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Introduction.

While most results on finite automata and regular languages are construc-
tive in the sense that the machines and expressions involved can be effectively
given, occasionally one comes across a completely non-constructive result. An
example is the following result of Haines {[HA/]). We say that a word ¥y is a
supersequence of a word z if the sequence of letters of vy contains the sequence
of letters of z as a subsequence. For any language L, consider the language of
all words (over a fixed alphabet) which are supersequences of words in Z. This
language is always regular. Thus, using J. H. Conway’s terminology ([ CON]), the
operatic;n of closing a language by adding all words which are supersequences of
words in the language is a total regulafor, since it converts any language L into
a regular language. For an arbitrary recursive language L this construction can-
not be effective, since this would allow us to solve the emptiness problem for

recursive languages ([ LEE]).

In this paper we look further into Conway’'s notion by investigating total
regulators generated by closure under the more common types of derivation
relations in Formal Language Theory. For any particular derivation relation

=;> defined on words over an alphabet Z, we will say that =%> is a total regu-
lator on £* if for any L C L*, the language of words derived from words in L by

> is a regular language. Haines’ result can be easily cast in this form. For

‘it %

example, if Z=f{a, b}, P=fa>ca | ab|ba,b -5bb|ba|abl is a pure

context-free production system (OS scheme) then for any z,y € L%, v is a

Y SRS S S TRIE S * -
supersegquence of £ if and only il z =52 Y.

Haines’ result can be derived from earlier results in the theory of well-
quasi-orders, given in Higman's seminal paper ([ H/G]). In [ EHR], a more general
connection between regularity and well-quasi-orders is exhibited, and a general-
ized version of the Haines/Higman result is given in terms of derivation by
repeated insertion of words chosen from a fixed, unavoidable set. Here we carry
these resullts further be showing that for a wide class of derivation relations,

including those generated by propagating (non-erasing) OS schemes, =§> is a

total regulator on T* if and only if =3> is a well-quasi-order on Z* (Theorem

*
P
1.1). We then characterize the OS schemes which generate well-quasi-orders on
¥* using the notion of unavoidability as defined in [ EHR] (Theorem 2.1). The gen-
eralized Haines/Higman result from [EHF] is easily obtained as a corollary of =~

this characterization. Another combinatorial result that follows from Theorem °



2.1 is given at the end of Section 2. In Section 3 we give some preliminary

results toward a more algebraic characterization of OS total regulators.

Several applications of the theory of well-quasi-orders have recently
appeared in the literature ((RUO)], [LAT], [DER]). It is hoped that the basic
results on well-quasi-orders given here will lead to further applications of the
theory in these and other areas. In this context, we note that [LAT] uses the
Haines/Higman result, which is a special case of our characterization theorem,
and the main regularity result from [RFU0] can be derived from the fact that for

the OS scheme with ¥ = {a, b} and P = {a » ac | aba, b -» bb | bab}, ==

=> 15 a
P

total regulator, which also follows directly from this theorem.

Several immediate directions for further research remain. These are dis-
cussed in detail in Section 4. The primary open problem is whether or not the
characterization of propagating OS total regulators given by Theorems 1.1 and
2.1 is effective (i.e. is the criterion given in Theorem 2.1 a decidable property of

* .
=> 15 a
P

propagating OS schemes). In addition, even if we can establish that =
total regulator by showing that P satisfies the criterion of Theorem 2.1, the reg-
ular languages generated by applying this total regulator can not always be
effectively given, as mentioned above. J. van Leeuwen {[LZE]) has explored the
extent to which the Haines/Higman total regulator is effective, and demon-
strated that the closure of any context-free language under this total regulator
is an effectively given regular language. We have no similar results for an arbi-

trary propagating OS total regulator ==> . In fact, even when R is the regular

language language derived from a single letter o € ¥ under =
give any recursive bounds on the size of the smallest automaton for A in terms
of the size of P. It remains te be seen if the non-constructiveness in our results

is merely an artifact of our choice of methods or whether it indicates some

deeper intractability of the problem.

Notation

For basic definitions in Formal Language Theory we refer the reader to
[HAR]. Our conventions are as follows. For a finite alphabet %, ©* denotes the
set of words over Z, A denotes the empty word and L% = L* — {A]. For w € L%
|w | denotes the length of w and #,{(w) the number of a’s in w for any @ € I. A
production system is a pair (L,P) where P is a finite set of productions
P={u;-»vy .., 4 > 1] where w; EZ*,F 'u,, €X* for 1<i<k. If for all 1,
1=i<k, |w|=|v], (L,P) is propagating (length—increasing); it |u;| < |v;|
then (X,P) is strictly propagating; if ]uLI =1 then (%,P) is an OS scheme.



u v lusl o | g is shorthand for U >V, U Vg, ., U Uy

and ¥ = 9Ty where z,, 2 € ¥* and v »v € P, then z 3> y. =

the reflexive and transitive closure of =3 .

Section 1. Wellquasi-orders and total regulators

We begin by defining the notion of a total regulator, and characterizing this
class of relations using the theory of well-quasi-orders {see below). We will res-
trict ourselves to relations of the following type, which includes many of the

common types of derivation relations in Formal Language Theory.

Definition 1.1. A gquasi—order is a reflexive and transitive relation. A quasi-
order = on L* is multiplicative if for all ,, Zp, Y1, Y2 €X* z; <z and ¥ < Yz
implies that z,y¥,; < zgy, The quasi-order < is length—increasing if z <y
implies that |z]| < |y|.

