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Abstract

This paper describes a C module that provides unique representations for an arbi-
trary number of entities, and allows an arbitrary set of properties of arbitrary types
to be associated with each entity. Entities can be pre-defined as well as created as the
program runs; property values for pre-defined entities can be established at load time.
The module exports a useful set of property query and update routines, and this set
is easily extended by the user.

A property storage module for a specific application can be instantiated from a
simple specification describing the requirements imposed by that application. This
approach eases the task of the person designing the application, and allows them to
strongly separate the property storage aspects of solutions to different subproblems.

1 Introduction

Many computer applications deal with entities that have properties. For example, a program
that analyzes a directed graph deals with node and edge entities. Each edge is directed from
a starting node to an ending node, and those nodes might be properties of the edge entity.
Both node and edge entities might also have label properties, and so on. The object-oriented
programming paradigm is well-suited to such applications: Each entity is represented by an
object, and each property by a field of that object.

In most object-oriented languages, the relationships between entities and properties are
established by declaring classes that assign properties in the form of instance variables (or
slots) to a class of entities. Having to specify the mapping between groups of properties and
classes of entities at compile time has the advantage of forcing the user to explicitly determine
what properties each class of object must possess, but it has several disadvantages as well.



In many applications, the programmer cares only about a very small subset of the proper-
ties of an object in any given context. The class declaration of an object, however, defines all
of the properties of the object and therefore exposes complexity that the programmer need
not be concerned with. Inheritance is normally used to control this complexity, allowing the
user to provide a hierarchical description in which cach class only mentions the properties

specially relevant to it and obtains more general properties from its ancestors.

Since the properties of most collections of entities cannot be described by a strict hierar-
chy, the inheritance structure is normally a directed acyclic graph rather than a tree. This
leads to interesting questions about exactly which ancestor a property should be inherited
from, and significantly increases the complexity of the programming language definition.
Discussions of various mechanisms used to deal with this problem can be found in [4] and

[5].

Having to specify the mapping between properties and entities at compile time also
creates a rigid representation. For example, consider a compiler for a language like Pascal
that distinguishes type identifiers from variable identifiers but provides only a single name
space. The compiler must deal with type entities and variable entities, and must associate
each identifier with the appropriate entity. Type entities and variable entities clearly have
different properties, and would be represented by different classes of objects in an object-
oriented language.

Suppose that a particular identifier is declared as a type identifier. In response to the type
declaration, the compiler will create an object to represent that type entity and associate
it with the identifier. Now suppose that the type identifier is erroneously used in a context
where a variable identifier should appear. To avoid a cascade effect in the error analysis, after
reporting the error the compiler should treat the identifier as a variable when a variable is
expected and as a type when a type is expected. This may mean setting properties mapped
to type entities and variable entities for a single object. Most object-oriented languages do
not allow the set of properties mapped to an object to change at run time in this way.

This paper presents an alternate solution that uses typeless objects. The relationship
between an entity and a property is established at run time, simply by applying an ac-
cess method for the property to the object representing the entity. This avoids exposing
complexity, and hence avoids the need for mechanisms to control that exposed complexity.
The representation is flexible, easily accommodating arbitrary collections of properties that
cannot be described by a strict hierarchy.

The cost of our solution relative to the use of classes is the cost of an associative memory
(in which the location of a property value must be determined at run time), relative to the
cost of a fixed memory (in which the location of a property value is known at compile time).
A part of this cost is that errors detectable at compile time with classes can only be detected
at run time with typeless objects.



The static typing that exists in most object-oriented languages guarantees that it is only
possible to access a property of an entity if that entity actually has that property. It is
not possible to make such a guarantee with typeless objects, but it is possible to guarantee
meaningful results in any context. One approach is to use an access method that returns
a hoolean valu whethe ot the property has been set for the object being
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queried. Another is to use an access method that takes a default value to be returned in
the case that the property does not exist for the object being queried. What default value
is reasonable may vary from one context to another. An object-oriented language would
typically require the property value to be fixed in a way that does not depend on the context
in which the value is used.

Section 2 explains how the module establishes the relationship between entities and prop-
erties and Section 3 shows how this relationship is used to access properties. Providing a
specific property storage module, with the access methods described above as well as user-
defined ones, involves writing a great deal of repetitive code. In Section 4, we present a
specification language that allows a user to describe their data in a simple way and have the
appropriate property definition module (complete with suitable access methods) generated
automatically. Finally, we conclude with some comments about our experience with the
approach described here and information on how to obtain the software.

