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ABSTRACT

A set of jobs related by constrainis is to be exccuted in

minimum time on tw J tirme units per job and the

other requiring s = § tirpe units, When s = f + | the desirved schedule can be
characterized as HLA, "highesti-leve abstentions”. It can be found in

general the Lime is

praph., Approximately

1 1

optimuim schedules can be 1 Lime, The schedule

thal iz optiupum for Lwo

& Lab@v@ optimurrn,

rithm has accuracy

dule, precedence




INTRODUCTION
Much work has been done on the problem of finding a shortest multiproces-
sor schedule for a set of unit execution Lime jobs subject to precedence con-

/

straints (so-called UET systems ) [C]. The most encour:

sing results are for two

o
=

identical processors. This problem is P2/ prec, p; = 1/ Omox in i:h@ notation

[GLLRK]. A number efficient algorithims have given !F’}*\\ CG, GI1],

including one with linear running time [G, GT]. The problem can be efficiently

solved even in the presence of rel ines [GJ1, GJ2]. On the

other hand the probler iz NP-complete when the two processors are ldentical

bul  the job execulion tlimes are one or two (PR / prec,

p; € $1, 2y / Omazx). [U]

Thiz paper investigatez the problem for fwo uniform processors,
(@2 / prec,p; =1/ Omax. Awuniform processor runs ab constant speed.) Sup-

pose a job can be execuled in J Lime unils on oz ¢ sor and § Lime unils on

the other, 7 =5, The case s = J + 1 iz most ame to analysis. We show

/

that the highest-level-first (HLF) characteriz

tion of an oplimmum schedule for
two identical processors [G] generalizes to this case. Here the optimum

schedule 18 HLA, "highesi-level-first with abslentions”. Such a schedule differs

Ll

from HLE in that it contains idle time that, from a local viewpoint, is not forced,

An HLA schedule can be constructed in linear time if the location of the idle
tirne is known. This leads to an algorithm that finds the shortest schedule by
trying all possibilities for the idle time. The algorithm runs in 0 (22 (n +m ) )
time, where n and m are the nurnber of nodes and edges of the precedence
graph, respectively, and L is the number of levels. In particular the algorithin is
linear il either L or the amount of idle time in the optimum schedule is

bounded,



To handle general speeds f and s and also to obtain polynomial running
times, we study algorithms that find a schedule that is guaranteed o be nearly

optimum. One stralegy is to use the oplimum schedule for two identical proces-
sors, This gives a uniform processor schedule that is at most a factor 2 — £~~
above oplirmum. As expected this factor approaches one as ‘%app&mchm one.

Another strategy is to use an HLF schedule for the two uniform processors,

(Such a schedule is defined only when s = f + 1). This gives better accuracy for
. 1 ‘ . b <
two important cases: When %;mm = the accuracy is T and when éix a——«thz%:
accuracy is == (All bounds on accuracies are tight.)
b
Section 2 gives definitions and reviews the relevant results for two identical
processors. Dection 3 derives the HLA charvacterization of an optimum schedule,

This gives an allernate prool that HLF schedules are oplimum for twe identical

processors. Section 4 explores the use of the ident processor schedule to
approximate the optimum uniform processor schedule. Secltion 8 explores the
HLF (highest-level-first) approximation algorithm. Section 6 gives concluding

remarks. Appendix A gives c?;s&im*“ of the construction of HLF schedules.



£ PRELIMINARIES

This section gives basic terminology and reviews

&

ne resulis in scheduling.

A gcheduling problem is

'd acyclic graph). A node

o

of the dag represents a job thal requires ons unit of ime. An edge

represents a precedence constraint. n and m denote the number of nodes and
2

edges, respectively. If there is an edge from node = o node y, then z is an

immediate predecessor of y and we write z > y; if there is a directed path (of 0

or more edges) from z to y, then z is a predecessor of y, Yy iz a successor of o
and we write :‘f ¥. A node with no predecessors ig inilicl, A dag can be parti-

tioned inte levels i, L =4 = 1. level i consists of all nodes x that start paths

willhi 7 nodes bul not paths with 4 + 1 noc We write level(z) = 4. L denotes

the highest level of the das Figure 2.1 shows a dag. (Throughout this paper

dags are drawn with the convention thal edges are directed from the higher

node to the lower node.)
The nodes of the dag (jobs) are executed on two wniform processors, Le.,

s positive integers f and s,

processors of constant speed. The speeds are gives
where f = s. The fasf processor Pp execules one node in f time unils, while the
slow processor Iy execules one node in s tirme units, (Strictly speaking parame-

ters j and s are the inverses of s

wuld not cause confusion.)

9,

Without loss of generality f and s are relatively prime. Define A=s ~f. If

A = 0 the processors are identicol.

Suppose that processors ; and Py start simultaneously and execute nodes

b

without interruption. In fs time units P, executes s nodes and P, executes f

nodes. These 7 + 5 nodes are executed in a pa repeals, ag illustrated
I $

in Figure 2.2. This paltern is the execulion period. A time interval on Py or P, in
the execution period, during which one node is execuled, is a slof. The slots of a

period are numbered from 1 to f + s, in order of inc

saging right endpoint. By



o

convention the last two slots are f+s—1on Py and [ +s on /.

For identical processors the execution period is tr \sgurme the proces-
sors are not identical, i.e., f < s. This implies that a on Py overlaps at most
two slots on P also a slot on Py overlaps at least two slots on Fy. Suppose a
slot i on F, overlaps more than two slots on 7y, Then i subsumes any slot on Fy
that is entirely contained in i’s time interval. In Figure 2.1(b) slot five sub-
suwmes slot four,

Exactly A—1 slots on Fy are subsumed. For f -1 slols on Py overlap the
borders between slots on FP,. Aside from slots 1 and f+s& the remaining
§~f ~1 = A~1 slots on Py are subsumed.

When A = 1 no nodes are subsumed and every slot overlaps at most two oth-

erg. This is the fundamental reason why the resulls of Section 3 hold. The fol-

lowing properties of the slot numbering scheme are used in Section 3 (see Fig-
R.2(a)).
Leroma 2.1. Assume that A = 1.

(a) The slots are numbered from 1 to 2f + 1, with odd-numbered slots on P;

and even-numbered slols on Py,

(b) The left endpoint of a slot is nondecreasing with slot number, as is the

right endpoint.

2 no slot is subsumed,

4

Proof. (a) If slot 2i—1 is on Py, slot 2 is on Py, sl
Blot Bi+1is on Py since [ < f+1.

(b) The right endpoint is nondecreasing by definition. The left endpoint is
nondecreasing by an induction similar to (a).

This property is used in Section 4. (See Figure 2.2(b).)

Lermma 22 Assume that A > 1 For 1 =1 < A the ith subsumed node on Pr is



&

the f’é%‘%ith node scheduled on Pp. The ¢th subsun

node scheduled on /.

Proof. The ith subsumed node ends at the first time F¢ has executed i+1 more
nodes than 7. So if j+i nodes have been execcuted on Py, (j+i)f <js. This

implies 7 =[ ‘Zi;g and the Lemma follows, =

dude is a specification of hov d much that all

enee constraints are obeyed. More pr schedule is an assignment

of each node z to an ordered pair (p(z), (= ¢/, s is the pro-

cessor that execufes =, and {(z) = 0 is the siari fime for z, and for any distinet

nodes z and ¥, t{z) +p(x)=t(y) if either p(z)=ply) orz »y. t(z) +p(z)

5

is the finish time for node z, and processor Py, from £(z) to

t(x) + p(x). A processor i idle whenever it is not

ceuling any node. o, the

largest finish time of a node, iz the length or m he schedule, An

oplimum schedule has length w*, the minirmurm leng

The following definitions generalize hig schedules, These

schedules are optimum lor identical processors (A = 0) [G]. The definitions are

schedules, However

given for A = 1, where we shall show they lead to of

they are also relevant {or arbitrary A

An "ieschedule”, for 1=

sLd. More precizely let glot 4
be on processor P, (i'=1 + 1, except that when 1 = +5, i'=2). In an i-

schedule, P(P') starts at slot 1(i') or later. The length of an i-schedule is meas-

ured starting al the beginning of slot 4. So an ord sdule is a l-schedule

A level scheduls "executes levels” in the order 4, £,~1, ..., 1. {Recall that L

K

s the highest level.) More precisely let 1 be a slot, + 1. Let # be the

it the processors are ide

L ‘wa values | and 5 are
g0 are &mtxzzo* in the equation %

\4«’55 = p(y).

ihe o processor and

g node on FPyis the lefg—«kh



sel of all level L nodes. A level i-schedule executes the nodes of # in the first

|H| slots 4,4 +1,...,7, where j = (|H| +i-2)mod(2f + 1)+ 1. There are

Pt
forie
s

Bt
i
?\:3

S+ 1is the last slot of a period.

(it} 7 <2f + 1 and there is no node in siot § + 1.

(iii) 7 < 2f + 1 and there is a node y in slot § + -

In cases (i) - (i) the rest of the schedule is a level 1-schedule for & — H. In
case (iii) the rest of the schedule is a level J'-schedule for G — H — %, where
J'Ei ARG <Rf and §' = 1l § = Rf (see Figure 2.3). A level-schedule is a
level 1-schedule. Figure 2.4 shows two level schedules.

In a level schedule consider alevel I, L > > 1, where case (iii) applies. Let

% be the node in slot 7. So level(z) =1, level(y) <1, and =

b

¥ since slots j

% ¥

and j + 1 overlap. The ordered pair (z,y) is a jump from z to . Alternatively
the jump goes from level | fo level (y), or level L jumps y. 1f case (ii) applies to
level I, I has an ddie jump, Level | has e jump in cases (ii) and (iil) but not case
(1). In Figure 2.4 (and in all other figures of this paper) nodes that are jumped
are dotted. The idle times in Figure 2.4 are idle jurmnps.

