwise:

H : S→ S (5.11)

H([p, f ]) := [p, H0f ] (5.12)

On sections, therefore, H(s) = H([ϕ, fs]) := [ϕ,H0fs]. The upshot, then, is that each of our

four associated vector bundles decompose into a direct sum of finite-dimensional subbundles. For

example, the symplectic spinor bundle decomposes as

Q =
∞⊕
`=0

Q` :=

∞⊕
`=0

PMp(n,R) ×m W` (5.13)
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5.2 The Spinor Derivative

First, let us define the (symplectic) spinor derivative, that is the connecton on the

symplectic spinor bundle

∇ : Γ(Q)→ Γ(T ∗M ⊗Q) (5.14)

which we may, for convenience, also define on the Schwartz space spinors,

∇ : Γ(S)→ Γ(T ∗M ⊗ S) (5.15)

We begin by generalizing the one-to-one correspondence between smooth Mp(n,R)-equivariant

functions from PMp(n,R) to S(Rn) (or L2(Rn)) and the smooth sections of the symplectic spinor

bundle Γ(Q) (or Γ(S)),

Γ(M,Q) ∼= C∞(PMp(n,R), L
2(Rn))Mp(n,R) (5.16)

We establish a similar correspondence for differential forms on M valued in Q (or Γ(S)) and basic

differential forms on PMp(n,R) valued in L2(Rn) (or S(Rn)):

Ωk(M,Q) ∼= Ωk(PMp(n,R);L
2(Rn))bas (5.17)

This, again, is a standard isomorphism for associated bundles PG×ρV . Given such a bundle, where

ρ : G→ GL(V ) or U(V ) is the given representation, we define the correspondence

Ωk(M,PG ×ρ V ) 3 αM ←→ α ∈ Ωk(PG;V )bas (5.18)

by

π∗αM (X1, . . . , Xk)x = [p, α(X1, . . . , Xk)p] (5.19)

where π : PG →M is the projection map, x ∈M and p ∈ π−1(x). A basic k-form α ∈ Ωk(PG;V ),

then, is one that, in addition to being G-equivariant, i.e. R∗gα = ρ(g−1)α for all g ∈ G, also vanishes

on vertical vectors, that is α(X1, . . . , Xk) = 0 if any Xj ∈ Γ(V PG) (equivalently Tπ(X) = 0, since

Tpπ : HpPG → Tπ(p)M is an isomorphism). Thus, the above correspondence is indeed a bijection.
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Now consider a symplectic connection ∇ : Γ(TM)→ Γ(T ∗M⊗TM), i.e. one satisfying ∇ω =

0, or equivalently d(ω(X,Y )) = ω(∇X,Y ) +ω(X,∇Y ) for all X,Y ∈ Γ(TM). It has an associated

connection 1-form, also denoted here ω, valued in sp(n,Rn), ω ∈ Ω1(PSp(n,R); sp(n,R)), which we

pull back via the bundle map F : PMp(n,R) → PSp(n,R) to a form F ∗ω ∈ Ω1(PMp(n,R); sp(n,R)), then

lift it to a 1-form on PMp(n,R) valued in mp(n,R),

ω̃ := dρ−1 ◦ F ∗ω ∈ Ω1(PMp(n,R);mp(n,R))

With this connection 1-form in hand we take a local symplectic frame ϕ = (e, f) ∈ Γ(U,PSp(n,R))

and use it to pull ω̃ back to U ⊆M , giving us a local mp(n,R)-valued 1-form on U :

α := ϕ∗ω̃ ∈ Ω1(U ;mp(n,R)) = Γ(U, T ∗M ⊗mp(n,R)) (5.20)

Finally, using α we can define a covariant derivative on Q = PMp(n,R) ×m L
2(Rn) by

∇s = dŝ+ dm(ω̃) ∧ ŝ (5.21)

= [ϕ, d(ŝ ◦ ϕ) + dm(α)(ŝ ◦ ϕ)] (5.22)

That is, at a point x ∈ U ⊆M , with p ∈ π−1(x) ⊆ PMp(n,R),

(∇Xs)p = dŝ(X)p + dm(ω̃p(X)) ∧ ŝ(p)

= Xpŝ+ dm(ω̃p(X))(ŝ(p))

where X ∈ Γ(TPMp(n,R)), or if we wish to think of X ∈ Γ(TM),

(∇Xs)x = [ϕ(x), d(ŝ ◦ ϕ)x(X) + dm(αx(X))((ŝ ◦ ϕ)(x))]

Schematically, we define the spinor derivative ∇ on Q by the following diagram:

Γ
(
M,PMp(n,R) ×m L

2(Rn)
) ∇

- Γ
(
M,T ∗M ⊗ PMp(n,R) ×m L

2(Rn)
)

Ω0(PMp(n,R);L
2(Rn))bas

∼

?

d+ dm(ω̃)
- Ω1(PMp(n,R);L

2(Rn))bas

∼
6

i.e. transferring the problem from the vector bundle to the bundle of basic 0-forms and using the

exterior derivative there.
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Remark 63 We should note that, generally speaking, we may define a spinor derivative ∇ for any

choice of connection 1-form ω ∈ Ω1(PMp(n,R);mp(n,R)), not just the one gotten from the chosen

symplectic connection. Indeed, even the symplectic connection had to be chosen, so even ω̃ involved

a choice. Thus, we see that ∇ should really be defined with respect to the choice of ω, and should

be denoted ∇ω. �

More generally, since the isomorphism on forms holds for all k, not just 0 and 1, we may

define the exterior covariant derivative by the same means, using the exterior derivative on

basic forms:

d∇ : Ωk(M ; Q)→ Ωk+1(M ; Q) (5.23)

Let us describe the local expression of (∇Xs)x in a local symplectic basis ϕ = (e, f). First of

all, note that for any X ∈ Γ(TM) we have

α(X) = ϕ∗(dρ−1 ◦ F ∗ω(X)) = dρ−1(ϕ∗F ∗ω(X)) = dρ−1(ϕ∗ω(X))

Secondly, we note that by Proposition 1.4.5 in Habermann and Habermann, [54], the action of

dm(v) in End(S(Rn)), where v ∈ mp(n,Rn), is given by Clifford multiplication:

dm(v)f = −iv · f (5.24)

i.e. −iσ(v)(f). Combining these results, and using the fact noted above that dρ−1 is an isomorphism

between sp(n,R) and mp(n,R) ∼= a(n) ⊆ Cln with inverse given by dρ−1(A) = 1
2

∑n
j=1

(
pj · (Aqj)−

qj · (Apj)
)
, cf (4.23), we get, by letting A = ϕ∗ω(X) and fs := ŝ ◦ ϕ, that

dm(α(X))(fs) = −iα(X) · fs = − i
2

( n∑
j=1

(pj · ϕ∗ω(X)(qj)− qj · ϕ∗ω(X)(pj)

)
· fs

Therefore, writing a local section as s = [ϕ, fs], we have

(∇X̃s)p = (∇Xs)x = [ϕ(x), Xxfs + dm(αx(X))(fs)] (5.25)

=

[
ϕ(x), Xxfs −

i

2

( n∑
j=1

(pj · ϕ∗ω(X)(qj)− qj · ϕ∗ω(X)(pj)

)
· fs
]

= dsp(X̃)− i

2

n∑
j=1

(fj ·∇X̃ej − ej ·∇X̃fj) · s

where X̃ ∈ Γ(HPMp(n,R)) is the horizontal lift of X ∈ Γ(TM), i.e. Tπ(X̃) = X.
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5.3 The Symplectic Dirac Operators and Related Operators

Since the symplectic form ω on M is by definition nondegenerate, we can use it to define

flattening and sharpening operators. The flattening operator

ω[ : Γ(TM)→ Γ(T ∗M) = Ω1(M) (5.26)

is given by

ω[(X) := ω(X, ·) (5.27)

and using it we get the sharpening operator:

ω] := (ω[)−1 : Ω1(M)→ Γ(TM) (5.28)

Also, given an ω-compatible almost complex structure J on TM , we get a Riemannian metric,

g(·, ·) := ω(·, J ·)

and so a second set of flattening and sharpening operators:

g[ : Γ(TM)→ Γ(T ∗M) = Ω1(M) (5.29)

g[(X) := g(X, ·) (5.30)

and using this

g] := (g[)−1 : Ω1(M)→ Γ(TM) (5.31)

We remark that, for a given α ∈ Ω1(M), we have g](α) = X iff α = g[(X) iff for all Y ∈ Γ(TM)

we have α(Y ) = g(X,Y ) = ω(X, JY ) = ω(JX, J2Y ) = ω(JX,−Y ) = ω(−JX, Y ) = ω[(−JX)(Y ),

which shows that

−JX = ω](α) ⇐⇒ X = g](α)

or equivalently, since J2 = −I,

X = ω](α) ⇐⇒ JX = g](α) (5.32)
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With these isomorphisms in hand, as well as the the spinor derivative and the Clifford mul-

tiplication map µ : Γ(TM ⊗ Q) → Γ(Q), µ(X ⊗ s) := X · s := σ(X)(s), we can define our two

symplectic Dirac operators:

D := µ ◦ ω] ◦ ∇ : Γ(Q)→ Γ(Q) (5.33)

D̃ := µ ◦ g] ◦ ∇ : Γ(Q)→ Γ(Q) (5.34)

That is, they are the two compositions, respectively,

Γ(Q)
∇−→ Γ(T ∗M ⊗Q)

ω]−→
g]

Γ(TM ⊗Q)
µ−→ γ(Q)

Using the local expression (5.25) of the spinor derivative ∇ above, we get local expressions for the

symplectic Dirac operators, relative to a symplectic frame (e, f):

D =
n∑
j=1

ej ·∇fj − fj ·∇ej (5.35)

= −
( n∑
j=1

(Jej) ·∇ej + (Jfj) ·∇fj
)

(5.36)

and

D̃ =
n∑
j=1

(Jej) ·∇fj − (Jfj) ·∇ej (5.37)

=
n∑
j=1

ej ·∇ej + fj ·∇fj (5.38)

From these two operators we get the following two important Dirac-type operators:

Z := D + iD̃ : Γ(Q)→ Γ(Q) (5.39)

and

Z∗ := D − iD̃ : Γ(Q)→ Γ(Q) (5.40)

Let us also define a few other operators in terms of these:

P := i[D̃,D] = i(D̃D −DD̃) (5.41)

Q := i(D̃D +DD̃) (5.42)

R := [Z,Z∗]gr := ZZ∗ + Z∗Z (5.43)



270

Lastly, we have the Fourier transform, defined fiberwise:

F : Q→ Q (5.44)

F([p, f ]) := [p,Ff ] (5.45)

as well as the harmonic oscillator

H : Q→ Q (5.46)

H([p, f ]) := [p, H0f ] (5.47)

From the local expression for D and D̃ it follows (cf. Habermann and Habermann [54, Proposition

5.3.1]) that when ∇J = 0 we have

[H, D] = iD̃ (5.48)

[H, D̃] = −iD (5.49)

and hence

[H, Z] = [H, D] + i[H, D̃] = iD̃ + i(−i)D = Z (5.50)

[H, Z∗] = [H, D]− i[H, D̃] = iD̃ + (−i)2D = −(D − iD̃) = −Z∗ (5.51)

[H, P ] = i[H, [D̃,D]] = −i[D̃, [D,H]]− i[D, [H, D̃] = −i[D̃,−iD̃]− i[D,−iD] = 0 (5.52)

the last by the Jacobi identity. Thus, the operator P , which is of Laplace type, preserves the

eigenbundles Q`, while the operators Z and Z∗ decrease and increase, respectively, the degree of

the eigenbundles, Z : Γ(Q`)→ Γ(Q`−1) and Z∗ : Γ(Q`)→ Γ(Q`+1):

HZs` = ZHs` + Zs` = −
(
`+

n

2

)
Zs` + Zs` = −

(
(`− 1) +

n

2

)
Zs` (5.53)

HZ∗s` = Z∗Hs` − Z∗s` = −
(
`+

n

2

)
Z∗s` − Z∗s` = −

(
(`+ 1) +

n

2

)
Z∗s` (5.54)

Moreover, since D = 1
2(Z+Z∗) and D̃ = 1

2i(Z−Z
∗), we see that both D and D̃ move eigensections

s` ∈ Γ(Q`) to Γ(Q`+1) and Γ(Q`+1).
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5.4 Properties and Relations among the Operators

We begin by fixing the function spaces on which our operators will be assumed to act. We

recall from Section 5.1 above that we have constructed two (infinite-dimensional hermitian) vector

bundles, the symplectic spinor bundle Q → M and the symplectic Schwartz space spinor bundle

S → M , on whose sections we suppose our operators will act. But we will of course be concerned

with differential operator, so smoothness of sections is a concern, and we also want our operators

to be densely defined on a Hilbert space H, presumably with those smooth sections dense in H.

