EXPERIENCE USING A RETARGETABLE PEEPHOLE
OPTIMIZER TO ACHIEVE COMPILER PORTABILITY

by

Janell K. Hancock

CU~CS-~-287-~85 April, 1985

University of Colorado, Department of Computer
Boulder, Colorado.

Science,

EXPERIENCE USING A RETARGETABLE PEEPHOLE
OPTIMIZER TO ACHIEVE COMPILER PORTABILITY
by

Janell Kay Hancock

B.S., Colorado State University, 1979

A thesis submitted to the
Faculty of the Graduate School of the
University of Colorado in partial fulfillment
of the requirements for the degree of
Master of Science
Department of Computer Science

1985

i1l

Hancock, Janell Kay (M.S., Computer Science)
Experience Using a Portable Peephole Optimizer to Achieve Complier Portability

Thesis directed by Professor William M. Waite.

With the continual introduction of new microprocessors into the.marketplacc, com-
piler portability has become increasingly important. In order to adapt an existing compiler to
a new processor architecture, the code generation portion of the compiler must be modified.
The purpose of this research is to determine the feasibility of using a retargetable code
generator/peephole optimizer to automate this effort.

For this project, the University of Arizona Peephole Optimizer (PO) has been
employed as a compiler retargeting tool. It has been interfaced to the PASCAL P4 compiler
front-end in order to generate code for the MC68000 microprocessor. This paper describes the
implementation of the code generation portion of the compiler using the peephole optimizer.
The practicality of this implementation method is assessed based on the required effort, the
compiler speed, the applicability of PO, and the quality of the resulting MC68000 assembly

code produced by the peephole optimizer.

CONTENTS

CHAPTER
I INTRODUCTION ..ottt et ee e e s ten e e e et s e e e aans e ereaaes 1
O, SYSTEM COMPONENTS ..ottt eieeie e e e eniaeaes 3
PASCAL P4 COmPILEr .evuiuiniiiniiniie it e et eta e s eee e e aeeans 3
P4 Translator.....c.covevviiienineiiiicieeieeeen, e 5
PO e 6
Machine Description ProCESSOTS. ...c.vuiiuviiiiiienrinirrrirereeiirereneriarennns 6
Code EXpanderouoveuiiiniiiin ittt ee e r e 8
CaCRET .t e e 9
COMDINET covivniiiiii e e e e e e 9
ASSIZNET .uuiiiiiii i et et e e e e 10
MCEB000 PrOCESSOT . cuuvettiieeetiin it et et vt st e et an s er e et nteraneannenns 10
Motorola 68000 AS ASSEmMDbIETcvieiiniiiiiiiiicirir e e 11
. IMPLEMENTATION EXPERIENCE......ciioiiuiiiiiiiiiieiee e e eenae e 12
P4 COmDIET «ueieeieeee ettt et en e e e e aeaa s 12
P4 Translator ...ooviniiii e 19
Code EXPANAET ..o.iiviiiiiiiiiitiiie ettt e e e 20
Run-Time ROUHNES ...uvenitiiiiiiei e ettt et e erereeeeee e naea e 21
Machine Description....c.ovviiiuiiiriiie et e e vrae s e enaeein e 21
Regular Expression Definitionsoccvveeveneiiniiiieiiiieiinriii e, 21
Token DefiMitionS......vuiiiiiiiiriiiiie et iir et eaeeee e sanaeeenas 22
Token GIOUPITIES. ...vvuiuniriiniiniiiiiiiieiien e e reasean e e enaeesanens 24

Instruction DefiiItONS ...o..viviiveiiiiriiereiniiieseeeeeneeeneneanreseraesnesnenns 25

Machine Description ProCessors.......ocuvvriviiiiniiiiiuiiiiiiiiiieicennininn, 30

Peephole Optimizer C Code.......ovvviniiniiiiiiiiiiiiiiiiinii i, 31

CaChET e e 31

COMIDINET tuiuitiiiiieiiii et e e 31

ASSIENIET et ettt et e e 31

IV. RESULTS AND CONCLUSIONS ...otuttiitiritiaiaenrieiievin e eeerieenaeennaaeenns 33

APPHCabIlitY...uiviiiie e 33

C0AE QUAITLY enentrinireeiier ettt tiae e e eaeeetearasratasnearanaeaanesinenns 34

Compiler Speed.....c.cvviiiiiiiiiiiiiiia 36

Retargeting EffOrt.....c.uiiiniiiieeeiieeiie e tiee e e et et e e e e e e senrieees 37

CONCIUSION 11 et ttit ettt ettt et s e e an e neaeaee 38

BIBLIOGRAPHYcvvenenninns ettt eetent et e i tan st tataan e naataseataateaeeanaannaann 39
APPENDIX

A, MC68000 MACHINE DESCRIPTION ...oiiiiiiiiiiiiieniiini ettt eeenee 41

B. ASSEMBLY CODE EXAMPLEovtviiiiiiiieeeeeiiiieeeereeiieeeeeeeaeeaeeee s 47

Figure
2.1
2.2
2.3
3.1
32
33

3.4

FIGURES

Systemn OrganiZationcuuivueiueeeetiiitininierensatietieeenetteeaeenaereaerenenes
Suggested Activation Record Layoutocoieuveiiniieiireinieiieiiineineieneeenennns
PO OrganizZationccuieuieiiiiiiiiireei it e et et st e te e s ere st e e s et anas
MemOTY Layout...cciuiiiiiieiir e e e e e e
Hardware Stack COmtentscuiuuiiiiuiiiiiiiiiei et eai e
Activation Record Layout ...cuieiiiiiinen e et eeie et e seie e aea s

File Descriptor FOrmatouviiiiiniiiie it ee e

CHAPTER 1
INTRODUCTION

Assuming the front-end of a compiler is machine independent, retargeting a compiler
entails rewriting its code generation portion. A good code generator must perform compli-
cated case analysis in order to produce efficient code. This takes time to implement and the
resulting code may still contain inefficiencies. An alternate approach is to generate code
locally without case analysis and then process it with a peephole optimizer to increase its effi-
ciency. In either case, the code generation phase of the compiler must handle the machine-
dependent tasks of register and temporary allocation and memory mapping.

Attempts have been made to automate the retargeting process by providing tools to
aid in building the code-generation portion of a compiler. One such tool is the University of
Arizona Peephole Optimizer (PO) [2,3]. Itis a retafgetable code generator/peephole optim-
izer driven by a description of the target machine. Based on the machine description defining
each instruction in terms of register transfers, PO can simulate adjacent instructions, combin-
ing them into single instructions where possible. By performing a simple flow analysis, it finds
logically adjacent instructions that are physically separated. PO is advertised as a fast retarget-
ing method [3]. It allows the implementor to generate straightforward non-optimal assembly
code sequences from the source language. Peephole optimization transforms this naive code
into production-quality assembly code. The implementor need not be concerned with register
allocation but instead miay assume an infinite supply of pseudo-registers. In its final phase, PO
handles hardware register and temporary allocation. Only the memory mapping task is left to
the implementor.

This paper describes a project in which PO was used as a tool to retarget the PASCAL

P4 compiler for the Motorola MC68000 [9] processor. The goal was to build a cross-compiler
running on a VAX' but generating assembly code for the MC68000. The purpose of the pro-

ject was to gain experience with PO in order to evaluate its viability as a retargeting tool.

t+ VAX is a wrademark of Digital Equipment Corporation

CHAPTER I
SYSTEM COMPONENTS

In order to test the adaptability of the retargetable peephole optimizer, other system
components were chosen that were not specifically designed to interface with it. Figure 2.1
shows the organization of the components in the complete system design. The following sec-
tions briefly describe the major software components used as the starting point for this project.

Where applicable, the advertised retargeting method is summarized.
PASCAL P4 Compiler

The poftable PASCAL P4 compiler [14] was retargeted in this experiment. It com-
piles a subset of standard PASCAL and is written in the subset it processes. The features not
supported are packed characters, procedures and functions as parameters, GOTO statements
leading out of procedure or function bodies, and user-defined files. (Fbur predefined text files
are supported: two input files and two for output.) In addition, the procedures MARK and
RELEASE replace the standard procedure DISPOSE.

The output from P4 is object code for a hypothetical stack computer (P-code). It is
intended to be adaptable to a wide variety of machine architectures, however, it makes a com-

-rnitment to certain data representations in memory for activation records. The address assign-
ment performed by the compiler runs from low to high memory for each data segment
representing a procedure. In most instances simple data elements and bases of complex data
structures are addressed by the pair [relative static level, offset]. Further offsets into data
structures are positive integers. In certain cases, global-level data elements are addressed

directly. The suggested memory layout for an activation record is shown in Figure 2.2.