Example 1.1. Let (I,P), with P = {u; » vy, ..., U - U}, be a finite produc-

=> is a multiplicative quasi-order on I* If P is length-

tion system. Then =z

increasing then =%> is length-increasing.
Definition 1.2, For a quasi-order < on X* w €X* and L CZ* let
clw)=fz eZ*:w<zl, clll)y= U chs(y). If < is the derivation relation
y&

> defined by some O0S scheme (Z,P), we write clp(w) for cl{w), similarly

|

he guasi-order < is a regulator {on I*) if cl<{L) is regular
for all regular L C &*, < is a total regulator {on L*) if cl{L) is regular for any

L € &% A (total) regulator of the form =§> , where (Z,P) is an OS scheme, is
also called an OS (total) regulator. It is a propagating OS (total) regulator if the
0S scheme is propagating.

By the results of Haines {[HA/]), the supersequence relation given in the
Introduction is one example of a propagating OS total regulator, but much
simpler examples can be given.

Ezxample 1.2 Let T = fak, blandlet P={a »b,b »a | bb}. Then for any
z,y €8, z =%> y if and only if |z| <]y|. Thus for nonempty L CZ%
clp(L)Y=T={x €T*: |z| > k] where & is the length of the shortest word of L.
For L' = L U {A, clp(L') = T U {A]. Hence =%> is.a propagating OS total regula-
tor.



An OS total regulator which is not propagating was also given by Haines.

Erample 1.3. Let £ ={a,b] and let P=§a >\ b > A]. Then for any

z,y €Lt z =1§D> y if and only ifrisa supersequence of y. This quasi-order is

the inverse of the supersequence total regulator discussed in the Introduction,
and is also a total regulator by the results of Haines ([HA/]). In fact, Haines’
argument generalizes to show that the inverse of any total regulator is also a

total regulator.

Haines’ results can easily be derived from the more general theory of well-
quasi-orders, introduced by Higman ([H/G]). We give only the basic definitions
and results from this theory which will be needed in what follows. For a more

complete treatment, the reader is refered to [KRU).

Definition 1.8, A quasi-order < on a set S is a well —quasi—order (wgo) on
S if and only if for each infinite sequence {z;}; », of elements in S, there exist

% <7 such that z; < z;.

Praoposition 1.1. ({HIG]) Let < be a wgo on a set S and let =¥ be the
quasi-order on the set F{S) of finite sequences of elements from S, defined by
LSy, S > <F <f4q,....£> i and only if there exists a subsequence <t~1,...,tik> of

<fi,....f;> such that s; < ti, for1=j < k. Then <F isawqoon F(S).

Proposition 1.2 ((FHR]) Let < be a quasi-order on Z* which is wgo on
Ly, L CX* Then < isawgoon L,V L; and if < is multiplicative, then < isa
wqo on LiLs.

FProposition 1.3 Let =, be a wqo on a set S. If <; is a quasi-order on S

such that z <; ¥ implies that z <; vy, then <; isawgoon S.

Proof. This follows directly from the definition. »

Froposition 1.4. Let < be a multiplicative quasi-order on Z* and
Ty, Y 1,0, e words in ¥ such that z; £ y; holdsfor 1<i <k, If =§> is a
wgo on L* for the production system (X,P), where P ={z; >y, -, Zr > Y,
then = isawgoonL*

Proof. This follows easily from Proposition 1.3.®

In [EHR], a generalized Myhill/Nerode theorem for regular languages is
given wherein the usual notion of a finite congruence on &* is replaced by that of
a multiplicative wqo on IL* (here our terminology varies s'f_@ghtly from that of

[FHE]). A consequence of this result is the following.



Propasition 1.5. For any,‘,mult'iplicative wqo < on L* < isa totalregulator

on L*.

For a wide class of derivation relations, this result actually provides a char-

acterization of the total regulators, as is shown in the following.

Theorem 1.1. If < is a length-increasing, multiplicative, decidable quasi-

order on &% then < is a total regulator on £* if and only if = isa wgo on o*,

Proof. The "if" part follows from Proposition 1.5. For the "only if" part,
assurme that < is a total regulator, but not a wgo on Z*. Since < is not a wqo
on T* there exists an infinite sequence {z;}; > of words over X such that for no
pair i, j of numbers, where 1 €1 <j, ; < z; holds. Let L = {z .z = z; for some
i>1} and let X ={|z|:z € L]. By considering a subsequence of $zidi =, if
necessary, we can assurme that |z;] < |z;| whenever i <j and that X is not a

recursive set of natural numbers.

Since < is a total regulator on ¥, cl.(L) is a regular set and hence it is
decidable for any word z if z € clg(L). Let Y = {n € N : thereexistsw < cl(L)
with |w| =7 and for no ¥ € cl(L) with |y| <7 the relation ¥ < w holds?.
Since < is decidable and cl (L) is recursive, ¥ is recursive. We claim that

X = ¥ and this contradiction establishes the theorem.