Let us begin with smoothness: From Lemma 3.2.3 in Habermann and Habermann [54],

we know that the smooth sections of Q, denoted Γ(Q) and defined by the isomorphism (5.16),

Γ(Q) ∼= C∞(PMp(n,R), L
2(Rn))Mp(n,R)1 , are in fact the (continuous) sections of S

Γ(Q) = C(M,S) ∼= C(PMp(n,R),S(Rn))Mp(n,R) (5.55)

and the smooth sections of S are analogously defined to be those (continuous) sections s of S

corresponding to smooth maps ŝ ∈ C∞(PMp(n,R),S(Rn))Mp(n,R),

Γ(S) ∼= C∞(PMp(n,R),S(Rn))Mp(n,R) (5.56)

Clearly Γ(S) ⊆ Γ(Q). Next, we define the compactly supported sections

Γc(Q) (5.57)

Γc(S) (5.58)

of Q and S to be those compactly supported sections whose corresponding Mp(n,R)-equivariant

maps from PMp(n,R) to L2(Rn), respectively S(Rn), are smooth.

Lastly, the Hilbert spaces of sections on which our operators will be densely defined (on Γ(Q

or Γc(Q) or their Schwartz analogs) will be the L2 completions of Γc(Q) and Γc(S) with respect to

1 This congruence, (5.16), may be given simply in terms of continuous functions, C(M,Q) ∼=
C(PMp(n,R), L

2(Rn))Mp(n,R), and then we distinguish the smooth sections from the merely continuous by saying they
are smooth if their corresponding Mp(n,R)-equivariant functions are smooth. This is the sense in which Habermann
and Habermann say a section s of Q is smooth (Definition 3.2.2 in [54]).



272

(·, ·) defined in (5.9) above, (s, t) =
∫
M 〈fs(x), ft(x)〉L2(Rn) dV (x),

L2(Q) = Γc(Q) (5.59)

L2(S) = Γc(S) (5.60)

We will mostly work with Γ(S) and Γc(S), since Γc(Q) = Cc(M,S) contains the dense (by definition)

subspace Γc(S) = C∞c (M,S) of L2(Q). Throughout this section, unless otherwise specified, we will

assume the operators to be acting on Γc(S).

One last assumption, which we may later weaken, is that M be compact. This will give us

Γc(Q) = Γ(Q) and Γc(S) = Γ(S), and make statements concerning formal adjoints of operators

less problematic, because once we know a section is smooth, it will also be compactly supported

and thus in the domains of the operators.

Theorem 47 Let t = Zs = Z∗τ ∈ imZ ∩ imZ∗. Then there are unique symplectic spinor fields s′

and τ ′ such that Ds′ = D̃τ ′ = t′ ∈ imD ∩ im D̃, namely

s′ = s− τ (5.61)

τ ′ = −is− iτ (5.62)

and conversely, if t′ = Ds′ = D̃τ ′, then there are unique s and τ such that Zs = Z∗τ = t ∈

imZ ∩ imZ∗, namely

s =
1

2
s′ +

i

2
τ ′ (5.63)

τ = −1

2
s′ +

i

2
τ ′ (5.64)

That is,

(
s′

τ ′

)
=

 1 −1

−i −i

(s
τ

)
and

(
s

τ

)
=

1

2

 1 i

−1 i

(s′
τ ′

)
, where

1

2

 1 i

−1 i

 =

 1 −1

−i −i


−1

which is to say sources (s, τ) and (s′, τ ′) of common images are related by an invertible linear map

between Γ(Q)⊕ Γ(Q) and itself.
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Proof : Let t = Zs = Z∗τ , and define s′ = s− τ and τ ′ = −is− iτ . Then,

Ds+ iD̃s = Zs = t = Z∗τ = Dτ − iD̃τ

which implies

Ds′ = D(s− τ) = D̃(−is− iτ) = D̃τ ′

Conversely, if Ds′ = D̃τ ′, define s = 1
2s
′ + i

2τ
′ and τ = −1

2s
′ + i

2τ
′ and note that

Zs =
1

2
Zs′ +

i

2
Zτ ′

=
1

2
Ds′ +

i

2
D̃s′ +

i

2
Dτ ′ − 1

2
D̃τ ′

=
1

2
D̃τ ′ +

i

2
D̃s′ +

i

2
Dτ ′ − 1

2
Ds′

= −1

2

(
Ds′ − iD̃s′

)
+
i

2

(
Dτ ′ − iD̃τ ′)

= −1

2
Z∗s′ +

i

2
Z∗τ ′

= Z∗τ

which proves the claim. �

Corollary 22 With the above notation we have

t′ = Ds′ = D̃τ ′ =
1

2

(
Zτ − Z∗s

)
(5.65)

Proof : Since s′ = s − τ , we have τ = s − s′ and s = τ + s′, so Zτ = Zs − Zs′ and Z∗s =

Z∗τ + Z∗s′ = Zs+ Z∗s′. Thus, Z∗s− Zτ = Z∗s′ + Zs′ = 2Ds′ = 2D̃τ ′ = 2t′. �

Theorem 48 If Ds′ = D̃τ ′, then Ds′ = D̃τ ′ = 0, so that

imD ∩ im D̃ = {0} (5.66)
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and in addition

Ds = Dτ =
i

2
Dτ ′ (5.67)

D̃s = −D̃τ =
1

2
D̃s′ (5.68)

Zτ = Z∗s (5.69)

Zs′ = −Z∗s′ (5.70)

Zτ ′ = Z∗τ ′ (5.71)

Proof : Firstly, from equation (5.65) we have that 2Ds′ = 2D̃τ ′ = Zτ − Z∗s, which gives us the

identities

Zτ = Z∗s+ 2Ds′ (5.72)

= Z∗s+ 2D̃τ ′ (5.73)

and

Z∗s = Zτ − 2Ds′ (5.74)

= Zτ − 2D̃τ ′ (5.75)

Also, since s′ = s − τ and τ ′ = −is − iτ , we have D̃s′ = D̃s − D̃τ and Dτ ′ = −iDs − iDτ , and

consequently

D̃s′ +Dτ ′ = D̃s− D̃τ − iDs− iDτ (5.76)

= −i(D + iD̃)s− i(Dτ − iD̃τ)

= −iZs− iZ∗τ

= −2iZs

= −2iZ∗τ
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and, using the identities (5.72)-(5.75),

D̃s′ −Dτ ′ = D̃s− D̃τ + iDs+ iDτ (5.77)

= i(D − iD̃)s+ i(Dτ + iD̃τ)

= iZ∗s+ iZτ

= 2iZ∗s+ 2iDs′

= 2iZτ − 2iDs′

We can add (5.76) and (5.77) in three different ways:

2D̃s′ = (−iZs− iZ∗τ) + (iZ∗s+ iZτ) = −i(Z − Z∗)s+ i(Z − Z∗)τ

= 2D̃s− 2D̃τ

= (−2iZs) + (2iZ∗s+ 2iDs′) = −2i(Z − Z∗)s+ 2iDs′

= −2i(2iD̃s) + 2iDs′

= 4D̃s+ 2iDs′

= (−2iZ∗τ) + (2iZτ − 2iDs′) = 2i(Z − Z∗)τ − 2iDs′

= 2i(2iD̃τ)− 2iDs′

= −4D̃τ − 2iDs′

which give us three identities:

D̃s′ = D̃s− D̃τ (5.78)

= 2D̃s+ iDs′ (5.79)

= −2D̃τ − iDs′ (5.80)

(We remark here that that (5.78) is consistent with merely applying D̃ to s′ = s− τ , while (5.79)

and (5.80) change if instead we use the identities τ = iτ ′ − s and s = iτ ′ − τ , which follow from
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(5.62), giving instead D̃s′ = 2D̃s− iD̃s′ = −2D̃τ + iDs′. The reason, as we can see in what follows,

is that Ds′ = Dτ ′ = 0.) Subtracting (5.80) from (5.79) we get that

0 = 2D̃s+ 2D̃τ + 2iDs′

so that by (5.62)

Ds′ = i(D̃s+ D̃τ) = −(−i)(D̃s+ D̃τ) = −D̃(−is− iτ) = −D̃τ ′

But then D̃τ ′ = Ds′ = −D̃τ ′, where the first equality is by our starting assumption and the second

is from the equation just above. This proves our first claim,

D̃τ ′ = Ds′ = 0 (5.81)

Alternatively, we could have subtracted (5.76) and (5.77) in three different ways:

2Dτ ′ = (−iZs− iZ∗τ)− (iZ∗s+ iZτ) = −i(Z + Z∗)s− i(Z + Z∗)τ = −2iDs− 2iDτ

= (−2iZs)− (2iZ∗s+ 2iDs′) = −2i(Z + Z∗)s− 2iDs′ = −4iDs− 2iDs′′

= (−2iZ∗τ)− (2iZτ − 2iDs′) = −2i(Z + Z∗)τ + 2iDs′ = −4iDτ + 2iDs′

which give us three further identities:

Dτ ′ = −iDs− iDτ (5.82)

= −2iDs− iDs′ (5.83)

= −2iDτ + iDs′ (5.84)

and subtracting (5.83) from (5.84) would similarly give Ds′ = D̃τ ′ = 0. These identities prove

useful in other ways, though, for we can plug Ds′ = 0 back into them to get

Ds = Dτ =
i

2
Dτ ′ (5.85)

D̃s = −D̃τ =
1

2
D̃s′ (5.86)

while plugging Ds′ = 0 back into (5.79) and (5.80) gives

2D̃s = D̃s′ = −2D̃τ
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and, of course, plugging Ds′ = 0 into (5.65) gives

Z∗s = Zτ (5.87)

Since also Zs = Z∗τ , however, we conclude

2Ds = Zs+ Z∗s = Z∗τ + Zτ = 2Dτ

Finally, since Zs = Z∗τ and Zτ = Z∗s, we have Z(s− τ) = −Z∗(s− τ) and Z(s+ τ) = Z∗(s+ τ),

which, in light of equations (5.61)-(5.62), means Zs′ = −Z∗s′ and Zτ ′ = Z∗τ ′. �
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Proposition 71 With D, D̃, Z, Z∗, P , and R as above, we have the following simple relations:

D =
1

2
(Z + Z∗) (5.88)

D̃ =
1

2i
(Z − Z∗) (5.89)

P =
1

2
[Z,Z∗] (5.90)

Z2 = D2 +Q− D̃2 (5.91)

Z∗2 = D2 −Q− D̃2 (5.92)

Z2 + Z∗2 = 2(D2 − D̃2) (5.93)

Z2 − Z∗2 = 2Q (5.94)

2Q+ 2P = (Z − Z∗)(Z + Z∗) = 4iD̃D (5.95)

2Q− 2P = (Z + Z∗)(Z − Z∗) = 4iDD̃ (5.96)

ZZ∗ = D2 + P + D̃2 (5.97)

Z∗Z = D2 − P + D̃2 (5.98)

R = 2(D2 + D̃2) (5.99)

Proof :

(1) Z + Z∗ = D + iD̃ +D − iD̃ = 2D.

