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Abstract

This paper presents a framework for data integration that
is based on using “Squirrel integration mediators” that use
materialization to support integrated views over multiple
databases. = These mediators generalize techniques from
active databases to provide incremental propagation of
updates to the materialized views. A framework based
on “View Decomposition Plans” for optimizing the support
of materialized integrated views is introduced. The paper
describes the Squirrel prototype currently under development,
which can generate Squirrel mediators based on high-level
specifications.

The integration of information by Squirrel-generated me-
diators is expressed primarily through an extended version
of a standard query language, that can refer to data from
multiple information scurces. In addition to materializing an
integrated view of data, these mediators can monitor condi-
tions that span multiple sources. The Squirrel framework also
provides efficient support for the problem of “object match-
ing”, that is, determining when object representations (e.g.,
OIDs) in different databases correspond to the same object-
in-the-world, even if a universal key is not available.

To establish a context for the research, the paper presents
a taxonomy that surveys a broad variety of approaches to
supporting and maintaining integrated views.

1 Introduction

Given the advent of the information super-highway, an
increasingly important computer science problem today

*This research was supported in part by NSF grant IRI-
931832, and ARPA grants BAA-92-1092 and 33825-RT-AAS. A
shorter version of this paper with less technical details appears in
[ZHK95a].

tA student at the University of Southern California, in residence
at the University of Colorado.

is to develop flexible mechanisms for effectively inte-
grating information from heterogeneous and geograph-
ically distributed information sources. The traditional
approach is to support a wirtual integrated view, and
to support queries against the view by query decom-
position, query shipping, and integration of query re-
sults [ACHK93, LMR90, T*90]. More recently, the use
of materialization has been gaining increasing attention
in connection with supporting both single-source and
integrated views [ADD*91, IK93, WHWR89, ZGHW95].
There are a variety of situations under which material-
ization is preferable to the virtual approach, e.g., cases
where network connectivity is unreliable, where response-
time to queries is critical, or where it is cheaper to mate-
rialize and incrementally maintain intricate relationships
rather than re-compute them each time they are needed
for a particular query answer. The primary contribution
of the research presented in this paper is the development
of a prototype tool called Squirrel, that can generate sys-
tems that support data integration using materialized in-
tegrated views.

A central component of our framework is the notion
of “Squirrel integration mediator”!. As detailed below,
these provide a variety of mechanisms for supporting and
incrementally maintaining materialized integrated views.
Integration mediators are implemented as special pur-
pose “active modules” [BDD195, Dal95]; these are soft-
ware components whose behavior is specified largely by
rules, in the spirit of active databases [WC95]. The
rules permit a relatively declarative style of program-
ming, thus increasing reusability and maintainability.
The primary components of an integration mediator are

!These mediators are also simply called Squirrel mediators or
integration mediators in the rest of this paper.



a local store for the materialized integrated view and
auxiliary information, rules for incremental maintenance
of the view, and an execution model for applying these
rules.

Squirrel mediators extend existing techniques [BLT86,
CW91, Cha94, GMS93] for the incremental maintenance
of materialized views defined over a single database in
two fundamental ways. First, integration mediators can
support integrated views over multiple databases, which
may be modern or legacy. Second, integration mediators
are based on “View Decomposition Plans” (VDPs),
which serve as the skeletons for supporting materialized
integrated views, providing both data structures for
holding the required auxiliary information, and serving
as the basis for the rulebase. VDPs provide a broad
framework for optimizing support for integrated views,
in a manner reminiscent of query execution plans used
in traditional query optimization (as described in, e.g.,
[U1182)).

The Squirrel prototype can be used to generate inte-
gration mediators. Squirrel takes as input the specifica-
tion of the integrated view to be constructed, expressed
in a high-level Integration Specification Language (ISL).
The specification includes primarily how the data from
various sources is to be integrated. For this purpose,
a generalization of a standard query language is used.
As output, Squirrel produces an integration mediator.
When invoked, the mediator first initializes the inte-
grated view and sends to the source databases specifi-
cations of the incremental update information that they
are to transmit back to the mediator. Then the medi-
ator maintains the integrated view and answers queries
against it. In order to construct Squirrel, we have de-
veloped a systematic approach to building integration
mediators, that is based largely on the use of VDPs.

A novel feature of the integration mediators generated
by Squirrel is that they can provide eflicient support
for monitoring conditions based on information from
multiple sources. This is accomplished by materializing
and incrementally maintaining information relevant to
these conditions. In this manner, a mediator can send
an alert as soon as updates received from the source
databases indicate that a condition has been violated.

A second novel feature of Squirrel-generated integra-
tion mediators is the support they can provide for “object
matching”, that is, determining when two object repre-
sentations (e.g., keys in the relational model or object
identifiers in an object-oriented model) from two dif-
ferent databases refer to the same object-in-the-world.
In this regard, integration mediators build on previous
systems that support full [WHW89, WHWY0] or partial
[ADDT91, KAAK93] materialization for supporting inte-
grated views. In particular, integration mediators can ac-
commodate a variety of complex criteria for matching ob-

jects, including “look-up tables” | user-defined functions,
boolean conditions, historical conditions, and intricate
heuristics.

The current Squirrel prototype is focused on a small
portion of the full space of possible approaches to
data integration. Indeed, modern data integration
applications involve a broad array of issues, including
the kinds of data, the capabilities of data repositories,
the resources available at the site of the mediator (e.g.,
storage capacity), and the requirements on the integrated
view (e.g., query response time and up-to-dateness). No
single approach to supporting data integration can be
universally applied. To better understand the impact
of those issues on data integration, and provide a
larger context within which to understand the Squirrel
framework, we include in this paper a survey of issues
and techniques that arise in data integration, with an
emphasis on those issues that affect approaches based
on materialization. This survey is presented in the form
of a taxonomy based on several spectra, including for
example a spectrum about the degree of materialization,
which ranges from fully materialized to fully virtual, and
spectra concerning different ways to keep materialized
data up-to-date. This taxonomy will be used in the
future development of Squirrel, both guiding the choice
of extensions, and in permitting modular support for
different kinds of features.

The rest of the paper is organized as follows: Section
2 describes related work that this research is based
upon.  Section 3 gives a motivating example that
illustrates several aspects of our approach. Section 4
gives a high level description of the Squirrel framework,
including descriptions of the ISL, View Decomposition
Plans, and the generation of integration mediators from
ISL specifications. Section 5 presents the taxonomy
of the space of approaches to data integration. Brief
conclusions are given in Section 6.

2 Background and Related Research

This section briefly surveys several technologies that are
used in the development of the Squirrel framework for
data integration, namely (1) integrated views, (2) ob-
ject matching, (3) maintenance of materialized views, (4)
active databases and active modules, (5) the Heraclitus
paradigm, and (6) immutable OIDs for export. The re-
lationships of the Squirrel framework to these investiga-
tions are also indicated.

2.1 Integrated views

There is a broad literature on integration of schemas
or views. Early work focused on view integration as
the basis of a methodology for designing global schemas.
[BLN86, BM81].



The Multibase system [SBG181, DH84] is one of the
first systems to support integrated views against multi-
ple databases. This uses a virtual representation of the
view, along with query decomposition and query ship-
ping. Several systems based on this approach have fol-
lowed [LMR90, T+90]. One of the recent multidatabase
systems is Pegasus [ADD%91], which applies various as-
pects of object-oriented database technology to address
heterogeneity problems arising in the creation of inte-
grated views. (Pegasus also supports limited materi-
alization; see below.) Another recent system is SIMS
[ACHK93], where integrated views are represented in the
frame-based model of LOOM [Mac88] (a descendant of
KL-ONE [BS85)), and query plans are generated dynam-
ically using the LOOM inference engine. The commercial
UniSQL system also provides support for the construc-
tion of virtual integrated views.

One of the early projects advocating materialization
of integrated views is WorldBase [WHW89, WHWQ0,
WWH90]. This provides mechanisms for selecting,
restructuring and merging relevant portions of source
databases, with an emphasis on the impact of object
identifiers. WorldBase does not provide support for
the incremental propagation of updates from the source
databases to views.

Integration mediators generated by Squirrel support
integrated views using the materialized approach, and
provide a variety of mechanisms for keeping material-
ized data up-to-date. The generalization of the Squirrel
framework to support a hybrid of virtual and material-
ized approaches is currently under way [ZHK95b].

2.2 Object matching

An important aspect of data integration concerns object
matching, i.e., determining when two object representa-
tions (e.g., key-values or object identifiers) in different
databases correspond to the same object-in-the-world.
Most systems that support integration using the
virtual approach, including e.g., Multibase and SIMS,
assume that a universal key (possibly involving derived
attributes) is available for performing object matching.
References [KAAK93, WHW90] are among the earliest
that consider the problem of object matching in contexts
where universal keys are not available. In addition to
universal keys, WorldBase [WHW89, WHWY0] incorpo-
rates look-up tables that hold matching information, and
introduces negative keys which, intuitively, help in decid-
ing if two objects do not match. The Pegasus system
[ADD*91, KAAK93] supports the specification of de-
rived functions that, given an object representation from
one database of an object-in-the-world, returns the corre-
sponding object representation from a second database.
(In [KAAKO93], the term ‘proxy object’ is used to refer to
an object representation, and the term ‘entity object’ is

used to refer to an object-in-the-world.) These derived
functions might be based on a (materialized) look-up ta-
ble, or on more complex matching criteria. Pegasus pro-
vides elegant access to these derived functions, allowing
transparent access to information in one database via
object representations from a second database.