The claim 1s established as follows. If w € cig{l) then z; <w for some
j = 1. If in addition there is no ¥ € cl<(L) such that ly| <|w| and ¥ <w, then
there is no z; such that |z;| < |w| and z; =w. Since < is length increasing,
this implies that |w| = |z;|, hence |w]| € X. On the other hand, for any Z;,
i>1 x; €cl (L) Furthermore, thereisnoy € cl.(L) such that |y | < |z;| and
y < x;, because this would imply that z; =y = z; for some ¢ < j, which is impos-

sible by our assumption on {z;}; =1 *

In fact, since in the proof of the preceding theorem the regularity of clg(L)
is only needed to show that clo(L) is recursive, the proof shows that the follow-

ing stronger statement holds.

Theorem 1.2. If < is a length-increasing, multiplicative, decidable quasi-
order on &* then the following three properties are equivalent.
(i) < isawgoonX*
(i) = is atotal regulator on T

(iii) cl<(L) is recursive for every subset L of T*.

Section 2. The Main Theorem
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We now restrict our attention to derivation relations generated by OS
schemes. Since, for propagaﬂng OS schemes, these relations fall into the gen-
eral category of relations covered by Theorem 1.1, we know that a derivation
relation of this type is a total regulator if and only if it is a wgo on £* Therefore
we investigate the circumstances under which an OS scheme generates a wgo on
L* In the case of propagating schemes, this leads to a characterization of the

total regulators. e need the following concepts.

Definition 2.1. A subset L of L% is unavoidable, if there exists a number
ko € N such that for all w € L% |w| > kg, w has a subword in L, i.e. w = wrwy
for some w, wy;€L* =z € L. The smallest such number kg is called the

avoidance bound for L.

It is clear from the definition that if 7 is unavoidable with avoidance bound
ko, then fz € L : |z | <k} is also unavoidable with avoidance bound kg. Hence

any infinite unavoidable language contains a finite unavoidable subset.

Defirition 2.2. Let (¥,P) be an 0S scheme. Then, fora € %,
LEFTs (o) = {az :z €¥*, and a =;=’> azl,

RIGHT, (a)y ={za :z € L%, and a =E-.’> zal,
DUALp (@) = LEFTp (a) n RIGHTp {(a) = {azxa : z € T* a =§> azai,

MIXEDp (@) = LEFTs (a) U RIGHT (), |
LEFTp = U LEFTp (a) and RIGHTp, DUALp, and MIXEDp are defined simi-
g €i

larly.
Theorem 2.1. Let (L,P) be an OS scheme. Then the following properties are

equivalent.

(i) =1§:> is a wgo on I*.

(ii) DUALp is unavoidable on &*.

(iii) M/XEDp is unavoidable on Z*.

The proof of Thecrem 2.1 is somewhat involved, and is presented as a
sequence of lemmas. The first few lemmas culminate with Lemma 2.3, which for-
malizes the following observation. If (I,P) is a strictly propagating 0S scheme
such that KHSp is unavoidable with avoidance bound kg, then any word in £* can
be parsed by repeatedly replacing the leftmost occurrence of a subword in
RHSp with a letter that derives it in such a way that all replacements occur
within the first kq+1 letters of the word and the final result is a word of at most
kg letters. This "leftmost shift-reduce” parse of an arbitrary word yields a kg-

depth bounded "derivation” for any word interms of the regular substitution Sp



described below.

Definition 2.3. Let (X,P) be a propagating 0S scheme and for each letter
a €%, let Z; be a variable. let Z = {7, : a € £} and let P' be the set of left
linear productions defined by P'=1{Z; » Zyw, Z; » bw :a » bw € P}. Then
Sp{a) denotes the regular substitution on L* defined by Sp(a) = L(G,) U {a],
where G, =(Z VL, X, P, Z,).

Sp(a) is the set of all strings obtained from o by repeatedly replacing left-
most symbols by right hand sides of corresponding rules in . The subscript P
will be omitted when the production system P is clear from the context. Note
that for bz € S(a), y € S{b) the relation yz € S(a) holds.

For the next two lemmas let (Z,P) be a fixed propagating OS scheme.

Lemma 2.1 leta €2, u,w €Lt z,y €3* Ifax € S(w), v € S¥*{a), and

y € S¥{z), where k =0 is an arbitrary natural number , then uy € S**(w).

Proof. Let w = bw' where b € &, w' € L* Since axr € S{w) and P is pro-
pagating there are strings z' € £* and z" € *, such that z = z'z", az' € S{(b),
and z" € S{w'). Since u < S*¥*(g), there is a word u'e€ S{a) such that
u € S*{u'). But then u'z' € S(b), and consequently u'z'z" = u'z € S{w). This
implies uy € S*¥*Y{w). =

Lemma 2.2 let wel*, vy, y,€Z* with |y,| <k, and ce€X. If
viayg € S¥(w) and z € S{a), then y,2yz € S¥(w).

Proof. We use induction on k. If k& = 1, then y; = A and ay; € S{w). It fol-
lows from Lemma 2.1 that zy; € S{w). Assume that the statement holds for all
numbers less than or equal some k. Consider y = y,ay, € S**(w), where
ly,] <k+1,andletz € S(a). Letw,, wz€ T* b €%, 24, 23, 21, 22’ € Z* be such
that w =wbws, vy, =2,2,, Y= 252z 2, SN w,), =z/azy cS**(b),
zp € S¥*(w,) holds. (See Fig. 1). Let uw,u'u"v,u'w" € I* ¢ € I be such that
ucy € S(b), 2, =u'n", 27 = v, u' € S¥u), u'aw" € $¥(c), v' € S¥(v) holds.
If zyu' ZX then |u"| <k, and consequently by the induction hypothesis
u"zv' € S*¥(c), which implies that y,zy; € S¥*Nw). If z,u' = A, then w, = A,
© = A. Since z € S(a), we have u"zv" € S**!(c), and therefore by Lemma 2.1,
w"zu'y' € S¥*1(b). Consequently, also in this case ¥ 2y € SF*{(w). =

Lemma 2.3. Let (I,P) be a strictly propagating OS scheme such that RHSp
is unavoidable with avoidance bound kg Let F =f{w eXZ*: |w]| <ky]. Then

£ = S m),



Figure 1.

