
Hydrodynamics of Unitary Fermi Gases

by

Jasmine Brewer

A thesis submitted to the

Faculty of the University of Colorado

in partial fulfillment of the

requirements for the degree of

Bachelor of Science

Department of Physics

2015



This thesis entitled:
Hydrodynamics of Unitary Fermi Gases

written by Jasmine Brewer
has been approved for the Department of Physics

Paul Romatschke

David Grant

Jun Ye

Date

The final copy of this thesis has been examined by the signatories, and we find that both the
content and the form meet acceptable presentation standards of scholarly work in the above

mentioned discipline.



iii

Brewer, Jasmine (Engineering Physics)

Hydrodynamics of Unitary Fermi Gases

Thesis directed by Paul Romatschke

In this thesis we present fully nonlinear dissipative hydrodynamics simulations using the lat-

tice Boltzmann method which we have developed to study hydrodynamics in cold atomic gases.

We motivate and derive the specifics of the lattice Boltzmann implementation for this system,

and then use our simulations to study collective oscillations in two-dimensional Fermi gases. We

show that all dominant frequencies and damping rates of the breathing and quadrupole oscilla-

tory modes agree quantitatively with analytic solutions in the hydrodynamic limit for a gas with

ideal equation of state in a harmonic trap. We suggest improvements to our numerical methods

which we expect to improve the quantitative agreement of the quadrupole mode frequency with

the expected value outside of the hydrodynamic limit. We also suggest techniques for extracting

the non-dominant (non-hydrodynamic) damping rate of the quadrupole mode in the hydrody-

namic regime with higher precision. Additionally, we propose that the observed non-hydrodynamic

damping of the quadrupole mode would be interesting to study experimentally for applications to

collective oscillations in the quark-gluon plasma.
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Chapter 1

Introduction

Strong interactions in many-fermion systems lead to peculiar behaviors in materials important

across high energy and condensed matter physics and astrophysics. The strongly-coupled quark

gluon plasma created in heavy ion collisions exhibits elliptic flow instead of expanding isotropically

[2]. Neutron stars exhibit neutron superfluidity and possibly quark superfluidity [3]. Certain mate-

rials (namely, the cuprates) exhibit transitions to superconducting states at critical temperatures

orders much higher than can be explained by the celebrated Bardeen-Cooper-Schrieffer theory of

superconductivity [4]. Among the simplest and most experimentally accessible strongly-coupled

fermion system known currently are ultra-cold dilute gases of fermions. Fermi gases have emerged

onto the forefront of physics in recent years as a prototypical system in which to study strong

interactions in systems which are more difficult to study experimentally.

Fermi gases are ultra-cold dilute gases of fermionic atoms [5]. The interaction between atoms

scales with the s-wave scattering length a and can be tuned in experiments to explore the dynamics

of the gas as a function of the fermion-fermion interaction strength between weak attractive in-

teractions (Bardeen-Cooper-Schreiffer pairing) and strongly attractive bound states (Bose-Einstein

condensation). The unitary limit occurs at the interaction strength where bound states are just

formed, and is characterized by the divergence of the scattering length a→∞. The unitary limit

of the unitary Fermi gas is interesting because the divergence of the scattering length renders the

system “universal” in the sense that it lacks a characteristic length scale.

The so-called unitary regime of the Fermi gas is the regime of strongest fermion-fermion
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interactions. The hydrodynamic equations governing evolution of the Fermi gas in this regime are

scale invariant and approximately invariant under conformal transformations [6]. This characteristic

is important to one of the theoretical motivations for studying unitary Fermi gases. It has been

proposed that dynamics in higher-dimensional gravity can be formally related to corresponding

dynamics in a dual conformal field theory. Through this correspondence in string theory, Kovtun,

Son, and Starinets [7] showed that the ratio of shear viscosity to entropy density has an absolute

lower bound η/s > ~/4πkB. Quark gluon plasma and the unitary Fermi gas have η/s . ~/2kB [8],

and are therefore among the best candidates for saturating or exceeding this lower bound. There is

much interest in understanding the temperature, density, and other dependences of shear viscosity

in the unitary Fermi gases for the purpose of testing this conjecture.

Beyond seeking a lower bound on shear viscosity in the Fermi gas, the unitary regime has

other interesting properties. The crossover regime from weak to strong coupling which can be

observed in the Fermi gas is relevant to weak-strong coupling crossovers in other materials. As is

pointed out in Ref. [5], there is broad interest in understanding the dependence of the equation of

state and transport properties of a quantum fluid on the interaction strength in a crossover between

weak and strong coupling. In the majority of interesting physical cases however, these questions

cannot be answered by purely analytic means. In this thesis we present a versatile numerical

scheme for studying hydrodynamics in the crossover regime of the Fermi gas which may be used to

investigate these and other open problems in strongly-interacting cold atomic gases.

In the present work we have developed fully nonlinear dissipative hydrodynamics simulations

in two and three dimensions which we test by comparison with analytic solutions. We then present

a study of collective oscillations in two-dimensional Fermi gases with ideal equation of state in

a perfectly harmonic trapping potential and non-ideal equation of state in a gaussian trapping

potential. We conclude with a discussion of applications of this and similar simulations to studying

problems in physics which were not covered in this work.

This document is organized as follows: First we will introduce continuum hydrodynamics

from the perspective of kinetic theory and the Boltzmann equation. We then hope to motivate
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the lattice Boltzmann framework, by which hydrodynamics in continuous space can be reproduced

exactly from calculations on a finite set of points in position and velocity space. Finally we present

a high-level overview of unitary Fermi gases and their experimental realization to motivate our

numerical studies and show our results for the dependence on interaction strength of the frequency

and damping rates of collective oscillation modes of the Fermi gas. We will conclude with a summary

of results and discussion of future work.