Pascal
Source
Code
1 MC68000
P4
Compiler Assembly
Code

;

P-Code AS Assembler
P4
Translator MC68000 Runtime
Object Library
\L Code
Prefix
Code

Link Editor i

= L

Executable
MC68000

Load File

Figure 2.1. System Components

High Memory
Local Variables

Parameters

Predefined File Descriptors
(Outermost Block Only)

Low Memory Mark Stack Information

Figure 2.2. Suggested Activation Record Layout

Certain constants must be set in the P4 compiler source in order to retarget it for a
new machine. These constants specify the size in storage units of PASCAL data types, as well
as stack alignment, stack element size, file descriptor size, and minimum and maximum values
of integers and characters. Adjustment of these parameters should be the only compiler source

modifications necessary in a retargeting effort.
P4 Translator

The P4 translator accepts the stack machine object code produced by the P4 front end
and translates it into a prefix code. Its output is a series of tokens each having a fixed number
of operands that are also tokens. Some of the tokens have associated attributes. For this pro-
ject, the translator output is the intermediate language from which code will be generated.

Not all of the PASCAL features implemented by P4 are supported by the translator at
this point. Most notably missing are strings, sets, and floating point numbers. Case state-
ments present a special problem for the translator. The translator assumes that the stack will
be empty at the end of a2 PASCAL statement. However, for a case statement, the selector
expression remains on the stack across statement boundaries. This requires special handling

and therefore case statements have not yet been implemented.

PO

PO [3] is the retargeting tool used in this project. It is a retargetable code
generator/peephole optimizer. Its original application was with a compiler for the Y program-
'ming language [5,8]. PO is driven by a description of the target machine providing the assem-
bler syntax and effects of each machine instruction to be generated. Its software consists of six
separate programs that run under UNIX'. Two (the machine description processors) are for
self-generation and the remaining four correspond to phases of the code generator/optimizer.
Figure 2.3 diagrams the components of PO responsible for code generation and optimization.
The following subsections briefly describe the components of PO. Davidson [3] explains them

in more detail.

Machine Description Processors

The machine description is a grammar for translation between instructions described in
a register transfer notation (used by most stages of PO) and the target machine’s assembly
language. A target machine is described by first specifying the machine’s addressing modes
and then its instructions. Machine instructions are described by register transfer lists similar to
ISP [1] notation.

Two separate SNOBOLA4 [7] programs process the machine description. One creates a
recognizer for register transfers and .the other produces a transducer used to translate register
transfer lists into assembly language instructions. Both SNOBOLA programs transform the
machine description into input grammars for Lex [13], a lexical analyzer generator. Lex in
tumn generates C [12] routnes implementing the recognizer and transducer. The recognizer is
used in the peephole optimization phase of PO, and the transducer is part of the final phase

that generates the assembly language instructions.

t+ UNIX is a trademark of AT&T Bell Laboratories

\
fntermediate Register
Language Transfers
{ \
Code Expander Assigner
3
Register by
Language
T
ransfers en
Cacher
y
Register
Transfers
Combiner

Figure 2.3. PO Organization

Code Expander

The code expander is the first phase of PO. It translates each intermediate language
instruction into target machine instructions. The structure of the code expander is dependent
on the intermediate representation of the language being processed. -It should not vary when
retargeting the same compiler for differing' Processors. “A new intermediate language, how-
ever, may completely change the structure of this program.

The code expander is also dependent on the target machine, since its output is a
sequence of target machine instructions. The machine instructions are expressed as register
transfer lists rather than assembly language instructions. Retargeting the code expander
involves rewriting the machine-specific register transfer sequence for each intermediate
language instruction according to the rules and guidelines outlined in reference [3]. This is
intended to be a straightforward task because there is no need to consider register allocation or
code optimization, which are managed by a separate phase of PO. The implementor may
assume an unlimited supply of registers, leaving the machine register allocatic;n task to a later
phase of PO.

If the prescribed guidelines are followed, the code is almost guaranteed to be non-
optimal. The guidelines recommend that all values be loaded into registers and that intermedi-
ate results of computations be preserved in registers. This allows later phases of the optimizer
to deiermine which values should be retained in registers for future use, and which values can
be discarded.

The records output by the expander are input to Cacher,_ the next phase of PO. They
must be produced in the syntactic format expected by Cacher. If necessary, instructions may
be expressed in assembly language and tagged so that they are ignored by the remaining phases

of PO. These instructions have no chance for optimization.

Cacher

The second phase of PO, Cacher, is responsible for tracking values held in registers.
Its job is to eliminate redundant register loads, identify dead variables, and define for each
instruction the size of the adjustable peephole for the subsequent peephole optimization phase
of PO. It optionally eliminates common subexpressions between label boundaries. Davidson
[3] outlines the algorithm used for performing these tasks.

Cacher can be retargeted by rewriting a function that identifies registers and an addi-
tional function that chooses the more efficient of two data accesses. (For instance, it may be
passed symbolic representations of a register access and a memory access, and would return the
register access as the less expensive of the two.) It is important to note that Cacher relies on
the compiler front end to pass it information about interference due to aliasing. Without this

information, it may make invalid code optimizations.

Combiner

Combiner accepts a sequence of register transfers linked together by the flow analysis
performed in Cacher. It is responsible for the actual peephole optimization functions of PO.
Combiner attempts to combine logically adjacent register transfer list pairs or triples into single
register transfer lists representing valid machine instructions. It removes unreferenced labels
and collapses branch chains.

| Combiner also has a section of code responsible for simplifying register transfers

representing a single instruction. This includes removing additions and subtractions of zéro,
removing branches to the next location, and simplifying boolean expressions.

The recognizer generated from the target machine description is an integral part of
Combiner. Any functions referenced in the machine description must be provided by the
implementor in order for Combiner to compile and execute correctly. In addition to providing

a machine description, retargeting Combiner requires the recoding of routines to recognize

10

pseudo-registers and hardware registers represented in the register transfer notation. Also the

register transfer simplification routine may require some modifications or additions.

Assigner

The final phase of PO is the register assignment program, Assigner, It is responsible
for performing register allocation and generating code to handle register spills. Assigner also
translates the optimized code from register transfer notation to assembly code 4for the target
machine. This function is performed using the transducer generated from the machine descrip-
tion.

Retargeting Assigner is accomplished by rewriting part of the register allocation rou-
tine. The implementor must supply it with the number and types of target machine registers,
and information about which registers may be allocated. This routine also contains machine-
dependent templates for storing and loading temporaries.

The output from Assigner is the assembly language representation of- the source rou-
tine being translated. Its form depends on the syntax required by the assembler for the target

machine.
MC68000 Processor

As previously mentioned, the MC68000 microprocessor was the target machine for
this project. It is described as having a 16/32 bit architecture [9] because of its 16-bit word
size and 32-bit registers. It provides eight data registers used for holding byte (8-bit), word
(16-bit) and long word (32-bit) data. Eight address registers, one of which is the user stack
pointer, are available for use as base address registers and stack pointers. Address registers
may also be used for word and long word operations. Both data and address registers may be
used as index registers. Six basic addressing modes are provided. Some of these may be

extended with indexing, offsetting, pre-decrementing, or post-incrementing features. Most of

11

the machine instructions are two-address instructions capable of byte, word and long word
operations, and capable of handling most of the available addressing modes. However, some
instructions do not allow all operation sizes and many instructions only accommodate a subset
of the possible addressing modes. This asymmetry increases the complexity of the archite.c-

ture.
Motorola 68006 AS Assembler

The Motorola 68000 AS assembler [15] was the interface between the PO output and
the processor in this experiment. It is a relatively uncomplicated assembler providing a close
correspondence between assembler mnemonics and machine instructions. Most AS mnemonics
are suffixed with "b", "w", or "I" to indicate the range of the operand. AS provides extended
branch instructions, eliminating the need to consider the length of branches. It also combines
certain separate but similar instructions (such as ADD and ADDA) into one mnemonic, deter-
mining from the operand types which machine instruction to produce.

AS programs are divided into text, data, and uninitialized data (bss) segments. Direc-
tives are provided for switching between segments during assembly. The assembler also han-
dles symbolic expressions.

The output from AS is MC68000 object code. This may be link-edited with other

object files to form an executable object file.

CHAPTER III

IMPLEMENTATION EXPERIENCE

The work involved in retargeting the P4 compiler for the MC68000 spanned various
tools, programming languages and operating systems. Although most of the work was antici-
pated in the documentation for each component, some additional work was necessary at cer-
tain steps. This chapter describes the actual implementation effort for this project. It provides
an account of some of the obstacles encountered and some special considerations that arose
from the choice of components. It also provides a subjective indication of the difficulty of
each step. This chapter is partitioned into descriptions of the implementation effort for each
system component. The order is more or less chronological although the implementation

phases were not completely sequential.

P4 Compiler

The P4 compiler work consisted of two tasks. The first was porting the compiler to
run under UNIX. This was accomplished by making the necessary modifications for it to
compile with the Berkely Pascal Compiler (pc) [11]. Approximately 80 lines of code were
added or modified. The remainder of this project used the executable object produced by
compiling the P4 front end with pc.

The second task was to define the compiler constants to reflect the characteristics of
the target machine and the desired run-time activation record structure. Some decisions about
data representations and the run-time memory layout were made at this point.

The choice was made to implement PASCAL integers as sixteen-bit entities, suggested

by the operand sizes of the multiply and divide instructions on the target machine. Thirty-two

13

bit integers would have been a logical alternative and, in retrospect, may have simplified the
target machine description supplied in a subsequent implementation step.

