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Bong, Chih How (Ph.D., Computer Science)

Exploring the Semantic Meaning of Constructs that Lead to Human Decisions

Thesis directed by James Martin

This study examines automated approaches to discovering behavioral knowledge that are

encoded as constructs in social and behavioral science disciplines. To date, constructs relationships

are ordinarily revealed through laborious psychometric methods, but this study has shown that it is

possible to extract these relationships through automated computational approaches. By building

on text similarity measures from prior literature, we are able to predict construct relationships

through construct name, definition and items. The predicted relationships were woven into an

interlock system to demonstrate construct interplays, even though they have not been studied.

The construct interlock could be seen as a theory map to understand human decision-making. Two

use cases were presented to demonstrate the efficacy of the proposed measures: measuring the root

constructs in UTAUT and visualizing network of construct perceived usefulness. The encouraging

results showed that the proposed measures could dramatically expedite theory development, at the

same time also expedite progression of human science.
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Chapter 1

Introduction

1.1 Overview

We present the main motivation that prompted this research. Next, we describe the common

problems most scientists face when integrating existing knowledge. Then we discussed the goal and

objectives of the research. Lastly, we present the brief outline of the thesis.

1.2 Motivation

For the last several decades, social and behavioral science has grown enormously. The in-

creasing volume of theory has produced ample knowledge that is highly validated and solid, partly

due to the strict operations and procedures of psychometrics. We do not have an exact number of

theories, but we know there are thousands to tens of thousands and many thousands of extension

articles. In the course of the last 70 years of research and development, constructs in social and

behavioral science have been developed to cover the entire spectrum of human experience. This

highly validated and broadly covered pool of knowledge is a gold mine of information that exists in

the human brain. If this pool of knowledge could be mined and engineered with proper Machine

Learning (ML) and Natural Language Processing (NLP) approaches, its potential could become

invaluable to social, behavioral and computer science. Never before has anyone thought to tap

into this gold mine to address prominent human decisions related to important social problems

and health issues. In addition, it can be seen as a valuable source to leverage phenomena or con-

cepts that only exist in the brain such as beliefs, intentions, perceived truths, motivation states,
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expectancies, needs, emotions and social role perceptions in machine learning research.

1.3 Problems

Today, many scientists consider combining developed knowledge the greatest challenge of

science. The following discussion highlights the obstacles currently hindering theory development

research in multiple disciplines. We have chosen to focus on three prominent problems that relate

to facilitation in social and behavioral science: construct proliferation, linguistic ambiguity, and

disconnected constructs.

1.3.1 Construct proliferation

In many social and behavioral disciplines, research focused on theory development has gained

in prominence in the past decades, but the utilization of knowledge embedded in the development

efforts has not kept pace [44]. Evidence shows that researchers are not making effective use of

existing research studies [42]. The plethora and fragmentation of constructs in social and behav-

ioral science has suggested that researchers prefer to propose new constructs over using existing

constructs when developing new papers [42]. Normative science is additive, new research allows

the theorist to refine, change, and adapt the existing theories. To date, effective approaches for

discovery of newly developed or past theories from an integrated knowledge base do not exist.

1.3.2 Linguistic ambiguity

In theory development, researchers use words to facilitate conceptual dialogues. Often, ex-

perts can disagree on the vocabulary and the meaning of the words used to represent concepts.

Linguistic ambiguity is created if the wrong words are chosen or concepts are not put in context.

Past research [24] reveals that people are less than 20% likely to express the same idea using the

same words, which lead to construct correspondence, a scenario where different names have identi-

cal meanings. On the other hand, researchers, unaware of related works, tend to create independent

constructs when using identical names with different definitions within different research areas.
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1.3.3 Disconnected constructs

To the best of our knowledge, large-scale integration of constructs across multiple disciplines

has never been attempted. Nunnally [61] made clear that constructs do not exist as isolated

instances but are inter-related to one another. For instance, both the verbal and the mathematical

dimensions of the construct intelligence must be assessed before judging an individual’s intelligence.

A nomological network represents the way in which one construct relates to other constructs and

how those constructs interplay, allowing predictions to be made about unobserved constructs and

their relations even before we create them.

1.4 Research Questions

Knowledge integration begins with synthesizing multiple knowledge bases into a common

construct. Operationally, two constructs are deemed similar if the domain experts determine that

one or more of the construct measurement items can also be used to measure the other construct.

It is also part of the process in construct validity. In practice, two constructs presumed similar

are validated by experts “operationally” through (1) formulating the assumptions of the rela-

tionships between constructs, (2) determining the corresponding relationships with the empirical

measurement results (3) comparing the empirical relationships between the measures results with

the corresponding assumed relationships between constructs and (4) interpreting the results of the

comparison in order to determine the validity of measures. Measuring construct similarities this

way is complex, laborious and time consuming.

Measuring constructs operationally becomes almost impossible when dealing with thousands

of constructs collected from the past literature in social and behavioral science. This leads to

the question of whether any of the current advancements in Natural Language Processing (NLP),

specifically computational semantics, are capable of predicting construct relationships.
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1.5 Research Goal and Objectives

The goal of the study is to explore and devise automated computational approaches, as an

alternative approach to the conventional psychometric processes to predict construct relationships

based on their textual properties. The study is further solidified and sharpened with the following

three objectives:

(1) Investigate, propose and evaluate computational text similarity measures for construct

similarity computation based on names, definitions and items.

(2) Appoint experts to manually label construct relationships, which will serve as a gold stan-

dard to benchmark the measures proposed in the objective mentioned above.

(3) Demonstrate the applicability of the similarity measures inducing human decisions related

to technology adoption through use cases.

1.6 Research Scope

The scope of our study of construct relationships is restricted to the Information System

(IS) discipline only. We restrict our efforts to finding binary class relationships when measuring

similarity: correspondent and independent, by using preset thresholds on the similarity scores.

