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Abstract 

There is great need to quantify reservoir storage loss due to sediment. Less than 1% of 

reservoirs in the US have more than one volume survey. Due to the lack of frequent data 

collection, a constant rate sediment yield from year to year is often assumed. This study aims to 

explore the following questions: 1) Can hydrologically-forced sediment algorithms help us 

advance reservoir sedimentation estimates to improve future planning? 2) To which processes 

and inputs are reservoir sedimentation estimates most sensitive? 3) What can we learn from 

models that the linear sediment accumulation assumption fails to assess? It will address these 

questions through a Sobol Sensitivity analysis a hydrologically forced sediment algorithm 

ensemble, as well as an evaluation of differences between the hydrologically forced and linear 

sedimentation assumptions. The hydrologic model used are Variable Infiltration Capacity (VIC) 

which is coupled with sediment algorithms including the Modified Universal Soil Loss Equation 

(MUSLE), Hydrological Simulation Program—Fortran (HSPF) and Systeme Hydrologique 

European Sediment Model (SHE-SED) from within the Distributed Hydrology Soil Vegetation 

Model (DHSVM). Sediment accumulation will be modeled for Prineville Reservoir near Bend, 

Oregon.  
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Chapter 1: Introduction & Background 

 

1.1 Overview  

There is great need to quantify reservoir storage loss due to sediment. Typically, the 

difference between reservoir volume surveys is used to project future sediment loss. However, 

less than 1% of reservoirs in the US have more than one reservoir volume survey. Due to the 

lack of frequent data collection, a linearity assumption in the sediment yield is often made for the 

time between surveys, meaning a constant rate sediment yield from year to year. This assumption 

does not account for changing climate or the year-to-year variations in hydrology. This study 

aims to explore the following questions: 1) Can hydrologically-forced sediment algorithms help 

us advance reservoir sedimentation estimates to improve future planning? 2) To which processes 

and inputs are reservoir sedimentation estimates most sensitive? 3) What can we learn from 

models that the linear sediment accumulation assumption fails to assess? It will address these 

questions through a Sobol Sensitivity analysis of a hydrologically forced sediment algorithm 

ensemble, as well as an evaluation of differences between the hydrologically forced and linear 

sedimentation assumptions.  

 The hydrologic model used is the Variable Infiltration Capacity (VIC) model (Liang et 

al., 1994). Stewart et al. (2017) coupled sediment algorithms to VIC including the Modified 

Universal Soil Loss Equation (MUSLE), Hydrological Simulation Program—Fortran (HSPF) 

and Systeme Hydrologique European Sediment Model (SHE-SED) from within the Distributed 

Hydrology Soil Vegetation Model (DHSVM). The sediment ensemble used in this study is for 

suspended sediment load (SSL) only; bed load is not explicitly included in the scope of the 



 

 

 

2 

study. SSL is modeled as two processes: runoff transport and raindrop impact erosion. The 

assumption here is that SSL makes up the majority of sediment that settles in a reservoir. 

 Sediment accumulation will be modeled for Prineville Reservoir near Bend, Oregon. It is 

fed by the 14133 km2 Crooked River watershed. The Crooked River watershed is an arid to 

semi-arid region averaging 12 inches of precipitation per year. Most streamflow is produced by 

snowmelt in the headwaters. There are two available sediment volume surveys in 1960 and 1998. 

The model will span this entire period.  

1.2 Introduction & Motivation 

ASCE 1997 defines the problem of aging dams and reservoirs as one of great relevance 

to the United States. Reservoirs are vital to support growing populations in the US (Podolak and 

Doyle, 2015)The boom of reservoir construction between 1940 and 1970 has sustained the water 

supply of the Western US for decades, providing drinking water, irrigation, flood management 

and hydropower (Morris and Fan, 1998). However, as reservoirs age, populations grow and the 

climate changes, there is increased stress on reservoir infrastructure with major concerns for the 

gradual decrease in storage capacity due to sediment buildup. On a global scale, it is estimated 

that human activity has doubled sedimentation relative to an undisturbed baseline (Milliman and 

Syvitski 1992; Vitousek et al. 1997). For reservoirs worldwide, volume loss due to sediment 

estimates range from 0.1 to 2.5% per year (Jothiprakash and Garg, 2009; Palmieri et al., 2001). 

To put this into context, a worldwide loss of reservoir storage of 1% would be 70km3 or twice 

the volume of Lake Mead (behind Hoover Dam). It is estimated that half of the global reservoir 

capacity will be lost by 2100 (Kondolf et al., 2014). The average dam in the United States is 60 

years old and reservoirs are typically designed to last 50 to 100 years (Morris and Fan, 1998; 

Palmieri et al., 2001). Many major dams and reservoirs in the US are coming to the end of their 

https://www.journals.uchicago.edu/doi/full/10.1086/314346#rf57
https://www.journals.uchicago.edu/doi/full/10.1086/314346#rf79
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design life, motivating a push towards greater understanding of the processes behind reservoir 

sedimentation to inform and improved mitigation efforts (Morris and Fan, 1998; Podolak and 

Doyle, 2015). 

The importance and usage of a reservoir depends on regional climate, population and 

land use, but they are most commonly used for a combination of water supply, flood mitigation, 

hydropower, and recreation (Palmieri et al., 2001). Reservoirs are especially important in the 

Western U.S. because water supply in the dry season relies on stored snowpack/snowmelt 

(Pagano et al., 2004; Pierce et al., 2008). In the future, the increasing frequency of extreme 

events, such as drought and flooding, due to climate change will heighten the need for adequate 

reservoir infrastructure to mitigate potential flooding and drought (Hamlet and Lettenmaier, 

2007). In addition, it is widely accepted that flood events produce the largest amounts of 

sediment which will increase the projected storage volume loss in reservoirs as flooding is 

expected to increase (Easterling et al., 2000). The expected shifts in climate will impact not only 

the storage demand for reservoirs, but also the rate of reservoir sedimentation. Sankey et al., 

(2017) found that throughout the West, most areas will see an increase in sedimentation due to 

climatically-forced increases in wild fires. With the expected changes in hydrology and 

sedimentation, it is important to diagnose and accurately model future reservoir storage loss 

(Randle and Bountry, 2016). 

1.3 Diagnosing Sedimentation 

 Reservoir sedimentation data are time-consuming and costly to collect, and so there 

exists relatively limited data needed to fully diagnose the issue of reservoir storage loss. The US 

Army Core of Engineers (USACE), US Bureau of Reclamation (USBR), US Geological Survey 

(USGS) and local reservoir managers have collaborated to compile a large-scale reservoir 
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volume survey database called RESSED, which has drastically improved the availability of 

reservoir survey data. Most reservoirs have only a few (typically one to three) surveys, often 

decades apart which are inadequate to identify possible changes in sediment accumulation 

patterns.  

Given few available surveys, volume loss due to sediment has been assumed to increase 

linearly (Graf et al., 2010). This linearity assumption implies a constant rate of sediment input to 

a reservoir through time, which we will hereafter refer to as sediment ‘yield linearity’. However, 

even if initial sediment measurements are accurate, changes in hydrologic regime and land cover 

can drastically change sediment accumulation (Podolak and Doyle, 2015) (Wolman, 1967). For 

example, wet years can have up to 27 times greater sediment flux than dry years (Inman and 

Jenkins, 1999). Podolak and Doyle (2015) examined case studies of both under and over 

estimation in the Redmond Reservoir (Kansas City, MO) and the B. Everett Jordan Lake (Chapel 

Hill, NC), respectively. The use of linear sedimentation accumulation has the potential to 

misinform reservoir management strategies and demand capacity due to the incorrect volume 

estimates.    

1.4 Sediment Development and Transport 

Sedimentation begins with erosion. The magnitude and characteristics of the eroded 

material depend on the complex interactions of many factors including topography, geology, 

climate, soil, vegetation, land use and anthropogenic development (Maidment, 1993). Eroded 

soil is then transported via surface runoff into streams (Sohoulande Djebou, 2018). Instream 

sediment can be categorized into bed load or suspended sediment load (SSL).Bed load is solid 

material that is carried by upward pressure from a combination of fluids (water) and solids from 

the stream bed (Julien, 2010). It is primarily composed of large particles such as sands and 
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gravels which require more force than that provided by the flow to become fully suspended 

(Knighton, 2014). SSL is the portion of the sediment load that is suspended nearly continuously 

by turbulent forces in the flow. Throughout this study, we assume that SSL makes up the 

majority of the reservoir sedimentation (Maidment, 1993). Suspended sediment is generally 

composed of fine silts and clays that are brought into suspension by shear forces and turbulent 

flow (Julien, 2010).  

