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Abstract

This paper describes a hybrid table lookup / exact calculation method (TLEC) for calculat-
ing both protein energies and energy gradients. The tables used are relatively small and contain
the expected non-bonded and coulombic interaction energies and energy gradients between com-
ponents of residues which form the protein. The protein energy is calculated using both these
tables and exact computation of the actual energy when components are close enough such that
their relative orientation gives a wide range in the possible energies. A similar technique is
applied to the energy gradient calculations required by most local optimisers. Computational
results comparing local optimisers implemented using both the complete CHARMM energy and
energy gradient calculations and the TLEC method are presented. These results show that the
use of TLEC results in a speedup of protein energy calculations by a factor of 6.0, gradient
energy calculations by a factor of 3.1 and local optimisations by a factor of 4.5 while still giving
comparable results.
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1 Introduction

Proteins play an essential role in almost all biological processes by acting as enzymatic catalysts,
providing transport and storage mechanisms, enabling coordinated motion, mechanical support
and immune protection, generation and transmission of nerve impulses and controlling growth and
differentiation. All proteins consist of a sequence of amino acids, of which only twenty different
forms exist. Amino acids consist of an amino group (NHJ ), a carboxyl group (COO™), a hydrogen

atom H, and a distinctive R group (side chain) bonded to a carbon atom C, (Figure 1).
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Figure 1: Generic amino acid. Twenty different amino acids exist differing only in the composition
of the R side-chain.

In proteins, the carboxyl group of one amino acid is joined to the amino group of another
amino acid by a peptide bond (Figure 2). As the peptide bond is a partial double-bond, there is
no rotation possible around this bond and the structure of the protein may be specified in terms of
the rotation about the pure single bonds between the two carbon atoms and between the carbon

and nitrogen atoms.
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Figure 2: Protein containing 3 residues (an amino acid unit in a protein is usually referred to as a
residue). For larger proteins, the residue outlined by the box is repeated a number of times.

The sequence of residues (the primary structure of the protein) determines how the protein will
act as a catalyst and also appears to determine the three dimensional structure of the protein (the

tertiary structure) [1]. The tertiary structure is important as it appears to be a critical determinant



of the biological function of the protein. The problem of determining the tertiary structure of the
protein, given its primary structure, is usually referred to as the protein folding problem and has
attracted considerable interest from researchers over a number of years [2].

Currently there are two major analytical methods which have been used in attempts to solve the
protein folding problem. The first, molecular dynamics, employs standard Newtonian physics to
model the creation of the tertiary structure. Inherent problems with this method are the accuracy of
the equations when applied at the atomic level and the timescales involved. For accurate simulation,
timesteps of the order of 107!® seconds are required however, for proteins, times of the order of
1071 — 103 seconds need to be simulated. Currently, times of the order of 1078 have been achieved.

The alternative method of global optimisation uses the observation that the tertiary structure
of the protein is nearly always that which corresponds to the global minimum of the potential
energy for the protein. Thus the protein folding problem can be viewed as a global optimisation
problem where the objective function to be minimised is the potential energy of the protein and
the parameters of the problem are those which determine the physical structure of the protein.

Inherent problems with this method are:

e developing an efficient global (as distinct from local) optimiser which is able to solve a problem

of this magnitude.

¢ modelling the potential energy as a function of the structure of the protein. While there do
exist models of varying degrees of accuracy, the more exact require considerable computational

effort to calculate the protein potential energy.

e the extremely large number of local minima present on the potential energy hyper-surface.
This appears to be exponentionally proportional to the degrees of freedom of the system [3]

and makes locating the global minimum an extremely difficult problem.

As described in [4], a wide range of global optimisation methods have been applied to the
protein folding problem. Generally they all have the common characteristic of requiring a large
number of energy calculations. In addition some of these methods incorporate the use of a local
optimiser which, to be efficient, requires that the gradient of the protein energy be calculated.

This paper addresses the problem of reducing the computational requirements of calculating the
potential energy and energy gradient fdr the protein. First we describe the CHARMM model [5]
of protein energy and present an overview of existing methods for reducing the computational re-
quirements of calculating protein energy. Next the hybrid table look-up / exact calculation (TLEC)

method used in this study is described and results obtained for calculating protein energies, energy



gradients and local optimisations uéing both the CHARMM and TLEC are presented. Finally
a summary and conclusion describes how TLEC may be incorporated into a global optimisation

method in conjunction with the CHARMM model.

