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Many Plio-Pleistocene hominin-bearing sites in Africa contain large samples
of small mammalian fauna. Micromammals, relative to larger fauna, are a useful
proxy for reconstructing local habitat. Due to their ubiquity, their small home ranges,
their close affinity with certain microhabitats, and their diversity, micromammals
may contribute to more precise and fine-scale reconstruction of local
paleoenvironments relevant to hominin evolution. These reconstructions are
inherently dependent upon modern ecological knowledge and accurate niche
modeling. This thesis focuses in greater detail on the community composition of
modern micromammals in specific habitat types as well as the ecology of the
predators that accumulate their remains. Particular emphasis is placed on the
ecosystems surrounding several South African hominin-bearing caves where the
African Barn Owl (Tyto alba affinis) has been identified as a primary contributor to
fossil assemblages. The preliminary results of a pilot study on micromammal and
owl ecology conducted in the Cradle of Humankind World Heritage Site are illustrate
the stark differences between modern and Plio-Pleistocene micromammal

communities in this area.
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Chapter One

Introduction

The Plio-Pleistocene has been characterized as a temporal period in which
significant global climatic change took place (Peters and Maguire, 1981; Vrba, 1985,
1995; Cerling, 1992; Shackelton, 1995; deMenocal, 1995, 2004; Trauth et al., 2005;
Maslin and Christensen, 2007). Concurrent with broad scale climatic shifts, were
significant evolutionary changes in a wide variety of animal taxa, including hominin
lineages (Klein, 1999; Tattersal, 2009). Extinctions, adaptive radiations, and
dramatic ecosystemic shifts are evidenced during this time (Wessleman, 1984,
1995; Vrba, 1985; Cerling, 1992; Sikes, 1994; Denys, 1999). Pertinent to the hominin
Plio-Pleistocene narrative is the disappearance of the gracile australopiths, the
emergence of the robust hominin lineages, and ultimately the genesis of our own
genus, Homo (Klein, 1999; Tattersal, 2009). Multiple lines of evidence; isotopic,
geological, palynological, climatological, and paleontological all serve to corroborate
global climatic shifts as well as to support regional and local paleoecological
reconstructions (Vrba, 1980, 1985; 1995; Cerling, 1992; deMenocal, 1995, 2004;
Denys, 1999; de Wit et al., 2000; Lee-Thorp et al., 2007; Trauth et al., 2005; Maslin
and Christensen, 2007). Indeed, accurate paleoecological interpretation inherently
relies on the concurrence of data from numerous disciplines to strengthen
reconstructive techniques (Kingston, 2007; Maslin and Christensen, 2007).
Disagreement between methods provides an excellent way to identify discrepancies

and biases in methodology and to elucidate instances in which paleoecosystems



may have been decoupled from global climatic change, thus responding differently

at regional and local scales (Kingston, 2007).

Micromammal paleoecological reconstruction provides a useful avenue by
which all three scales relevant to hominin evolution, global, regional, and local might
be investigated, but its true potency lies in elucidating paleoecosystems at a local
scale (Cartmill, 1967; Wesselman, 1984; Denys, 1985, 1999; Avery, 1995a, 1995b
1998, 2001, 2005, 2010; Matthews, 2000, 2005; Reed, 2003, 2007, 2011; Avery et al,,
2010; Reed and Denys, 2011) In the context of this paper, micromammals include
rodents and shrews with a body mass of less than 300 grams (Andrews,, 1990; Reed,
2007). Micromammals are particularly auspicious paleoenvironmental proxies
because they are highly endemic, ubiquitous, and prolific in both modern
ecosystems and fossil assemblages. It has been argued that they are closely tied to
specific microhabitats (Wesselman, 1984, 1995; Reed, 2007). Therefore, they offer
uniquely fine scale spatial and temporal resolution for paleoenvironmental
reconstruction (De Graafff 1981; Hafnar and Hafnar 1988; Skinner and Chimimba,
2005). Furthermore, they respond strongly and rapidly to habitat heterogeneity and
plant species diversity, so the composition of micromammal communities is
intrinsically linked to the habitats in which they reside (Batzli 1991; Barett and
Peles 1999; Andrews and O’Brien 2000; Avenant 2005, 2007; Denno et al., 2005).
Paleoecological reconstruction based upon micromammals has become more
popular and widely utilized in both Eastern and Southern Africa, though thorough
analyses are still lacking for several important Plio-Pleistocene hominin-bearing

localities (Cartmill 1967; Wesselman 1984; Denys 1985; Pocock 1985, 1987; Avery,



1995, 1998, 2001, 2005, 2010; Matthews 2000, 2005; Reed, 2003, 2005, 2011; Reed

and Denys, 2011).

As promising as micromammal paleoecology appears, all reconstructive
methodologies that utilize fossil data must be thoroughly interrogated for biases
and firmly rooted in established ecological paradigms. Such interrogation is
particularly pertinent to micromammalian studies because current methodology for
micromammalian paleoecological reconstruction is heavily reliant upon accurate

niche modeling (Fernandez-Jalvo, 1998; Reed, 2003, 2007).

Recent micromammalian paleoecological analyses highlight the necessity of
two important methodological calibrations. The first of these includes establishing
concrete ecological baselines and niche models from which to work. Implicit in
creating these niche models is both a better understanding of the general ecology of
micromammals and the ecological processes, frequently predation, which contribute
to the accumulation of their remains at fossil localities. At this general theoretical
level the relationships between habitat, prey species, and predator species and the
ways in which these relationships translate to predator selectivity and differential
susceptibility of prey, require attention (Andrews, 1990; Reed, 2005). Additionally,
better and more thorough information regarding the autoecology of all prey and
predatory species is of the utmost importance because these data are used to create
the species specific niche models from which paleoecologists work to build their
reconstructions. If autoecological information is inaccurate, reconstructions based

upon them will be as well. The second methodological improvement involves



calibrating interpretations of paleoenvironment to the dynamics of the ecosystems
local to fossil sites (Avery, 2001; Reed, 2003, 2007). Granted, modern environments
are sure to differ from those which prevailed during the Plio-Pleistocene, but
regional analogs frequently exist and it is nonetheless important determine the
exact nature of extant ecological relationships between extant predator and prey

species (Andrews, 1990; Avery, 2001; Reed, 2007).

In many fossil sites throughout Africa, particularly those in Southern Africa,
micromammalian assemblages are frequently the result of accumulation by owls
(Davis 1959; De Graaff, 1960; Wesselman, 1984; Pocock, 1985, 1987; Andrews,
1990; Avery, 1998, 2001, 2010; Reed, 2003, 2005). This has been determined to be
the primary mode of micromammal deposition in the Plio-Pleistocene hominin-
bearing cave sites of South Africa (Avery, 2001, 2010). More specifically Tyto alba
affinis, the African Barn Owl has been demonstrated to have a distinct affinity for
habitually roosting in caves and amassing large collections of regurgitated pellets, or
coprocoenoses (Davis 1959; Glue 1971; Vernon, 1972; Bunn et al.,, 1982; Taylor,
1994; Reed, 2003, 2005). The African Barn Owl is thought to have contributed
largely to the micromammalian collections at Makapansgat, Sterkfontein,
Swartkrans, and Gladysvale (Glue, 1971; Vernon, 1972; Pocock, 1985, 1987; Avery,
1995, 2001, 2010; Reed, 2003, 2005). Evidence suggests that, given appropriate
niche models for the owl accumulators and the micromammalian species
accumulated, as well as calibration to local environments, coprocoenoses are valid
proxies for determining the composition of small mammal communities local to the

roost site (Talyor, 1994; Avery, 2001; Matthews 2000, 2005; Reed, 2003, 2005,



2007). Small mammal community composition, in turn, may serve as a proxy for
local habitat composition near important hominin sites during the Plio-Pleistocene

(Avenant, 2005, 2007; Reed, 2003, 2007).

The first aim of this paper is to discuss the relevancy of the niche concept and
niche models to micromammalian paleoecological reconstruction. Appropriate
niche models are reliant upon neoecological research and can only be constructed
through the incorporation of general niche concepts for both predator and prey
guilds, as well as detailed autoecological data for every species involved in the
model. It is the second aim of this paper to discuss some ecological factors salient to
determining both the niche of owls and micromammals and the ways in which these
considerations might bias or alter coprocoenoses and thus affect the taphonomy of

fossil assemblages.

Once due consideration has been given to the modern ecological interplay
between habitat, micromammalian community structure, and owls, the current
status of micromammal paleoecology will be discussed. Brief summaries of
micromammalian paleoecological reconstructions throughout East Africa will be
included, but this paper seeks to focus particularly on the reconstructions of
Swartkrans and Sterkfontein (Avery, 2001) as well as other Plio-Pleistocene sites in

South Africa (De Graaff 1961; Pocock 1985, 1987; Avery, 1995, 1998, 2001, 2010).

Finally, preliminary analysis of vegetative sampling, small mammal diversity
and owl-accumulated assemblages collected in the Cradle of Humankind World

Heritage Site, South Africa (in which the Sterkfontein Valley is located), are



presented. These data represent the first results from a pilot study, the larger goal
of which is to better attune micromammalian niche models and investigate the
nature of the predator-prey relationship characterizing owls and micromammals in
the Sterkfontein Valley. Information from the modern ecosystem is compared to
fossil samples from the important hominin-bearing sites Sterkfontein Member 4
(~2.8 Mya) and Swartkrans Member 1 Hanging Remnant (~1.8 Mya). The inclusion
of this study serves the dual purpose of both better illustrating some of the specific
calibrations and reconstructive techniques utilized by paleoecologists and described
in the text, as well as generate new ecological and paleoecological data for the
region. (To provide the reader with suitable reference for this analysis, Chapter Five
provides a brief summary of both the climate and micromammal species local to the

Cradle of Humankind).

With a proper understanding of owl and small mammal niche ecology and
their interplay with environmental variables such as local climate and habitat type,
the reliability of micromammalian paleoecological reconstructions can be improved.
These reconstructions supplement other lines of paleoecological evidence and
provide useful information regarding the dynamic environment that prevailed
during Plio-Pleistocene times. This environment likely facilitated hominin radiation,
speciation, and extinction events. Between 2-1 Mya, at least three if not more
species of hominin coexisted in South Africa (Klein 1999; Berger et al., 2010).
Improved understanding of fine scale vegetation and landscape patterns
characterizing the environments local to important hominin-bearing cave sites may

lead to better understanding of the ecological relationships and factors contributing



to hominin niche separation and the coexistence of South African hominins in the

Cradle of Humankind.



Chapter Two
Niche Theory

This chapter seeks to discuss the origin, evolution, and current usage of niche
theory as well as discuss its pertinence to paleoecology. Different generations and
subdisciplines of ecology have variously defined niche, alternately embracing and
spurning the theory. Most definitions of the niche concept recognize its inherent
duality, alluding to both the biological requirements of an organism as well as its
relationships, direct or indirect, with other species in a shared ecological community.
It is at the nexus of these two interacting dynamics that the ecological niche of a
species lies (Hutchinson 1957; Whittaker and Levin 1975; Griesemer, 1992, Cowell,
1992; Chase and Leibold, 2003). The weight afforded either of these factors has
caused a fundamental bifurcation in the lineage of the term (Griesemer, 1992,
Cowell, 1992). Nonetheless, niche, in all of its various permutations, has been a
central tenant of ecological and evolutionary theory for the last century, with
considerably deeper conceptual roots stretching back even to Aristotle (Aristotle
350 B.C.E.). In a process characterizing scientific paradigms, niche theory has
progressed through several dialectic stages (Kuhn 1962; Chase and Leibold, 2003).
Some would argue that niche theory is currently entering a stage of revision and
synthesis (Hubbell 2001; Chase and Leibold, 2003). Recently (see Hubbell 2001)
the analytical utility of niche theory to questions of ecological import has been
debated. After a long and not particularly pretty history within ecological theory, the

principles and practicality of contemporary ecological work within a niche-based



framework remain unresolved. With niche theory suspended in such an inchoate
form in contemporary ecology, where it is most directly applicable, how can it be of
use to those who wish to develop hypotheses about ecosystems that existed millions
of years ago? What is niche theory’s pertinence to paleoanthropology and the study

of hominins?

The reality is that paleoecology lacks the extensive datasets to which modern
ecology has access. The paleobiological record, while by no means poor, only
expands via the discovery of more and novel fossilized specimens. Fossilization is
rare and does not result in equal preservation of all life forms, meaning that
paleoecologists will never be able to account for all pertinent ecological variables.
Meanwhile, the contemporary ecologist has the luxury of designing hypotheses that
can be directly tested either through experimental research or the collection of field
data. This being the case, those working to understand the deep past are highly
dependent upon modern ecological research to illuminate broad scale biological and

ecological patterns, which can in turn be applied to paleoecological problems.

Drawing on contemporary datasets and analytical formulations,
paleoecologists are able to appropriate tools for estimating community
characteristics such as species diversity, relative abundance, niche overlap, niche
breadth, and discern patterns of niche shift and displacement (Tilman, 1980; Nesbit-
Evans et al., 1981; Pianka 1981; Andrews, 1990; Krebs, 1999; Odling Smee et al.,
2003). While tenuous in some ways, these tools nonetheless lend scientific validity

to paleoecological interpretations.
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Modern ecology and niche theory are integral to understanding whether or
not reconstructing paleoenvironment via micromammals is an effective
methodology for accurately representing local habitats. Niche theory is of relevance
to the paleoenvironmental reconstructions addressed herein because
paleoecologists rely upon niche modeling for micromammal species and utilize
community structure and composition estimates to make inferences about local
habitats at important Plio-Pleistocene hominin-bearing sites. Niche theory is useful
in assessing the overall fidelity of small mammal species to specific microhabitats as
well as determining the degree to which barn owls accurately and comprehensively
sample small-mammal communities. Niche theory therefore informs the degree to
which both the niche assemblage of small mammal communities and their
interactions with owls inherently bias fossil assemblage composition and ultimately
local paleoecological and paleoenvironmental reconstruction based upon these

presumed relationships.

More insight into niche theory can be gained from a thorough understanding
of the evolution of the theory itself. In ecology, the word niche has a convoluted
etymology and a turbulent history (Whittaker and Levin, 1975; Griesemer, 1992,
Cowell, 1992; Hubbell 2001; Chase and Leibold, 2003). Any genuine understanding
of niche necessitates familiarity with its scientific roots and evolution, which is why
it so often defies simple definition. As the prominent ecologist R.B. Root declared in
1967, “The niche concept remains one of the most confusing, and yet important
topics in ecology”. From its historical roots in the tradition of natural science, to its

inception as an ecological term, to the multitudinous mathematical models
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developed in attempts to validate and quantify it, niche still remains an elusive but
theoretically valuable ecological concept (Whittaker and Levin, 1975; Chase and
Leibold, 2003). Naturally, the literature and history on niche theory is extensive. |
have chosen here to distill some salient components of classical niche theory and

use them to frame discussion in later chapters.

The concept of niche inevitably has its roots in the work of early naturalists,
such as Linneaus, and Darwin, who noted differences in the traits, roles, and habits
of each creature on earth. The classificatory systems of Linneaus (1758) implicitly
acknowledge ecological diversity and the fact that different species possess unique

traits. Darwin (1859, 1872) referred to a species as having specific “lines of life’.

However, the term niche did not formally appear in the ecological literature
until Joseph Grinnell published a paper in 1917 entitled, “The Niche Relationships of
the California Thrasher”. Grinnell’s conception of niche was closely tied to habitat
and the functional requirements of a species within that habitat, thus stressing a
spatial concept of niche. Grinnell’s niche concept has been interpreted as the
ultimate distributional unit (Pianka, 1981). While it is true that Grinnell emphasized
species distribution and their environmental requirements heavily, he also
recognized that the availability of those resources depended upon a number of
factors including the distribution and requirements of sympatric species. In fact,
Grinnell’s concise treatment of niche, just a short paragraph at the end of his 1917
paper, is among the simplest and most direct description of the theory one will find

in the literature.
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These various circumstances, which emphasize dependence upon cover, and adaptation in
physical structure and temperament thereto, go to demonstrate the nature of the ultimate
associational niche occupied by the California Thrasher. This is one of the minor niches
which with their occupants all together make up the chaparral association. It is, of course,
axiomatic that no two species regularly established in a single fauna have precisely the same
niche relationships. (Grinnell 1917:433).

In the above passage, Grinnell succinctly acknowledges species physical
(biological) requirements, goes on to describe species niche as a role in a biological
community, and anticipates the Principle of Competitive Exclusion (Gause, 1934).
The fact that Grinnell’s work has been effectively distilled into the parochial
interpretation that species niche equals its habitat requirements and distribution
does a disservice to this innovative ecologist. In the end Grinnell’s seminal work

effectively captures the nucleus of the niche concept.