Booleans were implemented with single unaligned bytes (eight bits), using the encod-
ing "0" for false and "1" for tn.le. These choices were supported by their ease of representation
in the machine description and by the P4 representation for booleans. An alternative would
have been to use all ones (hexadecimal "ff") to denote true as is suggested by the MC68000
"scc” instruction. The latter alternative may have resulted in more optimal code but was more
difficult to represent in the machine description.

One incompatibility between the P4 compiler and the MC68000 architecture surfaced
when designing the activation record structure. P4 addressing dictates that the run-time stack
must grow from low to high memory, whereas the MC68000 provides convenient stacking
operations to be used with a hardware stack growing from high to low memory. In fact, this
hardware stack must be used in order to utilize the built-in stacking and subroutine linkage
instructions ("pea”, "jsr", "rts", "link", and "unink"). Furthermore, any UNIX system routines
called to implement PASCAL standard functions would expect to find their parameters on top
of the hardware stack. Since it was not possible to map the P4 stack onto the MC68000 stack,
two stacks were used: a software stack growing from low to high memory for frame header
information, user data, and temporary storage space; and the built-in hardware stack to save
registers, hold subroutine linkage information, and pass parameters to system routines. Figure
3.1 shows the memory layout used in this implementation. The arrows indicate the direction

of stack or heap growth.

14

High Memory

Hardware Stack
i

t
Heap Space

1
Software Stack

Program Text
Low Memory

Figure 3.1. Memory Layout

This design allowed appropriate use of the "jsr" and "rts” instructions and a limited use of the
"pea” instruction. "Link" and "unink”, however, could not be used for pointer linkage under
this scheme since static and dynamic link pointers are stored in the activation record. Figure
3.2 shows an example of run-time hardware stack contents representing two dynamic nesting

levels.

15

Subroutine Return Pointer

Saved Contents of Registers

Subroutine Return Pointer

Saved Contents of Registers

~Hardware Stack Pointer (a7)

Figure 3.2. Hardware Stack Contents

The hardware stack may also hold parameters for external C subroutines and is used to tem-
porarily save the software stack pointer during the procedure and function call sequence.

The software stack consists of a sequence of activation records, one for the main pro-
gram and one for each incarnation of a procedure or function. The activation record layout
for this implementation contains only a subset of the information suggested in [14]. It is struc-
tured as shown if Figure 3.3. The numbers in the figure represent the offset from the start of

the record.

16

~Software Stack Pointer (a5)

Temporary Storage

Local Variables

Parameters

File Descriptors (outermost block only)

8 Dynamic Link
4 Static Link
0 Function Result or Empty ~Frame Pointer (a6)

Figure 3.3. Activation Record Layout

For the outermost block, the P4 compiler allocates space for descriptors for the prede-
fined files. The implementor may determine the size and structure of these. For this imple-

mentation they were each eight bytes long and structured as shown in Figure 3.4.

EOF Flag | EOLN Flag

UNIX File
Pointer

Buffer Variable

Figure 3.4. File Descriptor Format

The ordering of the activation record information was dictated by the P4 calling
sequence. To invoke a procedure or function, P4 emits mark stack information followed by
any parameters. Obtaining the parameters may involve calculations or even another function

call as in the following example of a call to procedure p.

17

p(f(a));

In this case the param'etcr is the value returned by function f. Since P4 doesn’t produce

enough information to determine what size a parameter must be, a long word is reserved on

the stack for each parameter.

Following the parameter information the actual branch to the procedure or function is

performed. After the return from the procedure or function, the software stack pointer and

frame pointer must be restored.

An example of MC68000 code for a procedure or function

call is:
MC68000 Code Explanation

pea as@ Save software stack pointer on hardware stack.
This implicitly decrements the hardware
stack pointer (a7).

clrd aS@+ Reserve space on software stack for function
return value. Space is reserved but not
used for a procedure call.

movl ab@(4),a5@+ | Push static link on software stack.

movl a6,a5@+ Push dynamic link on software stack.

(Push parameters.)

movl a7@+,ab Pop saved software stack pointer from hardware
stack; make it the new frame pointer.

jsr L3 Branch to function saving return address on
hardware stack. This implicitly
decrements the hardware stack pointer (a7).

mov] a6,a5 (On return from function) restore software
stack pointer.

movl a6@(8),a6 Restore frame pointer.

In this example the called routine is at the same static level as the caller (i.e., it is a sibling).

Corresponding to this calling sequence, the body of the function or procedure must

appear as follows.

18

MC68000 Code Explanation

tstb a7@(-40) Insure hardware stack has enough room.
moveml #maskl,a7@- Save registers indicated by "maskl1” on
hardware stack.

IDstk=4*1D4+1D3 Calculate space needed for local variables (ID3)
‘ and temporaries (4*ID4).
add! IDstk,as Add local variable and temporary space to

the software stack pointer.
(Procedure or function body.)

movem! a7@-+,#mask? | Restore registers indicated by "mask2"

from hardware stack.

Its Return from subroutine through return address on
top of hardware stack. Implicitly increments
the hardware stack pointer.

The above examples assumne that certain address registers are designated for special
stack pointers. It was necessary to reserve certain address registers and data registers for spe-
cial purposes for this implementation while leaving the remaining registers to be allocated by

PO. The following shows the use for each address and data register:

Register Designation
a7 Hardware Stack Pointer
a6 Frame Pointer (Points into Software Stack)
as Software Stack Pointer
a4 Allocatable
a3 Allocatable
a2 Allocatable
al Reserved Scratch Register
a0 Reserved Scratch Register
d7 Allocatable
d6 Allocatable
ds Allocatable
d4 Allocatable
d3 Allocatable
d2 Allocatable
dl Reserved Scratch Register
d0 Reserved Scratch Register

19

P4 Translator

Like the P4 compiler, the translator also had to be ported to run under UNIX. Only
minor changes were made to compile it with pc. Since this project was its initial application,
some debuggir;g work was also necessary prompting additional code modifications. In all,
approximately 40 lines of code were modified.

The original version of the translator made a distinction between two methods of
specifying memory locations. One instruction specified the address calculation (static level +
offset) while another specified a memory access by the pair [static level, offset]. The distinc-
tion is must be made since it is not always necessary to perform an address calculation. Con-
sider the following MC68000 code sequence for storing the integer 4 at offset 46 from the
beginning of the current frame. Assume register a6 is the frame pointer.

movl a6,a2

addl #46,a2

movw #4,22@
The first two instructions calculate the address while the last instruction stores the integer.
This code sequence can be shortened if the code generator "knows” that the address calculation

is unnecessary. The following instruction accomplishes the same task:

movw #4,a6@(46)
By providing separate translator tokens for the two types of memory accesses a conventional
code generator could make this optimization. However, to simplify the translator and speed
up the debugging process, the capability to specify an access using the level and offset pair was
removed. Thus, the code expander for this project always generated instructions that calcu-
lated the address in a manner similar to the first code sequence. This ultimately turned out to
be completely acceptable since peephole optimization was the final step in code generation.

The peephole optimizer was able to remove the inefficiencies and produce code similar to the

20

second example.
Code Expander

Since PO was to be interfaced to b;)th a new front-end and a different processor, the
code expander had to be almost entirely rewritten. This was accomplished in three steps. The
first task was to write code to parse the translator output correctly. A recursive descent
scheme was used in order to accept the prefix code notation. A few functions left over from
previous code expanders were useful for reading input lines.

Secondly, a sequence of MC68000 assembly language instructions was written for each
intermediate language token recognized. These were written in the form of comments since
the desired output was to be in the form of register transfers. The code sequences were written
to be correct, but non-optimal. No attempt was made to be clever in the code expansion pro-
cess. In fact, the code expansion rules and guidelines [3] prohibited it in most cases. The
code was generated from a local viewpoint and no case analysis was performed. Register allo-
cation was not considered since the methodology allows the implementor to assume an unkim-
ited supply of pseudo registers. Only in special cases were specific hardware registers specified
by the code expander. Designing code sequences to handle procedure and function calls was
the most difficult part of this task.

Although the third step in implementing the code expander was not completed until
after the MC68000 machine description was written, it shall nevertheless be mentioned here.
It entailed expressing each assembly language instruction as a register transfer list. This pro-
cess was tedious and error-prone, but was conceptually straightforward.

The code expander is approximately 1000 lines of C code. Comments and code for

debugging purposes are not included in this figure.

21

Run-Time Routines

It was necessary for the code expander to implement the PASCAL standard functions
and procedures. Some were handled by in-line ésscmbly code while others were handled most
conveniently by separate routines coded in C. These run-time C routines were v&inan in
parallel with the code expander in order to coordinate parameter passing. Most of the PAS-
CAL T/O capabilities supported by P4 and the translator were implemented by short C routines
calling UNIX IO functions. It was also convenient to initialize the predefined files and the
memory layout with a C program. Although this C program is a part of the run-time library,

it calls the assembly program generated by PO as a subroutine.
Machine Description

The target machine description was the most crucial and time-consuming part of this
implementation. Although the original version was written in approximately three days, it
underwent nearly seventy-five revisions before arriving at the version shown. in Appendix A.
In the initial version an attempt was made to describ;e nearly all the possible addressing modes
and instructions provided by the MC68000 architecture. However, limitations in the tools
used to process the machine description forced a drastic reduction in its size. These limitations
will be described later.