2 The Underlying Mechanism

Our basic approach is to implement each entity as an associative memory. Elements of the
memory are property values, and they are addressed by the corresponding property names.
This is the approach taken in the LISP association list — a list of attribute/value pairs
in which the value can be queried and modified by functions having the attribute as an
argument [3].

We do not specify the implementation of the associative memory in this paper. Instead,
we specify the memory interface as shown in Figure 1. The specific implementation is
determined by the definitions of the PropElt and Entity structures, and the coding of the
NewKey and find procedures. Some possible implementations are a linear list, a B-tree, and
a hash table. Each has its advantages and disadvantages, and is appropriate given a specific
pattern of accesses.

It is important to understand how the interface given in Figure 1 isolates the remainder
~of the program from the implementation details without wasting storage. The PropElt
structure contains only the “overhead” information that must appear in every element of
the associative memory; it does not specify the property value. For each property type,
another structure must be defined that specifies both the overhead information and the space
for the property value.



typedef struct PropElt { /* Representation of a property element */
/* Linkage */

/* Which property */

} *Entry; '

typedef struct Entity { /* Representation of an entity */
/* Associative memory pointer */
} *DefTableKey;

#define NoKey (DefTableKey)O /* Distinguished entity */

extern DefTableKey NewKey();
/* Establish a new definition

*
*
KoKk [/

On exit-
NewKey=Unique definition table key .

extern int find(DefTableKey key, int p, Entry *r, size_t add);
/* Obtain a relation for a specific property of a definition
* On entry-

*

If

¥ % ¥ X ¥ X X ¥

*

*

*
~

key=entity whose property is of interest

p=selector for the desired property

the definition does not have the desired property then on exit-
find=false

if add != 0 then r points to a new entry of size add for the property
else r is undefined

Else on exit-

find=true
r points to the current entry for the property

Figure 1: The Associative Memory Interface



typedef struct PropElt { /* Representation of a property element */

struct PropElt *next; /* The next property */
int selector; /* Which property */
} *Entry;
typedef struct TYPEElt { /* Representation of a TYPE property */
Entry next; /* Copy of the */
int selector; /* PropElt structure */
TYPE PropVal; /* Space for the value */

} *TYPEProperty;

typedef struct Entity { /* Representation of an entity */
Entry List; /* Property list pointer */
} *DefTableKey;

Figure 2: Defining Space

Figure 2 illustrates the definitions for an associative memory implemented as a linear list.
ANSI C guarantees that if p is either of type Entry or of type TYPEProperty, p->next will
be the pointer to the next structure in the list and p->selector will be the integer specifying
which property the element contains. (This idiom of ANSI C provides an implementation of
a language feature called Type Extenstons that is a prerequisite for extensible data types in
object-oriented languages [6].) The value of the property can be accessed via p->PropVal if
p is of type TYPEProperty.

This strategy is independent of the type of value (TYPE can be replaced by any built-in
or user-defined type identifier) and the structure uses exactly the amount of storage required
by the associative memory search and the value of the property.

The procedure find can be implemented completely in terms of the PropElt structure,
since this structure contains all of the information needed to implement the associative
memory. Actual access to the element selected by find is handled by higher-level routines
that know the type of the property being accessed. These routines are discussed in the next
section.

3 Access Operations

Property values are accessed by routines that invoke find to set a pointer and then manip-
ulate the value pointed to. For a given kind of access, there must be one routine for each



void
ResetTYPE(int _Property, DefTableKey key, TYPE val)
{ TYPEProperty _Item;
{ if (key == NoKey) return;
(void)find(key, _Property, (Entry *)&_Item, sizeof(struct TYPEElt));
_Item->PropVal = val;
¥
}

Figure 3: The Reset Access Mechanism
#define ResetPropName(key,val) ResetTYPE(1, (key), (val))

Figure 4: Example Reset Access Macro

type of property to be accessed. All of these routines have the same structure, differing only
in some type declarations.

Assuming the definitions of Figure 2, Figure 3 shows the structure of a routine that
implements a simple access to establish the value of a property. Any built-in or user-defined
type identifier representing an assignable type could be substituted for TYPE to obtain the
routine that establishes a value of that type. The procedure is called with three parameters:
the selector for the specific property whose value is to be reset (remember that there is only
one routine per property type; any number of properties might have the same type), the key
representing the entity whose property is to be reset, and the value desired.

To simplify the interfaces of the access routines, it is useful to hide the mapping from
properties to selectors in a macro for each access routine/property combination. That macro
simply calls the appropriate access routine with the selector chosen in the mapping. An
example of such a macro is shown in Figure 4. It provides the Reset method for the
property PropName, setting the property of the entity represented by key to a value, val, of
type TYPE. This macro hides the facts that the selector 1 is used to address the PropName
property and that the routine ResetTYPE actually carries out the operation.