The execution of level i, for L =1 = 1, is defined inductively. The execution
of level [ consists of slots 4,1 + 1, ..., § plus slot 7 + 1 if L jumps a node. The

(534

cution of level I, L > 1 > 1, is defined by induction. Observe that nodes of

that are jumped are not included in the execution of L,

In a level schedule let the levels with jurnps be J1> 0 > fi, where level
fi jumps to level £;. By convention £, = 0 for an idle Jjump, The jump sequence
of the schedule is the ordered k-tuple (¢, i, ..., ). In Figure 2.4 the jurmp
sequences are (1, 0, 0, 0) in (a) and (0

3

jump sequence Logether determine the




ticular the length w can be deduced,

Jump sequences are compared using ‘aphic  order. Hence

4

(ty, ..., &) > (51, ..., 5p) if for some 7, 1= j < min(k, r){; =s; for 1 =4 <7 and

t; > s;. (Lexicographic order allows the possibility that (£y, ..., £z} > (81, ..., sy if
L =g for 14 <y and & > r. This cannot cccur with jump sequences: If §; = 5;

for l<i=<rthenk =7 and (£, ..., t) = (51, ..., 5).)

b

A highest-level-first (HLF) schedule is a level schedule whose jump sequence
is as large as possible. HLF schedules are oplimum for several types of identical
processor scheduling [H, G]. Figure 2.4 shows they are not optimum for uniform
processors: (a) is HLF but (b) is optimum. Observe that the optimurm schedule
(b) jumps to the highest level exzcept when it has idle jurmnps. This is characteris-
tic of an "HLA" schedule, defined as follows,

In a level schedule, a level is absfencious if it ends in slot § < 2F and has an
idle jump. A level that has a jump bul is not abstentious is nonabstentious. Soa

nonabstentious level wither ends in slot 7 < 2/ and jumps a node or ends in slot

[

2f . (When the level ends in slot 2f, the schedule includes a complete glot

2f -+ 1, whether or not the level jumps a node.)

Let A be a set of levels, AC{L, ..., L], andlet i be aslot, 1=i=2f + 1. An
HLA ‘4schedule is a level i-schedule with abstentious levels A, whose jump
sequence is as large as possible. An HLA (highest-level-first with chsientions)
schedule is an HLA 1-schedule, Figure 2.4 shows HLA schedules, with abslenlions
{1, 23 in (a) and {4} in (b).

For identical processors an HLF schedule is an LA schedule with no
abstentions. (Any idle jump is in the slot that is the analog of 2f, the slot that
never abstaing.) Such a schedule can be constructed in linear time.

-

Similar algorithmes can be used for uniform processors. In one instance we

shall see the set of abstentious levels A4 1z known in ad {This is a nontrivial



assumption. A given sel of levels A may not even have an HLA schedule, since

the precedence constraints may force idle jumps at levels not in 4).

Theorsem 2.1. For processor speeds §, F + 1 and a given set of abstentious lev-
3 e ]

els 4, an HLA schedule, if it exists, can be found in O(n + m ) time and space.

Proof. The algorithm is a straightforward adaptation of the identical processor
algorithm of [G]. This algorithm works in two passes. Pass I processes the levels
t in descending order £ = L, -1, - -+ 1. It finds all levels thal jump to level £,

Pags 11 finds the gpecific nodes jumped.

The same strategy words for uniform processors. The important point is
that after level { is processed in Pass | it is easy to decide whether or not ¢
jumps a node. For the number of nodes on level £ thal are jumped is known.
This determines the slot that executes the last node of £, Level £ jumps a node

if it does not end in slot 2f + 1 and it is not in 4. Both of these conditions are

easy Lo test,
The time and space are 0(n + m) [G, GT]. =

The key fact in analyzing HLF schedules is that they decompose into blocks.

s

The blocks are defined from a set of boundary levels L, 1 =4 < 8 + 1, where
I;=1,1gs; = L + 1. The exact definition of I; can be found in [G]. For1=i= B,
block X; consists of all nodes scheduled after L., up to and including §;, except
for the node (if any) jumped from ;. Every node is in a block, except for the

nodes jumped from boundary levels {;. The blocks partition the time units of the

HLF schedule.

Theorem 2.2, Assume that A = 0.

(a) In an HLF schedule any block X is exec



10

(b) For any block X;, 1 <i < F, X, ¥ X, _, ie, any node of X; precedes any

node of X,

Proof. See [G] =

Theorem 2.2 shows thal an HLF schedule is optimmum, since its length is

B, | X; |
BoX . o o ‘ s ee .
2 [———]. HLA schedules have a similar block structure, but it is not needed in

this paper (although a block structure is usad in Section &

RERE

L



3. THE EXACT ALGORITHM
This section proves that when A = 1 there is an optimum HLA schedule. This
leads to an algorithm that finds an optimum schedule in O(n + m) time when

there is no idle and in 0(2" (n + m)) time in general.

The proof is organized in a series of Lemmas. Lemmas 3.1-3 show that an
optimum schedule that is level always exists.  Lemma 3.4-6 establish some
"highest-level-first" types of properties. Theorem 3.1 shows that an oplimum

schedule that is HLA always exists.

The first result will allow us to consider only schedules that execule nodes

1

lermma 3.1 For any dag & and any slot 4, 1 <4 = 2f + 1, there is an optimum

i-schedule that executes a node in the first =lot.

Proof. Let S be an optimum d-schedule. 5 can execule nodes al arbitrary
times, not necessarily in slots. Consider two cases. First suppose thal 5 exe-
cutes a portion of some node z in slot i (i.e,, S executes z on the same proces-
sor as 1 and begins z before the end of 1} Simée no node can be completed
before the end of 4 (even if i = f ), z is initial in &. So S with z moved to slot ©
is a valid. As an i-schedule it is no longer than &, Hence it is the desired

optirnum schedule.

Next suppose that & does nol use any portion of slot 4. Let z be the first
node to start execuling in S, Clearly z is initial. Further, £ ends no earlier
than slot i does (even when i = 2f). So S, with z moved to slot 4, is a valid i-

schedule no longer than 5. Hence it is the desired schedule, =

Now we give two convenient definitions. I 5 is a schedule then S/=z
denotes the schedule oblained by removing » and all nodes scheduled before it

o

from 5. For instance if z is the first node of 5, 5/ 2 is a schedule for G—z. If4
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is the slot after z's then §/ x {5 ani-schedule,

Let S be a schedule that executes node x first. If S/ is a level i-schedule
for G—z (and any i) then S is an almosi-level schedule.

The next Lermma is the heart of the transformation of an oplimum schedule

to a level schedule. Recall that L is the number of levels in the dag.

Lemwommae 2.2, If a dag & has an optimum i-schedule that is almost-level then it

has an optimurmn i-schedule with a level 7 node in the first slot €.

Proof. The proof is by induction on L. The base case L = 1 is trivial. Assume
the Lemma holds for graphs with less than L levels. Prove il for graphs with L

jevels as follows.

Consider an optimum i-schedule 5 thatl is almost-level, Without loss of gen-
erality, assume that z, the node in the first slot, has level(z) < L. Let y be the
first node scheduled after z (see Figure 3.1). Since § iz olmost-level
level(y) = L. Let S' be schedule 5 with nodes z and vy interchanged. If 5'is a
valid schedule the Lemma is proved. So assume S is not valid, Le., some pre-
cedence constraint is viclated. %' doeg not ‘vioiate a constraint involving y,
gince ¥ is initial in ¢ and also ¥y ends no later in 9 than it dees in &, This
implies that §' viclates a constraint = fz where node 2z is scheduled in the

slot overlapping %,

-

. e , ) - . . L '
Since x ¥z, level(z) < L~1. So G — {z,y}is an L—1 level graph and S/y

[

is an almost-level schedule for it. By induction & -z, ¥} has an optimum

schedule 7 whose first node w iz on level L ~1 and is in the first slot of S/y.

B

Since lewel(z) < L, z -

w, 5o a valid schedule for & results from scheduling v
and z as in S, followed by T (see Figure 3.1). This schedule starts with a level L

node as desgired. =
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Mow we show thatl an optimum schedule can be transformed to a level

schedule.

Lernma 3.3. For any deg G and any slot 4, 1 <4 <2f + 1, there is a level i-

schedule that is optimurm.

Proof. The proof is by induction on the number of nodes in &, The base case of
ne nodes s vacuous, Assume the Lemmea holds for any

than &. Prove it for & ag follows,

Lg with a level L node

n
&
o
o
Ve
£33
I

Observe that G has an optimum i-schedule 5 § i
in slot © (see Figure 3.2). For there is an optimum i-schedule with some node z
in slot 4, by Lemma 3.1, Without loss of peneralily assume level(z) < L. By
induction G~z has alevel (¢ + 1)-schedule that is optimum. This schedule, pre-
ceded by = in slot 7, is an almost-level i-scheduie for & that is optimum. {The

schedule ig valld because 2 does nob precede the node in slot 4 + 1, gince

level(z) < L). Now Lemma 3.2 shows the desired schedule S exists,

Let z be the first node of §. Consider two cases, depending on whether or

not z is the only node of level L,
Suppose z ig not the only node of 1. By induction G-z has a level (i + 1)-

gives a level

Poon

schedule thal is optimum. This schedule, preceded by z in slot 4
i-schedule for & that is optimum (z does not precede the node in slot 1 + 1

since both nodes are onlevel L.)

Next suppose z is the only node of L. If in § the processor opposite z is

idle during the entire duration of slot i, then z is followed by a l-schedule for
G-z. By induction this schedule can be assumed level, as desired.

Otherwise the processor opposite  executes a portion of some node ¥ dur-
ing slot 7. Clearly ¥ can be assumed to be executed on slot ¢ + 1. By induction

G—ix, y{ has a level (i + 2)-schedule that is optimum. This schedule, preceded



14

by z in slot 4 and ¥ in slot i + 1, is the desired schedule. {This schedule is valid
because y does not precede the node in slot 1 + 2, since the latter {5 on level

L—1and level(y)= L-1.) =

The next two Lemmas show thal initial nodes have "highest-level-first” pro-

o

perties.

lemmae 3.4 Let = by an initial node of a

.1 =1 =27 + 1, there iz an optirnum level 1-schedule wi

before x are on level () or higher.

Proof. Letl S by an optimum level i-schedule where z is in the earliest gl

sible. Suppose a node y with level(y) <level(z) is scheduled before z. We

derive a contradiction by showing that z can be scheduled earlier.

Choose y as the last node before = with level (y) < lewel(z).

jumped in S since z is scheduled at level{x) or belore,

Let T be the resull of interchanging nodes z and

ure 3.8). We will show that T is a valid schedule unless ir

z to asuccessor of . 7 can only vielate a precedence constraint involvin

. Node z is initial and is scheduled earlier in 7 than in &, So T s¢

s

constraints invelving . Hence a viclated constraint has the form ¢ k& z for

some node z with level(z) <lewvel(y) < level(z). In 5, node z is not sc

before z, by the choice of y. z can be scheduled in the slot after z's

ot only if

.2, the

level(z) jumps from = to z. (Otherwise if level(z) does not jump f
slot after x contains a node on level(z) or higher.) So 7 has the desired p
perty.