(2) Z − Z∗ = D + iD̃ − (D − iD̃) = 2iD̃.

(3) Z2 = (D + iD̃)2 = D2 + i(D̃D +DD̃) + i2D̃2 = D2 +Q− D̃2.

(4) [Z,Z∗] = [D + iD̃,D − iD̃] = [D,D] + i[D̃,D]− i[D, D̃] + i2[D̃, D̃] = 2i[D̃,D] = 2P .

(5) Z∗2 = (D − iD̃)2 = D2 − i(D̃D +DD̃) + i2D̃2 = D2 −Q− D̃2.

(6)-(7) follow from (3) and (5).

(8) 2Q+ 2P = (Z2 − Z∗2) + (ZZ∗ − Z∗Z) = (Z − Z∗)(Z + Z∗) = (2iD̃)(2D) = 4iD̃D.

(9) 2Q− 2P = (Z2 − Z∗2)− (ZZ∗ − Z∗Z) = (Z + Z∗)(Z − Z∗) = (2D)(2iD̃) = 4iDD̃.

(10) ZZ∗ = (D + iD̃)(D − iD̃) = D2 + i(D̃D −DD̃)− i2D̃2 = D2 + P + D̃2.

(11) Z∗Z = (D − iD̃)(D + iD̃) = D2 − i(D̃D −DD̃)− i2D̃2 = D2 − P + D̃2.
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(12) Follows from (10) and (11). �

A fixed choice of J ∈ Γ(J (M,ω)) gives a reduction of the structure group of the symplectic

spinor bundle Q to Û(n). To see this, recall Theorem 16, which says that each reduction of the

structure group of TM to U(n) corresponds to a unique ω-compatible almost complex structure

J ∈ Γ(J (M,ω)). Lifting this reduction to Û(n) by the restriction of the double covering map

ρ : Mp(n,R) → Sp(n,R), Û(n) = ρ−1(U(n)) and representing it on L2(Rn) by the metaplectic

representation m gives the Û(n)-reduction on Q. If we also require of our J that it be parallel,

∇J = 0, then Proposition 57 tells us that J commutes with ∇, J(∇XY ) = ∇X(JY ), and this in

turn gives us the commutation relation F(∇Xs) = ∇X(Fs). To call attention to this choice of J ,

Habermann and Habermann write FJ . We shall avoid this extra notation, because for our purposes

we shall mostly require ∇J = 0 anyway, and often we shall also need the U(n)-reduced symplectic

spinor bundles. In any case, under these assumptions, we get the following commutation relations

between our operators and F :

Proposition 72 If we choose a symplectic connection ∇ and an almost complex structure J which

is parallel with respect to this connection, i.e. ∇J = 0, then the relations between the Fourier
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transform F and the other operators is as follows:

FD = −D̃F (5.100)

FD̃ = DF (5.101)

FQ = −QF (5.102)

FP = PF (5.103)

FZ = iZF (5.104)

FZ∗ = −iZ∗F (5.105)

FD2 = D̃2F (5.106)

FD̃2 = D2F (5.107)

FZ2 = −Z2F (5.108)

FZ∗2 = −Z∗2F (5.109)

FR = RF (5.110)

Proof : (5.100), (5.101) and (5.103) are Proposition 7.3.1 in Habermann and Habermann, [54].

The rest follow from the first two:

(1) FQ = iFD̃D + iFDD̃ = −iDD̃F − iD̃DF = −QF .

(2) FZ = FD + iFD̃ = −D̃F + iDF = i(D + iD̃)F = iZF .

(3) FZ∗ = FD − iFD̃ = −D̃F − iDF = −i(D − iD̃)F = −iZ∗F .

(4) FD2 = (−1)2D̃2F = D̃2F .

(5) FD̃2 = D2F .

(6) FZ2 = i2Z2F = −Z2F .

(7) FZ∗2 = (−i)2Z∗2F = −Z∗2F .

(8) FR = FZZ∗ + FZ∗Z = i(−i)ZZ∗ + (−i)iZ∗ZF = (ZZ∗ + Z∗Z)F = RF . �

Proposition 73 On a compact symplectic manifold (M,ω) we have the following kernel identities:
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(1) kerD = kerD2 and ker D̃ = ker D̃2 when these operators are restricted to their domains

Γc(S).

(2) kerD ∩ ker D̃ = kerD2 ∩ ker D̃2 = kerZ ∩ kerZ∗ = kerR = ker(D2 + D̃2).

(3) kerZZ∗ = kerZ∗ and kerZ∗Z = kerZ

Proof : (1) We clearly have kerD ⊆ kerD2, so suppose s ∈ kerD2, by which we mean D2s = 0

weakly, or 0 = (0, D2σ) for all σ ∈ Γc(S). Then, 0 = (0, s) = (D2s, s) = (Ds,Ds) = ‖Ds‖2, so

Ds = 0. Similarly with D̃2.

(2) Since ⊆ is clear, suppose that s ∈ kerZ ∩ kerZ∗. Then s ∈ ker(Z + Z∗) = kerD and

s ∈ ker(Z − Z∗) = ker D̃.

(3) Since ⊇ is clear, suppose s ∈ kerR. Then 0 = (Rs, s) = (ZZ∗s, s) + (Z∗Zs, s) =

(Z∗s, Z∗s) + (Zs,Zs) = ‖Z∗s‖2 + ‖Zs‖2, which implies Zs = Z∗s = 0.

(4) Since ⊆ is clear, let s ∈ kerD2∩ker D̃2. Then s ∈ ker(D2+D̃2) = kerR = kerZ∩kerZ∗ =

kerD ∩ ker D̃, since R = 2(D2 + D̃2).

(5) Clearly kerZ∗ ⊆ kerZZ∗, so suppose s ∈ kerZZ∗. Then, 0 = (ZZ∗s, s) = (Z∗s, Z∗s) =

‖Z∗s‖2, which implies Z∗s = 0. Similarly, if s ∈ kerZ∗Z, then 0 = (Z∗Zs, s) = (Zs,Zs) = ‖Zs‖2,

which implies Zs = 0. �
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Theorem 49 The following kernel identities hold on any compact symplectic manifold (M,ω):

kerD ∩ ker D̃ = kerD2 ∩ ker D̃2 (5.111)

= ker(D2 ± D̃2) (5.112)

= kerZ (5.113)

= kerZ∗ (5.114)

= kerZZ∗ (5.115)

= kerZ∗Z (5.116)

= kerZ2 ∩ ker(Z∗)2 (5.117)

= ker(Z2 + (Z∗)2) (5.118)

= kerR (5.119)

⊆ kerP (5.120)

= kerQ (5.121)

= ker(Z2 − (Z∗)2) (5.122)

= ker D̃D ∩ kerDD̃ (5.123)

Consequently, since P is elliptic, its kernel consists of smooth sections,

kerP ⊆ Γ(S) (5.124)

so if we assume M is compact, this means all kernel elemets of Z and Z∗, being contained in kerP ,

are smooth and compactly supported, and therefore in the domains of all the operators (see also

Corollary 23 below for weak solutions). Finally, if s ∈ kerP , then Ds ⊥ D̃s, i.e. (Ds, D̃s) = 0:

D(kerP ) ⊥ D̃(kerP ) (5.125)

Proof : (1) If s ∈ kerZ = ker(D + iD̃), then Ds = −iD̃s = D̃(−is) ∈ imD ∩ im D̃ = {0}, so

Ds = D̃s = 0. Similarly, if s ∈ kerZ∗ = ker(D−iD̃), then Ds = iD̃s = D̃(is) = 0, so Ds = D̃s = 0.

Consequently, since kerD ∩ ker D̃ = kerZ ∩ kerZ∗ ⊆ kerZ and kerD ∩ ker D̃ = kerZ ∩ kerZ∗ ⊆
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kerZ∗, we have kerZ ⊆ kerZ∗ and kerZ∗ ⊆ kerZ, and so

kerZ = kerZ∗ = kerZ ∩ kerZ∗ = kerD ∩ ker D̃

The equalities

kerD ∩ ker D̃ = kerD2 ∩ ker D̃2 = kerR = ker(D2 + D̃2)

and

kerZ∗ = kerZZ∗, kerZ = kerZ∗Z

were proved in Proposition 73, so it remains to show that ker(D2 − D̃2) equals any of these, from

which will follow also that ker(Z2 + (Z∗)2) = ker(D2 − D̃2), since Z2 + (Z∗)2 = 2(D2 − D̃2), and

also that kerZ2 ∩ ker(Z∗)2 equals any of these, since kerZ2 ∩ ker(Z∗)2 ⊆ ker(Z2 + (Z∗)2) and

⊇ follows from the fact that kerD2 ∩ ker D̃2 is contained in ker(Z2 + (Z∗)2). We will show that

ker(D2 ± D̃2) = kerD2 ∩ ker D̃2: If s ∈ ker(D2 ± D̃2), then D2s = ±D̃2s, i.e. D(Ds) = D̃(±D̃s).

By Theorem 48 this equals 0, so D2s = D̃2s = 0 and s ∈ kerD2 ∩ ker D̃2 = kerD = ker D̃. The

reverse inclusion is obvious. Since Z2 +(Z∗)2 = 2(D2− D̃2), we finally have that ker(Z2 +(Z∗)2) =

ker(D2 − D̃2).

(2) We clearly have ker D̃D∩kerDD̃ ⊆ kerP = i[D̃,D], so suppose s ∈ kerP . Then 0 = Ps =

iD̃Ds− iDD̃s, so D̃Ds = DD̃s = 0 by (5.66), which shows that kerP = ker D̃D ∩ kerDD̃. Thus,

if σ ∈ kerP , then DD̃σ = D̃Dσ = 0, and therefore Qs = iD̃Dσ + iDD̃σ = 0, so kerP ⊆ kerQ.

Similarly, if σ ∈ kerQ, then DD̃σ = −D̃Dσ = D̃(−Dσ) = 0, so Pσ = iD̃Dσ − DD̃σ = 0, and

kerQ ⊆ kerP . The last equality follows from (5.94).

(3) The last assertion is shown as follows: If s ∈ kerP , then D̃Ds = DD̃s = 0, so using

the symmetry of D and D̃, along with the ellipticity of P , which by elliptic regularity ensures all

elements in its kernel are smooth, and so in the domains of D and D̃ on a compact manifold M ,

we get

0 = (DD̃s, s) = (D̃s,Ds) �
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Since the Fourier transform appears as a sort of intertwiner of the two symplectic Dirac

operators (5.100)-(5.101), it is inevitable that its properties will play a role in our analysis of D and

D̃. Two of the more important of its properties that will be of help to us are, (1) F is an isometry

of L2(Q), which follows from its definition fiberwise on L2(Rn). In the Euclidean setting F also

restricts to an invertible bounded operator on S(Rn), so it is so also on the Schwartz spinor bundle

Γ(S). (2) The spectral properties of F : the Fourier transform has four eigenvalues, ±1 and ±i,

and the associated eigenspaces form an orthogonal decomposition of L2(Rn), which restrict to an

orthogonal decomposition of S(Rn). Moreover, the eigenfunctions of F on L2(Rn) are the same as

the eigenfunctions of the Harmonic oscillator H0, the Hermite functions. We now wish to describe

the extension of this decomposition to L2(Q) and Γ(S). The importance of this decomposition

will become apparent when we employ it to study the behavior of D and D̃ on the associated

eigen-subbundles.