2 CHARMM Protein Energy

In the CHARMM model, the energy F of a protein is calculated as:

E=) B+ Ey+) E,+) E,+Y By (1)

where

o B, =35 ksl —1lp)?is the energy due to stretching/contraction of chemical bonds within the
protein (ly is the natural bond length, [ is the actual bond length and k; is a constant which

depends on the bond type).

e Ep = Y ko(6 — 0p)? is the energy due to changes in bond angles away from their natural
values. (f is the natural bond angle, @ is the actual bond angle and kg is a constant which

depends on the bond type).

o £, = Y V{14 scos(nw)) is the energy associated with rotation around the N — C, and
Ca — C bonds of each residue in the protein (w is the dihedral angle which measures the
amount of rotation about the bond and Vj is a constant which depends on the atoms involved
in the bond).

o By = Y e((rm/r)' — 2(ri/r)8) is the Lennard-Jones energy associated with interactions
between non-bonded atoms (r is the distance between the atoms while € and 7, are constants

which depend on the atom types).

o Fe =3 qiqj/Dry; is the coulombic energy between non-bonded atoms (g is the charge asso-

ciated with each atom and r is the distance between the atoms).

As an example of the computational requirements in calculating protein energy using this model,
for the alanine 58—mer, the number of atoms = 572, bonds = 571, bond angles = 1,026, dihedral
angles = 341, 1-4 interactions = 1,416 and non-bonded pairs = 160,293. Clearly the dominant
computational element in the calculation of the protein energy and energy gradient is the com-
putation of the Lennard-Jones and coulombic contributions for the non-bonded pairs (in fact it

accounts for almost 99% of the total processor time used for both calculations).



The first simplification used by almost all global optimisation methods that have been applied
to the protein folding problem is to assume that bond angles and bond lengths remain constant
and the only variables are the two dihedral angles per residue. While this substantially reduces the
degrees of freedom in the optimisation problem it only produces a marginal decrease (< 1%) in the
processor time for computing protein energies and energy gra,dientsk.

A number of global optimisation methods have been implemented which substantially reduce the
non-bonded computational requirements of the energy calculation. These mainly consist of reducing
the degrees of freedom in residues by using a simplified geometric representation, smoothing the
potential energy hypersurface by the use of an average potential energy function and using heuristics
to reduce the conformational space (3, 6, 7]. The fundamental assumption of these methods is that
the basic folded structure of a protein is relatively insensitive to the fine details of atomic interactions
and an average field interaction potential should be sufficient to account for the overall folding of

a protein.

3 TLEC Protein Energy and Gradient Calculations

This study takes a different approach to those described above and investigates the feasibility of
implementing a table look-up mechanism to reduce the computational requirements in calculating
the protein energy and energy gradients. The overall goal of our study is to provide fast energy
and energy gradient calculations that are sufficiently accurate so that a local optimiser using these
calculations will find structures that are close to those found by a local optimiser using the exact
energy and gradient calculations.

As a first step, rather than calculating the energy by summing over all atom pairs, a summation
at the residue level was investigated. If this were possible, then for an 'alanine n-mer, the com-
putational requirements of Calculating energy and energy gradients would be reduced by a factor
of approximately 100. Clearly the interaction energy between two residues depends both on the
distance that they are apart and also their relative orientation. A measure of the relative orien-
tation can be determined by, for example, measuring some number of distances between selected
points on the two residues. These distances could then be used as indices into a multi-dimensional
energy look-up table. However, even if only just three distances are measured, given the resolution
required in the distance measurement, the size of the energy look-up table for residue—residue
interaction is of the order of 4 Mega-bytes for each possible pairing of residues. As there are 20
different residues, up to 400 such energy tables may be reqﬁired (totalling 1.6 Giga-bytes in size).

