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Thesis directed by Prof. Dr. Jem N. Corcoran

Accurate and efficient tracking of objects through frames of a video is important in a wide

range of areas including suveillance, military, and medical imaging applications, as well the under-

standing of social interactions of biological populations such as swarming insects. In this thesis, we

review some of the most popular deterministic template matching algorithms for tracking, includ-

ing the seminal Lucas-Kanade algorithm. We also review a Monte Carlo method and introduce a

simple probabilistic algorithm for parameter learning. Additionally, we offer some inprovements

for existing algorithms, including a template stabilizer, formed from a principle components anal-

ysis, and an additional stopping rule for iterative attempts at matching that improves the speed

of existing algorithms and in some cases results in better accuracy. Existing and new methods are

compared on simulated images and on real video. In several cases, R code is provided.
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Chapter 1

Introduction

Tracking an object through a sequence of video frames is a task of obvious importance in

many diverse areas including biology on the micro and macro levels (for example tracking animal

migration or movements of particles within a cell), sports tracking, and military applications. In

this thesis we explore popular deterministic gradient descent algorithms, for which we offer some

small performance enhancements, and a probabilistic algorithm using a Monte Carlo method known

as a “particle filter”. Comparisons for all approaches are given using real video.

We began the project seeking to improve existing algorithms for tracking multiple targets

within a sequence of video frames. As we progressed, it became clear that algorithms for tracking

even a single target are often inadequate and so we instead focused our attention there. Tracking

a target object from frame to frame is an image alignment problem that aims to minimize the

error between a template of pixels representing the object from one frame and a mapping of that

template to the next frame using a “warp function” which is used to describe things like translation,

rotation, and skew as the object moves from frame to frame. This thesis will explore several

popular existing algorithms, including their enhancement with principle components analysis for

creating more robust templates, and in some cases offer subtle improvements that leverage statistical

approaches as well as analyses of empirical distributions of “error images”.

On the deterministic side, a gradient descent template matching algorithm known as the

Lucas-Kanade algorithm, introduced in 1981 ([9]) is arguably the mostly widely used technique in

computer vision today. The Lucas-Kanade algorithm sparked the creation of many similar algo-
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rithms, including the so-called “compositional alignment” and “inverse compositional alignment”

algorithms [4] which in many cases are faster and more widely applicable. We discuss all three in

Chapter 2. In Chapter 3 we discuss shortcomings of these gradient descent based methods when

applied to real video.

In [8], Kahn, Bach, and Dellaert build a tracking model, especially suited to the tracking of

multiple targets at once, using the Monte Carlo method of particle filtering which we describe in

Chapter 4. We compare the performance of this algorithm to the inverse compositional alignment

algorithm and to our proposed modified version of the inverse compositional alignment algorithm,

which is designed to help stabilize the target template we are searching for from frame to frame,

by guarding against random walks towards tracking failure caused by compounding error between

frames.

In Chapter 5 we compare the performance of all of the algorithms and also introduce an

additional histogram based measure of error in template matching that can be used to force an

earlier declaration of a match in all of these iterative algorithms and therefore computational

savings. Furthermore, we will see that this additional stopping rule will sometimes even avert

tracking failure.



Chapter 2

Template Matching: The Lucas-Kanade Algorithm and Variations

Our goal in target tracking will be to follow an object or “template” through a sequence of

video frame images. This is typically complicated by changes in appearance of the object over time

as well as other factors such as background noise, lighting and image intensity. Our assumptions

will include that the time between subsequent video frames is very small and that the object is

not moving in an overly erratic manner. In other words, we expect to find the object in some

neighborhood of where is was in the previous frame with a near constant template.

In this Chapter, we will first consider the ideal case where the object from “frame 2” is

lifted directly from frame 2, as in Figure 2.1, so that an exact match between the template and its

position within the image can be found.

Notation

Let ~x = (x1, x2)t be a pixel position relative to some coordinate system. For example, we

may work in the Cartesian coordinate system, which has the origin in the lower left corner with the

x1-coordinate increasing to the east and the x2-coordinate increasing to the north. Standard image

processing convention, which we will call “image space”, places the origin in the upper left corner

with x1 increasing to the east and x2 increasing to the south. A third (programmatically) convenient

coordinate system puts the origin in the upper left corner with the x1-coordinate increasing to the

south and the x2-coordinate increasing to the east. We will call this “matrix space” since if the

pixel locations are labeled, pixel (i, j) appears in the ith row and jth column. Pixel labeling for all
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Figure 2.1: An Image and Template Pulled from the Image

(a) Template (b) Image
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three spaces are depicted for a 4 by 3 pixel “image” in Figure 2.2. Unless otherwise specified, we

will use the Cartesian coordinate system in this thesis.

Figure 2.2: Pixel Locations for Different Coordinate Systems for a 4 by 3 Pixel Image

(a) Cartesian Space

(1,4) (2,4) (3,4)

(1,3) (2,3) (3,3)

(1,2) (2,2) (3,2)

(1,1) (2,1) (3,1)

(b) Image Space

(1,1) (2,1) (3,1)

(1,2) (2,2) (3,2)

(1,3) (2,3) (3,3)

(1,4) (2,4) (3,4)

(c) Matrix Space

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

(4,1) (4,2) (4,3)

2.1 The Lucas-Kanade Algorithm

Let T (~x) denote the color stored (an RGB triple or a number between 0 and 1 in the case of

a greyscale image) at pixel location ~x = (x1, x2) in an h× w template. (We assume a rectangular

template here but it may be an arbitrary shape. All sums in this chapter, unless otherwise specified,

are taken over all pixel locations in the template.) Let I(~x) denote the color stored at pixel location

~x in a larger image. The Lucas-Kanade (LK) algorithm [9] is a gradient descent method that

attempts to align a template patch to its proper position in the image given a close initial guess. It

is one of the most widely used techniques in computer vision today. In the case of video tracking,

the initial guess for finding an object (template) in an image for any particular frame will be the

object’s location in the previous frame.

Define a warp function, W (~x; ~p), for a vector of parameters ~p ∈ Rn, that takes a pixel ~x

in the coordinate frame of the template and maps it to pixel location W (~x; ~p) in the coordinate

frame of the image. For example, a simple translation warp with shift parameters ~p = (p1, p2) is

defined as

W (~x; ~p) =

 x1 + p1

x2 + p2

 (2.1)
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and depicted in Figure 2.3. Other commonly used warp functions in target tracking include ro-

tations, “rigid” warps (translation and rotation together), affine warps (translation, rotation, and

resizing– good for tracking 3D motion or changes in perspective), and shearing warps.

Figure 2.3: A Translation Warp from Template to Image with p1 = 2 and p2 = 3

The specific goal of the LK algorithm is to minimize, with respect to ~p, the sum of squared

errors between the color values of the pixels in the template and those in the full image at pixels

defined by the warp. That is, we aim to minimize

SSE :=
∑
~x

[I(W (~x; ~p))− T (~x)]2 (2.2)

with respect to ~p.

Pixel Interpolation

It is important to note that we only have image information I(x1, x2) at integer values of x1

and x2 and yet W (~x; ~p) does not necessarily take values in Z2. In the case, for example, that we

need to evaluate the image value at the point (2.7, 4.2), we would really like the value somewhat

northeast of pixel (2, 4). To this end we use the weighted average of immediate surrounding pixels

I(2.7, 4.2) := (0.3)(0.8) · I(2, 4) + (0.7)(0.8) · I(3, 4) + (0.3)(0.2) · I(2, 5) + (0.7)(0.2) · I(3, 5),



7

or in general,

I(x1, x2) = (1− frac(x1))(1− frac(x2)) · I(bx1c, bx2c)

+ frac(x1)(1− frac(x2)) · I(bx1c+ 1, bx2c)

+ (1− frac(x1))frac(x2) · I(bx1c, bx2 + 1c)

+ frac(x1)frac(x2) · I(bx1c+ 1, bx2 + 1c)

where frac(x) := x− bxc is the fractional part of x ∈ R.

The LK algorithm, which is a Gauss-Newton gradient descent non-linear optimatization

algorithm, assumes that a current estimate of ~p is known and iteratively solves for increments

∆~p by minimizing

SSE1 :=
∑
~x

[I(W (~x; ~p+ ∆p))− T (~x)]2 (2.3)

with respect to ∆~p and updating ~p← ~p+ ∆~p until ||∆p|| ≤ ε for some predesignated ε. The non-

linear SSE1 is first linearized by performing a first order Taylor series expansion on I(W (~x; ~p+∆~p))

to give

SSE1 ≈
[
I(W (~x; ~p)) +∇I ∂W

∂~p
∆~p− T (~x)

]2

. (2.4)

Here, ∇I = (Ix1 , Ix2) =
(

∂I
∂x1

, ∂I
∂x2

)
is the gradient of image I evaluated at W (~x; ~p) and ∂W/∂~p is

the warp Jacobian

∂W

∂~p
=

 ∂W1
∂p1

∂W1
∂p2

· · · ∂W1
∂pn

∂W2
∂p1

∂W2
∂p2

· · · ∂W2
∂pn

 (2.5)

where W1 and W2 are the two components of the warp function.

Approximating the Image Gradient

We estimate components of the image gradient in this discrete pixel setting as

∂I

∂x1
=
∂I(x1, x2)

∂x1
= lim

∆x1→0

I(x1 + ∆x1, x2)− I(x1, x2)

∆x1
≈ I(x1 + 1, x2)− I(x1 − 1, x2)

2
(2.6)
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and

∂I

∂x2
=
∂I(x1, x2)

∂x2
= lim

∆x2→0

I(x1, x2 + ∆x2)− I(x1, x2)

∆x1
≈ I(x1, x2 + 1)− I(x1, x2 − 1)

2
. (2.7)

To compute the image gradient at border pixels, we define a repeating border with I(0, x2) :=

I(1, x2), I(x1, 0) := I(x1, 1), I(h+ 1, x2) := I(h, x2), and I(x1, w+ 1) := I(x1, w). Image gradients

for Figure 2.1(b) are shown in 2.4.

Figure 2.4: Image Gradients

(a) Ix1 (b) Ix2

Minimizing (2.4), with respect to ∆~p, is a least squares problem with a closed form solution.