A mere ten years later, in 1927, Charles Elton published Animal Ecology. In it,
Elton famously analogizes the ‘role’ of a badger in its ecological community to the
‘role’ of a vicar in a human community, and writes that it is “therefore convenient to
have some term to describe the status of an animal in its community, to indicate
what it is doing and not merely what it looks like, and the term used is “niche” (Elton,
1927). With the publication of Animal Ecology, Elton established an important
dimension of niche theory, that of an organism’s relationships with other species
and its position within an ecological community. Furthermore, (and of notable
importance to interpretation of paleoecological communities) Elton recognized

similarities between the organizational qualities of ecological communities globally.

These examples illustrate the tendency which exists for animals in widely separated parts of
the world to drift into similar occupations, and it is seen also that it is convenient sometimes
to include other factors than food alone when describing the niche of any animal (Elton,
1927: 65).
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In other words, there is often a remarkable degree of evolutionary
convergence of species towards niche similarity in different ecological communities,
where different species use similar resources in similar ways (Whittaker and Levin,

1975).

Elton’s emphasis on community role has earned his theory of niche the
moniker, ‘population niche concept’ to contrast Grinnell’s ‘environmental niche
concept’. However, as with Grinnell, the implication that Elton’s definition of niche
was so narrow that it neglected to emphasize the role of environmental or habitat
requirements is false. Species requirements formed the foundation upon which
Elton constructed his definition of niche, which simply recognizes inter- and intra-
species relationships more explicitly. A false bifurcation of the niche concept, dating
back to these two ecologists, has plagued the field since (Griesemer, 1992, Cowell,
1992; Chase and Leibold, 2003). The reality is that species niche lies at some nexus
point incorporating both species requirements and species interactions.
Furthermore, the dynamic interaction of these requirements and relationships (and

thereby the relative importance of either) is unique in every case.

With his brilliant synthesis, the zoologist G.E. Hutchinson crystalized this
inherent duality in his now famous Concluding Remarks at the Cold Spring Harbor
Symposium, 1957. In the first workable analytical model pertinent to the theory,
Hutchinson suggested that niche be envisioned as an n-dimensional (multi-
dimensional) hyperspace in which species might be located. The hyperspace is

delineated by axes, which are based on some quantifiable aspect of species niche
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and are organized along a gradient. Two axes are recognized; habitat and niche.

Habitat axes utilize extensive variables, or those factors imposed upon a species by
virtue of its environment and requirements. These variables are also referred to as
intercommunity, for they affect numerous species and/or communities depending

upon scale of reference.

Naturally, hyperspace models based using habitat axes exclusively were the
first to be studied, as habitat variables tend to be concrete, easy to measure, and
generally geometric in character (Grinnell and Storer, 1924; Whittaker and Levin,
1975). Things like elevation, ambient temperature, moisture, and so forth are
reasonable axes upon which species tolerances, ranges, and distributions can be
plotted (in a process known as ordination) (Whittaker and Levin, 1975). Important
ecological patterns have and continue to be discerned using habitat hyperspace
modeling, but it becomes clear that habitat hyperspace insufficiently captures all

elements of niche differentiation (Levin, 1970).

Niche axes are based upon intensive or intra-community variables. Niche
variables incorporate biological parameters and pertain to relationships both within
and between species (Hutchinson, 1957). Compared to habitat axes these axes are
more difficult to quantify for they are often less clear, less geometric, and essentially
innumerable. Moreover, multiple important niche variables are sometimes
collapsed into a single niche axis, which can result in the loss of relevant information.
The fundamental problem with niche axes, and the root of much frustration

regarding the theory itself, lies in quantifying relationship variables. Theory
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certainly supports the notion that species evolve toward differences in niche, but
quantifying niche parameters and interpreting the predictions of current analytical
models remain an elusive task (Whittaker and Levin, 1975; Chase and Leibold,

2003; Holt, 2009).

Hutchinson (1957) further conjectured that within this n-dimensional
hyperspace, any given species has a range of variables (habitat and otherwise) that
it can tolerate, termed the “functional niche” or “virtual niche”. However, some of
this range is pre-empted by competing species, thereby relegating the species of
interest to a narrower proportion of the n-dimensional hyperspace referred to as
the “realized niche”. These niche types are traditionally conceptualized as where a

species can potentially exist and where a species actually exists.

The theoretical gestalt of Hutchinson’s n-dimensional hyperspace
incorporates infinite numbers of habitat and niche axes to define and delineate the
realized niches of all species residing in an ecological community. Or at the very
least it offers a tool to isolate those axes of greatest importance in predicting niche
diversity in a given community. In a biological system, however, many aspects of
this goal prove difficult for reasons both pragmatic and theoretical (Levin, 1970).
Not only is the sufficiently detailed data required by this approach time consuming
and difficult to obtain, feedback and non-linearity - processes that amplify and
confuse direct interpretation of ecological data - mean that every ecological
community and system is uniquely complex and nuanced (Levin, 1970; Holt, 2009;

Soberon and Nakamura, 2009).
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The three ecologists discussed above were primary progenitors of an
instrumental ecological theory. Hutchinson in particular served as the harbinger of
an era of hypothesis generation, experimental testing, and field verification utilizing
niche theory and n-dimensional hyperspace as an analytical model. The
Hutchinsonian conception of niche, with its Grinnelian ‘habitat’ and Eltonian ‘niche
role’ components, is still the dominant paradigm in niche theory and will serve to

inform my ecological discussions of owls and micromammals.

It would be wrong to exclude one final ecologist, Georgii Gause, whose
observations of marine terns provided a theoretical mechanism for niche
differentiation that could be mathematically expressed and tested. Gause’s
“Principle of Competitive Exclusion” states that two species competing for the same
resource cannot coexist if all other ecological factors are held constant and therefore
must exhibit niche differentiation to coexist in a given community (Gause ,1934). A
number of mathematical models were developed based upon competitive exclusion,
of which the Lotka-Volterra (Lotka, 1924; Voltera, 1926) is perhaps the most
notable. Competitive exclusion affirmed two fundamental components of niche
theory. First, the principle cemented the notion that many species survive together
because they differ in resource utilization or other requirements. Second,
competitive exclusion made the coexistence of species mathematically plausible and

set up a mechanistic framework for the evolution of species diversity.

Later models improved upon the Lotka-Volterra models, attempting to

incorporate different types of competition and designed to explore the concepts of
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niche overlap, breadth, partitioning, and assembly within ecological communities
(Pianka, 1981; MacArthur, 1972; Tillman, 1980). These models, however, should
ultimately be regarded as variations on the theme of competitive exclusion. While
competitive exclusion provided much fodder for testing ecological hypotheses,

ecologists and critics grew dissatisfied with its inability to accurately quantify niche.

Two shifts then occurred in ecology regarding niche theory. The first of these
was increased concern amongst professional ecologists (concurrently occurring in
all sciences) over the lack of statistical rigor and valid null hypotheses evident in
research generated by niche theory (Popper, 1963; Strong et al., 1979). Additionally,
data amassed by field ecologists suggested that the tacit assumption that
competition was the only factor driving niche differentiation was flawed. These
observations of discrepancy led to more pluralistic incorporation of other niche
differentiation mechanisms. Variables such as access to resources, seasonal and
successional factors, population structure and dynamics, and, importantly,

predation must also be considered (Paine, 1966; Whittaker and Levins, 1975).

Expanding upon MacArthur’s (1972) attempts to create better analytical
models for niche theory, Levin (1970) addressed the debate over the singular
importance of competitive exclusion directly, in a paper entitled Community
Equilibria and Stability, and an Extension of the Competitive Exclusion Principle. In it

Levin writes,

The purpose of this paper is to show that there are instead certain dimensions of paramount
importance [to a species]. Which dimensions those are is determined by which factors are
limiting those species, be those factors resources, predators, or others. Two species cannot
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coexist unless their limiting factors differ and are independent; that is the only criterion one
need examine at a given time and place (Levin 1970).

In addition to acknowledging that multiple factors contribute to species niche, Levin
emphasized the potential for periodic rather than constant states of equilibrium.
Levin’s limiting factors permit the persistence of several species in a fluctuating
balance so long as the limiting factor for each species differs to a significant enough

degree.

An example of this occurs in ecosystems in which a predator species
concentrates upon a prey species, which is above some critical population threshold
until such a point as that prey resource is depleted. The predator then switches to
an alternate prey base. In this way several species can coexist in the same ecological
community in an alternating boom and bust pattern. Owls are an excellent example
of this pattern. In South African barn owls, for example, pellet analyses have
revealed that owls prey heavily and alternately upon Mastomys, Mus, and Otomys
during periods of rodent population explosion and diversify their diet when these

species populations are in decline (Vernon, 1972; Taylor, 1994; Avery, 2005).

While Levin’s expansion of the competitive exclusion principle provided
theoretical justification for the existence of other regulatory mechanisms relating to
niche determination, the problem of determining precisely what and how many of
these limiting factors influence species niche remains to be addressed. Explicitly
quantitative measures of niche are terribly difficult to generate and likely
enumerable. The most that can be done is to look for the axes that suggest the

distinct niche patterns. Some obvious factors have already been indicated: resource
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availability, competitor interactions, and predator interactions. However it is
necessary to keep in mind less obvious variables such as seasonality, genetic

variation, spatial variation, and intraspecific interactions.

Predation, with specific regard to predator-prey dynamics is of the utmost
relevance to issues of taphonomy, particularly when assemblages are thought to
have been accumulated by predator activity. Knowing the biases inherent in a given
assemblage as a result of the behavioral and niche characteristics of the accumulator
and the accumulated are essential for interpretation. Therefore it is prudent to

spend a little time considering this particular niche-delimiting factor.

Predators and prey strongly and directly influence one another’s behavior,
morphology, and population dynamics and, in essence, they shape one another’s
niches. In a number of now classic studies by Gause (1934) utilizing protozoans, the
Russian biologist was able to demonstrate out-of-phase oscillations in interacting
predator-prey populations later validated by MacLulich (1937) in populations of
snowshoe hare and lynx. These studies showed that predator population levels grew
or declined in relatively symmetrical proportion to prey populations, albeit with a

certain lag time from change in prey population to response in that of the predator.

In a 1966 study, R. T. Paine was the first to explicitly demonstrate that the
top-level predators play a critical role in regulating the species composition of a
given community. Paine found that the carnivorous starfish Pisaster ochraceus
reduced the numbers of the mussel Mytilus californianus, a dominant competitor for

intertidal space, thereby creating ecological space for other species to cohabit a the
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tide-pool and increasing the biotic diversity. Integral to Paine’s conclusion is the
notion of spatiotemporal heterogeneity, a recurrent theme in studies of biodiversity
and niche proliferation. Micromammals are no exception to this theme, increasing in
diversity with increasing habitat heterogeneity in both space and time and

responding to multiple forces of predation (Ylonen and Brown, 2007).

Still, even pluralistic models, including predation have been dissatisfactory in
fully explaining the niche of various species and some ecologists, fed up with the
mathematical difficulties and overly reductionist nature of the theory, have sought

to abandon niche entirely.

Recently, Hubbell (2001) proposed a unified neutral theory of biodiversity
and biogeography. In effect, the theory and models he has developed require no
consideration of species niche; species are in essence identical in their ecological
niche and neutral to one another. Owing to its remarkable success at explaining
patterns in certain ecosystems Hubbell suggests that ecologists, ought to “re-think
completely the classical niche-assembly paradigm” (2001:320). Hubbell’s theory has
since been both validated and refuted, with studies evidencing notable weaknesses
in his models (Chase and Leibold, 2003). While Hubbell’s contributions certainly
revitalized discussion about niche theory, most ecologists are quite reluctant to
jettison the idea entirely (Chase and Leibold, 2003). His contentions, however, are
pertinent. In many ways niche models are cumbersome and overly reductionist, but
their theoretical value remains, particularly for paleoecology, which seeks to answer

somewhat broader questions than much of modern ecology.



21

The pertinent question remains, if niche theory is still suspended in
rudimentary form in the field of modern ecology, how then can it be of use to
paleoecology? It is true that at the present time, the full dynamics of any ecosystem,
to say nothing of paleoecosystems, cannot be interpreted utilizing niche theory
alone. Nonetheless it is useful to have at least some guiding parameters, initial
hypotheses, and relevant ecological paradigms from which to work. Chase and
Leibold (2003) concede to the limitations of working within a niche framework but

they also argue quite pragmatically that,

Niche provides a currency that can incorporate and synthesize many seemingly disparate
ideas ranging from the individual to the ecosystems level. Niche concept allows us to
describe and evaluate the consequences of trade-offs in the ways in which species respond
to and affect aspects of their environment. Such trade-offs are important in generating
variability among communities and explaining relative abundances and distributions of
species (2003:175, 178).

Paleoecologists will never be able to assess a fossil assemblage and infer with
perfect accuracy the structure of the paleocommunity they seek to reconstruct. This
is true because the fossil record is a function of the processes and circumstances by
which it was preserved as well as the difficulties conferred by assumptions of
uniformitarianism. Still, understanding modern ecological concepts such as niche
theory, and refinement of autoecological knowledge important in defining the niche
models for particular species serves to illuminate potential biases of niche-based

models and refine techniques used in paleoecological interpretations.

In micromammalian paleoecological reconstruction, niche-based models are

drawn upon heavily. A few key models regularly employed by paleontologists will
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be discussed briefly in the following, including ecomorphological or “taxon-free”

models, taxonomic ratios, taxonomic habitat indices, and species diversity indices.

Ecomorphological models seek to relate anatomical morphology,
functionality, and locomotor adaptation to specific habitat types, thereby
sidestepping the difficulties of uniformitarian assumptions (Plummer and Bishop
1994; Andrews and Humphrey 1999; Reed, 1997). While theoretically well suited to
paleoecological assemblages and fruitful in assessment of larger fauna,
ecomorphological models for small mammals remain underdeveloped and regularly
excluded from anthropologically relevant studies of this nature (Reed, 1997). Given
proper methodological development ‘taxon free’ approaches may be useful

additions to the toolkit of micromammalian paleoecologists.

Taxonomic ratios tally and compare the abundance of taxa with strong niche
affinities and ecological tendencies (Vrba 1980, 1985, 1995). In microfaunal
analyses, akin to the Alcelaphine:Antelopine bovid index (or AAC) which assesses
the relative proportions of bovids adapted to closed versus open environments, the
Gerbillinae:Murinae index has been used as an indicator of aridity ( Vrba, 1980,
1985; Fernandez-Jalvo et al., 1998). Gerbils, largely arid adapted species, are
compared to Murines traditionally been ascribed to wetter, more mesic
environments. However, Reed (2003, 2007) was unable to find strong correlations
between aridity and the G:M in his research on small mammal communities in the
East African Serengeti. According to Reed (2003) Dendromurinae:Murinae

(Climbing Mice: Murines) and Soricids:Murinae (Shrews: Murines) ratios were
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better indicators of aridity and density of vegetative cover. This finding may be due
to the generalist tendencies of many Murine species, and the affinities of
Dendromurines and Soricids for dense cover and wetter habitats, respectively

(Skinner and Chimimba, 2005).

Taxonomic habitat indices (THI) and species diversity indices remain the
most specific measures of micromammalian habitat reconstruction (Nesbit-Evans et
al,, 1981). Taxonomic habitat indices incorporate all species in an assemblage
thereby returning a composite interpretation of local habitat. Essentially, each
species, based upon its niche profiles and microhabitat affinities is assigned a THI
score. Fernandez-Jalvo (1998) suggest five primary habitat types into which species
might be sorted including, forest, woodland, bushland, grassland, and semi-arid
categories. Species then receive weighted scores depending on their affinity for a
particular habitat type as ascribed by the modern ecological literature. Scores are

summed to 1.

There are many ways that THI can be manipulated, though most frequently
researchers choose to apply additional weighting to account for the relative
abundance of species. This returns a more accurate picture of local habitat as it
draws upon both autoecological profiles and the degree to which certain species are
represented in a given environment. Naturally, THI has its biases and proves
weakest when niche models for particular species are insufficient. Hence ongoing

research regarding the autoecology of species ought to be considered and
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incorporated in THI analyses. Reed (2003, 2007) explicitly states the need for

revision in some small mammal species such as Dendromys and Steatomys.

Finally, species diversity estimates are used to examine overall community
structure. The relative abundance of species varies between ecological communities,
but greater diversity has generally been acknowledged as indicative of equable
environments while lower diversity generally means that fewer species are able to
successfully coexist (McKinney and Drake 1998). The Shannon-Weiner diversity
index (Shannon 1948), which assesses both species abundance (number of species
in a given community) and species evenness (number of individuals belonging to
each species in a given community), is frequently employed in conjunction with THI
analyses. This measure is sensitive to both diversity and species dominance. Having
either additional, unique species, or greater evenness in the species represented
thus increases the index. Unfortunately the index, which predicts higher diversity in
more equable climes, may contrast with biases introduced by predatory
accumulators. As Taylor (1994) and others have demonstrated, in less equable
climes (such as deserts and higher latitudes) and under seasonal conditions in
which prey are scarce, barn owls tend to take a greater diversity of prey. Conversely,
when environments are productive and prey species abundant, barn owls are able
to specialize on the most abundant species, which would lead to lower diversity

values based on coprocoenoses and confusingly suggest less equable conditions.