1.7 Chapter Overview

Chapter 2 provides an in depth discussion of the main entity of the study, the constructs.

We begin the discussion on the importance of the constructs and how they can be operationalized.

Next, we give an overview of the problems that are hindering theory development. The chapter

ends with our approach to collecting constructs for the study.

Chapter 3 presents various background material that are related to construct development.

We discuss briefly the role of constructs in behavioral science and its connection to psychometrics.

We also present existing attempts to address the problems.
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Chapter 4 elaborates on our attempt to reveal construct relationships through computational

approaches. We review a number of text similarity measures and carry out a pilot study where

they are able to predict construct relationships.

Chapter 5 describes the creation of a gold standard, which is used to evaluate alternative

approaches to prediction of construct relationships.

Chapter 6 presents various evaluation methods for finding the best prediction measure for

construct relationships.

Chapter 7 describes the application of the similarity measure in predicting corresponding

constructs in the Venkatesh et al. [84] unified model.

Chapter 8 presents a use case study on the network of constructs, which is known as Con-

structNet.

Chapter 9 concludes the thesis by discussing the overall contribution of the research in the

context of related work in the area. In addition, it addresses the limitations of our study and

suggests future work.



Chapter 2

Constructs

2.1 Overview

In this chapter, we begin our discussion by defining constructs and explaining how they are

created throughout different disciplines. We then tackle the problems that are hindering theory

development where constructs are used

2.2 What are constructs

Constructs are the elements of behavioral theories. Cronbach and Murphy [15] (p. 464)

defines a construct as “an intellectual device by means of which one construes events. It is a

means of organizing experience into categories.” Constructs are also known as latent variables.

The term latent variable implies two features of constructs (a) they are unobservable, e.g. anxiety

and aspiration and (b) they are variable rather than constant, e.g. the level of anxiety changes

over time. Although the constructs are latent and cannot be observed directly, their magnitude

can be quantified through behavior. The phenomenon of behavioral constructs is usually reflected

with a set of measurement items (or scales), which are used to quantify construct reflection through

behavior, e.g. determining usefulness through productivity. For example, the construct Perceived

Usefulness shown in Table 2.1 which is first appeared in Davis [17] has 6 measurement items.

Measurement items (or measurement instrument or sometimes known as scales), are a collec-

tion of statements or questions intended to reveal the levels of theoretical concepts or constructs.

They are used to measure a phenomena we believe to exist but which cannot be observed and
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Name Perceived Usefulness

Definition The degree to which a person believes that using a particular system
would enhance his or her job performance.

Items 1. Using the system in my job would enable me to accomplish tasks
more quickly.
2. Using the system would improve my job performance.
3. Using the system in my job would increase my productivity.
4. Using the system would enhance my effectiveness on the job.
5. Using the system would make it easier to do my job.
6. I would find the system useful in my job.

Table 2.1: The table shows that the construct, Perceived Usefulness, as reported in Davis[17] has
three textual properties: name, definition and items.

assessed directly. For example, if a person was given an opportunity to rate their productivity by

how strongly they agree with each of the items, their underlying Perceived Usefulness should influ-

ence their responses[17]. Each item should be an indicator of how strong the Perceived Usefulness

is. The score obtained on the item is caused by the strength or quality of the construct for that

person at the particular time and space. Thus, these items have the cause of relationships to the

construct. and they are intended as a measure to estimate the actual magnitude of the construct.

Constructs are non-specific concept representation in words and are easily fabricated, manip-

ulated and interpreted [92]. When dealing with constructs, the two major concerns are (a) do the

measurement components of constructs measure what they purport to measure? and (b) what are

the structural components that interrelate constructs with one another? Construct validation is a

process “to employ one or more measures whose results generalize to a broader class of measures

that legitimately employ the same name” [61]. Psychometrics is a body of study governing the

design of valid constructs.

2.3 Why constructs are important

Constructs are the cornerstone of behavioral theory. Constructs represent valuable units of

concept and knowledge of theory in the fields of study. Concept and knowledge are important

as they help us to understand and explain what actually is going on. They can be seen as the
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building blocks of hypotheses in the behavioral and social sciences. For example, in psychology,

they represent ideas such as anxiety, aspiration and usefulness that cannot be deemed as behavior.

Constructs should be consistently relevant to a variety of domains within a field of study.

Constructs also serve as common language through which theoretical ideas and research

findings are conveyed among researchers. They directly contribute to the progression of existing

knowledge and theory.

2.4 How constructs are created

The transformation of concepts into constructs is known as construct conceptualization. It

is a process of constructing scientists’ imaginations into something that are abstract rather than

concrete [61]. The lack of concreteness of construct conceptualization implies that there is no one

prescribed empirical approach to define and create constructs. However, Barki [7] in his paper has

generalized that they are four non-exclusive approaches to construct conceptualization, which are

(1) Create a clear definition;

(2) Specify a construct’s dimensions and their relationships;

(3) Explain how a construct applies to alternative contexts; and

(4) Expan the conceptualization of a construct.

2.4.1 Create a clear definition

A clear and explicit definition has to be established for a construct once a concept is con-

ceptualized. For example, to conceptualize Perceived Usefulness, a suitable definition must be

created which reflects the research context. Perceived Usefulness has existed for a long time in

the IS discipline within an extensive body of research. However conceptualizing the construct with

a clear definition clarifies its relationship with the existing literature. In addition, it is suggested

that different construct names be used to distinguish between behavioral, cognitive and attitudinal
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constructs. This step is very useful in explaining time-dependent relationships that frequently exist

between the constructs of different meta-categories.

