EASE -~ AN EXTENSIBLE ABSTRACT STRUCTURE EDITOR
by

Deborah A. Baker

CU-CS-250-83 July, 1983

*Department of Computer Science, University of Colorado,
Boulder, CO 80309 USA



Abstract

This paper describes EASE, an Extensible Abstract Structure Editor. EASE
is Extensible as it is not based on a particular language, nor does it require that
the language be defined at the outset. It is a Structure Editor as it builds a
derivation tree, not flal text. Finally, it is an Abstract Structure Editor as the
trees it builds and maintains may be constructed from an abstract syntax (one
devoid of syntactic sugar).



FASE — An Bxtensible Abstract Structure Fditor
Deborah A. Baker

Department of Computer Science
University of Colorado

Campus Box 430

Boulder, Colorado BO309

Abstract

This paper describes EASE, an Extensible Abstract Structure Editor. EASE is
Extensible as it is not based on a particular language, nor does it require that
the language be defined at the ocutset. It is a Structure Editor as it builds a
derivation tree, not flat text. Finally, it is an Abstract Structure Editor as the
trees it builds and maintains may be constructed from an abstract syntax (one
devoid of syntactic sugar).

Key Words

syntax-directed editing, programming environments, software development



1. Introduction

This paper describes EASE, a syntax-directed editor. FASE is different from
most editors in its genre in that it allows simultaneous development of a
language and utterances of that language. That is, it is not a syntax-directed
editor for any predetermined, fixed language. EASE is an Abstract Structure
Editor as it builds and maintains derivation trees based on an abstract syntax as
opposed to either derivation trees based on a concrete syntax or flat text. EASE
is Extensible as it is not based on a fixed language. Thus, EASE is an Extensible
Abstract Structure Editor.

EASE is a first step in building a software engineering environment which will
support an evolutionary approach to software development. A software product
is traditionally viewed as developing in distinet phases, which are collectively
known as the software life cycle. This life cycle framework has proved useful in
goftware engineering; the identification of distinct activities composing the life
eycle served as a focal point in addressing the "software crisis” and in establish-
ing software engineering as a field of study. However, the distinction between
phases of the software life cycle is somewhat arbitrary; a strict adherence to the
separation may serve to obscure the similarities among phases. With the para-
digm of evolutionary development, software development takes the form of uni-
form, small steps, each of which is verified to move the system in the desired
direction.

A software engineering environment is a collection of tools which support
software development activities. Such a collection of tools should be well
integrated to work cooperatively in assisting development. Since the use of a
specification language is a common feature of requirements capture and prelim-
inary and detailed design, the convenience of such use becomes an important
factor. Our primary goal in building EASE was that it would become a common
editor for statements in these various specification languages. By designing
EASE without dependence on a fixed, predetermined language, a system
designer has the flexibility of a notation and vocabulary that can evolve in step
with the design.

BASE was also developed to meet goals common to all syntax-directed editors,
The use of a syntax-directed editor prevents the generation of syntactically
incorrect text. The use of an editor which allows the user to manipulate the syn-
tactic elements of the language in use will help the user conceptualize the

structure of the developing text. EASE was written in C under Berkeley UNIXL

The Cornell Program Synthesizer (CPS) [5,6] is a programming environment for
developing (originally) PL/CS programs. Versions for other languages have been
produced. The syntax-directed editor of the CPS is different from EASE in
several important respects. CPS is used with a fixed, pre-delermined language.
It is not intended for developing vocabulary and notation simultaneously with
statements. CPS provides facilities for compilation, execution and debugging of
programs with its use. Thus it is meant for developing the code for a program
but not for developing other renditions of it, such as specifications or designs.
CPS is similar to EASE in that it does not require that the entire tree be derived,
but allows low level syntactic entities (such as expressions) to be entered as text
to avoid the tedium of long chains of derivations. Phrases entered in this way
must be parsed before being added to the structure tree.

1NIX is a trademark of Bell Laboratories.



The Incremental Program Environment (IPE) [2], part of the Gandalf project [1],
is similar to CPS in that it is intended for the development of programs. IPE has
a syntax-directed editor and facilities for incremental compilation, program
execution and language-oriented debugging. The syntax-directed editor of IPE
does require that the entire tree be derived, rather than allowing text to be
entered at a low level. An ALOE (A Language Oriented Editor) generator [3] is
also part of the Gandalf project. Given a gramnmar, the ALOE generator produces
an ALOLD for that language described by the grammar. This is similar to EASE in
that an editor could be generated for any language. It is different from EASE in
that EASE allows dynamic development of a language concurrently with its use;
this is especially important for supporting the interactive development of
problem-oriented abstractions.