Chapter 2

Hydrodynamics

In this chapter we will discuss the theories of continuum hydrodynamics and motivate the

discretization scheme by which continuum hydrodynamics can be put on a lattice and solved on

the computer. We henceforth adopt a system of units where ~ = kB = 1, and let latin indices i

∈ {1, ..., D} where D is the number of spatial dimensions so that we can label spatial vectors v

explicitly in terms of their components as vi. We also use the notation ∂i ≡ ∂
∂xi

for coordinates xi.

2.1 Continuum Hydrodynamics

Hydrodynamics is a phenomenon in statistical mechanics which emerges from the complex,

coupled microscopic dynamics of a macroscopic number of interacting particles. Although in prin-

cipal the dynamics could be solved exactly by considering the coupled equations of motion for

every particle in a fluid, the impracticality of doing this computation for any macroscopic sys-

tem requires an alternative method. The typical approach is to consider a macroscopic fluid as a

statistical ensemble whose bulk dynamics are described by the following macroscopic variables [9]:

the fluid mass density ρ(x, t) = m · n(x, t),

the macroscopic fluid velocity u(x, t),

the (kinetic and internal) energy ε(x, t),

the temperature T (x, t),

and the pressure P (x, t).
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The pressure is related to the temperature and the density via the equation of state P = P (n, T ).

An ideal gas has the simple equation of state P = nT , but in general this relation depends on

specifics of the material and may be much more complicated.

2.1.1 The Boltzmann Equation

The Boltzmann transport equation (henceforth called the Boltzmann equation) was derived

by Ludwig Boltzmann in 1872 to describe the macroscopic evolution of the hydrodynamic variables

in terms of a particle distribution function f = f(x,v, t) which describes the fractional distribution

of particles in position and velocity space. f has the property that its integral over phase space∫
f(x,v, t)dDxdDv is the total number of particles N(t). For an otherwise free system of interacting

particles with phase space distribution f , the Boltzmann equation reads

[∂t + v · ∇] f(x,v, t) = −C[f ]. (2.1)

The collision integral C[f ] depends on the specifics of the particle interactions, and the microscopic

velocity v is the particular location in velocity space of a fluid element described by f . It will

be important for the discussion that follows to distinguish the microscopic velocity v from the

macroscopic, or average, velocity u of the fluid.

In the presence of an external potential the Boltzmann equation is modified to[
∂t + v · ∇ − ∇U(x)

m
· ∇v

]
f(x,v, t) = −C[f ], (2.2)

where the operator ∇v takes the gradient in velocity space

∇v =
∂

∂vx
x̂+

∂

∂vy
ŷ +

∂

∂vz
ẑ (2.3)

and U(x) is the potential energy associated with a conservative force F(x) = −∇U(x).

In general the collision integral C[f ] has complicated nonlinear dependence on the details of

the microscopic interactions. However, for a fluid which has sufficiently strong interactions that

it has a small non-equilibrium component, we can take the well-known Bhatnagar-Gross-Krook
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(BGK) ansatz (see Ref. [10]) for the collision integral

C[f ] =
1

τ
(f − feq), (2.4)

where τ is a characteristic relaxation time of the fluid that is associated with its shear viscosity η

by

τ = η/P, (2.5)

where P is the pressure [11].

The collision integral C[f ] certainly must conserve the conserved fluxes of the hydrodynamic

scheme (i.e mass, momentum, and energy for a second-order scheme). This is enforced if the

equilibrium distribution feq is a static solution of the Boltzmann equation(
v · ∇ − ∇U(x)

m
· ∇v

)
feq = 0. (2.6)

The equilibrium solution then takes the form of a Maxwellian

feq(x,v, t) ∝ e−
(v−u)2

2c2s(T ) , (2.7)

where cs(T ) =
√

T
m is the speed of sound in the fluid at temperature T and u = u(x, t) is the

macroscopic fluid velocity.

In the Boltzmann formulation, the macroscopic hydrodynamic variables are identified as

velocity moments of the particle distribution function

ρ ≡ m
∫
dDvf, (2.8)

ρu ≡ m
∫
dDvvf, (2.9)

ε ≡ m

2

∫
dDvv2f (2.10)

where ρ is the mass density, ε is the energy density, and D refers to the number of spatial dimensions.

The constant of proportionality of the equilibrium distribution is determined by enforcing that the

zeroth velocity moment in Eq. (2.8) is satisfied for the equilibrium distribution feq. Specifically,

ρ = m
∫
dDvfeq implies

feq(x,v, t) =
ρ

mcDs (T )
√

2DπD
e
− (v−u)2

2c2s(T ) . (2.11)



7

The conservation of the second velocity moment Eq. (2.10) with the equilibrium distribution Eq.

(2.34) then gives the total energy density ε to be the sum of kinetic and internal energy densities:

ε =
1

2
ρu2 +

D

2
ρc2

s(T ). (2.12)

The previous discussion outlined a kinetic theory approach to hydrodynamics in that we de-

scribed the macroscopic hydrodynamic variables ( ρ,u, and ε) as emerging out of the local transport

of an underlying microscopic distribution. To connect this discussion with the systems of partial

differential equations which are more conventionally associated with hydrodynamics, we note that

the Navier-Stokes equations are derived by enforcing that up to second-order velocity moments of

the Boltzmann equation are satisfied. For example, the zeroth velocity moment of the free-space

Boltzmann equation is

∫ (
∂

∂t
+ v · ∇

)
f(x,v, t)dDv = −

∫
C[f ]dDv. (2.13)

Since we require that the collision integral C[f ] conserves mass,
∫
C[f ]dDv = 0. Therefore

we obtain the free-space continuity equation of the Navier-Stokes equations from evaluating Eq.