2.4.2 Specify a construct’s dimension and their relationships

Another way to conceptualize constructs is to identify the dimensions of a construct and the

relationships that exist between them. This can be done by studying the related studies or other

fields theories and discovering the specification of multidimensional constructs. The researcher has

to analyze and decide whether or not all construct dimensions must be simultaneously present

for the construct to exist. It should be noted that the conceptualized constructs may overlap

when exploring other contexts. Such overlapping is expected when considering the conceptualized

constructs are relevant with other concepts.

2.4.3 Explore how constructs can be applied to other context

The third approach in conceptualizing a construct is by analyzing how a given construct

can apply in different technological, organizational, or individual contexts. For example, how

constructs relationships in Technology Acceptance Model (TAM) [16] are vary between hedonic

and instrumental contexts.

2.4.4 Expand the conceptualization of constructs

Construct development is part of the theory development where new theories are constantly

revised and new knowledge is discovered through research by introducing new constructs. Con-

structs in most research models are narrowly defined to suit the particular context being studied.

Such constructs can be conceptualized better by expanding the conceptualization to include a wider

context so that it would better explain and support understanding of multifaceted and complex

realities.
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2.5 Psychometrics

Constructs are latent behavioral variables. Since they are unobservable, they are derived

through a systematic procedure comparing the behavior of two or more people with carefully de-

signed instruments. The systematic procedure is known as psychological testing. The key question

here is how to ensure that constructs produced through psychological testing and reported in pub-

lications represent what they are supposed to conceptualize. Psychometrics comes into play here.

Psychometrics is the study of operations and procedures used to measure individual differ-

ences in behavior and to link those measurements to psychological theory or phenomena. The

statement reveals three psychometric attributes: (1) tests involving behavior samples, that are (2)

collected in a systematic way, and (3) with the goal of comparing the behavior of two and more

people. In other words, it is about generating instruments and procedures use to quantify or mea-

sure a particular theory or phenomena [25]. The science of psychometrics is particularly concerned

with the design of valid measurement instruments and reliable tests, which in consequence allows

administration and analysis of the results with sustainable empirical evidence.

2.5.1 Validity and Reliability in Construct

Two key concepts in psychometrics are validity and reliability of a psychological test. Valid-

ity is the degree to which a test measures what is it meant to measure. Validity is an extremely

important attribute in psychometrics as it concerns whether instruments used are capable of pre-

dicting specific events or an event’s relationship to measures of other constructs. There is no single

nominal index of test validity, rather there are a number of different approaches established to

measure validity of a test. The more prominent type is construct validity. Construct validity is

an effort to correlate between a theoretical concept and measurement items. For example, can the

ability to solve mathematical problems be appropriately used to measure Intelligence? A test is

only valid if it measures what it claims to measure.

Reliability of a test is about the proportion of variance related to the true score of the
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construct to be measured, based on the observed scores obtained through measurement items. Re-

liability reflects the correlation between observed scores, true scores and error. True scores are

unobservable “actual value” of constructs, whereas observed scores are raw data. The reliability is

high when the differences among participants’ observed scores are consistent with the differences

among their true scores, factoring in the error 1 . The reliability does not vary because of the differ-

ences in time, space and different measurement items being used. For example, the psychological

trait intelligence is quite stable across time and its true value does not change much in weeks or

months and it can be measured either through problem-solving and verbal ability. That says a

reliable test should highly correlate and has reasonable low test-retest variability if it administered

to the same group on two occasions.

The purpose of discussing psychometrics here is to make clear that construct conceptual-

ization is strictly bound to standards and guidelines to safeguarding their quality. All constructs

found in articles published in reputable journals have gone through thorough reviewing process and

stringent selection to ensure that the results reported are of high validity and reliability. Despite

this, a discipline’s validity and reliability evolves over time, and not all review processes are of

identical quality. The different levels of validity and reliability affect the work in this dissertation

and are identified when appropriate.

2.6 Problems

Though constructs contribute to the progression of science, theory development research these

days has become multi-disciplinary, thanks to the number of new theories developed every year in

all the relevant fields. However, questions arise about how to appropriately manage and integrate

the knowledge. Currently, theory development is facing three problems: construct proliferation,

linguistic ambiguity and construct disconnect.

1 Classical measurement theory assumes that Observed score (O) is equate to True score (T) and Error (E). If E
is reduced, O will converge on the true score of the concept.
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2.6.1 Construct Proliferation

Theory development has grown over the past decades across multiple disciplines. For example,

in the behavioral science discipline, Lee, Lee and Gosain [45] show over two hundred theories

being developed and used in information system research alone, and Straker [76] lists over three

hundred theories or models that have some bearing on persuasion. Although growth is positive,

as more conceptualization efforts pour in from every direction to solidify scientific discoveries and

develop more specific theories, the valuable knowledge embedded in the efforts does not keep

pace nor converge to a conclusive body of evidence. For example, behavioral science research

in IS, which is considered relatively well-defined, is being characterized as theoretically scattered

[39, 62], fragmented [6], and chaotic [51]. One major factor that contributes to this predicament

is researchers who are not well-informed of or considering related works. They are disconnected

from earlier research even in cases where they conduct similar or even identical research. If these

problems are left unattended, disciplinary knowledge is likely to continue to grow apart, resulting in

the problem of related and even identical constructs that are seldom cited or reused. For example,

IS research is derived from multiple disciplines such as psychology, economics, computer science,

as well as management. As an applied discipline, IS research should be grounded in one or more

of the underlying disciplines. Testing of hypotheses should be derived from the existing theories

rather than from intuition. Furthermore, methods of testing should be compatible and derived

from the existing disciplines. Normative science is additive, with new research allowing theorists

to refine, change, and adapt the existing theories. To date, effective approaches for discovery of

newly developed or past theories from an integrated knowledge base do not exist.