Proof. Assume to the contrary that £* — S°%(F) # ¢. Let w be a word in
¥ — SkO(F) of minimal length. Since F CSkO(F), lw| >kq. Since kg is the
avoldance bound of EHSP and (Z,P) is strictly propagating, there are strings
wi,wy € I* with |w,| <kg and a rule @ » z € P such that w = w,;zw,. Since
wigwWg is shorter than w, w,qw;< Sko(z) for some =z € F. But then
w = wTws € Ske(z) by Lemma 2.2. Hence w € SkS(F), contrary to hypothesis.

We make the following definitions in analogy with those in Definition 2.2.

Definition 2.4. A production a - z is left bordered (right bordered) if
T €al” (x €L%). An OS scheme (I,P) is left (right) bordered if each produc-
tion in P is left (right) bordered. (,P) is dual bordered if each production in P
is both left and right bordered. (Z,P) is mixed bordered if each production in P

is either left or right bordered.

The essence of the argument that whenever DUALp is unavoidable, =3%> is

o

L

a wqo (i.e. (ii) impiies (i) in Theorem 2.1) is contained in the following result.
Lemma 2. 4. 1f (X,P) is a dual bordered OS scheme, then :§> is a wgo on
S¥(F) for every k = 0 and finite set F ¢ L*.
Proof. We use induction on k. Ik =0, then S*¥(F) = F and the result is

trivial. Assume that the result holds for all finite sets F and all numbers less
than or equal some k. For a €%, let X; = {z: a » azxa € P}. Note that since
(,P) is dual bordered, S**{a) = (aS*(X,))*a holds for all numbers = 0.



Fix some ¢ € £ and consider a sequence {w;3; » ; of strings in S¥*}{a). Each
string w; can be written in the form w; = ay;,a @ GYiap)@  Where

Yi1 € S¥(X;), 1<l =n(i). Since =%> is a wgo on S¥(X;) by the induction

*
P
hypothesis, by Proposition 1.1 there are numbers 4 and 7, with © <7, such that

for some subsequence (i, ..., Jn) of (L,...7n{)), ¥Yir =:=;> Yj,; bolds,
r=1,.. n(i). Sincea =%> ay; ;¢ holds for all numbers ¢ and I, it follows that

w; ==> w;. Hence = is a wqo on S*¥*!{a), and consequently, by Proposition
P =

o

1.2, =I> isawgo on S**Y(F) for every finite set F' C L* =

:
P

To 5omplete our preparation for the proof of Theorem 2.1 we look now at
the relationship between the unavoidability of MIXEDp and that of DUALp. It is
obvious that whenever DUALp is unavoidable then M/XFDp is unavoidable, since
DUALp € MIXEDp. The other dfr_ection requires some work. We begin with a sim-
ple observation concerning mixed bordered schemes.

Lemma 2.56. Let (£,P) be a mixed bordered OS scheme. If a =%> z, then

1 . %
there are strings z,, £; € £* such that x = z,az; and ¢ =%> z,a,a ==> 0Zg

Froof. We use induction on the number of derivation stepsin a =§> z. If

a ==> z, then r = a and the result is trivial. Assume that the claim holds for all

Py e

derivations a =%> Yy, and let a =k;> z be a derivation of length £ +1. Conse-

quently, there is a word iy € £* such that a =f_-7> y and ¥ 3> z. By the induc-

tion hypothesis, ¥ = y,0y2 for some words ¥, ¥z € &* such that a :};> yia and

- = =
e =

> aya Now, if z =y ayg withy; =35> ¥y (x = y,0ys with yz 5> y2| resp.),

P
the result holds with z; =y, zz =Yz {(z, =¥, %2 =Yz, resp.). If z = y,2y,,
where a » 2z € P, then 2 = a2’ or z = 2'a for some string z € * since (,P) is
mixed bordered. In the first case z, =¥,, Xz = 2'yy, In the second case
z; =Yy,2', Ty = Yy satisfy the claim. =

Lemma 2.6, Let {Z,P) be a mixed bordered OS scheme such that RHSp is
unavoidable with avoidance bound kg Then LEFTp is unavoidable with aveidance

bound less than or équal ky = ko((ko—1)| 2] +1)k°-1.

FProof. Since RASp has avoidance bound kg, we can assume thata » z € P
implies |z| <k, Let F be chosen as in Lemma 2.3 and let z be a word of length
at least k,+1= kc((k0—1)|2[+1)k°. By Lemma 2.8, I* = S*9(F), consequently
there are words Zo € F, Z,..., %k, € ¥ such that z =z and z; € S{zi-1),

i1=1, ..., kg. Since |zg| <ky there is an index j,1<j <k, such that



.10

fz;| > lz; [ ({(ko=1)|Z] +1) holds. This implies that there is a symbol a in T
which contributes at least (ko—1)|Z|+1 symbols to z;, to be precise: There are
strings z;-1, z;1", z;', z;" €L* z €X', a €l such that Zjy = xiy'ax; .y,
;= xp'zxyt, x € S(zy_y"), 7 € S{a), z;" € S(z;,") and |2 | = (kg—1)| ] +1.