In reviewing the implementation of the Reset operation shown in Figure 3, one sees that
the key passed in is first tested against the value NoKey. The value NoKey is the distinguished
entity exported by the interface shown in Figure 1. It represents an entity that never has any
properties. As a result, applying the Reset operation to NoKey does nothing. Otherwise,
find is used to search the associative memory of the entity given by key for the property
identified by _Property. Since the fourth argument of the call is nonzero, find will add



TYPE
GetTYPE(int _Property, DefTableKey key, TYPE deflt)
{ TYPEProperty _Item;
{ if (key == NoKey) return deflt;
if (find(key, _Property, (Entry *)&_Item, (size_t)0))
return _Item->PropVal;
else return deflt;

by
by

Figure 5: The Get Access Mechanism

an element to the associative memory if there is none currently. In any case, upon return
from find, Item will contain a pointer to the desired property’s element in the associative
memory for the given entity.

Note that _Item is defined as a pointer to struct TYPEELt (see Figure 2), and when
passed to find it is cast to hold a pointer to struct PropElt. Thus find need know only
about linkage information, as discussed in the previous section. If no element currently exists,
however, a struct TYPEElt-sized space will be reserved because of the value of £ind’s fourth
argument. Linkage information will be established in this space by find according to the
definition of a struct PropElt.

A more complex access function is useful to extract property information. The problem
here is that a user may query the value of a non-existent property. We need to ensure that
the query will return a valid value regardless of the state of the associative memory being
queried. Our experience has shown that the appropriate “default” value often depends on
the context of a particular query, so we require the person writing the query to supply the
default value as an argument of the query itself. Again, a distinct routine is necessary for
each type of property to be queried, and all of these routines have the structure shown in

IMigure 5.

Note that the fourth argument of find is 0 in Figure 5. This means that nothing will be
added to the associative memory if the desired property is not found. Also, the truth value
returned by find is used to decide whether to return the value from the element pointed to
by _Item or the default value supplied by the user. (The default value is always returned for
the distinguished entity NoKey, since NoKey never has any property values.)



4 The Property Definition Language

In the last two sections, we have shown an implementation for a general property definition
module. It allows for an arbitrary number of entities, each having an arbitrary number
of properties of arbitrary types. We have illustrated two simple access functions, and it
should be obvious that arbitrarily complex access functions could be written. This material
constitutes a reusable design that allows a programmer to construct a property storage
module for any specific application in a straightforward way.

Although it is robust and re-usable, there is a great deal of code that must be provided
for any instantiation of this design. Figure 1 describes code that need be written only once
per associative memory strategy, but the code of Figures 2, 3 and 5 must be written once
per property type and the code of Figure 4 must appear once for each property. (Over time
one could, of course, accumulate a library of such code.)

A surprisingly small amount of information is needed to define a specific property storage
module:

1. A set of named properties

[N

. A type for each property

3. A set of access mechanisms

o

. An associative memory implementation

Once this information is available, the property storage module it defines can be created
mechanically. Tremendous leverage can therefore be obtained by using a special-purpose
language to express the necessary information, and having the compiler for that language
produce the desired property storage module.

While the named properties and their types are going to be specific to each application,
the bulk of the applications will use a small set of access mechanisms. Some of those (like
Reset and Get) are so common that they should simply be provided automatically for every
property. The remainder should be available as a library, and associated with particular
properties by an additional specification. Finally, language facilities should be available for
creating application-specific access mechanisms.

The associative memory implementation can be provided by a library module that the
user can select at link time, since a very simple mechanism suffices in most cases. Thus no
language facilities for associative memory specification are needed.

Figure 6 shows an example property storage module specification. It is written in PDL



Counter: int [Inc];
Storage: StorageRequired; "storage.h"
Type: DefTableKey;

int Inc(DefTableKey key)

{ if (key == NoKey) return 0;
if (ACCESS) ++VALUE;
else VALUE = 1;
return VALUE;

Figure 6: Specifying a Property Storage Module

(the Property Definition Language), and defines three properties. Counter is an integer
valued property that has, in addition to the standard Get and Reset access methods, an
access method called Inc. Inc is an application-specific method, whose definition appears
later in the specification. The specification also defines the Storage property that is of type
StorageRequired. The definition of StorageRequired can be found in a header file called
storage.h, and that interface is made available to the property definition module by placing
the name of the header file in double quotes in the specification. The last property defined
by the specification in Figure 6 is called Type and is of type DefTableKey. No header file
need be included for the definition of DefTableKey, since that is a type that must always be
included in the generated property storage module.