2.6.2 Linguistic Ambiguity

Zmud [92] (p. 29) described construct as ”abstract entities and not specific, observable vari-

ables”, and stated that “they are easily fabricated.” Theory development makes use of words to

facilitate conceptual dialogues. The problem of this is to decide what words to select, which refer
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to events or things that are unobserved or functions that are unclear and unspecific. Researchers

can disagree on the vocabulary and the meaning. If researchers fail to understand the specific con-

ceptualization context and adopt the wrong words, linguistic ambiguity results. As Zmud pointed

out, linguistic ambiguity ”is not unique to the IS field,” it happens in every discipline. Linguis-

tic ambiguity causes failure among researchers to reach consensus on the underlying semantics of

concepts and ideas. One of the main factors contributing to construct confusion is ”simply lack

of understanding or awareness of the structure and breadth of these fields and the measurement

tools used to assess them” [28]. Also, Furnas, Landauer, Gomez and Dumais [24] found that dif-

ferent people are less than 20% likely to express the same idea using the same words. Larsen [42]

discovered that in the IS implementation area alone, 83 unique concepts were measured using 948

different instruments and most of the research papers employing these instruments did not build

on similar and existing ones. Thus, the use of different words creates ambiguity which leads to

correspondent (similar) and independent (dissimilar) constructs.

2.6.3 Construct Disconnect

Nunnally [61] suggested that a construct ”. . . literally . . . does not exist as an isolated, observ-

able dimension of behavior.” Relationships between constructs are of paramount interest to theory

practitioners and researchers. Cronbach [14] envisioned a nomological network as an ”interlocking

system of laws which constitute a theory.” A nomological network represents the way in which a

construct relates to other constructs and demonstrates the interplay of constructs. Accordingly,

defining a theoretical construct is a matter of elaborating the nomological network in which it oc-

curs, ”with the net, adding a construct or a relation to theory is justified if it generates nomologicals

that are confirmed by observation” [14]. Although nomological networks sound like a promising

panacea to all the discussed predicaments discussed in theory development, methodology to develop

such a net has never been developed. Part of the reason is because the effort to weave constructs of

theory into a graph-like presentation is formidable and requires huge financial support, laborious

effort and great scholarship across different disciplines.
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2.7 Evaluation of Constructs by Experts

There are always infinite ways to describe constructs. The assessment of constructs quality

should not be focused on the “truthfulness” of the construct‘s conceptualization, but should rather

emphasize the constructs efficacy in predicting or explaining interesting or important phenomena.

This is where the constructs contribute to the progression of science.

2.8 Nomological Network

A nomological network is a network of constructs and is originally proposed to ensure con-

structs validity. A nomological network is defined as the interlocking system of laws which consti-

tutes a theory [14] (p. 290). It is a network representation of concepts (construct) of interest in a

study, observable manifestations, and the relationships among them. This network would include

the theoretical framework of what we are trying to measure, an empirical framework of how we are

going to measure it, and interrelationships between these two frameworks. Constructs constitute

a crucial part of these laws, and Cronbach and Meehl outlined the importance of learning more

about a theoretical construct through elaborating the nomological network in which it occurs.

For example, while preparing items to measure a developing construct, C, it is useful to

identify and study how C is semantically similar to and theoretically distinct from other constructs

as this insight contributes to a clear definition for the construct to reflect its research context. Once

having established the interrelationship specification to C, we can distinguish between construct

measurement items that exhibit Convergent validity (evidence of similarity between measures of

theoretically related constructs) and those that exhibit Discriminant validity (the absence of corre-

lation between measures of unrelated construct). Therefore, by exploring the nomological Network,

we can operationally define and detect applicable measurement items for a construct even when

the constructs appears in different theories.

Although the nomological network might seem to be the right tool in guiding researchers

develop and validate construct, it is never used in large scale construct development. Integrat-
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Figure 2.1: The Nomological Network developed by Cronbach and Meehl [14]. The figure shows the
relationships of theoretical constructs to observables, observable properties or quantities to each
other, and different theoretical constructs to each other.

ing constructs from multiple theories requires validation of every construct‘s measurement item

which needs huge investment of time and expertise, involving fusion of different theories which

are developed under narrow areas and niche interests. This problem is further aggravated by the

constructs nature of lack of concreteness, which are usually ambiguous and misinterpreted in the

network. Constructs also vary in the nature of those close in description to those highly theoretical

constructs. Finally, construct relationships cannot be expressed with a single simple coefficient and

the integration of diverse constructs cannot be an entirely quantitative process.

2.9 From Nomological Network to ConstructNet

We can derive an interlocking system of constructs by loosening up the strict conditions

imposed by a nomological network. Instead of cross-validating every construct measurement item

through experiments, we can weave a theoretical construct network even when constructs have

never been tested as part of the same theory or model, by computing the similarity of construct

properties: name, definition and items. We call this network ConstructNet. Through various NLP
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advancements, especially those that are used to compute text similarity, we can discover three types

of construct relationships:

(1) Correspondent constructs—constructs that are very similar in context, e.g. Complexity

versus Ease of Use

(2) Related constructs—constructs that are likely to be correlated, e.g. Anxiety versus De-

pressed

(3) Independent constructs—Unrelated constructs, e.g. Ease of Use versus Depressed.

We intend to explore various similarity measure to predict construct relationships (see Chapter

4). The number of relationships between constructs grows exponentially, thus, 10,000 articles

containing 50,000 constructs would have over 1.2 billion potential relationships. To restrict its

scope, this study is limited to networks built upon correspondent and independent constructs.

2.10 Construct Collection

Any article published in a reputable journal containing at least one construct was a candidate

for inclusion in the study.

Theories consist of two main elements: constructs and relationships. Each theory reported

normally consists of a number of constructs representing perceptions, belief, motivation, attitudes,

preferences, social acts and satisfactions. The second main element of the theories—relationships—

are generally represented by hypotheses and the statistical findings of those relationships. The

statistic reports the discrepancy of constructs and how they correlate empirically with one another.