Taking the derivative with respect to ∆p, we get

2
∑
~x

[
∇I ∂W

∂~p

]T
[I(W (~x; ~p)) +∇I ∂W

∂~p
∆~p− T (~x)]

set
= ~0.

Solving for ∆~p gives

∆~p = H−1
∑
~x∈T

[
∇I ∂W

∂~p

]T
[T (~x)− I(W (~x; ~p))] (2.8)



9

where H is the (Gauss-Newton approximation to the) Hessian matrix defined as

H =
∑
~x∈T

[
∇I ∂W

∂~p

]T [
∇I ∂W

∂~p

]
. (2.9)

From (2.8) we see that the LK algorithm requires that the chosen warp must be differentiable

with respect to the warp parameters ~p.

In summary, the Lucas-Kanade algorithm is as follows.

Algorithm 1 Lucas-Kanade Algorithm

• Start with an initial estimate of ~p.
• Set an error tolerance ε > 0.
• Set ||∆~p|| to an arbitrary value greater than ε.

1: while ||∆~p|| > ε do
2: Compute I(W (~x; ~p)).
3: Compute T (~x)− I(W (~x; ~p)).
4: Compute ∇I = ∇I(W (~x; ~p)).
5: Compute S := ∇I ∂W

∂~p .

6: Compute
∑

~x S
T [T (~x)− I(W (~x; ~p))].

7: Compute the Hessian H =
∑

~x∈T S
TS.

8: Compute ∆~p using (2.8).
9: Update the warp parameters as ~p← ~p+ ∆~p.

10: end while

I(W (~x; ~p)) is an h×w matrix containing pixel colors from the image at the current guess for

the template position. I(W (~x; ~p))− T (~x) (or T (~x)− I(W (~x; ~p)) when convenient) is known as the

error image. ∇I(W (~x; ~p)) is a 1× 2 vector of h×w matrices containing values from the gradient

images (as in Figure (2.4)) at the current guess for the template position. S is a 1 × 2 vector of

h × w matrices representing steepest descent images. For the translation warp given by (2.1),

the Jacobian ∂W/∂~p is the identity matrix and S = (S1, S2) where S1 = Ix1 and S2 = Ix2 are

simply the image gradients.

The Hessian is the 2× 2 matrix

H =
∑
~x

 (S1(~x))2 S1(~x)S2(~x)

S1(~x)S2(~x) (S2(~x))2

 =

 ∑
~x(S1(~x))2

∑
~x S1(~x)S2(~x)∑

~x S1(~x)S2(~x)
∑

~x(S2(~x))2

.


So, for example, the (1, 1) entry of the Hessian matrix is the sum of the squared pixel color values

in the first steepest descent image.
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The Lucas-Kanade algorithm is illustrated for a simple translation warp to find the template

in Figure 2.1a in the image in Figure 2.1b starting with a close initial guess. R code is given in

Appendix A. Results are shown in Figure 2.5.

2.2 The Compositional Alignment Algorithm

The compositional alignment (CA) algorithm, which first appeared in [5], is a template

matching algorithm that is similar to the Lucas-Kanade algorithm but instead, updates the warp

function directly as the composition

W (~x; ~p)←W (~x; ~p) ◦W (~x; ∆~p) = W (W (~x; ∆~p); ~p) (2.10)

as opposed to additively updating the parameters ~p. Specifically, the goal is to minimize

SSE2 :=
∑
~x

[I(W (W (~x; ∆~p); ~p))− T (~x)]2 (2.11)

with respect to ∆~p and update the warp function via (2.10), ||∆p|| ≤ ε,f for some predesignated ε.

Due to (2.10), we require that the set of warps used must be closed under composition. As

with the LK algorithm, SSE2 is estimated and linearized using a first order Taylor series expansion,

this time on I(W (W (~x; ∆~p); ~p)), about ∆~p = ~0. Specifically,

SSE2 ≈
∑
~x

[
I(W (W (~x;~0); ~p)) +∇I(W (~x;~0))

∂W

∂~p
∆~p− T (~x)

]2

. (2.12)

Here, ∇I(W ) is the gradient of the image in the current template region defined by the warp. We

will estimate this using (2.6) and (2.7) on I(W ) as with the Lucas-Kanade Algorithm. ∂W/∂~p is

evaluated at (~x;~0).

To proceed in describing the CA algorithm, we need to make the assumption that W (~x;~0)

is the identity warp. That is, we need to assume that W (~x;~0) = ~x. This may restrict us from

using certain warp functions but can often (if it is not naturally the case) be achieved by a simple

reparameterization. The goal then is to minimize

SSE2 ≈
∑
~x

[
I(W (~x); ~p)) +∇I(W (~x;~0))

∂W

∂~p
∆~p− T (~x)

]2

. (2.13)



11

Figure 2.5: Iterations Through Lucas-Kanade Algorithm; Pure Translation

1 Initial Guess 4 7 10 13

16 19 22 25 28

31 34 37 40 43

46 49 52
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with respect to ∆~p.

Taking the derivative with respect to ∆p, we get

2
∑[

∇I(W )
∂W

∂~p

]T
[I(W (~x; ~p)) +∇I(W )

∂W

∂~p
∆~p− T (~x)]

set
= ~0.

Solving for ∆~p gives

∆~p = H−1
∑[

∇I(W )
∂W

∂~p

]T
[T (~x)− I(W (~x; ~p))] (2.14)

where H is the Hessian matrix given by

H =
∑[

∇I(W )
∂W

∂~p

]T [
∇I(W )

∂W

∂~p

]
. (2.15)

In the LK algorithm, the gradient ∇I is evaluated at the warp W (~x; ~p) which is changing

as ~p is updated with ~p ← ~p + ∆~p. Here, it is evaluated only once at W (~x;~0). Overall, the two

algorithms can be shown to be equivalent in the case that the warp is invertible. We refer the

reader to the very comprehensive summary provided in [4].

The Compositional Alignment algorithm is summarized as follows.

Algorithm 2 Compositional Alignment Algorithm

• Start with an initial estimate of ~p. (And thereby an initial estimate of the warp function.)
• Set an error tolerance ε > 0.
• Set ||∆~p|| to an arbitrary value greater than ε.
• Evaluate the Jacobian, ∂W/∂~p at (~x;~0) at all pixels ~x in the template.

1: while ||∆~p|| > ε do
2: Compute I(W (~x; ~p)).
3: Compute T (~x)− I(W (~x; ~p)).
4: Compute ∇I(W ), the gradient of the warped image.
5: Compute S := ∇I(W )∂W∂~p .

6: Compute
∑

~x S
T [T (~x)− I(W (~x; ~p))].

7: Compute the Hessian H =
∑

~x∈T S
TS.

8: Compute ∆~p using (2.14).
9: Update the warp as W (~x; ~p)←W (~x; ~p) ◦W (~x; ∆~p) = W (W (~x; ∆~p); ~p).

10: end while

R code is given in Appendix A for a simple translation warp. Note that the Jacobian is the

identity matrix and is not featured in the code. Furthermore, for the warp (2.1), W (W (~x; ∆~p); ~p) =

W (~x; ~p+ ∆~p) so it appears that we are just updating the parameters as in the LK algorithm.
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2.3 The Inverse Compositional Alignment Algorithm

A third closely related, and rather groundbreaking algorithm due to [3], is known as the

inverse compositional alignment (ICA) algorithm. The ICA algorithm (a generalization of an

algorithm due to Hager and Belhumeur [7]) utilizes a change of variables to invert the roles of

the template and image. A major advantage is that one only needs to compute a single Hessian

matrix and can bypass computing the inverse Hessian more than once. Not only is this a significant

savings computationally, but it can be useful in images where the “moving” Hessian is often not

invertible such as in pure black and white (as opposed to more nuanced greyscale) images that we

will consider later in this thesis.

Consider (2.11) as an approximation to∫
T

[I(W (W (~x; ∆~p); ~p))− T (~x)]2d~x (2.16)

where T defines the template region continuously in R2.

Using the change of variables ~y := W (~x; ∆~p), (2.16) becomes∫
W (T )

[I(W (~y; ~p))− T (W−1(~y; ∆~p))]2
∣∣∣∣∂W−1

∂~y

∣∣∣∣ d~y. (2.17)

where W (T ) = {W (~x; ∆~p) : ~x ∈ T}.

With the same compositional alignment assumption that ~p = ~0 gives the identity warp, one

can show ([3]) that ∣∣∣∣∂W−1

∂~y

∣∣∣∣ = 1 +O(∆~p).

Under the assumption that I(W (~y; ~p))− T (W−1(~y; ∆~p)) is O(∆~p), (which is basically saying that

the current parameter vector is approximately correct), the first order term in the Jacobian can

essentially be ignored. Furthermore, the integration domain W (T ) is approximately T to a zeroth

order approximation. Thus, (2.17) is approximately∫
T

[I(W (~y; ~p))− T (W−1(~y; ∆~p))]2 d~y. (2.18)
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The specific goal of the inverse compositional alignment algorithm is to iterate and to mini-

mize the sum of squares error

SSE3 :=
∑
~x

[I(W (~x; ~p))− T (W (~x; ∆~p))]2 (2.19)

with respect to ∆~p in each iteration, at the end of which, the warp is updated as

W (~x; ~p)←W (~x; ~p) ◦W (~x; ∆~p)−1. (2.20)

SSE3 is almost the discrete version of (2.18) except that the inverse on the warp function in

(2.18) is missing in (2.19). Baker and Matthews ([3]) argue that I(W (~y; ~p))− T (W−1(~y; ∆~p)) and

I(W (~y; ~p)) − T (W (~y; ∆~p)) are equivalent to a zeroth order approximation, which is not entirely

surprising under the assumption that W (~x;~0) is the identity warp.