Lemma 14 The four eigenspaces of the Fourier transform F on L2(Q) defined in (5.44) above

give an orthogonal decomposition of L2(Q),

L2(Q) =
3⊕
j=0

ker(F − (−i)jI) (5.126)

and the jth orthogonal projection onto ker(F − (−i)jI) is given by

Pj =
1

4

3∑
k=0

(ijF)k (5.127)

Proof : This follows from the fact that we have these statements for the Fourier transform on

L2(Rn), in combination with our definition of F on L2(Q) fiberwise (see (5.44) above), which

uses the fact that the unitary representation u = m|Û(n) (the restriction of the metraplectic repre-

sentation to the lift Û(n) of U(n) in Mp(n,R)) decomposes into irreducible componenets u`, the

restrictions of u to the u-invariant subspaces W` =
⊕
|α|=` span(hα)—these happen to be subspaces

of the eigenspaces of F , since the Hermite functions are also eigenfunctions of F (see (5.10) above

and Habermann and Habermann [54, Cor. 1.5.2]). To see that the projections are those stated
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above, consider any f ∈ L2(Rn), and let fj = Pjf . Then,

Ff0 =
1

4
F

3∑
k=0

Fkf =
1

4

3∑
k=0

Fk+1f =
1

4

( 3∑
k=0

Fkf + F4f −F0f

)
= f0

Ff1 =
1

4
F

3∑
k=0

(iF)kf =
1

4

3∑
k=0

ikFk+1f = − i
4

3∑
k=0

(iF)kf = −if1

Ff2 =
1

4
F

3∑
k=0

(−F)kf = −1

4

3∑
k=0

(−F)fk = −f2

Ff3 =
1

4
F

3∑
k=0

(−iF)kf =
1

4

3∑
k=0

(−i)kFk+1f =
i

4

3∑
k=0

(−iF)kf = if3

where we used the fact that F4 = I. Consequently,

3∑
j=0

f0 =
1

4

3∑
j=0

3∑
k=0

(ijF)kf =
1

4

3∑
k=0

(1 + ik + i2k + i3k)Fkf =
1

4
4f = f

It follows from these considerations that any spinor field s ∈ L2(Q) decomposes uniquely into four

orthogonal pieces, s = s0 + s1 + s2 + s3, on which F acts as Fsj = (−i)jsj . �

Theorem 50

(1) kerD ∼= ker D̃, in fact

kerD = F(ker D̃) and ker D̃ = F(kerD)

Moreover, if s = s0 + s1 + s2 + s3 ∈ kerD, where sj ∈ ker(F − (−i)jI), then

s0 + s2, s1 + s3 ∈ kerD

s0 − s2, s1 − s3 ∈ ker D̃

as well, and similarly if t = t0 + t1 + t2 + t3 ∈ ker D̃, then

t0 + t2, t1 + t3 ∈ ker D̃

t0 − t2, t1 − t3 ∈ kerD

(2) If s kerD ∩ ker D̃, then writing s = s0 + s1 + s2 + s3 ∈ where sj ∈ ker(F − (−i)jI), and

s =
∑∞

`=0 σ`, where σ` ∈ Γ(S`), we will have that each sj and σ` lies in kerD ∩ ker D̃ as
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well, and

kerD ∩ ker D̃ = {s ∈ kerD | Fs ∈ kerD}

= {s ∈ ker D̃ | Fs ∈ ker D̃}

= {s ∈ Γ(S) | F js ∈ kerD ∩ D̃,∀j = 0, 1, 2, 3}

= {s ∈ Γ(S) | sj ∈ kerD ∩ ker D̃,∀j = 0, 1, 2, 3}

= {s ∈ Γ(S) | s` ∈ kerD ∩ ker D̃,∀` ∈ N0}

Proof : (1) The first statement follows the commutation relations (5.100)-(5.101) and the fact that

F is an isometry on Γ(Q), Ds = 0 implies 0 = F0 = FDs = −D̃Fs, and similarly D̃s = 0 implies

0 = F0 = FD̃s = DFs. Now, by definition of sj being an element in ker(F − (−i)jI), we have

s = F0s = s0 + s1 + s2 + s3

Fs = s0 − is1 − s2 + is3

F2s = s0 − s1 + s2 − s3

F3s = s0 + is1 − s2 − is3

so if s ∈ kerD, then Ds = 0, and applying the intertwining relations (5.100)-(5.101) and F j ,

j = 1, 2, 3, to this equality and using the fact that F is an isometry, we get

D(s0 + s1 + s2 + s3) = Ds = 0

D̃(s0 − is1 − s2 + is3) = D̃Fs = −FDs = 0

D(s0 − s1 + s2 − s3) = DF2s = −F2Ds = 0

D̃(s0 + is1 − s2 − is3) = D̃F3s = F3Ds = 0

so from the first and third identities we have −D(s0 + s2) = D(s1 + s3) = D(s0 + s2), which must

therefore equal 0,

D(s0 + s2) = D(s1 + s3) = 0
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and similarly from the second and fourth identities we have −D̃(s0−s2) = iD̃(s1−s3) = D̃(s0−s2),

which must therefore equal 0,

D̃(s0 − s2) = D̃(s1 − s3) = 0

Reversing the roles of D and D̃ gives the other set of identities.

(2) Since Dσ = D̃σ = 0 = F0 = FD̃σ = −DFσ, and similarly D̃σ = 0 = −D̃Fσ, the

result follows. Now use Lemma 14. First, note that if we write s = s0 + s1 + s2 + s3 where

sj ∈ ker(F − (−i)j), then s ∈ kerD∩ ker D̃ implies each sj ∈ kerD∩ ker D̃ by applying F j to both

sides of Ds = D̃s = 0. For, from DF js = 0 for j = 0, 1, 2, 3 we get

D(s0 + s2) = −D(s1 + s3)

D(s0 − s2) = iD(s1 − s3)

D(s0 + s2) = D(s1 + s2)

D(s0 − s2) = −iD(s1 − s3)

We conclude that −D(s1 + s3) = D(s0 + s2) = D(s1 + s3) = 0 and −iD(s1 − s3) = D(s0 − s2) =

iD(s1 − s3) = 0, which gives −Ds0 = Ds2 = Ds0 = 0 and −Ds1 = Ds3 = −Ds3 = 0. Thus

Dsj = 0 for all j = 0, 1, 2, 3. We similarly we get D̃sj = 0 for all j. Since s0 + s2 consists of the

even sections σ` ∈ Γ(S`), ` = 2k (because Fσ` = (−i)`σ`), and s1 + s3 consists of the odds, we see

that Dσ` = D̃σ` = 0 for all ` ∈ N0, because 2D = Z+Z∗ and 2iD̃ = Z−Z∗ switch the parity, with

Z moving degrees down by one and Z∗ moving degrees up by one, by (5.50)-(5.54). The converse of

these statements is clear, since sj ∈ kerD∩ker D̃ for each j implies s ∈ kerD∩ker D̃, and similarly

with the σ`. �
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5.5 Essential Self-Adjointness of the Symplectic Dirac Operators

Let us now consider again our sympectic Dirac operators D and D̃. Throughout this section

we assume that the symplectic connection ∇ on M is torsion-free and that ∇J = 0, so that

Theorem 4.5.3, Habermann and Habermann [54] applies to give us that D and D̃ are symmetric

on H = L2(Q). We begin by showing that D and D̃ both have equal deficiency indices (so that

Theorem 32 above applies to give the existence of self-adjoint extensions of D and D̃). Following

this and a detailed description of the relations between the deficiency subspaces ker(D∗ ± iI) and

ker(D̃∗±iI), we show that each deficiency subspace is in fact trivial, so there is a unique self-adjoint

extension to each of D and D̃.

Theorem 51 The deficiency indices of D and D̃ are the same, so D and D̃ have self-adjoint

extensions. Moreover, if n±(D) are the deficience indices of D and n±(D̃) those of D̃, we have

n+(D) = n−(D) = n+(D̃) = n−(D̃) (5.128)

Proof : We begin by showing that

im(D + iI) ∼= im(D̃ − iI) ∼= im(D − iI) ∼= im(D̃ + iI)

for D ± iI, D̃ ± iI on their common domain Γc(S). Indeed, from (5.100)-(5.101) we know that

FD̃ = DF and FD = −D̃F , and moreover F is a unitary (and so an isometric) operator on Γc(S)

and L2(Q), since it is defined fiberwise and it is so on the fibers, S(Rn) or L2(Rn). Therefore, all

powers of F are also unitary, and since by Proposition 7.2.3 in Habermann and Habermann [54] F

preserves the subbundles Q` and satisfies Fs` = i−`s` on these subbundles, we also have F4 = I.

Therefore, for all s ∈ Γc(S),

F(D + iI)s = (D̃ − iI)(−Fs)

F(D̃ − iI)s = (D − iI)Fs

F(D − iI)s = (D̃ + iI)(−Fs)

F(D̃ + iI)s = (D + iI)Fs
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which shows the first claim (in particular F2(D + iI)s = (D − iI)(−F2s) and F 2(D̃ + iI)s =

(D̃ + iI)(−F2s) give the explicit isomorphisms −F2 : im(D + iI) → im(D − iI) and −F2 :

im(D̃ + iI)→ im(D̃ − iI)).

Next, to show that

im(D + iI)⊥ ∼= im(D̃ − iI)⊥ ∼= im(D − iI)⊥ ∼= im(D̃ + iI)⊥

we use the fact that F , and therefore every power of F , is an isometry, i.e. preserves the inner

product on L2(Q). For suppose that s ∈ im(D + iI)⊥. Then ((D + iI)τ, s) = 0 for all τ ∈ Γc(S),

and applying F to the inner product gives

0 = ((D + iI)τ, s) = (F(D + iI)τ,Fs) = −((D̃ − iI)(Fτ),Fs)

so Fs ∈ im(D̃ − iI)⊥. Since F is invertible, we see that this defines an isomorphism between

im(D + iI)⊥ and im(D̃ − iI)⊥. The other isomorphisms follow similarly. �

We now begin to investigate in detail the isomorphisms given above. We will see (Lemma 18

and Proposition 74) that, given any t ∈ ker(D∗ − iI), if we write t = t0 + t1 + t2 + t3, where each

tj ∈ ker(F − (−i)j) is in one of the four eigenspaces of the Fourier transform, then we will have

t0 + t2, t1 + t3 ∈ D(D∗)

t0 − t2, t1 − t3 ∈ D(D̃∗)

and

t′ = Ft = (t0 − t2)− i(t1 − t3) ∈ ker(D̃∗ + iI)

t′′ = F2t = (t0 + t2)− (t1 + t3) ∈ ker(D∗ + iI)

t′′′ = F3t = (t0 − t2) + i(t1 − t3) ∈ ker(D̃ − iI)
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with

D∗(t0 + t2) = i(t1 + t3)

D∗(t1 + t3) = i(t0 + t2)

D̃∗(t0 − t2) = −(t1 − t3)

D̃∗(t1 − t3) = t0 − t2

and therefore

(t0 + t2)− (t1 + t3) ∈ ker(D∗ + iI)

(t0 − t2) + i(t1 + t3) ∈ ker(D̃∗ − iI)

(t0 − t2)− i(t1 + t3) ∈ ker(D̃∗ + iI)

This will completely characterize the relations between the pieces of the domains

D(D∗) = D(D)⊕T ker(D∗ − iI)⊕T ker(D∗ + iI)

and

D(D̃∗) = D(D̃)⊕T ker(D̃∗ − iI)⊕T ker(D̃∗ + iI)

in terms of eigensections of the Fourier transform. Since the Hermite functions are eigenfunctions

of both the Fourier transform and the harmonic oscillator, these relations can be more succintly

stated as follows: Writing t =
∑

`∈N0
τ`, where τ` ∈ Γ(S`), we will have

t0 + t2 =
∑
`=2k

τ`

t1 + t3 =
∑

`=2k+1

τ`

From the above considerations, we see that, starting with t ∈ ker(D∗ − iI), the operator D∗ takes

the even-dimensional pieces τ` of t to the odds and vice-versa (times i, of course), and similarly

with D̃∗ except for the fact that we use t0 − t2 and t1 − t3 instead of t0 + t2 and t1 + t3. The

starting position of ker(D∗ − iI) was arbitrary. We could have started with t ∈ ker(D∗ + iI) or
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t ∈ ker(D̃∗± iI) and gotten similar results. Indeed, by relabeling the tj this becomes patently clear:

if t0 + t1 + t2 + t3 ∈ ker(D∗ − iI), then for example (t0 − t2) + i(t1 − t3) ∈ ker(D̃∗ − iI), so writing

s0 = t0, s1 = it1, s2 = −t2 and s3 = −it3 we have s = s0 + s1 + s2 + s3 ∈ ker(D̃∗ − iI), and the

other elements of ker(D̃∗ + iI) and ker(D∗ ± iI) are completely determined by s. Thus, it suffices

to consider t ∈ ker(D∗ − iI).