Now consider two cases. First suppose 7 iz a valid schedule. 7 is a level
schedule up to and including node x, which is Jumped. Let z be inslot § in 7.

Let U be an optimum level(j +1)-schedule for the nodes in 7/2z (U




ib

i

Lemma 2.3). Let V be the schedule T with 7/z replaced by U. Vis a valid
schedule. (Node z does not precede the node = in slot j + 1, since
level (uw) = level(z).) Vis a level schedule. Since V schedules z earlier than §
it gives the desired contradiction.

7

Next suppose 7 is not valid, i.e., level(z) jumps from x to a successor z of
y. let ¥ be in slot & in 7. (So z is in slot k£ + 1.) Let U be an optirnum
level(k + 1)-schedule for the nodes in T/y. Let V be the schedule T with 7/y
replaced by U. V is a valid schedule. (Node y does not precede the node u in
slot & + 1, since level(u) = level(x)—1 = level(y).) If V is level, it gives the
desired contradiction.

If Vis not level then k = 1. (In this case, level(z) has a jumnp in 5 since it
ends in slot 1; it does not have a jump in 7 since it ends in slot 2f + 1) Let w

be the node in the slot before y in V. Let W be V with V/w replaced by an

optimum level l-schedule. ¥ gives the desired contradiction. ®

Lemma 3.5, Let X and 7 be dags where node z ig initial in X, node ¢ is initial in
Y, and X-z =Y-y. Suppose level(z)>levelly). Then for any slot

i, 1=<1=2f + 1, an optimum i-schedule for Y is no longer than one for X,

Proof. Using Lernma 3.4, let 5 be an optimum level i-schedule for X such that

all nodes before z are on level(z) or higher. Let 7 be the schedule .S with node

z replaced by node y (see Figure 3.4), If T is a valid schedule for ¥ the Lemma

")
b

is true. o suppose T is nol valid, Since ¥ ig initi . only viclate a

precedence constraint Y j 4 for some node z with

e

level(z) < level(y) < lewel(z), The choice of § shows that z is not in a slot
before . Soin 7, z ig not before ¥y, whence it is in the slot after . Call this
slot 7. It is easy to see that in §, level(z) jumps to 2. So I'/y =5/2 is a j-

[l

schedule for a dag with fevel (z)—1 levels.
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Let U be an opltimum level j-schedule for 7/y. Let V be T with T/y
replaced by U. Vis a valid schedule for ¥, (Node v does not precede the node
in slot j since the latter is on level(z)~1.) Since V has the same length as § it
implies the Lemnma. #

The next Lemma investigates the situation where there is a choice of nodes

to jump on the same level. Property (2) is illustrated in Figure 3.5,

Lemma 3.8, Let X and Y be dags where node z is initial in X, node y is izﬁtial in
Y, and X-z = Y-y. Suppose level(z) =level(y)=1 Let i be a slot,
l=i1=2f +1, and let A be a sel of abstaining levels. Let § be an HLA i-
schedule for 4 ondag X. Then there is a similar schedule 7 on ¥ with these pro-
perties:

(1) § and T have the same jurnp sequence before I;

() Let X' be the subgraph of X that remains after the execution of level
[(in §), and similarly for Y. Either X' = ¥ or [ jumps a node ¥' in S and z' in

7, such that X'—x' = ¥V'—y",

Proof For succinctness in this argument the term "good schedule” stands for

"HLA i-schedule for A,

Property (1) asserts that any two good schedules for X and Y have the
same jump sequence before I. We will show that if § is a good schedule for X, its
jump sequence before I is at most that of a good schedule for ¥. By symmetry
¥ has a similar property and (1) follows.

So let 5 be a good schedule for X. Let 7T be S with node z replaced by y.
We first show that 7 is a valid schedule unless level { jumps from z to a succes-
sor of ¥,

T can only violate a precedence constraint y i z for a node 2z with



1¢

level(z) < level(y) = . Suppose z is scheduled before ¥y {(in 7). So z is before
z in S. But since § is HLA and x is initial, this implies level(z) = level(z) =1, a
contradiction. So z is scheduled in the slot after z. This means level I jumps

from z to z, as degired.

Before the jump from &, 7 is & valid level {-schedule with abstentions 4.
(Note T is level since level (z) = level(y).) So the jump sequence before I of a
good schedule for Y is at least that of T. This is the same as that of S (again

recall level (z) = lgvel(y)). Property (1) now follows.

To show property (2) consider two cases. First suppose that in 5 no level
above [ jumps below I, Let 7 be any good schedule for ¥. By (1) 7 has the pro-
perty supposed for §. Hence X' consists of the nodes of X below { minus ', the
node (if any) jumped from I, Similarly ¥ consists of the nodes of ¥ below I
minus z', the node (if any) jumped from [, So as in (2), either X'=Y or
Kiwp! = Yy,

The second case is when in & some level f > { jumps below L. By (1)
jurnps below I in any good schedule for V. Bince & is HLA, x is jumped before f.
Similarly v is jumped before f in any good schedule for ¥ Now the argument
for property (1) shows that a good schedule has the same jurmp sequence in X as
in ¥, and that S, with z replaced by v, is a good schedule for ¥. Choosing this

schedule for 7 makes X' = ¥, so () holds. =
low we show the main result.
Theorem 3.1. Assume that A=1. For any dag & and any starting slot

i,1=4=2f + 1, there is a et of levels 4 such that any HLA schedule (for 4) is

eplimurm.

Proof. The proof iz by induction on the number of levels L. If L =1 the

Theorem is trivial, Assume the Theorem holds for dags with fewer than L levels,
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We prove il for dags with L levels as {ollows.

Let S be an optimum level é-schedule. Lel 2 be the last node scheduled in
the execution of level L. By induction asswme that 5/ 2 iz an HLA schedule.
Furthermore choose S so that subject to the above conditions, its jump
gequence ig as high as possible, Let A be the absientious levels for &, ie,
A={|l|levell endsinslot j, 1 <7 <2f, bul { does not jump a node, L.e., the

slot 13

i
or

slot after 7 i

pe

We will show that S is an HLA schedule (for A). Clearly this implies that any HLA

gschedule for 4 is optimum.

Suppose that S does not jump from level L (i.e., either L € 4 or L ends at
slot 2f + 1). The choice of § implies it is HLA for 4, The Theorerm follows. Soin

the rest of the srgument assume that 5 does a jump from £,

Now we argue inductively. We find an HLA schedule T for A, and levels I,
L=1;>1lz>  + > =0, such that the following two properties hold (see Fig-

ure 3.8):

(1) For 1=j =k, 5 and 7 have the save jurnp sequence above I;.

(8) For 1<j <k, S jumps a node y; from I;, 7 jumps a node z; from I,
end X;-z; = ¥;-y;, where X; is the induced subgraph (of G) of all nodes
scheduled after the execution of {; in 5, and similarly ¥; is the subgraph of

nodes scheduled after §; in 7.

Property (1) for § = k gives the desired conclusion.

Start by letting T be an arbitrary HLA schedule for 4. For the base case
{y = L, property (1) is vacuous. For (2) recall that S jumps a node vy, from L.
So X;— z,; is the subgraph of all nodes below level L except for 2, ond y;. The
same description holds for ¥, —y,. (&) follows,

For the inductive step assume (1)-(2) for level I;, where 7 <k. We find a

level &5, satistying (1)-(R) as follows. From (2}, {; jumps

/pin S and z; in
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Since 7T iz an HLA schedule for A, level (:::5) = level(y;). In fact equality
holds. For otherwise lewel(x;) > level(y;). lLet h be the slot after z; (or
equivalently after ;). Let U be schedule T, with 7/ x; replaced by an oplimurx,
HLA A-schedule {for Y;. Buch a schedule exists by induction, although it may
not abstain at the levels in A.) Since level (xj} <{;, Uis a valid level i-schedule.

¥

Further Lemma 2.5 implies U is optimum for . But U shows that & does not
have the highest jump sequence possible, This contradiction shows
level (x;) = level (y;) as desired.

Now Lemma 3.6 can be applied. It shows that § snd 7 have the same jump
sequence above level(z;). Further T can be chosen so that (2) of Lemma 2.6
holds, Using the nolation of Lernma 2.8, either X' = ¥ or X'—z' = Y'~y".

If X' =7 clearly S and T are identical alter level(x;). So take L;,; = 0 and
k =4+ 1 to complete the induction.

It X'—z' = Y'~y', take ;4 = level(z;) and & will be a value >j + 1. So (1)
and (2) hold for &4, (for (2), let vy =y  and z;; = 2", 80 X = X'and Yy = V).

This cornpletes the induction. The Theorem follows, ®

The key to finding the optirnum HLA schedule is in deducing the abstentious
level. We have not succeeded in doing this. Instead we give two simple applica-

tions of the Theorem.

Corollary 3.1. Assume that A = 1 and the given dag has a schedule with no idle

time, The optimum schedule can be found in O{n + m) time and space.
Proof. Apply Theorem 3.1 and Theorem 2.1 with A = ¢, #

Corollary 3.2. Assurne that A= 1 An optimum schedule can be found in

0(2L (n + m)) time and 0(n + m) space (where [, is the number of levels in the
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dag).

Proof. There are 2° possible sets of abstentious levels A. The algorithm finds an

4

HLA schedule for each set, using Theorer 2.1, and selects the shortest, ®

The procf of Theorem 3.1 is easily adapted to show that an HLF schedule is
optimum for identical processors. This derivation is independent from the one

in [G].
Corollary 5.3. For two identical processors any HLF schedule is optimum,

Proof. For identical processors an execution period is cne time unit long with
slots numbered one and two. A nede that iz jumped goes in slot two. The proofs
of the Lemmas and the Thecrem are simpler because slot two does not overlap

the following slot. In Lemma 3.6 and Theorern 3.1 the set of abstentions 4 is ¢, #

The HLA characterization holds only for processor speeds with &4 = 1. When

A > 1 some dags do not even admit an optimum level schedule,

Theorem 3.2. Assume that A =s—f > 1. There is a dag where no level schedule

is optirnurm,

Proof. The argument depends on the relative sizes of 8f and «. The case of
equality does not occur since it implies f =1, & =& and 4 = 1. The other two

cases follow,

Casel. 2 > 5.
Consider the dag of Figure 3.7, It consists of two components § and F. § is
a chain of £ 1 nodes. F has two nodes o, o' that precede a chain of f —1 nodes,
An optirnum schedule has length f&, with no idle time, Py &Kecutes noede o
followed by the nodes of 5. F, execules node o' followed by the remaining

nodes of . This schedule is not level since o and o' are on level f whereas the
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highest level iss~1 > /.