The Squirrel framework uses materialization to sup-
port a wide variety of intricate matching criteria, that
may involve look-up tables, boolean conditions, user-
defined functions, and historical information. Also, the
high-level mechanisms for specifying these criteria are
incorporated into the Squirrel’s Integration Specification
Language.

The area of user-specified equivalences between objects
in the same or different databases raises many subtleties
(e.g., see [CZNY5]). For the current Squirrel prototype
we assume that the match criteria specified by the
integration mediator are consistent and define (partial)
1:1 correspondences between the objects in families of
corresponding classes.

2.3 Maintenance of materialized views

Several investigations have considered the issue of main-
taining materialized views, from both practical and algo-
rithmic perspectives.

On the algorithmic side, several works present algo-
rithms and formalisms for specifying incremental prop-
agation of updates from source data to views, including
[QWOI1, GLT94, BLT86, GMS93, GL95]. A general con-
sensus of these works is to use bags (i.e., multisets) for
representing the materialized views and intermediate in-
formation, so that incremental update propagation can
be more efficient. The formalism underlying the support
for incremental update in integration mediators is based
on the bag algebra B.A for flat relations (i.e., no nested
bags) described in [GL95].

From the systems perspective, active databases are
emerging as the paradigm of choice for performing
incremental update propagation. For example, references
[CW91, Cha94] describe comprehensive frameworks for
using active database techniques to support incremental
maintenance of materialized views.

Integration mediators use techniques that synthesize
and generalize the algorithmic work of [BLT86, GMS93,
GL95] and systems work such as [CW91, Cha94]. All of
that work is focused on maintaining materialized views
over a single database; integration mediators support
views over multiple databases. Integration mediators
provide a full implementation of an algorithm that is
based largely on [BLT86, GMS93, GL95]. Furthermore,
the Squirrel prototype can automatically generate these
integration mediators from high-level specifications. This
paper introduces “View Decomposition Plans” (VDPs)
(see Subsection 4.3), which provide the skeleton for



supporting incremental view maintenance in integration
mediators. VDPs also provide a starting point for both
optimizing and evolving integration mediators.

The Cactis system [HK89] supports incremental up-
date of derived attributes in databases based on a spe-
cialized object-oriented model. The Cactis system uses a
mix of materialized and virtual derived attributes, and a
mix of lazy and “predictive” strategies, in order to opti-
mize the usage of CPU and I/O time. The algorithm is
based on the use of a generalization of attributed gram-
mars. We plan to incorporate techniques from CACTIS
in a future version of Squirrel.

Reference [ZGHWO5] also addresses the problem of
supporting materialized views in a warehouse environ-
ment. That reference describes how to maintain a mate-
rialized join of two or more remote relations, by a combi-
nation of receiving incremental updates from the source
relations and also polling the source relations. The “Ea-
ger Compensation Algorithm” [ZGHW95] is used to over-
come subtle forms of inconsistency that might arise in
this context. In its current form the Squirrel framework
does not support this kind of polling; rather it is assumed
that the relevant portions of all classes are materialized
and maintained by the integration mediator.

2.4 Active databases and active modules

Active databases [WC95] support rulebases and auto-
matic triggering of rules. The rulebases provide a
mechanism for specifying some of the behavior of a
database in a relatively declarative fashion. As detailed
in [HW92, HJ91], a variety of different execution models
have been developed for rule application. This variety
of alternatives highlights the fact that the “knowledge”
represented in an active database stems from two dis-
tinct components: the rulebase and the execution model
[ADbi88].

A recent generalization of active databases is the
concept of active module [Dal95, BDDT95]. An active
module 1s a software module that incorporates:

e a rulebase, that specifies the bulk of the behavior of
the module in a relatively declarative fashion;

e an execution model for applying the rules (in the
spirit of active databases);

e (optionally) a local persistent store

An active module can be viewed as capturing some of
the spirit and functionality of active databases, with-
out necessarily being tied to a DBMS. While an active
module might be a full-fledged active database, it might
also be a lightweight process supporting a focused fam-
ily of functionalities. In particular, the separation of

rules (logic/policy) from execution model (implementa-
tion/mechanism) allows a more declarative style of pro-
gram specification, and facilitates maintenance of the ac-
tive module as the underlying environment evolves. Ref-
erence [Dal95] describes an implemented prototype sys-
tem that uses several active modules with different exe-
cution models to support complex interoperation of soft-
ware and database systems.

As noted in the Introduction, integration mediators
are a specialized class of active modules. The execution

“model currently used by integration mediators was

carefully designed for this application to permit the
rulebase to be highly modular and focused on semantic
manipulations (see Subsection 4.4).

2.5 The Heraclitus paradigm

Another important tool used by the Squirrel prototype
is the Heraclitus paradigm [HJ91, GHJ94] for database
programming languages (DBPLs). In particular, this
paradigm provides notation and constructs for the rules
used in integration mediators. The paradigm also served
as a key enabling technology in the development of active
modules.

Heraclitus[Alg,C] [GHI 93, GHJ94] is an implemented
DBPL that supports the Heraclitus paradigm in the
context of the relational model. A team at University
of Colorado, Boulder, is currently developing Heracli-
tus[OO], abbreviated H20, [BDD*95, DHDD95], which
extends and generalizes the paradigm to object-oriented
databases. The rules and execution model for integration
mediators (Subsection 4.4) are currently implemented
in Heraclitus[Alg,C]. We expect the port to H20 to be
straightforward as that becomes available.

Fundamental to the Heraclitus paradigm is the notion
of delta value, often called simply delia, that corresponds
to a difference between database states. In the pure
relational model (no tuple identifiers and no duplicates),
delta values are represented as sets of atomic inserts
and atomic deletes (possibly involving more than one
relation), with the restriction that a delta value cannot
contain both +R(t) and —R(¢) for relation R and tuple
t.  (The special delta value fail is used to denote
inconsistency.) To illustrate, suppose that R has arity
3 and S has arity 2, with all columns of type integer,
and that the “current” state is DB, as shown in Figure
1{(a). Two delta values are shown in part (b) of that
figure. The result of applying Ay to state DB, is the
state apply(DB,, A1) shown in part (¢) of that figure.
Note that the atomic insert +5(5,6) in A; has no effect
(because we are using the pure relational model). We
call such atomic inserts redundant; atomic deletes may
also be redundant.

An important operator in Heraclitus is smash, which
provides a form of composition for deltas. More precisely,
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Figure 1: Examples of constructs from Heraclitus

the smash of two deltas A and A’ has the property that
for each state DB,

apply(DB, A smash A") = apply( apply(DB,A), A’)

In the relational case the smash of two deltas A and
A’ can be computed by taking the union of the deltas,
resolving conflicts in favor of A’ (i.e., eliminating those
atomic updates of A that conflict with an atomic update
of A'). For example, Ay smash As is shown in Figure
1(d). Smash is associative.

Another operator of Heraclitus is when, which permits
hypothetical access to deltas. If ¢ is an arbitrary side-
effect free expression (e.g., a query, or an expression
whose value is a delta) and § is an expression whose
value is a delta, then ¢ when 6 has the value that e
would have, if (the value of) 6 were applied to the current
database state. The implementation of Heraclitus[Alg,C]
[GHJ94, ZGHY4] supports such hypothetical access in an
efficient manner, without modifying the database state in
which the expression is evaluated.

The above discussion was for the pure relational model;
the current implementation of Heraclitus[Alg,C] also
includes deltas for the relational model with duplicates,
i.e., for bags of tuples. In the context of integration
mediators a delta for a bag is a bag of atomic inserts
and deletes, with the restriction that a delta value cannot
contain both one or more occurrences of +R(¢) and one or
more occurrences of —R(¢) for relation R and tuple ¢. (In
the general setting, the form of deltas for bags is more
intricate [DHR95].) The operators apply, smash, and
when are defined analogously to the pure relational case.
Integration mediators generated by the current Squirrel
prototype use deltas and the apply, smash, and when
operators, for both pure relations and for bags of tuples.

2.6 Immutable OIDs for export

One subtlety concerning object identifiers (OIDs) is that
from a formal perspective, only the relationship of the
OID to values and other OIDs in a database instance
is important [Bee89]; the particular value of an OID
is irrelevant. As a result, a DBMS is free to change
the specific values of OIDs, as long as its internal
state remains “OlD-isomorphic” [AHV95] to the original
state. This may create a problem if OIDs from a source

database are used to represent information in the local
store of an integration mediator.

To overcome this problem, we generally assume that
the physical OIDs associated with a given entity classin a
source database are immutable. If a source database does
not use immutable OIDs, then we follow the technique
of [EK91], and assume that these source databases have
been wrapped to support immutable OIDs for export.
(Reference [EK91] uses the phrase ‘global OIDs’ for
this.) A simple approach to accomplish this is for the
source database to maintain a binary relation with first
coordinate holding internal, physical OIDs, and second
coordinate holding symbolic “export” OIDs.

3 A Motivating Example and Intuitive
Remarks

This section gives an informal overview, based on
a very simple example, of several key aspects of the
Squirrel framework for data integration using integration
mediators. Section 4 describes the Squirrel framework in
more detail.