The remainder of this paper is organized as follows. Section 2 contains an
overall description of EASE and more detailed descriptions of each of the modes
of operation. Section 3 consists of an example. Conclusions are drawn and the
paper is swnmarized in Section 4.

2. BASE

EASE is a structure editor. A structure editor manipulates the syntactic units of
the language. Thus, instead of building flat text, a structure editor builds a
derivation tree. A derivation tree differs from a parse tree in that it is built
directly rather than being the result of a parse. EASTE builds abstract derivation
trees in which everything thal exists in an equivalent fiat listing (such as semi-
colons) may perhaps not exist in the tree and in which operand/operator rela-
tionships are clear. Using the concrete syntax of the language, the correspond-
ing flat text can be generated from the tree.

EABE is also cdaptable or extensible. It is possible to specify and extend the
constructs of the language for which this is a structure editor. The language is
specified with an extended BNI notation. The grammar is context free, but is
not restricted to any particular parsing class such as LL or LR, It may be ambi-
guous, New productions may be added to the grammar interactively during a
derivation,

EASE operates in several modes: grammar, utterance and management. In
grammar mode, productions are added to the current gramumar and display
templates for each production are developed. In utterance mode, phrases in the
language defined by the current grammar may be made, {Note that since every
nonterminal of an abstract structure corresponds to a meaningful operation,
EASE does not assume the existence of a distinguished rooct symbol.) The usual
editing functions for travel and modification are provided. In management
mode, the format in which trees and grammars are presented is controlled.
There are several distinct types of objects manipulated by BASE: grammars,
derivation trees, and user profile information. Though modeless editing is
increasingly popular [4] the variety of objects manipulated by BASE has led to
the several modes of operation. Another approach would be to used moded
menus.

In a typical use of the editor, the system designer may be using a specification
language to develop the specifications of a system. The system designer first
"views" the existing specification tree. The editor's attention is directed to a
particular node in the tree. The designer invokes a particular production and



the tree is modified accordingly. The language as defined up to some point may
become inadequate. Instead of invoking a command to medify the specification
tree, the designer invokes a command to add a grammar production.

2.1. Grammar Mode

The language for which EASE is a structure editor is determined by the current
grammar. A grammar is a set of productions. ach production has three parts:
a name, a left hand side (a nonterminal) and a right hand side (a sequence of
nonterminals and semantically significant terminals such as constants and
identifiers). Once a parser is introduced to allow low-level syntactic entities to
be entered directly rather than derived, it will likely impose some restrictions
on the grammar, depending on the parsing technique used.

Associated with each grammar is one or more sets of display templates; each get
of display templates has one display template for each grammar production,
The display templates supply both the syntactic sugar necessary for a concrete
syntax and the format in which instances of a production are to be shown Lo the
user,

In Figure 1 there is a grammar production for an abstract data type, a possible
display template for the production, the abstract syntax defined by the produc-
tion, the concrete syntax defined by the production and the template, and,
finally, the display of an instance of an abstract data type. The notation
<nonterminal>, is a shorthand for "at least n occurrences of <nonterminal>",
In particular, <nonterminal>y corresponds to the Kleene star and <nontermi-
nal>; to plus. The convention is to list multiple oceurrences of a nonterminal
one under another. A further display convention is that a nonterminal appear-
ing once on the right hand side of a production may appear more than once in
the display template; the instances of a nonterminal appearing more than once
must be disambiguated.

The deletion of a production from a grammar is not allowed in FASE once utter-
ances have been built using the grammar. If there were a derivation tree
depending on a production that is deleted, that derivation tree would become
invalid. Another approach to avoiding the problem of invalid trees would be to
record which productions of a grammar have actually been used, and only allow
deletion of those that have not been. A third approach would be to keep a count
of dependencies on each production and allow deletion of those productions
whose dependency count is zero. Fither of these last two approaches would be
more flexible if utterances were associated with versions of a language.

2.2, Utierance Mode

In utterance mode, BASE allows a user to build, traverse and maintain abstract
derivation trees. A derivation tree is similar to a parse tree. Derivation trees,
however, are constructed, while parse trees result from the application of a
parser to a statement in the language. Fach internal node of a derivation tree
corresponds to what will be called an expanded nonterminal symbol. Each leaf
nede corresponds to either a terminal symbol or what will be called an unex-
panded nonterminal symbol. An expanded nonterminal symbol is one for which
a further derivation has been made by the application of an appropriate



Production:
Name: adt
Left Hand Side: <abstract data type>
Right Hand Side: <name> <sort>; <signature>, <equation>g

Display Template:
<namme> = abstract data type with
sorts
<sort>;
signatures
<signature>,
equations
<equations>g
end <name>

Abstract Syntax:
<abstract data type> ::= <name> <sort>; <signature>, <equation>g

Concrete Syntax:
<abstract data type> = <name> = abstract data type with
sorts <sort>,
signatures <signature>,
equalions <equation>; end <name>

Instance:
stack = abstract data type with
sorts
tlist of sorts of type stack}
signatures
tHist of signatures of type stack]
equations
{list of equations of type stack]
end stack
Figure 1

production. An unexpanded nonterminal symbol is one for which no further
derivation has been made, The children nodes of an internal node are the
tokens on the right hand side of the production used to expand the node. The
parent node of a node corresponds to the left hand side of the production from
which the node was derived.