1.5 Sediment Deposition 

Once sediment is transported to a reservoir, it may be deposited to the bottom where it 

replaces potential storage volume. Sediment deposits occurs in two ways, upstream settling and 

in reservoir settling. Upstream settling can create delta deposits that disrupt the local googology 

of a river (Annandale et al., 2016). Reservoir settling eliminates storage capacity of reservoirs 

and is the focus of this work. Not all sediment settles. The fraction (or percentage) of sediment 

that settles relative to the total sediment input to a reservoir is referred to as sediment trap 

efficiency. The trap efficiency is driven by sediment fall velocity, residence time, reservoir shape 

and reservoir operation. The most common estimation method for trap efficiency is the Brune 

equation which uses the reservoir capacity and average annual flow (Brune, 1953).  
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Figure 1.1: Figure from Brune (1953) to estimate sediment trap efficiently based in Capacity 

inflow ratio and reservoir type.  

 

There have also been a number of other empirical equations that have attempted to 

estimate the trap efficiency (see Brown, 1949; Churchill, 1947; Dendy and Cooper, 1984; 

Heinemarm, 1981).   

1.6 Sediment Modeling 

Catchment sediment yield algorithms have been developed to predict sediment loading 

across varying spatial scales, temporal resolution and applications from hillslope to catchment 

scales. They can be physically based, empirical, conceptual or statistical. Many of these sediment 

yield algorithms rely on hydrologic inputs to drive sediment production. Statistical algorithms 

rely heavily on in-situ measurements on which to train prediction equations, which can limit 

their transferability to watersheds that lack sufficient monitoring. Empirical algorithms estimate 

outputs based on event-based observations, often without underlying theory, which can increase 

uncertainty in algorithm results when applied outside the training period data. The advantage to 

empirical algorithms is that they are computationally efficient. Physically based algorithms are 
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the most representative of sediment processes; these algorithms, however, often require 

estimation of many parameters and thus rely on computationally intensive calibration to estimate 

suitable values of the parameters.  

A variety of algorithms have been developed to model sediment yield, each with their 

own strengths. The most common sediment yield algorithms are those derived from USLE 

(Universal Soil Loss Equation) (Odhiambo and Boss, 2004) which include RUSLE (Revised 

Universal Soil Loss Equation) and MUSLE (Modified Universal Soil Loss Equation) (Williams 

and Berndt, 1977). The SWAT (Soil and Water Assessment Tool) model uses MUSLE for soil 

erosion and runoff energy equations for detachment and transport. The combination of MUSLE 

and SWAT were used to successfully identify which sub-basins were contributing the most 

sediment to Somerville reservoir in Texas (Sohoulande Djebou, 2018). Yan et al., (2013) use 

SWAT to quantify how changes in land use effect sediment development. In another study, the 

ROTO (routing outputs to the outlet) model was developed to simulate water and sediment yields 

in a large basin for specific applications to reservoirs. The modeled means and standard 

deviations compared well to observations (Arnold et al., 1995). Minear and Kondolf (2009) 

developed a model specific for predicting reservoir sedimentation that takes into account 

processes that are often over looked such as changes in sediment trap efficiency due to 

sedimentation over time and the construction of multiple reservoirs at different times in a 

watershed. 

Ensembles of sediment yield algorithms have been used previously in Alizadeh et al., 

(2017) for suspended sediment forecasting and in Himanshu et al., (2017) for prediction of 

suspended sediment using hydrometeorological data. Sankey et al.,  (2017) used an ensemble of 

climate and fire forcing to identify sensitivity of sediment production in western U.S. 
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watersheds. However, they applied these forcings to a single model, the Water Erosion 

Prediction Process model. Stewart et al., (2017) developed a hydrologically forced sediment 

yield algorithm ensemble. The ensemble includes MUSLE (Modified Universal Soil Loss 

Equation), SHE-SED (Systeme Hydrologique European Sediment Model), HSPF (Hydrological 

Simulation Program—Fortran), MRC (Monovarietal Rating Curve) and GLM (Generalized 

Linear Model). The model was validated for instream sediment transport in the Cache La Poudre 

basin in Colorado. There has yet to be a study that applies an ensemble of sediment yield 

algorithms to reservoir sedimentation. 

1.7 Sediment Management Techniques 

There are two common approaches to sediment management: prevention and removal. 

Prevention includes upstream land management, sediment bypass, sluicing and density current 

venting. Implementation of large-scale land management practices can be logistically 

challenging for both landowners and government regulators. In cases where high sediment 

producing activities such as construction and disforestation are regulated, erosion mitigation 

increases overall project costs.  

Sediment removal practices include dredging, dry excavation and flushing. They can be 

implemented by reservoir managers and are generally less expensive and time consuming than 

large scale management practices. Logistically however, currents law in the U.S. prevent wide 

spread sediment removal. The best strategy for mitigating reservoir sedimentation would include 

a combination of sediment prevention and removal. Prevention can minimize sediment 

accumulation, reducing the total amount of sediment needed to be removed (Annandale et al., 

2016).  
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An overarching challenge in sediment management is the limited knowledge of 

sedimentation quantities in most reservoirs, due to a lack of reservoir surveys. Effective 

environmental management relies on accurate knowledge of the ecosystem, hydrology and 

climate. The goal of this study is to explore potential SSL algorithms use for predicting reservoir 

sedimentation.  

 

 

1.8 Summary of Chapters  

Chapter 2: Methods 

 Chapter 2 describes the methods used in this model sensitivity study. The chapter starts 

by describing the selected reservoir including watershed characteristics, flow regime and climate. 

Model forcing data, sediment observations and streamflow observations are then described. 

Next, the hydrologic and sediment ensemble algorithms are described. This is followed by the 

procedure and justification for the sensitivity analysis is explained. Lastly, the method for testing 

sediment yield linearity is presented.  

Chapter 3: Results 

 Chapter 3 presents the results from the sensitivity analysis for streamflow and the 

sediment ensemble. First the streamflow sensitivity analysis is presented, and a single parameter 

set with realistic performance is selected to drive streamflow for use in the sediment ensemble. 

Next, the Sobol sensitivity analysis for the algorithms with in the sediment ensemble is 

presented. Finally, the yield linearity assumption of sediment accumulation is assessed based on 

the sediment algorithm ensemble results.  
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Chapter 4: Discussion and Conclusion 

 Chapter 4 summarizes the results of this work and then draws conclusions about the 

analysis of each sediment algorithm. A conclusion is provided and guidance on future work is 

suggested.  
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Chapter 2: Methods 

 

Overview 

In Stewart et al., (2017) a new sediment estimation approach was developed through 

coupling an ensemble of sediment algorithms with a land surface model (LSM), the Variable 

Infiltration Capacity (VIC) hydrologic framework (Liang et al., 1994). A key benefit of this 

approach is that a diverse set of sediment algorithms, including DHSVM, HPSF and MUSLE, 

are driven by the streamflow generated by VIC in response to dynamic climate conditions. 

Unlike the Stewart et al. (2017) application to a watershed, the hydrologic-sediment framework 

will be applied to reservoir sedimentation in this research. The primary goal is to improve our 

understanding of the reservoir sedimentation process. To do so, we conduct a formal sensitivity 

analysis of key parameters from these widely used sediment algorithms and evaluate the features 

of simulated sedimentation. 

The sensitivity analysis will be performed on the streamflow parameters first, followed 

by a sensitivity analysis for the sediment parameters. The two stages of the sensitivity analysis 

allow for independent sensitivity analyses. The streamflow sensitivity analysis is performed first 

to identify the most accurate streamflow realization to drive the sediment ensemble with the goal 

of the streamflow driving the sediment algorithms being as realistic as possible. A set of realistic 

performing parameters will then be used to drive streamflow for the sensitivity analysis on the 

ensemble of sediment algorithms. The outcome of this research will be an improved 

understanding of physical and empirical modeling parameters associated with streamflow-

sediment modeling. The key questions posed here include: 1) Can hydrologically-forced 
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algorithms help us improve reservoir sedimentation estimates useful for future planning? 2) To 

which processes and inputs are reservoir sedimentation estimates most sensitive? 3) What can we 

learn from models that the linear sediment yield assumption fails to assess? 

2.1 Study Area  

 The study area, Prineville Reservoir, in central Oregon, was selected from among several 

reservoirs suggested by Blair Greimann, our USBR collaborator. Prineville Reservoir is 

representative of the typical data availability and arid to semi-arid climate of many reservoirs 

across the west. It was filled following construction of Arthur Bowman Dam in 1960 (Eggers, 

2003). The reservoir is fed by the 14133 km2 Crooked River watershed located in the Deschutes 

River basin, a map of which is seen in figure 2.1. The Prineville region is in an arid climate with 

hot dry summers and cold winters (Eggers, 2003). The Crooked River watershed averages 12 

inches of rain per year, 90% of which falls between November and February. Winter 

temperatures often fall below 0F (-18C) (January average is 32 F (0C)), while summers 

rarely go above 100 F (38C) (July average is 60F (15.5C). The mean annual streamflow is 

approximately 270,000 acre-feet/year (1 acre-foot = 1233.5 m3), ranging from 690,000 af/yr to 

40,000 af/yr (Eggers, 2003).  