(2.13) using the definitions of the macroscopic variables as velocity moments of f in Eqs. (2.8) and

(2.9):

∂ρ

∂t
+∇ · ρu = 0. (2.14)

The momentum and energy conservation Navier-Stokes equations can be derived similarly

from first and second velocity moments of the Boltzmann equation. From this perspective, it is clear

that hydrodynamics doesn’t “stop” at the Navier-Stokes level - in principle, arbitrarily high velocity

moments of the Boltzmann equation are associated with some conserved flux. Hydrodynamics

beyond the Navier-Stokes level is even qualitatively relevant to understanding dynamics in many

fluid systems.
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2.2 Discrete Hydrodynamics

There are several ways in which we could proceed to calculate the macroscopic hydrodynamic

behavior in terms of the observables ρ(x, t), u(x, t), ε(x, t), etc. We could solve a system of partial

differential equations describing the conservation of the hydrodynamic variables. We could calcu-

late the macroscopic hydrodynamic variables explicitly from Eqs. (2.8), (2.9), and (2.10), either

analytically or by numerical integration, assuming that the particle distribution function f(x,v, t)

is known. Alternatively, if f(x,v, t) is known, it is reasonable to ask whether there is a way to

compute the moments in Eqs. (2.8), (2.9), and (2.10) without evaluating any integrals. In the

lattice Boltzmann framework, the integral moments in Eqs. (2.8), (2.9), and (2.10) become sums

over a finite set of velocities.

2.2.1 The Lattice Boltzmann Framework

As mentioned above, the idea of the lattice Boltzmann framework is to reduce the integral

velocity moments of the particle distribution function to sums of the particle distribution function

over a finite set of cleverly-chosen velocities which exactly match the values of the integrals. Then

the exact calculation of ρ(xi, t), u(xi, t), etc. at a finite set of position coordinates xi requires

knowledge of the particle distribution function only at a finite set of coordinates in phase space

f(xi,vi, t). The lattice Boltzmann method concerns itself with tracking the particle distribution

function f(xi,vi, ti) as it evolves in discretized time ti+1 = ti + δt and uses this information to

calculate the macroscopic hydrodynamic variables in discretized time and space ρ(xi, ti), etc. In the

following sections, we will discuss the derivation and use of this method to discretize hydrodynamics

and solve it on the computer.

2.2.1.1 Discrete Evolution

We first motivate the discrete Boltzmann equation by noting that, for small δt, the Boltzmann

equation can be approximated using the limit definition of the derivative df/dt. Specifically, we
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have

df

dt
=
∂f

∂t
+
dx

dt

∂f

∂x
≈
f(x + dx

dt δt, t+ δt)− f(x, t)

δt
(2.15)

Noting that dx
dt = v and ∂f

∂x = ∇f , we have a discrete approximation to the Boltzmann equation

[∂t + v · ∇] f ≈ f(x + vδt, t+ δt)− f(x, t)

δt
. (2.16)

For the Boltzmann equation with an external force per unit mass F = −∇U(x)
m , we have[

∂t + v · ∇ − ∇U(x)

m
· ∇v

]
f ≈ f(x + vδt, t+ δt)− f(x, t)

δt
+ F · ∇vf (2.17)

We note however that 2.16 only recovers the Boltzmann equation up to first order in derivatives,

since we have

f(x + vδt, t+ δt)− f(x, t) = [∂t + v · ∇] δtf +
1

2
[∂t + v · ∇]2 δt2f + ... (2.18)

Therefore to recover the continuum Boltzmann equation up to second order in derivatives in

our discrete scheme requires that we introduce numerical corrections to some of the parameters in

the Boltzmann equation to cancel unwanted terms.

To proceed with the numerical implementation, we formulate a dimensionless version of the

Boltzmann equation by selecting a length scale R⊥ and a frequency (inverse-time) scale ω⊥ by

which to normalize space and time coordinates. For the moment we leave these values arbitrary,

and will associate them with physical values later when it becomes clear how best to simplify the

equations. We have non-dimensional coordinates

x = x̄R⊥ t̄ = tω⊥ (2.19)

which are hence associated with velocity re-scalings

v = v̄R⊥ω⊥ u = ūR⊥ω⊥. (2.20)

The Boltzmann equation is given in terms of these dimensionless coordinates as(
∂t̄ + v̄ · ∇̄ − 1

R2
⊥ω

2
⊥m
∇̄U(x̄) · ∇̄v

)
= −f − feq

τω⊥
. (2.21)
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For convenience in simplifying this equation, we can choose our normalization length scale R⊥ to

be [1]

R⊥ =

√
T0

mc2
Lω

2
⊥

(2.22)

so that 2.21 takes its final form(
∂t̄ + v̄ · ∇̄ −

c2
L

T0
∇̄U(x̄) · ∇̄v

)
f = −f − feq

τω⊥
. (2.23)

The associated dimensionless equilibrium distribution is

feq(x̄, v̄, t̄) =
ρ

mc3
s(T )
√

8π3
e
− (v̄−ū)2

2c2
L
θ , (2.24)

where θ = T/T0 is a dimensionless temperature coordinate.

To recover the Boltzmann equation up to second order in derivatives using the left-hand side

of Eq. (2.18), we can now define numerical corrections that cancel the higher-order terms of Eq.