In addition, there is a requirement for gradient tables of similar size. Clearly this approach is not



feasible with current technology (while possibly all energy tables could be memory resident, they
would certainly not be cache resident). ,

As a variation on the use of residue—residue energy look-up tables, a method of only using them
at distances greater than some lower bound was investigated. As shown in Figure 3 for alanine
(the protein used in this study was alanine 58—mer), if the centre of masses of the two residues are
separated by more than 12.8 A then the range of possible interaction energies is less than unity.
This suggests that using an energy look-up table, when the distance between the residue centre of
masses is greater than 12.8 A | will only have a minimal effect on the final accuracy of the calculated
protein energy. The energy look-up table is indexed only by the distance between the centres of mass
of the interacting residues, and contains the average sampled energy for each distance (resolution
0.1 A). This gives a maximum error of £0.5 for each residue—residue interaction and, as there is
a significant number of randomly orientated residue pairs for which the energy look-up table will

be used for during each protein energy calculation, the error in the final protein energy should be
minimal.
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Figure 3: Randomly sampled residue interaction energies as a function of the distance between
the residue centres of mass. The curves show the average, maximum and minimum energies found

over a large number of random samples of component orientations. The lower bound of the residue
energy look-up ‘table is shown by the ‘.’ line.

The next logical step is to consider each residue as consisting of a number of smaller components



and obtain the inferaction energy of two residues by summing the interaction energies of these
individual components. As for summation at the residue level, thére is a distance below which an
exact calculation must be performed (because of the range of energies which the relative component
orientations can produce). However it is reasonable to expect that this distance will be less than
the 12.8 A of the residue—residue energy look-up table. This is the basis of the TLEC method
used in this study and is now described in more detail:

In TLEC the calculation of protein energy is subdivided into two categories:

e Chain Energy - the total energy arising from elements that are physically close in the

protein chain.

» Interaction Energy - the total energy arising from elements that not physically close in the

protein chain (but which may be close in space).

The chain energy is identical to that described in (1) above with the basic exception that the
Lennard-Jones and coulombic portions are only summed over atom pairs that are within the same
or adjacent residues. However, for simplicity, all interactions involving atoms within the first and
last residue were also calculated as part of the chain energy.

The interaction energy is calculated for each residue pairing not included in the chain energy

calculation as follows:

e If the distance between the centres of mass of the two residues is greater than 12.8 A then

the residue—residue energy look-up table is used.

e If the distance between the centres of mass of the two residues is less than 12.8 A each residue
is considered to consist of three components, the N + H, C, + R+ H and C + O groupings
(referred to as NH, CRH and CO in the remainder of this paper).

— If the distance between the centres of mass of the two components is within the lower and
upper bounds of the component energy look-up table then it is used. These energy look-
up tables, indexed by the distance between the centre of mass of the two components,

4 give the expected potential energy arising from the interaction of all atoms of each
component. The expected potential energy contained in the energy tables is obtained
by sampling, over a large number of random orientations, the potential energy between

components.



— If the distance between the centre of mass of the two components is less than the energy
table lower bound then an exact calculation is performed to obtain the interaction energy

for the two components.

— If the distance between the centre of mass of the two components is greater than the

energy table upper bound then the component interaction is ignored.

In this study, the component energy table lower bounds were defined as that distance where
the difference between the maximum and minimum energies obtained during the sampling process
exceeds unity (Table 1). From this table it is clear that these energy tables can be used at a distance
considerably less than the 12.8 A cut-off distance for the residue—residue look-up energy table.

For the alanine 58—mer protein, the number of TLEC energy tables required is seven and each
energy table is approximately 1.5 Kild«bytes in size. For a more typical protein, nine energy tables
per possible unique residue pairing are required giving a maximum possible size of (400 * 10 *
1.5) Kilo-bytes = 6 Mega-bytes for the energy tables (as compared to the 1.6 Giga-bytes for the

multi-dimensional energy table described above).

Interacting components Energy table lower bound (A)

NH - NH 6.5
NH - CRH 6.1
NH -CO 8.8
CRH — CRH 5.8
CO—-CRH 8.1
CO-CO 8.5

Table 1: Component energy look-up table lower bounds. Each lower bound is the distance between
the centre of masses of the components at which the possible variation in interaction energy exceeds
unity.

Figure 4 shows the distribution of energy as a function of the distance between the centre of
mass for each of the components of alanine.