We collected constructs that are reported between 1983-2009 in two information system jour-

nals: Management of Information System Quarterly (MISQ) 2 and Information Systems Research

(ISR) 3 . Since these journals are perceived as reputable in IS, we operate on the assumption that

2 http://www.misq.org/
3 http://isr.journal.informs.org/
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the constructs reported in the articles are validated. This assumption may be violated in some

cases without major impact on the work.

Construct parsing is the process of extracting construct and their properties from the articles.

We created a relational database to preserve the constructs that are of interest to our study. The

data were constituted by:

(1) All individual paragraphs in the originating paper (to develop language understanding);

(2) Construct name;

(3) Construct definition; and

(4) Construct measurement items.

For each construct, its name, definition and set of measurement items was stored. The number

of construct items varies between 2-20, depending on the complexity of constructs. For reference,

every paragraph (except appendices and bibliographies) of the articles the constructs were extracted

from was stored, and associated to the constructs in the database. In most cases, extracting

constructs from articles can be a straight forward process if constructs are nicely presented inside

tables (see Figure 2.2). Construct relationships were not stored, and they were left to be discovered

with the proposed tools.

Instead of using computational approaches, the constructs are extracted by trained research

associates (RAs). This is to ensure the data collected are of the highest quality as we are not aware

of any automated extraction method that is able to do the level of accuracy we wished to have.

The parsing begins with careful selection articles from top journals in social and behavioral

disciplines by the project investigator (PI). A set of articles, usually 10, are then examined by the

senior research associates. While future considerations may require careful selection of articles that

are highly related to the project and also warrant that the selected articles have a fair chance of

referring to one another based on the articles citation. The selection can also based on the citation

to the constructs already held in the database. For this project, any article that contains at least
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Figure 2.2: Excerpt of article content published is MISQ. Black boxes represent boundary of para-
graphs to be extracted.

Figure 2.3: In some cases, the constructs and their corresponding properties are contained nicely
in a structured table.

one construct is included. Inclusion of construct articles is crucial because the exclusion of an
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important article would have far-reaching consequences. Due to the importance of this selection,

articles were only selected by PI and experienced research associates on the project. Each article

was thoroughly read and examined by two research associates and the results compared.

Once articles fitting the definitions are identified and selected, they enter the parsing work-

flow. The parsing involved reading the articles, extracting constructs, and saving them into the

database. This included paragraphs, construct names, definitions, measurement items, and refer-

ences indicating the origin of the construct. The parsing task was usually carried out by junior

research associates, who are well-trained by senior research associates to perform the task. In ad-

ditional, only the top 2.5 percent of student applicants were hired based on the interview and a

three-hour training and testing exercise. Those hired underwent extensive training and worked with

experienced RAs until their performance met team expectations. A supportive team environment

with regular team meetings, good salaries and opportunities for advancement ensures that interest

and motivation to carry out the task is high. In case any article proves too hard to parse, it was

escalated to senior researcher and then the PI, who has 13 years of experience extracting variables

from academic papers.

Any construct that was parsed and stored in the database had to be verified by the PI and

senior RAs. A web-based application was built for this purpose. The senior research associates

could use the auditing functionality of the application to examine information about a paper and

correct errors. This allowed the senior RAs who have more experience to audit and improve the

quality of the work done by junior RAs. The work flow system routed errors and comments back

to the parsing RAs for their learning. After the paper had been parsed and added to the system,

an auto-generated email went out to the first author of the parsed article, who could dispute error

corrections, if any.

A total of 9183 articles and 39215 constructs were parsed over two years covering IS, education

and nursing disciplines. The study only uses 653 articles which are from IS discipline. All articles

were published in 26-year period, and totalled to 1054 unique constructs. There were in total 5,526

measurement items and 19,646 paragraphs.
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Figure 2.4: Auditing screen.

2.11 Conclusion

We described and highlighted the importance of constructs. Constructs reported in research

publications usually are constituted of three features: name, definition and a set of measure-

ment item, and are used mainly to represent unit of knowledge and commonly language among

researchers. Current development of constructs in various discipline has led to construct prolif-

eration, linguistic ambiguity and disconnected constructs. The problems pose hindrances to the

progression of science in multiple disciplines.

We also discussed the data collection process. We relied on human experts to parse the

constructs from articles published in reputable journal to ensure the highest quality of data,. We

also built an interactive work-flow system to easily manage and maintain the quality of construct

in our database.

Knowledge integration is a challenge to scientists due to the volume of published studies,

theories and constructs. Cronbachs proposed approach of finding similar constructs through a

nomological network proposed has never been implemented. With the extracted constructs , we
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attempted to carry out experiments to solve the problems using NLP approaches by measuring the

semantic similarity of constructs reflected in their features.



Chapter 3

Background

3.1 Overview

In this chapter we introduce the goal of the project that prompted the study. Then, it

is followed by a discussion with an example about theories in order to inform its relationship to

constructs. We end the chapter with the limited solutions that are used to overcome the hindrances

when developing theories.

3.2 Human Behavior Project (HBP)

Scientists realize that it is impossible to find and incorporate all related disciplinary knowl-

edge. The Human Behavior Project (HBP) aims to integrate scattered behavioral science knowl-

edge. This can be accomplished through extracting constructs from top social and behavioral

journals across the disciplines which are produced using psychometric method. It is also the in-

tention of the project to produce a one-stop human behavior search engine portal to the search of

high-quality knowledge from multiple disciplines.

3.3 Human Decision Making through HBP

Humans are complex organisms and their behaviors are hard to foresee. However scientists

have discovered that 93% of human behavior is actually predictable [75]. Behavioral science is a

body of science aiming to understand human behavior and its motivators reflected by cognition

[36]. It is about studying the nonuniformities of human behavior at the same time identifying
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factors that influence and determine human conduct with scientific evidence. Behavioral science

provides answers to the question of why people act in specific ways and how to induce that action.