Appendix A lists the complete machine description followed by a glossary of symbols
used in the description. The machine description is divided into four parts delimited by "%%"

symbols. The following sections discuss each of these parts.

Regular Expression Definitions
The first part defines regular expressions to be used in the second part. REGNO and
REGN?2 state the allowable register numbers. Because an unlimited supply of pseudo-registers

is assumed by the code generator, all non-negative integers are represented here. Symbols

22

ONUM through IDENT define the various sizes of integers and identifiers. Since the
MC68000 architecture restricts the size of integers used in some of its addressing modes and
operands, it was desirable to recognize certain sizes of integers separately. For this reason,
integers were expressed in hexadecimal notation both here and in the code expander. LABEL
defines the representation for labels. This does not permit all label representations allowed by

the assembler, but only those emitted by the code expander.

Token Definitions

The next set of definitions associates tokens with addressing modes and other patterns
to be used in the instruction definition section. These definitions have three fields. The token
in the first field is returned if the register transfer pattern in the second field is matched. The
assembly language equivalent of the register transfer pattern is given in the third field. If the
first field is empty, the token returned is the string matched. An empty third field indicates no
equivalent assembly-language syntax,

Symbols AR, DRL, DRW, and DRB define the syntax for registers. It was necessary
to keep track of what size data elements were contained in the data registers since they may
hold byte, word, or long word operands. Failure to do this would allow PO to make invalid
optimizations (e.g., using a register with only 16 bits of valid data in a 32-bit operation). This
was accomplished by using differing representations for each data size, hence, the "dl", "dw",
and "db" notations. Since all quantities loaded into address registers are sign extended, they
always contain 32 bits of valid data following a load. Therefore, only one representation for
address registers was necessary.

Groups of patterns may correspond to a single non-terminal in the second section.
The MC68000 memory-alterable addressing modes were grouped into three classes representing
the three sizes of memory accesses (MLTL, MALTW, MALTB). The pre-increment memory

addressing mode using the stack pointer (register a7) was an exception, however. Although it

23

belongs in the group of long-word memory-alterable addressing modes, it had to be recognized

"as a special case in some of the instruction definitions in the last section of the machine
description. Because of this, it had to be defined separately (PUSH). In general, any patterns
to be recognized separately must correspond to a separate token in this section.

It is interesting to note that the addressing mode specifications in the second part go
beyond the effective address calculations to partially specify the semantics of the instructions
that use them. For example, instructions specifying memory alterable addressing mode
operands always fetch from the effective address of the operand. Thus, the fetch is included in
the addressing mode specification rather than the instruction description. On the other hand,
instructions using control addressing mode operands operate on the effective address itself
rather than its contents. Although the assemmbler syntax of these operands is the same as that
for memory addressing mode operands, the patterns defining their meanings differ. (See
definition of CTL.) Describing the addressing modes in this manner allows the instruction
definitions in the last part of the machine description to be more concise.

The pre-decrement and post-increment addressing modes presented a special problem.
Their descriptions for the MC68000 are similar to those for the PDP-11 shown in [3]. For
example, the long-word post-increment addressing mode is represented by the following pat-

tern:

mi[a[REGNO]+ +]
The "ml" indicates a long-word memory access. Memory is addressed by the address register
"a[REGNQ]" and the address register is incremented after its use. However, the "++" nota-
tion is in no way special to PO. Therefore this description disguises the fact that the value of
the address register is changed. If not used carefully in the code expander, this can cause

incorrect optimizations to be made. For example the code sequence:

24

movl #1,a2

movl a2@+,a3

movl 2@+ ,a4

movl a4,22@
was optimized into the following:

movl #1,a2

movl 22@-+,22@
The load of a3 was climinated because a3 had no subsequent reference. Since a4 only held an
intermediate result, PO found a way to eliminate its use also. Both of these optimizations are
invalid, however, and occurred because the side effect of the post increment addressing mode
(that of incrementing the address register after its use) was not properly defined to PO. In
order to use these addressing mode correctly, they should not be defined in this section.
Instead, instructions making use of these modes should be defined by two or more register
transfers: one or more describing the effect of the instruction and one identifying the side
effect of the pre-decrement or post-increment addressing mode. However, this would increase
the size of the machine description beyond the size limit. Since these addressing modes were
only needed for special cases in this application (e.g. for pushing and popping stack elements),
the decision was made to retain their definitions in the second section of the machine descrip-
tion and restrict their usage by the code expander to cases where their chance for invalid
optimizations could be controlled.

Most of the program-counter-relative addressing modes were not included in the

machine description. The code expander never emits program-counter-relative operands;

therefore they need not be defined to PO.

Token Groupings
The third part of the machine description associates groups of previously-defined

tokens with new tokens. Tokens that comprise the groups may still be recognized in their own

25

right in the subsequent instruction definition section. This capability was used heavily in the
MC68000 definition since so many instructions use various subsets of the possible addressing

modes.

Instruction Definitions

The final part of the machine description defines all the instructions to be produced by
the code generation and optimization process. Because of a limit on the size of the machine
description, an effort was made to recognize and eliminate instructions that had little possibil-
ity of being generated. Minimally, the machine description must include any addressing mode
and instruction produced by the code expander. Beyond this, it should have knowledge of
more efficient replacements for single instructions and combinations of instructions. For
example if, in loading a register with an integer value, the code expander generates the register

transfer equivalent for the instruction:

movw #0,d3
the machine description should have enough information to replace it with the faster instruc-

tion:

clrw d3
Ordering is important in this section; less expensive instructions must be described
before their more general counterparts. For example, definitions for the MC68000 "addq”
were listed before the more general "addl” and "addw" instruction definitions. The "addb”
instruction was not defined at all since bytes are never added in this implementation.
It is interesting to note that, using the machine description shown in Appendix A, the
"addgl" instruction can never be generated for address registers. Suppose that the following

register transfer is emitted by the code expander to add 5 to an address pseudo-register:

26

a[37] = a[37] + 0x00000005;
Suppose also that the condition code (NZ) is modified by a subsequent instruction before it is
used. A possible match for this in the machine description is the pattern for the "addql"'

instruction which is:

ALTL = ALTL + QD;NZ = ALTL + QD ?0
Register a[37] is an address pseudo-register (AR in the machine description) and is part of the
group of tokens represented by ALTL. The string "0x00000005" matches the token QD
representing the range of integers allowed in the immediate data field of "quick” instructions.

Since the condition will be modified again before any possible future use, the register transfer:

NZ = ALTL + QD ?0
" is a harmless side effect. (Recall, the Cacher phase of PO tracks dead variables.) Clearly the
pattern for "addql" is consistent with the register transfer. However, the source of the register

transfer,

a[37] + 0x00000005

matches the following pattern for the control (CTL) addressing mode:

a[REGNO] + WDENT
At this point a[37] corresponds to af REGNO] and "0x00000005" matches the regular expres-
sion for WDENT. Therefore, the pattern to be matched against in the instruction definition

section is:

AR = CTL
This matches the "lea” instruction pattern in the instruction definitions and, after the register

mapping is performed, the resulting assembly instruction would be

27

lea a2(0x00000005),a2

(This assumes pseudo-register a[37] is mapped to hardware register a2.) For the MC68000
processor, "lea” has the same execution time as "addql"; therefore, no effort was made to
accommodate the generation of "addql” for address registers.

Some instructions were not described in general terms, but rather for specific cases.
An example of this is the MC68000 "btst” instruction. In its general form, it sets the condition
code register according to the value of a specified bit of the destination operand. Since "btst”
is produced by the code expander in only one instance (for implementing the PASCAL ODD
function), and that instance tests the least significant bit of its operand, only a specialized
definition of "btst” was included the machine description. The instruction was described to test
bit zero of the word-length data register and set the condition code accordingly. Furthermore,
t.he actual "btst" instruction operates on a 32-bit data register and the machine description
specifies a 16-bit register. Obviously, if only the least significant bit is important, it doesn’t
matter if the upper bits do not contain valid data. It was convenient to represent ihe "btst”
instruction in this way since the PASCAL ODD function operates on integers which, as previ-
ously mentioned are 16 bits in length. An alternative would have been to sign extend the
integer in a register and then generate "btst” with a long-word register operand. This choice
would be less efficient and PO would not have been able to optimize it into a shorter
sequence. Clearly, this was a case of using knowledge about the code expander to influence
the machine description. Many other instructions were described (or omitted) based on
knowledge of the code expander.