 The Crooked River watershed contains a variety of land cover types and diverse 

geography. It is bordered by mountain ranges on the northern and south-central boundaries. The 

southern region is comprised of mostly plains and grasslands (Gesch et al., 2002). The geology 

of the watershed includes basalt, fine grain volcanic duff and lava flows. Over time, erosion 

transformed the previously soft bed surrounding the reservoir to steep gullies. The reservoir is in 

a shallow valley surrounded by steep hillsides, 90% of which are highly erodible soils. Due to 

the highly erodible soils, the primary water quality concern for both the Crooked River and 
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Prineville reservoir is turbidity (Eggers, 2003). In addition to the erodible hillslopes, other 

erodible soils (i.e. montmorillonite clay) and upstream land use (logging, roads, heavy livestock 

grazing) add to the erosion and turbidity build up in Crooked River and Prineville reservoir. 

From 1960 to 1998, Prineville Reservoir lost nearly 5000 acre-ft of storage due to sedimentation.  

 

Figure 2.1: Map of the Cooked river watershed in central Oregon. The watershed is delineated 

by the orange line and the reservoir is located at the red triangle.  
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2.2 Data Sources 

The data sources for this study are summarized in table 2.1. They include 

hydrometeorological data, soil and vegetation parameters, streamflow measurements and 

reservoir volume surveys. 

The hydrometeorological data used as inputs for the VIC model were developed by 

(Livneh et al., 2015, 2013). The dataset provides daily maximum and minimum temperature, 

windspeed and precipitation values. It is gridded for the Conterminous United States (CONUS) 

on a 1/16° resolution. The soil texture values (more details on this will follow) are from survey 

data, although some will be varied for a sensitivity analysis (Mill and White, 1998). The inputs 

for VIC comprise of a variety of soil characteristics including infiltration, hydrologic 

conductivity and maximum baseflow velocity.  

 Daily average streamflow observations came from U.S. Geological Survey (USGS) gage 

14080500, Crooked River near Prineville, OR. Streamflow data from the USGS are available 

from 1941 to 2018 and are not corrected for the influence of upstream reservoir intakes. The 

USGS data were supplemented by the USBR Hydromet (hydrologic and meteorological 

monitoring stations) historical dataset. In addition to streamflow, Hydromet includes naturalized 

streamflow for post-dam construction flows in addition to uncorrected discharge flows. The 

naturalized streamflow is reported as daily average flow starting in 1973 continuing to the 

present, and discharge flows are available from 1941 to 2018.  

Reservoir volumetric surveys collected by USBR were used to quantify volume loss in 

Prineville Reservoir (Ferrari, 1999).There are two available surveys for Prineville collected in 

1960 and 1998. The survey method used in 1998 was sonic depth recording interfaced with GPS 

giving continuous sounding throughout the reservoir. The method used in the 1960 survey was 
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not specified, but it was likely the line and sinker method which was common at the time. 

Notably, the limitation to reservoir surveys is that sediment density is often unknown. Sediment 

density can range from 40-100 lb/ft3 with it most commonly falling between 60 and 80 lb/ft3. 

Since the sediment survey data for Prineville lacks a density measurement, the entire range of 

density is considered here. 

Table 2.1: Data sources used for model inputs and model analysis 

Data Type Dates  Citation 

Soil Parameters  (Maurer et al., 2002) 

Vegetation Parameters  (Hansen et al., 2000) 

Meteorology  1915 to 2015 (Livneh et al., 2015) 

Streamflow  1941 to 2018 (U.S. Geological Survey, 2016) 

Naturalized Flow 1973 to 2018 (U.S. Bureau of Reclamation, 2016) 

Reservoir Volume  June 1, 1960 and May 31 

1998 

(U.S. Geological Survey Water 

Information Coordination Program, 

2014) 

 

2.3 Hydrologic Model and Sediment Algorithms 

 The sediment ensemble for this study was developed by Stewart et al., (2017). It consists 

of five algorithms, three of which are hydrologically forced. In this study, we will be using the 

three hydrologically forced algorithms which are outlined in the following sections. Important 

parameters for these algorithms are described further in table 2.2.  

2.3.1 Hydrologic Model – Variable Infiltration Capacity model 

 The Variable Infiltration Capacity model (VIC) will be used to model hydrologic 

processes needed to drive the sediment algorithms (Liang et al., 1994). VIC is a widely used, 

distributed hydrologic model that uses soil, vegetation and meteorological forcing inputs to 

compute surface water and energy balances. For this application it is run on 1/16° (~ 6 km) grid 

cells at a daily time step. The processes important to sediment yield include precipitation impact, 

surface runoff and total streamflow.  
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Precipitation is the most influential driver of sediment development and transport. It is 

the mechanism for erosion via raindrop impact and contributes to runoff. Runoff transports 

sediment particles to streams. The quantity of erosion from precipitation and rate of transport 

from streamflow relies on the canopy and vegetation type which influence interception. 

Interception modulates raindrop impact by preventing drops from reaching the surface and 

forming larger drops on leaves that eventually reach the ground. The vegetation type and 

vegetation density also influence runoff magnitude by changing the interception rates. Surface 

runoff collects eroded soil from raindrop impact and carries it to streams which eventually 

deposit it into reservoirs. Along the way, the flow erodes streambanks creating more sediment 

while some sediment settles in the streambed. 

Runoff is calculated as the excess precipitation after infiltration (the difference between 

precipitation and infiltration). In equation (2.1) for infiltration, i is the infiltration capacity, im is 

the maximum infiltration, A is the fraction of area in which the infiltration capacity is less than i 

and bi is the infiltration shape parameter.  

𝑖 = 𝑖𝑚[1 − (1 − 𝐴)]
1

𝑏𝑖 
⁄  

 (2.1) 

Runoff can then be expressed as equation 3 where, Qd is surface runoff, Qb is subsurface flow 

both in units of millimeters, and Cv i is the vegetation class. 

𝑄 =  ∑ 𝐶𝑣 𝑖
𝑁+1
𝑖=1 ∗ (𝑄𝑑 𝑖 + 𝑄𝑏 𝑖)  (2.2) 

2.3.2 Sediment Ensemble 

Three sediment algorithms will be evaluated in this study. Each algorithm was coupled 

with VIC internally by adding the algorithms to the source code. Within the source code, 
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hydrologic variables such as precipitation, runoff and baseflow were applied explicitly to the 

algorithms.  

Modified Universal Soil Loss Equation 

The Modified Universal Soil Loss Equation (MUSLE) is an empirical algorithm that uses 

catchment characteristics to predict soil erosion based on the peak streamflow and total volume 

of an event (Arnold et al., 1998). The average soil loss (A) is calculated from equation 2.3.  

𝐴 = 𝑅𝐾𝐿𝑆𝐶𝑃            (2.3) 

R is the runoff factor (see equation 2.4) which is calculated using the total runoff in an event 

(𝑄, 𝑚𝑚) and peak streamflow rate of the event (qp, mm). When imbedded into VIC, qp was 

defined as the max streamflow rate during a 24-hour time step. K is the soil erodibility index, LS 

(m) is a topographical index for the length and steepness of the slope, C is a crop management 

factor for vegetation and P is a landcover factor. 

𝑅 = 11.8(𝑄 ∗ 𝑞𝑝)0.56  (2.4) 

The MUSLE equation is limited by its assumption that the soil loss is linearly proportional to a 

set of catchment characteristics. In addition, because it is an empirical algorithm many of the 

inputs are not directly measured, hence they are difficult to determine.  

Hydrological Simulation Program—Fortran 

The Environmental Protection Agency (EPA) developed the Hydrological Simulation 

Program – Fortran (HSPF) based on the Stanford Watershed Model (Bicknell et al., 1996; 

Johanson et al., 1980). It is a conceptual algorithm that uses hillslope erosion algorithms for soil 

detachment from rainfall and scour by overland flow. These processes were embedded into the 

VIC framework. Rainfall detachment (𝐷𝐸𝑇,
𝑡𝑜𝑛𝑠

𝑎𝑐
/𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙) considers the kinetic energy of 
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raindrops as seen in equation 2.5. 𝑑𝑡 is the number of hours in the time interval, 𝑅𝐶 is the 

fraction of snow and vegetation cover, 𝑃 is the practice management factor from USLE (the 

universal soil loss equation), 𝐾 is the detachment coefficient from USLE, 𝐼 (
𝑖𝑛

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙
) is the 

rainfall intensity and 𝐽𝑅 is the detachment exponent. 