From (2.20), we see that it is necessary that the family of warps under consideration form a

group with respect to composition. As for the Lucas-Kanade and Compositional Alignment algo-

rithms, one proceeds by performing a first order Taylor series expansion, this time on T (W (~x;∇~p))

which gives

SSE3 ≈
∑
~x

[
I(W (~x; ~p))− T (W (~x;~0))−∇T ∂W

∂~p
∆~p

]2

. (2.21)

Minimizing (2.21) with respect to ∆~p gives

∆~p = H−1
∑
~x

[
∇T ∂W

∂~p

]T
[I(W (~x; ~p))− T (~x)] (2.22)

where ∂W/∂~p is evaluated at (~x;~0), ∇T evaluated at W (~x;~0), and H is the Hessian matrix given

by

H =
∑
~x

[
∇T ∂W

∂~p

]T [
∇T ∂W

∂~p

]
. (2.23)
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Algorithm 3 Inverse Compositional Alignment Algorithm

• Start with an initial estimate of ~p. (And thereby an initial estimate of the warp function.)
• Set an error tolerance ε > 0.
• Set ||∆~p|| to an arbitrary value greater than ε.
• Evaluate the Jacobian, ∂W/∂~p at (~x;~0) at all pixels ~x in the template.
• Compute the steepest descent images, S = ∇T ∂W

∂~p .

• Compute the Hessian H =
∑

~x∈T S
TS.

1: while ||∆~p|| > ε do
2: Compute I(W (~x; ~p)).
3: Compute I(W (~x; ~p))− T (~x).
4: Compute

∑
~x S

T [I(W (~x; ~p))− T (~x)].
5: Compute ∆~p using (2.22).
6: Update the warp as W (~x; ~p)←W (~x; ~p) ◦W−1(~x; ∆~p) = W (W−1(~x; ∆~p); ~p).
7: end while



Chapter 3

Template Alignment Algorithms for Video Frames

In this Chapter, we begin to address the issue of tracking an object through a sequence of

video frames. The basic starting point is to use one of the algorithms from Chapter 2 from frame

to frame using the last tracked object as the template for the next frame. A potential problem

with the gradient descent methods from Chapter 2 is that they assume that the template exists as

a sub-patch of the larger image. Even when the time between subsequent frames is very small, one

would be hard pressed to find an exact copy of an object of interest lifted from one frame in the next

due to, for example, changes in target appearance (such as changes in expression when tracking a

face), lighting, perspective, and background noise. Inspired by Kahn, Bach, and Dellaert [8], we

will consider motion tracking for ants, using both ideal simulated ants and real video available at

http://www.cc.gatech.edu/~borg/biotracking/experimental-data.html as of the writing of

this thesis.

3.1 The Simulated Ant

We simulated frames of a simple rigid legless ant, depicted in Figure 3.1 using a modified

random walk in a two dimensional box with a plain white background. The ant was more likely to

go forward than not and initiated smooth turns when coming in contact with the boundary of the

box. Due to the extreme dichotomy of the pixels (black or white with no shades of gray) it was

necessary to use the inverse compositional alignment algorithm since the “moving” Hessian matrices

used in the Lucas-Kanade and compositional alignment algorithms often became nonsingular.
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Figure 3.1: Ant Template

The warp used, consisting of both translation and rotation, was

W (~x; ~p) :=


cos θ − sin θ a

sin θ cos θ b

0 0 1




x1

x2

1

 =


x1 cos θ + x2 sin θ + a

x1 sin θ + x2 cos θ + b

1


where ~p = (θ, a, b).

It was necessary to introduce a third row in order to ensure that the warps form a group

with respect to composition. The inverse and warp update are

W−1(~x; ~p) =


x1 cos θ − x2 sin θ − a cos θ − b sin θ

−x1 sin θ + x2 cos θ + a sin θ − b cos θ

1


and

W (~x; ~p)←W (~x; ~p) ◦W (~x; ∆~p) = W (~x; ~p ′)

where

~p ′ =


θ −∆θ

a−∆a cos(θ −∆θ) + ∆b sin(θ −∆θ)

b−∆a sin(θ −∆θ)−∆b cos(θ −∆θ))

 .

Obviously, our simulated ant is ideal to track as it never undergoes any sort of deformation or

change in lighting. Results are shown for the ICA algorithm in Figure 3.2. Note that, in this thesis,

we are only concerned with frame-to-frame tracking and not the problem of locating the target in

the first frame. Hence, we chose the tracking rectangle for the first frame simply by “eyeballing”.

3.2 Tracking in Real Video

In this section we will attempt to track the lone ant in the upper left corner of Figure 3.3

through several frames pulled from a video. As in Section 3.1, we assign a first bounding rectangle
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Figure 3.2: Tracking a Simulated Ant Using the ICA Algorithm
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informally. Even with the fairly uncomplicated background, a target that is relatively stable in

appearance, and restriction to frames where the ant of interest is isolated from the others, we will

see that the inverse compositional alignment will have trouble due to moving legs and shadows.

Simply put, the ant found in any given frame does not exist unchanged in the next frame.

Figure 3.3: First Frame of Ant Video

In Figure 3.4, we again show the first frame of the video, this time with the initial tracking

rectangle in place and three sub-images. The second sub-image is the current rectangle which has

been pulled directly from the bounding rectangle. The first sub-image, labeled “image at warp”,

shows the part of the image that is in the current tracking rectangle. At this point it is identical

to the template by definition of the template. The third sub-image shows the error image which is

computed as the second sub-image minus the first sub-image. (Note: The main image and first two

sub-images are rendered in greyscale with values in [0, 1] representing colors from black to white.

The error image will consist of values between −1 and 1 and thus has been rendered differently

with −1 representing black and 1 representing white and grays in between.)

In Figure 3.5, we show the second frame of the video before tracking. That is, the ant has

moved but the tracking rectangle has not.

Figure 3.6 shows the eight iterations of the ICA algorithm that were ultimately required to

reposition the tracking rectangle for frame 2 using ε = 0.05. Note that ||∆~p|| is not monotonically
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Figure 3.4: Tracking: First Frame of Ant Video

Figure 3.5: Tracking: Second Frame of Ant Video
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decreasing. This gradient descent “failure” is due to the fact that the template pulled from frame 1

does not actually occur in frame 2. Indeed, the ICA algorithm starts to break down around frame 12

and completely loses the ant at frame 23. Baker, Gross, and Matthews [2] have suggested a method

using principle components analysis (PCA) to improve ICA alignment results under frame to frame

object appearance variation. We review this in the next Section before going on to describe our

own approach to improve object tracking which we will ultimately compare to the PCA approach.

3.3 Improving ICA for Video Tracking Using Principle Components Analysis

In order to improve the ICA algorithm results in video tracking, Baker, Gross, and Matthews

[2] relax the assumption that the template image T (~x) from any given frame appears in the next

frame. Instead, they assume that

T (~x)−
m∑
i=1

λiAi(~x)

appears in the next frame where {Ai}mi=1 are a sequence of known “appearance variation images”

and {λi}mi=1 are “appearance parameters”. These appearance variation images are often taken as

the most significant images in a principle components analysis of target template images pulled

from several frames of the video.

3.3.1 Principle Components Analysis

Principle components analysis (PCA) is a method of transforming a data set to convert a

collection of (possibly) correlated variables into a collection of linearly uncorrelated variables. The

uncorrelated variables, known as principle components, form a basis for reconstructing the data

set. The principle components can be ranked according to their importance in explaining variability

in the data and often lower ranked components can be dropped, creating a smaller basis that can

recreate the original data set with varying degrees of accuracy. For example, suppose we have

n = 10 observations of m = 2 variables.

Variable 1: 0.85 −1.47 −0.51 −0.61 −1.20 −0.55 −0.03 0.05 −1.13 0.28

Variable 2: 1.41 0.81 1.20 1.06 0.71 1.00 1.19 1.31 0.70 1.21
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Figure 3.6: Frame 2 ICA Iterations

Image at Warp Template Error Image
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Arrange the data into an m× n matrix X, with with entries recentered to have row means of 0.

X =

 1.282 −1.038 −0.078 −0.178 −0.768 −0.118 0.402 0.482 −0.698 0.712

0.35 −0.25 0.14 0.00 −0.35 −0.06 0.13 0.25 −0.36 0.15


A scatterplot of the recentered variables (called X1 and X2) is shown in Figure 3.7.

The covariance matrix for X is

V ar(X) =
1

n− 1
XXT .

Our goal is to find an m ×m matrix P such that V ar(PX) is a diagonal matrix. N := PX will

then be our new data set of linearly uncorrelated variables. Write

V ar(PX) =
1

n− 1
(PX)(PX)T =

1

n− 1
PXXTP T =

1

n− 1
PAP T

where A := XXT . Rewrite A as A = EDET where E is an m × m orthogonal matrix whose

columns are the orthonormal eigenvectors of A arranged in descending eigenvalue order and D is

a diagonal matrix of corresponding eigenvalues. Then, since E−1 = ET , if we choose P = ET , we

have that the covariance matrix of the transformed data matrix N = PX

V ar(N) =
1

n− 1
PEDETP T =

1

n− 1
D

is diagonal. Thus, the transformed principle components variables that are realized as rows of N

are linearly uncorrelated and are arranged in order of decreasing variance. For our two-dimensional

example,

A =

 4.75056 1.5040

1.50400 0.5622


which decomposes into eigenvectors and eigenvalues

E =

 −0.95190 0.30640

−0.30640 −0.95190

 and D =

 5.234675 0

0 0.078084

 .
The eigenvectors give the directions of the principle components and are plotted in Figure 3.8a.

The new data, given by N = PX are shown in Figure 3.8b. Obviously, the original data can

be recovered as X = P−1N = P TN . However, if we want to compress the data, we could use less
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Figure 3.7: Scatterplot of Centered X1 and X2

Figure 3.8: Principle Components Analysis of X

(a) Axes in the Direction of the
Eigenvectors (b) Rotated “New” Data
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eigenvectors columns from E in creating P . In this example, if we define P ′ = [−0.95190,−0.30640],

our new data is defined by N ′ = P ′X. Rotated back, the “recovered” 1 × 10 data set is (P ′)TN ′

which is the data from Figure 3.8a projected on to the positively sloped eigenvector as shown in

Figure 3.9. In order to determine how many components of the data to use in compression, one

usually looks for a sharp drop off in the standard deviations of the principle components which are

given by the square root of the diagonal entries of D.

3.3.2 Principle Components Analysis on Images

Principle components analysis can be used on images. Consider the sequence of six faces,

taken from [6], and shown in Figure 3.10. Each face is a 211 × 240 image. Let X be a 6 × 50640

matrix where the ith row contains the color values for the pixel in the ith face pulled out column

by column. From here, a principle components analysis is done exactly as in Section 3.3.1 and

produces a new sequence of images, stored as the rows of N = PX, and shown in Figure 3.11.