Test conditions were used in describing some of the instructions. Two unexpected
problems were encountered when the test conditions were processed by the machine descrip-
tion processor. One problem occurred when attempting to describe the division operation as

follows:

DRW = DRL /DATW;NZ = DRL/DATW ?0; = {
lequivr(DRL,DRW): ABORT
divs DATW,DRL
}

The first line consists of the register transfers describing the effects of the instruction. It indi-
cates that a data register containing 32 bits of valid data (DRL) is to be divided by a word of

ta (DATW). DATW represents any of the word-length data addressing modes. The 16-bit
result of the division is to be placed in a data register (DRW) and the condition code (NZ) is
to be set accordingly. The second line insures that the word register and the long word register
are the same physical register, and the third line specifies that the "divs" instruction should be
emitted. However, in the C code generated from this description, the two register transfers

were split and the test on the second line was applied to them separately. When the test:

lequivi(DRL,DRW)

was applied to the register transfer:

NZ = DRL/DATW ?0
the DRW parameter was undefined. Because of this, the C program would not even compile.
An awkward but harmless way around this problem was to describe the second register transfer

as:

NZ = DRL § DRW/DATW 70
where "$" is the symbol for the inclusive OR operation.
A second problem occurred when attempting to define the multiplication operation in
a manner similar to the definition in the PDP-11 description in reference [3]. The MC68000

definition was as follows:

29

DRW = DRW * DATW;NZ = DRW * DATW ?0; := {
pwr2(DATW): aslw DATW,DRW
muls DATW,DRW
}

The "aslw" instruction is emitted if "pwr2" is true. The function "pwr2" returns true if its argu-
ment is determined to be a power of two and, as a side effect, converts its argument to the log,
of itself. If the argument is not a power of two, false is returned and the argument is
unchanged. If false is returned "muls” is generated. The intent is that if the argument is a
power of two, its log, will be supplied as the operand to the shift (“aslw”) instruction. How-
ever, the modified argument (DATW in this case) did not find its way into the "astw” instruc-
tion operand field as advertised. Instead the original value of DATW was inserted. Because
of this bug in PO, the possibility of optimizing a multiply instruction into a less expensive shift
instruction was removed.

Describing instructions that transformed the data in a register to a different length
proved to be difficult. In order to do this, it is necessary to describe one register in two dif-
ferent ways. For instance the sign extent instruction ("ext!”) extends 16-bit data to 32-bit data.
The description for this instruction is

DRL = DRW; := {
lequivi(DRL,DRW): ABORT

ext] DRL
}

The "equivr" function insures that DRL and DRW actually represent the same register. The
code expander may generate an instance of the "ext!” instruction using register transfers and

pseudo-registers as in the following example:

di[57] = dw[57];
At this point it is necessary to mark dw[57] as a dead variable since any future changes to the

contents of dI[57] would invalidate dw[57] and vice versa. However, in the final stages of PO,

30

dw[57] is mapped to a hardware register, say d2. If dw[57] is on the dead variable list, then
d2 is considered dead after the mapping, and may be reused for something else. If dI[57] is
also mapped to d2, its conteﬁts could be destroyed before their use (because d2 is considered
to be dead and therefore allocatable). Furthermore there is no guarantee that dif57] will be
mapped to d2. The only viable solution to this problem was to use a non-allocatable hardware
register for such instructions. Register d0 was reserved for such operations. This added ineffi-

ciencies to the code since it required d0 to be loaded with the value to be sign extended.
Machine Description Processers

Since a version of SNOBCL4 was not available on the local UNIX system, the
machine description processing programs were transported to another operating system and
processed with a SPTTBOL [6] interpreter. Some modifications (24 lines of code) were made
to the SNOBOLA programs in order for the SPTTBOL interpreter to accept them.

As previously mentioned, the size of the machine description was limited by the
machine description processing software. Both the recognizer and the transducer are
comprised of three levels of Lex-generated programs. These programs read single-character
tokens and return single-character tokens as function results. The SNOBOL4 programs that
generate the Lex grammars assign a unique character to each token in the machine description
and to each register transfer. Where two or more register transfers are grouped together to
describe an instruction, unique character tokens are assigned to each one individually, and
then to their combinations.

The first version of the MC68000 machine description rendered an "out of tokens”
message from each SNOBOL4 program before even half of the machine description was pro-
cessed. The programs were modified slightly so they would use nearly all the ASCII characters
as tokens; however, the machine description size still had to be reduced drastically. Between

the two SNOBOLA programs, approximately 100 lines of code were modified.

31

Further problems occurred when Lex complained about "too many right contexts” and
"too many positions for one state”, again signifying too large a machine description. A private

version of Lex was created to handle these problems.
Peephole Optimizer C Code

Aside from rewriting the code expander, only a small amount of recoding was neces-
sary in order to retarget PO. Most of the required modifications were documented in refer-
ence [3], however, some additional changes were necessary due to the choices made for regis-
ter and integer representations.

Machine-dependent PO source code was located in separate directories corresponding
to the specific target processors. The machiﬁe—dependent code for the PDP-11 processor was
used as a starting point for this project. The following sections outline the code modifications

made to the Cacher, Combiner, and Assigner components of PO.

Cacher
Modifications to Cacher involved only 12 lines of code. It was changed to recognize
the MC68000 register definitions. A function to choose the more efficient of two data

accesses was also modified.

Combiner

Approximately 70 lines of code were written or modified in order to retarget Com-
biner. (This does not include the machine description.) Again, code to recognize registers had
to be rewritten as well as code to recognize integers. Also, functions referenced in the

machine description had to be supplied if they were not standard UNIX functions.

Assigner

Assigner made use of some of the functions already retargeted for other PO programs.

32

In addition, 90 lines of code had to be written or modified, most dealing with types and
numbers of hardware registers. It was necessary to specify how many data and address regis-
ters were available on the MC68000 and which ones could be used for assignment. Patterns
for Ioadihg and storing temporari% also had to be supplied. Most of the necessary modifica-

tions were straightforward and obvious.

CHAPTER IV
RESULTS AND CONCLUSIONS

The previous chapters described the use of a retargetable peephole optimizer to
achieve compiler portability. The following sections evaluate this compiler retargeting method
based on experience gained from this project. Davidson [3] suggests four measures of the
effectiveness of a retargeting technique: the machine applicability, the quality of the generated
code, the compiler speed, and the retargeting effort. Each of these areas shall be addressed;

however, the topic of applicability shall also be extended to the compiler front-end.
Applicability

PO was adapted to generate code for the MC68000 with relative ease. The machine
description format was uncumbersome and fairly flexible although most exotic instructions
were not described (e.g. "link", "unlnk”, "dbcc”). Peculiarities of the MC68000 instruction set
and addressing modes were, for the most part, possible to represent in a concise manner. One
exception was the problem of register overlap (e.g. as in the sign extend instruction) discussed
in Chapter III. The solution to this problem was unsatisfactory in that no effective means was
found for specifying multiple representations for the same hardware register.

Probably the biggest limitation relating to target machine applicability was the
machine description size problem. Additional work on the machine description processing
tools could most likely remove this limitation.

Interfacing PO to the compiler front end was also straightforward. Although the code
expander had to be rewritten to recognize a new intermediate language, the process for gen-

erating code was well-defined and did not rely on the ingenuity of the implementor.

34

Only in one respect were P4 and PO not well-suited for each other. PO’s Cacher pro-
gram relies on the compiler front end to pass along aliasing information so that it can elim-
inate common sub-expressions correctly. Without this information, it cannot properly track
memory locations and incorrect code may result. Unfortunately, the P4 compiler does not
pass along aliasing information; thus, the optional common subexpression removal cap;ability
could not be used. This made for less efficient code as is shown by the following sequences

generated for the PASCAL statement "afi] := af[i] + 1™

Without Common With Common
Subexpression Removal Subexpression Removal
movw _ustack + 0x00000036,d2 movl #_ustack,a2
subgw #0x00000001,d2 movw a2@(0x00000036),d2
muls #0x00000002,d2 subqw #0x00000001,d2

movl #_ustack + 0x0000002¢,a2 | muls #0x00000002,d2

movw _ustack + 0x00000036,d3" movl #_ustack + 0x0000002c,a2
subgw #0x00000001,d3 lea 2@(0,d2:w),a2

muls #0x00000002,d3 addgw #0x00000001,22@

movl #_ustack + 0x0000002c,a3
movw a3@(0,d3:w),d4

addgw #0x00000001,d4

movw d4,a2@(0,d2:w)

In most cases, the difference in code efficiency was not as extreme as in this example. In fact,
holding common subexpressions in registers often caused register spills when the final register
mapping was performed. Common subexpression removal generally decreased the size of the

code by about five percent. However, since it introduced errors, this option was not used.

Code Quality

The resulting code was evaluated by inspection and execution only. Other MC68000
PASCAL implementations utilized different memory layouts and type representations, making
direct comparisons impractical. Several programs in Jensen and Wirth’s PASCAL manual [10]
were compiled and executed on the MC68000. These include the "recursiveged”, "traversal”,

"minmax3", "complex”, and "matrixmul” programs, some of which were slightly modified to

(93]
(9,1

avoid PASCAL features not supported by the front-end. (Appendix B gives an example of the
assembly code generated for a shortened version of the "recursiveged” program found in refer-
ence [10].) The output resulting from their execution was correct.

In general the quality of the generated code was good. Examination of the code indi-
cated some places where the code expander and the machine descriptions could be tuned to
increase code efficiency. Most of the remaining inefficiencies stemmed from four factors.
The first was the P4 procedure and function calling sequence. The P4 compiler generates
markstack information prior to the parameter list and the procedure or function call. This
causes activation frame initialization code to be generated for each call rather than each pro-
cedure or function entry.

The second cause of inefficient code was the address mapping dictated by P4 which
prohibits the use of the hardware stack and its associated instructions. Because of this, code
associated with parameter passing and procedure and function calls could not use some of the
specially-designed stacking and linkage instructions provided by the MC68000 architecture.