It encompasses multiple disciplines such as psychology, sociology, and anthropology, that explore

the activities of interaction and cognition among humans through systematic experiments such as

field surveys and experimental studies. Through constant development of new theories, behavioral

science is capable of offering cost-effective decision support through predicting human understand-

ing or initiating behavior change and change the course of the outcome [92]. Theory is a master

plan for decision-making. Researchers use theory to find the answers to the questions of “what”,

“why” and “how”. These questions explain the nature of behavior; why individuals invoke certain

actions or do not engage activities [26].

3.4 Theory

A theory is knowledge that comprises facts, assumptions and hypotheses. The general goal

of theory is to understand reality systematically. The definition of theory according to Glanz et

al [26] is ”a set of interrelated concepts, definitions, and propositions that presents a systematic

view of events or situations by specifying relations among variables in order to explain and predict

events or situations.” The definition clearly pinpoints two very important aspects, (a) variables (or

constructs, in our context), and (b) interrelationships. Theory allows us to visualize are the most

important construct and how the constructs react and interact with one another. Without theory,

when interventions take place, we might address the wrong issues or variables or hit just a small

proportion of constructs required to have the desired effect. In the following discussion, Technology

Acceptance Model will be used as an example of theory to reinforce our discussion.

The acceptance and effective utilization of IS by individuals and organizations are areas

of research that have gained importance in recent years. User acceptance modeling has been an

important field of study in IS in the past 20 years. Davis’ [16] Technology Acceptance Model (TAM)

introduced the most widely used research constructs in information systems theory and models how

users come to accept and use a technology. The model is rooted in the prior work of the Theory
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Figure 3.1: Technology Acceptance Model [18].

of Reasoned Action (TRA), a social psychology model by Fishbein and Ajzen [22]. The model

proposed that when users are introduced to a technology, a number of factors affect their decision

about when and how they will use it. According to Davis [17], there were three factors (constructs)

that can be the predictor of users’ motivation: Perceived Ease of Use, Perceived Usefulness, and

Behavioral Intention. He hypothesized that the major determinant of whether the user will actually

use or reject the system is mainly driven by user’s behavioral intention using the system. Behavioral

intention, in turn, was influenced by two major constructs:

(1) Perceived Usefulness -“the degree to which a person believes that using a particular system

would enhance his or her job performance” [18](p. 320); and

(2) Perceived Ease of Use - “the degree to which a person believes that using a particular

system would be free from effort” [18](p. 320).

Accordingly, Perceived Ease of Use directly influences Perceived Usefulness. Both of the two

constructs were believed to be influenced by the External Variables, such as system design charac-

teristics user training, and the nature of the implementation process.

TAM, which is a theory, can be a valuable and cost-effective tool for screening and evaluating

systems or applications, and reliably predicting whether they will be accepted by users before the

users get heavily involved in the technology. Prior research has shown that TAM parsimoniously
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predicts user acceptance of technologies usage [44]. Though TAM is not a descriptive model, that

is, it does not provide diagnostic capability for specific flaws in technology or systems, it can serve

the purpose of screening a new system and predict product acceptability. TAM suggests that such

evaluations can be made very cost-effectively because user perceptions of a technology are formed

very early just after his or her initial exposure to the system [18]. It can thus provide a valuable tool

to practitioners who aim to support organization functions through information systems. TAM has

been applied in numerous studies testing user acceptance of information technology, for example,

word processors [17], spreadsheet applications [53], e-mail [78], and web browser [58], and has

evolved into such theories as the Unified Theory of Acceptance and Use of Technology (UTAUT)

[84].

3.5 Solutions

Many researchers are aware of the problems that hinder theory development. The following

sections are some of the attempts to integrate knowledge that are taken at a smaller scale, normally

just within one discipline.

3.5.1 Search Engines

Because the evolution of the information age has led to the development of numerous search

engines such as Google, Bing, and Yahoo! on the World Wide Web (WWW), offering search

facilities on a wide spectrum of subjects, we would expect to find anything on the WWW through

these search engines. However, current search engines fall short of ability to find specific theories

for decision-making. Imagine a questionnaire researcher who needs to investigate the acceptance of

a new technology to an organization, a search for ”ease of use” will return hundreds of thousands of

documents which contain those words from any site. At the time of writing, the search on Google

using the keywords mentioned returned about 220,000 results, which covered areas from medical

biology to pedagogy. The abundance of information obtained this way requires a huge effort of

filtering and assimilation to be useful and meaningful. In other words, it is difficult to perform a
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specific search with precise results. One concern about WWW search is that results are displayed

in relation to the number of visits from users or links from other articles or web pages, not in

relation to its content coverage or another index of quality of the construct.

Figure 3.2: The returned results with Google Scholar using Ease of Use. It returns 222,000 hits,
which is beyond human capability of examination. The returned results also include documents
that have any of the keywords.

3.5.2 Reference Resources

Currently, research theories can only be traced by exploring outdated wikis 1 (see Figure

3.3), topic dependent databases 2 (see Figure 3.4), collaborative repositories 3 (see Figure 3.5)

and human compiled encyclopedias [20, 74]. Researchers may overlook meaningful information and

closely related constructs from different studies, whether old or new, if there is little effort made to

integrate knowledge. Pinsonneault and Kraemer [66] describe this scenario by stating that ”survey

questions have accumulated in a truly mountainous supply” which complicates the matter over

1 http://www.fsc.yorku.ca/york/istheory/wiki/index.php/Main Page
2 https://www.gem-beta.org/Public/ConstructList.aspx?cat=1
3 http://www.theorymaps.com/
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time. Although it is still possible to find a specific construct in a very time-consuming manner, it is

difficult to identify and connect semantically related constructs that appear under different names,

Furthermore, this requires adept pre-existing knowledge of a niche area, abundant experience in

article review, survey compilations and article level searches in commercial databases.