The principle components in Figure 3.11 are arranged in order of descending importance as

determined by variances given along the diagonal of D. The corresponding standard deviations are

shown in Figure 3.12.

One would hope for a more dramatic drop off of bar heights in Figure 3.12 in order to

choose components for compression. Compression and reconstruction of images in Figure 3.10

using different numbers of components are shown in Figure 3.13. R code is given in Appendix B.

3.3.3 Inverse Compositional Alignment with Principle Components Analysis

In Section 3.2 we saw that the ICA algorithm encountered some difficulty when tracking a

single ant due to the fact that the image of the ant in any one frame does not exist unchanged in

the next frame. Baker, Gross, and Matthews [2] change the assumption that the template image

T (~x) from any given frame appears in the next frame into the assumption that

T (~x)−
m∑
i=1

λiAi(~x)
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Figure 3.9: Recovered Data based on One Eigenvalue

Figure 3.10: Sequence of Faces

Figure 3.11: Principle Components for Figure 3.10
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Figure 3.12: Standard Devations of Principle Components
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Figure 3.13: Image Recovery After Compression with the ith Row Using i Principle Components
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appears in the next frame where {Ai}mi=1 is a sequence of known appearance variation images. The

sequence of appearance variation images is typically formed by applying PCA to a set of training

images and keeping the components that correspond to the top 90-95% of total variance. The goal

then would be to minimize

∑
~x

[
I(W (~x; ~p))− T (~x)−

m∑
i=1

λiAi(~x)

]2

with respect to ~p and ~λ = (λ1, λ2, · · · , λm)T . Baker, Gross, and Matthews [2] suggest three ICA

based algorithms and here we review one of them, called the simultaneous inverse composi-

tional algorithm, which uses inverse compositional alignment updates on the warp parameters

along with additive updates for the appearance parameters given by ~λ.

The goal of the simultaneous inverse compositional alignment algorithm is to minimize

SSE4 :=
∑
~x

[I(W (~x; ~p))− T (W (~x; ∆~p))−
m∑
i=1

(λi + ∆λi)Ai(W (~x; ∆~p))]2 (3.1)

with respect to ∆~p and ~λ in each iteration, at the end of which the warp is updated as

W (~x; ~p)←W (~x; ~p) ◦W (~x; ∆~p)−1 (3.2)

and the appearance parameters as

~λ← ~λ+ ∆~λ. (3.3)

As with all of the sum of squared errors in Chapter 2, SSE4 is approximated using first order

Taylor series expansions on T (W (~x; ∆~p)) and now also on Ai(W (~x); ∆~p) for i = 1, 2, . . . ,m. For

details of the derivation of the algorithm which we now summarize, please see [2].

3.3.3.1 Alignment Images Example

In Chapter 5, we will see how this “ICA with PCA” algorithm performs. Here, we discuss

our choice of appearance variation images for tracking the one upper left ant in the video discussed

in this Chapter. First, we pulled 30 templates from still frames. Ideally, in order to capture a good

range of variation in appearance, these templates would be pulled from several different points in
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Algorithm 4 Simultaneous Inverse Compositional Alignment Algorithm

• Start with an initial estimate of ~p. (And thereby an initial estimate of the warp function.)
• Set an error tolerance ε > 0.
• Set ||∆~p|| to an arbitrary value greater than ε.
• Evaluate the Jacobian, ∂W/∂~p at (~x;~0) at all pixels ~x in the template.
• Compute ∇T and ∇Ai for i = 1, 2, . . . ,m.

1: while ||∆~p|| > ε do
2: Compute I(W (~x; ~p)).
3: Compute the error image I(W (~x; ~p))− T (~x)−

∑m
i=1 λiAi(~x).

4: Compute the steepest descent images, S, which is a 1 × (n + m) vector of h × w images
where the first n images are given by

(∇T +
m∑
i=1

λi∇Ai)
∂W

∂~p

and the last m by (A1, A2, . . . , Am).
5: Compute ∑

~x

ST [I(W (~x; ~p))− T (~x)−
m∑
i=1

λiAi(~x)].

6: Compute the Hessian matrix H =
∑

~x S
TS.

7: Compute (∆~p,∆~λ) using(
∆~p

∆~λ

)
= H−1

∑
~x

ST [I(W (~x; ~p))− T (~x)−
m∑
i=1

λiAi(~x)].

8: Update the warp as W (~x; ~p)←W (~x; ~p)◦W−1(~x; ∆~p) = W (W−1(~x; ∆~p); ~p) and ~λ→ ~λ+∆~λ.
9: end while
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the video. However, in this case it is too difficult to distinguish the particular ant in randomly

selected frames. Hence, we pulled the templates from the first 30 frames manually by inspection.

Due to the similarity among the different ants, we considered using all of the ants in the first

frame as appearance variation images for tracking the one particular ant but ultimately decided

against this since it will likely make our future goal of simultaneous multiple ant tracking difficult

by averaging out distinguishing factors, subtle as they may be.

The principle components analysis basis, ordered across rows in decreasing importance, is

shown in Figure 3.14.

Figure 3.14: Principle Components for 30 Ant Templates

Though the last two and a half rows of Figure 3.14 may appear to be noise, inspection of the

standard deviations (Figure 3.15) again does not reveal an obvious dramatic drop-off. In [2], the

authors suggest choosing the basis images corresponding to the top 95% of variance. Here, that

would amount to 22 images. In Chapter 5 we consider several different numbers for selection of the

principle components.
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Figure 3.15: Standard Deviations of Principle Components in Figure 3.14
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3.4 What’s New?

We show some results for the inverse compositional alignment algorithm and inverse compo-

sitional alignment with principle components analysis in Chapter 5. These algorithms have been

presented so far as finding a sub-image from one frame in the next image. In video tracking, the

(presumably) located target then becomes the template for the next frame since a target in frame

10, for example, is more likely to look more like it did in frame 9 than it did in frame 1. The

problem is that small errors in tracking will accumulate over time. That is, if the target starts

to veer off towards a side of the tracking rectangle, we are then searching for this “crooked” ant

the next time through. In the ant tracking problem, while it seems intuitive that adding a linear

combination of “basis ants” should help to correct for this, we will see in practice that it is not

always the case. We explore the novel idea of using the ICA with PCA algorithm with an extra

PCA step where rather than the template being the last tracked ant, it is the reconstruction of

the last tracked ant from the first principle component found using two images. One is the last

tracked ant and the other is a “typical” looking ant pulled from the video at a place where it was

not particularly contorted. In the case of the upper left ant of Figure 3.3, we used the template

that was manually pulled from the first frame. While this “PCA within ICA with PCA” approach

only makes it a few frames further after the ICA with PCA approach fails, we will see in Chapter

5 that it really helps to stabilize the tracked image all the way through until failure whereas the

ICA with PCA algorithm goes through several frames of veering off and recovering before ultimate

failure.

Currently, the only stopping rule for the gradient descent tracking algorithms discussed in

this Chapter is that the change in parameters between iterations is becoming smaller than a user

defined tolerance. That is, we continue through iterations of the ICA algorithm until ||∆~p|| ≤ ε

where ε has been specified in advance. As we have seen in Figure 3.6, for real video ||∆~p|| is

not necessarily decreasing due to the fact that the template from frame n does not actually exist

unchanged in frame n + 1. Furthermore, stopping the repositioning of the template just because
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it is no longer moving does not mean that we have necessarily found the target. Indeed, if we lose

the target completely so that the image at warp consists entirely of background pixels, the search

will stop as it is no longer sensing any improvement through further iterations. On the other hand,

we have often observed what seemed like an adequate template match even though ||∆~p|| > ε and

the ICA algorithm is still iterating. These “wasted iterations” not only take up computation time

but they sometimes resulted in the object being lost further down the line.

To formalize this idea of an “apparent match”, we examine a histogram of the intensity values

in the error image E(~x) := I(W (~x; ~p))− T (~x) and stop the algorithm (be it the LK algorithm, the

ICA, ICA with PCA, PCA within ICA within PCA, etc...) at the first time that either ||∆~p|| ≤ ε

or

1

2

(∣∣∣∣max
~x

E(~x)

∣∣∣∣+

∣∣∣∣min
~x
E(~x)

∣∣∣∣) < c

for some user defined cutoff c. For most of our examples we had good performance when c = 0.2.

Results are shown in Chapter 5.



Chapter 4

Probabilistic and Statistical Methods for Target Tracking

Probabilistic methods can be used in image alignment to increase both speed and robustness

of the algorithm. Speed may be improved, for example, if we have a sense of the most likely next

movement of the ant. As for robustness, deterministic tracking will often fail due to things such

as target occlusion, inconsistencies in image brightness, and in the specific case of the video from

Figure 3.3, the existence of multiple similar targets. For example, in frames where the target ant is

in close proximity to another ant, the algorithms of Chapter 2 will likely become confused and fail.

Additionally, the ant motion changes in somewhat predictable ways when encountering another ant

or a container wall.

There are two main probabilistic/statistical methods used for target tracking through a se-

quence of images. The first is known as the Mean Shift tracker which uses the target’s color

histogram. A color histogram is just as it sounds. In greyscale, it is a histogram of the values

in [0, 1] used to make up the target. For color images, it involves histograms for each of the red,

green, and blue channels used. The Mean Shift tracker involves searching the full next frame image

for a region with a similar color histogram.

The second probabilistic/statistical method involves a particle filter which is a sequential

Monte Carlo method that we detail in Section 4.2. In this Chapter, we also explore some subtle

variations which appear to result in marginal improvements in speed. In Chapter 5, we will compare

these algorithms to the deterministic alternative of Chapter 3.
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4.1 Simple Estimation of the Distribution of Motion Parameters

In this Section, we revisit the simulated ant from Section 3.1. Recall that we were tracking

three motion parameters: rotation, horizontal translation, and vertical translation. Let ∆~pn =

(∆θn,∆an,∆bn)T be the change in these parameters for our ant between frames n − 1 and n.