The access method Inc is defined in C notation in the PDL specification. It is designed
to take a key representing an entity, establish the value 1 if the property has not been set,
and increment the value otherwise (as one would do with a counter).

ACCESS, PRESENT, and VALUE are macros that can be used in the body of an access method
definition. These macros are defined by the PDL language, and provide a simple interface
that hides the details of using find and addressing the property value. Their semantics are
described in the PDL Manual [2], and their implementations can be seen by comparing the
built-in PDL definitions of the access functions Reset and Get in Figure 7 with Figures 3
and 5. '

The PDL compiler instantiates each access mechanism as a set of routines, one for each
of the distinct property types to which it is applied, as discussed in Section 3. Thus there
will be a single routine named Getint and one named Incint regardless of the number of
properties of type int. The generated C functions must also have an integer argument added
to the beginning of their parameter list in order to select the property.



void Reset(DefTableKey key, TYPE val)
{ if (key == NoKey) return;

ACCESS; VALUE = val;
}

TYPE Get(DefTableKey key, TYPE deflt)
{ if (key == NoKey) return deflt;

if (PRESENT) return VALUE;

else return deflt;

-}

Figure 7: Reset and Get in PDL

In this example, Inc can be applied only to the type-int property, Counter, and therefore
int appears as the result type. Definitions of access mechanisms that can be applied to
properties with a variety of types use the symbol TYPE instead of a specific type identifier
(see Figure 7).

In addition to generating the access routines, the PDL compiler creates a C macro like
the one shown in Figure 4 and described in the previous section for each access mech-
anism/property pair. This macro is simply a call on the appropriate routine, with the
property’s selector (determined by the PDL compiler) as the first argument. For example
(compare with Figure 4):

#define IncCounter(key) Incint (1, (key))

The net result of the specification given in Figure 6 is a set of seven operations: one Get
operation and one Reset operation for each of the three properties, plus the IncCounter
operation. To make these operations accessible in any C program, the user need only include
the header file pdl_gen.h generated by the PDL compiler. The PDL compiler also generates
a file pdl_gen.c, which must be compiled and linked with the application and the module
implementing find.

Sometimes it is useful to establish some entities at compile time, with particular property
values. Figure 8 shows the notation PDL provides. Here the text in braces must be a valid
C initializer for the type of the named property. The identifiers Zero and MaxInt represent
entities; they are values of type DefTableKey that can be used as arguments to access
methods to update and query their property values.
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Zero -> Value={0};
MaxInt -> Value={32767};

Figure 8: Initializing Properties
5 Conclusion

We have presented a strategy for creating a general property definition module capable of
representing an arbitrary number of entities, each with an arbitrary number of properties of
arbitrary types. Entities and properties can exist initially or can be created during execution.

In contrast to many object-oriented programming languages, the properties of an entity
are not predetermined at compile time. This simplifies the specification, and eases the
handling of erroneous input, but makes compile-time consistency checks impossible.

The system described here has been used for several years to provide the definition
table component for translators generated by the Eli system [1]. It had its origins in the
requirement of attribute grammars that a query function always return a valid value. This
led the first author to the concept of providing a default response at the point of call, since
the criteria for validity often depend on the context in which the query is being made. PDL
was developed as a class project by the second author, replacing a more conventional data
definition language in which properties were bound to entities at compile time. Experience
with constructing error recovery specifications convinced us that compile-time binding was
a mistake in the context of a compiler.

The implementation of the previous data definition language had also realized each access
operation with a distinct routine for each property, rather than a distinct routine for each
property type as described in Section 3. We saw that that approach led to large amounts of
duplicated code, which led us to the macro/routine split we use now.

In the context of translators generated by Eli, the number of properties associated with
any given entity is small. We therefore use a simple linear list as an associative memory
(as shown in Figure 2), and have not seen any performance penalty. We have also used this
implementation of find in property definition modules for other applications with similar
results. Although we understand how to use more complex data structures to implement the
associative memory, we have thus far had no need to change our current strategy.

We believe that this approach provides a viable alternative to the use of an object-oriented
language in certain circumstances. Also, since the code generated by the PDL compiler is
acceptable to C++ compilers, it allows a user to gain flexibility and reduce complexity in
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certain areas even when using an object-oriented language to deal with some aspects of a
problem.

Both the associative memory module and the PDL compiler are available via anonymous
ftp as part of the Fli system. We are currently establishing procedures for obtaining this
software independent of the remainder of Eli. This task will be completed well before the
paper is published, and we will include instructions on how to access it here.
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