In the example there are two databases, StudentDB
and EmployeeDB, that hold information about students
at a university and employees in a large nearby corpora-
tion, respectively. An integration mediator, called here
S_EMediator, will maintain an integrated view about
persons who are both students and employees, providing
their names, majors, and names of the divisions where
they work. The mediator will also monitor the condition
that no more than 100 students are employees.

Figure 2 gives a high level specification (in our
ISL language, see Section 4.2) of the data integration
problem. This ISL specification includes primarily the
relevant subschemas of the two source databases (in the
Source-DB parts), and the definition of the integrated
view (in the Export classes part). In this example
the view consists of only one class; in general the view
might include several classes. In the example, there is
not a universal key between students and employees.
However, the ISL specification includes a description
of how students and employees can be matched, in
the Correspondence part (see below). Note that the
function S_E_match defined by that correspondence is



Source~DB: StudentDB
interface Student {

extent students;
string studName;
integer[7] studID;
string majors;
string local_address;
string perm_address;
3 '
key: studID

Source-DB: EmployeeDB
interface Employee {

extent employees;
string empName ;
integer[9] SSN;
string divName;
string address;
};
key: SSN

Correspondence S_E_match:

Match classes:
s IN StudentDB:Student,
e IN EmployeeDB:Employee

Match predicates:
close_names(s.studName, e.empName)
AND (e.address = s.local_address
OR e.address = s.perm_address)

Match object files:
$home/demo/close_names.o

Export classes:
DEFINE VIEW Student_Employee
SELECT s.studlName,s.major,e.divliame
FROM s IN StudentDB:Student,
e IN EmployeeDB:Employee
WHERE S_E_match(s,e);

Conditions:
Condition:
count (Student_Employee) =< 100
Action:
send_warning(’count exceeded’)

Figure 2: The ISL specification of the example problem

used in the specification of the view. Finally, the
Conditions part of the ISL specification includes the
condition to be continuously monitored.

We now consider in more detail how S_E_Mediator (a)
provides support for object matching, (b) uses rules to
support incremental maintenance of materialized data,
and (c) monitors the condition.

With regards to issue (a), the Match predicate
in the Correspondence part of the ISL specification
incidates that a student object s matches an employee
object e if (1) either s.local.address = ec.address
or s.perm_address = e.address, and (2) their names
are “close” to each other according to some metric,
for instance, where different conventions about middle
names and nick names might be permitted. The
“closeness” of names is determined by a user-defined
function, called here closemnames(), that takes two
names as arguments and returns a boolean value. (More
intricate match criteria can also be supported.)

Following the default approach used by Squirrel, object
matching between students and employees is supported
in S_EMediator by having the local store hold a
“match” class, in this case called match Stud_Emp, that
essentially holds the “outer join” of the Student and
Employee classes. For each person who is both student
and employee there will be one “surrogate” object in
match_Stud_Emp that represents this person; for each
person who is a student but not an employee there will
be one “surrogate” object in match_Stud_Emp, several of
whose attributes will be nil; and likewise for employees

who are not students. This match class is used by
the integration mediator to support the derived boolean
relation S_E match referred to in the definition of the view
class Student Employee.

The class match-Stud Emp illustrates one kind of
intricate relationship between data from multiple sources
which is expensive to compute. By using materialization,
this relationship can be computed when S_E mediator
is initialized, and then maintained incrementally as
relevant data in the source databases changes. In
general, the query response time obtained by using
this materialized approach to data integration will be
faster than when using the virtual approach, where the
potentially expensive step of identifying matching pairs
of objects may be incurred with each query against
the view. Also, we expect that if the update-to-query
ratio is sufficiently small, then the materialized approach
will also be more efficient on average than the virtual
approach.

In this example, the export class Student _Employee of
the view is a simple projection and selection of the class
match_Stud Emp. Thus, S_E Mediator can support this
class in a virtual fashion, translating queries against the
view into queries against match Stud.Emp. In general, an
integration mediator may materialize some export view
classes, and support others as selections and projections
of other materialized classes.

We now turn to issue (b), that of imcrementally
maintaining materialized data in the integration medi-
ator. Two basic issues arise: (i) importing informa-
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tion from the source databases and (ii) correctly main-
taining the materialized data to reflect changes to the
source databases. For this example, with regards to (i)
we assume that both source databases can actively send
messages containing the net effects of updates (i.e., in-
sertions, deletions, and modifications) to S_E_Mediator.
A rulebase in the integration mediator is used to per-
form (ii). To illustrate briefly, we informally describe
two representative rules involved in supporting the class
match_Stud Emp. The two rules correspond to the cre-
ation of new Student objects in the source database
StudentDB.

Rule R1: If an object of class Student is created, insert
a corresponding new object into class match Stud_Emp
whose Employee-attributes are nil.

Rule R2: Upon the insertion of a match_Stud_Emp ob-
ject = with nil Employee-attributes, if there is a
corresponding object y in match Stud.Emp with nil
Student-attributes that matches z, then delete z and
modify y by replacing its nil attributes with values
from z.

The complete rulebase would include rules dealing with
creation, deletion, and modification of objects in both
source databases. Subsections 4.5 and 4.6 describe how
this is generalized to support n-ary matches and con-
ventional query-langauge operators (e.g., selection, join,
etc.), and how the rulebase is generated automatically by
Squirrel.

Finally, we indicate (c) how the condition
count (Student Employee) =< 100 is monitored. This
is a particularly simple case, because the only class

mentioned in the condition is one of the export view
classes. In this case, the condition is monitored by
rules that incrementally maintain the count of tuples in
match_Stud Emp that have no nil values. More generally,
a condition may refer to data that is not represented by
any of the export view classes. In that case, the media-
tor materializes the classes holding data relevant to the
condition, and rules are used to incrementally maintain
these classes and monitor the truth-value of the condition
on them.

Importantly, the integration mediator can alert a user
that the condition has been violated as soon as the
relevant updates to the source databases are transmitted
to the mediator. If a virtual approach to supporting the
integrated view were used, then the condition could be
monitored only by periodically asking a query that called
for the count of Student Employee. This would involve
repeated accesses to the two source databases, and might
not alert the user of violation of the condition as quickly
as the materialized approach.

4 The Squirrel Integration Mediator
Generator

We are currently developing a prototype tool called
Squirrel that generates integration mediators. Squirrel
takes as input a high-level specification of an integrated
view to be supported, and produces as output an integra-
tion mediator that supports it. One of the challenges in
designing Squirrel was to develop a systematic and uni-
form methodology for constructing integration mediators
from high-level specifications. In this section we describe
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both the methodology and the integration mediators that
are produced by it.

The section begins with a high-level description of
how Squirrel generates integration mediators (Subsection
4.1).  Next, the high-level Integration Specification
Language (ISL) (Subsection 4.2) is presented. The
skeleton of a Squirrel-generated integration mediator
is provided by its View Decomposition Plan (VDP);
these are described in Subsection 4.3.  The next
two subsections (4.4 and 4.5) describe the execution
model used by integration mediators, and also indicate
how incremental updates are propagated through the
various materialized classes stored by these mediators.
Subsections 4.6 and 4.7 describe how VDPs and rule-
bases are constructed. Subsection 4.7 also touches on
the issue of evolving an integration mediator. A final
component of our solution is the automatic generation of
rules to be incorporated into the rulebases of the source
databases, so that relevant updates will be propagated
to the mediator. We do not address the generation of
those rules here.

4.1 An overview of the automatic generation of
integration mediators

This subsection gives a brief overview of how Squirrel
generates integration mediators. Further detail is given
in the subsequent subsections, where the various compo-
nents of integration mediators are described.

The overall architecture of a Squirrel-generated inte-
gration mediator is shown in Figure 3. An integration
mediator consists of six components — an update-queue
that holds incremental updates from remote informa-
tion sources, a VDP, a rulebase, an execution model,
a local persistent store, and a query processor that ac-
cepts queries against the mediator. Communication be-
tween the mediator and remote sources is based on the
Knowledge Query and Manipulation Language (KQML)
[FWW™].

There are two kinds of information flow within an
integration mediator. One involves incremental updates

against the source databases, which flow into the queue;
as a result of the execution model (applied to the rulebase
and VDP) these incremental updates then propagate into
the integrated view. The other kind of information flow
involves queries posed against the integrated view, and
answers made 1n response to them. Importantly, humans
and processes that query the integration mediator need
only be aware of the query processor and the local store,
i.e., the part of the integration mediator shown on the
right side of the gray dashed line in Figure 3.