We will assume that the ant’s motion is time homogeneous and drop the subscripts on ∆~pn and

its individual components. By using training data from manual inspection of the ant location in

the first N frames or possibly using one of the deterministic algorithms from Chapter 2 along

with manual verification of tracking, we can give method of moments, or equivalently in this case,

maximum likelihood estimators for the parameters of the normal distributions used to generate

the ant’s motion. (Indeed, the more sophisticated probabilistic tracking algorithms such as, for

example, the particle filter discussed in Section 4.2 all involve some sort of manual learning phase.)

More generally though, we can forgo the inside knowledge that the ant’s motion parameters are

governed by normal distributions and instead, generate purely empirical distributions for ∆θ, ∆a,

and ∆b.

Once parametric or non-parametric distributions for the components of ∆~p are estimated we

can, at each frame, generate a collection of likely positions and orientations for the next frame. Each

proposed triple is used in the update ~p← ~p+ ∆~p and produces its own error image. Naturally, we

wish to favor the better proposal, in terms of the error image, to form a finalized composite guess.

Recall that the error image is defined, at pixel ~x, as the difference I(W (~x; ~p))− T (~x) between the

image at the proposed warp and the template from the previous frame. We will ultimately define

the warp function as a weighted average of the proposed moves where the weights are inversely

proportional to the sum over pixels of the absolute error image values. That is, the weight for the

jth proposed move will be Wi, defined as

Wj ∝
1∑

~x |I(W (~x; ~p+ ∆~pj))− T (~x)|

where ∆~pj is the jth sampled change in parameters. We propose to use the weighted average of

proposed tracking rectangles not as our next position in tracking but as the first proposed move
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for the gradient descent methods described in Chapter 2. The “compositional guess” parameter,

which we denote by ~pC is

~pC =
∑
j

Wj~pj (4.1)

where ~pj is the jth proposed parameter.

Example:

We illustrate this compositional parameter guess to produce a first guess for ∆~p for the ICA

algorithm using only 3 template guesses (illustrated in Figure 4.1) that were proposed after training

the data on the first 30 frames. By inspection, it is apparent that the second guess is most useful,

Figure 4.1: Three proposed Rectangles

which is reflected in its relatively high assigned weight compared to the others. If the three guesses

had the following parameters, then we could generate the composite guess using weighted sum. For

example, if the proposals are

~p1 = {1.5, 0.4, 0.5}T

~p2 = {1, 0.5, 0.5}T

~p3 = {0.7, 0.4, 0.3}T

The composite guess, ~pC , is

~pC =
∑
i

wi~pi = 0.1 · {1.5, 0.4, 0.5}T + 0.7 · {1, 0.5, 0.5}T + 0.2 · {0.7, 0.4, 0.3}T
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~pC = {0.47, 0.46, 0.99}T

which is, as expected, closest to the second guess.

The ICA algorithm was run with composite guesses based on only 3 proposals for ~p as a

starting parameter beginning after training through the first 30 frames. The performance of the

algorithm with and without the probabilistic predictor is shown in Figure 4.2. As expected, for

frames 31 and beyond, the composite guess algorithm begins to process frames quicker than the

usual ICA algorithm and gives an approximate 5% increase in performance. Obviously, there is

an efficiency trade-off to generate the composite guesses, but overall run time was still slightly

improved.

Figure 4.2: Performance Difference With Probabilistic Tracking

4.2 Particle Filtering

4.2.1 General Particle Filtering

Particle filters are important sampling based sequential Monte Carlo methods that are often

employed to sample from and provide estimates of the distribution of a set or subset of latent vari-

ables in a hidden Markov model given observations. They are constructed specifically to provide
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updated sampling and estimation when additional observations become available without repro-

cessing all observations.

Consider a hidden Markov model with underlying and unobserved states {Xn}∞n=0, transition

density π(xn|xn−1), and an initial distribution with density π(x0). Suppose that {Yn}∞n=0 represents

a sequence of observable variables that are conditionally independent when the unobserved states

are given and where each Yn is related to the unobserved process through Xn and a “measurement

model” density π(yn|xn). Such a model is depicted in Figure 4.3.

Figure 4.3: A Hidden Markov Model

The goal of particle filtering is to sample from the density π(x0:n|y0:n), where ui:j denotes the

vector (ui, ui+1, . . . , uj) for j ≥ i, sequentially in the sense that samples from π(x0:n−1|y0:n−1) will

be used along with a new observation yn to produce the desired points. The sampled points (called

“particles”) can then be used to approximate, for example, expectations of the form E[f(X0:n)|y1:n]

and marginal distributions π(xi|y0:n) for i = 0, 1, . . . , n.

The Markov and conditional independence assumptions allow us to write our “target density”

for the model in Figure 4.3 in the recursive form

π(x0:n|y0:n) ∝ π(y0|x0)π(x0)
∏n

i=1 π(yi|xi)π(xi|xi−1)

∝ π(yn|xn) · π(xn|xn−1) · π(x0:n−1|y0:n−1)

(4.2)

so that draws (sampled values) from π(x0:n|y0:n) can be recursively related to draws from

π(x0:n−1|y0:n−1).
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4.2.1.1 Sequential Importance Sampling (SIS)

When one can not sample directly from π(x0:n|y0:n) ∝ h(x0:n|y0:n), importance sampling can

be used to instead sample points from a more tractable importance sampling density, q, and

these points can be used to estimate the target density. Sequential importance sampling (SIS) is

importance sampling for π(x0:n|y0:n) in such a way where n-dimensional draws from π(x0:n−1|y0:n−1)

are “extended” to (n + 1)-dimensional points that are then reweighted to produce draws from

π(x0:n|y0:n). To this end, the importance sampling density is chosen to have the form

q(x0:n|y0:n) = q(x0|y0)
n∏

i=1

q(xi|xi−1, yi) (4.3)

so that it may be sampled from recursively. A draw from q(x0:n|y0:n) may be reweighted to a draw

from π(x0:n|y0:n) via the weight w(x0:n|y0:n) := π(x0:n|y0:n)/q(x0:n|y0:n) (or unnormalized weight

h(x0:n|y0:n)/q(x0:n|y0:n)) as

π(x0:n|y0:n) = w(x0:n|y0:n) q(x0:n|y0:n).

Due to the forms of (4.2) and (4.3), the weights can also be computed recursively as

w(x0:n|y0:n) =
π(x0:n|y0:n)

q(x0:n|y0:n)
=

π(x0:n|y0:n)

q(x0:n−1|y0:n−1)q(xn|xn−1, yn)

=
π(x0:n−1|y0:n−1)

q(x0:n−1|y0:n−1)
· π(x0:n|y0:n)

π(x0:n−1|y0:n−1)q(xn|xn−1, yn)

=: w(x0:n−1|y0:n−1) · α(x0:n|y0:n) (4.4)

where α(x0:n) is an incremental weight function that is defined as

α(x0:n|y0:n) :=
π(x0:n|y0:n)

π(x0:n−1|y0:n−1)q(xn|xn−1, yn)

for n ≥ 1.

The SIS algorithm is detailed in Algorithm 5. At any time n, one can estimate π(x0:n|y0:n)

using

π̂(x0:n|y0:n) =
1

N

N∑
i=1

w(X
(i)
0:n) 1l[X

(i)
0:n = x0:n] (4.5)
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where 1l[X
(i)
0:n = x0:n] is the indicator function that takes on the value 1 when x0:n = X

(i)
0:n, and zero

otherwise.

One can also obtain approximate dependent draws from π(x0:n|y0:n) by sampling from (4.5).

That is, by sampling from the set of values {X(1)
0:n, X

(2)
0:n, . . . , X

(N)
0:n } using respective weights {W (1)

n ,

W
(2)
n , . . ., W

(N)
n } which is a resampling of values that were sampled from q.

Algorithm 5 Sequential Importance Sampling (SIS) Algorithm

• Sample X
(1)
0 , X

(2)
0 , . . . , X

(N)
0

iid∼ q(x0|y0).

• Compute weights w(X
(i)
0 ) for i = 1, 2, . . . , N as

w(X
(i)
0 ) =

π(Xi
0|y0)

q(X
(i)
0 |y0)

.

1: for n ≥ 1 do
2: Sample X

(1)
n , X

(2)
n , . . . , X

(N)
n independently with X

(i)
n ∼ q(xn|X(i)

n−1, yn).

3: Compute weights w(X
(i)
0:n|y0:n) = w(X

(i)
0:n−1|y0:n) · α(X

(i)
0:n|y0:n) for i = 1, 2, . . . , N .

4: end for

4.2.1.2 Sequential Importance Sampling with Resampling (SIR)

In practice, iteration of the SIS algorithm leads to a “degeneracy of weights” problem (see,

for example, [1]) where the weights of all but one particle will approach zero, causing the method

to break down and give meaningless results. One way to avoid the issue of degenerate weights is

to implement a resampling scheme at each time step. This sequential importance sampling with

resampling (SIR) algorithm is described in Algorithm 6.

(Note that step 4 is not an error. While the particles {X(i)
0:n−1}Ni=1 have respective weights

{W (i)
n−1}Ni=1, the resampled particles {X̃(i)

0:n−1}Ni=1 have equal weight 1/N . That is, w(X̃
(i)
0:n−1) = 1/N .

This constant factor in the recursive weight formulation is not important as the weights will be

normalized to W
(i)
n .)
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Algorithm 6 Sequential Importance Sampling with Resampling (SIR) Algorithm

• Sample X
(1)
0 , X

(2)
0 , . . . , X

(N)
0

iid∼ q(x0|y0).

• Compute weights w(X
(i)
0 ) for i = 1, 2, . . . , N as

w(X
(i)
0 ) =

π(Xi
0|y0)

q(X
(i)
0 |y0)

.

• Compute normalized weights

W
(i)
0 =

w(X
(i)
1 )∑N

j=1w(X
(j)
1 )

for i = 1, 2, . . . , N .

• Sample N points, X̃
(1)
0 , X̃

(2)
0 , . . . , X̃

(N)
0 , with replacement, from the set {X(1)

0 , X
(2)
0 , . . . , X

(N)
0 }

with respective probabilities {W (1)
0 ,W

(2)
0 , . . . ,W

(N)
0 }.

1: for n ≥ 1 do
2: Sample X

(1)
n , X

(2)
n , . . . , X

(N)
n independently with X

(i)
n ∼ q(xn|X(i)

n−1, yn).