To prove the Theorem it suffices to show that this optimmum schedule is
unigue. First consider a dag consisting of two chains. In a schedule with no idle
(if one exists), each processor executes nodes from one chain for fs time units,

Al this point the processors can switch chaing, but not belors.

Now consider a schedule with no idle time for Figure 3.7, There are thres
cages, depending on the nodes executed at time 0. If @ and o' are executed at
time 0 the preceding observalion implies that the schedule iz the oplinmum
schedule already given. If F, executes node b at time 0 the observation implies

=

that Py executes the entire F' component and F; executes the 5 cornponent,

But F' has only f + 1 < s nodes, leading to idle time on P .

The last case is where Fp executes b at time D. 3o Py executes o al time 0.
If Pr executes o' after b, 8f > & lmplies that Fy executes the rest of 5 while P,
execules the rest of #. This leads to idle time, as in the previous case. If P;

i

does not execule a’ after &, 2f > s implies that F,; executes the entire F com-
1

ponent while F, executes the 5 component. But since 5 has only s~1 nodes

this leads to idle time on Py,

Casell. 2 <=s.

Consider the dag of Figure 3.8, An optimurn schedule has length
w* = min(4f, f + ) First Py executes node o while Py is idle. Then P exe-
cutes node b while P, executes the remaining nodes. Clearly this schedule is

not level,

The optirnum schedule is essentially unique. If F, executes no nodes then
w=5f >w* I F, execules two nodes then w=2s >w* If F, executes one

node, cbserve that any node besides & makes w=s + 2f > w* Utherwise F,
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executes & and the schedule iz the optimurm one deseribed or a minor variant of

it =
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4. THE Al APPEOXIMATION ALGORITHM
This section investigates the strategy of using an eplimum identical proces-
sor schedule for two uniform processors. The worst-case accurscy bound is

g - fg—- As ewpected Lhis approaches one as %a@pmaaheﬁ one. The time and

space to find the schedule are both 0(n + m),

An Al (Approzimately Identicol) schedule T is constructed as follows. First
find an HLF schedule & for two identical processors, Then convert it to 7 A
tirme unit of 5 where one node is executed corresponds to f time units of T
where the same node is execuled on Fy. A time unit of 5 where two nodes are

executed corresponds to § tirne units of 7 where the same two nodes are exe-

¥

cuted, F; execules one node while Fy executes the other node with A units of

idle,

Clearly an Al schedule can be found in O(n + m) time. To derive the accu-
racy bound define these gquantities from the Al schedule:
{ = the number of slots on P scheduled with a node on Fy;

w = the number of slots on P, scheduled with idle on F.
Clearly w = st + fu. The next two Lemmas derive bounds on o™

1.,
lemma 4.1 (»‘L%« et = 2F 4+,

S

" ) \ 1 1
Proof. The optimurn schedule exscutes al most (},wm w;}m* nodes. There are
2t + 1w nodes, so the Lerowna follows, #

lemma 4.2. o2 Lf +uf,

Proof. The Lemma iz proved by decomposing the schedule into blocks

X504 =1,..., B (recall Theorem 2.2). Define the following quantities for a block
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w*(X) = the length of an optimmurn schedule for the nodes of X
£(X) = the contribution to f made by X in the Al schedule;

1 {X) = the contribution to v made by X in the Al schedule,

B B

Observe that w*= ) w*(X;) by Theorem 2.2(b).. Also & +wu = ) t(X;) + u(Xj),
i=1

So it suffices to show w¥(X) = £ {(X)f +u(X)f for every block X.

Thecrem 2.2(a) implies that in the Al schedule Py executes exactly f-%]——»}

{93

- o
nodes of X. So F—%—-L} = £(X) + w(X). Clearly o*(X) = E%*Lif, since a schedule

X e .
executes al least fl-éi«} nodes on some processor, This gives the desired conclu

sion. @

Theorem 4.1 On any dag the Al schedule achieves the bound f%»ﬁ 2~w§~<
]

Proof: Multiply the inequality of Lemma 4.1 by s — f, the inequality of Lemma
4.2 by & ~ %«, and add. This gives (2 — 'gm}w”‘ = §§ + fu. Since the right-hand
side is w the bound follows, =

The bound of the Theorem is tight.

Theorem 4.2. There is a dag where the Al schedule has fgv:: 2 - =§-——

Proof. Consider the dag of Figure 4.1, It consists of a chain of s nodes plus f
isolated nodes. The Al schedule executes a chain node with an isolated node
until all isolated nodes are exhausted, Then it executes chain nodes with idle.

Sow=fs +Af.
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The optimum schedule executes the chain nodes on Fy and the isolated

. & a) j
nodes on Fy, so w* = fs. Thus == 1+ —= 2o ‘ii 2
& &

One way to improve the Al schedule is to compress idle on Fp. When two
consecutive nodes on F; are on the same level, the second node can be
scheduled after the first with no intervening idle. Similarly when a node is
jumped on F,, the node following it on 7 can be scheduled right after its prede-
cessor, The compressed Al (CAT) schedule is the result of applying these rules as

[y

much as possible to remove idle. Observe that if [%] nodes are compressed a
s A {

whole new slot is available on Py. We will not concern ourselves with how this
slot is used since we are only interested in lower bounds and the desired bound
does not depend on it

The CAI schedule has this alternate description. It is a level schedule that
never jumps from processor F, bul otherwise has the highest jump sequence
posaible, {Again we do not specily the schedule al slots that are subsumed and
at slol f +5.)

Figure 4.1 illustrates how compression improves the Al schedule. For
instance when A= 1 the CAl schedule is optimuwm. However we now show thal

compression does not change the worst-case performance.

The lower bound dag has the overall structure shown in Figure 4.2, The
basic component is a "module”. There are m modules, each a copy of a fixed
dag. The modules are arranged in series, lLe., every node of one module pre-
cedes every node of the next. (Figure 4.2 indicates this by heavy arrows
between modules.} The last module is followed by a chain of ¢ mfﬁ@% Every
node of the last module precedes every node of the chain. Finally there are 4

isolated nodes.
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We start with the simple case A = 1.

lemma 4.3, Assume that A= 1and F =4 For any € >0 there s a dag where

&

the CAI schedule has —%;> 2 - Lo €,
) &

Proof. Consider the dag of Figure 4.2 with the module of Figure 4.3, The module
consists of two chains of f nodes each plus an isslaled node. Notice that ignor-
ing the isolated nodes, each level of the dag has one, two or three nodes. Choose
any positive integer r and let the parametersbem =i =rf, ¢ = rs.

Figure 4.4 shows the CAl schedule. (Solid nodes are on levels with one, two
or three nodes and are labelled accordingly. Dotted nodes are the jumped, iso-
lated nodes). Each module is executed as follows: Levels with two nodes end with
idle time on F,. Levels with three nodes jurnp an isolated node. The following
node (which is the first node of the next module or the first node of the chain)
gets compressed. Note the restriction f = 4 implies thal the last slol f + s is
not reached, so there is no problerm about the definition of the CAl schedule,

The modules jump m = 1 isolated nodes. BSo each chain node has an idle
jump on By, Thus @ = m(f +1)s + (¢ +R)J —RBs =m(f+1)s +rfs ~ 2.

Figure 4.5 shows the optirnum schedule. Each module is executed as fol-
lows: P, executes one chain while Py executes the other chain plus the isclated
node. Clearly this fills one execution period with no idle time.

In the rest of the schedule F; execultes the chain nodes while F; execules
the isclated nodes. Since ¢ =ys and i =rf there ig no idle time, Thus

w¥*=mfs +rfs.

1B
. ) } TYLE s s
It is easy to see that ——= 1 + ~—m——c—= 1 + m-m-'ifm, Thig approaches
o Fs{m+r) g :

1 f .
1+ Pt zw'i;—as + approaches <, as desired, ®
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Now we conzider the general case.

‘ AP R . ,
Theorem 4.3. Assume thal Pakdiall S =4, 85 =5 Torany € >0 there a dag

3] _
wheres the CAl schedule has ——> 2 - L e

W

2]

Proof. By Lemma 4.3 assume A > 1. Thus there are subsumed nodes. Observe
that the hypothesis implies %) 4,

Consider the dag of Figure 4.2. Choose any positive integer 7 and let the
parametersbem =rf, ¢ = rshand i = rf (2A-1).

Use the module of Figure 4.6, Teo describe this module define integers
a;, % £j = A as follows:

%y :Uif‘l “*Fijwiifgﬁ —2,1=j <A

ap = f —l(A-1) gmz —1

Note that all g; = 1 since oy = jigwm {:jwi)ﬂg—-»« 3>4-3=1. A module has A sec-

tions. For 7 > 1 the jth section consists of a level of one node followed by oy lev-
els of two nodes, followed by a level of three nodes. For § = 1 the level of one
node is omitted. A node on a level with one or three nodes precedes all nodes
below it in the module (Figure 4.6 indicates this by heavy arrows.) A node on a

level with two nodey immediately precedes only one node on the next level.

Figure 4.7 shows the CAl schedule. Each module is executed as follows: Lev-
els with two nodes end with idle time on Py. Levels with one or three nodes jump
an isolated node. The node on Py after a jumped node gets compressed. So for
j > 1 the jth section of a module begins with four consecutive slots on each of

P; and Fy. Since fé:m:} 4 none of these slots s subsumed or subswming. Jo there

is no problem about the definition of the CAl schedule,
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The modules jumnp (A — 1)m = i isolated nodes. So each chain node has an

b N
idle jump. Thus w = ms(), (aj + 3) ~ 1) + ¢f ~8s+Bf = ms(f +A) + cf —Rs+2f .
j=1
Figure 4.B shows an optimum schedule. Bach module is scheduled in one

execution period as follows: Levels with two nedes jurnp the next level. Levels
with three nodes are scheduled in the three slots preceding a subsumed slot
(and also in the last three slots of the period). Levels with one node are
scheduled in a subsumed slot. A—1 isolated nodes are jumped in the slots on F
that subsume a node.