Gradient tables were obtained by least-squares fitting a polynomial of degree eight to each of
the average curves shown in Figure 4. This polynomial was then differentiated and the resulting
equation used to generate tables containing the contribution to the energy gradient of each com-
ponent to component pairing. The lower and upper bounds for the gradient tables were the same

as those used for the corresponding energy table.
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Figure 4: Randomly sampled residue component interaction energies as a function of the distance
between the component centres of mass. The curves show the average, maximum and minimum
energies found over a large number of random samples of component orientations. In each plot the
lower bound of the corresponding energy look-up table is shown by the *-.” line.
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4 Computational Results

Using alanine 58—mer as the test case and 1000 sampling runs, results were obtained by comparing
CHARMM and TLEC energies and processor times taken for protein energy calculations, gradient
calculations and final protein energy obtained using a local optimiser. The local optimiser used was
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm contained in [8]. The variables used to
specify the structure of the protein were the dihedral angles (i.e. all bond lengths and bond angles
V;/ere assumed to remain constant). In both CHARMM and TLEC, calculation of protein energies
and energy gradients required calculation of the cartesian coordinates of all atoms and, in the case
of the energy gradients, transformation back to gradients with respect to these dihedral angles.
For the protein energy and energy gradient calculations, two types of alanine 58—mer configu-
rations were used. The first was simply a configuration generated by randomly generating dihedral
angles in the range 0...2m. The second type of configuration used was obtained by taking a

randomly generated configuration and performing a local optimisation on it.

4.1 Enmnergy Calculations

The results obtained are summarised in Table 2 where the average processor time required for a
CHARMM energy calculation is 5.96 times that of a TLEC energy calculation (for a randomly
generated protein). For proteins that were randomly generated and then locally optimised the cor-
responding ratio is 6.32. In both experiments, less than 10% of component—component interactions

needed to be calculated exactly.

Protein CHARMM TLEC
Configuration Mean STD  Mean STD
Random 0.4020 0.0007 0.0674 0.0094

Optimised 0.4017 0.0007 0.0635 0.0040

Table 2: Mean and standard deviation of processor times for CHARMM and TLEC energy calcula-
tions. The random protein configurations were as randomly generated while the optimised protein
configurations were initially randomly generated and then locally optimised.

As expected there is very little variation in the processor times taken for the CHARMM energy
evaluation while there is more variation in the TLEC energy calculation. This is a direct result of
the variation in distances between components in different configurations allowing more or less use

of the table look-up mechanism.
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Figure 5 shows the correlation between the CHARMM and TLEC energies for alanine 58—mer

configurations that were initially randomly generated and then locally optimised.

800 T T T T T T T T T

600 o~ -

400} ‘ - .
-

n
j=3
(=]
T
]

or R
-200F B

-400F -

CHARMM protein energy

-600} B

—-800}F , ;.f -

-1000 - -

_1200 1 1 L i i Il 1 - 1 i
-1200 -1000 -800 -600 -400 -200 0 200 400 600 800
TLEC protein energy

Figure 5: Correlation between TLEC and CHARMM energies for randomly generated then locally
optimised alanine 58—mer configurations. The correlation coefficient is 0.9999.

4.2 Gradient Calculations

The results are summarised in Table 3 where the average processor time required for a CHARMM
energy gradient calculation is 3.18 times that of a TLEC energy gradient calculation (for a ran-
domly generated protein). For proteins that were ra,ndorhly generated and then locally optimised
the corresponding ratio is 3.14. This ratio is somewhat lower than that obtained for the energy
calculations because the additional coordinate transformations involved in the gradient calculation

must be performed in both CHARMM and TLEC.

Protein CHARMM TLEC
Configuration Mean STD  Mean STD
Random 0.6737 0.0008 0.2118 0.0139

Optimised 0.6564 0.0010 0.2092 0.0064

Table 3: Mean and standard deviation of processor times for CHARMM and TLEC energy gradient
calculations. The random protein configurations were as randomly generated while the optimised
protein configurations were initially randomly generated and then locally optimised.
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4.3 Local Optimisations

Two experiments were performed to evaluate the use of the BFGS optimiser using CHARMM
energies and gradients as compared to TLEC energies and gradients. The first experiment started
from a randomly generated alanine 58—mer (almost always with a high energy) while the second
was done starting with a very low energy alanine 58—mer which had been modified by randomly
changing two consecutive dihedral angles. This second experiment simulates the effect of a random
local change to a low energy protein commonly used by global optimisers. |