Following this description ofD(D̃∗) andD(D∗), we will show that the description of t ∈ D(D∗)

in terms of eigensections τ` ∈ Γ(Q`) will in fact reveal that t = 0, thus showing that D∗ and D̃∗

are essentially self-adjoint.

For the remainder of this section we declare the domains of D and D̃ to be the compactly

supported Schwartz spinors,

D(D) = D(D̃) = Γc(S) (5.129)

We do not assume at first that D and D̃ are closed, but only symmetric on Γc(S). Our ultimate goal

in this section is to demonstrate essential self adjointness, by use of (2) of Corollary 17, showing

that ker(D∗ ± iI) = ker(D̃∗ ± iI) = {0} (which will require, of course, that D and D̃ be closed,

but we will make this necessary adjustment when it is needed). We begin with some preliminary

observations.

Lemma 15 The relations (5.100)-(5.101), which give FD̃ = DF and FD = −D̃F on Γc(S),

extend to D∗ and D̃∗,

FD̃∗ = D∗F (5.130)

FD∗ = −D̃∗F (5.131)

on the domains D(D∗) and D(D̃∗), which consequently shows that these domains are isometric (via

F),

D(D∗) ∼= D(D̃∗) (5.132)
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More precisely

F(D(D∗)) = D(D̃∗) (5.133)

F(D(D̃∗)) = D(D∗) (5.134)

Proof : We will prove this directly from the definitions of D(D∗) and D(D̃∗). Recall,

D(D∗) = {t ∈ L2(Q) | ∀s ∈ D(D), ∃τ ∈ L2(Q) such that (s, τ) = (Ds, t)}

and in this case we write D∗t = τ . Suppose that t ∈ D(D∗). To show that Ft ∈ D(D̃∗) we need to

show that for all σ ∈ D(D̃) there exists τ ∈ L2(Q) such that (σ, τ) = (D̃σ,Ft). We will need the

following facts:

(1) D(D) = D(D̃) = Γc(S), by definiton of D and D̃.

(2) FD̃ = DF and FD = −D̃F on D(D), which are the known relations (5.100)-(5.101). We

can of course rewrite these as F−1D = D̃F−1 and F−1D̃ = −DF−1.

(3) F(Γc(S)) = Γc(S), which is a consequence of the invertibility of F on S(Rn).

(4) F is a unitary transformation of L2(Q), because it is so fiberwise on L2(Rn).

Now, if t ∈ D(D∗), then for all s ∈ D(D) there exists r = D∗t ∈ L2(Q) such that (s,D∗t) = (s, r) =

(Ds, t). By fact (3), there is a unique σ = Fs ∈ D(D), so that we can write (F−1σ,D∗t) = (s,D∗t).

Combining these and using again the unitarity of F , fact (4), we have

(σ,FD∗t) = (F−1σ,D∗t) = (s,D∗t) = (Ds, t) (5.135)

Using facts (2) and (4) again, we then get

(Ds, t) = (DF−1σ, t) = (−F−1D̃σ, t) (5.136)

Now, by unitarity again, we have that t = F−1t′ for a unique t′ := Ft ∈ L2(Q), so

(F−1D̃σ, t) = (F−1D̃σ,F−1t′) = (D̃σ, t′) = (D̃σ,Ft) (5.137)
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where the second equality follows from the fact that F−1 is unitary. Putting together equations

(5.135)-(5.137) we see that for all σ ∈ D(D̃) there exists a τ ∈ L2(Q), namely τ = −FD∗t, such

that

(σ, τ) = (σ,−FD∗t) = (D̃σ, t′) = (D̃σ,Ft) (5.138)

This shows that F(D(D∗)) ⊆ D(D̃∗). Since F is an isometry, we conclude that this is in fact an

equality,

F(D(D∗)) = D(D̃∗)

(Though this fact also follows from the following inclusion, F(D(D̃∗)) ⊆ D(D∗), noting that F2

is the parity operator, which is an isometry of L2(Q). It can also be proved by the analogous

inclusions with F replaced by F−1—the proofs are entirely analogous.)

Next, we show the equality

F(D(D̃∗)) = D(D∗)

by exactly the same means. If t ∈ D(D̃∗), then for all s = F−1σ ∈ D(D) there exists a τ = D̃∗t ∈

L2(Q) such that (s, D̃∗t) = (s, τ) = (D̃s, t). Proceeding as above, we get that for all σ = Fs ∈ D(D)

there exists a τ ′ := FD̃∗t ∈ L2(Q) such that

(σ, τ ′) = (σ,FD̃∗t) = (F−1σ, D̃∗t) = (s, D̃∗t) = (D̃s, t)

(D̃F−1σ,F−1t′) = (F−1Dσ,F−1t′) = (Dσ, t′) = (Dσ,Ft)

where t′ := Ft.

As a byproduct of the above proofs, we also see that if t ∈ D(D∗), then −FD∗t = D̃∗Ft,

while if t ∈ D(D̃∗), then FD̃∗t = D∗Ft, thus establishing the relations (5.130) and (5.131). �

Remark 64 Since F is a unitary operator on L2(Q), we have immediately that the relations

(5.130)-(5.131) can be restaed as

D̃∗F−1 = F−1D∗ (5.139)

D∗F−1 = −F−1D̃∗ (5.140)
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and consequently we also have

F−1(D(D∗)) = D(D̃∗) (5.141)

F−1(D(D̃∗) = D(D∗) (5.142)

We remark that these statements could, of course, be proved directly using the same sort of argu-

ments as in the proof of Lemma 15. �

We restate here Lemma 14 for the convenience of the reader, because we will make heavy use

of its results in the following pages.

Lemma 16 The four eigenspaces of the Fourier transform F on L2(Q) defined in (5.44) above

give an orthogonal decomposition of L2(Q),

L2(Q) =
3⊕
j=0

ker(F − (−i)jI) (5.143)

and the jth orthogonal projection onto ker(F − (−i)jI) is given by

Pj =
1

4

3∑
k=0

(ijF)k (5.144)

�

Lemma 17 If t ∈ D(D∗) and tj ∈ Ej := ker(F − (−i)jI), as in the last lemma, then t0 + t2, t1 +

t3 ∈ D(D∗) and t0 − t2, t1 − t3 ∈ D(D̃∗). Similarly, if t = t0 + t1 + t2 + t3 ∈ D(D̃∗), then

t0 + t2, t1 + t3 ∈ D(D̃∗) and t0 − t2, t1 − t3 ∈ D(D∗).

Proof : (1) First, let us show that if s = s0 + s1 + s2 + s3 ∈ D(D), where sj ∈ ker(F − (−i)j), then

(Zs)j = Z(s(j+1) mod 4) (5.145)

(Z∗s)j = Z∗(s(j−1) mod 4) (5.146)
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That is,

Zs0 ∈ E3 := ker(F − (−i)3I), Z∗s0 ∈ E1 := ker(F − (−i)1I),

Zs1 ∈ E0 := ker(F − (−i)0I), Z∗s1 ∈ E2 := ker(F − (−i)2I),

Zs2 ∈ E1 := ker(F − (−i)1I), Z∗s2 ∈ E3 := ker(F − (−i)3I),

Zs3 ∈ E2 := ker(F − (−i)2I), Z∗s3 ∈ E0 := ker(F − (−i)0I)

But these follow directly from the relations (5.104) and (5.105): FZ = iZF and FZ∗ = −iZ∗F ,

for

FZsj = iZFsj = i(−i)jZsj = −(−i)j+1Zsj = (−i)j+3Zsj = (−i)j−1Zsj

and

FZ∗sj = −iZ∗Fsj = −i(−i)jZ∗sj = (−i)j+1Z∗sj

Modulo 4, these are precisely the statements (5.145) and (5.146) above.

(2) Consequently, since D = 1
2(Z + Z∗) and D̃ = 1

2i(Z − Z
∗), we have

Ds0, D̃s0 ∈ E1 ⊕ E3 (5.147)

Ds1, D̃s1 ∈ E0 ⊕ E2 (5.148)

Ds2, D̃s2 ∈ E1 ⊕ E3 (5.149)

Ds3, D̃s3 ∈ E0 ⊕ E2 (5.150)
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More explicitly, writing Ds = (Ds)0 + (Ds)1 + (Ds)2 + (Ds)3 and using the above properties of Z

and Z∗, we have

(Ds)0+(Ds)1 + (Ds)2 + (Ds)3

= Ds

= D(s0 + s1 + s2 + s3)

= Ds0 +Ds1 +Ds2 +Ds3

=
1

2
(Zs0 + Z∗s0) +

1

2
(Zs1 + Z∗s1) +

1

2
(Zs2 + Z∗s2) +

1

2
(Zs3 + Z∗s3)

=
1

2
(Zs1 + Z∗s3) +

1

2
(Zs2 + Z∗s0) +

1

2
(Zs3 + Z∗s1) +

1

2
(Zs0 + Z∗s2)

which shows that

(Ds)0 =
1

2
(Zs1 + Z∗s3) =

1

2
D(s1 + s3) +

i

2
D̃(s1 − s3)

(Ds)1 =
1

2
(Zs2 + Z∗s0) =

1

2
D(s0 + s2)− i

2
D̃(s0 − s2)

(Ds)2 =
1

2
(Zs3 + Z∗s1) =

1

2
D(s1 + s3)− i

2
D̃(s1 − s3)

(Ds)3 =
1

2
(Zs0 + Z∗s2) =

1

2
D(s0 + s2) +

i

2
D̃(s0 − s2)

This in turn gives us the more useful relations

(Ds)0 + (Ds)2 = Ds1 +Ds3 (5.151)

(Ds)1 + (Ds)3 = Ds0 +Ds2 (5.152)

Similarly,

(D̃s)0+(D̃s)1 + (D̃s)2 + (D̃s)3

= D̃s

= D̃(s0 + s1 + s2 + s3)

= D̃s0 + D̃s1 + D̃s2 + D̃s3

=
1

2i
(Zs0 − Z∗s0) +

1

2i
(Zs1 − Z∗s1) +

1

2i
(Zs2 − Z∗s2) +

1

2i
(Zs3 − Z∗s3)

=
1

2i
(Zs1 − Z∗s3) +

1

2i
(Zs2 − Z∗s0) +

1

2i
(Zs3 − Z∗s1) +

1

2i
(Zs0 − Z∗s2)
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which shows that

(D̃s)0 =
1

2
(Zs1 − Z∗s3) = − i

2
D(s1 − s3) +

1

2
D̃(s1 + s3)

(D̃s)1 =
1

2
(Zs2 − Z∗s0) =

i

2
D(s0 − s2) +

1

2
D̃(s0 + s2)

(D̃s)2 =
1

2
(Zs3 − Z∗s1) =

i

2
D(s1 − s3) +

1

2
D̃(s1 + s3)

(D̃s)3 =
1

2
(Zs0 − Z∗s2) = − i

2
D(s0 − s2) +

1

2
D̃(s0 + s2)

and from these we get

(D̃s)0 + (D̃s)2 = D̃s1 + D̃s3 (5.153)

(D̃s)1 + (D̃s)3 = D̃s0 + D̃s2 (5.154)

(3) We now want to use the above equations (5.147)-(5.150) to show that if t = t0+t1+t2+t3 ∈

D(D∗), then t0 + t2, t1 + t3 ∈ D(D∗) and t0 − t2, t1 − t3 ∈ D(D̃∗). Now, if t ∈ D(D∗), then there

is a τ =: D∗t ∈ L2(Q) such that for all s = s0 + s1 + s2 + s3 we have (Dsj , t) = (sj , τ) = (sj , τj),

j ∈ {0, 1, 2, 3}. On the other hand, from (5.147)-(5.150) we know that

(Ds0, t) = (Ds0, t1 + t3)

(Ds1, t) = (Ds0, t0 + t2)

(Ds2, t) = (Ds0, t1 + t3)

(Ds3, t) = (Ds0, t0 + t2)

so for all s ∈ D(D) we get

(Ds, t1 + t3) = (Ds0, t1 + t3) + (Ds2, t1 + t3)

= (Ds0, t) + (Ds2, t)

= (s0, τ0) + (s2, τ2)

= (s, τ0) + (s, τ2)

= (s, τ0 + τ2)
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and

(Ds, t0 + t2) = (Ds1, t0 + t2) + (Ds3, t0 + t2)

= (Ds1, t) + (Ds3, t)

= (s1, τ1) + (s3, τ3)

= (s, τ1) + (s, τ3)

= (s, τ1 + τ3)

Thus, t0 + t2 and t1 + t3 lie in D(D∗), and D∗(t1 + t3) = (D∗t)0 + (D∗t)2 and D∗(t0 + t2) =

(D∗t)1+(D∗t)3. From the relation FD̃∗ = D∗F , we have that t ∈ D(D∗) iff Ft ∈ D(D̃∗). Therefore

since t0 + t2, t1 + t3 ∈ D(D∗) we must have t0 − t2 = F(t0 + t2), t1 − t3 = iF(t1 + t3) ∈ D(D̃∗).