𝐷𝐸𝑇 = (𝑑𝑡(1 − 𝑅𝐶)(𝑃)(𝐾)( 𝐼
𝑑𝑡

))𝐽𝑅 (2.5) 

To estimate SSL, HPSF uses transport capacity (TC, tons/ac/interval) in equation 2.6 where KS 

is the transport coefficient, SU (in) is surface water storage, SO (in/interval) is surface water 

outflow and JS is the transport exponent. The transport capacity represents the amount and size 

of sediment that can be carried by the flow of water in a stream. The higher the flowrate, the 

higher the transport capacity. As the transport capacity decreases, particles are deposited on the 

streambed because settling velocity of some sediment particles is greater than the transport 

capacity.  

𝑇𝐶 = 𝑑𝑡(𝐾𝑆) (
𝑆𝑈+𝑆𝑂

𝑑𝑡
)

𝐽𝑆

 (2.6) 

The effect of the previous day’s rainfall on sediment production is simulated by decreasing DET 

for days without a storm event. This is done with the AFFIX parameter in equation 2.7 which 

increases each day due to soil compaction.  

𝐷𝐸𝑇 = 𝐷𝐸𝑇(1.0 − 𝐴𝐹𝐹𝐼𝑋) (2.7) 

A feature of HSPF is that it is relatively simple, as it uses concepts of physical 

mechanisms to drive SSL generation. However, many of the coefficients and exponents are not 

directly measurable and rely on calibration to estimate values. In turn, calibration relies on 

observations. The nature of calibrating non-physically based parameters can lead to over fitting.  
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Systeme Hydrologique European Sediment Algorithm 

The Systeme Hydrologique European Sediment algorithm (SHE-SED) (Wicks and 

Bathurst, 1996) is a sediment transport scheme used within the Distributed Hydrology Soil 

Vegetation Model (DHSVM) (Wigmosta et al., 1994). DHSVM is a physically based distributed 

model that solves the energy and water balance equations. SHE-SED is the most complex of the 

algorithms used in this study. DHSVM and SHE-SED rely on fine resolution vegetation and 

topography, which causes limitations on large scale modeling efforts. The hillslope erosion 

algorithms for overland flow and raindrop impact from the SHE-SED algorithm were embedded 

into the VIC framework. By removing the SHE-SED algorithms from DHSVM, the algorithm no 

longer includes the dynamic routing scheme DHSVM is known for which may influence its 

performance. Henceforth, this algorithm will be referred to as DHSVM. 

Overland flow detachment (Dof, m
3/s/m) quantifies the sediment that is eroded by 

overland flow. It is calculated by equation 4 where 𝛽𝑑𝑒 is the detachment coefficient, 𝑑𝑦 (m)is 

the horizontal hillslope length, 𝑣𝑠(𝑚/𝑠) is the settling velocity, and TC (m3/m3) is the transport 

capacity.  

𝐷𝑜𝑓 =  𝛽𝑑𝑒(𝑑𝑦)(𝑣𝑠)(𝑇𝐶) (2.8) 

Raindrop detachment is the erosion from raindrop impact. It is calculated as the momentum 

squared of direct throughfall (MR) and leaf drip from vegetation (Md) from equations (2.9) and 

(2.10) respectively. I (mm/hr) is rainfall intensity,  and  are coefficients from (Wicks, 1988), 𝑉 

is leaf drip fall velocity, 𝜌 (𝑘𝑔/𝑚2/𝑠) is water density, 𝐷(𝑚) is leaf drip diameter, 𝐷𝑟𝑖𝑝 is the 

percent of canopy drainage that falls from leaves and 𝐷𝑟𝑎𝑖𝑛 (𝑚/𝑠) is drainage from the canopy. 

𝑀𝑅 =  𝛼𝐼𝛽 ( 2.9 ) 
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𝑀𝑑 =
(

𝑉𝜌𝜋𝐷3

6
)

2

𝐷𝑟𝑖𝑝 𝐷𝑟𝑎𝑖𝑛

(
𝜋𝐷3

6
)

  ( 2.10 ) 

Critical Area Approach  

 Each model is applied on 1/16-degree VIC grid cells (~6 km). In large basins, (greater 

than 500km2) 6 km grid cells provide an adequate resolution for modeling hydrology. However, 

many erosion processes occur on the scale of meters. The spatial discretization needed to 

quantify sedimentation is limited by computational power and available data at the scale of 6 km. 

Instead, the critical area approach is used to quantify sediment development on individual 

hillslopes that can then be upscaled to the larger VIC grid cells.  

Critical areas are defined as the portion of the model grid cell that contributes to the 

suspended sediment load, which is used to determine where soil erosion is most likely to occur.  

In Stewart et al., (2017), critical areas were determined by using a threshold of slope steepness 

and stream proximity. In this study, the critical area was included in the sensitivity analysis with 

a range of values from 0 % to 100 % to determine the importance of estimating the critical area 

accurately for reservoir sedimentation estimates.  

Modeling Assumptions for Reservoir Sedimentation  

Stewart et al., (2017), developed the sediment ensemble to include a routing scheme. 

However, for the application to reservoir sedimentation, the timing of SSL is less important than 

other applications, since we are primarily interested in sediment accumulation on longer 

timescales (monthly to decadal) rather than the shorter timescales (hourly to daily) relevant to 

water treatment. For this reason, the sediment routing scheme was not included in the present 

application of the model ensemble. It is important to note that because sediment routing is not 
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included, the results presented here are only applicable to long-term (monthly to decadal) 

sedimentation.  

The second major assumption in comparing accumulated SSL with surveyed reservoir 

sediment is that SSL comprises all loading into the reservoir. This assumption precludes 

sediment from bedload which can be up to 10% of the total sediment yield. Therefore, for 

drainages with large bedload this assumption will not be valid.  

2.4 Sobol Sensitivity Analysis 

The reservoir sedimentation estimates in this thesis are a new application of the multi-

algorithm sediment ensemble method developed by J. Stewart et al. (2017). To evaluate this new 

application and to understand key sensitivities in modeling reservoir sedimentation, a Sobol 

Sensitivity Analysis is performed, herein “Sobol”, (Sobol, 2001). Sensitivity analyses assist 

modelers in identifying the importance of parameters for a desired output. The sensitivity 

analysis for streamflow and sediment will be done independently. Stewart et al. (2017) 

performed a joint calibration—a simultaneous calibration of both streamflow and sediment 

parameters—but did not perform a sensitivity analysis. The best performing simulation from the 

streamflow sensitivity analysis will be used to force the sediment ensemble. By isolating the 

sensitivity analysis for the streamflow model from the sediment ensemble, it ensures the 

streamflow inputs are as realistic as possible when used to drive the sediment ensemble. This is 

important because sediment accumulation relies heavily on streamflow magnitude.  

2.4.1 Theory 

Sobol is a variance-based global sensitivity analysis which allows sampling of the entire 

range of input parameters (Sobol, 2001). Sobol uses an ensemble of parameter realizations to 

evaluate parameter influence on the variance. This study uses the Saltelli improvement of Sobol 
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which increases the efficiency by decreasing the number of parameter sets needed in the model 

ensemble (Saltelli, 2002). From the variation in the ensemble of model outputs, Sobol produces 

indices that that identify the fraction of the variance of the output that is influenced by a given 

parameter or set of parameters and represent parameter sensitivity. The outputs used here are a 

set of objective functions used to describe the skill of the streamflow model and sediment 

algorithm outputs, relative to observations.  

Sobol indices are based on variance decomposition which attributes the total variance to 

specific parameters and parameter interactions. The decomposition of the variance is detailed in 

equation 2.11. 

𝑉(𝑌) =  ∑ 𝑉𝑖
𝑘
𝑖=1 + ∑ 𝑉𝑖𝑗𝑖<𝑗  + ⋯ 𝑉1….𝑘 (2.11) 

k is the number of varied parameters, i and j identify parameters from the set of varied 

parameters and V is the variance of a given set of parameters which are identified by the 

subscripts. 

Sobol sensitivity indices range from 0 to 1 where 1 signifies parameters that are most 

sensitive. Sensitivity indices are based on the parameter’s contributions to V(Y). Equation 2.12 

represents the calculation for a Sobol total sensitivity index for a single parameter i where 𝑆𝑇𝑖 is 

the total sensitivity, V is the variance of the model and Vi is the variance of parameter i. 

𝑆𝑇𝑖 =  
𝑉𝑖

𝑉
+ ∑

𝑉𝑖𝑗

𝑉𝑗≠𝑖 + ⋯ +
𝑉𝑖𝑗…𝑘

𝑉
  (2.12) 

The first order sensitivity index (𝑆1𝑠𝑡,𝑖) is the first term of the total order sensitivity index 

calculation. The interaction term is the sum of the remaining terms. The interaction sensitivity is 

calculated with equation 2.13.  