The process of generating integration mediators from
an ISL specification is illustrated in Figure 4. The soft-
ware modules corresponding to the components of an in-
tegration mediator can be divided into two groups with
regards to the construction of integration mediators. The
first group includes three modules, namely the execu-
tion model, query processor, and update-queue handler.
These modules are independent from any particular ISL
specification and are kept in the Squirrel library. The
second group of modules includes the VDP, the rulebase,
and the initialization module. The latter initializes the
local store and (possibly) creates rules for the remote
source databases. Those modules must be tailored to
particular ISL specifications, and are generated dynam-
ically by Squirrel’s ISL compiler from the ISL specifica-
tion. More specifically, the ISL compiler reads in an ISL
specification and outputs the three modules in Heracli-
tus[Alg,C] code. As mentioned in Subsection 2.5, Her-
aclitus[Alg,C] is a database programming language that
provides notation and constructs that are convenient for
implementing various software modules of the integration
mediator. Since these modules are in Heraclitus{Alg,C]
code which is relatively high-level, the user has the free-
dom to modify them, e.g., by adding new rules or mod-
ifying the VDP. The final executable integration medi-
ator is created by pushing the three generated modules
through the Heraclitus[Alg,C] compiler, and linking the
result with the modules from the Squirrel library. In
the remainder of this section we discuss the ISL and the



<ISL>

<Src-Subschema>
<Key>
<Correspondence>

<Src-Subschema>* <Correspondence>*
[<Internal>] <Export> [<Conditions>]

Source DB: <string> {<ODL-Class-Def> [<Key>]}"

key: <string> {, <string>}*

Correspondence <string>: <Match>"

<Match> =

Match classes: <string> IN <string>

{, <string> IN <string>}*

Match predicates: <OQL-Condition>
[Match object files: <string> {, <string>}*]

<Internal> =
<Export>
< Conditions>

i

Internal classes: <OQL-View-Def>
Export classes: <OQL-View-Def>
Conditions: {<Condition>

<Action> [<Action-Obj-File>]}+

<Condition>
< Action>
<Action-Obj-File>

i

i i

Condition: <OQL-Condition>
Action: <string>
Action object files: <string> {, <string>}*

Figure 5: Grammar for Integration Specification Language (ISL)

three most important components of integration medi-
ators, namely, the VDP, the execution model, and the
rulebase.

4.2 Squirrel Integration Specification Language
(ISL)

The Integration Specification Language (ISL) allows
users to specify their data integration applications in a
largely declarative fashion. The primary focus of ISL is
on the specification of matching predicates, of integrated
views, and of conditions to be monitored. In the current
version of ISL, users can specify (1) (relevant portions of)
source database schemas; (2) the predicates to be used
when matching objects from families of corresponding
classes in the source databases; (3) distinguished classes,
which include both classes for export, and additional
“internal” classes that are explicitly defined in the ISL;
and (4) conditions to be monitored by the integration
mediator. Internal classes might be defined because they
are used in the specification of monitored conditions, or
because they serve as intermediate classes from which
other distinguished classes are defined. As will be seen in
Subsection 4.7, internal classes can also provide hints to
the ISL compiler, so that the VDP can avoid redundant
work.

An extended BNF grammar for the top level of ISL
is given in Figure 5, and the ISL specification for the
Student/Employee example is shown in Figure 2 in
Section 3. The ISL is based on the ODL and OQL of
the ODMG [Cat93] standard.

We now consider the four parts of an ISL specification
in slightly more detail.

(1) Source DB subschemas: These describe relevant
subschemas of the source databases using the Object

Definition Language (ODL) of the ODMG standard
[Cat93]. <ODL-Class-Def> denotes a class definition
in ODL syntax. A key may optionally be specified for
each class.

(2) Correspondence specifications: These describe
match criteria between objects of families of corre-
sponding classes. A correspondence specification for
a given family of classes has three parts:

Match classes: This lists the classes that are matched
in this specification, and indicates the ranges of
variables used in the match predicates.

Match predicates: A binary matching predicate spec-
ifies correspondences between objects from two
classes. We use <OQL-Condition> (this is denoted
<query> in p. 79 of [Cat93]) to specify such predi-
cates. The predicates can be based on, among other
things, boolean relations or user-defined functions
(that may in turn refer to “look-up tables” or intri-
cate heuristics). In the case of n-ary matching, the
full correspondence is expressed using a set of bi-
nary match predicates. Although not shown here,
we are developing extensions to incorporate histor-
ical conditions and heuristics expressed as rules.

Match object files (optional): specifies the path(s)
of the object file(s) containing the implementation
of user-defined comparison function(s).

(3) Distinguished classes: This part of the ISL de-
fines the export classes and internal classes. Distin-
guished classes are specified by <OQL-View-Def>,
which extends OQL to have view definition capabili-
ties. The definition of a distinguished class may refer
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both to source database classes and to distinguished
classes that are already defined.

(4) Conditions: Finally, rules are included for moni-
toring conditions. The conditions are specified by
<OQL-Condition>, these may refer to source classes,
distinguished classes, and or user-defined functions.

4.3 View decomposition plans (VDPs)

The skeleton of a Squirrel-generated integration mediator
is provided by its View Decomposition Plan (VDP).
A VDP specifies the classes (both distinguished and
other) that the integration mediator will maintain, and
provides the basic structure for supporting incremental
maintenance. As noted in the Introduction, VDPs
are analogous to query execution plans as used in
query optimization [Ull82]. This subsection presents a
definition of VDP and gives several examples.

As will be defined formally below, the VDP of an
integration mediator is a directed acyclic graph (dag)
that represents a decomposition of the integrated view
supported by that integration mediator. The leaf nodes
correspond to classes in the source databases, and the
other nodes correspond to derived classes which are
materialized and maintained by the integration mediator.
Some non-leaf nodes, including all maximal nodes of
the VDP, correspond to the distinguished (i.e., export
and internal) classes in the ISL specification for the
integration mediator. An edge from node u to node v in
a VDP indicates that the class of v is used directly in the
derivation of the class of u. In general, the propagation
of incremental updates will proceed along the edges,
from the leaves to the top of a VDP. Analogous to
query execution plans, different VDPs for the same ISL
specification may be appropriate under different query
and update characteristics of the application.

The language currently supported by Squirrel for
specifying integrated views includes rich object matching
criteria and a subset of ODMG’s OQL that corresponds
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to the relational algebraic operators selection, projection,
join, union, and set difference, where both imported
and exported classes may be sets or bags. In the
discussion here we focus on the case where the imported
and exported classes are sets; the extension to bags is
straightforward. Importantly, even in the case where
imported and exported classes are restricted to be sets,
some of the classes stored inside an integration mediator
may be bags; this occurs if the integrated view involves
projection or union. The framework developed here can
be used with both the object-oriented and relational data
models. For the sake of conciseness, we describe the
framework by using the relational algebra syntax, which
can be mapped to the OQL syntax.

Formally, a VDP is a labeled dag V = (V| E, class,
Source, def, Dist) such that:

1. The function class maps each node v € V into a
specification of a distinct class, which includes the
name of the class and its attributes. We often refer
to a node v by using the name of class(v).

Source 18 a possibly empty subset of V that contains
some or all of the leaves of the dag. Nodes in Source
correspond to classes in the source databases, and
are depicted using the O symbol. Other nodes are
depicted using a circle. In a “complete” VDP each
leaf is a source database class; VDPs whose leaves are
not source database classes are used in Subsections
4.6 and 4.7 to describe the construction of “complete”
VDPs.

An edge (a,b) € E indicates that class(a) is directly
derived from class(b) (and possibly other classes).

For each non-leaf v € V, def(v) is an expression in
the view definition language that refers to {class(u) |
(v,u) € E}. Intuitively speaking, def(v) defines
the population of class(v) in terms of the classes
corresponding to the immediate descendants of wv.



=T 2O R D g 21 S
st =13 GhR7)

@ =T 12,30¢ v hR @ =T 20gS

/

@ =Ty OR
I

=Ty (R > =1 8
NsZ:rS R 2)

= ﬂsl’szc S @ = anGhR

O

(M)

W

(1)

Figure 7: Two alternative VDPs of a view T' = @, ,,(0; R X =5, 045 Wy,=p, 0 R)

The expressions used to define a class in terms of
other classes are restricted. Specifically, a non-leaf
class can be defined to be either (a) a projection
and/or selection of another class (this includes the
degenerate case where a source class is replicated as
a non-leaf node); (b) a (projection and/or selection
of a) join of (projections and/or selections of) two or
more non-source classes; (c) a union of (projections
and/or selections of) two or more non-source classes;
(d) a difference of (projections and/or selections of)
two non-source classes; or (e) a match class based
on two or more source classes. (Analogous to query
execution plans, it is sometimes useful to combine
several operators into a single node of a VDP; see
Example 4.2. However, some restrictions apply to
ensure that incremental update propagation can be
performed in a systematic manner.) Non-leaf nodes
of the first three kinds are called bag nodes, and of
the latter two kinds are called set nodes. This is
because the classes associated with the first three
kinds of nodes will be stored as bags, while the classes
associated with the other two kinds of nodes will be
stored as sets.

. Dist C V denotes the set of distinguished classes.
These correspond to the internal and export classes
specified in the ISL. Each maximal node (i.e., node
with no in-edges) is in Dist; other non-source nodes
may also be in Dist. Elements of Dist are depicted
using a double circle.

Example 4.1: Let R(rqy,rs, 73, 74) and S(s1,s2,83) be
two classes from distinct databases. Suppose that the
integrated view for an integration mediator has the single
class T = 7y, 5,(0r,=100R Mp,=s, 05,¢505). A VDP
for T is shown in Figure 6. The dotted line separates
the mediator classes from the source database classes.
There are three non-leaf classes in the VDP, namely T,
R', and S’. The attributes of the classes are shown
to the upper left of the non-leaf nodes. R’ and §’

11

serve as auxiliary data, so that 7" can be maintained
using incremental updates from the source databases
and information local to the mediator. (This contrasts
with the approach of [ZGHW95], where only 7" would
be materialized. Under that approach, T' is maintained
using incremental updates from the source databases and
polling of the source databases.) Each of T, R’ and 5’
are bag nodes. O

The above example gives a VDP for a very simple
integrated view. In the next example, we show that
more than one VDP might be used to represent the same
integrated view. '

Example 4.2: Based on classes R and S of Example
4.1, an export class is defined as: T' = m,, ,, (07 R M, =,
048 Mg =, 01 R). Figure 7 gives two alternative VDPs,
Vi and Vs, of the view T'. For the sake of conciseness,
we omit the attribute sets of the VDPs in the figure.
The three-way join 1" involves two occurrences of R.
V1 uses one projection/selection of R to support both
of these occurrences, whereas Vs uses two separate
projection/selections of R. The join in V, can use R}
and R, directly, while the join in Vi must use selections
of R'. It is typical that when nodes (such as R) are
shared in a VDP, then projection and/or selection may
need to be applied to them as part of a node based on
join, union, or difference.