For the first experiment, Figure 6 shows the correlation between the final CHARMM and
TLEC BFGS optimised energies. The mean of the TLEC final energies (after recalculating using
CHARMM) is -255.10 while the mean of the CHARMM final energies is -263.67. Figure 6 also shows
the correlation between the processor times required for CHARMM and TLEC BFGS optimisations.
The mean of the TLEC processor time is 66.73 seconds with a standard deviation of 20.22 seconds.
For CHARMM, the mean BFGS processor time is 306.23 seconds with a standard deviation of
106.04 seconds. On average a CHARMM BFGS optimisation requires 4.6 times more processor
time than that required for a TLEC BFGS optimisation.
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Figure 6: Correlation between TLEC and CHARMM final BFGS optimised energies and processor
times starting from a randomly generated alanine 58—mer configuration.

For the second experiment, Figure 7 shows the correlation between the final CHARMM and
TLEC BFGS optimised energies. The mean of the TLEC final energies (after recalculating in
CHARMM) is -1,500.10 while the mean of the CHARMM final energy is -1,514.40.

Figure 7 shows the correlation between the processor times required for CHARMM and TLEC

12
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Figﬁre 7: Correlation between TLEC and CHARMM final BFGS optimised energies and processor
times starting from an optimal alanine 58—mer configuration with 2 random changes to consecutive
dihedral angles.

BFGS optimisations. The mean 'of the TLEC processor time is 52.27 seconds with a standard
deviation of 23.48 seconds. For CHARMM, the mean BFGS processor time was 234.24 seconds
with a standard deviation of 70.55 seconds. On average a CHARMM BFGS optimisation requires
4.5 times more processor time than that required for a TLEC BFGS optimisation.

4.4 Effect of Chain Energy Calculations

In the experiments described above, only the interactions between adjacent residues were included
in the exact chain energy calculation. Clearly the chain energy calculation can be extended by
including all interactions where residues are separated by less than some ‘pairing depth’ (and
removing these calculations from the interaction energy calculation of TLEC).

The following measurements (using alanine 58—mer with 100 sampling runs) were performed

to determine the effect of the pairing depth:

e average processor time to calculate the energy and energy gradient for randomly generated

configurations (Figure 8).

e average processor time and average final energy for locally optimising randomly generated

configurations (Figure 9).

e average processor time and average final energy for locally optimising an optimal configuration

for which 2 consecutive dihedral angles had been randomly modified (Figure 10).
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As can be seen from these figures, the extra overhead in the calculation of the chain energy is
relatively small. The improvement in the accuracy of the TLEC calculation is shown in Table 4

where the average difference in protein energy calculated using both TLEC and CHARMM are
tabulated.

0.45

14
IS
T

0.6

(=]

o 1)

w &
o
o

o
< )
Ry ot

14

ks

Average processor time

f=3
Py
o

" Average processor time

o [=3
N w

©
o

I

o
o
5]

(=]
o

3 4 5 6 7 8 9 0 1 2 3 4 5 8 7 8
Chain energy pairing depth Chain energy pairing depth

=)
b
[N

Figure 8: Average processor time to calculate the energy and energy gradient for randomly gener-
ated configurations of alanine 58—mer (‘**> = TLEC, ‘0’ = CHARMM).

Chain Energy Average Difference in
Pairing Depth TLEC & CHARMM Energies
1 16.6772
12.9308
11.7581
8.7261
6.7235
- 5.4367
- 4.5866
3.8850

CO =3 O U i W N

Table 4: The average difference in protein energy as calculated by both TLEC and CHARMM.

These results suggest that in some cases it may more appropriate to use a chain energy pairing
depth greater than unit. In fact early tests show that to obtain the alpha-helix structure for alanine

n—mer, a chain pairing depth of four is required.
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Figure 9: Average processor time and averége final energy for locally optimising randomly generated
configurations of alanine 58—mer (> = TLEC, ‘0’ = CHARMM).
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5 Conclusion

This study demonstrates that it is possible to quickly calculate protein energies and energy gradients
with sufficient accuracy for optimisation purposes using a combination of table look-ups and partial
exact calculation. The speedup factors are significant and suggest that the method could usefully
be employed within & global optimisation method to be obtain low energy protein structures which
could subsequently be optimised using a complete exact calculation of protein energy and energy

gradient. Work is currently in progress in incorporating TLEC within a genetic algorithm.
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