These paleoecological approaches are highly dependent upon accurate niche

models, meaning that niche theory and neoecological work are of the utmost
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importance to accurate paleoecological reconstruction. Cross-fertilization between
the two fields is not just useful, it is essential. Indeed, the Hutchinsonian niche
model provides a useful framework within which to assess the basic requirements
and niche characteristics of modern species and from which to build appropriate
niche models for micromammalian reconstructions. It also provides paleoecologists

with a way to explain the patterns and diversity observed in paleoecosystems.
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Chapter Three

Barn Owl Ecology

The common barn owl, the subject of scrutiny in this chapter, is a nocturnal
avian predator and member of Tytonidae. The oldest recorded owl fossils occur in
the middle Paleogene with the first members of Tytoninae appearing during the late
Eocene in a ‘savannah-like’ habitat (Mlikovsky, 1998). Fossils from the Quaternary
period include only modern species, the earliest of which is a Tyto alba specimen
from Olduvai Gorge, Tanzania (Brodkorp and Mourer-Chauvire, 1984; Mlikovsky,
1998). Unfortunately, there is a paucity of fossilized avian remains from which to
interpret evolutionary patterns and dispersal, as the osteological structure and
softness of bird bones are not conducive to preservation. Still, it can be said with
certainty that barn owls were present in their modern aspect by the early

Pleistocene and probably long before this (Mlikovsky, 1998).

Taphonomic investigations of numerous fossil-bearing localities dated to the
Plio-Pleistocene in South Africa implicate barn owls as primary accumulators of
micromammalian remains (Avery, 1998, 2001). Indeed, caves are very frequently
used as roosts in natural African populations. This suggests that the relationship
between Tyto alba and micromammalian communities has persisted for the last 4
million years and likely far longer. This temporally consistent relationship between
avian predator and mammalian prey may serve to shed light not only on the species
composition of paleocommunities local to key hominin bearing sites, but may also
offer some insight as to the nature of major climatological and ecological shifts

occurring during the Plio-Pleistocene and relevant to hominin evolution.
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Distribution, Anatomy, and Physiology

Tyto alba likely attained something akin to it's modern global distribution
approximately 1 Mya and represents one of the most ubiquitous and well-studied of
all modern avian predators (Taylor, 1994). The African subspecies, Tyto alba affinis,
is less well represented in the literature than subspecies in either Europe or North
America. This is unfortunate, given its demonstrable contemporaneity with
hominins during the Plio-Pleistocene. The African variant differs from some of its
conspecifics in a few significant ways. The bird is generally smaller than other
subspecies, with an average mass of about 300 to 330 grams. It also tends to have
paler plumage on its undersides, longer wings despite its small body size, and long
legs (Fry et al., 1988; Taylor, 1994). Each of these characteristic traits has been

hypothesized as adaptive to forage in open savannah-like habitats (Taylor, 1994).

More generally, anatomical and physiological traits make barn owls well
suited to their nocturnal foraging habits. Soft, downy feathers reduce the noise of
flight, while a stiff comb-like fringe on the leading edge of their primaries also
contributes to their airborne stealth (Bunn et al., 1982; Taylor, 1994). Vision is less
important to these animals than might be inferred from their large eyes, and
acoustic cues actually serve as their primary means of prey location and navigation
for capture. The characteristic heart-shaped plumage of the face, in addition to
asymmetrically placed ears facilitate sound capture and assessment of multi-tonal
frequencies at very finite levels (Payne 1971). In fact, the birds are so sensitive to

tonal frequencies, it is suspected that they can differentiate one prey species from
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another, and even isolate intra-specific variables such as sex and age class (Payne
1971; Taylor, 1994). Upon successful capture, barn owls generally swallow their
prey whole though large prey items can require more processing (Kusmer 1990).
This behavior, coupled with the characteristically high pH of the barn owl’s stomach,
results in remarkable preservation in compact pellets of all prey items and skeletal

elements consumed making pellet assemblages ideal ecological proxies (Smith and

Richmond 1972; Dodson and Wexlar 1979; Andrews, 1990).

Diet

While micromammals comprise the vast majority of what a barn owl
consumes, bats, birds, reptiles, amphibians, and often insects are known to
supplement their diet, sometimes sustaining them in times of prey scarcity (Taylor,
1994; Granjon and Traore, 2007). Indeed, our observations in the Sterkfontein
Valley revealed high proportions of insects in the dry season. Some common themes
characterize all barn owl prey, with subtle variation occurring between biomes and
global regions. According to Taylor’s (1994) thorough study of owl dietary
composition, more than three quarters of all diets consist of 90% small mammals.
Numbers of available prey taxa in any given geographic locality range from 2-25
species, evidencing significant foraging niche width in the barn owl. In most cases,
one, two, or three species make-up 80% of an owl’s diet. Diversity in the diet of
African subspecies appears to be higher with an average of five or six species
dominating (Vernon, 1972; Perrin 1982; Taylor, 1994). Owls respond to

spatiotemporal differences in prey abundance and diversity, which are
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environmentally significant variables because they reflect fluctuation in resources
and climate. They specialize on abundant prey species when food resources are
ample and are more generalist in their feeding behavior food is scarce (Taylor,

1994).

Reproduction is also timed with seasonal availability of prey (Taylor, 1994).
Breeding in all varieties of barn owl begins just before seasonal increases in primary
productivity and subsequent increases in small mammal population densities.
Interestingly, African barn owls do not breed relative to peak population densities,
but instead lay eggs in the dry season, their young hatching and maturing when prey
densities are declining significantly. It has been postulated that the prolific
vegetative growth brought on by heavy seasonal rainfall impedes the owls hunting
efficiency (Fry et al., 1988; Taylor, 1994; ). Vegetative die-back and fire disturbance
regimes may prove beneficial in facilitating prey capture. In this scenario, density of
resource becomes less important than the parameters controlling access to that

resource.

Often, the dominant micromammalian taxa in an owl’s diet at any given time
reflect those species’ dominance in the greater ecological community (Avery, 1998;
Avenant 2005, 2007; Terry 2010). However, direct correlations between
coprocoenoses, micromammal community structure, and species diversity must be
cautiously drawn. Activity patterns, intraspecific dynamics of prey populations, and
predator bias for specific sizes, ages, and sexes of prey must all be considered.

Generally, these considerations are dependent upon both the individual owl and the
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small mammal species. It is also important to remember that, because owls are
nocturnal, diurnal prey species tend to be highly under-represented (Andrews,
1990). In many South African coprocoenoses, and indeed in preliminary sampling of
micromammalian diversity in the Sterkfontein Valley presented in Chapter Seven,
the ubiquitous but diurnal omnivore Rhabdomys pumilio is rarely represented

because of its circadian tendencies (Perrin 1982; Andrews, 1990; Taylor, 1994).

It is frequently noted that owls prey upon juvenile individuals, seldom take
prey items in excess of 20% of their body mass, and are biased in prey sex ratios
(Derting and Cranford 1989; Wallick and Berrett 1976; Andrews, 1990; Taylor,
1994). Vezina (1985) has demonstrated a common correlation between prey and
predator body weights with average prey mass intake roughly equal to 10% of
predator body mass. On the South African subcontinent the barn owl has a slightly
higher average of 14% prey to predator body mass, commonly taking prey in the
8.2-19.0% mass range (Perrin 1982; Vernon, 1972; Taylor, 1994). In most of
southern Africa, generalists such as Mastomys (the prolific multimammate mouse)
dominate assemblages, followed closely by other widely distributed genera such as
Otomys, Aethomys, and Michaelamys (Avenant 2005). Shrews are consistently the
most numerous non-rodent prey and, as noted in Chapter Seven, were the dominant

micromammal in all pellet collections from the Cradle of Humankind.

Habitat Selection

In terrestrial ecosystems, it is often plants that set the stage upon which

natural enemies interact (Denno et al., 2005), thus habitat, particularly vegetation,
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plays an important role in governing the dynamics of predator and prey. Structure,
composition, complexity, and the seasonal patterning of the vegetative landscape
determine where an owl will hunt and delimit productive prey patches (Taylor,

1994; Tarboton and Erasmus 1998).

Though characterized as a non-selective opportunist (Mikkola 1983) and
quite widespread throughout various habitats across the world, Tyto alba has a
demonstrable affinity for open habitats (Colvin 1984; Rosenburg 1986; Taylor,
1994; Leech et al., 2009). The bird’s body size, it's hunting strategy, and its
morphological adaptations to flight are less suited to maneuvering through closed
environs. It has been shown both experimentally and through field observations,
that owls do, in fact, disproportionally utilize open areas (Marti 1974; Fast and
Ambrose 1976; Colvin, 1984; Rosenburg 1986; Torre et al.,, 2004; Leech et al., 2009).
In a study of owl populations in North America, the grassland component of the
research area was quantified at 16% of total available habitat and yet radio-
telemetry demonstrated that 48% of foraging time was spent in the grassland
component (Rosenburg 1986). However, this bias is actually not that severe,
particularly when compared to the stricter adherence by other owls to very specific

habitats (Tarboton and Erasmus, 1998).

Trapping programs have been used in conjunction with pellet analyses in an
attempt to identify and quantify discrepancies between species diversity in the local
habitat and that reflected in owl pellets. Trapping, of course, is not without its own

set of problematic biases. Prey species are subject to differential trappability. Some
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traps and bait types are more effective than others, certain genera are “trap-shy”,
while still others live in micro-habitats not amenable to trap-based sampling
methods (such as arboreal and fossorial species) (Derting and Cranford 1989;
Taylor, 1994; Avenant, 2005). To mitigate this, researchers combine trap types and
proxies. A comparative study by Torre et al. (2004) tested three proxies for
estimating micromammal community structure in the Mediterranean. Owl pellets,
trap data, and scat from a mammalian carnivore (Genetta genetta) were all found to
differ significantly in the degree to which they reflected species diversity and
composition. Though the barn owl was, overall, the most effective in sampling a
broad diversity of species (89.5% of total), some species associated with more
forested habitats were notably absent in the pellets but found in genet scat. Ideally
numerous proxies should be used to ascertain species composition in a given
ecological community, an approach that has been seldom attempted. In this respect,
the time-averaged nature and potential for multiple accumulators in fossil-bearing

sites thus might actually improve the robusticity of assemblages derived from caves.

It is therefore an ecological certainty that owls prefer to hunt in relatively
open areas. This naturally has the potential to bias micromammal community
structure as reconstructed from pellets, skewing species diversity and relative
abundance towards prey species residing in open habitats and altering fundamental
interpretations of local habitat. The question of greatest pertinence here is, to what
degree does this tendency obscure the actual micromammal taxonomic composition
at a given locality and can useful and accurate inferences about local habitat be

made regardless?
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Fortunately, though preference for open habitats in barn owls is evident, the
bias is somewhat mitigated by both their sensitivity to the relative abundance of
local species and their propensity for hunting in ecotonal habitats. While biases
towards open areas must be noted in paleoecological reconstruction and

interpretation, they are probably not crippling to its methodology.

A recent study by Terry (2010) presents compelling evidence that barn owls
sample from all habitats in their range and demonstrate high ecological fidelity at
the local landscape scale, particularly for habitat types closest to their roost site.
Taylor (1994), in a long-term study of Scottish barn owls, also demonstrated that
the birds are quite responsive to fine-scale variation in habitat types. His study area
included a mosaic of differing habitats, ranging from conifer plantations, to rough
grassland, to low altitude pastoral farmland, each with a resident mating pair.
Taylor observed significant relationships between the owls’ habitat composition and
diet, as well as correlation between taxa represented and their microhabitat
associations. Using coprocoenoces and vegetative sampling from roost sites in
Tanzania, Reed (2003, 2007) also found that shifts in relative species abundance
correlated well with local habit characteristics. Finally, studies conducted by Vernon
(1972) found the dominance of gerbils in arid Namibia and murine species
associated with mesic habitats in the Cape region. These studies suggest that barn

owls are responsive to local micromammal community composition.

Also noted in by Taylor, was a preference in the Scottish owls for forage in

woodland edge habitats, particularly those with moist, tall, grassland components.
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This preference was marked and similar edge foraging phenomena are observed in
North American barn owls (Byrd 1982). It has been well demonstrated that
ecotones are often characteristically rich in species diversity and resources and that
they facilitate predator-prey interaction (Fagan et al., 1999). Hunting ranges for the
average barn owl incorporate several patches of both used and unused habitat
(Taylor, 1994). Areas of heavy cover are not frequented by owls for foraging, but
may serve as reservoirs, refuge, and dispersal corridors for prey species, effectively
provisioning edge habitats with a greater density of prey (Denno et al., 2005). It is
speculated that both predators and prey move in parallel to these edge habitats,

utilizing resources unavailable in the focal habitat (Denno et al., 2005).

Prey Selection

Species diversity, species composition, relative abundance of taxa, mean prey
size, age-class, and sex vary on local, seasonal, inter-annual, and long-term scales
(De Graaff 1981; Taylor, 1994; Lidicker 1999, 2000; Avery, 2005; Skinner and
Chimimba, 2005). Rodents are responsive to fluctuations in microhabitat, habitat,
and landscape level processes driven by both abiotic and biotic factors contribute to
this variation (Ernst et al., 2000). While seasonal and inter-annual cycles are
interesting, and can be assessed via regular collection of pellets, effective techniques
for discerning these types of variation are rare in the paleo-record. Isotopic analyses
may eventually prove useful in isolating some of these finer scale trends. The slow,
accumulative processes characterizing most fossil-bearing cave sites in South Africa

effectively time-average samples to such a degree that a species composition proxy
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for seasonal and inter-annual change is often lost. Inferences about local
micromammal community structure (albeit over a relatively long period of time)
and long-term shifts in owl dietary habits, however, are far more within reach

(Taylor, 1994; Avery, 2001; Reed, 2007).

An example of one such long-term dietary shift can be found in the Cradle of
Humankind, where fossil-assemblages from Sterkfontein and Swartkrans have both
yielded very different species composition patterns when compared to modern data.
The rodent species Mystromys albicaudatus dominates the micromammals derived
from these Plio/Pleistocene localities (Avery, 2001, 2010). A similar pattern of
species dominance, presented in Chapter Seven was evidenced in our samples from
Sterkfontein and Swartkrans. Though still extant in South Africa, M. albicaudatus is
now very rare and has been relegated to endangered species status (Skinner and
Chimimba, 2005). Accumulation of micromammals at these fossil sites have been
attributed to barn owls and the dominance of Mystromys is far beyond the scope of
biases inherent in barn owl prey selectivity. Therefore it is likely that the

overwhelming presence of Mystromys is otherwise explained.

Predator-prey dynamics, such as those characterizing owls and
micromammals, are inherently complex and dependent upon maximizing energy
return, minimizing energy spent and, for prey, maximizing predator avoidance
(Barbosa and Catellanos, 2005). Conflation of predator selectivity and the
differential susceptibility of prey are frequent and thus there is much disagreement

in the ecological literature regarding how selective barn owls are (Marti 1974; Fast
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and Ambrose 1976; Derting and Cranford 1989; Yom-Tov and Wool 1997; Torre et
al,, 2004; Terry 2010). Lack of consensus on this matter and failure to examine
habitats of barn owls in the regions local to fossil sites can lead to taphonomic

confusion and thus inaccurate paleoecological interpretation.

For instance, owls have certain prey size constraints due to body size and
researchers do not agree on how selective owls are in this regard (Yom-Tov and
Wool 1997). Obviously, in smaller species adults provide greater energetic return
for cost of capture. Conversely large-bodied rodent species may be
underrepresented, or their representation in coprocoenoses may be skewed
towards juveniles. Juveniles may be less fit and experienced in predator evasion,
may be of the appropriate size class for consumption, and may be forced by adults
into more dangerous areas for forage (Derting and Cranford 1989). It is readily
apparent that these biases are specific to prey species and depend upon the unique
behaviors of each taxon, not merely the selectivity of the owls. Modern ecological
data specific to local and regional environments must be established in order to

avoid this difficult conflation in paleoecological studies.

One potent example of a misinterpretation that influenced a paleoecological
reconstruction elucidates the matter. An initial reconstruction using
micromammals at Olduvai by Fernandez-Jalvo (1998) concluded that shifts in
micromammal faunal composition (an increase in gerbil abundance) resulted from a
change in predatory accumulator. Thus micromammal species differences were

attributed to taphonomic shift and considered insignificant. This conclusion was
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based upon the belief that barn owls do not frequently take gerbils, which can be
large-bodied. However, via modern ecological calibration, Reed (2003, 2005, 2007)
demonstrated that barn owls in the Serengeti frequently eat gerbils. Gerbils are
important indicators of aridity and thus more accurate niche modeling for Serengeti
owls revealed significant environmental shifts at Olduvai that may otherwise have

gone overlooked.