Figure 3.3: The wiki-based resource from York University is a site that provides researchers with
summarized information on theories widely used in information systems (IS) research. Visitors can
find detailed information of IS theories, which are created and edited by visiting researchers.

3.5.3 Citation Analysis

Citation analysis [55] is the examination of the frequency a paper is cited, assuming that

influential scientists and high impact works are cited more often. Currently, it is considered one of

the most effective approaches to discovering related knowledge. Citation analyses explore shallow

connections among cited papers but are not able to uncover the links where they should exist but

do not. The connections discovered through citation analysis relate papers rather than units of

knowledge and these connections should not be regarded as existing knowledge. It excels at exposing

general structures and clusters of papers but cannot really connect specific research findings from
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Figure 3.4: Grid-Enabled Measures(GEM) is an online repository of behavioral and social science
measures. On this website, researchers have the ability to search, download, submit and provide
feedback on measures. As of 7/20/11, the site contained a total of 147 constructs.

different papers. Citation analysis operates at the article level which makes it a poor choice for

construct discovery. Theory development without careful examination of the existing literature and

constructs is one of the sources of construct proliferation. Researchers unaware of the synonymous

constructs or scales are likely to create constructs that will never be cited [13]. It is a sobering fact

that 90% of papers published in academic journals are never cited [55].

3.5.4 Meta Analysis

Meta-analysis is a statistical approach which combines the results of studies that address a

shared research hypothesis. It is able to test the relationship between two variables such as X affects

Y. Meta-analysis presents a possible alternative that allows the analysis of the relationship between

two pools of constructs. However, such analysis requires intensive resources and for this reason, it is

not a fit for cross-discipline knowledge integration, but works well for narrow problems, such as the
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Figure 3.5: Theory Maps is another online repository for variables and measurement items. It is
a collaborative project where the participant can input theories from publication and seel them as
graph. The main purpose of the project is to allow researchers to manage bibliographic sources.

relationship between two variables. Integrating knowledge using a meta-analytic approach requires

the knowledge be validated as it depends heavily on qualitative evaluations of research constructed

by the researchers. If the researcher treats dissimilar constructs as the same, the results become

unreliable. In addition, if the research fails to identify identical constructs, the result may not be

meaningful or representative of current research knowledge

3.6 Conclusion

Constructs are behavioral variables. In this chapter, we discussed the role of constructs in

theories from social and behavioral sciences. It is clear that the constructs are the factors that

influence human conduct as they are reflected through human behavior. HBP aims to to integrate

behavioral science knowledge from multiple disciplines to understand human decision-making. The

chapter also showed that the available solutions are not suitable to perform knowledge integration
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at large scale.



Chapter 4

Computational Approaches to Detect Similar Constructs

4.1 Introduction

In this chapter, I present and discuss various computational approaches from the past litera-

ture that are used for measuring text or sentence similarity. I adopt and adapt existing automated

computational approaches to expedite the process of discovering construct relationships with min-

imal human supervision. Recognizing that I am judging the construct similarities based on the

construct properties which are made up of short natural text, I am in fact dealing with the problem

of semantic analysis.

This chapter begins with the discussion of past and related works in sentence similarity

measures. Next, it describes in detail the approaches adopted in this study, followed by a description

of how to use the gold standard to evaluate the efficiency of the approaches on different construct

properties.

4.2 Text Similarity Measurement

The discussion on constructs in the previous chapters has formed a conjecture that construct

similarities can be computed then predicted through the construct properties of name, definition and

items. These properties, which are directly extracted from various renowned journals, are basically

natural sentences, with an average of 11 words. We hypothesize that the semantic similarity in

these properties can be seen as a significant indicator to predict the relatedness degree of construct

relationship. The study surrounding such measures has been commonly known as text or sentence
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similarity measure.

There is no shortage of literature on sentence similarity measures. It has increasingly gained

ground since the 1970 in Natural Processing Procrssing (NLP) especially in the application of infor-

mation retrieval, question answering applications, relevance feedback, text classification, word sense

disambiguation, machine translation and text summarization. The wide deployment of sentence

similarity measures in numerous areas has made it a generic component in text-related knowledge

representation and discovery.

In general, works related to sentence similarity can be classified into four categories: Docu-

ment Vector and word-occurrence methods; Corpus-based methods; Hybrid method; and Descrip-

tive method.

4.2.1 Document Vector and word-occurrence methods

The Vector model is regarded as one of the earliest application of sentence similarity measure.

The vector model, which was first proposed by Salton and Lesk [73], is used widely for information

retrieval where the model is used to rank the most relevant documents given a query document.

The model is also known as the “bag of words” method where it only retains word occurrences but

discards function words and syntactic information. The model consists of a n-dimensional space

which representing n words in the model. Documents in the model are represented as n-dimensional

vectors where n can span from thousands to hundreds of thousands which are subjected to the avail-

ability of the vocabulary in a corpus. The values of the vector are usually the occurrences of the

corresponding word in the document. To compute the similarity of the two given documents, each

document is turned into an n-dimensional vector and the similarity score is computed using a sim-

ilarity metric, which is normally a Euclidean distance or cosine of an angle. To date, this approach

has been proven to be one of the best techniques and remains as one of the most effective method

for information retrieval [80, 57]. The vector model is simplistic. However, the representation of

documents in the model can be very sparse if n is huge and documents are not associated well if

different words but a similar context are used.
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Another straight-forward method is counting the co-occurrence of words of two documents

[79]. Word-occurence is basically rooted on the hypothesis that more similar documents have more

words in common. Such a method works effectively when dealing with long documents due to

the high degree of word co-occurrence but is rendered inoperative on short texts where word co-

occurrence is basically null. Similarly to the vector model, the method is not able to detect any

degree of similarity if different words are used to express the same meaning, and may in fact be

misleading due to use of pronouns, prepositions, conjunctions and articles.