(2.18) that do not appear in the Boltzmann equation [1]:

ũ = u− δt

2
F ,

τ̃ =
1

2
+
ω⊥τ

δt
,

F̃ = F(1− δt

2τ
). (2.25)

where numerically-corrected variables are indicated with a tilde. The replacements u→ ũ, τ → τ̃ ,

and F → F̃ in the dimensionless Boltzmann equation Eq. (2.21) allow the evolution scheme Eq.

(2.17) to be exact up to second-order in derivatives.

2.2.1.2 Gauss-Hermite Quadrature

In one dimension, the Maxwellian distribution e−(v−u)2/2 is the generating function of the

Hermite polynomials Hn(v):

e−(v−u)2/2 = e−v
2/2

∞∑
n=0

Hn(v)
un

n!
. (2.26)
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The particle distribution function can be cast in terms of the tensor Hermite polynomials H i1...in
n

as (see Ref. [12])

f(x,v, t) = e−v
2/2 lim

N→∞

N∑
n=0

H i1,...,in
n (v)

ai1...i2nn

n!
(2.27)

The Gauss-Hermite quadrature gives that the integrals
∫
e−v

2/2P (v)dv can be calculated exactly

as a sum over the roots of Hn(v) if P (v) is a polynomial having degree d ≤ 2N .

Therefore there exists a set of weights wi for which sums over the set of roots ξi of Hn(v)

exactly reproduce the integrals in Eqs. (2.8), (2.9), and (2.10):

∑
iwifi = m

∫
dDvf ,∑

iwiξifi = m
∫
dDvvf ,∑

iwiξ
2
i fi = m

∫
dDvv2f. (2.28)

We note that the set of ξi represents a discrete sampling in velocity space. If N is large enough,

it possible to exactly calculate the macroscopic hydrodynamic variables up to arbitrary order in

velocity moments, i.e. ∑
i

wiξ
M
i fi = m

∫
dDvMf. (2.29)

This forms the basis of the lattice Boltzmann method. If we further discretize the spatial coordi-

nates, we obtain lattices of discrete points in position space which are connected to one another by

the velocities ξi. The set ξi describes every velocity by which a particle can move from one point

in position space to another in one time step δt. Fig. 2.1 shows a basic phase space discretization

scheme for the lattice Boltzmann method in two and three dimensions. The center is a specific

location in position space, and the vectors indicate the possible velocities of a particle at that point.

The idea of computing the discrete versions of the equilibrium distribution feq and the forcing

term is that we enforce that the sums and integrals match exactly up to the hydrodynamic order

which we wish to recover. It is important to notice that although it is possible to match arbitrarily

high velocity moments of the particle distribution function in this way, successively higher velocity

moments can only be computed on successively higher-order lattices. The lattice which we use in
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Figure 2.1: Standard D2Q9 (2 dimensions and 9 speeds) and its three-dimensional extension D3Q19
(3 dimensions and 19 speeds).
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this work is less common than the two-dimensional lattice pictured in Fig. 2.1 and recovers higher

order velocity moments than is possible with that lattice. We use a lattice with 2 dimensions and

25 velocities (called D2Q25) pictured in Fig. 2.2.

Lattices are required to have a set of discrete symmetries to represent physical symmetries in

the physical system. For example, we enforce that quantities we associate with probabilities sum to

one, and that our lattice has discrete rotational symmetry. The lower order symmetries are shown

in Eq. (2.30). See Ref. [9] for discussion of higher order lattice symmetries.

∑
iwi = 1 ,∑

iwiξi = 0 ,∑
iwiξiξi = c2

LI. (2.30)

Here I is the identity. It is important to note that the final relation in Eq. (2.30) and Eq. (2.12)

together limit the fluid velocity u in any direction in dimensionless units to be less than cL. The

existence of a maximal velocity on the lattice is intuitive because each of the discretization schemes

shown in Figs. 2.1 and 2.2 have maximum distances that a particle can “hop” on a time step. Since

the D2Q25 lattice shown in Fig. 2.2 has longer possible velocities than the D2Q9 lattice shown in

Fig. 2.1, its lattice velocity cL is also larger. The value of cL for a specific discretization scheme can

be computed from Eq. (2.30), and in particular c2
L = 1−

√
2/5 for D2Q25 and c2

L = 1/3 for D2Q9.

Therefore, in addition to recovering higher-order velocity moments of the distribution function, the

D2Q25 lattice has the advantage of supporting fluids which obtain higher velocities.
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Figure 2.2: The extended two-dimensional lattice with 25 velocities which is used for the simulations
proposed in this thesis
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2.2.1.3 Equilibrium Distribution

The Hermite polynomials form an orthogonal basis set for the equilibrium distribution. In

index notation, the relevant tensor Hermite polynomials are

P0(v) = 1 ,

P i
1(v) = vi ,

P ij
2 (v) = vivj − c2

Lδ
ij ,

P 0
2 (v) = Tr(P ij(v)) = v2 −Dc2

L. (2.31)

where D is the number of dimensions and cL is the lattice speed of sound, the maximum speed which

can be supported by the geometry of a particular lattice. Then we have from the Gauss-Hermite

quadrature that

e
− (v−u)2

2c2
L
θ = e

− v2

2c2
L

(
a0P0 + aiP

i
1 + aijP

ij
2 + a0

2P
0
2 + ...