The numbers a; are defined so that this schedule for a module is valid: In an
execution period, for 1= 7 <A the number of slots on P, strictly between the
(j—1)st and jth subsumed slots is ?}%&I +4 - {?(jmi}%«} + (-1 -1 =a; +2
This is also the number of nodes scheduled on Py between the (j~1)st and jth
levels with one node. Similarly the number of slots after the last ((A-1)st) sub-
sumed slot is & — {f&wl}?}—} + A=1) = o, + 2. This iz the number of nodes
scheduled after the last level with one node. Analogous remarks hold for' Py,
where the jth subsuming node is the [ *gm}ti}. node and @; + 1 nodes are
scheduled between levels with one node. These observations also show that the
schedule obeys all precedence constraints.

The m modules jump m(A—1) isolated nodes, leaving rf A isclated nodes.
These are scheduled with the chain nodes: ¢ = rsA nodes of the chain are exe-

cuted on Fy while the 7f A isolated nodes are executed on 7.

This scheduls shows that w¥ = mfs +ralf. Thus
gy
At &%fwiﬁf_im
) cf —Rs +2f _ . s .
—— ' A < As v approaches = this approaches

w* fg(m%w?*é;}m . &8 i

1+ ésm.:: gmni_,,r %
8 8



Pt

Theorem 4.3. shows that compression does not improve the Al schedule in
the case of interest, where ﬁi}ig close to one. We close this section by noling two
other lower bounds on the CAl schedule’s accuracy. For the purpose of com-

. PR
parison recall 2 ~ {-»zr 1+ P

(i) For any speeds f,s there is a dag where the CAI schedule has

o Bf 5F
9
(ii) Assume that L, *= For any € >0 there is a dag where the CAl
5 £
8 :
L Llsrs ;%gzg
schedule hag —-= —————- € =1+ N €,
A s L
‘ —|f +s —|f +=s
151 1517

(i) is proved by considering a dag that is two chains of f + s nodes each. (ii) is

proved by considering the dag of Figure 4.2-3 where the module of Figure 4.3 has

height {L} Further details are left as an exercise,

A
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&, THE HLF APPROXIMATION ALGORITHM

This section investigates the HLF scheduling rule as an approximation algo-
rithm. When A= 1 and HLF schedule can be found in O(m + nloglog n) time

and O{n + m) space. Two important cases of HLF scheduling are analyzed:

1 d
When == =—the worst-case accuracy bound is ?—w When sz ;g«’«the bound is §~
i & 4 53 5

& 3 . , : o
Urnless }mr: R the Al schedule is more accurate thean HLE.
: Zo

The HLI scheduling algorithm differs from the HLA algorithm because the
slots are not known in advance: The exact slots that comprise the execution of a
level £ depend on the number of idle juraps in levels above £. So the jumps from.
levels I > ¢ must be computed before level {'s jump. This rules out the

approach of the HLA algorithrm.

Nonetheless a similar algorithm worlcs for HLF scheduling. Pass I processes
levels [ in the order I = L, L—1, ..., 1. It finds the level (if any) that [ jumps to.
Pass I finds the specific jumps, A detailed presentaltion of the algorithm is in

Appendix A,

Theorem 5.1, Assume thal A= 1. An HLF sgchedule can be found in

O(m +nlog log n) time and 0(m +n) space.

Proof. Dee Appendix A ®

HLF schedules decompose inte blocks, as in the identical processor case
described in Section 2.
Theorem 5.2. Assume that A = 1.

{8) In an HLF schedule any block X is executed in consecutive lime slots

i, ¢+1, ..., § with no intervening idle timne, Here 1 =4, f <2f +1 and 4 # 2.
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(b} For any block X;, 1 <1 < B, X *Xx o

Proof. In part (a), i # £ since a level schedule never jumps a node in siot 1, The
rest of the proof follows the identical processor case and is in hppendix A, =
The analysis of HLF schedules is done on blocks. Define the following quan-
tities for any block X
w(X) = the length of the HLF schedule for X,
w*(X) = the length of an optimum schedule for X;

ALY = w(X) — w*(X).

If 4 is the first slot of X in the HLF schedule then it gives an i-schedule for X.

@{X) iz defined as the length of this i-schedule, i.e., time 0 is al the start of slot

4. So the length of the HLF schedule is w = ﬁw(}{j), w*(X) is defined as the

i=t
length of an optimum l-schedule for X. This allows both processors to start

simultaneously, unlike w(X). The length of an optimum schedule Is

¥ = fcg*(;‘{g} by Theorem 5.2(b).

Now we analyze the HLF schedule for {: 5 Ihere are six possible shepes

Fut

for a block, depending on the first and last slot. These are shown in Figure 5.1,

Only one shape is nonoptimurm.

Lermmma 5.1. In a nonoptimum block X the first slot is three, the last slot is two

and A(X) =

Proof: Let X be an arbitrary block with 3p + ¢ nodes, 0=g <3. Clearly
w¥X)=2p +g. In Figure 5.1 all shapes for X have w(X} = 2p + g except when
the first slot is three and the last is two. In this case @(X) =2p +3 and

WMX)=Rp + 2. ®
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To analyze the accuracy of the HLF schedule let 1 be the number of nonop-

timum blocks., The bound follows from two inequalities,

Lemma 5.2 (a) o*=2w —1,

3
(b) %—w*:ﬁwﬁwé,

Proof. (a) The number of time units the schedule can decrease is at most the

number of nonoptimum blocks, by Lemmea 5.1.

(b) Observe that there are at least w + 7 nodes: From Figure 5.1 it is clear
that each of the w tirmme units of the schedule can be associaled with a distinct
node in some block. In addition there are 1 nodes not in any block: Every
nonoptimum block starts in slot three. The node jumped in slot two is not in any

block.

) . ) . 3
{b) follows since the optimum schedule executes at most gww* nodes. ®

Theorern 5.8, Assume that Rg—w:: ';3"" On any dag the HLF schedule achieves the
nd Eoe 2
bound e

Proof. Add the two inequalities of Lermma 0.2, ®

Now we show thal the bound of the Theorem is tight.

Theorem 5.4. Assume that i«-x ém For any € > Uthere is a dag where the HLF

P

£ 191 .
gehedule hag > = &,
* 4

Proof: For any positive integer v consider the dag of Figure 52, IL consists of r
repetitions of a module with six nodes. (Node six is on level one but is drawn

higher for clarity. Observe the similarity with Figure 2.1.)
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The HLF schedule is shown in Figure 5.3. Each module iz executed in five

time units, so w = 5. A better schedule is shown in Figure 5.4. Each module

schedules node one of the next module. This shows w*=4r + 1. Thus
) Br . 5

e 2w hich approaches —as v approaches o, ®
o dr 41 PP 4 PP

r_ e

We turn our atlention to the HLF schedule for ;wm = [t hag a different

T2

nature from previous approximate schedules. Regs

eparding the lower bound dags,
recall that in the previous algorithms the optimum schedule has @(1) idle time.
(Indeed this is the case in all other examples for level-Lype scheduling algo-
rithrs [L, LS, G].) We have not found such examples for this algorithm--the dag

that achieves the tight lower bound has 8(w*) idle time.

This property manifests itself in the proof of the upper bound. The previous
schedules are analyzed by inequalities based on the fact that the number of
nodes gives a lower bound on w* Inequalities of this type cannot be tight in dags
with 0(w*) idle time in the optimurn schedule. Hence a different approach must
be used. Qur approach is based on an estimate, derived from the precedence
constraints, of how much © can decrease.

We first investigate how much a block can shrink. For generalily consider
two processors of speeds f and s = f+1, and a block X in some HLF schedule.
Define this quantity from the HLF schedule;

T(X) = %—«+ ﬁ‘“ where i(7) is the number of time units in w(X) when Py (F)

iz not executing a node of X,
In the HLF schedule for X both processors are busy at all time except possibly
during the first slot (if one processor is executing the node jumped before X)
and during the last slot (if one processor ig idle or is executing the node jumped

from X). The quantity 7(X) is the amount of extra work that could have been



done in thess two slots.

e 1 A& £ T - ¥ 4 v }’ 1
lemma 5.3 AX) = T(X)/ (?—1’~ é-}

Proof.If n iz the number of nodes in X then Q?w

}m*f X)=mn. These inequalities imply the Lemma.

. {é%wi}{} =n + T(X) and

1
(s

Table I gives the contribution of each slot to 7(X) when it is the first or the
last slot of X. For instance if the first slot of X is three then during the initial
time unit of this slot Py is idle, contributing gam 7(X). (If X consists of only one

slot, its contribution to 7(X) is the sum of the first and last contributions.)

Lemma 5.4, Let X be a bloci
(a) AX) =R
(b) It A(X) = 2 then slot five is first in X and slot four is last.

{c) If A(X) > 0 then slot three, four or five is first in X.

[
& Ty 1 ? . R " 32 o . P L : x
Proof. Table I shows that T(X) < ;5;», with equalily only when slot five is first and

four is last. Applying Lemma 5.3 gives (a) and (b). For {(2) note that any block
ppiying '

with glot one first is optimum and slot two is never first, =

To obtain a glebal view ol how the schedule can shrink, merge blocks into
“segments”. These are the portions of the schedule between idle jumps: A seg-

ment ¥ consists of consecutive blocks, W = I X, where —; and X, but no
s 4 8 -1 i
gaizt

X;, s =1 >#, end with an idle jump. (Al the boundaries, allow s = F in the first

segment and { = 1 in the last segment.}

Clearly the segments partition the blocks. Each segment starts in slot one

&

of a pariod. Both processors run uninterrupted, jurnping & node between con-
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secutive blocks of the segment, until the last slot of the segment (where an idle
jump may be made). To analyze the length of th: schedule for a segment define

these quantities:
(W) = the length of the HLF schedule for segment W,

w*(W) = the length of the optirmnum schedule for W,

Note that W does not contain the nodes jumped ?f&m the last level of each of its
blocks. So it is possible that w®*(W) < w{W).
Lerama 5.5 For any segment W, w*(W) = fé}-m( W)
Proof. Let W= () X. Set AW)= Y AX) Write w(W)=86p +gq,
: szizt smimt

0= g <86, gop is the number of complete execulion periods in the segment, It
suffices to show that A(W) < p since this implies w*(W) = (W) + A(W)=5p + q.
This is done by assigning each unit of A(W) to a distinet, complete execution
peried of the segrment, as follows.