3: Extend each “particle” X̃
(i)
0:n−1 to particles (X̃

(i)
0:n−1, X

(i)
n ).

4: Compute associated weights w(X̃
(i)
0:n−1, X

(i)
n ) := α(X̃

(i)
0:n−1, X

(i)
n ) for i = 1, 2, . . . , N .

5: Compute the normalized weights

W (i)
n =

w(X̃
(i)
0:n−1, X

(i)
n )∑N

j=1w(X̃
(j)
0:n−1, X

(j)
n )

for i = 1, 2, . . . , N .

6: Sample N n-dimensional points, X̃
(1)
0:n, X̃

(2)
0:n, . . . , X̃

(N)
0:n , with replacement, from

the set {(X̃(1)
0:n−1, X

(i)
n ), (X̃

(2)
0:n−1, X

(2)
n ), . . . , (X̃

(N)
0:n−1, X

(N)
n )} with respective probabilities

{W (1)
n ,W

(2)
n , . . . ,W

(N)
n }.

7: Note that X̃
(1)
0:n, X̃

(2)
0:n, . . . , X̃

(N)
0:n are now equally weighted particles, each with weight 1/N ,

so assign weights w(X̃
(i)
0:n) = 1/N for i = 1, 2, . . . , N .

8: end for
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4.2.2 Particle Filtering for Ants

In [8], Kahn, Bach, and Dellaert use a particle filter to simultaneously track all 20 ants

in the video depicted in Figure 3.3. In this context, Xn, is a 60 dimensional vector containing

the x coordinates, y coordinates, and rotation angle for each ant. X0:n is a 60 × n dimensional

vector containing all of this information through n + 1 frames of video. The observed variables

Yn are large arrays containing all of the pixel information for the entire full image in the nth

frame. Conditional on the ant positions and orientations being known, each pixel of the image in

the nth frame can easily be classified as either a foreground pixel or a background pixel. Under

the assumption that the foreground pixels are independent of the background pixels, one only

needs to evaluate the appearance likelihood model density π(yn|xn) over small (in this case

rectangular) templates defined by the template to image warp function as terms outside of templates

are presumed background and therefore will be constant and will cancel out of calculations. The

authors in [8] assume that the intensity values of the pixels in the rectangular templates, organized

into one long column vector, have a multivariate t-distribution for which parameters were estimated

from a set of training images. For the motion model with density π(xn|xn−1), they assumed that

marginally each ant had a ∆~p that consisted of independent mean zero normal components whose

variances were also estimated from the training images. Furthermore, π(xn|xn−1) included ant

interaction modeling that we will not discuss here as we are only considering tracking a single

target.



Chapter 5

Results and Conclusions

In this Chapter, we give some results and comparisons for the algorithms discussed in this

thesis. We will see tracking problems in the majority of the methods at or around frame 22. This

is because it is the first time in the video where the ant is really starting to bend. In Figure 5.1,

we have manually pulled these templates to show this.

Figure 5.1: A Trouble Spot: Templates Manually Pulled from Frames 21-23

5.1 ICA Algorithm

In Figure 5.2, we show, for each frame, the current template, the end result of tracking which

becomes the next template, and the error image of the ICA algorithm which fails at frame 23. This

is likely due to the ant starting with an apparently significant bend around this time as shown in

Figure 5.1.

In Figure 5.2, we can see that the template is becoming more and more angled. This is the

compounding error due to the ant found in one frame becoming the template for the next frame.

This updating is necessary since the ant in frame 15, for example, is much more likely to be similar

to the ant in frame 14 as opposed to the ant in frame 1. Just as an experiment, we ran the ICA
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Figure 5.2: ICA Algorithm Tracking Frame to Frame with Failure on Frame 23

Template Track Result Error Image Template Track Result Error Image

1 13

2 14

3 15

4 16

5 17

6 18

7 19

8 20

9 21

10 22

11 23

12
Failure since ant is significantly bent

in frame 23.
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algorithm without updating the template at all. That is, the template pulled from frame 1 is used

throughout. The results are shown in Figure 5.3. Here, we lose the ant at frame 18 even though

the ant seems to maintain (Figure 5.4) a pretty constant appearance between frames 17 and 19.

5.2 ICA with Error Histograms

The ICA and other gradient descent algorithms stop when the parameter change between

iterations gets very small– specifically when ||∆~p|| ≤ ε for some user defined ε. Throughout

this thesis, we use ε = 0.05 which was a number arrived at by trial and error. At no point do

they account for when the warped image actually “looks good”. In fact, sometimes intermediate

iterations appear to offer a decent match, but because ||∆~p|| > ε, the search continues, sometimes,

even to the point of failure. For example, we see in Figure 3.6 that the ICA algorithm goes through

7 iterations to get down to ||∆~p|| ≤ 0.05, but by the 6th image (5th iteration), the tracked ant

(image at warp) looks respectable. This is also reflected in the error image, which is starting to

look more irregular and noisy. Hence, we propose a new stopping rule that ends the search the

first time either ||∆~p|| ≤ ε or a histogram of the intensity values in the histogram gets “narrow

enough”. Specifically, we defined “narrow enough” as

1

2

(∣∣∣∣max
~x

E(~x)

∣∣∣∣+

∣∣∣∣min
~x
E(~x)

∣∣∣∣) < c

for some user defined cutoff c. Here, E(~x) is the error image defined as E(~x) = I(W (~x); ~p)− T (~x)

and the maximum is taken over all pixels in the template region. We generally saw good results,

cut down on the number of iterations, and in some cases, avoided a tracking failure, with c = 0.2.

For tracking from frame 1 to frame 2, this shaved off 2 iterations. Intermediate histograms

of the intensities of the error image are shown in Figure 5.5.

Final tracking results after adding this error image criterion are given in Figure 5.6. Even

though we were only able to track the target for 2 more frames, comparisons of Figure 5.6 and

Figure 5.2 show that the tracked image was more stable throughout. Figure 5.7 compares how

many iterations were used to track each frame when running the ICA algorithm with and without
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Figure 5.3: ICA Algorithm with Constant Template Tracking Frame to Frame with Failure on
Frame 18

Template Track Result Error Image Template Track Result Error Image

1 10

2 11

3 12

4 13

5 14

6 15

7 16

8 17

9 18

Figure 5.4: A Trouble Spot: Templates Manually Pulled from Frames 17-19
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Figure 5.5: ICA Algorithm Tracking from Frame 1 to Frame 2: Error Histograms
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the error image stopping rule, and it is clear that using the new stopping rule saves some iterations.

5.3 ICA with Principle Components Analysis

We now consider the ICA algorithm with principle components analysis using as was dis-

cussed in Section 3.3.3. In all examples, we chose to use 5 principle components and saw no real

improvement using more. The number of iterations to track from frame 2 to frame 3 are shown in

Figure 5.8. Notice how the appearance images adjusted template, actually almost disappears and

then returns. The full tracking through frames is shown in Figure 5.9. We again begin to have

tracking failure at frame 22. We were surprised to find that this actually performed one frame

worse than the ICA algorithm from Figure 5.2. Furthermore, we have not even yet left the frame

range from which the ant templates were manually sampled in order to construct the PCA basis.

In Figure 5.11, we see (as expected) that the ICA algorithm with principle components

analysis using 5 principle components and the additional error image stopping rule achieved some

(modest) computational savings over the algorithm without the error image stopping rule.

5.4 Principle Components Analysis within ICA with PCA

Note that in Figure 5.10, the ant starts rotating counterclockwise around frame 12. As in

Figure 5.2, the error is compounding since the tracked image becomes the template for the next

frame. We added another layer of PCA which we call “PCA within ICA with PCA” where, rather

than the template being the last tracked ant, it is the reconstruction of the last tracked ant from

the first principle component found using two images. One is the last tracked ant and the other is

a “typical” looking ant pulled from the video at a place where it was not particularly contorted. In

the case of the upper left ant of Figure 3.3, we used the template that was manually pulled from

the first frame. We see in Figure 5.12 that we were able to track the ant for several more frames

and more stability before failure.
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Figure 5.6: ICA Algorithm Tracking Frame to Frame with Additional Error Image Stopping Cri-
terion: Failure on Frame 25

Template Track Result Error Image Template Track Result Error Image

1 14

2 15

3 16

4 17

5 18

6 19

7 20

8 21

9 22

10 23

11 24

12 25

13 Tracking failure at frame 25.
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Figure 5.7: Comparison of the Number of Iterations Used to Track Frames with the ICA Algorithm
and the ICA Algorithm with an Error Stopping Rule
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Figure 5.8: ICA with 5 Component PCA: 45 Iterations Between Frames 2 and 3, Templates are
Adjusted with Appearance Images

Template Track Result Error Image Template Track Result Error Image
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18 41

19 42

20 43

21 44

22 45
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Figure 5.9: ICA with PCA Algorithm Tracking Frame to Frame with Failure on Frame 22
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12 Failure begins at frame 22.



54

Figure 5.10: ICA with PCA Algorithm Tracking Frame to Frame with Error Image Exit Criterion:
Failure on Frame 23
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12 Failure begins at frame 23.
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Figure 5.11: Comparison of the Number of Iterations Used to Track Frames with the ICA with
PCA Algorithm and the ICA Algorithm with an Error Stopping Rule
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Figure 5.12: PCA within ICA with PCA Algorithm Tracking Frame to Frame with Error Image
Exit Criterion: Failure on Frame 33

1 18

2 19

3 20

4 21

5 22

6 23

7 24

8 25

9 26

10 27

11 28

12 29

13 30

14 31

15 32

16 33

17 Failure begins at frame 32.
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Appendix A

Computer Vision Tracking with R

“OpenCV” (Open Source Computer Vision) is an open source library of computer vision and

tracking programming functions that is easily acquired and ideal for use in the tracking problems

addressed in this thesis. However, as we wished to “reinvent the wheel” in order to fully understand

the minutiae involved in coding tracking algorithms, we started from scratch in R. We present some

basic algorithms here in case they may others in the future.