)
, (2.32)

where a sum over spatial dimensions of like indices is implied, e.g. aijP
ij =

∑
i

∑
j aijP

ij where

i, j index the components of the tensors a and P . The coefficients a0, ai, aij and a0
2 are calculated

by enforcing that the following equations are satisfied:

∑
wk

(
a0P0 + aiP

i
1 + aijP

ij
2 + a0

2P
0
2

)
=
∫
dDvfeq ,∑

wkv
(
a0P0 + aiP

i
1 + aijP

ij
2 + a0

2P
0
2

)
=
∫
dDvvfeq ,∑

wk

(
v2 −Dc2

L

) (
a0P0 + aiP

i
1 + aijP

ij
2 + a0

2P
0
2

)
=
∫
dD
(
v2 −Dc2

L

)
feq. (2.33)

Including up to third order polynomials gives the equilibrium distribution [1]

feq =
n√

2DπDc3
s(T0)

e
− v̄2

2c2
L

[
1 +

ū · v̄
c2
L

(
1 +

θ − 1

2c2
L

(v̄2 − (D + 2)c2
L)

)
+

(ū · v̄)2

2c4
L

− ū2

2c2
L

+
θ − 1

2c2
L

(
v̄2 −Dc2

L

)
+

(ū · v̄)3

6c6
L

− ū2(ū · v̄)

2c4
L

]
. (2.34)

The temperature parameter is θ = T/T0 for an ideal equation of state P = nT . For non-ideal

equations of state P = P (n, T ), we have θ = P
nT0

.
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2.2.1.4 Discretization of External Force

The term in the Boltzmann equation associated with an external force

−
c2
L

T0
∇̄U(x̄) · ∇̄vf (2.35)

can be similarly discretized in terms of the Hermite polynomials as

c2
L

T0
∇̄U(x̄) · ∇̄vf = e

− v̄2

2c2
L

(
a0P0 + aiP

i
1 + aijP

ij
2 + a0

2P
0
2 + ...

)
. (2.36)

Defining the dimensionless force F̄ = − c2
L
T0
∇̄U(x̄), we have [1]

F̄ · ∇vf =
n√

2DπDc3
s(T0)

e
− v̄2

2c2
L

c2
L

[
−ū · F̄

(
1 +

ū · v̄
c2
L

)
+ v̄ · F̄(

1 +
v̄ · ū
c2
L

+
(v̄ · ū)2

2c4
L

− ū2

2c2
L

+
θ − 1

2

(
v̄2

c2
L

− (D + 2)

))] (2.37)

2.2.1.5 The Algorithm

We finally conclude by presenting the procedure for calculating the macroscopic hydrody-

namic variables ρ(x, t), u(x, t), and ε(x, t) using the ingredients prescribed above.

The lattice Boltzmann algorithm prescribes the evolution of the particle distribution function

f(xi,vi, ti) on a lattice of points xi in space, and at discrete time intervals ti. The evolution is

given by the following procedure:

1). Prescribe the initial state of the particle distribution function by specifying the initial state

macroscopic variables ρ(xi, 0), ui(xi, 0), and ε(xi, 0) and assuming that the fluid is in equilibrium

f(xi,vi, 0) = feq(ρ(xi, 0),u(xi, 0), ε(xi, 0)).

2). Calculate the (numerically-corrected) macroscopic variables ρ, ũ and ε as the sums in

Eq. (2.28) with the numerical corrections given in Eq. (2.25).

3). Use the newly-calculated values of the macroscopic variables (and u ← ũ) to calculate

the discretized versions of the equilibrium distribution feq and the force term F̄ · ∇v.
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4). Temporarily replace f(xi,vi, t) by its equilibrium-relaxed value

f(xi,vi, t) = f(xi,vi, t)

(
1− 1

τ

)
+ feq(xi,vi, t)

1

τ
+

¯̃
F · ∇vf(xi,vi, t) (2.38)

5). Propagate the particle distribution function according to the evolution equation Eq.

(2.17) to advance to the next time step ti+1 = ti + δt.

6). Repeat the procedure from step 2 for each successive time step.



Chapter 3

Unitary Fermi Gases

3.1 Background

Ultracold dilute gases of fermions, called Fermi gases, have emerged onto the forefront of

physics in recent years due to the experimental realization of Bose-Einstein condensation (BEC) in

a dilute gas of bosons in 1995 [13] and of degenerate Fermi gases in 1999 [14]. The unitary regime

of the Fermi gas is in the crossover regime between Bose-Einstein condensation and Bardeen-

Cooper-Schriefer (BCS) states [15]. BEC is a regime in which fermions form two-body bound

states, rendering them composite bosons. BCS is a regime in which fermions pair weakly across

the Fermi surface (see Fig. 3.1). In the crossover regime between these pairing structures is the

most strongly-interacting state [16].

Figure 3.1: This cartoon depicts fermion pairing as a function of interaction energy for the BEC-
BCS crossover. Reproduced from [16].

In cold atomic gas experiments, collections of atoms (often Potassium) are cooled to tem-
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peratures on the order of milli-Kelvins and loaded into optical traps which spatially confine the

atoms. Optical lattices enable the study of two-dimensional atomic gases because strong confine-

ment in one direction “freezes out” the degrees of freedom in that direction and makes the system

effectively two-dimensional. For the two-dimensional Fermi gas experiments we consider in this

thesis, there are several traps which each confine a two-dimensional gas with an isotropic Gaussian

density profile, somewhat like a stack of pancakes. The probability of quantum tunneling between

the individual two-dimensional gases should be negligible for our numerical solutions (which do not

account for this effect) to remain accurate.