A third cause of non-optimal code was the use of hardware registers rather than
pseudo-registers in the code emitted by the code expander. Instructions containing hardware
registers are not-subject to all the possible optimizations. Some optimizations of instructions
containing hardware registers were not performed due to bugs in PO. One example of non-
optimal code produced by PO is the following sequence:

moveq #0x0000001b,d0

movl d0,a7@-
moveq #0x0000000a,d0

The first two instructions should be replaced by

36

movl #0x0000001b,a7@-

PO does not recognize, however, that the load of d0 is unnecessary because it sees another
occurrence of d0 in the third instruction. It does not realize that the third instruction is a load
of dO rather than a use. Therefore it does not optimize out the load of d0 in the first instruc-
tion. This bug seems to occur only with hardware registers since they are reused throughout
the program. Unfortunately it was necessary to use hardware registers for such instructions as
"ext", and "divs" which deal with different data lengths in the same register. (Refer to Chapter
III for a discussion of this problem.)

Finally, non-optimal code also resulted from the decision to encode the boolean value
true as a "1". The present machine description does not contain enough information to optim-

ize such sequences as

cmpw #0x00000014,d2

slt d2
negb a2
jeq L7

into

cmpw #0x00000014,d2

jge L7
The alternate representation of true by a hexadecimal "ff" would have eliminated the need for
the "negb” instruction and would possibly have allowed the more complete optimization to be
performed. However, as mentioned in Chapter II1, this representation would have complicated
the machine description. Further modifications to the machine description or additions to the

routine that simplifies register transfer lists in Combiner may solve this problem.
Compiler Speed

The speed of the compiler resulting from this project was, at best, marginal. It pro-

37

cessed approximately seven MC68000 instructions per second. For comparison Berkely PAS-
CAL was found to process approximately 60 VAX instructions per second. Both compilers
ran on 2 VAX under UNIX although they did not generate code for the same processor.
PO consumed 87% of the execution time while the P4 compiler and translator only
accounted for 13% of the time. The Combiner program consumed 34% of the time, Cacher
used 33% of the time and Assigner accounted for 14% of the time. The code expander was
responsible for 6% of the time. The Combiner and Assigner programs were both driven by
the machine description which was quite large in this implementation. Further research has
been done by Davidson and Fraser [4] in an attempt to move some of the work of Combiner
and Assigner from compile time to compiler-generation time. Perhaps this scheme would help
bring the compiler speed to an acceptable level by eliminating the three levels of Lex programs

now included in Combiner and Assigner.
Retargeting Effort

Appendix C shows time estimates for implementing each component of the system
based on records kept during the experiment. It is also broken down by learning, porting,
coding, and debugging activities. The entire project took approximately 100 full days to com-
plete. The learning curve was roughly 40 dayé. This included the time taken by false starts
and testing the capabilities of the various components. The porting and coding work took 23
days, and debugging activities accounted for 35 days.

The effort to retarget P4 for a new but similar processor would require approximately
65 days assuming no previous experience with the system components. Using the experience
gained in this project, it is estimated that a similar retargeting effort using the same front-end
would take 30 days including debugging time. With a new front-end, the implementation time

estimate is 45 days.

Conclusion

Aside from its speed, PO proved to be an acceptable compiler retargeting tool.
Ideally, the user of a tool need only supply it with the necessary information at pre-designated
points of interface. With the exception of the machine-description processor problems, PO
came close to this ideal. It was flexible in its adaptability both to the compiler front-end and
the target machine interface.

The most impressive result of this experiment was the small amount of time required
to build a generator of fairly good-quality code. This can be attributed to the removal the
register allocation and code optimization responsibilities from the implementor.

The overall implementation experience using PO was positive. This, combined with
the quality of the f&sulting compiler support the conclusion that using PO as a retargeting tool

is a viable means of achieving compiler portability.

10.

11.

12.

13.

BIBLIOGRAPHY

C. G. Bell and A. Newell, Computer Structures: Readings and Examples, McGraw-Hill,
New York, NY, 1971.

J. W. Davidson and C. W. Fraser, The Design and Application of a Retargetable
Peephole Optimizer, ACM Trans. Prog. Lang. and Systems 2, 2 (Apr. 1980), 191-202.

J. W. Davidson, Simplifying Code Generation Through Peephole Optimization, Ph.D.
Dissertation, Department of Computer Science, University of Arizona, Tucson,
Arizona, Dec. 1981.

J. W. Davidson and C. W. Fraser, Automatic Generation of Peephole Optimizations,
Proceedings of the SIGPLAN ’84 Symposium on Compiler Construction 19, 6 (June 1984),
111-121.

J. W. Davidson and C. W. Fraser, Code Selection through Object Code Optimization,
ACM Trans. Prog. Lang. and Systems 6, 4 (Oct. 1984), 515-526.

R. B. K. Dewar and A. P. McCann, MACRO SPITBOL -- A SNOBOL4 Compiler,
Software—Practice & Experience 7, 1 (Jan. 1977), 95-113.

R. E. Griswold, J. J. Poage and 1. P. Polonsky, The SNOBOL4 Programming Language,
Prentice Hall, Englewood Cliffs, NJ, Second Edition 1971.

D. R. Hanson, The Y Programming Language, SIGPLAN Notices 16, 2 (Feb. 1981),
59-68.

Motorola, Inc., M68000 16/32-Bit Microprocessor Programmer’s Reference Manual,
Prentice Hall, Englewood Cliffs, NJ, Fourth Edition 1984.

K. Jensen and N. Wirth, Pascal User Manual and Report, Springer-Verlag, New York,
Second Edition -- 1974.

W. N. Joy, S. L. Graham and C. B. Haley, Berkely Pascal User’s Manual, Department
of Electrical Engineering and Computer Science, University of California, Berkeley,
California, Version 1.1 - Apr. 1979.

B. W. Kemighan and D. M. Ritchie, The C Programming Language, Prentice Hall,
Englewood Cliffs, NJ, 1978.

M. E. Lesk, Lex -- A Lexical Analyzer Generator, Computer Science Technical Report
39, AT&T Bell Laboratories, Jan. 1979.

40

14. K. V. Nori, U. Ammann, K. Jensen, H. H. Ndgeli and C. Jacobi, The Pascal (P)
Compiler: Implementation Notes, Institlits fur Informatik, Eidgendssische Technische
Hochschule, Ziirich, Revised Edition 1976.

15. AS Assembler Reference Guide, UNISOFT Corporation, Mar. 27, 1982.

APPENDIX A

MC68000 MACHINE DESCRIPTION

REGND [o-9]+
REGN2 [0-9]+
ONUM [1-8]
HXNUM [0-8a-f]
LONUM [0-7]
HINUM [8-8a-f]
QDENT *Ox0000000" {QNUM}
BDENT (("OxFFFFFF" {(HINUM} {HXNUM})| ("OxO00000" {LONUM} {HXNUM}) |0] 1)
WDENT (("OxfFFF" {HINUM} ({HXNUM} {3,3})) | ("Ox0000" {LONUM} { {HXNUM} {3,3}))]0] 1)
XDENT (CC_"]"1")[A-22-20-9_]+) | ("Ox" ({HXNUM} {8,8}))|0]1)
IDENT {XDENT} (" "[=-+]" "{XDENT})=*
LABEL ((n—p nl ww | n—mn l "_f ")[A-Za-20~9_]+)
%%
AR~ := a[REGNO] := aREGND
DRL := d1[REGNO] = dREGNO
DRW := dw[REGNO] = dREGND
DRE := do[REGNO] 1= dREGNGD
i = (o] T = #0O
1= 1 = #1
LB = LABEL ;= LABEL
NZ := NZ
PC 1= PC := pce(0)
SWAP ;= SWAP
QDT := QDENT = #QDENT
BDT := BDENT 1= #BDENT
WDT := WDENT = AWDENT
IDT := IDENT = #IDENT
PUSH := mifal[7]--] 1= a7e-

MLTL :=

MALTW: =

MALTB: =

CTL =

IMP o=
Yotk

ml{a[REGND]]

ml{a[REGND] + WDENT]

ml[a[REGNO] + a[REGN2]]
mi[a[REGNO] + a[REGN2] + BDENT]
mi[alREGNO] + d1[REGN2]]
mi[a[REGNO] + d1[REGN2] + BDENT]
mli{a{REGNO] + dw[REGN2]]
ml[a[REGNO] + dw[REGN2] + BDENT]
ml{a[REGNO]++]

mi{a[REGNOD]
m1 [IDENT]

mw[a[REGNO]
mw[a[REGNO]
mwl{a[REGND]
mw{alREGNO]
mw{a[REGNO]
mw{a[REGNO]
mw[a[REGNO]
mw[a[REGNO]
mw[a[REGNO]
mw[a[REGNO]
mw{ IDENT]

mb[a[REGND]
mo{a[REGNDO]
mb{a[REGNC]
mb[a{REGNO]
mb[a[REGNO]
mo[a[REGND]
mb[a[REGND]
mb[a[REGNO]
mb[a[REGNO]
me[a[REGNO]
mb[IDENT]

a[REGNO]
a[REGND]
a[REGNC]
a[REGNO]
a[REGNO]
a[REGNQO]
a[REGNO]