𝑆𝑁𝑖 = 𝑆𝑇𝑖 − 𝑆1𝑠𝑡,𝑖  (2.13) 
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Typically, three sensitivity indices are used to evaluate a model: First order, total order 

and interaction sensitivity indices. Consider a model that has output Z and inputs X and Y. The 

variance of Z can be decomposed into the variance caused by changes in X (first order 

sensitivity), the variance caused by changes in Y (first order sensitivity) and the variance caused 

by the interaction between X and Y (interaction sensitivity). The total order variance of X is the 

sum of the variance caused by changes in X and the variance caused by X when Y is also varied. 

The total order variance of Y is the sum of the variance caused by changes in Y and the variance 

caused by Y when X is also varied. With more than two parameters, the interaction variance can 

be decomposed into second order, third order, fourth order, and so forth. For example, second 

order variance is the variance caused by one parameter when two others are also varied.  

Sobol uses a quasi-random sampling method similar to Latin hypercube sampling called a 

Sobol sequence (Sobol, 1976). The Sobol sequence ensures that the global parameter space of 

each parameter is evenly distributed.  It does this by adding samples to the parameter space away 

from previously established samples (Nossent et al., 2011). The samples produced from this 

technique will be used to perform the Sobol sensitivity analysis.  

2.4.2 Application 

 In simple models, the sensitivity of all parameters can be calculated. However, due to the 

complex and computationally intensive nature of VIC and sediment ensemble, a subset of 

parameters was selected to adhere to computational restraints. The parameters in table 2.2 were 

chosen for the sensitivity analysis based on Stewart et al. (2017).  

The number of model realizations depends on the number of parameters and the desired 

sample size. For complex environmental models, sample sizes range between 1000 and 2000 

(Houle et al., 2017; Nossent and Bauwens, 2012; Tang et al., 2007; van Werkhoven et al., 2008; 
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Zadeh, 2015). For this study a sample size of 2000 is used to ensure adequate sampling of each 

parameter range. The number of model runs is calculated by equation 2.14 (Saltelli, 2002). 

𝑁 = 𝑛(2𝐾 + 2) (2.14) 

 

 

Table 2.2. Parameter selection for VIC and sediment sensible algorithms used in the Sobol 

sensitivity analysis including definitions and ranges.  

Parameter Definition and Relevant Models Lower Limit Upper Limit 

Binf Infiltration Capacity (VIC) 0.0001 0.4 

Ds 
Fraction of DsMax where non-

linear baseflow occurs (VIC) 
0.001 1 

DsMax 
Maximum baseflow velocity 

(VIC) 
0.1 30 

Ws 

Fraction of maximum soil 

moisture where non-linear 

baseflow occurs (VIC) 

0.1 1 

C Baseflow curve exponent (VIC) 1 2 

Layer 2 Soil layer depth 2 (VIC) 0.3 4 

Layer 3 Soil layer depth 3 (VIC) 0.3 4 

Snow 

Roughness 

Surface roughness of snowpack 

(VIC) 
0.0001 0.05 

K Factor 
Erodibility factor (MUSLE, 

HSPF) 
0.2 0.6 

C factor  
Cropping management factor 

(MUSLE, HSPF) 
0.001 0.5 

P factor 
Conservation management factor 

(MUSLE) 
0 1 

K Index 
Conservation practice 

factor (DHSVM) 
19 32 

D50 Median grainsize (DHSVM) 0.5 2 

Βde Soil cohesion (DHSVM) 0.00075 15 

JR Detachment exponent (HSPF) 1 3 

AFFIX Attachment fraction (HSPF) 0.01 0.5 

KS Transport coefficient (HSPF) 0.1 0.5 

JS Transport exponent (HSPF) 1 3 

KG Scour coefficient (HSPF) 0 10 

JG Scour exponent (HSPF) 1 5 

Critical 

Area 

Catchment critical area (MUSLE, 

HSPF, DHSVM) 
0.002 0.04 
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K is the number of parameters, n is sample size and N is the total number of model runs. The 

sensitivity analysis for stream flow includes 8 parameters resulting in 36,000 parameter 

realizations. The analysis for sediment includes 13 parameters, thus resulting in 60,000 

realizations.  

2.5 Model Performance Measures  

The streamflow model and sediment ensemble sensitivities are evaluated using objective 

functions. Selecting appropriate objective functions is important because each objective function 

emphasizes specific aspects of the behavior of the model (McCuen et al., 2006). They were 

selected from common hydrologic objective functions that address aspects important for 

sediment estimates. They are detailed in equations 2.15 to 2.21. For the following equations S is 

the simulation, O is the observation, N is the number of observations and i corresponds to an 

observation or simulation at a specific moment in time. The objective functions used here are 

NSE for overall fit, RMSE for overall error, R for timing errors, ratio of the variance for 

variability and percent bias for systematic biases. 

 In a subsequent analysis, RMSE was also used to evaluate the extent to which the 

sediment algorithms predict sediment accumulation that differs from the traditional linear 

assumption. Finally, the amount of sediment accumulation from the first half of the model 

simulation to the second half of each model simulation was compared with a percent difference.  

Nash Sutcliffe Efficiency  

 The Nash Sutcliffe Efficiency (NSE; Nash and Sutcliffe, 1970) was developed for 

specific use in hydrology and has become a commonly used objective function in the field 

(Gupta et al., 2009). The calculation, provided in equation 2.15, includes components of 
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correlation, bias and variability. NSE values range from -∞ to 1, with 1 being a perfect match 

and 0 being that the simulations do an equivalent job of matching the observations as the mean 

of the observations.  

𝑁𝑆𝐸 = 1 −  
∑ (𝑆𝑖− 𝑂𝑖)2𝑁

𝑖=1

∑ (𝑂𝑖− 𝑂)2𝑁
𝑖=1

 (2.15) 

NSE is sensitive to a number of factors, including sample size, outliers, magnitude bias, and 

time-offset bias (McCuen et al., 2006). One of the main concerns about NSE is its use of the 

observed mean as baseline, which can lead to overestimation of model skill for seasonally driven 

variables such as runoff in snowmelt dominated basins (Gupta and Kling, 2011).  

Pearson Correlation Coefficient 

The Pearson correlation coefficient (R) helps determine if a positive or negative linear 

relationship is present. It ranges from -1 to 1, with 1 being an exact positive relationship and -1 

being an exact negative relationship. One drawback to the R metric is that it only measures linear 

relationships and can be easily skewed by outliers. R is calculated by equation 2. 16. 

𝑅 =  
∑ (𝑆𝑖−𝑆𝑁

𝑖=1 )(𝑂𝑖−𝑂)

√∑ (𝑆𝑖−𝑆)2𝑁
𝑖=1 ∑ (𝑂𝑖−𝑂)2𝑁

𝑖=1

  (2. 16 ) 

Ratio of Variances 

The ratio of variances is a comparison between the variance of modeled and observed 

data. It ranges from 0 to ∞ with an optimal value of 1 signifying the variances are equal. Values 

near 1 indicate high model skill. In terms of streamflow, a value near one would tell us that the 

model and observations agree on extreme low and high flows. A value near zero indicates the 

model has high peak and the observations have low peaks where as a value near infinity would 
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indicate the opposite. The variance is shown in equation 2.17 and the ratio of the variances in 

equation 2.18 .  

𝜎2 =  
∑ (𝑋𝑖−𝑋)2𝑁

𝑖=1

𝑁
  (2.17) 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑟𝑎𝑡𝑖𝑜 =  
𝜎𝑠

2

𝜎𝑜
2  (2.18) 

Percent Bias (PBIAS) 

 Percent bias is a measure of systemic error. It measures the degree which the model 

provides values above or below observed (Maidment, 1993). More simply, percent bias is the 

difference in the accumulation of the model output and observations. Theoretically, values can 

range from -∞ to ∞ with an optimal value of 0%. Negative values are underestimations and 

positive values are over estimations. Percent bias is calculated with equation 2.20.  

𝑃𝐵𝐼𝐴𝑆 = 100 
∑ (𝑆𝑖−𝑂𝑖)𝑁

𝑖=1

∑ 𝑂𝑖
𝑁
𝑖=1

 (2.19) 

Percent bias is helpful in hydrology because it can determine the quantitative difference in the 

modeled values and observed values over extended time periods (Boyle et al., 2000). It is 

applicable for reservoir sedimentation because accuracy over many years (5-20 or more) is 

especially important for reservoir management.  

Root Mean Squared Error 

 Root mean squared error (RMSE) is the standard deviation of the residuals for a predicted 

value (modeled) and a known value (observed). Smaller values signal better model performance 

with zero being perfect. There is no upper limit to the value of RMSE. RMSE is calculated with 

equation 2.20. 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑ (𝑆𝑖 − 𝑂𝑖)2𝑁

𝑖=1   (2.20) 
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2.6 Sediment Yield Linearity 

 A major goal of this research is to assess the validity of assuming linear sediment yield. 