Fermi gases are simpler to study than many other strongly-coupled fermion systems because

the fermion-fermion interaction strength can be tuned in experiment using a variable attractive

potential. In particular, the van der Waals interaction is an attractive potential between two atoms

which is due to interactions between both permanent and induced dipoles and can be tuned via a

homogenous magnetic field. The attractive potential is very sensitive to the magnetic field near a

scattering Feshbach resonance. This characteristic can be used to tune fermion-fermion interactions

in a Fermi gas through the BCS-BEC crossover regime.

We study in this thesis gases which are in the normal phase, meaning that they are at a

temperature above the superfluid phase transition temperature Tc. In principal the hydrodynamic

description is also applicable to the study of superfluids, however the approach is typically to use

two-fluid hydrodynamics to describe separately the normal and superfluid components of the fluid.

3.2 Hydrodynamics in cold atomic gases

Hydrodynamics is a valid theory for near-equilibrium statistical ensembles, and is therefore

relevant when dynamics occur on long time scales relative to the characteristic equilibration time

τ of the system. This is certainly satisfied for all dynamics in the so-called hydrodynamic limit

τ → 0. Since τ is proportional to the shear viscosity η as in Eq. (2.5), the hydrodynamic limit also

corresponds to η → 0, and consequently the divergence of the scattering length a→∞. Therefore

the hydrodynamic limit of the Fermi gas is precisely the unitary regime. Hydrodynamics is also
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quantitatively applicable outside of the limit τ → 0, so we expect hydrodynamics to work in general

near the unitary regime where a is large.

Furthermore, it is not necessarily immediately clear that we can validly assume classical

Boltzmann statistics for a fluid which should clearly exhibit quantum statistics. In [1], we note

that accurately representing the macroscopic hydrodynamic variables does not indicate that we

have accurately represented the underlying particle distribution. We do not claim to accurately

represent the particle distribution function, and instead approach the use of hydrodynamics as an

effective macroscopic theory.

Strongly interacting fluids have anomalously low viscosity, and are therefore candidates for

“perfect fluids”, which would saturate the lower bound η/s = 1/4π. To gain a qualitative under-

standing of the relationship between shear viscosity and interaction strength, we can approximate

the shear viscosity in a fluid as [17].

η =
〈p〉
3σ

, (3.1)

where 〈p〉 is the mean momentum and σ is the collision cross-section for particles in the fluid. The

collision cross-section increases with interaction strength, so Eq. (3.1) indicates that stronger fluid

interactions will result in lower shear viscosity.



Chapter 4

Collective Oscillations in Unitary Fermi Gases

4.1 Background

A strongly-interacting fluid which experiences a perturbation from a stable solution exhibits

macroscopic oscillations around equilibrium that are qualitatively different from those that would

be observed in an ordinary weakly-interacting fluid. In two dimensions, any oscillation about

a stationary center of mass is a linear combination of the breathing and quadrupole oscillatory

modes depicted in Fig. 4.1.

Figure 4.1: Cartoons depicting breathing (left) and quadrupole (right) oscillatory modes. Repro-
duced from [18].

Collective oscillations in two-dimensional Fermi gases have been studied by the group of
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Michael Köhl. In Ref. [19], they study the dependence of the frequency and damping of the

breathing and quadrupole modes on the interaction strength ln(kFa) near the unitary regime, where

the Fermi momentum kF is a normalization coefficient for the scattering length that depends on

the number density [15]. Their results are reproduced in Fig. 4.2. Note that the two-dimensional

scattering length a2D in the figure is what we refer to as a. Although we do not present a quantitative

analysis in this work relating ln(kFa) to our ω⊥τ , this is fairly straightforward and will be discussed

in Ref. [1].

In the remainder of this chapter we present numerical studies of collective oscillations in

two-dimensional Fermi gases. We first present our results for the case of a gas with ideal equation

of state P = nT in a harmonic trap, and compare to scaling solutions which we derive in this.

Finally we present results for the case of a gas with non-ideal equation of state given by Ref. [20]

in a Gaussian trap.

4.2 Thermal Model for Collective Oscillations

The temperature enters the model through the parameter θ in the equilibrium distribution

Eq. (2.34). It has been shown Ref. [21] that a spatially- and time-dependent temperature can be

included in the lattice Boltzmann method by inclusion of an internal energy distribution function

ε(x,v, t) that obeys the same evolution equation as the particle distribution function but with a

different characteristic relaxation time τE :

ε(x + vδt, t+ δt)− ε(x, t) = − 1

τE
(ε− εeq). (4.1)

However, we found in this study that the numerical stability of this thermal model was poor

compared to that of the isothermal model and was sensitive to the boundary conditions placed on

the internal energy distribution function. Therefore we opted to take the gas to have a temperature

that is constant in space but is allowed to fluctuate in time. Specifically, we calculate θ at each

time step to be

θ =
P

2Nc2
L

, (4.2)
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Figure 4.2: Data from two-dimensional Fermi gas experiments showing the dependence of oscilla-
tions frequency and damping rates on the interaction strength ln(kFa) for breathing and quadrupole
modes. ωB and ωQ are the frequencies of the breathing and quadrupole mode respectively; ΓB and
ΓQ are the associated damping rates. The normalizations are relative to ω⊥ =

√
ωxωy and ωy, and

an anisotropy of less than 2% implies that ωy ≈ ωy. Reproduced from [19].
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where P is the internal (potential) energy P =
∑

x

(
ε(x)− ρ(x)U(x)2

)
and N =

∑
x ρ(x). (ρ, U,

and ε are velocity moments of the distribution function given in Eq. (2.28)).