(4) Similarly, if t = t0 + t1 + t2 + t3 ∈ D(D̃∗), then t0 + t2, t1 + t3 ∈ D(D̃∗) and t0− t2, t1− t3 ∈

D(D∗), for, since (D̃s, t) = (s, τ) for all s ∈ D(D̃), we have

(D̃s0, t) = (D̃s0, t1 + t3)

(D̃s1, t) = (D̃s0, t0 + t2)

(D̃s2, t) = (D̃s0, t1 + t3)

(D̃s3, t) = (D̃s0, t0 + t2)

so for all s ∈ D(D̃) we get

(D̃s, t1 + t3) = (D̃s0, t1 + t3) + (D̃s2, t1 + t3)

= (D̃s0, t) + (D̃s2, t)

= (s0, τ0) + (s2, τ2)

= (s, τ0) + (s, τ2)

= (s, τ0 + τ2)
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and

(D̃s, t0 + t2) = (D̃s1, t0 + t2) + (D̃s3, t0 + t2)

= (D̃s1, t) + (D̃s3, t)

= (s1, τ1) + (s3, τ3)

= (s, τ1) + (s, τ3)

= (s, τ1 + τ3)

This completes the proof. �

Lemma 18 Let t = t0 + t1 + t2 + t3 ∈ D(D∗), where tj ∈ Ej := ker(F − (−i)jI). By the previous

lemma we know that t0 + t2, t1 + t3 ∈ D(D∗) and t0 − t2, t1 − t3 ∈ D(D̃∗), and we claim that if

t ∈ ker(D∗ − iI), then

D∗(t0 + t2) = i(t1 + t3) (5.155)

D∗(t1 + t3) = i(t0 + t2) (5.156)

D̃∗(t0 − t2) = −(t1 − t3) (5.157)

D̃∗(t1 − t3) = t0 − t2 (5.158)

Proof : The first two equalities follow directly from part (3) of the proof of the previous lemma,

which shows that D∗(t1 + t3) = (D∗t)0 + (D∗t)2 and D∗(t0 + t2) = (D∗t)1 + (D∗t)3, combined

with the fact that D∗t = t. To see (5.157), note that by Lemma 15 we have FD̃∗ = DF and

FD = −D̃F , and consequently F(D(D∗)) = D(D̃∗) and F(D(D̃∗)) = D(D∗). Combined with

equations (5.155) and (5.156) we have

D̃∗(t0 − t2) = D̃∗F(t0 + t2)

= −FD∗(t0 + t2)

= −iF(t1 + t3)

= −i(−it1 + it3)

= −(t1 − t3)
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Similarly, (5.158) follows from

D̃∗(t1 − t3) = iD̃∗(−it1 + it3)

= iD̃F(t1 + t3)

= −iFD∗(t1 + t3)

= (−i)iF(t0 + t2)

= t0 − t2

which completes the proof. �

Remark 65 We may now consider the closures D and D̃ of D and D̃, respectively. Since D ⊆

D ⊆ D∗ and D̃ ⊆ D̃ ⊆ D̃∗, the relations

FD̃ = DF (5.159)

FD = −D̃F (5.160)

and consequently

F(D(D̃)) = D(D) (5.161)

F(D(D)) = D(D̃) (5.162)

hold by our previous considerations. Hence, in what follows we may assume that D and D̃ are

closed symmetric operators. This will be needed in order to use the decompositions of D(D∗) and

D(D̃∗) provided by Proposition 66,

D(D∗) = D(D)⊕D ker(D∗ − iI)⊕D ker(D∗ + iI)

D(D̃∗) = D(D̃)⊕D̃ ker(D̃∗ − iI)⊕D̃ ker(D̃∗ + iI)

We note, therefore, that if t ∈ D(D∗), then by Lemma 17 we have that t0 + t2, t1 + t3 ∈ D(D∗) and

t0 − t2, t1 − t3 ∈ D(D̃∗), so

t0 + t2 = a+ b+ c ∈ D(D∗) (5.163)

t1 + t3 = d+ e+ f ∈ D(D∗) (5.164)
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for some a, d ∈ D(D), b, e ∈ ker(D∗ − iI) and c, f ∈ ker(D∗ + iI), and similarly

t0 − t2 = α+ β + γ (5.165)

t1 − t3 = δ + ε+ η (5.166)

for some α, δ ∈ D(D̃), β, ε ∈ ker(D̃∗ − iI) and γ, η ∈ ker(D∗ + iI). �

When additionally, t ∈ ker(D∗ − iI), we have:

Proposition 74 If t ∈ ker(D∗ − iI), then in the decompositions (5.163)-(5.166) above we have

a = 0, b = e and c = −f , and analogously α = 0, δ = −D̃α, ε = −iβ and η = iγ, so that

t0 + t2 = b + c, t1 + t3 = b − c, and t0 − t2 = β + γ, t1 − t3 = −iβ + iγ. Moreover, b = 1
2 t ∈

ker(D∗− iI), c = 1
2(t0 + t2− (t1 + t3)) ∈ ker(D∗+ iI), and β = 1

2(t0− t2 + i(t1− t3)) ∈ ker(D̃∗− iI),

γ = 1
2(t0 − t2 − i(t1 − t3)) ∈ ker(D̃∗ + iI):

t0 + t2 = b+ c =
1

2

(
t0 + t2 + t1 + t3

)
+

1

2

(
t0 + t2 − (t1 + t3)

)
(5.167)

t1 + t3 = b− c =
1

2

(
t0 + t2 + t1 + t3

)
− 1

2

(
t0 + t2 − (t1 + t3)

)
(5.168)

t0 − t2 = β + γ =
1

2

(
t0 − t2 + i(t1 − t3)

)
+

1

2

(
t0 − t2 − i(t1 − t3)

)
(5.169)

t1 − t3 = −iβ + iγ = − i
2

(
t0 − t2 + i(t1 − t3)

)
+
i

2

(
t0 − t2 − i(t1 − t3)

)
(5.170)

Proof : Assume the decompositions (5.163)-(5.166) above. By Lemma 18 we know that

i(d+ e+ f) = i(t1 + t3) = D∗(t0 + t2) = D∗(a+ b+ c) = Da+ ib− ic

so that by uniqueness d = −iDa, e = b and f = −c, that is

t0 + t2 = a+ b+ c

t1 + t3 = −iDa+ b− c
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Now, we know that D∗t = it. If we write t̃ = t0 + t2 − (t1 + t3), then we also have, by the previous

lemma,

D∗t̃ = D∗(t0 + t2)−D∗(t1 + t3)

= i(t1 + t3)− i(t0 + t2)

= −i
(
t0 + t2 − (t1 + t3)

)
= −it̃

Now, writing t0 + t2 = a+ b+ c and t1 + t3 = −iDa+ b− c, we can see that

(ia+Da) + 2ib = it

= D∗t

= D∗(t0 + t2) +D∗(t1 + t3)

= D∗(a+ b+ c) +D∗(−iDa+ b− c)

= (Da− iD2a) + 2ib

and

(−ia+Da)− 2ic = −it̃

= D∗t̃

= D∗(t0 + t2)−D∗(t1 + t3)

= D∗(a+ b+ c)−D∗(−iDa+ b− c)

= (Da+ iD2a)− 2ic

so that ia + Da = Da − iD2a and −ia + Da = Da + iD2a, which show that a = −D2a. But

since t ∈ ker(D∗ − iI) and t̃ ∈ ker(D∗ + iI), we must have ia + Da = 0 = −ia + Da, so that

ia = −Da = −ia, or a = 0. We thus have

t0 + t2 = b+ c

t1 + t3 = b− c
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for unique b ∈ ker(D∗−iI) and c ∈ ker(D∗+iI). But we have t ∈ ker(D∗−iI) and t̃ ∈ ker(D∗+iI),

and

1

2
t+

1

2
t̃ =

1

2

(
(t0 + t2 + t1 + t3) + (t0 + t2 − (t1 + t3)

)
= t0 + t2

1

2
t− 1

2
t̃ =

1

2

(
(t0 + t2 + t1 + t3)− (t0 + t2 − (t1 + t3)

)
= t1 + t3

so we see that in fact b = 1
2 t and c = 1

2 t̃.

Now consider t0− t2 = α+β+γ and t1− t3 = δ+ ε+ η, and note that by Lemma 17 we have

α+ β + γ = t0 − t2 = D̃∗(t1 − t3) = D̃∗(δ + ε+ η) = Dδ + iε− iη

and similarly

δ + ε+ η = t1 − t3 = −D̃∗(t0 − t2) = −D̃∗(α+ β + γ) = −D̃α− iβ + iγ

which shows that δ = −D̃α, ε = −iβ and η = iγ, and also that D̃2α = −D̃δ = −α. Consequently,

t0 − t2 = α+ β + γ

t1 − t3 = −D̃α− iβ + iγ

Now, on the one hand

F(α+ β + γ) = F(t0 − t2) = t0 + t2 = F−1(t0 − t2) = F−1(α+ β + γ)

and on the other, since t0 + t2 = b+ c and F and F−1 provide isomorphisms between ker(D∗± iI)

and ker(D̃± iI) (by Theorem 51, or alternatively via Lemma 15), we see that Fα = F−1α = a = 0,

and therefore α = 0. Thus,

t0 − t2 = β + γ

t1 − t3 = −iβ + iγ



304

Finally, note that if we take β = 1
2(t0 − t2 + i(t1 − t3)), then β ∈ ker(D̃∗ − iI), for by Lemma 18

D̃∗β =
1

2
D̃∗
(
t0 − t2 + i(t1 − t3)

)
=

1

2

(
−(t1 − t3) + i(t0 + t2)

)
=

i

2

(
t0 − t2 + i(t1 − t3)

)
= iβ

Similarly, if we take γ = 1
2

(
t0 − t2 − i(t1 − t3)

)
, then γ ∈ ker(D̃∗ + iI), for by Lemma 18

D̃∗γ =
1

2
D̃∗
(
t0 − t2 − i(t1 − t3)

)
=

1

2

(
−(t1 − t3)− i(t0 − t2)

)
= − i

2

(
t0 − t2 − i(t1 − t3)

)
= −iγ

It is clear, too, that β + γ = t0 − t2 and β − γ = t1 − t3. This completes the proof. �

5.5.0.1 Uniqueness of the Self-Adjoint Extensions of D and D̃: Essential Self-

Adjointness

Consider now the operators D, D̃, Z and Z∗ acting on L2(Q) weakly, that is by their adjoints.