To this end, we chose a set of “behavioral” simulations that provide probable estimates of 

sedimentation. Although there exist two sediment volume surveys for Prineville Reservoir, the 

sediment density is unknown. Therefore, instead of having a single known value of volume loss, 

we have a range of possible sediment volume loss, governed by the sediment density range of 40 

-100 lb/ft3, which is the full range of sediment densities. In future studies a narrower sediment 

density range could be used. We use this information to choose behavioral simulations, defined 

as the set of model realizations that have their final accumulated sediment volumes falling within 

the density range. 

 To evaluate the relative yield linearity of each sediment algorithm we employ an RMSE 

calculation that can be considered the “Root Mean Squared Difference” between modeled 

sediment yield and the simple linear yield assumption of constant accumulation through time. 

Because the root mean squared difference equation is functionally equivalent to the classic 

RMSE equation, the term RMSE will be used, although the values are not considered “errors” 

necessarily since the exact sediment density is unknown. Specifically, the RMSE will be 

calculated for yearly sediment accumulation between the modeled yearly accumulation and the 

linear assumption accumulation. Then the reported RMSE is the difference in the yearly average 

between the sediment algorithm and the linear yield assumption. Moreover, the RMSE values 

will also be expressed as a percentage difference, showing how the accumulated differences 

between modeled sedimentation compares to the linear sedimentation estimates. The percent 

difference will simply be the yearly RMSE for a given model divided by the linear yearly 

sediment accumulation for a given simulation realization.   
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A final consideration in this analysis is how to calculate the assumed linear yield rate. 

Broadly, the yield linearity assumption is essentially a monotonic accumulation beginning at 

zero on the day of the first reservoir survey and ending at the value of modeled sediment 

accumulation on the day of the final reservoir survey. Thus, the linear yield estimate is 

dependent on the final sedimentation accumulation, which is not strictly known. Rather than 

compare simulated sediment accumulation to a single linear function, which would assume a 

known sediment density, each simulation is compared to a different linear yield rate equation 

based on the final modeled sediment accumulation value.  

The second method used to determine yield linearity is a comparison of sediment 

accumulation between two time periods. The simulation spans 1960 to 1998 which will be split 

into time period 1 (1960 to 1979) and time period 2 (1979 to 1998). The accumulated sediment 

for these 19-year spans will be compared with a percent difference for each simulation.  
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Chapter 3: Results 

 

Overview 

The results are discussed in the following three sub-sections. First, the sensitivity analysis 

and parameter selection for streamflow are presented. This is followed by the sensitivity analysis 

and parameter investigation for the sediment ensemble. For each analysis, the sediment ensemble 

results are presented in the following order: MUSLE, HSPF, DHSM. Finally, there is an 

evaluation of the yield linearity of each sediment algorithm.  

3.1 Streamflow Sensitivity   

 The sensitivity analysis for VIC streamflow was performed on modeled streamflow from 

1975 to 1998 to match the available naturalized flow data after reservoir construction. Figure 3.1  

shows the results of the sensitivity analysis. Sobol sensitivity indices range from 0 (white) 

indicating no sensitivity, to 1 (dark purple) with 1 indicating the most sensitivity. Each square in 

the matrix represents the sensitivity of a parameter for a single objective function.   

 

Figure 3.1: First order sensitivity, second order sensitivity and interaction for streamflow 

objective function from VIC. Dark colors represents more sensitive parameters.  
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Demaria et al., (2007) used a Monte Carlo sensitivity analysis to find that layer 2 and binf 

were sensitive parameters for VIC streamflow. There is broad agreement that streamflow is 

sensitive to changes in layer 2 with a strong first order sensitivity. However, in contrast to 

Demaria et al. (2007) binf—the infiltration capacity of the soil—appears to be insensitive in this 

analysis. The streamflow’s minimal sensitivity to binf can be explained by the Crooked River 

watershed’s arid climate, with only 11 inches of precipitation per year. For the Crooked River 

watershed, infiltration is controlled by the amount of runoff. Even if there is a high infiltration 

capacity, there is a limit to the amount of runoff available to infiltrate into the soil. Based on the 

VIC model simulations, the Crooked River is assumed to be driven primarily by baseflow. This 

assumption comes from the model runoff to baseflow ratio from 1960 to 1998 (years of sediment 

volume surveys) is 0.38, showing that there is more than twice the volume of baseflow than 

runoff, as illustrated in figure 3.2b. Figure 3.2a shows that the yearly modeled accumulated 

streamflow and peak snow pack are similar values in most years, so the majority of streamflow 

develops as snowmelt, not runoff from precipitation.  

 Interaction sensitivity is the product of the variance produced by changing two or more 

parameters simultaneously. The sensitivity analysis for VIC shows little interaction sensitivity 

relative to first order sensitivity for layer 2. Ds and Dsmax show more interaction sensitivity 

compared to first order sensitivity for the ratio of variances, RMSE, percent bias and NSE. 

However, they show less sensitivity in correlation, R. R and Ratio of Variances have more 

sensitivity to parameter interaction than RMSE, percent bias and NSE.  
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a)  

b)  

Figure 3.2: a) Yearly maximum snowpack (SWE) and yearly accumulative streamflow (runoff 

and baseflow) from 1960 to 1998. b) Runoff and baseflow accumulation from date of the first 

reservoir volume survey to the date of the final reservoir volume survey. Data for both panels 

come from VIC simulations.  

3.2 Streamflow Model Selection 

 The streamflow parameters that would be used to drive VIC were selected from the 

model instances used for the Sobol sensitivity analysis. The initial results from the model 

realizations used in the Sobol sensitivity analysis revealed discrepancies between the modeled 

and the observed streamflow. Typically, an NSE greater than 0.5 is desirable for streamflow. 

However, past studies found the Crooked River watershed challenging to model. Mendoza et al.,  

(2017) found a best NSE of 0.34 for fully calibrated SAC- SMA (Sacramento Soil Moisture 

Accounting) model. A USBR study also found poor model performance for the Crooked River 

Basin (Turner, 2011). They used VIC and found a maximum R2 value of 0.3. The primary 

concern for this study, where sediment is being mobilized, is that the peak flow magnitude and 

timing should match. An example is seen in figure 3.3, where the model struggles to produce 

these features, which is consistent with the aforementioned past studies. 
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A key modification was explored to improve the model result, namely the snow albedo 

parameters were adjusted because snowmelt is a key factor driving peak flow timing and 

magnitude. Notably, this modification occurred outside the usual set of soil parameters that are 

adjusted during calibration, i.e. this is a ‘hard-coded’ parameter. We  following the guidance of 

past studies that highlighted the importance of modifying hard-coded parameters (Houle et al., 

2017; Mendoza et al., 2017). The second round of Sobol simulations, resulted in much improved 

streamflow, shown in Figure 3.3. below. The best results had an NSE around 0.28 and a R less 

than 10%, which are comparable to those by Mendoza et al. (2017) and Turner et al. (2011).  

 

Figure 3.3: Monthly observed and modeled streamflow. The black line is the naturalized 

observed flow and the colored lines are model realizations. The blue line shows the model 

streamflow from the default albedo parameters. The red line shows the model streamflow from 

adjusted albedo parameters.  

Table 3.1:a) Objective functions for the top performing streamflow parameters b)Parameters 

used to drive streamflow for the sediment ensemble  

a) 

NSE % Bias Var/Var R 

0.282 6.8 0.408 0.541 

b) 

Binf Ds Ds max Ws C Layer 2 

Depth 

Layer 3 

Depth 

Snow 

roughness 

0.0948 0.0040 10.93 0.910 1.44 0.997 3.59 0.043 

 
 The Sobol sensitivity analysis produced 40,000 model realizations of VIC streamflow. 

This number of realizations, together with comparable performance with past studies, gave us 

confidence that we had sufficiently sampled model space to select a set of streamflow parameters 
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that would force the sediment ensemble as realistically as possible. The selected model 

realization had a percent bias of 6.8 and an NSE of 0.28 (see table 3.1a for all objective 

functions).  Despite the low NSE, visual inspection shows that the model captures key features of 

the hydrograph reasonably well. The obvious issue is that the model severely underestimates 

peaks in 1985, 1986, 1989 and 1993. However, for other years the model matched the peak 

streamflow magnitude and timing to a satisfactory level. The selected parameters are in table 

3.1b. 

 The assumption for the following sediment results is that VIC realistically models 

streamflow. First, the assumption is that VIC correctly partitions the total streamflow between 

baseflow and runoff. This is especially important because the sediment algorithms rely, to 

varying degrees, on the quantity of baseflow. The biases in the simulations of the VIC model 

variables, specifically runoff and baseflow will carry through the modeling process and impact 

sediment yield since the yield computation is driven by these hydrologic variables. The second 

assumption is that the soil and vegetation parameters did not change over time, i.e. static 

vegetation and soil parameter were used and would not account for alterations from 

development, agriculture, soil compaction, etc.  