[t seems reasonable, given the above discussion regarding owl ecology, that
shifts in micromammalian community structure can be taken to reflect shifts in
climate and that predatory biases introduced by owls are not especially problematic
to paleoenvironmental reconstruction. The climatic shifts that these micromammals
reveal presumably also influenced hominin evolution and therefore warrant further
inquiry. However, more must be known regarding micromammalian niche before

inferences regarding climate-driven habitat change are attempted.

Taphonomic Considerations

As a final note before moving into a discussion of micromammalian ecology
the information presented above regarding the autoecology of Tyto alba must be
assimilated into a theoretical and analytical taphonomic approach. Unfortunately,
the relationship between fossil assemblages and ecology is not simple or
straightforward. Multiple accumulators, predatory and otherwise, contribute to
fossil assemblages over long periods of time (Andrews, 1990). The preservation
process itself, from deposition to mineralization, subjects remains to the deleterious

effects of weather, trampling, transport, and differential sorting (Andrews, 1990).
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Under good preservation conditions, the relative contribution of barn owls
compared to that of other predators such as mammalian carnivores, raptorial birds,
and other owl species, can be determined. Different predatory species exhibit
different digestive processes, which can be discerned using a few key variables.
Bone loss, bone breakage, and bone digestion have been quantified for different
predatory species in a number of controlled experimental studies (Dodson and
Wexlar 1979; Hoffman 1988; Andrews, 1990; Kusmer 1990; Simons et al,, 1991;
Terry 2010), and when the relative degree of each of these factors is combined

reasonable inferences about accumulator identity can be made.

Bone loss occurs when some skeletal elements are either completely
destroyed or digested. High loss of skeletal elements is characteristic of predatory
species that process their foods heavily, both in a mechanical and a chemical sense.
Bone loss is measured by comparing the relative proportion of any given skeletal
element to the total number of elements expected based on minimum number of
individuals (MNI). There is a distinct ‘owl’ pattern in bone loss, as the owls unique
digestion preserve high proportions of both cranial and post-cranial elements
(Andrews, 1990). In diurnal raptors, five of the more robust skeletal elements are
generally preserved, while in mammalian carnivores bone loss is quite high (Dodson
and Wexlar 1979; Hoffman 1988; Kusmer 1990). Bone breakage is another useful
proxy. Both the location of the break and the frequency of breakage provide clues to
predatory accumulators. Breakage in barn owl coprocoenoses is minimal, followed
by other raptorial birds, and finally small mammalian carnivores (Kusmer 1990).

Unfortunately, fossil assemblages subject to the ravages of time are often broken via
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other processes, so this must be taken into account. Bone digestion also follows a
pattern similar to that of breakage, with owl digestion being the least destructive,

followed by raptorial birds and carnivores (Andrews, 1990).

Once the relative contributions of different accumulating agents have been
taken into account, one can begin to assess the micromammals themselves
(Andrews, 1990). Most significantly, one can begin to reconstruct overall
community structure. Generally these reconstructions incorporate known habitat
preferences and relative abundances of individual species represented in a fossil

assemblage to infer paleohabitat (Fernandez-Jalvo 1998; Denys 1998; Reed, 2007).

As a final note, the study and reconstruction of paleoecosystems must
recognize a fundamental assumption, that of taxonomic uniformitarianism
(otherwise known as transferred ecology). It is an unavoidable reality that no
species extant today can be expected, a priori, to occupy precisely the same niche as
did its distant predecessors. Nor can the niche role of extinct species be fully known.
Species often inhabit specific microhabitats, which might be present in a variety of
‘larger’ habitats thus making habitat reconstructions “far from straightforward”
(Andrews, 1990). The difficulties presented by taxonomic uniformitarianism, while
significant, are inherent to any field studying ancient life. This does not necessarily
condemn all research that seeks to understand past ecosystems using contemporary

analogy and in any case it is difficult to see a way forward without doing so.
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Chapter Four

Micromammalian Ecology

As with owls, the Hutchinsonian niche concept provides a useful framework
within which to discuss micromammalian ecology. This chapter serves to explore
both the habitat ‘requirement’ and niche ‘relationship’ components of
micromammalian ecological niche in a broad sense. Its aim is to highlight the ways
in which currently established niche models for many South African micromammal
species may be problematic and to discuss the ways in which the discrepancies in
these niche models, so frequently drawn upon by paleoecologists, can be improved

upon or mediated.

While barn owls feed on a variety of animals, two groups of mammals,
shrews and rodents, make up the greatest proportion of their diet worldwide
(Brown et al., 1988; Taylor, 1994; Tarboton and Erasumus 1998). The general
requirements of these small mammals, particularly their dietary habits, habitat
preferences, and morphological adaptations, determine their relative distribution
on the landscape and thus their availability for predation (De Graaff 1981; Skinner

and Chimimba, 2005).

Distribution of habitat and availability of resources are governed on a
broader scale by prevailing abiotic conditions, most notably, geology, elevation, and

climate including, rainfall, seasonality and temperature (Ernst, 2000). Thus the
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dynamic link between predators and prey is inextricably linked to climate and

landscape.

Furthermore, the relationship between micromammals and other community
members, including interspecific interactions with other micromammal species,
predators, and larger animals sharing an ecosystem can have profound impacts
upon micromammal ecology and habitat affiliation (Brown et al., 1988; Derting and
Cranford 1989; Kotler 1991; Keesing 2000; Perrin and Kotler 2005; Kinahan and
Pillay 2008; Hagenah 2009). The different contexts of foraging, predator avoidance,
and intraspecific interaction may necessitate the exploitation of multiple
microhabitat types in a single species or function to delimit a species use of habitat

types (Sih, 2005; Wolff and Sherman, 2007; Ylonen and Brown, 2007).

Classification and Generalized Anatomy

Rodents represent a major branch of the mammalian tree of life and, unlike
other lineages, have experienced few extinctions of major families since their first
radiation roughly 55-65 Mya (De Graff, 1981; Skinner and Chimimb 2005; Wolff and
Sherman 2007: Honeycutt et al., 2007). Their persistence and diversity, about 2,000
species to date, or 39% of all recognized species of mammals, imply an impressively
stable evolutionary strategy, responsive and well adapted to prevailing ecological
and environmental conditions (Haffner and Haffener, 1988; Wilson and Reeder,
1993). They are represented on every continent excluding Antarctica and a few
oceanic islands (Honeycutt et al., 2007). Convergent evolution also characterizes the

order, with fossorial and arid adapted species arising independently on many
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continents. Of the 29 extant families of rodents, eight are found on the South African

subcontinent (De Graff, 1981; Skinner and Chimimba, 2005; Honeycutt et al., 2007).

Of notable importance to paleoecological studies is the speciose Muridae
family, which represents 66% of all rodent taxa and contributes greatly to
mammalian diversity on most continents (Honeycutt et al., 2007). This family
includes the subfamilies Gerbillinae and Murinae. A ratio derivative of these two
subfamilies has been used as an ecological proxy to infer the relative aridity of a

local habitat in any given time and/or place (Fernandez-Jalvo et al., 1998).

Despite the enormous species diversity and impressive array of body plans
and morphological variation, the members of the order Rodentia are remarkably
uniform in certain aspects of their jaw and tooth morphology (De Graff, 1981;
Skinner and Chimimba, 2005). Rodents, as their moniker implies (rodre or to gnaw),
are all in possession of a set of ever-growing incisors, powerful jaw musculature,
and lack canines and premolars, which results in a distinctive diastema between the
incisors and cheek teeth. Morphology of the cheek teeth is distinctive at the genus
and frequently at the species level and is used to identify specimens found in owl

pellets.

Shrews, which are classified in the order Eulipotyphla and family Soricidae,
are also relatively speciose and widely distributed on the South African
subcontinent, with 17 of 266 species represented (Churchfield 1990; Skinner and
Chimimba, 2005). The family Soricidae itself dates back to the Oligocene, but shrews

possess what is believed to be one of the most primitive of all mammalian body
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plans (Findley and Yates, 1991). The high-cusped, thickly enameled teeth of these
creatures are well adapted to their insectivorous habits and they are sympatric with

other micromammal species in almost all regions (Churchfield 1990; Findley and

Yates 1991).

Diet

Rodents fall vaguely into three main dietary categories, herbivory, granivory,
omnivory, while shrews are strictly insectivorous. The relative energy required to
sustain metabolic functions and engage in necessary reproductive behaviors differs
from species to species in micromammals, as does the energy content of various
foods (De Graff, 1981; Churchfield 1990; Findley and Yates 1991; Skinner and
Chimimba, 2005; Kinahan and Pillay 2008). Micromammals, in accord with optimal
foraging strategies, respond to the quality, availability, and distribution of these
resources in such a way that they maximize energy returns and minimize energy
costs (MacArthur and Pianka 1966; Brown et al., 1994) The degree to which any
given species of rodent can be strictly categorized into one of the above dietary
guilds is debatable and highly dependent upon both the spatial and temporal
availability of a given food type. A species that is described as omnivorous may
easily feed strictly on foliage during times of increased primary productivity and
adjust its diet during periods of plant food scarcity to include greater proportions of
insects, seeds, and so forth. Indeed, many African rodents including a number of
those species represented in and around the hominin-bearing cave sites of

Sterkfontein and Swartkrans, exhibit remarkable dietary flexibility and habitat
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tolerance, enjoying widespread distributions (De Graff, 1981; Avenant 2007;

Skinner and Chimimba, 2005).

The four-striped mouse, Rhabdomys and the multimammate mouse
Mastomys are ubiquitous across all of South Africa. Both have been collected both
from the very edges of the arid Namib desert, to the highlands of Lesotho, to the
frosty grasslands of the eastern Highveld, showing little more than subtle variation
in size from region to region (Skinner and Chimimba, 2005). These genera are
widespread and catholic in both their habitat and dietary affinities. Mus and
Mastomys are thoroughly ubiquitous and undergo significant population booms and
busts frequently, primarily due to their efficient exploitation of available resources.
These species appear to consume any available food source, even turning
aggressively carnivorous during bouts of population explosion (Coetzee, 1975;
Skinner and Chimimba, 2005). Quantifying the diets of these species is entirely
dependent upon local resource availability and thus they remain problematic for

paleoecology (Avery, 2001; Reed, 2003)

The aforementioned species are, however, all notable generalists, so it is
perhaps useful to turn our attention to seemingly more specialized species.
Interestingly, even specialists prove difficult to catalog dietarily. The widespread
Otomys, commonly described as a grazer and selective herbivore (Skinner and
Chimimba, 2005), evidences significant dietary flexibility and appears to consume
plant matter rather indiscriminately (Davis 1973). Dietary flexibility in Otomys even

holds over broader temporal scales. Hopley et al. (2006) conducted carbon isotope
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analyses on both modern and fossilized Otomys gracilis and found that, despite
identical dental morphology, presumably adapted for grazing, fossilized specimens
from the Holocene ate considerably higher proportions of C3 relative to extant
Otomys species. This would imply that O. gracilis consumed a more mixed diet than

the C4dominated diet characteristic of modern Otomys sp.

Kinahan and Pillay (2008) found that differential exploitation of folivory
promoted co-existence in a community of six sympatric and ecologically similar
granivorous African rodents. Differences in gut morphology and food preferences
suggested that the six species occupied a dietary spectrum ranging from heavier
reliance on foliage to primarily grains and seeds. The authors suggest that species
tending towards folivory, which in this study included Steatomys pratensis and the
virile Mastomys, may have a lower ability to compete for granivorous resources but
are subsequently better adapted to a wider diet. Kinahan and Pillay go on to point
out that Perrin and Curtis (1980) and Kerley (1992) both obtained similar foliage
dominated results in their studies of Steatomys gut content and yet deferred to

earlier dietary classification schemes which categorized Steatomys as a granivore.

Certain individuals, often juveniles, are forced by intraspecific interference
and displacement, to forage in sub-optimal areas. Derting and Cranford (1989)
found that juvenile female mice were the most frequently taken rodent age and sex
class by barn owls. Via observation and florescent dye marking, these researchers
determined that this bias in the owl diet likely had a great deal more to do with the

interference and dominance behavior of adult females and larger male mice than
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with owl preference. This suggests that the juvenile females were effectively forced
into situations with sub-optimal resource and refuge availability. Fortunately, while
it is important to consider all relevant ecological concerns before delving into the
paleontological record, such subtle niche structure is unlikely to bias paleoecological

reconstructions.

These studies highlight the necessity of ongoing modern ecological work,
particularly those research projects utilizing multiple lines of evidence and many
regions to refine understanding of dietary ecology. Such approaches ensure that
reference texts and literature regarding species frequently used by paleoecologists
as modern analogs are accurate. It is possible that catholic dietary tendencies
characterize many rodent species commonly perceived as specialists, or semi-
specialists, but such hypotheses require further testing and field data across
multiple habitats and temporal scales. Research corroborating stomach contents
and isotopic data may provide useful means for obtaining accurate dietary spectra
for rodent species. Determination of dietary flexibility in rodent species is essential
to making valid inferences about the composition of the environments they inhabit

and the resources they utilize.

Habitat Selection

While food resources must surely be present and in sufficient quantity to
sustain the energetic requirements of a given species, so too must other important
habitat elements. Dietary resources are certainly the primary determinants of

species habitat selection, but other considerations of rodent ecology must be taken
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into account. These considerations include but are not limited to requirements for
refuge, appropriate breeding and nesting locations, access to water, and so forth (De

Graff, 1981; Churchfield 1990; Skinner and Chimimba, 2005).

For some species, other habitat considerations may tell us as much about
local habitat composition and structure as diet itself. Species requirements and/or
preferences for specific types of refuge can at times preclude a species from
inhabiting a given habitat despite the availability of sufficient food resources (De

Graff, 1981; Skinner and Chimimba, 2005).

Numerous studies have assessed the role of vegetation in micromammal
habitat preference (Kotler 1991; Barrett and Peles 1999; Lidicker 1999; Ernst et al,,
2000; Keesing 2000; Blaum et al., 2006; Krystufek et al., 2007; Hagenah 2009).
Regardless of scale, rodents respond to spatial heterogeneity by biasing their
activities towards safer areas, which generally correspond strongly with vegetative
cover (Ylonen and Brown, 2007). Rodents inhabiting open agricultural fields use
fence lines where grasses are longer and vegetation denser, rodents in England and
Scotland have been shown to forage primarily in or near hedgerows and near
woodland edges, while rodents in experimental studies, will, if given the choice and
faced with the threat of predation, always choose enclosure areas with more cover
even if food quality is poorer in these areas (Ylonen and Brown 2001; Brown and
Kotler 2004). In fact, many studies have demonstrated that giving up densities
(GUD’s) - a quantified measure of the food an organism leaves untouched under

manipulated conditions - are higher in riskier food patches. Kotler et al. (1991)
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found that desert rodents express significantly higher GUD’s in open areas than in
those with even moderate scrub cover. Therefore, despite owl preference for
hunting in open areas, habitat heterogeneity is sure to present in any ecosystem in

which it hunts.

The nature and structure of vegetation used is also important to various
species. Multiple species of Dendromus, the climbing mouse, are able to coexist in
similar habitats by foraging primarily at different heights in tall grasses. D. melanotis
utilizes lower portions of grass stalks, while D. mysticalis forages higher on the grass
stalks for smaller insects and the seeds at the top of the stalks (Skinner and
Chimimba, 2005). Thallomys (Acacia Rats) are strongly associated with Acacia trees
and are dependent upon them for both food and cover (Skinner and Chimimba,

2005).

Krystufek et al. (2007) looked for nested hierarchies of rodent species in
thicket-valley vegetation of varying height classes and found no correlation between
any of the rodents, but a significant correlation between specific taxa and specific
height classes of vegetation. For burrowing rodents, substrate type may be far more
significant than vegetation and sandy or alluvial substrates are generally preferred
(Skinner and Chimimba,, 2005). The effect of substrate type is evidenced
particularly in gerbils and mole rats. Thus, given the appropriate substrate, even
members of the notably arid adapted gerbil subfamily are common in less arid
regions. Tatera, the gerbil genus most frequently encountered in the Sterkfontein

Valley, is apparently independent of a specific vegetation association and have been
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taken in habitat types ranging from open grassland to savannah woodland (Skinner

and Chimimba, 2005).

Pronounced seasonality, rainfall, and moisture levels impact both vegetation
and small mammals. For shrews, moisture appears to be the most important
determinant of distribution and habitat preference. This is probably because of their
dependence upon invertebrate prey, for many of which moisture is key to certain
life cycle stages. Vegetation itself is therefore far less important than prey base, but

prey is highly dependent upon moisture (Churchfield 1990).