4.3 Harmonic Traps

We first study the case of a strongly-interacting fluid with an ideal gas equation of state

P (n, T ) = nT in a harmonic trap. Let σ denote the equilibrium standard deviation of an isotropic

harmonic trapping potential and σx, σy be standard deviations in the x̂ and ŷ directions, so that in

the equilibrium state σ = σx = σy. Then we excite a pure breathing mode oscillation by initializing

our cloud with a symmetric non-equilibrium density profile σx = σy 6= σ. To excite the pure

quadrupole mode, we initialize a cloud with an elongated density profile σx 6= σ and σy = 1/σx.

For the data shown in the following section, we excite both modes simultaneously by a deformation

σx = σ and σy 6= σ and then separate the resulting oscillation into breathing and quadrupole mode

components by B(t) = σx(t) + σy(t) and Q(t) = σx(t)− σy(t).

Fig. 4.3 shows the resulting time evolution of two-dimensional snapshots of the density profile

for breathing mode and quadrupole mode oscillations.

4.3.1 Analytic Approach

In this case the force term in the Boltzmann equation is associated with a harmonic potential

U(x) = 1
2mx2: F = −mx. In the following we derive scaling solutions for the breathing and

quadrupole mode oscillations. This analysis follows closely a section in [1] written by P. Romatschke.

An equilibrium solution to the dimensionless Boltzmann equation[
∂t̄ + v̄ · ∇ −

c2
L

T0
∇U(x) · ∇v

]
f = −f − feq

τω⊥
(4.3)

with T = T0 and the ideal gas equation of state P = nT is

f0(x̄, v̄) =
1√

8π3c3
s(T0)

e
− v̄2

2c2
L

−U(x̄)
T0 . (4.4)
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Figure 4.3: Two-dimensional simulated density profiles for quadrupole and breathing mode oscil-
lations of unitary Fermi gases in a harmonic trap.
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Ref. [11] takes the ansatz

f(x̄, v̄, t̄) = f0

(
xi
bi(t̄)

,
bi − xiḃi(t)/bi(t)

θ
1/2
i (t)

)
(4.5)

for the particle distribution function and shows that integrals of the Boltzmann equation with this

ansatz give a set of differential equations in scale parameters bi and θi:

b̈i(t̄) + bi(t̄)−
θi(t̄)

bi(t̄)
= 0 (4.6)

θ̇i(t̄) + 2
ḃi(t̄)

bi(t̄)
θi(t̄) = −θi(t̄)− θ̄

τω⊥
. (4.7)

Here θ̄ is the average value of the θi. Furthermore we associate the scale parameters bi with the

cloud width in the î direction and the θi’s with a temperature coordinate. For small perturbations

bi(t̄) = 1 + δbi(t̄), the equations decouple into a breathing mode δB(t̄) = 1
2 (δbx(t̄) + δby(t̄)) and a

quadrupole mode δQ(t̄) = 1
2 (δbx(t̄)− δby(t̄)). With the initial conditions bi(0) = 1 and ˙δbi(0) = 0,

Eqs. (4.6) and (4.7) become

δB̈(t̄) + 4δB(t̄) = 0. (4.8)

δQ̈(t̄) + 2δQ(t̄) + τω⊥

(
δ
...
Q(t̄) + 4δQ̇(t̄)

)
= 0. (4.9)

The solutions to these equations are an undamped breathing mode oscillation

δB(t̄) = Ae−ΓB t̄ cos(ωB t̄+ phase) (4.10)

with ΓB = 0 and a quadrupole mode oscillation

δQ(t̄) = Be−Γ0 t̄ cos(ωQt̄+ phase) + Ce−Γ1 t̄. (4.11)

The term Be−Γ0 t̄ dominates in the hydrodynamic limit τ → 0 and is therefore referred to as the

hydrodynamic component of the quadrupole mode oscillation. The purely damped term Ce−Γ1 t̄ is

referred to as the non-hydrodynamic mode and arises only away from the hydrodynamic regime.
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4.3.2 Numerical Results

Motivated by the scaling solutions Eqs. (4.10) and (4.11), we extract the frequencies and

damping rates of B(t) = bx(t)+by(t) by a five-parameter nonlinear fit of the form Ae−ΓB t̄ cos(ωB t̄+

φB)+∆B and of Q(t) = bx(t)−by(t) by a seven-parameter nonlinear fit of the form Be−Γ0 t̄ cos(ωQt̄+

φQ) + Ce−Γ1 t̄ + ∆Q. In Fig. 4.4 we show our numerical results for the frequencies and damping

rates as a function of the normalized relaxation time τ compared to the scaling solutions Eq. (4.8).

Figure 4.4: Frequencies and damping rates of the breathing and quadrupole mode oscillations as
a function of the dimensionless relaxation time ω⊥τ for a gas with ideal equation of state in a
harmonic trap. Lines show the scaling solutions in Eq. (4.8) and dots are numerical results.

4.4 Gaussian Traps

It is extremely difficult to optically confine atoms in a purely harmonic trap because the

Gaussian intensity distribution of a laser beam produces anharmonicities in the trapping potential

[18]. Because scaling solutions are available only in the case of a harmonic trapping potential, we

use our simulations to study unitary Fermi gases in Gaussian traps. A Gaussian potential is given

by

U(x̄) = V0(1− e−
x̄2

σ2 ), (4.12)
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where V0 is the potential depth. We calculate σ by enforcing that this Gaussian potential approx-

imates our harmonic potential near the center of the trap x̄ = 0. Since

V0(1− e−
x̄2

σ2 ) ≈ V0
x̄2

σ2
(4.13)

near x̄ = 0 and the harmonic trapping potential associated with the dimensionless Boltzmann

equation 2.21 is U(x̄) = T0x̄2

2c2
L

, we associate σ2 = 2c2
L
V0
T0

.