The combination of R} and Rf, will generally take less
space than R'. For example, if an object (a1,as,as)
satisfies only the selection condition f, the whole object
is in the class R’, but only the projection (ay,a2) would
be in R}. On the other hand, incremental maintenance of
R' may be more efficient than that of R} and R, because
an update to the class R needs to be processed only once
in the former case. Each of the non-leaf nodes in both
VDPs here are bag nodes. O

In the previous examples, the integrated view involves
only one export class. In the next example we give a
complex VDP involving several distinguished nodes.
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Example 4.3:  Among other export classes of some
integration mediator, let class T' be defined as T
(mo(Ry matchy Ry) — mo(R3)) — mo(Rs X Rs). Here
M = (Ry matchy Ry) is a match class based on match-
ing predicate v (as illustrated in the Student/Employee
example in Section 3), which contains object correspon-

dence information for objects in classes Ry and Ry. To

simplify the exposition, selection and join conditions and
projection attributes are omitted in the view definition.
A VDP supporting this class is shown in Figure 8. The
VDP includes three distinguished classes, W, Rj, and
M, in addition to 1. The grey edges coming from W
indicates that W also relies on other classes not shown
in the figure. In this VDP, M, @, and T are set nodes,
and P, R%, Rl, Rf and S are bag nodes. O

4.4 An execution model for integration
mediators

Together this and the next subsections present the
execution model used by integration mediators generated
by the current Squirrel prototype. The execution model
is called the “bottom-up VDP-based execution model”
(BV execution model). This is just one of several possible
and reasonably efficient execution models; a topic of
continuing research is the comparison of alternative
execution models. This subsection focuses on how the
execution model supports the traditional query operators
(selection, projection, join, union, difference), and the
following subsection describes how support for object
matching is incorporated.

As noted in Section 2, the approach to maintaining
integrated views presented here (based on the execution
model, VDPs, and rulebases) provides a systematic
and comprehensive implementation of an algorithm that
follows the spirit of and generalizes the algorithms of
[BLT86, GMS93, GL95] for maintaining materialized
views over a single database, using the active paradigm

as in [CW91, Cha94].
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As with all active databases, the BV execution model
permits a separation of the logic of an integration
mediator from the control. As with other active
databases, the control aspect of the integration mediator
is performed by the execution model. Unlike most other
active databases, the logic of an integration mediator is
found in two components: the rulebase and the VDP. In
essence, the execution model uses the VDP to guide the
order of rule application. Furthermore, the rulebase is
closely related to the VDP. In general, each rule specifies
how updates are propagated along a specific edge of the
VDP. (The support for match classes is slightly more
intricate.) In the execution model, rules are fired in
a set-at-a-time forward-chaining manner, in a deferred
mode reminiscent of some aspects of the AP5 [Coh86]
and Starburst Rule System [CW90] execution models.

The BV execution model ensures that incremental
updates of source data are correctly reflected in the
integrated view. The model offers some freedom with
regards to the specific order in which rules are fired,
thereby offering opportunities for optimization at that
level. The BV execution model is currently implemented
using Heraclitus[Alg,C].

We now describe several aspects of the BV execution
model in some detail, and then present its specification.
The execution model uses several notions from the
Heraclitus paradigm, including deltas and the smash and
when operators (see Subsection 2.5).

A VDP-rulebase is a pair (V,edge_rule), where

(a) V= (V, E,class, Source, def, Dist) is a VDP; and

(b) edge_rule is a function that maps each edge in E to a
rule (or a set of rules, in case the edge is from a leaf
node into a match-class node).

A description of the rules, and how they are generated,
is given in Subsection 4.6. The following description of



the BV execution model provides important context for
understanding those rules.

Speaking at an abstract level, incremental updates
will arrive in the queue of the integration mediator in
a serial but asynchronous manner. We assume that each
incremental update arriving to the queue is in the form
of a delta against one or more of the classes in a single
source database. (A simple optimization would be to
let the source databases filter the updates, so that they
correspond to deltas against the lowest non-leaf nodes of
the VDP.)

Each invocation of the execution model will form a
separate transaction. Let the sequence of starting times
of these transactions be ti,¢5,... . These are called
execution invocation times. We require for each ¢ that
t;+1 is a point in time that is after the completion of the
transaction for time ¢;. By the phrase “the state of the
source databases al time ¢;” we mean the state of the
source databases as reflected by the updates they have
reported to the integration mediator up to time ;.

Suppose that an integration mediator with VDP V
has been deployed. Two repositories are associated with
each non-leaf node v of V. Suppose that class(v) =
R.  The first repository is denoted simply as ‘R’,
and holds the “current” population of class R. The
second repository is denoted by ‘AR’, and holds the
smash of incremental changes for R that result from
the incremental propagation of updates during a single
execution of the execution model. Recall that classes
of bag nodes (i.e., those defined using selection and/or
projection and/or join, or union) will hold bags, and set
nodes (i.e., those defined using difference or matching)
will hold sets.

Before continuing, it is convenient to extend the
function edge_rule in the definition of VDP to apply to
nodes as follows:

edge_rule(v) = {edge_rule(v',v) | (v',v) € E}

Intuitively, edge_rule(v) holds all rules of in-edges to v,
i.e., all rules that propagate updates out of v to its
parents.

Let v be a node with class(v) = R. By the phrase
“process node v” we mean to fire all eligible rules in
edge_rule(v) (in any order) and then to execute the
following steps:

R apply(R, AR);
AR = §;

In the BV execution model a node v will not be processed
until all of its children have been processed. As a result,
all incremental changes to a node v are accumulated
before any of these changes are propagated to parents
of v,

The execution model enforces several properties that
make it easy to reason about the net effect of applications
of the rulebase. These are now described. At an
execution invocation time ¢;, each of the AR repositories
is empty, and for each class R, the repository R holds
the relevant parts of the population of R, according to
the equation defining R and the contents of the source
databases at time t;_1. The first step of the invocation
of the execution model at time t; involves emptying the
input queue and propagating the impact of the queue
to the lowest non-leaf nodes of V. In fact, this step
populates the A repositories of these nodes, to accurately
hold the deltas for these classes that are implied by the
queue contents between times t;_; and t;. In subsequent
steps of rule firing, the following properties will hold:

(A) If a non-leaf node v with class(v) = R has been
processed, then

(i) the corresponding repository R will hold the pop-
ulation for R that reflects the state of the source
databases at time ¢;, and

(ii) the associated repository AR is empty.

(B) If a non-leaf node v with class(v) = R has not been
processed, then

(i) the corresponding repository R will hold the pop-
ulation for R that reflects the state of the source
databases at time ¢;_1.

(ii) the associated repository AR may hold information
corresponding to some or all of the incremental
updates implied for class R by the incremental
updates to the source databases reported between
times t;_1 and t;.

We now present the BV execution model for VDPs
that do not have match classes. Suppose that an integra-
tion mediator has been deployed with VDP-rulebase R =
(V, edge_rule), where V = (V, E, class, Source, def, Dist).
We assume that the queue holding incremental updates
from the source databases is nonempty. The execution
model proceeds as follows:

(1) Initialization: Let A hold the smash of all incremental
updates held in the queue at a given time t. A
can be broken into a set ARy, ..., ARy of subdeltas
that refer to some set Ry,..., R of source database
classes that are associated with leaf nodes vy, ..., vy
(respectively) of V.

During this phase, two things occur:

(1a) All eligible rules in U{edge_rule(v;) | i € [1, k]} are
fired, in any order.
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(Ib) All entries in the queue that contributed to A are
deleted. (It may be that during the execution of
step (1a) additional deltas were added to the queue.
These will remain in the queue until the next cycle
of rule firing is initiated.)

(2) “Upward” traversal of (V, E): During this phase each
non-leaf node is processed in an order that satisfies
the following restriction:

A node v cannot be processed until all of its
children have been processed.

It is straightforward to verify that when using rules
generated by the templates of Subsection 4.6, executions
of BV execution model satisfy the properties listed above.

4.5 Providing support for n-ary matches

The Student/Employee example of Section 3 gave an
overview about how binary match classes are supported
in integration mediators. This subsection presents the
general framework used to support n-ary match classes,
and describes how the BV execution model is generalized
to accommodate this.

Suppose now that classes Ay,..., A, from various
source databases represent the same or overlapping
sets of objects-in-the-world. An integration mediator
can support matching of objects from these classes by
maintaining a match class mateh_A;_... A,. Each of
the source classes will contribute three kinds of attributes
to the match class (these sets may overlap):

tdentification attributes: These are used to identify ob-
jects from source databases. These might be print-
able attributes known to be keys, or might be im-
mutable OIDs from the source databases (see Sub-
section 2.6). Although OIDs are not technically at-
tributes, we view them as such here.

match attributes: These are the (possibly derived) at-
tributes referred to in the match predicates.

data attributes: These are attributes that are used in
distinguished classes or by other intermediate classes
in the VDP.