Community Interaction

The foregoing discussions of dietary ecology and habitat affinity have focused
upon species requirements, but if niche theory teaches us anything, it is that species
and populations are defined not only by the food they eat and the habitats in which
they reside, but also upon the relationships they have with other species in an
ecological community (Elton 1927; Hutchinson 1957). Species characteristics and
population dynamics are governed as much by sympatric context as by
environmental constraint. The ways in which interspecific interactions play out
within a given ecological community can strongly influence resource and habitat
utilization for many small mammal species (Kinahan and Pillay 2008; Wolff and
Sherman 2007). These interspecific interactions take place between other small
animal species with which rodents and shrews directly compete for resources, they
occur between small mammal species and large animals, (particularly large

mammalian herbivores which alter and shape micromammal microhabitat), and
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they encompass interactions with numerous species of predators (Keesing 2000;
Ylonen and Brown 2007; Kinahan and Pillay 2008; Hagenah 2009). These variables

must be considered in paleoecology too.

Intraspecific interactions within a population, territoriality, mating,
competitive interference and brood rearing behaviors, all influence small mammal
habitat associations and alter individual susceptibility to predation by owls (Taylor,
1994; Ylonene and Brown 2007). Social interactions, so nicely illustrated by the bias
towards juvenile female rodents in owl predation revealed by Derting and Cranford
(1989), can strongly influence predation rates. For instance, species that engage in
noisy territorial altercations, mating rituals, or opt for the production of many
precocial yet expendable young, are generally easier targets for owls (Ylonen and

Brown 2007).

Rodents and shrews interact most directly with one another, often utilizing
the same microhabitats and overlapping resource bases. Shrews seem remarkably
well adapted to sympatry both with rodents and other shrew species (Churchfield
1990, 1991). In the tropical regions of Zaire, up to 25 species of shrews have been
reported coexisting in a single region. Churchfield (1990) states that shrews
comprise only 8% of fauna in South Africa and that owls are their main predators. In
the widely distributed genus Crocidura, up to three and four species occur
sypmatrically in some habitats. The grassy pathways constructed by Otomys as it
grazes grassy stalks and reeds are frequently used by these shrew species as well as

other rodent species, notably Rhabdomys pumilio (Skinner and Chimimba, 2005).
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As is evident throughout this chapter, small mammals respond to both spatial
and temporal heterogeneity in habitat. Large mammals, particularly medium to
large sized herbivores both contribute to spatial heterogeneity by changing
vegetative structure and impacting resource availability. Controlled studies by
Keesing (2000) in East African and Hagenah et al. (2009) in South African savannas,
do not agree on whether vegetative structure or resource availability have a greater
impact on small mammal community structure. Keesing (2000) determined direct
competition for resources between large and small herbivores to be the primary
determinant of micromammal diversity and relative abundance in controlled
experimentation with ungulate exclusion. It was determined that survival rates of
small mice in ungulate-free enclosures did not differ significantly from those with

ungulates, and yet rodent community composition changed rapidly and dramatically.

Conversely, Hagenah et al. (2009) found that while the exclusion of medium-
sized herbivores (warthogs, impalas, and nyalas) increased the abundance of high-
quality grass resources, this had little effect on small mammal community
composition, whereas the exclusion of large herbivores and bulk feeders (i.e. zebra,
buffalo, and rhino) led to an increase in overall vegetation height, promoting greater
rodent abundance and species diversity, while altering rodent species composition.
This observation led the researchers to conclude that reduction of vegetation cover
and increased predation risk had the greatest effect on murid rodents. This
contrasts strongly with Keesling’s (2000) conclusions that resource competition
was of greatest import. Shrews, on the other hand, do not do well at all in areas

frequented by large herbivores (Churchfield 1990). It is probable that both factors,
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alteration of cover and resource competition, influence micromammal community
composition. However, the relevant lesson for paleoecological interpretation is that
taxonomic habitat analyses, while at times necessarily narrow in scope, must not be
so myopic as to exclude consideration of other species coexisting within a given

ecological community.

Located at the nexus of many food webs, rodents are preyed upon by a great
variety of predators. Shrews, with their pungent odor and foul flavor are not as
heavily preyed upon. Owls are their primary predation threat but nonetheless,
shrews only consistently make up 5-13% of owl diets. (An interesting contrast to
their dominance in owl diets in the Cradle of Humankind). Predators range from
small carnivores, to diurnal raptors, to snakes and reptiles, to nocturnal owls (De
Graff, 1981; Skinners and Chimimba 2005; Ylonen and Brown 2007). Predation risk
varies spatially and temporally and small mammals must mitigate this risk while
carrying out necessary foraging and reproductive activities (Ylonen and Brown
2007). As discussed earlier, small mammals minimize predation risk and optimize
foraging activity by adhering to specific microhabitats and avoiding others (De Graff,
1981; Skinner and Chimimba, 2005; Ylonden and Brown 2007). The necessity of
sufficient refuge has already been addressed, but additional circadian behaviors are
employed by small mammals to further mitigate predation risk. Rodents can be
nocturnal, diurnal, crepuscular and poplyphasic, as well as responsive to seasonal
change, moonphase, and substrate type (Ylonden and Brown 2007). Nocturnal
rodents often prefer denser vegetation and forage in solitude and silence under the

cover of darkness. Diurnal rodents, however, are frequently found in open habitats
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where they are better able to spot threatening prey. They are also usually colonial,
with advanced alarm calls and communicative systems (Ylonden and Brown 2007).
All but two of the rodent species found in South Africa are nocturnal, with the
notable exceptions being Rhabdomys and Otomys (De Graff, 1981; Skinner and

Chimimba, 2005).

The foregoing discussion gives one a sense of the larger ecological paradigms
governing micromammals and considerations for constructing appropriate niche
models. However, these niche models require detailed knowledge of the habitats
and species local to the regions in which paleoecological research is to be conducted
thereby providing local calibration for reconstructions. The following chapter will
address the climate, vegetation and micromammal species characterizing the Cradle

of Humankind pertinent to discussions found in Chapter Six and Seven.
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Chapter Five

Climate, Vegetation, and Micromammal Diversity in the Cradle of Humankind, WHS

Having established some general tenants of owl and micromammalian
ecology, and before launching into paleoecological interpretation, it is necessary to
gain familiarity with the nature of the extant flora and microfauna characterizing the
Cradle of Humankind region of South Africa. Naturally, the climate has changed a
great deal over the approximately five million years that have elapsed since the
beginning of the Pliocene. However, many micromammalian species have persisted
for that time, albeit in differing relative abundances, making them excellent subjects
for paleoecological research. In fact, only a single confirmed extinct rodent species,

Proodontomys cookei, is represented at fossil assemblages in the Sterkfontein Valley.

South Africa exhibits an extremely varied climate, but broader
intercontinental interpretations generally characterize the subcontinent as ‘semi-
arid’. Less than 5% of the region currently receives an annual rainfall in excess of
800mm annually (Schultze, 1997). Furthermore there is a high degree of variability
in inter-annual primary production - a measure of biomass directly related to
rainfall - generally greater than 50%. The South African subcontinent becomes
increasingly more arid, with less predictable seasonality as one moves east to west.
Mean annual temperature (MAT) in the Highveld region in which the Cradle of
Humankind is located is about 14-16 degrees Celsius. The Highveld is located at an

altitude that ranges from 1450-1750m and is characterized by the occurrence of
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frost, the onset of which occurs most often between mid-April to late May. Finally,
mean annual precipitation (MAP) for the region falls between 650-750 mm per
annum, with predictable seasonal rainfall patterns. This rainfall is largely

concentrated during the early summer months (Schultze 1997).

The combined interactions of these climatic variables, in conjunction with the
natural template of the landscape, produce relatively homogeneous environments
characterized by specific plant types organized into biomes. South Africa is divided
into seven distinct biomes, desert, succulent karoo, Nama-karoo, savanna, forest,
grassland, and fynbos, which themselves are further subdivided. The Cradle of
Humankind falls within the grassland biome, specifically the northern grasslands
referred to by Acocks (1975) as the “Bankenveld” or ‘false grassland’ (O’Connor and

Brendenkamp 1997).

Grasslands represent the third largest biome in South Africa (13.1%) and are
differentiated from savannas by water-balance, vegetative composition, and
temperature variables. Savannahs experience higher temperatures in the non-
growing season than do grasslands. They are characterized by the co-dominance of
woody plants and grasses, and in reality their vegetative proportions occupy a
spectrum with anywhere from 5-90% vegetative cover. In South Africa savanna is
the dominant biome type (53.7%) and is further subdivided into a nutrient poor and
moist ‘Broad-Leaved’ savanna as well as a nutrient rich but arid ‘Fine-Leaved’
savanna (Scholes 1997). The Sterkfontein Valley lies very near the Grassland-

Savanna border as well as near the confluence of moist and arid savanna types.
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Their close proximity means that the interaction between these biomes and sub-
biomes is important. It is believed that this region has been quite dynamic in the
past, changing as the Grassland and Savanna biomes contracted and expanded in
response to global and regional climatic change, particularly during the Plio-
Pleistocene (Avery, 2001). Thus the Cradle of Humankind is an excellent research
site for those interested in the interactions of savannas and grasslands and their

influence on native flora and fauna.

The Bankenveld grassland in which the Sterkfontein Valley is located, is
transitional between the grasslands of the high inland plateau and the savanna of
the low inland plateau. The area is underlain largely by dolomite (particularly in the
Western Transvaal) and is frequently called the ‘Klipveld’ because of its abundant
surface rock. The variation in topography, soil depth, and rainfall gradients have
resulted in vegetative mosaics with many co-dominant species and high diversity
(O’Connor and Brendenkamp, 1997). Micromammalian community diversity is
strongly influenced by this habitat heterogeneity and plant species diversity, so the
Bankenveld grasslands possess a wealth of microhabitat types and much

micromammal diversity (Andrews and O’Brien 2000).

Only those species found within the Cradle of Humankind and surrounding
Highveld regions will be included in the following species list. As stated earlier, most
of the species identified in the important fossil-bearing localities in and near the
Cradle of Humankind are still extant today. Their ecological habits and strong

association with particular microhabitats form the basis of paleoecological
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interpretations for the key Plio-Pleistocene sites located in the area. Species
descriptions are taken from De Graaff (1981) and Skinner and Chimimba, (2005)
unless otherwise noted. Some of the subfamilies important to these interpretations

have been emphasized in bold.

Cryptomys hottentotus - African Mole-Rat

This species is the only representative of the Hystricognathi suborder found
in the Highveld region, and is one of three genera of mole-rats. Neither a mole, nor a
rat, these creatures are fossorial, using their large, thickened incisors for excavation.
They have reduced eyes and pinnae, a highly developed sensory perception for life
below the surface, are thermolabile, and are excellent metabolizers of vitamin D and
other minerals. Sandy soils and river alluviums are frequently home to Cryptomys,
though they do not reside in clays. They are strictly herbivorous, a characteristic
shared only with Otomys (the Vlei Rat), eating the succulent underground parts of
plants, fleshy roots, bulbs, and tubers that are often toxic to other animals.
Interestingly, they are not uncommon in the pellets of barn owls so it is suspected
that they venture aboveground during the night either for forage or to collect den-

lining materials.

Graphiurus murinus - Woodland Mouse

This species has a bushy tail and is commonly mistaken for a small squirrel. It
is infrequently taken by barn owls despite its wide distribution perhaps because of

its arboreal tendencies. This Dormouse prefers woodland or rocky areas with
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woody vegetation. It is solitary and nocturnal, foraging mainly for insects, seeds, and

termites.

Acomys spinosissimus - Spiny Mouse

This mouse is uncommon the Highveld given its narrow thermoneutral zone
and poor ability to tolerate temperature extremes, but it has been noted from areas
near Makapansgat (Pocock 1985, 1987). It is nocturnal and terrestrial, prefers rocky

outcroppings but can live in dry woods and thickets, and eats mostly grass seeds.

Subfamily: Murinae

An important subfamily from a paleoecological perspective; the murines are
a diverse group with a total of 281 genera and about 1,300 species to date. At least
14 representatives of this subfamily are present in and around the Cradle of
Humankind and are useful for their specific association with habitats (some being

more specialized than others).

Lemnisomys rosalia — Single-Striped Mouse

This species, while also unlikely to be found in the Highveld, inhabits a wide
variety of vegetation, apparently preferring long grassland or ecotonal areas like
vleis and woodlands. It consumes at least 50% foliage including grass, herbs, and

weeds.
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Rhabdomys pumilio - Four-Striped Mouse

An ubiquitous generalist, Rhabdomys exhibits noticeable variation in size
from region to region, tending to be smaller in arid western regions. It is notably one
of only two diurnal/crepuscular species (the other being Otomys -the Vlei Rat), with
activity peaks in the morning and afternoon. It cannot thermoregulate at
temperatures below 5 degrees Celsius, which may be a primary explanation for its
diurnal habits. It is a quintessential grassland species, occurring in a wide variety of
habitats with grass cover. An opportunistic omnivore, it eats seeds, fruits, herbs,

grasses, and insects, with a diet that varies by season and geographic location.

Dasymys incomptus — African Marsh Rat

This species tends to have a more northerly distribution, but it is sympatric
with Otomys (Vlei Rat) and shares its preference for wet habitats, reed beds, and

vleis.

Mus - Neave’s Pygmy Mouse, Desert Pygmy Mouse, Pygmy Mouse

M. neavi has not been widely observed in the area, but Pocock (1974) did
note its occurrence in owl pellets collected at Makapansgat. It is found in rocky
montane grassland with bracken fern and also in Protea (a flowering plant often

referred to as sugarbush) woodland.

Current distribution maps suggest that M. indutus would be common in the
Highveld region. The species had a very wide habitat tolerance, is terrestrial and

nocturnal and often lives in areas with dead wood. Considerable oscillations in its
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population density have been documented and it is a primary prey item for
Suricates (Suricata suricata). Grass seeds, and Acacia seeds are its primary food at

low densities, but it becomes highly carnivorous at high densities.

Tolerant of a wide variety of habitats, the pygmy mouse (M. minutoides) lives
in rocky areas, vleis, riverine associations, grasslands, and seems particularly
prominent as a successional species in burnt grasslands, where its small size makes
it somewhat less conspicuous than larger species. It is nocturnal, terrestrial, and

feeds on grass seeds, herbage, and insects.

Mastomys- Natal Multimammate Mouse, Southern Multimammate Mouse

[t is now recognized that M. coucha is likely the predominant species of
multimammate mouse in the Highveld and it is associated with higher altitudes - up
to 2400m (Avenant, 1996) - and drier habitats (it is rarely found in areas with
>700mm rainfall). (M. natalensis appears to be associated with slightly wetter
habitats with >500mm annual rainfall). As their name implies, all members of the
genus are prolific breeders, quick to colonize disturbed areas and slowly replaced by
more specialized species. They are nocturnal, terrestrial, and have home ranges of
approximately 600-700m2. They are omnivorous and cannibalistic during
population explosions. They are well suited to exploiting any favorable habitat,

particularly during periods of high productivity.
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Thallomys - Acacia Rat and Black-Tailed Tree Rat

As their name implies, these rats are arboreal and strongly associated with

Acacia trees, feeding mostly on the tree’s leaflets and seeds.

Aethomys ineptus - Tete Veld Rat

This rat is yet another generalist, quite catholic in its habitat requirements. It
is partial to grasslands with some scrub, savannah woodland, rocky areas with
debris or scrub, and is often found at higher altitudes. It eats insects, vegetation and

seeds.

Michaelamys namaquensis - Namaqua Rock Rat

Though also catholic in its habitat requirements, and well adapted to arid
habitats, this rat is common in rocky hillsides with low total foliage cover. It is

nocturnal, communal and terrestrial, with omnivorous feeding habits.

Otomys - Angoni Vlei Rat, Vlei Rat

Vlei rats are stocky and hairy with grooved incisors and laminate teeth. They
are one of two strictly herbivorous South African rodents. They have digestive
adaptations which include long fermenting large intestines that are well-suited to
their herbivorous dietary habits. An ancestral species, Otomys gracilis, has been

recorded in the fossil record from the Late Pliocene (3-2 Mya).

Terrestrial and predominantly diurnal, O. angoniensis also shows some

propensity for crepuscular and even nocturnal activity. They reside in the mesic
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parts of grasslands and woodlands and are associated very closely with reed beds
and semi-acquatic grasses along vleis and riverbeds. Their well-defined runs are
used by a number of coexisting rodents such as R. pumilio. They feed on succulent

stems and rhizomes of grasses and fine reeds.

Widely distributed, O. irroratus may be more tolerant of non-vlei habitats
than 0. angoniensis. In addition to the habitat types listed above, it has been
identified in montane areas and on grassy hillsides. It is crepuscular, terrestrial, and
semi-aquatic. They eat nearly all plant species that occur in their habitat, though
grass is preferentially eaten. This species is often taken by both Tyto alba and by

Tyto capensis, which shares the rodent’s habitat preferences.