4.5 Non-Ideal Equation of State

Thus far in this analysis we have used the assumption that the unitary Fermi gas has the

equation of state of an ideal gas. Enss et al. [20] suggest that in fact the equation of state of the

Fermi gas even at moderate interaction strength is significantly different than the ideal prediction.

The frequencies and damping rates of the collective mode oscillations in unitary Fermi gases are

a good probe of the equation of state because the breathing mode frequency and damping rate is

supposed to be sensitive to the equation of state, while the frequency of the quadrupole mode is

not [18].

Enss et al. [20] computed the equation of state at finite temperature in the crossover regime

using a self-consistent T-matrix approach (see [20]). We use this equation of state to calculate

θ = P (n,T )
nT0

in the equilibrium distribution feq.

We test the non-ideal equation of state in harmonic and Gaussian traps. Fig. 4.5 shows the

dependence of the mode frequencies and damping rates for a gas with this non-ideal equation of

state in a Gaussian trap with V0/T0 = 10.

We note that the frequencies and damping rates of the gas with non-ideal equation of state

in a Gaussian trap are qualitatively similar to those with an ideal equation of state in a harmonic

trap. For gases with a non-ideal equation of state in a Gaussian trap however, the “undamped”

breathing mode oscillation shows a low but distinctly non-zero damping rate. We also note that

the frequencies of both the breathing and quadrupole modes are lower in the hydrodynamic limit

τ → 0 for a gas with non-ideal equation of state in a Gaussian trap that for its harmonic and ideal
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Figure 4.5: Frequencies and damping rates of the breathing and quadrupole mode oscillations as a
function of the normalized relaxation time ω⊥τ

counterparts.



Chapter 5

Conclusions and Future Work

We conclude by noting that we have produced two- and three-dimensional fully nonlinear

lattice hydrodynamics simulations which can be used to study dynamics in unitary cold atomic

gases. We have compared our numerical solutions to available analytic solutions in the case of

collective oscillations of an ideal unitary Fermi gas in a perfectly harmonic trapping potential

to study their accuracy. We see very good quantitative agreement between the breathing mode

frequency and damping rate ωB and ΓB and the hydrodynamic quadrupole mode damping rate Γ0

with the analytic solutions for all values of τ . We also see quantitative agreement with analytic

solutions of the quadrupole mode frequency ωQ in the hydrodynamic limit τ → 0. We see qualitative

agreement also between the quadrupole mode frequency ωQ and the non-hydrodynamic quadrupole

mode damping rate Γ1 for all values of τ . We propose in Ref. [1] that the disagreement of the

quadrupole mode frequency outside of the hydrodynamic limit may be due to the fact that formally

the lattice Boltzmann method only recovers continuum hydrodynamics in the hydrodynamic limit

τ → 0. We expect that if this is the case, then using a finer velocity discretization scheme (e.g. a

lattice with more possible velocities) will improve the agreement of our simulated quadrupole mode

frequency ωQ in a harmonic trap with the analytic results. We will test this in our future work.

The quantitative disagreement of the non-hydrodynamic mode damping Γ1 with analytic

results we attribute in Ref. [1] to the smallness of the term e−Γ1 t̄ compared to e−Γ0 t̄ which makes

it uncertain to extract the value of Γ1. For the same reason, we expect this parameter also to

be difficult to determine with precision in experiments, though we suggest that it would be an
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interesting parameter for experimentalists to record for applications of the non-hydrodynamic mode

damping rate to the study of hydrodynamics in the quark-gluon plasma. We further suggest that

careful selection of initial conditions will make it possible to maximize the ratio e−Γ1 t̄/e−Γ0 t̄ and

may enable the value of Γ1 to be extracted with higher precision. We intend to explore these

improvements in future work.

By fairly simple extensions of our hydrodynamic simulations, we intend to reproduce similar

studies of collective oscillations in three dimensions. These studies will be applicable to a wider

array of experimental data and therefore make the domain of applicability of our simulations more

broad. Furthermore, hydrodynamics is a fundamentally different theory in two dimensions than

three, and in quantum fluids in particular quantum fluctuations play a much larger role in two

dimensions than in three [20]. We therefore expect that simple extensions of our simulations to

three dimensions may yield new physical insight.

Further possibilities for improvements to the accuracy of the simulation would be tests of

the spatially-constant temperature profile assumed in the simulations of collective oscillations, and

possible improvements to the stability of the spatially-dependent temperature model that would

enable us to implement this in the code.

We finally note that the primary motivation of this work is not the results presented in this

thesis, but to verify the accuracy and stability of the code in several different physical configurations

so that it may be used later to study new physics which has not yet been produced in the laboratory

and suggest avenues to experimentalists which may yield interesting new results. Some ideas which

we have discussed so far with collaborators Ana Maria Rey and the group of Deborah Jin involve

using our code to study spin diffusion in unitary Fermi gases. Our hydrodynamic description also

remains valid near the unitary regime but where the scattering length a is effectively finite, and we

may use our code to study the behavior of the transport coefficients and the equation of state of

the Fermi gas through the crossover regime. We note that the parameter τE which characterizes

the relaxation to equilibrium of the internal energy distribution function ε(x,v, t) in Eq. (4.1)

also corresponds (as its analog for the particle distribution function f(x,v, t) does to the shear



32

viscosity) to a transport coefficient called the thermal conductivity which may also be interesting

to study in the crossover regime. We also note that our approach is not specific to cold atomic

gases of fermions and may be used to study the crossover regime in Bose gases.
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