By definition of the substitution S, there are symbols ag =a,a,, ..., q,, €2,
and strings ¥y, ..., ¥m € =¥ such that
Qo "35> Q1Y 5 GgYaY1 "5 TE CnYnmYm-1 Y1 = 2

is a derivation of 2 (see Fig. 2), where in each derivation step the leftmost sym-

bol, g;-,, is replaced by oy, according to a production g;_; » gy, (1<1 < m).

By assumption, [y| <ke—=1 for I =1,..., m. Since |z]| = (ko—1)|Z]+1,
m = |2Z|. Consequently, there are numbers 7 and s, 0 <7 <s <m, such that
0 =as. Let 2,=0nYm " Yse1, 22=Ys° " Yr+1, 23 =¥ - Y1 Note that
zg 2N\ Since z; = xj'z 25257 and z =z, € Sk (z;). there are strings
2y, 25, 23" such that for 1 <1 <3, 2; =r;> z;', and 2,'2z5'23' is a substring of z. It
follows that a, =;;> o,z =%> a,25' and a, =}§,> z, :%> z

1

By Lemma 2.5, there are strings z,", z,” with 2z, =z,"¢,z;" and
a, =§> a.z,'". But then a, =§> a,2,"'z5', where @,z ,"'25' is a substring of z and
isin LEFTp. This shows that LEFTp is unavoidable with avoidance bound at most
k. =

Lemma 2.7 Let {(Z,P) be a left bordered OS scheme such that FHSp is una-

voidable with avoidance bound kg. Then DUALp is unavoidable with avoidance

bound at most k|, = kg{{ke—-1}| T}

Proof. For a string z € £* we denote by z~ the mirror image of z and for a
language L CX* by L~ the mirror image of L,L~={zx~:z € L}. Let P~
=fa-»>z~:a >z € P}]. Clearly (I,P~) is a right bordered system and
RHSp~ = (EKHSp)~ is unavoidable with avoidance bound kg By Lemma 2.8
LEFTp. is unavoidable with dvoidance bound at most k;. The claim follows by
observing that (LEFTp.)~ is unavoidable and (LEFTp~)~ = DUALp. =

We are finally in position to prove the main theorem of this paper.

Proof of Theorem 2 1. (i) -» (i) : Suppose ==> is a wgo on L* We show

P
that LEFTp is unavoidable which shows that M/XFEDp is unavoidable, since
MIXEDp contains LEFTp. Assume to the. conirary that LEFTp is avoidable. By
using Koenig's lemma, there is an infinite string w = @,a,03... over &, a; € X for

i = 1, such that no finite substring of w has a subword in LEFTp. Let {w;l;= be
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Figure 2.

the sequence of prefixes of w, i.e. w; = a0, - a;,7=1,2,... Since ==> isa
wqo on L* there exist numbers i and j, 1 < 7, such that w; =§> w;. Call a letter

a of w; active, if a contributes at least two symbols to wj. Let g be the left-

most active letter of w;. Consequently, for some number n =1,
O =%> Q¢ * " Og+n- Hence w; contains a subword in LEFTp, contrary to
assurmption.

(i) » (i) : Suppose MIXEDp is unavoidable with avoidance bound kg. If (Z,P')
is the mixed bordered oS scheme defined by
P =la->2:a€el z e MIXEDp (a),|z]| <k}, then RHSp', is unavoidable with
avoidance bound kg; consequently, by Lemma 2.6, LEFTp', is unavoidable which
shows that LEFTp is unavoidable, since LEFTp' C LEFTp. In a similar way we

conclude, using Lemma 2.7, that DUALp is unavoidable.
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(1) » (1) : Suppose DUALp is unavoidable with avoidance bound kg If (Z,P') is
the dual bordered OS scheme defined by P' = {a »z:a €&, |z| <k,
xz € DUALp {a)}, then RHSp' is unavo%dable with avoidance bound kg Conse-

guently, by Lemma 2.4 and Lemma 2.3, ==> is a wgo on &* Using Proposition

*
P

1.3 we conclude that ==> isawgoonZ* =

:
P
For mixed bordered OS schemes, Theorem 2.1 gives a very simple (and

easily decidable) characterization of those schemes which generate wqo’s.

Corollary 2.1. 1f (£,P) is a mixed bordered OS scheme, then =3> is a wqo

*
P
on Z* if and only if KHSp is unavoidable.

Proof. 1f RHSp is unavoidable, then M/XEDp is unavoidable, since
RHSp C MIXEDp. Hence ==

=> is a wgo on X* by Theorem 2.1. On the other

hand, if ==> is a wqgo, then RHSp must be unavoidable, since otherwise we

pd
P
could find an infinite sequence of strings not derivable from any other string,

and hence for no pair z, ¥ of strings in this sequence would = =;~)> Yy hold. =

For any mixed bordered OS scheme (X,P), if = =P§> y then ¥ is a superse-

quence of x. Hence all of the wqos generated by mixed bordered schemes under
the conditions of Coroilary 2.1 are refinements of the supersequence wqo dis-
cussed in the Introduction. One might conjecture that a characterization as in
Corollary 2.1 could be given for a larger class of O3 schemes which enjoy this
property, e.g. for the class of embedding schemes, where an OS scheme (Z,P) is
called embedding, if for each production @ »zx € P, z can be written in the
form z = x,azx;, with z,, zp € L* However, such a generalization of Corollary 2.1

is impossible, as shown by the following example.