Subfamily: Gerbillinae

The gerbils are notable in their association with more arid habitat types.
They share a characteristic morphology, with tawny coloration, well-developed hind

legs, big eyes, and a tendency to saltatory movement.

Tatera- Bushveld Gerbil, Highveld Gerbil

Nocturnal, terrestrial, omnivorous and quite common, the Bushveld Gerbil (T.
leucogaster) prefers sandy soils and alluvium for its burrows. It is apparently
independent of a particular vegetation type as long as burrowing substrate is
suitable and can occur in areas with as little as 250mm of rainfall. Believed to
tolerate drier conditions than the Bushveld Gerbil, even the Highveld Gerbil (T.

brantsii) is often found in areas with less than 200mm rainfall. Both are omnivorous.
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Subfamily: Mystomyinae

Mystromys albicaudatus - White-Tailed Mouse

This genus contains only one species currently, though Proodontomys cookei
is considered to have been very closely related to Mystromys and is certainly a
member of Mystromyinae. Mystromys dominate fossil assemblages at both
Sterkfontein and Swartkrans, but is now listed as endangered. Current distributional
patterns follow the grassland biome very closely, particularly in the eastern regions
of South Africa. It appears to favor rocky areas with good grass cover, especially
those composed of dolerite and basalt. It is associated with grasses such as Aristida
and the shrub Diospyros afromontana. It is nocturnal, terrestrial, and is cold adapted.
[t is an omnivore with a specialized stomach designed to improve its generally poor

ability to digest fiber. It consumes insects, seeds, and green plants.

Saccostomys campestris - Pouched Mouse

A catholic species, the pouched mouse prefers sandy substrates with brush
or cover of woodland. It is nocturnal, terrestrial, solitary . It is an opportunistic

omnivore and hoarder, with a strong affinity for seeds.

Subfamily: Dendromurinae

Malacothrix typical - Gerbil Mouse

So named because of its outwardly similar appearance to gerbils, this mouse
is nocturnal and terrestrial, uses short-grass habitats, is often found in areas with

100-150mm of rainfall, and consumes mainly vegetative matter.
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Dendromus- Grey Climbing Mouse

Despite the implication of their name, the ‘tree mice’ spend the majority of
their time no more than two meters above the ground in grass and brush. Their tails
are used for grasping and they are almost exclusively insectivorous. D. mesomelas is
fonder of taller grasses and woodier plants, while D. mysticalis is also characterized

as granivorous, eating the tops of grass stems in addition to insects.

Steatomys- Fat Mouse, Kreb’s Fat Mouse

All fat mice utilize torpor during colder seasons, relying upon their thick
layer of fatty insulation. The Fat Mouse (S. pratensis) inhabits loose, sandy
substrates and the fringes of rivers and swamps in arid areas, while Kreb’s Fat
Mouse (S. krebsii) utilizes dry sandy grasslands to a greater degree. Both species are

nocturnal, terrestrial, omnivorous gramnivores.

Shrews

Myosorex varius - Forest Shrew

The name ‘forest shrew’ is somewhat of a misnomer, as this species is
frequently found in grassland or savannah given sufficient wet habitat, particularly
under dense grass along the banks of streams. It is primarily nocturnal in warmer
seasons, but switches to diurnal activity during colder periods, and is an

opportunistic insectivore.

Crocidurinae
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Suncus- Greater Dwarf Shrew, Lesser Dwarf Shrew, Least Dwarf Shrew

All of these shrews are insectivorous and all are associated with a wide
variety of habitats including moist riverine, savannah woodland, open grassland,
and mixed bushveld. S. varilla is often associated with termite mounds, which it uses

for cover.

Crocidura- Swamp Musk Shrew, Reddish-Grey Musk Shrew, Lesser Red Musk Shrew

Crocidura are very adaptable to a wide variety of habitats and often, three or
four species will be found living sympatrically. C. mariquensis is found only in very
damp habitats, whereas C. cyanea appears to have quite a wide tolerance, occurring
in moist, dense grassy habitats, bordering reed beds, and in drier bushveld habitats.
C. hirta is fonder of wetter, marshy areas, though all of these species are commonly

associated with riverine and vlei-like areas.

Macroselidae - Elephant Shrews

Elephantulus myurus - Eastern Rock Elephant-Shrew

Currently E. myurus is the only elephant-shrew expected to occur in the
region, though Makapansgat and Sterkfontein have yielded extinct members of both
the Macroscelides and Elephantulus genera. E. myurus is strictly associated with
rocky koppies where it can take cover from predators. It is predominantly diurnal,
but activity peaks at dawn, and they are also active at night. This species is
extremely agile and quite fast, communicates with foot thumps, and enters torpor in

cold temperatures. Diets generally consist of 90% invertebrate prey.
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Chapter Six

Micromammal Paleoecology in Plio-Pleistocene Africa

Until Cartmill (1967) pioneered techniques for micromammalian
paleoecological interpretation in the 1960’s, data gathered regarding
micromammalian fauna largely consisted of species lists, vague descriptions of
potentially new species, and relatively small datasets. Few interpretive or
quantitative analyses were conducted (De Graff, 1961; Pocock 1985, 1987; Denys

1990; Avery, 1998).

Furthermore, inadequate description, poor communication between
researchers studying different fossil-bearing sites at different times, and poor
systematic resolution for many micromammalian taxa, have resulted in much
taxonomic confusion with regards to Plio-Pleistocene microfauna. Avery (1998)
points out that this confusion is probably related to the historical assumption made
by early collectors that Plio-Pliestocene micromammals differed from modern
species. Ongoing taxonomic revision reveals that, in fact, most species are
indistinguishable morphologically from related extant species and may safely be
assumed to be similar in their habits to their modern counterparts. This is not, of
course, sufficient evidence to warrant assumptions of taxonomic uniformitarianism
between any fossilized specimen and currently existing species. However, it does
serve to significantly reduce the conflation of ecological and niche variables
concomitant with using modern analogs to describe the tendencies of completely

unrelated extinct species.
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Cartmill (1967) recognized the potential utility of micromammals and began
to implement taxonomic habitat analysis techniques using fauna from Pleistocene
sites throughout sub-Saharan Africa (Cartmill, 1967; Avery, 1998). Little ecological
work had been done until the 1990s, though the last decade has seen more
coordinated and sophisticated efforts in this vein of research (Avery, 1998, 2001,
2010; Denys, 1985; Matthews, 2005; Reed, 2003, 2005, 2007, 2011; Reed and Denys,
2011; Winkler et al., 2009). Of particular import are those studies that explicitly
correlate modern ecological data with paleoassemblages (see Avery, 2001; Reed,
2003, 2005, 2007). These efforts attempt to incorporate the numerous ecological
variables associated with both predator selectivity and the differential vulnerability
of prey species (as discussed in greater detail in the preceding chapters) to calibrate
local paleoecological interpretations. This type of research is pragmatic, drawing its
theoretical underpinning from modern ecological research and extrapolating that

methodology to paleoecology.

Micromammalian paleoecological analyses have been conducted at
numerous East and South African sites (Cartmill, 1967; Wesselman, 1984; Pocock,
1985, 1987; Denys, 1985, 1990, 1999; Avery, 1998, 2001, 2010; Fernandez-]alvo,
1998; Reed, 2003, 2007; Matthews, 2005). These researchers have utilized
variations of the reconstructive techniques and niche representation models
delineated at the end of Chapter Two. Briefly, these techniques include comparison
of taxonomic ratios, the construction of taxonomic habitat indices (THI), and species

diversity measures.
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The following will focus primarily on current paleoecological interpretations
in South African localities with particular attention paid to the Plio-Pleistocene sites
including Makapansgat, Sterkfontein, Taung, Swartkrans, Gladysvale, and
Kroomdraai. Numerous other South African sites in the Western Cape region have
received considerable analyses thanks to the work of Avery (1982, 1987), Matthews
(2005), and Matthews et al. (2007) but these sites are either relatively older or
younger than the australopithecine and early Homo producing sites that are the
object of inquiry here. Moreover, these sites are located in quite different
vegetational and climatological biomes both presently and historically and as such

possess different small mammal community patterns.

Before delving into the details of South African micromammal paleoecology,
it is necessary to provide the reader with a quick summary of similar
reconstructions conducted in East Africa. Much foundational work in micromammal
paleoecology was developed at Omo and Olduvai Bed-I and subsequent researchers
have followed in the methodological footsteps of these first efforts (Cartmill, 1967;
Denys, 1985; Fernandez-Jalvo, 1998; Reed, 2003, 2007). Generalized similarity in
ecological patterns observed in both Eastern and Southern African fossil localities
corroborate hypotheses suggesting a global cooling and drying with increased
seasonality, while differences between the two regions are suggestive of the more
regional and local effects of such large-scale climatic change (Peters and Maguire,
1981; Vrba, 1985, 1995; Cerling, 1992, 1999; Shackelton, 1995; deMenocal 1995,

2004; Trauth et al.,, 2005; Kingston, 2007; Maslin and Christensen, 2007).
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East Africa

East Africa has featured prominently in the narrative of hominin evolution.
Dotted with sites aligned in a roughly north-south orientation along the East African
Rift Valley, this region of Africa has proved an excellent repository of fossilized
material. Many of these sites have produced a large quantity of micromammals,
though deposition in most cases and at most localities is more ambiguous than some
of the South African sites. Taphonomic analyses suggests that, while the barn owl
Tyto alba was a significant contributor to microfaunal assemblages throughout the
region, the process of alluvial deposition characterizing many East African sites
probably incorporates coprocoenoses of multiple avian and small mammal
predators (Korth, 1979; Wesselman, 1984, 1995; Fernandez-Jalvo et al., 1997; Reed,
2003, 2005). Furthermore, the movement of water and deposition of alluvial
sediments means that microfaunal assemblages accumulated in this way
demonstrate relatively less fidelity to specific microhabitats representing instead a
mosaic of relatively local habitats than those assemblages found in South Africa

caves (Andrews, 1990).

Microfaunal assemblages from the Pliocene (~ 5-2.6 Ma) are well
represented by the East African localities of Hadar, Laetoli and Omo Members B and
C, the Pleistocene (~2.5-1 Ma) sites of Olduvai Beds I and II, the Koobi Fora
formation, and Omo F and G, finally Late Pleistocene to Holocene (~1-0 Ma) are
represented by Olduvai Bed IV and the Laetoli Ngaloba beds (Denys, 1999). While

other localities with micromammalian fauna exist, [ will focus here on Hadar, Laetolj,
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Omo, and Olduvai because these sites have yielded large assemblages of rodent
faunal material, can be ordered and assessed chronologically, and are each

associated with important hominin specimens.

Denys (1985) employed correspondence analysis, cluster analysis and
utilized a similarity index to compare the microfauna communities represented at
Laetoli to those from Hadar, Omo, and Olduvai. Significantly, the micromammalian
faunal assemblages characterizing each East African site, even those believed to be
contemporaneous, are more distinct in taxonomic composition (and by inference
habitat composition) from one another, than are most modern localities. For
example, paleoenvironmental reconstructions at Hadar and Shungura Omo
Formation Members B and C, both dated to ~ 3.4 Mya and younger, suggest similar
habitat composition and yet are dramatically distinct in their respective faunal
compositions (Denys, 1999; Klein, 1999). This suggests a high degree of endemism
at each locality, hence the notable distinctness in rodent community structure at
Hadar, Omo, Laeotoli, and Olduvai. Denys (1985) postulates that these areas served
to isolate populations but that the presence of rivers and paleo-lakes throughout the
rift system offered rich intermediate/transitional ecotonal environments,

facilitating diversification of rodent species into specific ecological niches.

Hadar

Hadar, located on the southern edge of the Afar Triangle in Ethiopia
represents the northernmost East African site to be discussed here. The site itself is

a sedimentary formation, dated to 3.4 Mya and younger and has famously yielded
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the Australopithicus afarensis specimens “Lucy” and the “Dikika baby” (Klein, 1999;
Tattersal, 2009). The majority of paleoenvironmental reconstructions emerging
from analysis of Hadar materials implicate a more humid and closed environment
than is observed at other, younger East African localities. The micromammalian data
support this interpretation, with the presence of Tachyoryctes (Mole Rat) and
Praomys (Swamp Rat or Soft-Furred Mouse) suggesting a wooded/mesic landscape

(Denys, 1999).

Laetoli

Laetoli has yielded assemblages dating back to the Pliocene (~3.4 Mya) as
well as the Middle and Late Pleistocene to Holocene (1-0 Mya), these are the Laetoli
and Upper Ndolanya beds and the Laetoli Ngaloba beds respectively (Denys, 1985,
1990, 1999). Laetoli is perhaps best known for its remarkably well preserved
hominin footprints as well as 13 hominin fossil specimens attributed to
Australopithicus afarensis (Klein, 1999). Additionally, the site boasts a wealth of
vertebrate mammalian remains including approximately 500 rodent specimens. The
taphonomy of the site has been attributed to three processes, coprocoenosis,
dispersal by rains, and the preservation of larger species trapped within their

burrows (Denys, 1985).

These specimens dating to the Early and Middle Pliocene derive from two
distinct levels, the Laetoli beds ca. 3.4- 2.6 Mya and the Upper Ndolanya Beds ca. 3-
2.5 Mya, contributing 22 fossil bearing localities in total (Denys, 1985).

Micromammalian evidence suggests subtle differences between the two periods,
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with the older Laetoli beds reflecting relatively drier conditions than the later
occurring Upper Ndolanya Beds, the microfaunal communities of which suggest
association with more covered, humid grassland or riverine environments. The later
occurring Laetoli Ngaloba beds, however, corroborate the aridification trends
observed elsewhere, but analyses of micromammalian remains have not been

conducted (Denys, 1985; Reed and Denys, 2011).

Omo

This area, in South-West Ethiopia, is stratigraphically divided and represents
two significant temporal periods ranging from the Late Pliocene to the Early
Pleistocene and have produced specimens attributed to Australopithecus afarensis,
Paranthropus aethiopicus, and arguably various permutations of early Homo (Klein,
1999). Omo evidences a shift in small mammal community composition from those
adapted to climatic stability and more tropical vegetation types to those better able
to cope with decreased climatic stability, landscape heterogeneity, and more arid

conditions (Wesselman, 1984).

Members b through E reflect a period of roughly 3.4 to 2.4 Mya and are
associated with A. afarensis and P. aethiopithecus (Klein, 1999). Generally,
paleoecological interpretation of micromammalian remains is indicative of a
wooded environment 3 Mya, even reflecting micromammalian species communities
adapted to tropical forest settings (Wessleman, 1984, 1995). Members C through E
evidence a decline in the relative proportion of tropical adapted species and the

notable emergence of more xeric adapted ones.
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Omo Members F and G, dated at the earliest to 2.34 Mya and associated most
notably with early Homo specimens reflect a drastic shift to arid conditions with
preponderance of gerbils (esp. the very arid adapted Jerboa) and, by Member G, the
complete disappearance of any forest-adapted species (Wesselman, 1984, 1995).
This evidence is cooroborated by similar micromammalian indications of aridity in

the 1.6 Mya old Koobi Fora Formation (Wesselman, 1995).

Olduvai

Olduvai Gorge, situated on the edge of the Serengeti, has yielded the greatest
wealth of fossilized micromammalian faunal remains in East Africa (Fernandez-Jalvo,
1998; Reed, 2003, 2007). As at Laetoli, different temporal levels are present at
Olduvai, but the focus will remain on sediments dated to the Plio/Pleistocene
boundary. The Late Pliocene to Early Pleistocene (~2.5-1 Ma) is represented by
Olduvai Beds I and II, while Middle and Late Pleistocene to Holocene (~1-0 Ma) is

represented by Olduvai Bed IV (Denys, 1999).

Olduvai Bed I (specifically the FLK Bed I sequences ca. 1.7 Mya) lies at the
confluence of the Main and Side gorge and is particularly important for
micromammals (Klein, 1999; Reed, 2003, 2007). Several rodent taxa present in the
FLK Bed sequences overlap with species extant in the area today (Reed, 2003, 2007).
The presence of contemporaneous species in the fossil assemblage at Olduvai
corroborates well with Reed’s (2003, 2005) interpretation of a “relatively stable

metacommunity structure for East African Rodents through the Pleistocene”.



74

Analysis of the Olduvai microfauna have been broken down into two
significant intervals, Middle Bed I and Upper Bed I (Fernandez-Jalvo, 1998; Reed,
2003, 2007). Analyses of microfauna imply a shift from a more mesic environment
in Middle Bed I, to a more xeric environment in Upper Bed 1. More specifically,
Middle Bed I has been characterized as more mesic than the later beds due to
presence of Aethomys (Bush/Rock Rat) and Thallomys (Acacia Rat), both of which
prefer shrubby woodland, lake margins, and woodlands with a grassland understory.
Upper Bed I, meanwhile, has been reconstructed as a more xeric/dry environ due to

the presence of Gerbillus (Gerbils) and Steatomys (Fat Mouse) (Reed, 2007).