Speaking loosely, the class match A;-..._A, will hold
an “outer join” of the underlying source classes, where
each object in match_ A;_..._A, represents a single
object-in-the-world. Each element of match_Ai_..._ A,
is called a surrogate object. A given surrogate object
might represent objects from essentially any subset of
the associated source database classes.

The interface of the match class match.Stud.Emp for
the Student/Employee example of Section 3 is shown in
Figure 9. The left column of 5 attributes of this class
come from the Student class; the other 4 attributes
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in the right column come from the Employee class.
The 1dentification attributes are studID and SSN, which
are printable keys; the match attributes are studName,
local_address, perm_address, empName, and address;
and the data attributes are studName, major, and
divName.

The use of a match class such as match_A_..._A,
is just one possible way of using materialization to
support intricate object matching. Indeed, if there are
relatively few matches, then it is possible that the class
match_Ai-..._A, will waste a great deal of space on
nil values. In the current Squirrel prototype, we allow
the underlying physical implementation to optimize the
internal representation of match classes.

In its current form, when specifying the match criteria
for a family of corresponding classes, the ISL can support
the specification of several binary match predicates.
(More complex match predicates that simultaneously
involve three or more classes may be useful in some
applications, but these are not currently supported).
Suppose that v is the conjunction of all of the binary
match predicates for classes Ay,..., A,. For objects a;
in A; and a; in A;, we write a; Ni?"’ 7 a; if a; and q;
satisfy the match predicate of v specified for the pair
Ai, Ay

There may be complex interaction between the match
predicates in a specification 7. Let ~, be the reflexive,
symmetric, and transitive closure of U{~$i’Aj} a match
predicate is specified for A;, A;}. In the integration
mediators generated by the current Squirrel prototype,
if a conflict is found then a warning is generated and a
human must resolve the problem. (One kind of conflict
arises if for a from A; and b from A; we have a ~, b by

transitivity but a f/»f"’Aj b. Another kind is if we have
a ~ band a’ ~, b where g # o' are from the same scurce
class.) We also permit the integration administrator to
add further rules to the rulebase so that heuristics for

resolving such conflicts can be invoked automatically.

The BV execution model presented in Subsection 4.4
above must be modified to accommodate match classes.
Speaking intuitively, there are two reasons for this. The
first stems from the fact that a match class can have
more than one child from the source databases. (No
other kind of node in VDPs has this property.) This
complicates the initialization step of the execution model,
because the incremental updates of all children of a
match node must be brought up tc the match node.
These incremental updates should not be applied to the
match class, because one of the guiding philosophies of
the BV execution model is that incremental updates to
a class are applied only when that class is “processed”.
However, when bringing incremental updates from one
source class into the match class we need to refer to the



interface match_Stud_Emp {

string studName;
integer[7] studID;

string major;

string local_address;
string perm_address;

string empName;

integer[9] SSN;

string divName;

string address;
};

Figure 9: The class interface of match Stud Emp, used by S_E Mediator

effect of incremental updates already brought from other
source classes. As aresult, we use the Heraclitus operator
when to obtain efficient hypothetical access to a match
class and the incremental updates already propagated to
it. The second reason that the BV execution model needs
to be modified stems from the possibility of complex
interaction between the possibly many binary match
predicates that contribute to the definition of an n-ary
match. Speaking intuitively, rules corresponding to these
binary match predicates must be fired repeatedly until a
fixpoint is obtained.

More formally, if match classes are present, then
the notion of V DP-rulebase is modified to be a triple
(V, edge_ruie, match.rule) where V and edge_rule are as
before, and match_rule is a mapping from each match
node to a set of rules. The BV execution model is
modified to have the following initialization step:

(17) Inmitialization’ Let A correspond to the smash of all
incremental updates held in the queue at a given
time ¢{. As before, A holds a family ARy, ..., AR
of subdeltas, where Ry,..., R are classes associated
with leaf nodes vy, ..., vy (respectively) of V.

During this phase, three things occur:

(I’a) All eligible rules in U{edge_rule(v;) | i € [1,k]}
that do not involve edges from match classes are
fired, in any order.

(I’b) For each match class M = match.A;-... A, non-
deterministically choose a permutation iy, ..., 1, of
1,...,n. Recall that at this point AM is empty.

(1'bl) For each j from 1 to n do the following: Hypo-
thetically  apply rules in edge_rule(
match Ai_..._Ap, A;;) against M when Ays
to obtain AM;. (That is, compute the net
effect AM; on M when Ay that applying
the rules of edge_rule(match A;_... A, A;;)
on AA;; would have.) Then replace AM by
AM smash AM;.

Hypothetically apply rules in match_rule(
match_Aj-..._A,) to M when AM and update
AM accordingly, until a fixpoint is reached.

(1'b2)

(1’¢) All entries in the queue that contributed to A are
deleted.
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It is straightforward to verify that when using rules
generated by the templates of Subsection 4.6, executions
of this modified BV execution model satisfy the proper-
ties listed in Subsection 4.4.

4.6 Default VDP and rule templates

VDPs provide very flexible representations of the skele-
tons of update processing strategies in the mediator,
which can be tailored to optimize the support of inte-
grated views. The current Squirrel prototype constructs
a reasonably efficient default VDP for a given integrated
view. However, the user who created the ISL specifica-
tion can explicitly modify the default VDP, so that the
final integration mediator will be generated according to
the revised VDP. (For example, the VDPs of Figures 6,
7(b) and 8 are default VDPs, and the VDP of 7(a) is
not.)

In this and the next subsection we give a brief overview
of the construction of default VDPs for supporting
arbitrary ISL specifications. This subsection focuses on
constructing “simple VDPs”, that support individual
class definitions of an ISL specification. The next
subsection shows how simple VDPs can be combined to
form VDPs that support arbitrary integrated views. As
mentioned at the beginning of Subsection 4.3, in this
discussion we focus exclusively on constructing VDPs
whose imported and exported classes are sets.

A simple VDP is a VDP that (i) has a single
root, that is distinguished; (ii) has only source classes
or distinguished nodes as leaves; and (iii) has no
distinguished non-leaf, non-root nodes. Intuitively, a
simple VDP can be constructed for each distinguished
class defined in an ISL specification. Indeed, in this
subsection we describe how we build default simple
VDPs for each distinguished class in an ISL specification.
Although simple VDPs might have distinguished nodes
as leaves, these will be replaced through “Macro-
expansion” (see the next subsection) when forming the
complete VDP for an ISL specification.

Every edge (a,b) in a VDP is associated with an
update propagation rule which computes an incremental
update (Aclass(a)) to the class class(a) based on an
update Aclass(b). (More than one rule is generated for
each edge from a match class, and additional rules are



associated with the match classes.) A family of rule
templates is used to generate the update propagation
rules. Translation of the templates into actual rules uses
information about the source database classes, the classes
of the integration mediator, and possibly user-defined
functions.

We now describe an algorithm for building a simple
VDP for an individual class definition in an ISL specifi-
cation. The algorithm uses an induction on the structure
of the expression. We define a subexpression to be spe-
cial if 1t is a source class, a distinguished class, or if its
root operator is union, difference, or match.

There are two base cases in this construction, when
the subexpression is simply a source class or simply a
distinguished class. In both cases, the VDP for the
subexpression has one node, labeled by that class.

There are five inductive cases in the construction; we
now consider these in turn. Importantly, the deltas
created by the rules presented below do not include any
redundant inserts or deletes.

(1) Union: Suppose that the subexpression is T =
RiU...UR,. Let V; be the VDP for R; (i € [1..n]).
The VDP for T is constructed as the union of Vy,...,V,,
along with an additional node labeled by T', and edges
(T, R;) (i € [1.n]).

The rule template for the edge (T, R;) is now given.
Because T is a bag node, the deltas here are interpreted
in the bag semantics.

rule template for union: edge (7,7;)

ON new AR;
IF true
THEN (AT)* = (AR)*;(AT)” = (AR)™;

(2) Difference: Suppose that the subexpression is T =
Ry — Ry. Let V; be the VDP for R; (¢ = 1,2). The VDP
for 7' is constructed as the union of Vi, Vs, along with
an additional node labeled by 7', and edges (7', R1) and
(7', Ry).

The rule templates for edges (7, Ri) and (7, Ra2)
are now presented. Recall that 7 is a set node. In
these templates, A’R; denotes the net change (as a
set-based delta) between R;, considered as a set, and
apply(R;, AR;), considered as a set. Also, the operands
for — and N are interpreted as sets.

rule templaie for diffl: edge (7', R:)

ON new A'R;
iF true
THEN (AT)* = (A'R))* — Ry;

(AT)™ = (A'R1)™ N Ry;
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rule template for diff2: edge (T, R»)

ON new A’ Ry
HY true
THEN (AT)+ = (AiRg)‘ N Ry;
(AT)™ = (A'Ro2)™ N Ry;
(3) SP: Suppose now that the subexpression is T,

which is non-trivial and does not have union or difference
as root. Suppose further that T = ¢(R), where ¢
is an operator involving one or more selections and
projections, and R is a special node. (The case where
join is involved is considered shortly.) Generalizing
a well-known normalization result (e.g., see [AHV95]),
the expression ¢(R) can be normalized into the form:
T = myo; R, where p is a subset of attributes of the class
R, and f is a selection predicate.