Each node in a derivation tree has seven flelds: pointers to its parent,.leftmost
child, left sibling, and right sibling, a nonterminal or terminal symbol, a produc-
tion name, and a label (see Figure 2). The sibling pointers may be nil. The
leaves of the derivation tree correspond to unexpanded nonterminal symbols.
The leftmost child pointer is therefore nil for leaves of a tree. The parent
pointer will be nil only for the root node of a tree. The nonterminal/terminal
fleld is mandatory. 1f it contains a nonterminal, that nonterminal is the left
hand side of every production that may be used to expand it. For internal
nodes, the production name field contains the name of the production used to



expand the nonterminal. For leaf nodes, the production name field is empty.
For nodes that have been explicitly named, the label field contains that name:
otherwise it is empty.

Iiditors typically operate with respect to a current position. In EASE this
current position is a current node. If the current node is unexpanded (a leaf),
an inquiry may be made so that EASE lists all the currently applicable produc-
tions. An applicable production is one whose left hand side is the same as the
nonterminal in the current node. In Figure 3 there is an example of an unex-
panded node whose nonterminal is <abstract data type>. Suppose the produc-
tion named adt from Figure 1 is chosen from the list of applicable productions.
The result of the expansion is shown in Figure 4.

Travel functions in EASE operate with respect to the current node. The editor’s
attention is directed to another node which becomes the new current node.
Most of the travel functions provided by EASE are tree-oriented. The editor's
attention can be directed to the root of the tree or the parent, leftmost child, or
left or right sibling of the current node. The editor's attention can also be
directed to a node which has previously been given a label (name). Finally, the
editor's attentions can be directed by searching for a given terminal, nontermi-
nal or production.

There are several ways a modification of a derivation tree may be accomplished

leftmost child parent
left sibling right sibling
nonterminal /terminal
production name
label

Figure 2

< T

N\ N\

abstract data type

Figure 3




A A
absiracl dala type
adt
/
N
N AL N\ NN
A 5 — AN
name sort sighature equation
Figure 4

in EASE. The most basic modification mechanism is to expand an unexpanded
nonterminal by the application of an appropriate production. Subtrees may be
clipped, named and saved and then grafted elsewhere in tree, provided that the
nonterminal at the root of the tree is the same as the nonterminal at the leaf
node where the graft is to take place. Named subtrees may be copied or moved.
An expanded node may be unexpanded or collapsed by deleting or moving the
subtree of which the node is a root,

2.3, Management Mode

In management mode, the user of EASE manipulates what could be termed "user
profile” information. If & grammar has more than one set of display templates
defined for it, the user may choose among them. Also under user control are

the number of levels of the tree above and below the current node that are to be
displayed. This is a measure of the amount of detail that is to be displayed.

The operations of management mode are perhaps the most lacking in the
current version of EASE. Planned additions are operations to set and change
key bindings, to query EASE about the name and creation date of the current
grarnmar during an editing session, and tc query EASE about the utterances
associated with a given grammar. Another planned addition is the option to
retain or reset the current locus when leaving each mode.



3. An Example

In this section FASE is used to develop a specification language for abstract data
types and to specify the type stack of integers in the developing language. In
this case, the type stack of integers is an utterance in the specification
language. For the sake of brevity in this example, the specification language will
be small and simple, and the descriptions of mode switching, naming produc-
tions, and supplying display templates will be suppressed. Detailed descriptions
of the specification tree being built will also be suppressed; the specification
tree will be shown as formatted text that might result from a particular set of
display templates. The system designer might immediately enter the following
initial production, knowing that an abstract data type has a name and sets of
sorts, signatures and equations,

<abstract data type> 1= <name> <sort>; <signature>, <equation>g
The following preoductions might then be defined.