Interesting, and in contrast to what is seen evidenced in any modern small
mammal assemblages, is the presence Otomys. The genus Otomys has been
traditionally characterized as a grazer. Hence its presence in the Upper Bed I
assemblage would seem to be indicative of stable moist grassland or marsh. Oddly
there are no other faunal indicators for this habitat type specifically, which leave
two possible explanations for the presence of this taxa within Upper Bed I. Either
the more xeric environment implicated by the presence of other taxa like Gerbillus
and Steatomys also included a moist grassland component (perhaps in limited areas
bounding the paleo-lake), or Otomys is more catholic in its dietary tolerance and
hence capable of subsisting in a broader range of habitats, a distinct possibility given

preceding discussions of the autoecology of this genus (Reed, 2007).

In correlating recent analyses of the Olduvai micromammalian assemblages

with other paleoecological data, some discrepancies arise. For instance, the AAC
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(Alcelaphine:Antelopine bovid index) (Vrba, 1980, 1985) ratio indicates a more
intermediate, grassland environment in the Middle Bed I sequence contrasting
starkly with the mesic reconstruction indicated by the micromammals. It is
plausible, however, that this discrepancy has more to do with a scaling issue than
anything significant climatically - large mammals are capable of wider dispersion
than smaller mammals, which are also inherently more sensitive to local conditions
(Reed, 2007). There is modern precedent for African lakes that include both a dry
and moist grassland component. It is possible that this type of environment
characterized paleo-lake Olduvai during the Pleistocene (Fernandez-Jalvo, 1998;

Reed, 2003, 2007).

The apparent decrease in micromammalian taxonomic diversity throughout
all sites in East Africa correlates well with a pattern of general climatic drying,
changes in the dynamics and structure of the East African Rift system itself
(opening), and the spread of a more uniform savannah-like environment throughout
this region of Africa (Peters and Maguire, 1981; Vrba, 1985, 1995; Cerling, 1992,
1999; Shackelton, 1995; deMenocal 1995, 2004; Trauth et al., 2005; Kingston, 2007;
Maslin and Christensen, 2007). However, it is important to note that despite these
broader patterns (which are indeed corroborated to great extent by
micromammals), micromammalian assemblages at each site differ significantly,
thereby reflecting paleoenvironment on a much finer scale than indicated by larger

fauna and other measures.
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South Africa

The karst geology predominating at most South African faunal and hominin
bearing localities produces excellent fossil assemblages characterized by a
remarkable degree of preservation (Klein, 1999; Tattersal, 2009). Additionally,
hominin-bearing sites are often found in caves, a setting particularly conducive to
owl-accumulated coprocoenoses, especially those of Tyto alba with its marked
affinity for utilizing caves as roost sites (Taylor,, 1994; Reed, 2003, 2005). The South
African landscape was an important theater for hominin evolution. Australopithecus
africanus, Paranthropus robustus, and Homo have been described from the north-
central and north-eastern areas (Klein, 1999; Tattersal, 2009). With the exception of
Taung and Makapansgat, nearly all hominin remains have been recovered in and
around the Sterkfontein Valley in the Cradle of Humankind, World Heritage Site (see
Figure 6.1). It is notable that recently yet another species, Australopithecus sediba,
was discovered here and thus joins the pantheon of hominin species known to have

inhabited to the region (Berger et al., 2010).

Today the region is located quite near the confluence of several vegetation
biomes and it has been postulated that the composition of the dominant vegetation
types in the Sterkfontein Valley have fluctuated significantly as these biomes have
expanded and contracted in response to geological uplift, climatic shifts, and other
abiotic processes (du Toit, 1933; deMenocal, 1995; Partridge et al., 1995; Avery,
2001). It is apparent from multiple datasets including pollen records, lacaustrine

and marine sediments, macrofaunal assemblages, isotopic analyses and indeed
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possibly even the hominin fossil record itself that a significant climatic period
occurred during the Plio-Pleistocene (Peters and Maguire, 1981; Vrba, 1985, 1995;
Cerling, 1992, 1999; Shackelton, 1995; deMenocal 1995, 2004; Trauth et al.,, 2005;
Kingston, 2007; Maslin and Christensen, 2007). The following micromammalian
paleoecological analyses reflect these Plio-Pleistocene changes to differing degrees.
Hominin fossil-bearing localities from this time period include Makapansgat,
Sterkfontein, Taung, Swartkrans, Gladsyvale, and Kroomdrai. Temporally the sites
range from the oldest estimates of over 3 Mya at Sterkfontein and Makapansgat
(though Sterkfontein is likely no older than 3 Mya - see Berger et al., 2002; Conroy,

2005) to approximately 1.0 Mya at Swartkrans (Klein, 1999).

Swartkrans and Sterkfontein remain the only sites for which full
micromammalian paleoecological reconstructions utilizing relative species
abundances, taxonomic habitat analyses, and species diversity indices have been
attempted (Avery, 2001). However, preliminary assessments for micromammals do
exist for the other sites (De Graaff, 1960; Pocock, 1985, 1987; Avery, 1998).
Makapansgat, Gladysvale, and Kromdraai all exhibit the same overwhelming
dominance of Mystromys seen at Sterkfontein and Swartkrans. Broom (1937, 1939)
was able to describe some of the fossil rodent species derived from the Limeworks
at Taung, though they are excluded here. It is unfortunate that better samples do not
exist, for Taung represents the southernmost australopithecine-bearing locality yet
known and as such local paleoenvironmental reconstructions would serve to
broaden understanding of australopithecine distribution and habitat-type

association.
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Fig. 6.1. Map of southern Africa with locations of important Plio-Pleistocene sites. The Cradle of
Humankind World Heritage Site is shown in the insert, with the location of Gladysvale Cave and the

other hominin-bearing caves in the vicinity. (Figure after Pickering et al., 2007)

Makapansgat

Micromammalian remains at the Makapansgat Limeworks have been
recovered from australopithecine-bearing Members 3 and 4 as well as the
Makapansgat Rodent Corner In Situ pink Breccia (MRCIS) and the Exit Quarry basal
Red Mud (EXQRM). Though dating is problematic in a number of South African sites,
broad estimates utilizing faunal and paleomagnetic techniques suggest an age a little
older than 3 Mya to 2 Mya (Klein, 1999). The Rodent Corner and Exit Quarry, have
tentatively been included with Member 4, which appears to be slightly younger than
Member 3. Hence, Makapansgat represents what is arguably (Sterkfontein being the

notable contender) the oldest hominin-bearing South African site (Klein, 1999).
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Previous paleoenvironmental reconstructions (Reed, 1998, Sponheimer et al.,
1999) imply a bush and woodland environment with a Highveld summer rainfall
regime and mixed C3/Cs vegetation. Isotopic research conducted by Hopley et al.
(2006) on the three most common rodent species represented at the site provides
support for the previous reconstructions. Rodent sotopic values indicative of mixed
C3, C4 feeding provide additional evidence for a more mixed woodland-savanna
environment with a greater proportion of woodland during the mid-Pliocene than
that which exists at Makapansgat today. Denys (1999) interprets the Makapansgat
paleoenvironment indicated by these micromammals similarly, arguing that it does
not correspond to modern Transvaal Highveld habitats but likely reflects a mixed

and mosaic habitat with savannas-like affinities.

A comprehensive study assessing relative species abundance and rodent
community structure at Makapansgat remains to be undertaken, but preliminary
assessment by Pocock (1985) revealed the presence of Otomys and Proodontomys
cookie, and Mystromys. Gerbils are rare but closely resemble Tatera. Shrews
including Myosorex are common, akin to what was observed in modern collections

(see Chapter Seven) but unlike Sterkfontein and Swartkrans.

Just as at Sterkfontein and Swartkrans Mystromys dominates the assemblage
in Member 3 but, Pocock (1985) notes with interest, Mystromys is completely absent
from the Exit Quarry and Rodent Corner blocks. Pocock (1985) infers that Member 3
is therefore older than the other sediments and that Mystromys catastrophically

declined to regional extinction in the interim. Today Mystromys, is not found near
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Makapansgat at all and is rare in the Sterkfontein Valley (Skinner and Chimimba,,
205). The absence of Mystromys from all but Member 3, as well as the fact that
Makapansgat is located a significant distance north of the Sterkfontein Valley, may
corroborate Avery’s hypotheses that savanna and grassland biomes fluctuated

widely in the region (Avery, 2001).

Gladysvale

In a preliminary assessment of the micromammalian remains from
Gladysvale Cave, South Africa, which is located 13 km northeast of Swartkrans and
Sterkfontein, Avery (1995) identified 29 rodent species, all extant with the sole
exception of Proodontomys cookei. Chronological control at the site remains
indeterminate as the samples were drawn largely from the dumps of material
discarded when the site was mined for calcite. Recent flowstone analyses of the site
estimate a younger than original faunal associations (~650 - 7Kya) (Pickering et al.,
2007). The apparent stability of the rodent community suggests an environment
comparable to the bush underlain by relatively extensive dense grass, which exists
at the site presently. Once again, Mystromys dominates the taxonomic composition
of the site though, interestingly, to a lesser degree than at any other sites in the area
(i.e. Not over 50% of MNI). The presence of more riverine adapted species such as
Dasymys may also implicate a less seasonal rainfall regime than the modern pattern

(Avery, 1998).

Kromdraai A & B
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Of the two members Kromdraai A and B, only Kromdraai B has yielded
hominin remains to date, though both A and B have produced a wealth of fossil
fauna (Klein, 1999). De Graaff (1961) and Pocock (1985) both report fauna
dominated by Mystromys and Otomys and note the decline of the former to
replacement by true murids. De Graaff (1961) concludes that the Kromdraai B
deposit was formed under conditions wetter than those today, an assumption
drawn from the presence of Myosorex, Grammomys and Maystomys. Myosorex is
known to favor wet, riverine, and vlei regions, while Grammomys is frequently
associated with trees. Mastomys, however, is a generalist and its presence may not

suggest any conclusive habitat (Skinner and Chimimba,, 2005).

Sterkfontein and Swartkrans

Pocock (1985, 1987) was the first to assess the micromammalian fauna at
Sterkfontein and Swartkrans and he quickly noted the preponderance of Mystromys
and Otomys observed in subsequent analyses when micromammalian assemblages

were expanded and revisited by Avery (2001).

Avery’s study utilized micromammalian remains from both Sterkfontein and
Swartkrans. She uses three discrete samples, the oldest of which derives from
Sterkfontein Member 4 (2.8-2.6 Mya), followed by both Sterkfontein Members 5E
and Swartkrans Members 1-3 (2-1 Mya), lastly Sterkfontein Member 5 infill is
included for comparison (100 Kya). Assemblages were confidently attributed to
Tyto alba on the basis of taphonomic assessment of digestion in in situ lower molars

from rodent specimens. For the purpose of environmental reconstruction, climate
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correlates (including mean annual precipitation, mean monthly rainfall, minimum
and maximum temperature ranges, percent winter rainfall, and summer aridity
indices) with modern micromammalian species derived from roost sites in the
Sterkfontein Valley were established. Modern rodent distributions were compared
with vegetational patterns from biome and sub-biome maps. However, unlike Reed’s
(2005) study conducted on the East African Serengeti, information on local
vegetational patterns near roost sites were not collected from the field. Using
taxonomic habitat analyses and notably excluding generalist species, Avery
concluded that proportional representation of small mammal species from the fossil
assemblages generally correlated well with the current proportions of vegetation in
the Sterkfontein Valley landscape. However, proportional representation of riverine
grassland was extremely large and species diversity low. Avery contributes this to
the extraordinary preponderance of Mystromys albicaudatus which has been
construed as a species that favors riverine grasslands. Further assessment of the
Sterkfontein Name Chamber (probably a component of M5) also reveals an

assemblage dominated by Mystromys and Otomys (Avery, 2010).

The resultant reconstructions suggest that both Sterkfontein and Swartkrans
represent interglacial deposits as well as transitional ecotones between savanna and
grassland of both moist and arid varieties. In addition, Avery concludes that the area
experienced overall lower mean annual precipitation (500mm opposed to current
approximations of 750mm) (Acocks, 1975; O’Connor and Brendenkamp, 1997;
Schultz, 1997), higher seasonality, warmer mean annual temperatures, and

narrower temperature ranges. More specifically, Sterkfontein M4 suggests open
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woodland with bush and thicket, while the younger deposits suggest wooded
grassland (moist savanna) or plains. Swartkrans appears to have had a lower mean
annual precipitation during accumulation than Sterkfontein (310mm) and
microfauna implicates medium density woodland or bush and greater proportions
of edaphic grassland along a river. Avery suggests that the valley may have
represented a modern day catena, in which broad and fine-leaved savannas
intergrade continuously, with the fine-leaved variety concentrated towards valley
bottoms and drainages and the more broad-leaved savanna occurring on hillsides
and plateaus. Avery specifically describes the locality as follows, “a succession from
riverine grassland, sometimes Acacia trees, hillsides with bush, grass and some
trees, to plains with open savanna woodland” (2001:113). Avery concludes that at
the landscape level, vegetation was not homogeneous, but varied with time and
climate flux. This reconstruction agrees rather generally with reconstructions based
on macrofauna by Reed (1997) and Brain (1995) though her suggestions place

rainfall estimates as rather lower than other attempts.

There are a number of factors to consider in this reconstruction. The first of
these has to do with the potential for predator bias. Avery alludes to Tyto alba’s
preference for open, riverine, and ecotonal environments, and concludes, akin to
Denys (1990), that both grassy steppe and riverine microhabitats were present. The
preponderance of Otomys alongside Mystromys corroborates this interpretation.
However, it would seem problematic that generalists were excluded. Given the
dominance of Mystromys, habitat signals would not be obscured by including

generalists and the presence of generalist may indicate the existence of
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microhabitats otherwise excluded or underrepresented. It has been demonstrated
owing to their broad physiological tolerances, generalist species frequently colonize
under-populated areas and exploit a wider range of dietary resources when
interspecific competition is high (Skinner and Chimimba,, 2005; Krystufek et al.,

2007; Kinahan and Pillay, 2008).

Clearly, the ecological role and the corollary habitat and environmental
propensities of Mystromys are of utmost importance here given the species
overwhelming dominance during the Plio-Pleistocene and its “catastrophic” decline
in subsequent millennia. The autoecology of modern Mystromys species remains
somewhat unresolved. According to Skinner and Chimimba (2005), The species
follows the grassland biome very closely in the eastern parts of the subcontinent
and yet its dietary, behavioral, and physiological adaptations are remarkably
generalist. Mystromys is omnivorous, nocturnal, terrestrial, and is in possession of a
low and broad thermoneutral zone, so it is cold adapted (Skinner and Chimimba,
2005). Though Skinner and Chimimba (2005) note that the species prefers good
grass cover and has been found on rocky slopes, cliffs, and in areas with short,
sparse grasses, they do not explicitly acknowledge an affinity for riverine grasslands.
Hence the strict categorization of Mystromys in all taxonomic habitat analyses as a
riverine grassland species may require revision. As noted in Chapter Two,
taxonomic habitat analyses are heavily reliant upon appropriate and accurate niche
models. Several scenarios provide potential explanation. Firstly, it is likely that
current niche models for Mystromys are insufficient in scope and depth, or that the

modern Mystromys upon which these models are based is more derived in its habits
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(if not its morphology) than its Plio-Pleistocene predecessor. Second, it is clear that
some local ecological, environmental and/or climatic changes, however slight,
affected this species more dramatically than others, nearly all of which (including
Otomys), remain well represented in the area nearly two million years later. A
notable exception to this is now extinct Proodontomys cookei, the only other known
genus in the Mystromyinae subfamily. In fact, the species was originally classified as
Mystromys and only later transferred to its present genus status by Pocock (1987)
on very slight morphological evidence. It is possible that these species, given their
close phylogenetic relationship, shared general habitat and niche proclivities that

lead to their decline.

Many of the described micromammalian paleoecological studies highlight the
necessity of better autoecological data to supplement existing niche models for
micromammalian species and patently demonstrate the need for calibration to local
ecosystemic processes. The next chapter will present the very preliminary findings
of a pilot study whose aim is to achieve such calibration for the Cradle of

Humankind in South Africa.
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Chapter Seven

Pilot Study in the Cradle of Humankind, South Africa

Introduction

Utilizing methodology and research design similar to that conducted in
Serengeti habitats near Olduvai and Laetoli (Reed, 2003, 2007, 2011), and
expanding upon analyses conducted by Avery (2001) this preliminary study
addresses the composition of small mammal ecological communities and their
associated habitat complexes in The Cradle of Humankind, World Heritage Site,
South Africa. These modern ecological data will ultimately be compared to
micromammal fossil samples derived from the hominin-bearing localities of
Sterkfontein and Swartkrans. It is the larger goal of this study to provide an
ecological baseline for micromammalian paleoecological reconstruction by
determining whether coprocoenoses accumulated by owls are indicative of the local
habitat diversity, structure, and composition in this area. These baseline calibrations
may then be used to facilitate more accurate interpretation of fossilized

assemblages.