Consider a block X in W with A(X) > 0. By Lernma 5.4(a) A(X)is Lor 2. If
A(X) = 1 this unit of A{W) is assigned to the period that X starts in. If A(X) =2

these two units of A(W) are assigned to the periods that X starts in and ends in.

Note that units of A(W) are assigned to complete execution periods. For a
period is complete if it contains a node in slot four. Lemma 5.4(b)-{¢) imply this
is the case for all periods assigned to. I remains only to show that a period is
assigned at most one unit of A{W).

Observe that two blocks X, ¥ with A(X), A(Y] } > (0 start in different execution
periods. For suppose otherwise. Lemma 5.4(c) shows that X and ¥ both start in
glots three, four or five. Since X and Y are szeparated by al least a jump node,
the two starting slots are three and five. Hence one of the blocks, say X, conr

sists of exactly one node in slot three. But this implies AMX) =0 a
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contradiction.

Next observe that if AX) = 2 and X ends in period P, then X starts before
P and no other bleck has slots in P. For Lemma 5.4(b) shows that X starts
before F and contains slols one to four of . Slot five of P contains the node (if
any) jumped from X.

The two observations imply that each period-is assigned at most one unit of

A(W), as desired.

Theorem 5.5, Assume thatl o :3“: On any dag the HLF schedule achieves the
& 6

bound ——= —
w* D

Proof. Let the segments o1 the HLF schedule be W;, =5, 8 ~-1,...,1. From

Theorem 5.2(b), W; *W;oy for S=j>1. Hence %m (W;). Clearly
)

w= Y w(W;). Now the Theorem follows from Lemma 5.5, ®
iz

Now we show that the bound of the Theorern is tight,

fod

2 . .
Theorem 5.6. Assume that °§~ = = For any € >» 0thereisa dag where the HLF
w 6 .
schedule hag ——> — - &
w* 0

Proof. For any positive integer v congider the dag of Pigure 5.5, It consists of »

repetition of a module with eight nodes. (As in Figure 5.2 the nodes 7 and B are

on level 1 but are drawn higher for clarity.)

The HLF schedule ig shown in Figure 5.6, Each module is scheduled in six
time units so © = 12», A beller schedule iz shown Figure 57, FEach module
gehedules node 1 of the next module. This shows w*= 10r + 1. Thus

. ler _ & . o N PN
= = which approaches = as r approaches =, (Note as previously men-
w* 10r +1 5 ‘
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tioned the optimum schedule has O(r} units of idle time on Fy.) #
Now we make a simple comparison between the HLI" and the Al schedules.

g éf‘!
When 'ii-:.» —gwthe Al schedule has accuracy 2 - i»«:fw ém We will show that when

[

4 8, ’ - .
éw;: —; =iz a lower bound on the accuracy of the HLF schedule, Hence the HLF
§

o
[

schedule is less accurate than the Al schedule {or ﬂ£~> = and no more accurate

for ‘§~-—‘: % Recall also that the Al scheduling algorithm has a lower time bound.
Hence it is the preferable method.

Strictly spesking the HLF schedule is defined only when A= 1. However

4 . . .
%—2 glmphes that there are no subsumed or subsuming slots among the first
5

o

definition of HLF will behave just like the A= 1 case in these slots, Since the

proof below only uses these slots, we omit the restriction A = 1,

Theorem 5.7. Assume that »ing % There is a dag where the HLF schedule has

Proof. Consider the dag of Figure 4.2 with the module of Figure 5.8, The
module consists of three levels of two nodes each, where each node precedes the
two nodes below it. As in Figure 4.2 these nodes precede all nodes of the next
module. (This is indicated by heavy arrows.) There are also two isolated nodes
in the module. They are exceptions to Figure 4.2 because they do nof precede
the nodes in the next module. (Hence they are on level one of the dag. Note
they are preceded by the nodes of the previous medule.) Choose parameters

m=f.c=2s1x=0.
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Figure 5.9 shows the HLF schedule. Each module is executed as follows:
The first two levels jump the isclated nodes of the module and the third level has
an idle jump on Fp. BEach chain node has an idle jump. Hence
w=4sm + fc = 6sf,

Figure 5.10 shows the optimum schedule. Each module is executed as fol-
lows: Each pair of nodes on a level is executed with idle time on Py, The isolated
nodes of the module are not executed with it. After the modules, the chain
nodes are executed on F; while the isolated noues of all modules are execuled

on ;. Bince ¢ = Zs and there are 2m = Zf isolated nodes, there is no idle time.

= 35 s = 55f . Thus 2= O
So w*=3sm + 2fs = Bsf. Thus mMB‘m

When L<‘Z %«mtha gituation is less clear. Our best lower bound for the HLF

<

schedule is appreciably below the Al schedule’s accuracy 8 ~ *5«: On the other

schedule, in this range. The main case of interest is ’gw':: % {the only

unanalyzed ratio with A = 1. For ngz %thﬁre iz a dag where the HLF schedule

has Y= s
T wt 3s +4f

(this is g‘”fmf‘ '{;—z %} The dag is the skeleton of Figure 4.2

with the module of Figure 5,11, and m = f, ¢ = 5,4 = 0. Further details are left

as an exercise,



6. CONCLUSIONS
We have shown that an optimum HLA schedule exists for two uniform pro-
cessors when A= 1. This gives a linear-time algorithm for finding an optimum

schedule on dags that have a bounded amount of idle time. It would be of some

interest Lo extend this to an algorithmm thet finds an HLA optimur schedule in
polynomial time, regardless of its structure. We have not succeeded in doing

this.

Hefore summarizing the results for approximate schedules we introduce

one more scheme., This is oriented toward processors of disparate speed. An
Approzimately Une Processor (AO) Schedule is any schedule with no idle time on

b= &

5 R

. ) “ , .
Fy. It is easy to see that L;—»f; 1+ ’—waf:;r thiz schedule, since {%;w+
o J

Pigure 6.1 plots the accuracy of the anproximate schedules. The Al
schedule can be found in linear time and has accuracy g — *§~. it iz more accu-

rate than AD when %»: %M. It ig more accurate than HLF when jw:«‘e and

&

U’;ﬁ&

perhaps for other cases. The HLF schedule is defined for A = 1. It can be found

in 0(m + nlog log n) time. It is most accurate for L. %—«mxd %-«

P>
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APPENDIX A, The HLF Algerithm.

This seclion describes an algorithm that construects an HLF schedule for
processors of speeds f and f + 1. The time is O{m + n log log n) and the space
is 0(m + n). The presentation follows that of [G].

The key idea is the notion of "free"” node. Consider a levell. Let (4, ..., i})
be the HLF jump sequence and let (£,, ..., f:q} be the prefix corresponding to the
jumps from levels above {. Loosely speaking the nodes on level I partition into
two types: those that must be jumped to achieve the jump sequence (£, ..., £;)
and those that need nof be jumped. The former are "nonfree” and the latter are
"free”. The jump from level I (if it exists) can be from any free node of L. So to
compute an HLF schedule we must determine the free nodes of I and the highest

possgible jump from a free node of £,

The algorithm consists of two passes. Pass | computes the jump (if any)
from each level [, for I = L, ..., 1. It finds the highest level £ that I can jump to.
If there is more than one node on level { that can be jumped Pass I guesses one
arbitrarily. The guesses allow the free and nonfree nodes to be computed. A
guess may be incorrect, in that a free node must:be used as the from node of a
jump may itself be jumped. Pass Il fixes the bad guesses,

Bad guesses are fixed umng‘ "substitute” nodes. There is a substitute node
on each level £. Any jump to a free node of £ can be rerouted to go to the substi-
tute. The existence of a substitute follows from the definition of free node. Pass

I computes substitute nodes. Pass Il fixes bad guesses by rerouting jumps to go

to substitute nodes.

Now we give a detailed description of the algorithm, beginning with the data
structures. The schedule is specified in arrays FROM and TO. For L =1 =1,
(FROM(L), TO(L)) is the jump from level I. (So FROM(l) and TO(l) are nodes

with level (FROM(L)) =1, level (TO(L)) <l). There are two special cases: If
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O(l) = -1, 1 is not a jumping level; if TO(l} = 0 node FEOM (I} is scheduled with
an idle jump. Clearly these arrays give encugh infoermation to deduce the entire
schedule (in linear time), if desired.

The FROM snd TO arrays can be used to store boll the jurnps that Pass |
guesses and the final jumps that Pass Il comnputes. In an actual implementation
this should be done, However in the prool of correciness it iz desirable to distin-
guish belween guesses and final values. For this reason an array 7 is used for
the guessed TO-values. Pass [ guesses the fo nodes of jumps and stores them in
T. Pass i coples 7 to 70 and then modifies 70 to the final jurnps.

The COUNT array is used to compute when a nede can be jumped. For each
node vy, COUNT (y) is initially the number of immediate predecessors of y.
COUNT (y) is decreased each time a predecessor is executed, When COUNT(y)
{s zero y can be jumped.

& is & priorily gueue used to compute the highest node to jump. An ele-
ment of § is a node, with priority given by it level, The gueue primitives used
are INSERT and EXTRACT~MAX. These are defined as usual [AHU] with one
slight medificationy BXTRACT -MAX finds and ﬁﬁlé&ﬁss the node of highest level
in & The modification is that when there iz a tie the nede deleted is the one
that was inserted most recently, (This life policy is necessary for the proper
computation of substitute nodes). & can be implemented using the data struc-

ture of van Brmde Boas [E], since the priorities are integers in the range 1 ton.

When level I is processed € contains exactly the nodes that can be jumped
from & (after line 10 of the algorithm). Hence the highest jump can be found by
an EXTRACT-MAX operation. (It iz convenient to keep a durnmy node 0 in & to

handle idle jumps. Node 0 is on a fictitious level 0. A jump to 0 is an idle jump.)

READY is » list of nodes where COUNT is zero and hence can be inserted in

@. Nodes are placed in KEADY by an auxiliary procedure SCAN (line 2). Nodes
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are transferred from RFADY to & inlines b and 10, NODAES iz a list of nodes to be
processed by SCAN (see lines 1, 7, 15).

To keep track of free nodes, each node is initially marked "free". The mark
is changed to "nonfree” when groups of nonlree nodes are discovered (line 15).
The SUFB array stores substitute nodes: for each level I, SUB(L) is the substitu-
tion level 1. SUF is cornputed in Pass I (line 8) and used in Pass I (line 18).