EOE S S S S

]

vV A AV -

--]

]

+ WDENT]

+ a[REGN2]]
a[REGN2] + BDENT]
+ d1[REGN2]]

+ d1[REGN2] + BDENT]
+ dw[REGN2]]
+ dw[REGN2]
++]

--1

+

+ BDENT]

]

+ WDENT]

+ a[REGN2]]
a[REGN2] + BDENT]
d1[REGN2]]
d1[REGN2]
dw[REGN2]]

+ dw[REGN2] + BDENT]
++]

--1

+ BDENT]

+ o+ o+ o+

WDENT

a[REGN2]
a[REGN2] + BDENT
dl1{REGN2]
d1[REGN2]
dw[REGN2]
cdw[REGN2]

+ BDENT

+ BDENT

42

aREGNO@
aREGNO®@ (WDENT)
aREGNO@(0,aREGN2:1)
aREGNO@ (BDENT,aREGN2:1)
aREGND@ (0, dREGN2:1)
aREGNCe (BDENT,dREGN2: 1)
aREGNO@ (0O, dREGN2 :w)
aREGNO® (BDENT ,dREGN2:w)
aREGNOe+

aREGNOe-

IDENT

aREGNOe
aREGNDO@ (WDENT)
aREGNO@(0,aREGN2:1)
aREGNO@(BDENT,aREGN2:1)
aREGNOe(0O,dREGN2: 1)
aREGNDO® (BDENT,dREGN2:1)
aREGNO®(0O,dREGN2:w)
aREGNO® (BDENT, dREGN2:w)
aREGNOe+

aREGNOe-

IDENT

aREGNOe

aREGNO@(WDENT)
aREGNC@(0,aREGND: 1)
aREGNO@ (BDENT,aREGND: 1)
aREGNO@(0,dREGN2:1)

‘aREGNO® (BDENT, dREGN2: 1)

aREGNO@ (O, dREGN2:w)
2REGNC®@(BDENT,dREGN2:w)
aREGNCe~

aREGNC®e-

IDENT

aREGNO®@(WDENT)
aREGND@(0O,aREGN2:1)
aREGNO@(BDENT,aREGN2: 1)
aREGNO® (0O, dREGN2:1)
aREGNO®(BDENT, dREGN2: 1)
aREGNO® (0O, dREGN2 :w)
aREGNO@(BDENT ,dREGN2 :w)

eq
ne
ge
le
1t

gt

oD := 0|1]oDT

BD ;= 0|1]oDpT|BDT

WD := 0O|1|0DT|BDT|WDT

1D := 0|1]|QDT|BDT|wWDT|IDT

MALTL := MLTL|PUSH

ALLL := 0l1|QDT|BDT|{WDT|IDT|AR|DRL|MLTL|PUSH|PC

ALLW := 0]1]|QDT|BDT{WDT|AR|DRW|MALTW

DATW := 0] 1|ODT|BDT|WDT|DRW|MALTW

DATB := 0]1|QDT|BDT|DRB|MALTE

ALTL 1= AR|DRL|MLTL|PUSH

ALTW i= AR|DRW|MALTW

ALTB 1= AR|DRB|MALTB

DALTL = DRL|MLTL|PUSH

DALTW = DRW|MALTW

DALTB = DRB|MALTB

%o

NZ = DRW & 1 ? 0; = btst #0.DRW
DALTL = O;NZ = 0 ? O3 = clrl DALTL
DALTW = O;NZ = 0 ? 0; = clrw DALTW
DALTB = O;NZ = 0 ? O: = clrb DALTB

NZ = DALTL ? O; = tstl DALTL

NZ = DALTW ? O; = tstw DALTW

NZ = DALTB ? O: = tstb DALTB

NZ = DRL ? ALLL; = cmpl ALLL,DRL
NZ = DRW ? ALLW; = cmpw ALLW,DRW
NZ = DRB ? DATB: cmpb DATB,DRB
NZ = AR ? ALLL: = cmpl ALLL,AR
NZ = AR 7 ALLW; = cmpw ALLW,AR
ALTL = ALTL + QD;NZ = ALTL + QD ? O; = addgl QD,ALTL
ALTW = ALTW + QD;NZ = ALTW + QD ? O = addgw QD,ALTW
AR = CTL; = lea CTL,AR
DRL = DRL + ALLL;NZ = DRL + ALLL ? O; = addl ALLL,DRL
MALTL = MALTL + DRL;NZ = MALTL + DRL ? 0; addl DRL,MALTL
DRW = DRW + ALLW;NZ = DRW + ALLW ? O; = addw ALLW,DRW
MALTW = MALTW + DRW;NZ = MALTW + DRW ? O; = addw DRW,MALTW
AR = AR + ALLL; = addl ALLL,AR
AR = AR + ALLW; = addw ALLW,AR
DRS = DRB & DATB;NZ = DRB & DATB ? O; = andb DATB,DRB
DALTW = DALTW & ID;NZ = DALTW & ID ? O: andw ID,DALTW
DALTB = DALTB & BD;NZ = DALTB & BD ? O; = andb BD,DALTB
MALTB = MALTB & DRB;NZ = MALTB & DRB ? O; = andb DRB,MALTB

MALTW = MALTW / QD;NZ = MALTW / QD;

DRW

DRW

strcmp(QD, “"Ox00000002"): ABORT

asrw MALTW

}
= DRL / DATW;NZ = DRL $ DRW / DATW 7 O;
lequivr(DRL,DRW): ABORT

divs DATW,DRL

}
= DRL % DATW;NZ = DRL $ DRW % DATW ? O;
tequivr(DRL,DRW): ABORT

divs DATW,DRL

}

1

{

43

DRL = DRW;
lequivr(DRL,DRW): ABORT
extl DRL
)
DRW = DRB;
lequivr(DRW,DRB): ABORT
extw DRW
)
PC = NZ REL O IMP LB | PC;
PC = LB;
PUSH = PC;PC = LB;
PC = CTL;
DRL = BD;NZ = BD ? O;
DRW = BD;NZ = BD ? O;

DRB = BD;NZ = BD ? O;
PUSH = AR;

DALTL = ALLL;NZ = ALLL ? O

DALTW = ALLW;NZ = ALLW ? O

DALTB = WD;
strcmp(WD, "OxOOQOQCff"): ABORT
st DALTB
3

DALTB = DATB;NZ = DATB ? O;

AR = ALLL;

AR = ALLW;

MALTW = MALTW * QD:NZ = MALTW = QD;
strcmp(QD, "OxQO0000002"): ABORT
aslw MALTW

DRW = DRW = DATW:NZ = DRW > DATW ? O;

DALTL = ~-DALTL;NZ = -DALTL ? O:
DALTW = -DALTW;NZ = ~-DALTW ? O
DALTB = ~-DALTB;NZ = -DALTB ? O:
DALTB = ~DALTB;NZ = ~DALTB ? O;

DRB = DRB $ DATB;NZ = DRB $ DATB ? O;
ALTB $ DRB;NZ = ALTB $ DRB ? O:
LB;
PUSH = CTL;
PC = MALTL:
strcemp(MALTL, "m1{al7]++1"):
rts
}
DALTB = NZ REL O IMP WD | O
strcmp(WD, "OxOOOQCOFff"): ABORT
sREL DALTB
}
ALTL = ALTL - QD:NZ = ALTL - QD ? O;
DRL = DRL - ALLL;NZ DRL - ALLL 7 0O;
MALTL = MALTL - DRL;NZ = MALTL - DRL 7 O;
ALTW = ALTW - QD;NZ = ALTW - QD ? O;
DRW = DRW - ALLW;NZ DRW - ALLW 2?2 O;
MALTW = MALTW - DRW;NZ = MALTW - DRW ? O;
AR = AR - ALTL;
AR = AR - ALTW;
DRW = SWAP(DRW);NZ = SWAP(DRW) ? O;

T >
Cor
n
Irm

non

ABORT

JREL LB

jra LB

jsr LB

jra CTL

moveqg BD,DRL
moveqg BD,DRW
moveqg BD,DRB
pea AR@

movl ALLL,DALTL
movw ALLW,DALTW
{

movo DATB,DALTEB
movi ALLL,AR
movw ALLW, AR

muls DATW,DRW
negl DALTL
negw DALTW
negb DALTEB
notb DALTB
orb DATRB,DRB
orb DREB,ALTB
pea LB

pea CTL

{

subqgl QD,ALTL
subl! ALLL,DRL
subl DRL,MALTL
subgw QD,ALTW
subw ALLW,DRW
subw DRW,MALTW
subl ALTL,AR
subw ALTW, AR
swap DRW

REGNO
REGN?2
QNUM
LONUM
QDENT
BDENT
WDENT

XDENT

IDENT

LABEL

AR
DRL
DRW
DRB
1B
NZ
PC
SWAP

QDT

BDT

PUSH

MLTL

MALTW
MALTB

45

GLOSSARY OF SYMBOLS
Regular Expression Section

Integer used in a hardware or pseudo-register name.
Second instance of REGNO.

Valid integer for most "quick" instructions.

Single hexadecimal digit.

Hexadecimal digits 0 through 7.

Hexadecimal digits 8 through f.