[t should be noted that this attempt represents a preliminary analysis only
and will serve to summarize raw data regarding the species composition, diversity,
and habitat indications of each modern and fossil site. Future research and full
development of this project will entail thorough examination of the hydrology,

elevation, topography, precipitation, soil type, and vegetative composition and
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structure prevailing at each site. Naturally, advanced statistical analyses and various
permutations of taxonomic ratios and taxonomic habitat indices will be employed as
these analyses developed. Nonetheless, cursory information regarding species
composition and relative abundance reveals some interesting trends in the modern
data as well as striking differences between modern and fossilized micromammalian

communities.

Methods

Modern roost data derives primarily from three roost sites, Malapa, Kimberly,
and Gladysvale all located within the Cradle of Humankind approximately 10km
from Sterkfontein and Swartkrans. Coprocoenoses were also collected from two
sites located in The Cradle Nature Reserve, but have been excluded from the current
analyses owing to their small sample size and the present uncertainty regarding the
identity of the predatory accumulator. Each modern site was selected for its location
in a unique habitat type. Coprocoenoses in Malapa and Kimberly have been collected
for both dry and wet seasons, while the Gladysvale specimens represent a collection
of decayed and likely seasonally averaged pellets. Wet and dry season samples from
both Malapa and Kimberly roosts, respectively, have been combined for better

comparison with the Gladysvale samples.

The Sterkfontein and Swartkrans fossil collections are from the Ditsong
National Museum of Natural History (formerly Transvaal Museum), Pretoria.
Sterkfontein material derives from Member 4, dated to ~2.8 Mya and is associated

with Australopithecus africanus (Klein 1999). Remains from Swartkrans derive from
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Member 1, Hanging Remnant. Member 1 has been dated to ~ 1.8 Mya and is
associated primarily with Paranthropus robustus but notably also produced Homo

specimens (Klein 1999).

Samples were collected over the course of two field seasons, the first taking
place during the dry season, May 2010 and the second during the wet, rainy months
of the austral summer, January, 2011. Identification of both roost and fossil
specimens were made by O. C. C. Paine and myself with the aid of comparative
collections housed in the Ditsong Museum, Pretoria and the Iziko Museum of
Natural History, Capetown. Material processing and identification took place in
Capetown under the tutelage of Thalassa Matthews, a paleontologist and rodent
specialist at the Iziko Museum, as well as on the University of Colorado, Boulder

campus following the second field season.

Species identifications for both modern and fossil micromammals were made
on the basis of distinctive tooth morphology with the aid of a microscope. Certain
species are more readily identified to the genus versus the species level. Generalist
species including Mastomys, Rhabdomys, Aethomys, and Micaelamys, all proved
difficult in some instances, as distinguishing features are either located on maxillary
or mandibular portions that were missing. Generally, all specimens have been
identified at least to the level of genus, which provides relatively reliable ecological
data regarding habitat preference (Reed, 2003). Fortunately, the tooth morphology
of the dominant species, Mystromys and Otomys, are easily differentiated -

Mystromys on the basis of its uniquely ‘zipper-like’ pattern of molar invaginations
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and Otomys for its prominent laminae. No extinct species were identified in
preliminary assessment. The Soricidae Crocidura, Myosorex, and Suncus have been
collectively categorized as ‘insectivores’ or alternately ‘shrews’ given the difficulties
of discerning species on the basis of tooth morphology alone (Matthews, personal

communication).

Vegetation was sampled in point transects by members of the field team.
Plant type and percent vegetative cover have been determined thus far with species

identification pending.

Species composition, relative abundance, and species diversity are all
assessed using minimum number of individuals (MNI) for modern roosts, and
number of identified specimens (NISP) (mandibular and maxillary material only) for
the fossil specimens. The Shannon-Weiner Index (Shannon, 1948) (see Chapter

Two) was calculated for each site to assess relative diversity.

H=-ZpIn(p;)

Results

Roosts and Vegetation

The Malapa roost is positioned very near the Australopithecus sediba bearing
cave Malapa (Berger et al.,, 2010). The roost is located in a rocky crag and
preliminary taphonomic observations support the argument that the accumulator is
a young barn owl (personal observation; Berger, personal communication). The

surrounding landscape is varied in its topography with outcroppings of dolomitic
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rock, as well as a mixture of trees, bushes and grasses. Preliminary assessment of
vegetation near the roost site suggest a ground cover composition of 85% grasses,

10% forbs, and 5% short trees (<1 m in height).

The Kimberly roost site is located in a lone dilapidated building and one of
very few human-made structures in the reserve. It is situated in the midst of a wide
expanse of grasslands. Preliminary ground cover analyses suggest a ground cover

composition of 95% grasses, 5% forbs, and 5% short trees.

Gladysvale, a site which has yielded two hominin teeth, has long been
occupied by a mating pair of barn owls (Berger, personal communication). The cave
is located in the side of a sharply incised valley, characterized by a spectrum of
vegetative cover ranging from densely wooded riparian areas on the valley floor,
hillsides with mixed vegetation and numerous rocky koppies, and elevated grassy
plateaus. A point transect survey of vegetative cover has tentatively described 10%

rock, 65% grasses, 5% forbs, and 20% trees.

Micromammalian Community Composition: Modern Roosts

Species dominance at the modern roosts is as follows. At the Malapa roost,
like all other roosts, shrews dominate the assemblage, followed by Mastomys, Mus,
Steatomys, Tatera, Michaelamys, and finally Otomys. The Kimberly roost, following
shrew dominance, is characterized by Mastomys, Otomys, and Steatomys. Gladysvale
had the highest proportion of shrews, but this is followed notably by Dendromus,

Michaelamys, Mastomys, and Otomys.
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At Sterkfontein and Swartkrans, similar to Avery’s 2001 analyses, Mystromys
dominates followed by Otomys. Mystromys is slightly more dominant at Sterkfontein
and Otomys, slightly less when compared to Swartkrans. However, these higher
proportions may simply be due to the presence of five Elephantulus specimens at

Sterkfontein.

When data for modern roosts are averaged, Shrews, Mastomys, and Otomys
dominate with 59% of total species represented. Shrews and six rodent species
make up 80% of the total assemblage. At the subfamily level, Insectivores! and
Murinae are relatively evenly represented, while Dendromurinae follow with gerbils
and mole rats each representing 5% respectively. The fossil samples, when
combined are dominated by Mystromyinae, with the Murinae representing 27% of

all taxa.

Table 7.1 lists raw data based upon MNI for each site, while Table 7.2 lists
raw data for each of the fossil sites utilizing NISP based upon maxilla and mandibles
only. Table 7.3 includes Shannon-Weiner Diversity values. Relative abundance data
sorted by genus (excepting shrews), is illustrated in Figures 7.1 and 7.2, while
relative abundance data sorted by genus and major subfamily for all mammalian
taxa at both the modern roost sites and fossil sites are represented in figures 7.3 and

7.4.

1 Note that Insectivore is neither a subfamily, nor are shrews classified as Insectivora by Skinner and
Chimimba (2005). Nonetheless, this categorization is used for easy reference as shrews are all
insectivorous.
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Roost ID Total
Taxa Malapa Kimberly Gladysvale Storage Chateau  MNI
Insectivora
(Shrews) a2 60 55 4 7 168
Macroscelidae
Elephantulus myurus 0 0 0 0 0 0
Rodentia
Deomyinae
Acomys spinosissimus 2 2 0 0 0 4
Murinae
Aethomys ineptus 2 1 2 0 0 5
Dasymys Incomptus 0 0 0 0 0 0
Grammomys dolichurus 0 0 0 0 0 0
Lemniscomys rosalla 0 Q0 0 0 0 Q
Mastomys coucha 15 31 10 4 8 68
Michaelamys
namaaquensis 7 3 10 0 1 21
Mus sp. 10 2 3 0 0 15
Mus cf. minutoldes 0 2 0 0 0 2
Qtomys sp. 5 15 9 2 5 36
Rhabdomys pumilio 1 6 3 0 0 10
Thallomys sp. 0 1 0 0 0 1
Subtotal Murinae 40 61 37 () 14 158
Dendromurinae
Malacothrix typica 0 0 0 0 0 0
Dendromus sp. A 7 16 2 0 29
Steatomys sp. 4 12 8 0 0 28
Subtotal Dendromurinae 12 19 24 2 0 57
Gerbillinae
Gerbillurus paeba 0 0 0 0 0 0
Tatera sp. 6 6 7 0 0 19
Subtotal Gerbillinae 6 6 7 0 0 19
Bathyergidae
Cryptomys hottentotus 1 9 0 0 0 10
Mystomyinae
Mystomys albicaudatus 0 0 0 0 0 0
Subtotal Rodentia 61 97 68 8 14 248

Total 103 157 123 12 21 116

Table 7.1. Taxonomic representation presented as the minimum number of individuals (MNI) for
modern roost sites in the Cradle of Humankind World Heritage Site, South Africa.
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Site 1D Total
. Swartkrans Mam 5-

- Sterkfontein Mem 4 Hanging Remnant .
Insectivora
(Shrews) ] 4] 4]
Macroscelidae
Elephantuius myurus 5 0 0
Rodentia
Deamyinaes
Acomys spinosissimuys i) 1 1
Murinae
Aethomys 1 4 5
Lasymys i) 0 0
Grommaonmys 0 0 0
Lemniscomys 0 0 0
Mastomys coucha 1 1 FJ
Michaelamys namaguensis 0 i 1
Mus sp. 0 0 0
Mus cf. minutoides 0 4] 0
Citomys sp. 14 AN 52
Rhabdomys pumiho 1 1 Pl
Thallomys sp. o 0 0
Subtotal Murinae 17 ar G
Dendromurinae
Malacothrix typica 0 0 0
Dendramus $p. 3 2 5
Steatomys sp. i) 0 0
Subtotal Dendromurinae 3 2 4]
Gearbillinae
Gerbil sp. 1 0 1
Bathyergidae
Crypramys hottentotus 1 1 2
Mystomyinae
Mystamys alblcaudatus Gl 107 168
Subtotal Rodentia ui 158 241
Totals 28 158 241

Table 7.1. Taxonomic representation presented as the number of identified specimens (NISP) for
Sterkfontein and Swartkrans.
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% Relative Abundance of all micromammalian taxa at Roosts (MNI)
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Figure 7.1: Relative abundances (%MNI) of all mammalian taxa at modern each roost
site.

% Relative Abundance of all micromammalian taxa at Fossil Sites (NISP)
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Figure 7.2: Relative abundances (%NISP) of all mammalian taxa for the fossil sites
Sterkfontein and Swartkrans.
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Bathyergidae 2%
Gerbillinae 5%

Figure 7.3: Relative abundances (%MNI) of all mammalian taxa and major subfamilies
from all roosts combined.

Elephantulus 2%

Dendromus 2%

Gerbils <0%
Batherygidae 1%

Figure 7.4: Relative abundances (%NISP) of all mammalian taxa and major subfamilies
from Sterkfontein and Swartkrans combined.
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Malapa Kimberly Gladysvale Sterkfontein Swartkrans Member 1
Member 4 Hanging Remnant
Shannon-Weiner 1.9356887 | 1.9676718 | 2.0023327 | 1.0790057 0.9584921
Diversity Index
Species Richness 12.0 14.0 12.0 9.0 9.0
Total Abundance 103 157 135 88 158

Table 7.3: Summaries of Shannon Diversity Index calculations for each modern and fossil site.

Discussion and Conclusion
How well do modern taxa reflect local habitat?

It would appear that each modern roost exhibits unique species
compositions and diversity. Though shrews featured prominently at all sites, and
Mastomys, a well-known generalist species, follows at Kimberly and Malapa, the
relative abundances of the various species do reveal different compositions.
Kimberly has the greatest species richness, though Gladysvale actually exhibits the
highest Shannon-Weiner value. This is likely because species are more even in the
mixed terrain near the Gladysvale roost site than at Kimberly, where grassland and
generalist species dominate. Both Sterkfontein and Swartkrans have low calculated
diversity values owing to the dominance of Mystromys and Otomys. Avery (2001) did
not assess Shannon-Weiner Diversity in her study of Sterkfontein and Swartkrans,
but a later study of the Name Chamber at Sterkfontein (Avery, 2010) revealed very
high diversity values (~2.4), which she hypothesized reflected mixing with other
stratigraphic members. It is possible that mixing occurred in our Gladysvale
collections and that the high species richness observed at the Kimberly roost may be

a function of larger sample size.
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The domination of shrews at all modern roost sites is most interesting.
Shrews are widespread and multiple species are frequently found sympatrically
(Churchfield, 1990, 1991). Suncus and Myosorex are generally associated with
wetter habitats and riverine or vlei settings, while Crocidura tends to be more
catholic in its habitat requirements and is found frequently throughout South Africa
(Skinner and Chimimba 2005). Interestingly, Churchfield (1990) notes that shrews
regularly make up only 5-13% of owl diets worldwide and yet our samples reveal
the consumption of greater than 30% shrews. Shrews are clearly an important
component of the diet of the barn owls in this region of South Africa. More
information about shrews in this region, their patterning on the landscape, their
ecological importance, and their habitat associations, including their climatic
correlates, are needed to determine the full implication of their dominance in the
owls diets. This is particularly true given the fact that shrews are completely absent

from the fossil assemblages.

How do modern taxa and compare to the fossil assemblages from Sterkfontein and

Swartkrans?

Generally, preliminary assessments of taxonomic composition agree with
those described by Avery (2001). Mystromys and Otomys are, at both sites, the
dominant species. Mystromys is completely absent from the modern coprocoenosis,
and, though Otomys is relatively well represented at each modern roost, it is never

more than the third most represented species. More detailed discussion of the



significance of the dominance of these fossil assemblages can be found in Chapter

Six, but early analyses do generally agree with the findings of other researchers.
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Chapter Eight
Conclusion

One aim of this thesis was to examine the interplay between habitat type,
micromammal community composition, and owls to identify the main biases
inherent in coprocoenoses and to determine whether these biases are small enough
to allow accurate paleoecological interpretation based upon micromammals.
Though predator selectivity certainly contributes to biases in coprocoenoses, it
would appear that within the constraints of body size and activity pattern, the
ubiquity and semi-generalist nature of the barn owl, its proclivity for including
ecotonal and edge habitats in its foraging range, and its sensitivity to fluctuations in
relative abundance of its prey base, make it a more reliable sampler of small
mammal diversity and community composition than any other single measure
(Reed, 2003, 2005, 2007). This makes owl accumulated fossil assemblages ideal
proxies for reconstructing micromammalian paleocommunities and, by

extrapolation, local habitats.

In this assessment, it would seem that ambiguity in the details of
micromammalian ecology introduces as much bias as the owls themselves.
Autoecological knowledge of species varies greatly in its depth and detail depending
on the relevance of that species to human research interests (Reed, 2003). Species
thought to have specific habitat associations or dietary propensities may, in fact, be
more catholic in their requirements than traditionally ascribed (Hopley et al., 2006;

Kinahna and Pillay 2008). Furthermore, many micromammal species are highly
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generalist, with broad diets and wide habitat tolerances (Skinner and Chimimba
2005). These species are problematic for current micromammal paleoecological
methodologies, which rely on genus and species specific information regarding

habitat preference.

Though biases certainly exist and better resolution is needed for the modern
niche models and local environments upon which micromammal paleoecological
reconstruction depends, these reconstructive techniques do appear to provide
useful and valid paleoecological interpretations. Naturally, caveats must be
acknowledged in interpretation and are best mitigated not only with accurate niche
models but, importantly, by corroboration with and comparison to other lines of

paleoecological evidence.

The results of preliminary assessments of modern coprocoenoses in the
Cradle of Humankind, South Africa nonetheless demonstrate micromammalian
community structure that is distinct to specific habitat types in the area. The fossil
micromammal assemblages collected from Sterkfontein and Swartkrans agree
broadly with the assessments made by Avery (2001) in their assessments of
composition and dominance of species. However, micromammal paleoecological
reconstructions in this area would benefit greatly from more detailed ecological
assessment both in terms of the habitat affinities and dietary ecology of particular
species, especially Mystromys albicaudatus and Otomys. Also, the near absence of

shrews in the Pleistocene deposits of Sterkfontein and Swartkrans despite the
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apparent importance of shrews in the diets of modern owls, necessitates better

understanding of the shrew ecology in the region.

Ultimately research similar to that conducted by Reed (2003, 2005, 2007)
and the preliminary research presented herein must be undertaken to improve the
caliber of micromammalian paleoecological reconstructions. These fine scale
reconstructions help paleoecologists and paleoanthropologists understand not only
how the large-scale climatic shifts that occurred during the Plio-Pleistocene
manifest regionally and locally, but they also may serve to elucidate the subtler
nuances of landscape that created niche space for the coexistence of multiple

hominin species.
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