The variable slof keeps track of the current slot in the schedule Iis values
range from 1 to 2f + 1. It is updated using the mod% function, where
a mod*b = mod bifb { o, andb ifb | a.

By consulting stof it can be determined whether or not a level has a jump.

The algorithm works as follows., Pass [ processes levels ! in decreasing
order, I = L,..., 1. For each !, SCAN "execules” the free nodes by decreasing
COUNT values. Modes thal can be jumped from § are inserted into &, and the
jurnp from £ is computed. If it is fo a nonfree noede, nodes are marked nonfree
(and SCANned).

Pasgs I processes levels I in increasing order, I =1, ..., L. For each I, &
correct node FROM(L) is found. If FROM (L) happens to be jumped by Pass I, the
jump is switched to go to SUF(L) instead of FROM(L).

Now we give the algorithm in pseudo-Algol. The algorithm computes an HLF

schedule for processor speeds f and f + 1, f = 1.
procedure H; begin
procedure SCAN, begin

1. forax € NODES do

for each edge (z,y) do begin -

2. decrease COUNT(y) by 1,
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it COUNT(y) = 0 then add y to READY,

end end SCAN

Jritdialization:

3. partition the nodes of the dag into levels L, ..., 1; set COUNT(y) to the number of
immediate predecessors of ¥, for each node ¢, set KEADY to contain all
initial nodes of the dag, mark each node ¢ { ee; initialize @ to contain

durmmmy node 0 on level O; siof«(;

Foss [:

4 forlel twl by-1 dobegin

5, remove each node from RFEADY and insert it in &
8, remove the remaining nodes of I from €, comment these are the highest priority

nodes in §; let SUB(L) be the last such node;

7. NODES « the free nodes of level I; SCAN;

B. w « the number of nodes on level I that are not jumped;
slot «(stot +u) mod*(Rf + 1);

9, ifslof =2f + 1 then comment no jump; T{f)«~1
else comment jump; begin

10. fory € READY do

if some free node on ! does not immediately precede ¥ then

remove iy from READY end insert it in &,

11. let y be the highest node in @, T{1)«y,; t«level (y);

i
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13,

486

ify =0 thensiol«0
else begin comunent nonidle jump:
slot eslol +1; remove ¥y {from &,

let & be the highest node in &,
if £ > level(z) then comment the jump is to a nonfree node of £ begin

NODES « the nodes of level { that are jumped and still designated free;
mark each x € NODES nonfres;

SUAN

end end end end Pass [;

Foss 1]

18, forl«l tol do

17.

18.

if 70(1) = 0 then begin

let FEROM(L) be a node on level I, that does not immediately

precede TO()if TO(1) > O;

if FROM(1) = TO(k) for some k then TO(k)eSUB(L);

end end M.

Now we prove that the algorithm iz correct. Let the H schedule be the one

computed by the algorithm, i.e., the level schedule with jumps (FROM(I),

TO(L)), L =1 = 1. The proof is organized as follows; Lemmas A.0-4 give the basic

properties of Pass I. Lemma A5 shows how Pass 1l modifies jumps to get the H

schedule, Corollaries A 1-4 give properties of the H schedule that are analogous

to Lemmas A.1-4. These properties include the facts that A is a valid schedule

{Corollary A.3) and H has an HLF-like property (Corollary A.4). The latter is

used to prove that H is HLF (Lemma A.6) and has a block structure (Lemma
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A.B).

The proof assumes in ils organization that the algorithm runs to comple-
tion. Inspection reveals two places where the algorithmm could conceivably halt
b &5
rematurely: In line & node SUFB(L) might not exist if no nodes are removed
J 4

from @; in line 1B a node FROM{!l) with the desired properties might not exist.

We assume ab the oul

t of the proof that in both ¢ i s node does not exist,

the algorithrm skips to the next line and continues execution. We will see that

1

actually the nodes exist: A remark following Lemma A3 shows SUB(l) exists,

]
and Corollary A.2 shows FROM(L) exists,

The proof treats U as a dummy node on a fictitious level 0, Thus a level I
with TO(I) = 0 jumps to node 0. Similarly an assertion like "lewel (TO(1)) > k"
means TO(l) is a real node, above level k. |

It is easy to see that every node is inserted into & in line 5 or line 10 and
removed from ¢ in line 8 or 13, It is convenient to define a functipn R(y) to
indicate when this occurs. Specifically,

F{y) = the value of Il when ¥ is inserted in &.

Loosely speaking F(y) tells when node y can be jumped. This gives another
characterization of "free"”. Call a node free if it is still marked free at the end of

the algorithmm.
Lermna A0, Anode z is free if and only if F(x) < R (SUB (level (x))).

Proof. For convenience let f = level(z). Let ¥ be the last node (if any) on level

£ that causes nodes of £ to be marked nonfree (in line 15). Observe that the
first node of £ to be inserted in @ after v is removed is SUB(t). (This follows

from the lifo policy used in § for nodes on the same level) Any node z (on level

)
t) inserted after SUB(t) is free and has F(z) < R(SUB({)). Any node z inserted

before SUB(t) is nonfree and has F(z) > R(SUB({t)). =
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The following property of Pass | says that if a level I jumps a free node of a

level { then no subsequent jump from above f goes below {.

Lemma A.1. Let I be a jumping level where node 7(1) is free. Let k be a jump-
ing level where I =k > level (T(L)). Then lewvel(T(k)) = level(T(L)); if equality

holds then 7(k) is free.

Proof. Since T(1) is free, node SUB(level (T(1))) is in @ from levels R{7T(L)) to
tevel(T(1)). Hence all such levels k jurnp to lgvel(7(L)) or higher. Further if
level (T(k)) = level (T(1)) then T(k) is free since SUB(level(T(k)) is in @ at

level kb, =

The next Lemma will be used to show that H respects precedence. It says
that Pass | executes any immediate predecessor of a node y at level K(y) or

earlier,

Lemma A2 If z » y then either level (z) = R(y) or = is nonfree and z = 7'(l)

for some level L > K(y).

Proof. If x -y then z must be scanned before COUNT(y) decreases to zero. If
z is scanned in line 7 then clearly lewvel(z) = KE(y). I z is scanned in line 15
then z is nonfree and is jumped from & level above R(y). »

The next Lemmea will be used to show that FROM nodes exist,

Lemma A3, Let v be a node with R{y) =k for some jumping level k. Then k

contains a free node z, z + y.

Proof. First observe that any level I has a node that is not jumped in Pass I (and
hence is free). This is obvious for I = L. By induclion assume it holds for level
I+ 1, Let v be a free node on level § + 1 and Iet w be a nods on level I with

v »aw, Lemma A.2 shows I + 1= F(w), If w is jumped clearly I + 1 = K{w).
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The test of line 10 shows sorme free node v’ on level { + 1 does not precede w.
So ' precedes a node w' onlevel [, and I + 1 = F(w'). Clearly w'is not jumped.
The observation now follows by induction.

Now we prove the contrapositive of the Lemma. Suppose all free nodes of k

precede y. This it is easy to see from line 10 that R(y) < k. =

Notice that the observation in the proof implies that node SUB(L) always
exists in line 8, so the algorithm does not abort,

The next Lemma essentially shows the HLF property for Pass I To motivate
its statement let I be a jumping level and let z = f(é} The HLF property
implies that any node y above lewel(z) cannot be jumped from I. Thus if
tevel(y) > level(z) and y is scheduled after I then all free nodes of I precede y.
This is Lemma A.4(a). Lemma A 4(b) shows the related fact, that all nonfree
nodes must indeed be jumped, or equivalently, a Iree node vf::armat be substi-

tuted for a nonfree node,

lemma A4, Let ! be a jurnping level. Let ¥ be a node executed after ! by Pass
I, ie., I >level{y) and v # T(k) for any & =, Let z = T'(l) and suppose that

either
(a) lewel(y) > level(z)
or

(b} lewvel(y) = level(z), v is free but z is not.
Then all free nodes of { precede y.

Proof. Iirst note that without loss of generality ¥ has no predecessors executed
after {. For let « be such a predecessor., Il is easy Lo sce thal x satisfles the
hypotheses of the Lemma (in particular, alternative (a}} and the conclusion for

x gives the conclusion for y.
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So any predecessor z of y Is executed

- before or at level {. Suppose
level (x) <!. Sox is jumped from above {. (z is not jumped from ! since z # 2
as level (z) > level (y) = level (2).) Since level | jumps below level(z) all nodes
of level(z) have been removed from & by the time { is processed. So z has
already been scanned. Thus #(y)=1{~-1, and F{y) =I~1 only if the test of line

10 fails, ie., all free nodes of ! precede y. Hence it suffices to show that

To do this suppose the contrary, R(y)=1. This implies that y has been
inserted in @ by the time line 11 is reached for level {. Also ¥ has not been
deleted frorm @, from the hypothesis. Thus level { jumps to lewvel(y) or higher,
i.e., level(z)=>level(y). So alternative (b) holds. Bul if y is free then
SUB(level () is already in § at level I. So z is also free. This is the desired

contradiction. =

Now we examine how Pass Il compules TO-values,

Lemma A5. For any jumping level k, TO(k) is either T(k) or SUB(level(T(k))).

In the latter case T(k) is free. Inboth cases R(TO(k)) = k.

Proof. At the start of Pass Il any value TO(k) is 7{k). Line 1B may change TO{k)
from T(k) to SUB(L) where I = level(7T(k)). This is done only if 7'(k)is free (by
line 17). Further TO(k) is not changed again since the new value is still on
level (T(k)).

It remains only to show R(70(k})=k. Since a node is jumped after it is
inserted in @, R(I'(k))=k. An if 7T(k) is free Lemma AO implies

R{(SUB(level (T(k))) = k. =

Corollary A.1. For any jumping level k, level (T'(k)) = level (TO(k)). T(k)is free

if and only if TO(k) is Iree. 1f T{k) is nonfree then 7'{k) = T0(k). ®
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Now we can show thal the H schedule is well-defined, {.e,, the FROM and TO
arrays specify the jumps of a level schedule. This means first that the FROM

nodes specified in line 17 actually exist; second, no FROM node is itself jumped.

Corollary A.2 For any jumping level [ node FROM(L) exists and is not jumped

(i.e., FROM(I) # TO(k) for any k).