For example we say that Zs := τ weakly if for all σ ∈ Γc(S) we have (τ, σ) = (s, Zσ). Note that

if we write Z ′ for the adjoint of Z and Z∗′ for the adjoint of Z∗, then the fact that D and D̃ are

symmetric shows that

D(Z) ⊆ D(Z∗′) and D(Z∗) ⊆ D(Z ′)

since for all σ, τ ∈ Γc(S) we have

(Zσ, τ) = (Dσ, τ) + i(D̃σ, τ) = (σ,Dτ)− (σ, iD̃τ) = (σ, Z∗τ)

Of course we know that

D(D∗) ∩ D(D̃∗) = D(D∗ + D̃∗) ⊆ D
(
(D + D̃)∗

)
= D(Z ′) = D(Z∗′)
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so for any t ∈ D(D∗) we know that Z ′t and Z∗′t are defined. Moreover, once we show that

Z : L2(Q`) → L2(Q`−1) and Z∗ : L2(Q`) → L2(Q`+1) in the weak sense (applied to elements in

the domains of Z ′ and Z∗′), if we write t =
∑∞

`=0 τ` for t ∈ ker(D∗ − iI) ⊆ D(Z ′) = D(Z∗′), where

τ` ∈ L2(Q`), then Zτ` ∈ L2(Q`−1) and Z∗τ` ∈ L2(Q`+1) in the weak sense.

We will show in the next lemma that it is possible to extend some of the relations between D,

D̃, Z, Z∗, and other operators, particularly H and P , to relations between their weak extensions

to L2(Q). There is reason to believe that such an extension is possible–we have already seen an

example (Lemma 15) in which we extended the relations FD = −D̃F and FD̃ = DF to D∗ and

D̃∗. The particular relations we are interested in extending are (5.50)-(5.51) and those of Theorem

47, Corollary 22, and Theorem 48. It will follow from this that kerZ ′ = kerZ∗′ ⊆ kerP , and that

therefore, since P is elliptic, these kernels consist of smooth sections.

Lemma 19 The adjoint operators Z ′ and Z∗′ also satisfy

[H, Z ′] = Z ′ (5.171)

[H, Z∗′] = −Z∗′ (5.172)

which means that Z ′ and Z∗′ move eigenbundles in the same way as Z and Z∗,

Z : L2(Q`)→ L2(Q`−1) (5.173)

Z∗′ : L2(Q`)→ L2(Q`+1) (5.174)

in the weak sense. Moreover, if t = Z ′s = Z∗τ ∈ imZ ′ ∩ imZ∗′ in the weak sense, then there are

unique symplectic spinor fields s′, τ ′ ∈ L2(Q) such that D∗s′ = D̃∗τ ′ = t′ ∈ imD ∩ im D̃ weakly,

and the pair (s, τ) is related to the pair (s′, τ ′) by an invertible matrix

(
s′

τ ′

)
=

 1 −1

−i −i

(s
τ

)

That is, s′ = s− τ , τ ′ = −is− iτ , and s = 1
2s
′ + i

2τ
′, τ = −1

2s
′ + i

2τ
′. As a result, we will have

imD∗ ∩ im D̃∗ = {0} (5.175)
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Proof : (1) For all σ ∈ Γc(S) and all t ∈ D(Z ′) such that Z ′t ∈ D(H) we have by the self-adjointness

of H

(σ,HZ ′t) = (Hσ, Z ′t) = (ZHσ, t) = ((HZ + Z)σ, t) = (σ, Z ′Ht) + (σ, Z ′t)

which shows that [H, Z ′] = Z ′. [H, Z∗′] = −Z∗′ follows similarly.

(2) Let t = Zs = Z∗τ weakly and define s′, τ ′ ∈ L2(Q) by s′ = s − τ , τ ′ = −is − iτ . Then,

for all σ ∈ Γc(S) we have

(t, σ) = (s, Z∗σ) = (τ, Zσ)

which means (s,Dσ) + i(s, D̃σ) = (τ,Dσ)− i(τ, D̃σ), or

(s′, Dσ) = (s− τ,Dσ) = (−is− iτ), D̃σ)

for all σ ∈ Γc(S), proving that t′ := Ds′ = D̃τ ′ weakly. Conversely, if t′ := Ds′ = D̃τ ′ weakly, then

letting s = 1
2s
′ + i

2τ
′ and τ = −1

2s
′ + i

2τ
′, we have for all σ ∈ Γc(S) that

(s, Z∗σ) =
1

2
(s′, Z∗σ) +

i

2
(τ ′, Z∗σ)

=
1

2
(s′, Dσ) +

i

2
(s′, D̃σ) +

i

2
(τ ′, Dσ)− 1

2
(τ ′, D̃σ)

=
1

2
(τ ′, D̃σ) +

i

2
(s′, D̃σ) +

i

2
(τ ′, Dσ)− 1

2
(s′, Dσ)

= −1

2

(
s′, (D − iD̃)σ

)
+
i

2

(
τ ′, (D − iD̃)σ)

= −1

2
(s′, Z∗σ) +

i

2
(τ ′, Z∗σ)

= (τ, Z∗σ)

so that t := Zs = Z∗τ weakly.

(3) Now, looking at the proofs of Corollary 22 and Theorem 48, which establish the identities

t′ = Ds′ = D̃τ ′ = 1
2

(
Zτ − Z∗s

)
and imD ∩ im D̃ = {0} (along with some others, which need not

concern us here), we see that these follow strictly from the values of D, D̃, Z and Z∗ along with

the relation of the previous Theorem 47, whose results we have extended to L2(Q) in (1) and (2)

above. Therefore, the same proofs of t′ = Ds′ = D̃τ ′ = 1
2

(
Zτ −Z∗s

)
and imD∩ im D̃ = {0} extend

in a purely formal way to the extended operators D, D̃, Z and Z∗ on L2(Q). �
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Consider the adjoints of D, D̃, Z, Z∗, and P . Since P = i[D̃,D], we have the following

relations among the domains of their adjoints:

D(D∗) ∩ D(D̃∗) ⊆ D(D∗D̃∗) ∩ D(D̃∗D∗)

= D(D̃∗D∗ −D∗D̃∗)

⊆ D
(
(D̃D −DD̃)∗

)
= D(P ∗)

By the previous lemma we conclude that:

Corollary 23 kerZ ′ = kerZ∗′ ⊆ kerP ∗, so since P is elliptic, elliptic regularity guarantees that

weak solutions of Zs = 0 and Z∗s = 0 are in fact smooth. When (M,ω) is compact, these solutions

are also compactly supported, and therefore lie in the domains of D, D̃, Z and Z∗.

Proof : Let s be a weak solution of Zs = 0, i.e. 0 = (0, σ) = (s, Zσ) for all σ ∈ Γc(S). Then

0 = (s,Dσ) + (s, iD̃σ), or (s,Dσ) = (s,−iD̃σ), for all σ ∈ Γc(S), which means Ds = D̃(is) weakly.

By the previous lemma, this must equal 0, so s ∈ kerD∗ ∩ ker D̃∗. Since D(D̃∗D∗ − D∗D̃∗) ⊆

D
(
(D̃D −DD̃)∗

)
= D(P ∗) and

iD̃∗D∗s− iD∗D̃∗s = 0

we conclude that P ∗s = 0. �

Theorem 52 Let (M,ω) be a compact symplectic manifold. Then the symplectic Dirac operators

D and D̃ are essentially self-adjoint on L2(Q).

Proof : We will use Corollary 17, and demonstrate that ker(D∗ ± iI) = ker(D̃∗ ± iI) = {0}. By

Theorem 51 and Proposition 74 it is enough to prove that ker(D∗− iI) = {0}. We will use analogs

of the results of Lemma 17, particularly (5.145)-(5.154) in that Lemma’s proof.

Let t ∈ ker(D∗−iI) and note first that if we write t =
∑

`∈N0
τ`, where each τ` ∈ L2(Q`), then

in fact each τ` lies in L2(S`), since S` is a finite-dimensional vector bundle of dimension
(
n+`−1

`

)
,

spanned by
(
n+`−1

`

)
basis Schwartz spinors (the Hermite-valued spinors). As we saw in the previous
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lemma, the operators Z and Z∗ move eigensections of the harmonic oscillator H down and up by

one, respectively,

Z : L2(Q`)→ L2(Q`−1), Z∗ : L2(Q`)→ L2(Q`+1)

Consequently, each τ` is moved by Z and Z∗ accordingly,2 so we have

iτ0 = (D∗τ1)0 =
1

2
Zτ1

iτ1 = (D∗τ0)1 + (D∗τ2)1 =
1

2
Z∗τ0 +

1

2
Zτ2

iτ2 = (D∗τ1)2 + (D∗τ3)2 =
1

2
Z∗τ1 +

1

2
Zτ3

iτ3 = (D∗τ2)3 + (D∗τ4)3 =
1

2
Z∗τ2 +

1

2
Zτ4

...

Now, by Lemma 19 we have Zτ0 = 0 weakly, because Z lowers indices. By Corollary 23 we conclude

that τ0 ∈ Γ(S0), i.e. is a smooth section, and moreover τ0 ∈ kerZ = kerZ∗ = kerD ∩ ker D̃. Since

iτ0 = 1
2Zτ1, applying D and D̃ to both sides we get DZτ1 = D̃Zτ1 = Dτ0 = D̃τ0 = 0 weakly. We

conclude that D2τ1 = D(−iD̃τ1) and D̃2(−iτ1) = D̃Dτ1 weakly, which therefore equals 0 by the

Lemma 19. But then

(D2 ± D̃2)τ1 = Pτ1 = iD̃Dτ1 − iDD̃τ1 = 0

as well, and we consequently have τ1 ∈ kerP , so τ1 is smooth, and τ1 ∈ kerD2 ∩ ker D̃2, so by

Theorem 49,

τ1 ∈ kerD2 ∩ ker D̃2 = kerD ∩ ker D̃ = kerZ = kerZ∗

We finally see, therefore, that

τ0 = − i
2
Zτ1 = 0

Now, we also have iτ1 = 1
2Zτ2, so applying D and D̃ to iτ1 = 1

2Zτ2 gives 0 = iDτ1 = 1
2DZτ2 =

iD̃τ1 = 1
2D̃Zτ2, which shows that D2τ2 = D(−iD̃τ2) and D̃2(−iτ2) = D̃Dτ2, and this equals 0 by

2 We remark that this also follows from local coordinate considerations (5.35)-(5.38), taking into account that ∇
preserves each Γ(Q`) and that symplectic Clifford multiplication by ej and fj are known to move Hermite-valued
spinors hα as ej · hα = −αjihα−ε(j)− i

2
hα+ε(j) and fj · hα = −αjihα−ε(j) + i

2
hα+ε(j), where ε(j) ∈ Nn0 has a 1 in the

jth position and 0 elsewhere; see below.
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Lemma 19. Therefore, Pτ2 = 0, so τ2 is smooth, and τ2 ∈ kerD2 ∩ ker D̃2, so by Theorem 49 we

again have Zτ2 = 0, showing that iτ1 = 1
2Zτ2 = 0.