Frample 2.1, lLet ¥=1{a,b,c}] and let P be given by the productions
a - aa|aba|acba, b - bb |bab, ¢ » cc|aca|beh |bea. It is readily verified that
;;> is not a wgo since it can be shown
that for no numbers m, n, m > n, the relation (abc )” =

RHSp is unavoidable on L*. However, =

§> {abc )™ holds.

On the other hand, Corollary 2.1 does generalize previous results on wqo
refinements of the supersequence relation generated by repeated insertion of
words from a fixed unavoidable set ([EHE]).

Definition 2.4. An OS scheme (Z,P) is an insertion systém if there exists a
finite set X ¢ £* such that P = {a »az|za:a € X, z € X{. In this case (Z,P) is

the insertion system generated by X.
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Insertion systems were originally introduced in [FHR] in a slightly different

way, butl it is easy to see how their definition relates to ours.

Corollary 2.2. ([EFHR]) For a finite set X ¢ &%, if (Z,P) is the insertion sys-

tem generated by X, then =:=;> is a wqo on Z* if and only if X is unavoidable.

FProof. Clearly, RHSp is unavoidable if and only if X is unavoidable. Conse-
quently, Corollary 2.2 follows from Corollary 2.1. ®

As a final example of the use of the wqos given by Corollary 1.1, consider the

following proof that "history always repeats itself in ever more elaborate ways".

Deﬁhvltion 2.5. Let L be a finite alphabet of "events” and let £ be a total
order which ranks the events in Z. A sequence y of events is an elaboration of a
sequence z, if x =a, - o forsome ay, ..., 0 €%, and Yy =Y, ' ' Y for some
Y1 - Yp € LY, where for each i either y; =a; or y; = ;b - - b,a; for some
n =0, where b; EZanda.igbj, 1=j =n,.

Thus we obtain an elaboration of z by replacing each event a of z by a
series of events which begins and ends with @, such that no intermediate event
has a smaller rank than a.

Corollary 2.3 If ¥ is an alphabet and < is a total order on Z, then every
inflnitc scquence {Z;};> of strings in &% contains strings z;, zj, with 1 < j, such
that z; is an elaboration of x;.

Froof. Let < be the quasi-order on L* defined by z <y iff ¥ is an elabora-
tion of z, for strings z, y € £*. Clearly < is multiplicative. For each o € ¥ let

Ie=fzxeda<razxl let L= u zﬁa. It is easily verified by induction
a g

on |X| that L is unavoidable. Let L' be a finite unavoidable subset of 7 and let
P=ta-»xz:xecl',a<z} The 0OS scheme (X, P) is dual bordered and since

RHSp = L' is unavoidable, =2

5> is a wgo on Z* by Corollary 2.1. The result fol-

lows now from Proposition 1.4, =

3. Moncidrepresentations

While in Section 2 total regulators generated by propagating OS schemes
were characterized by an unavoidability criterion, in this section an attempt is
made to describe such total regulators in a more algebraic way, corresponding
to the well known characterization of regular languages in terms of congruences
of finite index (finite monoids, resp.). The first result in this section can be seen

as the natural extension of this characterization to regulators defined by OS
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schemes {see Def. 1.2).

Theorem 3,1. For an 0S scheme (£,P), ==> is a regulator on Z*if and only

h
P
if there is a finite monoid ¥, a morphism h : £* » #, and a multiplicative quasi-
order £ on M suchthat foralla €L and z € L% a =}§)> z iff h{a) = h{z).

Proof. (if part) Let M, R and = be as in the statement of the theorem, and
for @ €3, let M, = {m € # : h(a)=m]. Consequently, clp(a) =h™'(H,), which
shows that clp(a) is regular for all @ € Z. If we define a regular substitution ¢ on
5* by o(a) = clp(a), for a €%, then for every subset L of X* clp(L) = o(L).

Therefore clp(L) is regular for every regular subset L of I*.

(only if part) Assume that =Z> is a regulator on L*. For a € X* let #{a)

*
P
be the syntactic monoid of (the regular language) clp(a), let my : £* > M(a) be
the canonical morphism mapping each string of £* to its class modulo the syn-
tactic congruence of clp(a), and let <, be the syntactic partial order on M{a),
ie. ma(z)<.ma(y) if and only if for all w,w €Z* wuxv €cip(a) implies
uyv € clp(a). Let ' = a)E(ZM(a) be the Cartesian product of the monoids #{a),

endowed with componentwise multiplication, and let A :¥* » #' be the mor-
phism defined by h(z)=(m(z))g ez, = € T* Let ¥ = h(Z*) and define a multipli-

partial order = on M by h{z)=<h(y) if and only if for all a €%,

|}

me{x) <¢me{y). We will show that #,h and < satisfy the claim of the theorem.
Indeed, if h(a)<h(z), then me(a)<,ms(z). Since a €clp(a), this implies
z €clpla), ie. a =§> z. If, on the other hand, @ =%> z, then for all b €T,
w, v € 5% uaw € clp(b) implies uzv € clp(b). Consequently, m,(a) <,m,(z) for
all b € & which implies 2 (a) < h(z). This proves the only-if part. =

The above theorem suggests the following definition.