<name> ;.= <identifier>

Lgort> »= <identifier>

<signature> .= <operation> <domain> <range>
<pperation> ;= <identifier>

At this point, the designer might begin specifying the type stack of integers.
The following specification is the one that exists after the initial node is
expanded and the name of the data type is filled in. The display template used
is from Pigure 1.

stack of integers = abstract data type with
sorts
<sort>,
signatures
<signature>;
equations
<equalions>g
end stack of integers

There are several design paths that the designer might now follow. The gram-
mar could be expanded {there are no expansions for <equation>, <domain> or
<range> yet), the sorts of the type could be given, or, as shown below, the
names of the operations could be given.

stack of integers = abstract data type with
sorts
signatures
emptly: <domain> -> <range>
push: <domain> -> <range>
pop: <domain> -> <range>
top: <domain> -> <range>
isempty: <domain> -> <range>
equations
end stack of integers

The designer could next define expansions for <domain> and <range> and then
continue the definition of stack by finishing the signature and supplying the



sorts.

<domain> ::= <sort>y
<range> = <sort>

stack of integers = abstract data type with
sorts
boolean
integer
stack
signatures
emptly: -> slack
push: stack x integer -> stack
pop: stack -2 stack
top: stack -> integer
isempty: stack -> boolean
equalions
end stack of integers

Finally, <equation> must be defined, and then the stack of integers may be com-
pleted. '

<equation> ;= <lefl side> <right side>
<left side> 1= <term>

<right side> = <term>

<term> ;= <operation> <arguments>
<term> = <identifier>

<arguments>» = <lerm>

<arguments> = <identifier>,

stack of integers = abstract data type with
sorts
boolean
integer
stack
signatures
emply: -> stack
push: stack x integer -> stack
pop: stack -> stack
top: stack -> integer
isemply: stack -> boolean
equations
isempty(empty) = true
isempty(push(s,i)) = false
pop(empty) = error
pop(push(s,i)) = s
top{empty) = error
top(push(si)) =i
end stack of integers

4. Conclusions

This paper presents BASE, an extensible abstract structure editor. This system
gives the systemn designer the advantages of a syntax-directed editor as well as



the flexibility to build the language in use. However, a software tool is almost
useless without a suggested discipline of use. It is expected that a stable metho-
dology being supported by EASE will result in a relatively permanent language.
This is analogous to a stable system having stable specifications. Until a particu-
lar application is sufficiently well understood, the language in use to specify pro-
grams in that application will tend to change periodically. For a particular pro-
ject, it could be that the language is specified at the outset by an EASE expert.
EASE would then appear to be an abstract structure editor with a fixed

language.

Display templates in FEASE are basically semantic valuations which compute sig-
nals to drive display devices. In order to turn EASE into a more comprehensive
tool for software development, however, it must be interfaced with a more
powerful semantic metalanguage. This will allow more sophisticated semantic
views such as (in the case of programming languages), execution, data flow, and
verification condition profiles. As an example of the anticipated usefulness of
such a tool, note that interactive, symbolic debugging can be accomplished by
opening two windows on a program, one showing an execution profile and the
other the scurce text,

The current version of FASE is a prototype. The Environments Research Group
at the University of Colorade intends to experiment with it and continue its
development. Some planned extensions to EASE were discussed in Section 2.9.
Further extensions include a graphics interface and macro capabilities.

Acknowledgments

Hal Eden, David Gill, Hell Gill and Jon Shultis were instrumental in originating
and developing EASE. This project could not have been accomplished without
the aid of the Software Development Workshop at the University of Colorado,
Boulder. The participants of the workshop were Craig Adler, Richard Cobb,
Robert Kambic, Corning Lahey, Michael Schweitzer and Mark Wagner. Special
thanks to Rick Cobb for his continuing interest in the development of EASE and
to Hal Eden, Helen Giil and Jon Shultis for their comments on early versions of
this paper.

References
1. A N. Habermann, An Overview of the Gandalf Project, Computer Science

Research Review, Carnegie-Mellon University, Pittsburgh, Pa. {1979).

2. R Medina-Mora and P. H, Feiler, "An Incremental Programming Environ-
ment," JEEE Transactions on Softwaere Fngineering SE-7(5) pp. 472-4B2
(Sept, 1981),

3. R, Medina-Mora and D. S, Notkin, ALOF Users' and Implementors’ Guide,
Department of Computer Science, Carnegie-Mellon University, Pittsburgh,
Pa. (Nov. 1981). «

4. N. Meyrowitz and A. van Dam, "Interactive Editing Systerns: Parts 1 and 1I,"
Computing Surveys 14(3) pp. 321-415 (Sept. 1962).

6 T, Teitelbaum and T. Reps, “The Cornell Program Synthesizer: A Syntax-
Directed Programming Fnvironment,” Communications of the ACHM
24(9) pp. 563-573 (Sept. 1981).



16

6. T. Teitelbaum, T. Reps, and S. Horwitz, "The Why and Wherefore of the Cor-
nell Program Synthesizer,” PFroceedings of the ACM Symposium on Text
Marnipulation, pp. 8-16 (June 1981).