This indicates an inductive argument: The base case was given above, showing that τ0 = 0,

while the inductive step follows as in the case of τ1: suppose that for some k ≥ 0 we have τ0 =

τ1 = · · · = τk = 0, then we want to show that τk+1 = 0. Because all τj = 0 for j = 0, . . . , k, the

expression 0 = iτk = 1
2Z
∗τk−1 + 1

2Zτk+1 shows that Zτk+1 = 0 weakly. By Corollary 23 we have

that τk+1 is smooth, and hence also in the kernels of D and D̃, while the relation

iτk+1 =
1

2
Z∗τk +

1

2
Zτk+2 =

1

2
Zτk+2

shows that, by applying D and D̃ to both sides, we have

1

2
D̃Zτk+2 = iD̃τk+1 = 0 = iDτk+1 =

1

2
DZτk+2

weakly. But then we have D2τk+2 = DD̃(−iτk+2) and D̃Dτk+2 = D̃2(−iτk+2) weakly. By Lemma

19 these must equal 0, weakly, and therefore

Pτk+2 = iD̃Dτk+2 − iDD̃τk+2 = 0

so τk+2 ∈ kerP is smooth by Corollary 23, while τk+2 ∈ kerD2 ∩ ker D̃2 shows that

τk+2 ∈ kerD ∩ ker D̃ = kerZ = kerZ∗

We conclude that

0 =
1

2
Zτk+2 = iτk+1

which completes the inductive argument. We conclude that t = 0, and therefore ker(D∗ ± iI) =

ker(D̃∗ ± iI) = {0}, so the operators D and D̃ are essentially self-adjoint. �

5.6 Local Form of the Symplectic Dirac Operators

Recall that L2(Rn) decomposes into a countable direct sum
⊕∞

`=0 W` of finite-dimensional

eigenspaces W` of the Harmonic oscillator H0, corresponding to the eigenvalues λ = −(` + n/2)
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and associated Hermite eigenfunctions hα. Since the Schwartz space S(Rn) is a dense subspace

of L2(Rn) it, too, decomposes as
⊕∞

`=0 S`. We now consider the symplectic connection ∇ acting

on the smooth, compactly supported Schwartz space spinors, ∇ : Γc(S)→ Γc(T
∗M ⊗ S). Locally,

∇ = d+ ω, where d is the exterior derivative and ω = dm(α̃) ∈ Γc(U,End(S)) is the connection 1-

form of ∇.3 In view of the fact that the Hermite basis for L2(Rn) gives rise to a local orthonormal

frame (hα)α∈Nn0 ∈ Γ(PMp(n,R)) for the Schwartz spinors Γ(S), which for convenience we enumerate

now as (hj)j∈N, we observe that ∇ acts on local sections s ∈ Γ(S) as

∇s = ∇(sihi)

= dsi ⊗ hi + si∇hi

=
∂si

∂xj
dxj ⊗ hi + siωki ⊗ hk

where we used the Einstein summation convention, with j running from 1 to 2n and i, k run-

ning over N0, and with ωji ∈ Ω1(M).4 That is, if we write ω = (ωji )i,j∈N0 as an infinite ma-

trix (acting on S) and s = sihi as a column vector (s0, s1, . . . )T , and similarly with ∂s/∂xj =

(∂s0/∂xj , ∂s
1/∂xj , . . . )

T , then the above expression can be written in matrix form as

∇s =
2n∑
j=1

∞∑
i,k=0

∂si

∂xj
dxj ⊗ hi + siωki ⊗ hk

=
2n∑
j=1


dxj ⊗ h0 0 · · ·

0 dxj ⊗ h1 · · ·
...

...
. . .




∂s0

∂xj

∂s1

∂xj

...

+


ω0

0 ⊗ h0 ω1
0 ⊗ h1 · · ·

ω0
1 ⊗ h0 ω1

1 ⊗ h1 · · ·
...

...
. . .




s0

s1

...


=

2n∑
j=1

diag(dxj ⊗ h0, dx
j ⊗ h1, . . . )

∂s

∂xj
+ ωs

=

2n∑
j=1

Aj
∂s

∂xj
+Bs

where Aj = diag(dxj ⊗ h0, dx
j ⊗ h1, . . . ), B = ω ∈ Ω1(U,S).

3 Our previous notation, in Section 5.2, for ω was dm(α), where α := ϕ∗ω̃ ∈ Ω1(U ;mp(n,R)) is the pullback
of the mp(n,R)-valued 1-form ω̃ := dρ−1 ◦ F ∗ω ∈ Ω1(PMp(n,R);mp(n,R)) via a local symplectic frame ϕ = (e, f) ∈
Γ(U,PSp(n,R)), with ω in this setting the connection 1-form associated to the symplectic connection ∇ on M .

4 We recall, from Section 5.2, the expression of ∇ in terms of a local symplectic frame ϕ = (e, f), namely
(∇Xs)p = dsp(X̃) − i

2

∑n
j=1(fj ·∇X̃ej − ej ·∇X̃fj) · s. This expression is not the same as the one above, which is

with respect to a local section s ∈ Γ(U,S) expanded in the local S-frame (hj)j∈N0 .
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Remark 66 Using (5.24) we can give a more explicit description of B = ω = dm(α), namely

ω(X)s = dm(α(X))s = −α(X) · s = −σ(α(X))s, which is a linear combination of multiplication-

by-yj maps and partial derivative ∂/∂yj operators at any point x ∈ M , with yj the standard

coordinates for Rn. �

If we now add in the actions of the sharpening operators ω], g] : Γ(T ∗M) → Γ(TM) and of

Clifford multiplication µ : Γ(TM⊗S)→ Γ(S), then we get local expressions for the Dirac operators

D = µ ◦ω] ◦∇ and D̃ := µ ◦ g] ◦∇, as maps from Γ(S) to Γ(S). For we recall the action of Clifford

multiplication is µ(X⊗s) := X ·s := σ(X)(s), where σ : TM ⊆ Cl(TM)→ End(S) is the (induced)

quantization map (Section ??, equation (4.28)), and this shows that locally

Ds = µ ◦ ω] ◦ ∇s (5.176)

= µ ◦ ω]
(
∂si

∂xj
dxj ⊗ hi + siωki ⊗ hk

)
=

∂si

∂xj
xj · hi + siβki · hk

= σ(Xxj )(hi)
∂si

∂xj
+ σ(βki )(hk)s

i

=
2n∑
j=1

A′j
∂s

∂xj
+B′s

where A′j = diag(σ(Xxj )(h0), σ(Xxj )(h1), . . . ) and B′ =
(
σ(βki )(hk)

)
i,k∈N0

∈ Γ
(
U,End(S)

)
, with

βki = ω](ωki ) ∈ Γ(U, TM), and where Xxj is the Hamiltonian vector field associated to xj , the dual

of the local basis vector xj (see the remark below). Similarly,

D̃s =
2n∑
j=1

A′′j
∂s

∂xj
+B′′s (5.177)

as above, except β = g](ωki ). Thus, we have similar local expressions for D and D̃, as sums of the

form

Ls =
2n∑
j=1

Aj(x)
∂s

∂xj
+B(x)s (5.178)

where x ∈ U ⊆M and Aj , B ∈ Γ
(
U,End(S)

)
, j = 1, . . . , 2n.

We can be yet more specific about these local operators:
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Proposition 75 At a given point x ∈ U ⊆ M the operators A′j(x), A′′j (x), B′(x) and B′′(x) in

(5.176) and (5.177), as endomorphisms of S(Rn) =
⊕∞

`=0 S`, are given explicitly by

A′j(x)s =


− ∂s

∂xj
, j ≤ n

ixjs, j > n

(5.179)

A′′j (x)s =


ixjs, j ≤ n

∂s

∂xj
, j > n

(5.180)

where the index j runs over the entire enumeration of the Hermite functions hj. In the case of

B′ and B′′, we let the index ` run over the enumeration of the eigenspaces S`, where we recall

dimS` =
(
n+`−1

`

)
and are therefore spanned by

(
n+`−1

`

)
Hermite functions hα with |α| = `:

B′(x)s =



0 −M∗0 0 0 0 . . .

M0 0 −M∗1 0 0 . . .

0 M1 0 −M∗2 0 . . .

0 0 M2 0 −M∗3 . . .

...
...

...
...

...
. . .





s0

s1

s2

s3

...


(5.181)

B′′(x)s =



0 −N∗0 0 0 0 . . .

N0 0 −N∗1 0 0 . . .

0 N1 0 −N∗2 0 . . .

0 0 N2 0 −N∗3 . . .

...
...

...
...

...
. . .





s0

s1

s2

s3

...


(5.182)

Here,

M`, N` ∈ L(S`,S`+1) ∼= M(n+`−1
` ),(n+`

`+1)
(C)

and their elements, as we have seen, are of the form σ(βαi )(hα), which are linear combinations

of the n multiplication operators ixj and the n differential operators ∂/∂xj applied to the
(
n+`−1

`

)
Hermite functions hα spanning S`. As a result of Theorems 36 and 37 and the remark following,
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we know that the operators ixj and ∂/∂xj are skew-symmetric on S(Rn) and skew-adjoint on their

respective domains, specified there. Therefore, we conclude that

A′j(x)∗ = −A′j(x)

A′′j (x)∗ = −A′′j (x)

B′(x)∗ = −B′(x)

B′′(x)∗ = −B′′(x)

on their respective domains.

Proof : Since for any f ∈ C∞(M) we have df = ω[(Xf ), where Xf is the Hamiltonian vector field

of f (i.e. df(Y ) = ω(Xf , Y ) = ω[(Xf )(Y )), and since g(X,Y ) = ω(X, JY ), and moreover in a local

symplectic frame (e, f) we have Xf = −Jdf = ∂f
∂ej

∂
∂fj
− ∂f

∂fj
∂
∂ej

, we see that dxj = ω[(Xxj ), where

xj = x∗j is the dual basis vector of one of ek or f`, so

ω](dxj) = ω]ω[(Xxj ) = Xxj =


− ∂

∂fj
, j ≤ n

∂

∂ej
, j > n

g](dxj) = g]ω[(Xxj ) = g]g[(JXxj ) = JXxj =


∂

∂ej
, j ≤ n

∂

∂fj
, j > n

and therefore, identifying ∂/∂xj with ej if j ≤ n and with fj if j ≥ n, we get that

σ(ω](dxj))(hi) =


−∂hi
∂xj

, j ≤ n

ixjhi j > n

σ(g](dxj))(hi) =


ixjhi, j ≤ n

∂hi
∂xj

, j > n
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Consequently, at a given x ∈ U ,

A′j(x) =


−diag

(
∂h0

∂xj
,
∂h1

∂xj
, . . .

)
=

∂

∂xj
diag

(
h0, h1, . . . ), j ≤ n

diag
(
−ixjh0,−ixjh1, . . .

)
= ixj diag

(
h0, h1, . . . ), j > n

A′′j (x) =


diag

(
ixjh0, ixjh1, . . .

)
= ixj diag

(
h0, h1, . . . ), j > n

diag

(
∂h0

∂xj
,
∂h1

∂xj
, . . .

)
=

∂

∂xj
diag

(
h0, h1, . . . ), j ≤ n

That is, A′j(x) and A′′j (x) are either multiplication-by-xj operators or a shift (involving partial differ-

entiation with respect to xj of the basis vectors hi, since ∂hi/∂hj = hk for some k) operators, i.e. dif-

ferentiation of s, since ∂s/∂xj =
∑∞

i=0 ∂(sihi)/∂xj =
∑∞

i=0 s
i∂hi/∂xj = ∂/∂xj diag(h0, h1, . . . )(s

0, s1, . . . )T :

A′j(x)s =


− ∂s

∂xj
, j ≤ n

ixjs, j > n

A′′j (x) =


ixjs, j ≤ n

∂s

∂xj
, j > n

where, of course, s =
∑∞

i=0 s
ihi.

Let us now describe the operators B′(x) and B′′(x). The observations (5.50)-(5.51) showed

us that the operators Z and Z∗ decrease and increase, respectively, the degree of the eigenbundles,

Z : Γ(Q`)→ Γ(Q`−1) and Z∗ : Γ(Q`)→ Γ(Q`+1), which means D = 1
2(Z+Z∗) and D̃ = 1

2i(Z−Z
∗)

move eigensections s` ∈ Γ(Q`) to Γ(Q`+1) and Γ(Q`−1). The remainder of the claims follow from

the skew-symmetry of ixj and ∂/∂xj , as above. �
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