Definition 3.1. Let (I,P) be an OS scheme, let # be a monoid, A : ¥* > ¥ a
morphism, and =< a multiplicative quasi-order on #. The triple (M, h,<) is
called a (monoid-)representation of (L,P) if for all a € ¥ and z €% « =}§:> z
holds iff A(a) < A(z). (M, h, <) is a finite (monoid-)representation of (T,P) if ¥
is finite.

Theorem 3.1 can now be restated as follows: For an OS scheme (Z,P), =;=;
is a regulator if and only if (Z,P) has a finite monoid-representation.

It seems natural to try to characterize wqo’s {total regulators) defined by
0S schemes in terms of monoid-representations. So far we only have partial

answers to this problem, and we restrict ourselves to presenting the following ‘
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sufficient condition on M to guarantee that ==> is a total regulator.

b
P
Theorem 3.2 Let (£,P) be an OS scheme and let (G, h, =) be a monoid-

representation of (£,P) where & is a finite group. Then =1§J> is a total regulator
on ¥,

Proof. Let |G| =n, and letz = aga, - - - a, € L% where ag, ..., @, € L. Con-
sequently, there are numbers 1,7 with 0=<1i <j=<mn, such that
h{aga, - a;) = h{aga; - a;). Since G is a group, A(g4 ;) = 1, where 1
is the identity element of G. But then h(a;) = A{a;a;y; - - ¢;), and therefore
o; =:=;> @;C;+1 - @j. This shows that LEFTp is unavoidable, and thus =%> is a

wgqo on %* by Theorem 2.1. Hence, =%> is a total regulator on Z* by Proposition
1.5 =
The proof of Theorem 3.2 shows that in order to guarantee that =%> is a

wgo on L* the following weaker condition on (G, h, <) for finite group G is
sufficient: For all e € X, z € %, if h(a) = h{z), then a 2;::> z.

There are wgo's {and hence total regulators) defined by 0S schemes which
cannot be represented in a finite group in the sense of Definition 3.1. For exam-
ple, the OS scheme {I,P) with & ={a.b}, P =f{ae - aa | aba. b - bb{ defines a

*

wgo =2> by Corollary 2.1. On the other hand, if (G, h, =) is arepresentation of

(Z,P) with G a finite group containing n elements, then A{a) = A{ab™), and con-

sequently a =§> ab™, which is a contradiction. This shows that (Z,P) cannot be
represented in a finite group.

In the rest of this section we briefly discuss the question which triples
(M,h,=<) - where M is a finite monoid, A : £* > # is a morphism, and < is a
multiplicative quasi-order on M - are monoid-representations of some OS
scheme. To this end, let for such a triple and for a € X

Ly =fxc€l*: h{a)<h(z) a %z,
and let & = {@ : @ € &} be a barred copy of &, £ n & = ¢. Define a substitution ¢
on Z* by of(a)={a,@,a €% and a substitution p on (ZUZ)* by
pla)=ta},p{@)=1Ly. Fora €l let

Lo = Ly’ — p {a(Ly') N T*TEH),

Ly is the set of words in L,' which cannot be obtained from other words in ;' by
substituting words from some sets Ly', b € X. By construction, [, is effectively

regular for each a € Z.
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Lemma 3.1, Let M be a finite monoid, let A : Z* » # be a morphism and let
= be a multiplicative quasi-order on M.

(i) Let (Z,P) be an 0S scheme not containing any rule of the form a - a. If
(M,h,=) is a representation of (Z,P) then U gzL“ is finite and
a

(')UGEEEQ »r:zxz €L CPC Uaezia s>z € L.

(ii) Conversely, if U zLa is finite, then for any finite set P of productions
a €
satisfying (*), the triple (M, h, <) is a representation of (I,P).
 Proof. (i) For @ »z € P the relation o =%> z and consequently = € L;'

holds. On the other hand, assume that z € L, but @ >z £ P. Since (M, h, <)

is a representation of (I,P), a =;—5> z. It follows that there are b €I and
zy, Tz, g €L* such that zbxg#za, z£2b, =z =z,xpzg and a =§> z,bxg,
b =§> zg. This implies z,bxg € L', zp € L', contrary to the assumption z € L,.

Part (ii) is straightforward by definition of the sets Z,, L;' and the fact that < is

multiplicative. =

As a consequence of Lemma 3.1, it is decidable whether a triple (M, A, <) is
monoid-representation of some OS scheme (I,P) : it suffices to test whether the
regular sets [, are {inite. Moreover, there is essentially a unigue OS scheme
represented by (M, h, =), namely (T, v Ezéa - zx:z € [;}). This decision prob-
lem is not trivial, since there are triples (#, h, <) for finite # and multiplicative
< which are not representations of any 0S scheme.

Erample 31. Let L =1}a,b]. Let M be the syntactic monoid of
L = {ab®*)*a, let A : £* > M be the canonical morphism mapping = € £* to its
class modulo Z and let the quasi-order < on M be the equality relation. A sim-
ple computation shows that I’ =¢, L,' =L — {a}, and L, = ab®h*a. Conse-

quently, (#, h, =) is not monoid-representation of any OS scheme.