3.3 Reservoir Sediment Accumulation  

The streamflow parameters selected through the model realizations used for the Sobol 

sensitivity analysis were used to drive the sediment ensemble. Sediment results are presented 

assuming that 100% of the sediment yielded by each algorithm will accumulate as reservoir 

sediment, e.g. a 100% trap efficiency. The model results, in kg, are compared to reservoir 

volume surveys measured in acre-feet. To convert the model output and observations to common 

units an assumption of sediment density was needed. Sediment density can range from 40-100 
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lb/ft3. Range from the maximum to minimum sediment weight will be referred to as the sediment 

density error bars. The subset of model realizations with total accumulated sediment that falls 

within the sediment density error bars are considered ‘behavioral samples’ that are used to 

analyze the algorithms predicted reservoir sediment accumulation and sensitivity patterns. Figure 

3.4 shows the behavioral subsets for each algorithm in the sediment ensemble. All three 

algorithms are driven partially by precipitation; the models differ in how they consider baseflow 

and runoff in the sedimentation equations.  

 The results for MUSLE are seen in figure 3.4a. MUSLE is an empirical algorithm that 

uses catchment characteristics and peak streamflow to determine sedimentation. Unlike the other 

algorithms that rely exclusively on surface runoff, MUSLE is driven by total streamflow 

(baseflow and runoff). The reservoir sediment accumulation pattern is driven by seasonal 

oscillations in baseflow because the watershed is baseflow dominant. The yearly jumps signal 

the algorithm’s ability to capture the seasonal oscillation in reservoir sediment accumulation. 

Baseflow accumulation is depicted in figure 3.2. In addition, there are changes in yearly 

reservoir sediment accumulations signified by the changes in slope between 1978 and 1985.  
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a)  

b)  

c)  

Figure 3.4: Time series plot of accumulated reservoir sediment. A subset of behavioral algorithm 

realizations is shown for those that fall within the expected range of reservoir sediment 

accumulation based on the expected density range.  The error bars are from the uncertainty in 

the sediment density. Red is the median, dark grey is the quartiles and light grey is other 

simulations that fall within the density error bars. MUSLE has 226 simulations that fall within 

the error bars, HSPF has 640 and DHSVM has 493. The simulations that have total reservoir 

sediment accumulation that fall outside of the error bars are not shown.  
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The results for HSPF are seen in figure 3.4b. HSPF is a runoff driven algorithm that 

solves the energy and water balance equation to calculate sedimentation. The similarities 

between HSPF and runoff can be seen in comparison to figure 3.4b and 3.2  

The results for DHSVM are in figure  3.4c. There is some seasonal variation, but less 

than in MUSLE. The DHSVM realizations from Sobol, under estimate the reservoir  sediment 

accumulation by a minimum of 30%. This poor performance is potentially because DHSVM was 

originally developed for hydrologic modeling in forested mountain regions, and the Crooked 

river basin is mostly flat grasslands. Furthermore, the DHSVM sediment physics are typically 

coupled with dynamic routing, which was not included here. A more holistic analysis into model 

physics would be required to address this issue in greater detail. 

3.4 Sediment Sensitivity Analysis 

 To learn more about the processes behind the sediment development in each algorithm, 

we turn to a Sobol sensitivity analysis. Each algorithm relies on different parameters, so each 

algorithm has a different number of commonly calibrated parameters. Parameters chosen for the 

sensitivity analysis were selected from Stewart et al., (2017) resulting in nine  parameters for 

HSPF, four for DHSVM and four for MUSLE1. The sensitivity analyses are presented in bar 

graphs in figure 3.5. In addition to the sensitivity analysis results, dotty plots and parameter 

distribution histograms are presented. The dotty plots show the relationship between the 

objective function (percent bias) used for algorithm evaluation and parameter changes.  

 

                              
1 The results for MUSLE are not included because there were numerical errors in some model realizations, so the 
sensitivity analysis was not completed. 
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HSPF is more sensitive to parameter interactions than individual parameter changes. JG 

has the most first order sensitivity, but it is still less than its interaction sensitivity. JG and critical 

area have a high interaction index as well as JG and KG.  

 

 

Figure 3.5: Bar graphs of Sobol sensitivity index values for DHSVM and HSPF. A value of one 

signals most sensitive, and zero signals no sensitivity. 

DHSVM has high first order sensitivity of D50 and critical area. In addition, both 

parameters have a small amount of interaction sensitivity. Critical area is the percent of the area 

that contributes sediment to the outflow. The fraction ranges from 0% to 100%, with typical 

values falling between 30% and 100%. It is applied as a multiplier of the final sediment amount, 

so the results from the algorithm rely heavily on critical area.  

3.5 Dotty Plots 

 Dotty plots are useful to see patterns in parameter sensitivities when comparing objective 

function for a range of parameter values (Wagener and Kollat, 2007). For example, they can be 



 

 

 

39 

used to diagnose the behavioral ranges of a parameter, relative to a given objective function. In 

figure 3.6 and 3.7 the objective functions are on the vertical axis and the parameters are on the 

horizontal axis. When a dotty plot shows a relatively uniform distribution of points with respect 

to the vertical axis, this can be interpreted as little-to-no model sensitivity of the objective 

function to the given parameter. When a pattern emerges, the objective function is sensitive to 

changes in the parameter.  

The dotty plots for HSPF are shown in figure 3.6. There is a similar exponential pattern 

for JS and JR parameters suggesting high algorithm sensitivity. JS and JR are scour and 

detachment exponents respectively. It is their application as an exponent that is seen in the dotty 

plot. There is also a slight exponential pattern in JG. The patterns exhibited on the dotty plots for 

the other parameters suggests a low amount of sensitivity. This agrees with the Sobol Sensitivity 

analysis.  

The dotty plots for DHSVM are seen in figure 3.7. None of the simulations had percent 

bias below 30%. Critical area shows a distinct cutoff of objective function performance 

compared to the value of critical area. This is an expected pattern because the critical area is the 

percent of the catchment that is considered to contribute to sedimentation. As the critical area 

decreases the minimum percent bias will move farther from zero. The sensitivity would not be as 

strong if DHSVM generally underestimates sedimentation. The dotty plot for D50 (median 

grainsizes) shows the sensitivity in the form of algorithm performance cutoff as well. The cutoff 

here manifests from the grainsize because the grainsize influences the overland flow transport 

capacity.  
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Figure 3.6: Dotty plots for HSPF algorithm realization with the absolute value of the absolute 

percent bias on the y axis and the parameter value on the x axis.  
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Figure 3.7: Dotty plots for DHSVM algorithm realization with percent bias on the y axis and the 

parameter value on the x axis.  

 

  

Figures 3.8 and 3.9 are histograms of the parameter values for behavioral sediment 

simulations that fall within the sediment density boundaries. The values for each parameter in 

most cases span the entire range of possible inputs. The histogram shows which parameter values 

are most common within the subset of simulations that fall within the sediment density 

boundaries.  
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Figure 3.8: Histograms of the parameter distributions for behavioral algorithm realizations that 

fall with in density error bars for HSPF.  
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Figure 3.9: Histograms of the parameter distributions for behavioral algorithm realizations that 

fall within density error bars for DHSVM.  

 For HSPF, the parameters with dominant values are JG, JR and JS. For JG a value of 1 is 

most common, for JR a value between 1 and 3 is most common and for JG and for JS a value 

between 1 and 1.5 is most common. For JR, JS and JG there are 300 or more simulations that fall 

within the most common value. The maximum for other values is 50. Critical area and K factor 

values are skewed towards 1. P factor values peak around 0.6. KS, AFFIX and KG have random 

distribution across their respective ranges.  

 For DHSVM, only simulations with critical areas above 0.8 were within the density error 

bars which emphasizes that DHSVM under estimates sedimentation in the Prineville Reservoir. 

D50 ranges from 0.5 to 2. However only values below 0.6 resulted in simulation that had 
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accumulated sediment with in the density error bars. Only D50 below 0.6 performed within 

reasonable bounds, this makes sense that it is the lower side because smaller grainsizes are able 

to be transported more easily.  

3.6 Linear Reservoir Sediment Accumulation Analysis 

3.6.1 Root Mean Squared Difference 

 The assumption that sediment accumulates linearly through time in reservoirs has been 

made in multiple past studies (Graf et al., 2010). To evaluate this assumption for the Prineville 

Reservoir, RMSE was calculated for yearly reservoir sediment accumulation between each 

algorithm realization and a comparable linear assumption with identical initial and final 

accumulated sediment values. (See section 2.6 for clarification.) While the term RMSE is used, 

we are effectively concerned in the Root Mean Squared Difference to characterize the deviation 

between each algorithm and a linear assumption of reservoir sediment accumulation, rather than 

to discuss error. Figure 3.10. shows histograms for each algorithm of yearly RMSE and table 3.1 

conveys the deviation between the linear estimate and simulation as a percent of the linear 

estimate. Only behavioral simulations are included in this analysis. 