Hexadecimal identifier representing the numbers 1 through 8
suitable for "quick” instructions.

Byte-length identifier. Represents all signed integers.
capable of fitting into one byte.

Word-length identifier. Represents all signed integers.
capable of fitting into a single word.

Represents a term of the general case of identifiers.

Can either be a long-word length hexadecimal identifier or
a symbol beginning with an underscore or the letter "T"
followed by any number of letters, digits, or underscores.
The most general case of identifier. Represented by a
term or by the addition and/or subtraction of terms.

A valid label.

Token Definition Section

Address register

Long-word data register. Holds 32 bits of data.
Word-length data register. Holds 16 bits of data.
Byte-length data register. Holds 8 bits of data.

Label.

Condition Code.

Program Counter.

Function to swap the upper half of a long-word register
with the lower half. ,

Integers 1 through 8 capable of being used in "quick”
instructions.

Byte-length signed integers

Word-length signed integers.

Identifier.

Long-word memory access using the hardware stack pointer
as an index and incrementing it before its used.
Used to push a data element onto the hardware stack.
Long-word memory-alterable addressing modes excluding
the specific addressing mode defined by PUSH.
Word-length memory-alterable addressing modes.
Byte-length memory-alterable addressing modes.
Control addressing modes.

Relational operators.

"Implies”.

QD

BD
WD

MALTL
ALLL
ALLW

DATW
DATB
ALTL
ALTW

DALTL
DALTW
- DALTB

Token Grouping Section

Integer identifiers 1 through 8 suitable for "quick”
instructions.

Byte-length signed integer identifiers.
Word-length signed integer identifiers.

All possible identifiers

All long-word memory-alterable addressing modes.

All long-word addressing modes.

All word-length addressing modes.

All byte-length addressing modes.

All word-length data addressing modes.

All byte-length data addressing modes.

All long-word alterable addressing modes.

All word-length alterable addressing modes.

All byte-length alterable addressing modes.

All long-word data-alterable addressing modes.
All word-length data-alterable addressing modes.
All byte-length data-alterable addressing modes.

46

APPENDIX B

ASSEMBLY CODE EXAMPLE

Pascal Source Program

program recursivegcd(output);
function ged(m, n: integer): integer;

begin

if n = 0 then gcd := m

else gcd := gcd(n, m mod n)
end;
begin)

writeln(18, 27, (gcd(18, 27)));
end.

Corresponding Assembly Code

Unoptimized Code Optimized Code
Ltext .text
.globl _P_PGM .globl _P_PGM
_P_PGM: _P_PGM:
mask 1=0x3f38 mask 1=0x3f38
mask2=0x1icfc mask2=0x1cfc
jra L1 jra Lt
L3: L3:
moveml] #maski,a7e- movem] #maski,a7e-
IDstk=4*ID5+1ID4~12 IDsStk=4*ID5+1ID4-12
addl IDstk,ab addl #IDstk,as

movl a6,a8
movw a8, a8
addl #16,a9
movw agse,di10
movw #0,d11

cmpw di1t,d10 tstw a6@(0Ox00C00010)
seq di2

movb d12,d13 seq d2

negb di3

movb d13,d14

cmpb 0,d14 negb d2

jeq L6 jeq L6

L6:

L7:

L8:

mowv]
mov]
addl
mov]
movw
addl
movw
movw

a6,ais
ati5,até
#0,a16
ac,at7
al7,a18
#12,218
al8®,d19
dig,atée

jra L7

mov1
mov]
addl
mov1i
movl

a6,a2C
a20,a21
#0,a21
a6,a22
a22e(4),a23

pea abe

cirl
mov1
movi
movl
movw
addl
movw
movw
clirw
mov1
movw
add)
movw
mowv 1
movw
addl
movw
movw
extl
divs
swap
movw
movw
clirw
movl

abe+
a23,abe+
a6, abe+
a6,a24
224 ,a25
#16,a25
al25e,d26
d26,a5e+
a5e+
ag,a27
a27,a28
#12,228
a28e,d29
a6,a30
a30,a31
#16,a31
a31e,d32
d29, do
do
d32,d0
do
dO,d33
d33, a5e+
aSe+
a7e+,ab

jsr L3

movl
movi
mov]
movw
movw

movw
movw
extl

moveml a7e+,#mask?2

rts

a6, as
ace(8),a6
a5¢,a34
d0,d35
d35,a21e

a6@,d36
d36,d0
do

ID4=20
IDS=16

Le:

L7:

L8:

48

movw a6@(0x0000000c) ,a6e
jra L7

movl a6,a2

pea abe

clrl abSe+

movl a&e(0x00000004),a56e+
movl a6,aS5e+

movw a6@(0x00000010),a5e+
clrw a5e+

movw a6e(0x0000000c), do
extl dO
divs a6e(0x0000C010),do
swap dO

movw dO,a5e+

clirw aS5e+

movl a7eé+,a6

ijsr L3

movl a6,a5

movl a6e(0x00000008),as
movl a5e,a3

movw dO,d2

movw d2,a2¢

movw aée,do

extl doO

movem] a7é+,#mask2
rts

1D4=20

ID5=16

movem] #maski,a7e-
IDstk=4*ID10+ID9-12
addl IDstk,aSs
movw #18,d37
movw d37,dC
extl doO

movl d0,a7e-
movw #10,d38
movw d38,d0O
extl dO

movl d0,a7e-
movl a6,a39
movl a38,a40
addl #20,a40
movl a40,a7e-
jsr _P_WRI
addl #12,a7
movw #27,d41
movw d41,do
extl doO

movl dC,a7e-~
movw #10,d42
movw d42,do
extl do

movl dQ,a7e-
movl a6,add
movl a43,a44
addl #20,a44
movl ad44 ave-
jsr _P_WRI
addl #12,a7
movl a6, a4s
pea abe

clr]l aSe+
movl a45,aSe+
movl a6,a5e+
movw #18,d46
movw d46,aSe+
clrw ase+
movw #27,d47
movw d47,a5e+
clrw a5e»*
mov] a7e+,as
jsr L3

movl a6, as
movl a6e(8),as
movl aS®e,ad48
movl dO,a7e-
movw #10,d48
movw d43,do
extl do

movl dO,a7e-
movl ag,asQ
movl aS50,as1
addl #20,a51
movl aSi,a7e~

49

moveml #maski,a7¢-
IDstk=4*ID10+1ID9-12
addl #IDstk,a5

moveq #0x00000012, dO
movl dC,a7e~

moveqg #0x0000000a, do
movl dO,a7e-

pea a6@(0x00000014)
jsr _P_WRI
lTea a7@(0x0000000c),a’7

moveq #0x0000001b, do
movl dO,a7e-

moveq #0x0000000a, do
movl dO,a7e-

pea a6e(0x00000014)
jsr _P_WRI
lea a7@{0Ox0000000c),a”7

pea aSe

clrl a5e+
movl a6, ase+
movl a6,a%@e+

movw #0x00000012,a56+
clrw a5e+

movw #0xC000001h, a5e+
clrw abe+

movl a7e+,as

jsr L3

movl ag,as

movl aGe(0x00000Q08), a6
movl aSe,a2

movl do,a7e-

moveq #0xQ0C00CCa, do
mov! dO,a7e-

pea a&6e(0x00000014)

L1

jsr _P_WRI
addl #12.,a7
movl a6,a52
movl a52,ab3
addl #20,a53
movl aS3,a7e-
jsr _P_WLN
addgl #4,a7
moveml a7e@+,#mask2
rts

I1D9=44
ID10=16

tstb a7e(-40)
moveml #Ox3f3e,a7e-
lea _ustack, a5

lea _ustack, a6

movl a6,aS4

pea abe@

clrl aSe+

movl a54,a5e+

movl a6,aS5e+

addl! 32,a5

movl a7e+,a6

jsr L8

movl]l ag,ad

movl a6e(8),asé
moveml a7@+,#0x7cfc
rts

L1:

jsr _P_WRI
lea a7@(0x0000000c),a’

pea a6e(0Ox00000014)
jsr _P_WLN

Tea a7@(0Ox00000004), a7
moveml a7@+,#mask2

rts

ID9=44

ID10=16

tstb a7e(-40)
movem] #0x3f3e,a7e-
movl #_ustack,ab
movl #_ustack,a6

pea aS5e

clrl a5e+

movl a6,a5e+

movl aé,aSe+

lea aSe@(0Ox00000020), as
movl a7@e+, a6

jsr L8

movi a6,as

movl a6e(0x00000008), a6
moveml a7@+,#0x7cfc
rts

50

IMPLEMENTATION EFFORT IN DAYS

APPENDIX C

51

System Component Learning Curve Porting Coding Debugeing || Total
P4 Compiler 7 2 % N/A 9%
P4 Translator 3 1 % 10 14 %
Code Expander 5 % 10 5 20 %
Machine Description 10 N/A 3 10 23
Machine Descr. Processor 3 % 1 5 914
Cacher 2 % %) 3y
Combiner 2 % 1 % 4
Assigner 2 % 1 2 5%
Runtime Routines 3 N/A 1 2 6
Target Machine Instr. Set 3 N/A N/A N/A 3
Total 40 5 18 35 98