In this case, let Vi be the VDP for R. The VDP for T
is constructed as the union of V; along with an additional
node labeled by 7", and an edge (7', R). (An example of
this case is illustrated in Figure 6 of Example 4.1, which
consists of nodes R and R'.)

The rule template for the edge (T, R) is now presented
(using the bag semantics).

rule template for SP: edge (T, R)

ON new AR
IF true
THEN (AT)" = mpop(AR)T,

(AT)” =mpof(AR)™;

(4) SPJ: Suppose now that the subexpression is 7',
which is non-trivial and does not have union or difference
as root. Suppose further that T = ¢(Ry,..., R,) where
€ is an operator involving at least one join, along with
zero or more selections and projections, and each R;
is a special node. Again generalizing a well-known
normalization result, the expression ¢(R1, ..., R,) can be
normalized into the form: T = myop(Ry My, ... M, |
R,), where p is a subset of attributes of the join, f
is a selection predicate, each of gi,...,9,-1 I8 a join
condition, and the R;’s are not necessarily distinct.

In order to construct a default VDP for 7' we introduce
n pre-classes, one each for Ry,..., R,. Intuitively, the
pre-class R} for R; will be a selection and projection
of R;, that includes all attributes needed for 7', and
includes only those tuples of R; that will impact the
join. More precisely, when constructing the pre-class R;
for R; we incorporate the set p; of all attributes of R;
that are referred to in the join conditions ¢1,...,gn-1,
the selection condition f, or the projection list p. Also
for each 7 we let f; be a selection condition implied by f
relevant to R;. (We do not insist that f; captures all of
the restrictions that f makes on R;;if f is complex, that
might be inconvenient to compute.) The i-th pre-class is



now defined as: R} = m,, 0y, R;. Finally, since some of the
arguments to the join may be projections of the original
arguments, we may need to modify the join conditions
gi,...,gn—1 into corresponding conditions ¢{,..., ¢/ _4.
(The VDP V, in Figure 7(b) in Example 4.2 illustrates
this construction.)

The VDP for T is now constructed from the VDPs
for the R}’s (constructed as in the previous case), along
with the node T and edges (T, R}) for ¢ € [1..n]. The rule
template for the edge (T, R}) is (using the bag semantics):

rule template for SPJ: edge (T, R))

ON new AR;
IF true
THEN

(AT)* = 7rp"’f(f’l v

) N9:—1 (AR;) (X]gi cen NQ;-l R;l),
(AT)™ = mpos (R} Mgr . My (AR}~ X,
Mg R

(6) Match: A default VDP for an n-ary match
involving source classes Ay, ..., A, consists of a node for
match Ai...._A, with an edge from match_A;...._A,
to each of the A;’s. (Figure 8 illustrates a binary
matching.)

We present here the rule templates for supporting a
match node that concern creation of objects for a source
class A;. The two rule templates presented here would be
used to generate the rules R1 and R2 informally described
in Section 3. The modification updates indicated in the
second rule action is shorthand for a deletion followed
by an insertion. Although the rules generated from
the templates described here refer to individual objects,
the execution model apply the rules in a set-at-a-time
fashion.

rule template for match_edge insertion:

edge (match_Ai_..._An, A;)

ON new AA;
IF (insert A;(z :a1,...,a,)) in AA;
THEN [insert match-Ai-..._Ap(new : ...,
nil,z.my, ..., z.mj,nil,. . )];
where my,...,m; are attributes contributed to
match_Ai-..._A, by A;.
Description: if a new object z of class A; is in-

serted, insert a corresponding new object into class
match_Ai_..._A,, with nil for non-A; attributes.

rule template for match node insertion:
node (match-Ay-..._Ay)

ON insert match_Ar_..._Ap(z . ..., nil,z.my,
o eemy il L)
IF exists a unique y in match_A{_..._A,
such that match(z,y)
THEN [delete match_A; ... A, (z);
modify match_A;_... A,
(y :existing attr. of y,x.mq, ..., z.m;,...)};
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Description: when a new match_Ai-..._A, object z
is inserted, if an object y of class match A;_... A,
matches z, delete x and modify y by setting the values
of attributes my,...,m; to x.my,. .., 2.m;.

Analogous rule templates for deletions of source ob-
jects are also included. The match_edge deletion rule
template is a bit more complex than for insertion.
Recall that a surrogate object in match A, ... A,
may correspond to one or more source objects. If a
source object a; with surrogate object z is deleted,
then the match_edge deletion rule will delete z from
match_Ay_...__A,, and then insert new surrogate ob-
jects into match_A;-...__A,, one corresponding to each
of the source objects (other than a;) that & corresponded
to. (Note that the match node insertion rules may now
recombine some of these newly inserted surrogate ob-
jects.) In this manner, information inferred from the
presence of a; will not be retained in matech_A;_... __A,
after a; has been deleted from the source database.

4.7 Support for VDPs of multiple export
classes and VDP evolution

The previous subsection introduced default VDPs for
the definitions of individual distinguished classes in an
ISL specification. This subsection discusses the issue of
constructing VDPs for a full ISL specification, i.e., for
multiple distinguished classes. Our approach is to first
create a VDP for each distinguished class individually,
and then combine these into single VDP. We also briefly
discuss the related issue of supporting the evolution of
VDPs in response to changes of the definition to the
integrated view.

Merging two VDPs means identifying and merging
pairs of sharable nodes between the VDPs. The problem
of merging VDPs is closely related to the problem
of detecting common subexpressions in queries. For
the general case, it is known that the equivalence of
two subexpressions involving negation is undecidable
[AHV95]. If the expressions involve only selection,
projection, and equi-join, the problem is decidable but
still NP-complete [LMS95].

For the present, we only merge VDP nodes that are
based on a single class, i.e., leaf nodes, distinguished
nodes, and nodes that correspond to the selection and/or
projection of leaf or distinguished nodes. This follows
the spirit of [Jar85], which uses essentially the same
technique for finding common subexpressions of multiple
relational queries.  We now give our algorithm for
merging a pair V1 and Vs of VDPs in more detail; this is
used repeatedly to merge multiple VDPs:

(1) “Macro-expansion” of distinguished nodes: If V;
has a distinguished node n as leaf and Vo has a
distinguished node n’ asroot where n and n' represent
the same class, then merge n and n'.



(2) Merging source nodes or distinguished nodes: If n is
a source (distinguished) node in V; and there exists a
source (distinguished) node n’ in Vs, that corresponds
to the same class as n, drop n (drop n and all nodes
below n that are not used in the definition of other
nodes of V; that are incomparable to n) and change
all the in-edges of n to in-edges of n’

Merging selection/projection nodes: If n is a se-
lection/projection node n in Vi, and if there ex-
ists a selection/projection n' is a selection/projection
node in V, that shares the same single child (source
or distinguished node) as n, then replace n and n’
with a new node new. Let class(n) = m,o;R and
class(n') = mprop R. The class corresponding to new
is: class(new) = mpupropyp R, All edges to/from n
and n' are changed to new. The definitions for af-
fected nodes may need to be modified accordingly.

Finally, we briefly discuss the impact of changes to
the distinguished nodes and/or conditions of an ISL
specification on the corresponding VDP. There are two
ways to deal with such changes. The straightforward
way 1s to regenerate a Squirrel integration mediator
and repopulate its local store based on the new ISL-
specification. However, if the changes are limited, it
might be more efficient to “adapt” the integrated view
n the local store of the mediator. This would allow the
use of existing data in the old VDP as much as possible,
and reduce the amount of polling of the source databases.
The first step of this approach is to find correspondences
between nodes in the old and new VDPs. Again, we
only consider correspondences between the types of nodes
that were considered in VDP merging. If there is a
correspondence between a node n in the old VDP and
a node n' in the new VDP, the data of class(n’} can
be derived (perhaps partially) from the data of class(n)
using techniques developed in [GMR95], that “adapt” a
view in response to changes to the view definition. Those
techniques primarily use existing data in the materialized
view with minimal access to the source classes.

5 A Taxonomy of the Solution Space for
Data Integration

In its current form, the Squirrel system can be used to
generate a rather narrow class of mediators, that assume
the underlying data is stored in a relational or restricted
object-oriented form, that are based exclusively on the
materialized approach, etc. In this section we provide
a survey of additional possibilities for supporting read-
only integrated views, that covers both different aspects
of the underlying application environment, and different
approaches to supporting the view. While the survey
does include the virtual as well as the materialized
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approach, more emphasis is placed on the materialized
approach. The survey is presented in the form of a
taxonomy, which is summarized in Table 1 at the end
of this section.

Our taxonomy is based on seven spectra. The
first four spectra are relevant to all solutions for data
integration; these are (1) Data model heterogeneity, (2)
Expressiveness of the integration language, (3) Object
matching criteria, and (4) Materialized vs. virtual.
The other three spectra are relevant to solutions that
involve materialization; these are (5) Activeness of
the source databases, (6) Maintenance strategies, and
(7) Maintenance timing. We feel that these spectra
cover the most important design choices that must be
addressed when solving a data integration problem. In
the discussion below we have identified within each
spectra what we believe to be the most important points,
relative to the kinds of data integration problems and
environments that arise in practice. While the spectra
are not completely orthogonal, each is focused on a
distinct aspect of the problem.

A primary motivation for developing the taxonomy is
to aid in the development of modular implementations
for a broad array of mediators that support integrated
views. As just one example, the taxonomy suggests
that the implementation strategy used for incremental
update can be largely independent from the cheoice and
implementation of maintenance timing. Such modularity
facilitates the reusability and maintainability of different
components of mediators.  We expect to use the
taxonomy when choosing future extensions of Squirrel.