Table 3. 2: Percent yearly deviation from a linear assumption of reservoir sediment 

accumulation for each of the three sediment algorithms.  

Algorithm % yearly deviation 

MUSLE 89.41 % 

HSPF 24.32 - 41.52 % 

DHSVM 45.07 % 
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Figure 3.10: Histograms of the yearly average RMSE for comparison to a linear assumption of 

reservoir sediment accumulation. Smaller values indicate the simulation more similar to a linear 

assumption. The values represent the average sedimentation error over the period from 1960 to 

1998.  MUSLE has 226 data points, HSPF has 640 and DHSVM has 493.  
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 MUSLE has the largest yearly deviation from the linear assumption at 89.41% which is 

followed by a 45.07% deviation for DHSVM. MUSLE and DHSVM have a small range of 

RMSE for their respective algorithm simulation; the values are equivalent with each other to 5 

decimal places and will hereafter be referred to as the same value. The values are the same across 

the simulation for two reasons. First, the yield linearity analysis presented here assumes that each 

respective simulation results in the correct amount of reservoir sediment accumulation by the end 

of the run, meaning that each model simulation has a different linear function, specific that that 

simulations initial and final value. Secondly, the parameters varied for the Sobol analysis in 

MUSLE and DHSVM are linearly related to the resulting reservoir sediment accumulation.  

 Importantly, HSPF exhibited the most complex parameter interactions among the three 

algorithms (Figure 3.5). The two most sensitive parameters were the scour and detachment 

coefficients. These coefficients are applied as exponents, so are not linearly related to the 

resulting reservoir sediment accumulation. Therefore, the HSPF simulations exhibit varying 

degrees of deviation from the linear assumption of reservoir sediment accumulation, resulting in 

a range in the percent difference. The relative RMSE for HSPF, 24.32 - 41.52 %, is the lowest of 

the three algorithms. 

 When compared to the timeseries plots in 3.4, the difference from the linear estimate 

agrees with the results. MUSLE, which is driven by both baseflow and runoff, shows the least 

yield linearity because of the seasonal variation in streamflow. DHSVM and HSPF however are 

driven by runoff which is limited in the Crooked River basin. They both produce sediment that 

accumulates at a more constant rate than MUSLE. 

In conclusion, these results demonstrate that the yield linearity of sediment is reliant on 

the streamflow regime. When modeling these processes, it is important to note how each process 
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is incorporated into the sediment algorithms. For example, MUSLE accounts for total 

streamflow, so the both baseflow and runoff influence its sediment yield, whereas HSPF and 

DHSVM are exclusively driven by runoff. The simulated runoff in the Crooked River has a 

relatively steady rate, such that DHSVM and HSPF appear to have a more linear sediment yield 

than MUSLE.  

3.6.2 Error Extrapolating Linear Projections 

This section provides a comparison of sediment yield between the first 19 years and the 

second 19 years of the time period between the reservoir surveys in 1960 and 1998. We attempt 

to replicate linear yield estimates by treating the accumulated sediment yield value in 1979 as a 

reservoir survey. The linear slope from the first period 1960-1979 is extended to the second 

period 1979 to 1998 and an error between this extrapolation and the simulated value is calculated 

as a percent difference. The percent difference for each model is seen in table 3.3. Figure 3.11 

shows histograms of the total sediment yield for each simulation in the respective time periods, 

1960 to 1979 on the left in yellow and 1979 to 1998 on the right in green. 

The results are similar to the results from the root mean squared error yield linearity 

assessment in section 3.6. It shows that the MUSLE simulations have the same percent 

difference, likely due to the linear relationship between the varied parameters and the sediment 

output. The DHSVM simulation also has the same percent difference because the parameters that 

are changed for the sensitivity analysis linearly influenced the sediment output. The simulations 

from HSPF, however, have a range of percent differences which show parameters in HSPF 

influence the magnitude of sediment yield rate.   
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Figure 3.11: Total sediment yield for 1960 to 1979 (yellow) and 1979 to 1998 (green). Only 

behavioral simulations with a final total sediment yield that fell within the sediment density error 

bars as seen in figure 3.4 were analyzed.  

 

Table 3.3: Percent difference between the total sediment yield from 1960 to 1979 and 1979 to 

1998. 

Algorithm Difference 

MUSLE 164.17% 

HSPF 11.9% to 34.00% 

DHSVM 11.84% 
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Chapter 4 Discussion & Conclusion 

 

Overview 

 As reservoir infrastructure in the United States continues to age, fill with sediment and be 

stressed by climate change, it is increasingly important to understand the processes behind 

sedimentation. The available reservoir volume surveys are too infrequent for understanding 

climate-driven changes in sedimentation rates. Hydrologically forced algorithms offer a way to 

inform process-level understanding of sedimentation drivers. Yet, few sediment algorithms have 

been applied to the problem of reservoir sedimentation and an ensemble of algorithms have 

hitherto not been brought to bear on this problem. We applied the hydrologically forced sediment 

algorithm ensemble developed by Stewart et al., (2017) that includes physically-based, 

conceptual, and empirical algorithms, to the Crooked River watershed which feeds Prineville 

Reservoir near Bend, OR. Through a Sobol sensitivity analysis we aimed to address the 

following questions:1) Can hydrologically-forced sediment algorithms help us advance reservoir 

sedimentation estimates to improve future planning?2) To which processes and inputs are 

reservoir sedimentation estimates most sensitive?  

3) What can we learn from hydrologically driven algorithms that the linear sediment yield 

assumption fails to assess? 

4.1 Streamflow Sensitivity 

 Parameter sensitivity for streamflow within the VIC model was evaluated with a Sobol 

sensitivity analysis. We found the layer 2 depth parameter was much more sensitive than other 

parameters which was consistent with findings of Demaria et al., (2007). The basin’s gradual 
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snowmelt produces consistent low flows, therefore the limiting factor of infiltration is the 

quantity of water, not the infiltration capacity (binf). For future modeling of arid, snowmelt 

dominated basins the most important parameters are baseflow related. In the case of VIC, the 

layer 2 depths need to be carefully calibrated.  

4.2 Streamflow Selection 

 Streamflow parameters to drive sedimentation were chosen based on objective function 

performance of the Sobol simulations. Initial results had poor peak flow performance for both 

magnitude and timing. To improve this, snow albedo parameters were adjusted. The selected 

parameters produced streamflow with NSE of 0.28 and a percent bias of 6.8%. Typically, for 

streamflow, an NSE greater than 0.5 is desired. However, the Crooked River is known to be 

challenging to model and our results are comparable to past studies (Mendoza et al., 2017; 

Turner, 2011). Most importantly, the need to change snow parameters corroborates with Houle et 

al., (2017) and Mendoza et al., (2015) who put forward that snow parameters are often fixed 

which limits model performance. They suggested that hydrologic models should have snow 

parameters that are easily adjusted to improve model performance. 

4.3 The Linear Sediment Yield Assumption  

The analysis of the difference between a linear yield assumption and the algorithms 

indicated that errors associated with the yield linearity assumption can range from ±25- 90% 

annually, depending on the chosen algorithm. MUSLE and DHSVM had differences from the 

linear assumption of 89.4% and 45.1%, respectively. The parameters changed in the sensitivity 

analysis for DHSVM and MUSLE have a linear relationship to the sediment output which results 

in a commensurate difference for all simulations for the respective algorithms. However, HSPF 

exhibited more complex parameter interactions and the most sensitive parameters (the scour 
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coefficient and detachment coefficient) are applied as exponents. The result is that the rate of 

sediment yield is extremely sensitive to the value of the scour coefficient and detachment 

coefficient parameters. This indicates that great care must be taken in identifying their values for 

any applications of the sediment algorithms.  

4.4 Future Work 

 This study investigated the physical drivers and model sensitivities for sediment 

algorithms MUSLE, HSPF and DHSVM. It was performed through a case study of a single 

reservoir, Prineville Reservoir near Bend, OR. To further evaluate sediment drivers and uses for 

estimating reservoir sedimentation, the analysis should be expanded to additional reservoirs 

across the West. In addition, future work should evaluate changing climate forcings on sediment 

yield.  

4.5 Conclusion 

We performed a case study on the Prineville reservoir that aimed to provide insight into 

the driving forces of sedimentation. We implemented a Sobol sensitivity analysis for both 

streamflow and sediment on a hydrologically forced sediment model ensemble developed by 

Stewart et al. (2017). The simulations from the sensitivity analysis were analyzed further to 

evaluate model performance.  

 It was found that the sediment regime relies heavily on different aspects of the 

streamflow regime. Models use the streamflow regime differently to force sedimentation, so 

model selection for sedimentation should consider the dominant processes in streamflow (i.e. 

runoff and/or baseflow). The commonly used linear assumption can be helpful, however it fails 

to assess seasonal and decadal changes in sediment yield that can cause long term errors when 

estimating sediment yield. 
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