However, if M is a finite group, then (M, h, <) is a representation of some

0S scheme (Z,P). It should be noted that because of Theorem 3.2, ==

=> 1is then
P

a total regulator.

Theorem 3.3 If G is a finite group, h : £* » G a morphism and < a multi-
plicative quasi-order on G, then there is an 0OS scheme (I, P) with representation
(G, h, =)

Proaof. Because of Lemma 3.1 it suffices to show that the sets Ly are finite.

More precisely, we prove that =z € L, implies |z| < |G|+1. Let |G| =n and
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assume to the contrary that there is a string z = age, - - - a,4,2' € Ly, where
gy, ..., Gy €2, Z' € 0* Consequently, there are numbers 1 and
7. 0=1<j<n, such that h(ag- o) = h{ag ' aj). Since G is a group, this
implies h(a;) = (@, - a;) and h(ag - @05, * Gy2') = R(x), where
lagoe - a;l =2 and  |ag - @i @' 22, We conclude that
0841 0 € L and @g v 24@54, 0 Gp @' € Lg'. This is a contradiction to
T €Ly ®

The construction of the proof of Theorem 3.3 gives a tool to construct O3
total regulators, however as pointed out above, not every OS total regulator can
be obtained in this way. It remains an open problem to characterize those 0S5
total regulators which have a representation in a group.

Ezample 3.2, Let C3 be the (additively written) cyclic group with elements
0,1,2 let L ={a,b], let h : T* » C3 be defined by A{e) = 1, A(b) =2, and = by
i<j iff i=j. A straight forward computation shows that I, = {bb, abal,
Ly = {aa,babl, i.e. {Cs h, <) is a representation of the OS scheme (Z,P) with
P ={a - bb | aba, b » aa | bab}. This result could also be established directly

-by observing that a =%> z  (resp. b =§> z) holds if and only if
#alz) —#o(z) = 1 mod 3 (resp. #o(z) — #(2)

Secticn 4. Open Problems

2 mod 3).

The primary open problem remaining is to show that it is decidable whether
or not a propagating OS scheme generates a total regulator. While Theorem 2.1
gives a characterization of such systems, we have been unable Lo show that this
characterization is effective. One approach to this problem would be to investi-
gate the pumping properties of OS total regulators, hoping to find one which is

both necessary and suflicient, and effective.

Let (Z,P) be a propagating OS scheme, and consider the following "pump-
ing’ properties:

a) For allw € %* there exist &, [ with & <[ such that w* = L

*
=> W
P

b) For all w € L* there exists &k > 1 such that w =§> w*
c) Forallw € L' there exist @ € &, w, wy € Z*and £ = 1 such that w = waw;

and a =%> (qwyw Y a.

While it appears that each of these pumping properties is stronger than the
previous one, it can be shown that in fact they are aklkequivalent for propagating

. . . . . 5 * .
OS schemes. Thus since {a) is obviously implied whenever =35> isawgoon PIL

they are all necessary pumping properties of propagating OS total regulators.



Are they suflicient? We have no counterexample.

While these pumping properties are not effective as given, if it can be shown

that, for example, {(b) implies that =%> is a wgo on Z* then this, combined with

Theorem 2.1, would provide an effective characterization of propagating OS total
regulators. The eflectiveness follows by considering two semi-algorithms: one
which tests if w®w* nclp(w) = ¢ for larger and larger w, and the other which
checks if F' is unavoidable in X* for larger and larger finite subsets F of DUALp
{or MIXFDp).

One appealing aspect of this approach is that property (c) already comes
close to implying that DUALp is unavoidable in £*. In fact, (c) implies for any
word w € I¥, that w* contains a word with a subword in DUALp. Hence we might
say that if property (c) holds, then DUALp is ''periodically unavoidable’.
Choffrut and Culik II ([CC]) have shown that for any regular language R C &%, R
is unavoidable if and only if it is periodically unavoidable in the above sense. We
know that this property does not hold for all languages; L = fww :w € L%,
where & has at least three letters, is an example of a language which is periodi-
cally unavoidable but not unavoidable. However, if it holds for all‘ context-free

languages, then {c¢) would imply that =‘-;-> is a wgo on Z*, since DUALp is
context-free. Hence we would like to know the status of the following:

Conjecture A For any context-free language L C Z¥, L is unavoidable in £*
if and only if it is periodically unavoidable, i.e. if and only if for all w € TF, w*

contains a word with a subword in L.

It should be noted that Conjecture A would follow from the stronger conjec-
ture that whenever the syntactic congruence of a context-free language is
periodic, then the language is regular (see [AUT]); however a counterexample to

this conjecture has recently been given by M. Main ([ MA/]).

Another open problem is to generalize the characterization theorem
(Theorem 2.1) to arbitrary length-increasing production systems (i.e. word
replacement systems). In addition, it would be nice to know what role such sys-
tems play within the class of all length increasing wqo’s. By Proposition 1.4,
whenever a length-increasing multiplicative quasi-order contains a wgo gen-
erated by a finite production system, then it is a wqo. At present we have no

counterexample to the following "converse' of this statement:

Congecture B. For any length-increasing multiplicative wqo = on £* there
exists a finite production system (Z,P), with P ={u,-> vy ..., % > v},

U, Uy €L andu; <wv; foralld, 1<1 <k, suchthat ==> isa wgoonZ*

®
P
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