A.1 The Lucas-Kanade Algorithm

A.1.1 Einstein with a Simple Translation Warp

### LK algorithm for Einstein using jpegs

### Pure translation warp only

## install jpeg package

#install.packages("jpeg")

# load jpeg library

library("jpeg")

# read in images

img<-readJPEG("Figures/einstein.jpg")

template<-readJPEG("Figures/einstein_face.jpg") #warning, t and T are reserved
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# even though images are greyscale, the greys are specified in RGB

# triples with equal R, G, and B. Re-specify as intensities in [0,1]

img<-img[,,1]

template<-template[,,1]

# Currently img is stored as a matrix so that img[1,1] is in

# the upper left corner and img[1,2] is one pixel to the right.

# However, to plot with "image", must turn things around. This

# also happens to be Cartesian space.

img<-t(img[nrow(img):1,])

template<-t(template[nrow(template):1,])

# height and width of image and template

width<-dim(img)[1]

height<-dim(img)[2]

w<-dim(template)[1]

h<-dim(template)[2]

# display image

par(mar=c(1,1,1,1))

image(1:width,1:height,img, axes = FALSE, col = grey(seq(0, 1, length = 256)),

asp=1.05,main="",xlab="",ylab="")

# Compute the image gradient; need dummy border pixels.

hold<-matrix(0,(width+2),(height+2))

hold[2:(width+1),2:(height+1)]<-img

hold[,1]<-hold[,2]
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hold[,(height+2)]<-hold[,(height+1)]

hold[1,]<-hold[2,]

hold[(width+2),]<-hold[(width+1),]

Ix<-matrix(0,width,height)

for(i in 2:(width+1)){

Ix[(i-1),]<-(hold[(i+1),2:(height+1)]-hold[(i-1),2:(height+1)])/2

}

Iy<-matrix(0,width,height)

for(i in 2:(height+1)){

Iy[,(i-1)]<-(hold[2:(width+1),(i+1)]-hold[2:(width+1),(i-1)])/2

} #Cartesian

# initial position for template

p<-c(180,400) #initial guess for p

ll<-p+c(1,1) #lower left

ur<-ll+c(w-1,h-1) #upper right

# plot template on top (don’t greyscale so can see)

image(ll[1]:ur[1],ll[2]:ur[2],template, add=T,asp=1,col = heat.colors(20,

alpha = 0.4))

readline(prompt = "Pause. Press <Enter> to continue...")

epsilon = 10^(-10)
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deltapnorm<-1 #arbitrary but larger than epsilon

while(deltapnorm>epsilon)

{

# Find values of pixels for image in the current template rectangle

# position NOTE 1: Will have an error if upper right pixel + (1,1) goes

# off image-- not coding this for the sake of clarity. NOTE 2: Currently

# img is in "matrix space". Switch to Cartesian space to find pixels in

# terms of xy-coordinates. NOTE 3: For a matrix A in R, A[3.9,5.7] will

# truncate indices and return A[3,5].

fracx <- ll[1]-floor(ll[1])

fracy<-ll[2]-floor(ll[2])

imgatwarp<-(1-fracx)*(1-fracy)*img[ll[1]:ur[1],ll[2]:ur[2]]+

fracx*(1-fracy)*img[(ll[1]+1):(ur[1]+1),ll[2]:ur[2]]+

(1-fracx)*fracy*img[ll[1]:ur[1],(ll[2]+1):(ur[2]+1)]+

fracx*fracy*img[(ll[1]+1):(ur[1]+1),(ll[2]+1):(ur[2]+1)]

# find the error image

errorimage<-template-imgatwarp

# Find values of pixels for gradient in the current template rectangle

# position.

gradatwarpx<-(1-fracx)*(1-fracy)*Ix[ll[1]:ur[1],ll[2]:ur[2]]+

fracx*(1-fracy)*Ix[(ll[1]+1):(ur[1]+1),ll[2]:ur[2]]+

(1-fracx)*fracy*Ix[ll[1]:ur[1],(ll[2]+1):(ur[2]+1)]+

fracx*fracy*Ix[(ll[1]+1):(ur[1]+1),(ll[2]+1):(ur[2]+1)]

gradatwarpy<-(1-fracx)*(1-fracy)*Iy[ll[1]:ur[1],ll[2]:ur[2]]+

fracx*(1-fracy)*Iy[(ll[1]+1):(ur[1]+1),ll[2]:ur[2]]+

(1-fracx)*fracy*Iy[ll[1]:ur[1],(ll[2]+1):(ur[2]+1)]+
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fracx*fracy*Iy[(ll[1]+1):(ur[1]+1),(ll[2]+1):(ur[2]+1)]

# Jacobian is identity matrix so omit.

# Find "bigsum" from Step 6 of LK algorithm.

bigsum<-matrix(0,2,1)

bigsum[1,1]<-sum(gradatwarpx*errorimage)

bigsum[2,1]<-sum(gradatwarpy*errorimage)

# find Hessian

H<-matrix(0,2,2)

H[1,1]<-sum(gradatwarpx^2)

H[1,2]<-sum(gradatwarpx*gradatwarpy)

H[2,1]<-H[1,2]

H[2,2]<-sum(gradatwarpy^2)

# find change in parameters

deltap<-solve(H)%*%bigsum

# new p

p<-p+t(deltap)

# norm of deltap

deltapnorm<-sqrt(deltap[1]^2+deltap[2]^2)

print(noquote(paste("deltapnorm =",round(deltapnorm,5))))

# replot underlying image

image(ll[1]:ur[1],ll[2]:ur[2],imgatwarp,add=T,col = grey(seq(0, 1, length = 256)))

# plot template in new position
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ll<-p+c(1,1) #lower left

ur<-ll+c(w-1,h-1) #upper right

image(ll[1]:ur[1],ll[2]:ur[2],template, add=T,asp=1,col = heat.colors(20,alpha = 0.4))

} #end while

A.2 The Compositional Alignment Algorithm

A.2.1 Einstein with a Simple Translation Warp

### CA algorithm for Einstein using jpegs

### Pure translation warp only

## install jpeg package

#install.packages("jpeg")

# load jpeg library

library("jpeg")

# read in images

img<-readJPEG("Figures/einstein.jpg")

template<-readJPEG("Figures/einstein_face.jpg") #warning, t and T are reserved

# even though images are greyscale, the greys are specified in RGB

# triples with equal R, G, and B. Re-specify as intensities in [0,1]

img<-img[,,1]

template<-template[,,1]

# Currently img is stored as a matrix so that img[1,1] is in
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# the upper left corner and img[1,2] is one pixel to the right.

# However, to plot with "image", must turn things around. This

# also happens to be Cartesian space.

img<-t(img[nrow(img):1,])

template<-t(template[nrow(template):1,])

# height and width of image and template

width<-dim(img)[1]

height<-dim(img)[2]

w<-dim(template)[1]

h<-dim(template)[2]

# display image

par(mar=c(1,1,1,1))

image(1:width,1:height,img, axes = FALSE, col = grey(seq(0, 1, length = 256)),asp=1.05,

main="",xlab="",ylab="")

# initial position for template

p<-c(180,400)

ll<-p+c(1,1) #lower left

ur<-ll+c(w-1,h-1) #upper right

# Plot template on top. (Don’t greyscale so can see.)

image(ll[1]:ur[1],ll[2]:ur[2],template, add=T,asp=1,col = heat.colors(20,

alpha = 0.4))

# Jacobian is identity so omit.

readline(prompt = "Pause. Press <Enter> to continue...")



65

epsilon = 10^(-10)

deltapnorm<-1 #arbitrary but larger than epsilon

while(deltapnorm>epsilon)

{

# Find values of pixels for image in the current template rectangle

# position NOTE 1: Will have an error if upper right pixel + (1,1) goes

# off image-- not coding this for the sake of clarity. NOTE 2: Currently

# img is in "matrix space". Switch to Cartesian space to find pixels in

# terms of xy-coordinates. NOTE 3: For a matrix A in R, A[3.9,5.7] will

# truncate indices and return A[3,5].

fracx <- ll[1]-floor(ll[1])

fracy<-ll[2]-floor(ll[2])

imgatwarp<-(1-fracx)*(1-fracy)*img[ll[1]:ur[1],ll[2]:ur[2]]+

fracx*(1-fracy)*img[(ll[1]+1):(ur[1]+1),ll[2]:ur[2]]+

(1-fracx)*fracy*img[ll[1]:ur[1],(ll[2]+1):(ur[2]+1)]+

fracx*fracy*img[(ll[1]+1):(ur[1]+1),(ll[2]+1):(ur[2]+1)]

# find the error image

errorimage<-template-imgatwarp

# Compute the gradient of I(W), need border pixels. Hold is

# imgatwarp with border pixels. Should really take into account

# possibility that warp function is mapping to edge in which case

# need dummy border pixels. For example, will have an error if

# upper right pixel + (1,1) goes off image-- not coding this for
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# the sake of clarity.

hold<-(1-fracx)*(1-fracy)*img[(ll[1]-1):(ur[1]+1),(ll[2]-1):(ur[2]+1)]+

fracx*(1-fracy)*img[(ll[1]+1-1):(ur[1]+1+1),(ll[2]-1):(ur[2]+1)]+

(1-fracx)*fracy*img[(ll[1]-1):(ur[1]+1),(ll[2]+1-1):(ur[2]+1+1)]+

fracx*fracy*img[(ll[1]+1-1):(ur[1]+1+1),(ll[2]+1-1):(ur[2]+1+1)]

IWx<-matrix(0,w,h)

for(i in 2:(w+1)){

IWx[(i-1),]<-(hold[(i+1),2:(h+1)]-hold[(i-1),2:(h+1)])/2

}

IWy<-matrix(0,w,h)

for(i in 2:(h+1)){

IWy[,(i-1)]<-(hold[2:(w+1),(i+1)]-hold[2:(w+1),(i-1)])/2

}

# Find "bigsum" from Step 6 of CA algorithm.

bigsum<-matrix(0,2,1)

bigsum[1,1]<-sum(IWx*errorimage)

bigsum[2,1]<-sum(IWy*errorimage)

# Find Hessian.

H<-matrix(0,2,2)

H[1,1]<-sum(IWx^2)

H[1,2]<-sum(IWx*IWy)

H[2,1]<-H[1,2]

H[2,2]<-sum(IWy^2)

# Find change in parameters.
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deltap<-solve(H)%*%bigsum

# new p

p<-p+t(deltap)

# norm of deltap

deltapnorm<-sqrt(deltap[1]^2+deltap[2]^2)

print(noquote(paste("deltapnorm =",round(deltapnorm,5))))