We now describe each of the seven spectra in turn.

5.1 Data model heterogeneity

This spectrum concerns the kind of data model that
is used by the underlying data sources. The primary
possibilities include files, legacy and ad hoc models, the
relational model, and object-oriented database models.
Constructs for modeling temporal, geographic, manufac-
turing and other specialized kinds of information also
arise. To construct an integrated view across different
data models, some data restructuring will be necessary.
This may also be necessary if one or more of the underly-
ing models 1s different from the data model used by the
integration mediator. The different data models will gen-
erally entail different access languages; integration across
multiple models will thus require language translation or
wrapping.

The current Squirrel prototype assumes that both the
source databases and view for export are represented
in the relational or (ODMG) object-oriented database
model.



5.2 Expressiveness

This spectrum concerns the expressive power of the
language(s) used to specify integrated views. One
aspect of this spectrum concerns the expressive power
in terms of conventional query languages. In terms
of the relational data model, some possibilities here
include the relatively simple conjunctive queries (in
other words, algebra expressions built up from selection,
projection and join); these extended using negation (i.e.,
the relational algebra), or with aggregation, or with both;
and the inclusion of recursion [AHV95]. A somewhat
orthogonal aspect concerns whether intricate object
matching criteria are supported. Another orthogonal
aspect is whether explicit constructs are provided in
the language for temporal, geographical, and other
specialized kinds of information.

A related aspect of the expressiveness spectrum con-
cerns whether the integrated view can monitor condi-
tions across multiple information sources, and if so, how
expressive the language for specifying the conditions is.

Squirrel-generated mediators can support integrated
views and monitor conditions expressed using a subset
of ODMG’s OQL that has roughly the expressive power
of the relational algebra, extended with object matching
capabilities.

5.3 Object Matching Criteria

In some cases the problem of identifying corresponding
pairs of objects from different databases can be straight-
forward; in other cases this can be quite intricate or even
impossible. We mention some key points from the spec-
trum, combinations and variations of these can also arise:

Key-based matchingis the most straightforward one; it
relies on the equality of keys of two objects to match
them. WorldBase [WHW90] and SIMS [ACHK93] are
two examples using this approach. A generalization of
this is to permit keys that involve derived attributes,
as in [DH84].

Lookup-table-based matching uses a lookup-table that
holds pairs of immutable OIDs or keys of correspond-
ing objects. References [WHWO90] and [KAAK93]
support look-up tables.

Comparison-based matching provides in addition the
possibility of comparing (possibly derived) attributes
of two objects, either with arithmetic and logic
comparisons or user-defined functions that take the
attributes as arguments and return a boolean value,
such as the function close_names() in the rule R2 of
the Student/Employee example.

Historical-based matching can be used to supplement
other matching methods. For instance, an application
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can specify that two already matching objects stay
matched, even if they cease to satisfy the other
matching conditions.

The current Squirrel prototype supports all of the
kinds of matching criteria mentioned above.

As an aside, we note that in the Student/Employee
example, the Student class and the Employee class
refer to the same kinds of objects in the world, namely,
people. In the terminology of [Cha94, CH95], two entity
classes from different databases that refer to the same
or overlapping domains of underlying objects are called
congruent classes. In some cases objects from non-
congruent classes may be closely related. For example,
one database might hold an entity class for individual
flights of an airline, while another database might hold
an entity class for “routes” or “edges” (connecting
one city to another) for which service is available.
The current Squirrel prototype focuses exclusively on
matching objects from congruent entity classes.

5.4 Materialized vs. virtual

This spectrum concerns the approach taken by an
integration mediator for physically storing the data held
in its integrated view. The choices include

fully materialized approach, as presented in the cur-
rent paper, which materializes in the persistent store
of the mediator all information relevant to the inte-
grated view and maintenance of it;

hybrid approach that materializes only part of the
relevant information; and

fully virtual approach, as presented in references [DH84,
ACHKY3, FRV95], which uses query pre-processing
and query shipping to answer queries that are made
against the integrated view.

The current Squirrel prototype focuses exclusively on
the fully materialized approach. Reference [ADDT91]
describes a system in which integrated views are primar-
ily virtual, but some match information is materialized.
Reference [ZGHW95] describes a different kind of hy-
brid, in which the integrated view is materialized, but
the source databases must be polled when incorporating
new updates.

5.5 Activeness of Source Databases

This spectrum concerns the active capabilities of source
databases, and is relevant only if some materialization
occurs. This spectrum allows for both new and legacy
databases. The three most important points along this
spectrum represent three levels of activeness.



Spectra

Range ]

Data model heterogeneity

file, legacy and ad hoc models, relational, object-oriented, ...

Expressiveness

integr. view (conj. query, neg., ...), obj. match., temporality,

Matching criteria

key <« lookup-table «+» comparison < historical ...

Materialized vs. virtual

fully materialized «» hybrid « fully virtual

Activeness of source DB

sufficient activ. «» restricted activ. + no activ.

Maintenance strategies

local incr. update — polling-based incr. update < refresh

~1| o o x| eo| o = |

Maintenance timing

trans. commit, net change, network reconnect, periodic, ...

Table 1: Solution space of the data integration problem

Sufficient activeness: A source database has this prop-
erty if it is able to send deltas corresponding to the
net effect of all updates since the previous transmis-
sion, with triggering based either on physical events
or state changes.

Restricted activeness: A source database has this
property if it cannot send deltas, but it has triggering
based on some physical events (e.g., method execu-
tions or transaction commits), and the ability to send
(possibly very simple) messages to the integration me-
diator. One useful case of restricted activeness is pro-
vided by “asynchronous replication servers”. These
systems, that are becoming commercially available

for relational DBMSs [Sta94], permit one database to
hold an exact copy (no selections or projections) of a
relation in another database. Another useful possibil-
ity here is the case that on a physical event the source
database can execute a query and send the results to
the integration mediator. Even if the source database
can send only more limited messages, such as method
calls (with their parameters) that were executed, the
mediator may be still able to interpret this informa-
tion (assuming that encapsulation can be violated).

No activeness: This is the case where a source database
has no triggering capabilities. In this case the me-
diator can periodically poll the source databases and
perform partial or complete refreshes of the replicated
information.

The current Squirrel prototype is focused on the
case of sufficient activeness. It would be relatively
straightforward to extend Squirrel to make use of
asynchronous replication servers within the restricted
activeness case.

5.6 Maintenance Strategies

Maintenance strategies are meaningful only if some
materialization occurs in the mediator. We consider
three alternative maintenance strategies:
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local incremental update approach, as presented in
the Student/Employee example in Section 3, that
stores relevant portions of source data in the medi-
ator so that the incremental maintenance can be per-
formed locally after the source notifies the mediator
of relevant updates,

polling-based incremental update approach, as pre-
sented in [ZGHWO5], that does not store extra data
for the purpose of incremental maintenance, but polls
for data as needed from the sources, and

refresh of the out-of-date classes in the mediator by re-
generating all their objects.

The current Squirrel prototype is focused on local
incremental update.

5.7 Maintenance Timing

Maintenance timing concerns when the maintenance
process is initiated. Many different kinds of events can
be used to trigger the maintenance. Some typical kinds
of events include: (i) a transaction commits in a source
database, (ii) a query is posed against out-of-date objects
in the mediator, (iii) the net change to a source database
exceeds a certain threshold, for instance, 5% of the
source data, (iv) the mediator explicitly requests update
propagation, (v) the computer holding the mediator is
reconnected via a network to the source databases, and
{vi) a fixed period of time has passed.

The current Squirrel prototype is focused on the first
case mentioned above. However, the execution model
used by Squirrel is quite independent of the maintenance
timing, so other points on this spectrum would be
relatively easy to incorporate.

6 Conclusions and Current Status

This paper presents a framework and prototype tool
for generating integration mediators, that use material-
ization to support integrated views over multiple data
sources. The paper makes several contributions towards



database interoperation. To provide context for research
in this area, we (a) present a broad taxonomy that sur-
veys much of the solution space for supporting and main-
taining integrated views. At a more concrete level, we
(b) introduce “integration mediators”; these are a spe-
cial class of active modules that support incremental
maintenance of materialized integrated views in a rel-
atively declarative fashion. Furthermore, (c) we develop
a uniform approach for generating integration mediators
based on the use of “View Decomposition Plans”, and
describe (d) the prototype Squirrel system, which can
generate-integration mediators automatically. In Squir-
rel, (e) integration mediators are specified using a high-
level Integration Specification Language (ISL). Finally,
(f) our framework provides substantial support for intri-
cate object matching criteria.

The research presented here will provide the starting
point for several investigations. One direction is to use
Squirrel in studies comparing the performance of the ma-
terialized and virtual approaches. These will be com-
pared according to a variety of criteria, including query
response time, average times of CPU processing and disk
access, and average network traffic. We are also extend-
ing the framework of View Decomposition Plans to in-
corporate a hybrid of the virtual and materialized ap-
proaches [ZHK95b]. In terms of the data models sup-
ported by Squirrel, we hope to extend the framework
to support more complex structures as found in some
object-oriented database models (e.g., nested sets, lists,
etc.). We also plan to incorporate mechanisms for inte-
grating data that involves related but “non-congruent”
classes, in the spirit of [Cha94, CH95].
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