Proof.When lines 17-18 are executed for level i; TO{L) has its final value. By
Lemma A5 R(TO(1)) =1, Soin line 17 node FROM(Z) exists by Lemma A.3. Line
18 ensures that FROM(Z) is not jumped.

The next result shows that the H schedule is a valid schedule, e, it

reapects the precedence conslraints,

Corollary A 3. If x » y then the H schedule completes node z before it starts

node ¥,
Proof: Since His a level schedule the conclusion is clear if v is pot jumped. So
suppose y = TO(l) for some level L.

Lemma A.5 shows R(y)=1. So from Lemmé A2 either level(z) =1 or z is
nonfree and z = T'(k) for some level & > L.

First suppose level(z)=1 Then z is completed before y 'inless z =
FROM(). But the latter is impossible by line 17.

So suppose z is nonfree and z = T(k), & > 1. By Corollary A1 = = TO(k).
So z is jumped before I and the desired conclusion follows, ®

Finally we show a version of the HLF property for I This version is analo-
gous to Lemma A.4, and implies the HLF property and the block structure of the

H schedule.

Corollary A4. Let I be a jumping level. Let ¥ be a node executed after level I in
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the H schedule. Let z = TO(l) be the node jumped [rom ¢, where either
(a) fevel(y) > level(z)
or

(b) level(y) = level(z), ¥ is free but z is not.
Then all free nodes of I precede y.

Proof: It suffices to show that the hypotheses of Lemma A4 hold for ¥ since the

Lemmea has the desired conclusion.

We first show that ¥ is executed after { by Pass . Since this holds for the H

y # T(k) for any k =1. Suppose on the contrary that y = T(k). This means
Pass Il changes TO(k). So vy is free. Lemma A.1 (and Corollary A.1) show
level(z) = level (y). So alternative (b) holds, Now Lemma Al (and Corollary
A.1) show that z is free. But this contradicts (b).

It remains to show that alternatives (a) or (b) of Lemma A4 hold. Each is

implied by its counterpart in Corollary A4, by Corollary A1, ®
Lermma A.8. The H schedule is an HLF schedule,

Proof. Let the H schedule have jump sequence (f;, ..., ). Let § be an arbi-
trary level schedule with jump sequence (s, ..., 8.). We wish to show that
(t1, ..., tx) = (sy, ..., 8,y where = denotes lexicographic order. This is done by
proving inductively that for all 4, 1 =4 = min (k,r),

Q) (tr, . ) = sy 0 sa);

(ii) if equality holds in (i), then in each of the first @ jumps of // and 5, H

jurmps a free node if and only if 5 does.

Note that for any index 1 if inequality holds in (i) then the inductien is com-
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pleted trivially and the desired conclusion follows. On the other hand if (i) holds
with  equality for ¢ =min(k,r) then it is easy lo see that
k=r,(t;, ... 1) = (s, ... 5 and again the desired conclusion follows.

So assume that (i)-(il) hold for indices strictly less thani. We prove (i)-(ii)
for i as follows, As mentioned above we can assume (f,, .., &) = (s,, ..., §;) if
% > 1. This iraplies that the ith jumping level is the same in both schedules, call
it £, lLet the jump from § be from noede z in schedule § and fo node z in
schedule H. (Thus z = TO(l) and fevel(z) = £} We will show that (i) and (ii)
both follow from Corollary A4,

First observe two properties that hiold for both § and

(1) All nonfree nodes of { are jumped from above [.

(2) All nonfree nodes of level(z) are jumped from above 1, if 2 is free.

(1) is obvious for H. (2) holds for H because of Lemmea A.1 and Corollary A.1.
Furthermore (1) and (2) for / imply their counterparts for 5 because of (ii).

Next observe that node z is free. For z is not jumped in S and so it is free
by (1)

Property (i) means that in S, jumps to level (z) or below. Equivalently if g
is & level with I > g > level{z) then S does not jump to g. To show this suppose
H executes b nodes of g before I and o nodes of g after 1. (Of course H does
not execute any nodes of g at level 1.} S executes b nodes of g before I, since
(i) holds with equality. Further if i is a node on level g that &/ executes after I,
then by Corollary A.4(a), z precedes y. (Recall z is a free node of 1.) So S exe-
cutes ¥ after {. Thus & executes o nodes of g after I, No nodes of g remain for
S to jump from . This proves (i).

Property (ii) means that z is free if and only if S jumps a free node of

level(z). If 2 is free, (2) implies that § can only jump a free rniode of level (), as
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desired.

On the other hand suppose that z is nonfree. Let y be a free node of
level(z). H executes y after ! (by Lemma A.1 and Corollary A1), So z pre-
cedes ¥ by Corollary A.4(b). Thus 5 can only jump a nonfree node of level(z),
as desired,

This completes the proof of correctness of algorithm A, Before analyzing
the tirme we show how Corollary A4 also implies the block structure of the

schedule,
Blocks are defined from boundary levels. The boundary levels
I;, 1=1< B+1, are defined as follows: £, = 1. For 4 > 1, L; is the lowest jumping

level such that i; > {;,_, and either

N
fal

(2) & jumnps below Ly, Le., level (TO(L)) > -,

or

(b) I jumps to a nonfree node on l;—;, L.e.

tevel (TO(L;)) = li—y and R(SUB(L 1)) < ;.

Let Iz be the last value defined using the above criteria, and set Igy, =L + 1.
Note that any level L with an idle jump (TO(l) = 0) is a boundary level &. {This
follows from the convention that 0 is a dummy node on level 0.)

For 1 =1 = B, block X, consists of all nodes scheduled after level {4, up to
and inecluding I;, except {or the node (if any) jumped from &. It is easy to see
that X; = { & | Ly > level(z) = 1; and z is not jumped from li4; or above {, Any
node is in exactly one block, except for a node jumped from a boundary level
(which is in no block).

Now we show Lthe block precedence property.

Lemma A7, For a block X;, 1 <i = H, any node z € X; on level [; precedes all
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nodes of X; 4, le., _”?: Xy

Proof. First note that for any block X;, 1 =1 < F, any node z € X; on level {; Is
free. For suppose on the (:Csﬁ'trex}:"y that z is nonfree. So z iz jumped from some
level I. Since z iz on [ it is easy to see that i > [, Bult thenz £ X;, a contrad-
iction.

To show the Lemma take any z € X; on level {; and any ¥ € X;_;. z is free

by the above remark; similarly if v is on §,; it too is free. This shows the

hypotheses of Corellary A4 are satisfled for level {; and node y. Thus z if Yy,

Lemma A.B. Forablock X, 1 <i=<B, X *X_.

Proof. Consider any node x € X;. by Lenuma A6 it sulfices to show that x has a
successor z onlevel {; with 2 € X,

The definition of block shows that lewel(z)>1,. Clearly we can assume

fevel(z) > 1;. So z has a successor 2z on level {;. # is executed after x, whence
after level I, ;. Soz € X; as desired, =

This completes the proof of our first goal:

Theorsmn: 5.2, Assume that A= 1,
(a) In an HLF schedule any block X is executed in consecutive time slots

i, 1+1, ..., 4 with no intervening idle time. Here 1=+, 7=2f + landi # 2

(b) For any block X;, 1 <i <= B, X *X .

Y

Proof. (a) follows from the definition of block. (b) is Lemnma A.B. =

Now we analyze the timing of algorithm /. We show that the @ instructions

use 0(n log log n) time while the remainder of the algorithm is 0(m + n}.
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First we describe some additional data structures. The dag is stored in an
adjacency structure: each node has a list of ils immediale predecessors and a
list of its immediate successors. Level information iz stored in two ways: An
array LEVEL gives the level of each node, i.e., node z is on LEVEL(z). Also each
level has a list of the nodes on that level. This date structure for level informa-
tion is constructed in line 3 when levels are found in 0(n) additional time.

An array 7" indicates when each node is jumped in Pass . More precisely

for each node =, 7'(z) =1 if and only if = = T'({); if z is not a T-value then
T{x) = —1. T'lisinitialized to -1 in line 3 and values are assigned to 7" when 7 is

assigned inline 11. Clearly the total time spent computing 7' is 0(n).

With these data structures it is easy to see that, excluding & operations,
line 10 and line 15, the time is O(m + n), because 0(1) time is spent on each
edge, node, or level: Line 3 finds the levels of the dag by using predecessor lists
in a modified topological sort [Kn]. Line 7 uses the list of nodes on level I to find
the free nodes on !, Line B uses 7' Lo find the number of nodes on { that are not
jumped. Lines 17 finds node FROM(L) by flagging the irmmediate predecessors of
TO(L) that are on level I and finding a free, unflagged node on the list of nodes on
level {. For line 1B, note that FROM{I) = TO(k) if and only if FROM(I) = T'(k). So

line 18 uses 7" to find level &.

Now we discuss the remaining lines 10 and 15, The only hard part of line 10
is the test that some free node on level I does not immediately precede . To do
this the algorithm stores, for each level I, a count of the free nodes on l. This
count is computed when the free nodes of | are accessed inline 7. Line 10 com-
putes the nurnber of free immediate predecessors of ¥ on level 1. This number
is less than the count for I if and only if the test has an affirmative answer. So

the total time spent in the test in line 10is 0(m + 7).
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The only hard part of line 15 is constructing the NODES list. To do this the
algorithm maintains, for each level £, a list of the nodes on [ that are jumped
and still designated free. (Nodes are inserted in the list in line 11 and deleted in

ST

line 15.) Line 15 empties the list for level { into NODES. So the total time asso-

ciated with these lists and line 15 is 0(n),

Finally we discuss the time for operations on &. il is convenient to imple-

o

ment @ as a priority queue over the levels 1, ..., L. A level I iz in the priority
queue when at least one node on level I is in ¢. An entry for [ in the queue
points to a stack of all the nodes on ! that are in ¢. This make it easy to imple-
ment the Fifo deletion policy for &, Also the test of line 14 can be done without
actually finding z.

Every node is inserted into @ in line & or line 10 and deleted in line 6 or line
13. There are L additional FIND-MAX operations in line 11. Hence the total time
for all @ operations is O(n log log n). [E]

Observe that the space is O(m + n) since all data structures use 0(1) space

for each node, edge or level [ER]. Now we summarize the results,

Theorem 5.1, Assume that A= 1. An HLF schedule can be found in

O(m +n log log n) time and O(m +n) space.

Proof. Algerithm H finds an HLF schedule by Lemma A6, The time and space

bounds follow from the above discussion. #
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