# Replot underlying image.

image(ll[1]:ur[1],ll[2]:ur[2],imgatwarp,add=T,col = grey(seq(0, 1, length = 256)))

# Plot template in new position.

ll<-p+c(1,1) #lower left

ur<-ll+c(w-1,h-1) #upper right

image(ll[1]:ur[1],ll[2]:ur[2],template, add=T,asp=1,col = heat.colors(20,alpha = 0.4))

} #end while

A.3 The Inverse Compositional Alignment Algorithm

A.3.1 Einstein with a Simple Translation Warp

### ICA algorithm for Einstein using jpegs

### Pure translation warp only

## install jpeg package

#install.packages("jpeg")

# load jpeg library



68

library("jpeg")

# read in images

img<-readJPEG("Figures/einstein.jpg")

template<-readJPEG("Figures/einstein_face.jpg") #warning, t and T are reserved

# Even though images are greyscale, the greys are specified in RGB

# triples with equal R, G, and B. Re-specify as intensities in [0,1].

img<-img[,,1]

template<-template[,,1]

# Currently img is stored as a matrix so that img[1,1] is in

# the upper left corner and img[1,2] is one pixel to the right.

# However, to plot with "image", must turn things around. This

# also happens to be Cartesian space.

img<-t(img[nrow(img):1,])

template<-t(template[nrow(template):1,])

# height and width of image and template

width<-dim(img)[1]

height<-dim(img)[2]

w<-dim(template)[1]

h<-dim(template)[2]

# display image

par(mar=c(1,1,1,1))

image(1:width,1:height,img, axes = FALSE, col = grey(seq(0, 1, length = 256)),asp=1.05,

main="",xlab="",ylab="")
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# initial position for template

p<-c(180,400)

ll<-p+c(1,1) #lower left

ur<-ll+c(w-1,h-1) #upper right

# Plot template on top. (Don’t greyscale so can see.)

image(ll[1]:ur[1],ll[2]:ur[2],template, add=T,asp=1,col = heat.colors(20,

alpha = 0.4))

# Jacobian is identity so omit.

readline(prompt = "Pause. Press <Enter> to continue...")

# Compute the template gradient, need dummy pixels.

hold<-matrix(0,(w+2),(h+2))

hold[2:(w+1),2:(h+1)]<-template

hold[,1]<-hold[,2]

hold[,(h+2)]<-hold[,(h+1)]

hold[1,]<-hold[2,]

hold[(w+2),]<-hold[(w+1),]

Tx<-matrix(0,w,h)

for(i in 2:(w+1)){

Tx[(i-1),]<-(hold[(i+1),2:(h+1)]-hold[(i-1),2:(h+1)])/2

}

Ty<-matrix(0,w,h)

for(i in 2:(h+1)){



70

Ty[,(i-1)]<-(hold[2:(w+1),(i+1)]-hold[2:(w+1),(i-1)])/2

}

# find Hessian

H<-matrix(0,2,2)

H[1,1]<-sum(Tx^2)

H[1,2]<-sum(Tx*Ty)

H[2,1]<-H[1,2]

H[2,2]<-sum(Ty^2)

epsilon = 10^(-10)

deltapnorm<-1 #arbitrary but larger than epsilon

while(deltapnorm>epsilon)

{

# Find values of pixels for image in the current template rectangle

# position NOTE 1: Will have an error if upper right pixel + (1,1) goes

# off image-- not coding this for the sake of clarity. NOTE 2: Currently

# img is in "matrix space". Switch to Cartesian space to find pixels in

# terms of xy-coordinates. NOTE 3: For a matrix A in R, A[3.9,5.7] will

# truncate indices and return A[3,5].

fracx <- ll[1]-floor(ll[1])

fracy<-ll[2]-floor(ll[2])

imgatwarp<-(1-fracx)*(1-fracy)*img[ll[1]:ur[1],ll[2]:ur[2]]+

fracx*(1-fracy)*img[(ll[1]+1):(ur[1]+1),ll[2]:ur[2]]+

(1-fracx)*fracy*img[ll[1]:ur[1],(ll[2]+1):(ur[2]+1)]+
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fracx*fracy*img[(ll[1]+1):(ur[1]+1),(ll[2]+1):(ur[2]+1)]

# find the error image

errorimage<-template-imgatwarp

# Find "bigsum" from Step 4 of ICA algorithm.

bigsum<-matrix(0,2,1)

bigsum[1,1]<-sum(Tx*errorimage)

bigsum[2,1]<-sum(Ty*errorimage)

# Find change in parameters.

deltap<-solve(H)%*%bigsum

# new p

p<-p+t(deltap)

# norm of deltap

deltapnorm<-sqrt(deltap[1]^2+deltap[2]^2)

print(noquote(paste("deltapnorm =",round(deltapnorm,5))))

# Replot underlying image.

image(ll[1]:ur[1],ll[2]:ur[2],imgatwarp,add=T,col = grey(seq(0, 1, length = 256)))

# Plot template in new position.

ll<-p+c(1,1) #lower left

ur<-ll+c(w-1,h-1) #upper right

image(ll[1]:ur[1],ll[2]:ur[2],template, add=T,asp=1,col = heat.colors(20,alpha = 0.4))

} #end while
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Appendix B

Principle Components Analysis of Image Sequence in R

# load the png library

library(png)

# read in faces

face1<-readPNG("face1.png")

face2<-readPNG("face2.png")

face3<-readPNG("face3.png")

face4<-readPNG("face4.png")

face5<-readPNG("face5.png")

face6<-readPNG("face6.png")

# remove redundantly store greyscale values

face1<-face1[,,1]

face2<-face2[,,1]

face3<-face3[,,1]

face4<-face4[,,1]

face5<-face5[,,1]

face6<-face6[,,1]

# image dimenstions

w<-dim(face1)[2]

h<-dim(face1)[1]
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par(mfrow=c(3,1))

plot(c(0,6*w+50),c(0,h),type="n",axes=F,xlab="",ylab="",main="Original",asp=1)

rasterImage(face1,0,0,w,h)

rasterImage(face2,w+10,0,2*w+10,h)

rasterImage(face3,2*(w+10),0,(2*w+10)+(w+10),h)

rasterImage(face4,3*(w+10),0,(2*w+10)+2*(w+10),h)

rasterImage(face5,4*(w+10),0,(2*w+10)+3*(w+10),h)

rasterImage(face6,5*(w+10),0,(2*w+10)+4*(w+10),h)

X<-rbind(c(face1),c(face2),c(face3),c(face4),c(face5),c(face6))

for(i in 1:6){

X[i,]<-X[i,]-mean(X[i,1])

}

A<-(1/(length(c(face1))-1))*X%*%t(X)

hold<-eigen(A,TRUE)

D<-hold$values

E<-hold$vectors

numfaces <- readline("How many faces should I use?")

numfaces<-as.numeric(numfaces)

{

if(numfaces %in% 1:6){print("Ok",quote=FALSE)}

else{print("Enter an integer value between 1 and 6",quote=FALSE)}

}
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P<-t(E)

Pprime<-P[1:numfaces,] #or PPrime<-P{1:2,], etc...

# Pprime will be matrix only if take more than 1 row.

# Otherwise must force to matrix.

if(!is.matrix(Pprime)){Pprime<-t(as.matrix(Pprime))}

newdata<-Pprime%*%X

plot(c(0,6*w+50),c(0,h),type="n",axes=F,xlab="",ylab="",main=paste("Eigenfaces

(Using ",numfaces,")",sep=""),asp=1)

for(i in 1:dim(newdata)[1]){

Y<-matrix(newdata[i,],ncol=dim(face1)[2])

Y<-t(Y[nrow(Y):1,])

width<-dim(Y)[1]

height<-dim(Y)[2]

image(((i-1)*(w+10)):(i*w+(i-1)*10),1:h,Y, axes = FALSE, col = grey(seq(0,

1, length = 256)),asp=1.05,main="Eigenface",xlab="",ylab="",add=T)

}

reconstruct<-t(Pprime)%*%newdata

plot(c(0,6*w+50),c(0,h),type="n",axes=F,xlab="",ylab="",main="Reconstruction from

Eigenfaces",asp=1)

face1r<-matrix(reconstruct[1,],ncol=dim(face1)[2])

face1r<-t(face1r[nrow(face1r):1,])

image(1:w,1:h,face1r, axes = FALSE, col = grey(seq(0, 1, length = 256)),asp=1.05,

main="Eigenface",xlab="",ylab="",add=T)

face2r<-matrix(reconstruct[2,],ncol=dim(face1)[2])

face2r<-t(face2r[nrow(face2r):1,])

image((w+10):(2*w+10),1:h,face2r, axes = FALSE, col = grey(seq(0, 1, length = 256)),
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asp=1.05,main="Eigenface",xlab="",ylab="",add=T)

face3r<-matrix(reconstruct[3,],ncol=dim(face1)[2])

face3r<-t(face3r[nrow(face3r):1,])

image((2*w+2*10):((3*w+2*10)),1:h,face3r, axes = FALSE, col = grey(seq(0, 1,

length = 256)), asp=1.05,main="Eigenface",xlab="",ylab="",add=T)

face4r<-matrix(reconstruct[4,],ncol=dim(face1)[2])

face4r<-t(face4r[nrow(face4r):1,])

image((3*w+3*10):((4*w+3*10)),1:h,face4r, axes = FALSE, col = grey(seq(0, 1,

length = 256)), asp=1.05,main="Eigenface",xlab="",ylab="",add=T)

face5r<-matrix(reconstruct[5,],ncol=dim(face1)[2])

face5r<-t(face5r[nrow(face5r):1,])

image((4*w+4*10):((5*w+4*10)),1:h,face5r, axes = FALSE, col = grey(seq(0, 1,

length = 256)), asp=1.05,main="Eigenface",xlab="",ylab="",add=T)

face6r<-matrix(reconstruct[6,],ncol=dim(face1)[2])

face6r<-t(face6r[nrow(face6r):1,])

image((5*w+5*10):((6*w+5*10)),1:h,face6r, axes = FALSE, col = grey(seq(0, 1,

length = 256)), asp=1.05,main="Eigenface",xlab="",ylab="",add=T)