4.2.2 Corpus-based methods

The corpus-based model[31], sometimes also known as the distributional model [54, 23, 35], is

an extension to the vector model. It attempts to overcome the incorrect assumption that documents

and words represented in a vector space are orthogonal to others, given the fact that a term, in

human linguistics, can always be replaced with other or combined with other terms. For this reason,

matrix factorization and other compression algorithms have been used on term-document matrices

to analyze relationships among words in a corpus. One popular example of such compression

techniques is Singular Value Decomposition (SVD). The singular vectors and corresponding singular

values resulting from SVD allow words and documents to be mapped into the same ”semantic

space” based on the assumption that all words are presumably related to each document either

due to synonymy or different meaning. The resulting semantic space places similar words and

documents as measured by co-occurrence near to one another even if their words never co-occurred

in the documents. One of the most well-studied corpus models is Latent Semantic Analysis (LSA)

[19, 40], which is described in detail in the following section. Hyperspace Analogues to Language

(HAL) [10] is also another important corpus model which works similarly to LSA. It assumes that

two words are semantically related if they are seen to appear with the same word.
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4.2.3 Hybrid Method

Work on developing promising word similarity measures based on the synonymy and simi-

larity of words has catalyzed the discovery of various sentence similarity computations. Linguistic

measures such as Lesk Algorithm [46], Resnik similarity[70] and Jiang Conrath distance [32] use

proposed knowledge-based similarity measures based on the semantic distance of words in readily

available thesauri like Wordnet [56] and MeSH [49]. The basic idea is to define a looser metric to

indicate a synonymy relationship and semantic distance between words using word senses which

are encoded as hierarchical structure in these knowledge bases. Figure 4.1 shows a fragment of the

Wordnet hierarchy.

Figure 4.1: A fragment of WordNet 2.1 .

Two words are very similar if they share more semantic features or are close to each other; two

words are deemed less similar if they have very few meaning elements or greater semantic distance.

The similarity of words in this context is a function of word sense distance in the hierarchy of the

knowledge bases. The semantic distance can be measured by taking horizontal length path, or

vertical length path, or a combination of both. The prominent advantage of the knowledge base

model over the previously discussed vector and corpus models is that it has a richer vocabulary
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which is not bound to the available words in a corpus. The downside of the knowledge base models

are their lack of up-to-date words and inability to work well within new or domain-specific words.

Hybrid methods facilitate and combine both the corpus based methods and the knowledge

encoded in a thesaurus methods to determine text similarity. Commonly, words from a text are

compared to other texts using the thesaurus model to drive a score to indicate similarity degree,

combined with the information that is obtained through the corpus, which in turn is mapped

into a combined function to indicate sentence similarity. The hybrid model also includes work that

includes the corpus-based model such as LSA and HAL, which is used to replace Wordnet especially

for the works that focus on the very specific area.

Apart from the corpus-based model, corpus information such as the language models, specif-

ically Inverse Document Frequency (IDF) [33] and Pointwise Mutual Information [81], and Infor-

mation Content [47, 31] have been reported as being used to derive text to text similarity metric.

4.2.4 Descriptive method

The Descriptive method [47] is a supervised learning approach that attempts to represent

the constituents of a sentence using features such as their relation, lemma, part-of-speech (POS),

voice and semantic roles. The descriptive method models each text as a vector and the values of

the element are the corresponding features. The vectors are then generalized with machine learning

schemes to produce a trained classifier. Similarity between texts is computed by projecting them

into the classifier to obtain a similarity score.

4.3 Review of Selected Sentence Similarity Approaches

As discussed above, the existence of a wide variety of sentence similarity measures rooted in

different linguistic theories is evidence that computing the similarity of the sentences is not a trivial

task. Nearly all measures have the difficulty of correct capture of the semantics or meaning in the

sentences. For this reason, we have examined measures that integrate knowledge bases, measures

that incorporate semantic roles, measures that compute corpus statistics, and the combination of
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these. The main reason behind these different methods is to capture sentence semantics through

different aspects and characteristics. We also intend to predict construct relationships through

their properties with different text similarity measures.

In this section, we are providing an in-depth review and discussion of three sentence similarity

measures that are rooted in different frameworks and that have gained noteworthy attention in the

field of study. The three measures to be discussed in the following section are: LSA [19]; Li et al.

sentence similarity measure (aka Li et al.) [47]; and Mihalcea et al. Sentence similarity measure

(aka Mihalcea et al.) [57].

4.3.1 Latent Semantic Indexing (LSA)

Latent Semantic Analysis (LSA), also known as Latent Semantic Indexing (LSI) when it is

used in document retrieval, is a popular natural language processing technique created by Deer-

wester et al. [19]. It is regarded as a theory and also a computational method for extracting and

representing the meaning of words. A “bag of words method”, the underlying idea of LSA is the

assumption that a pool of documents pose a set of mutual constraints which determine the semantic

similarity of words and set of words. The constraints could be thought of as latent links between

the words and their context and mutual dependencies on each other. Thus, when two terms have

occurred in the same context, even though they do not occurred in the same text, LSA is able to

regard them as having similar meaning.

The mathematical foundation of LSA is the linear algebraic theorem known as the Singular

Value Decomposition (SVD). Documents are represented as the A matrix, which is a term-by-

document sparse matrix and after optional weighting and normalization, SVD is used to decompose

the matrix into three matrices: U , a term by dimension matrix representings words; S, a singular

value matrix; and V , a document by dimension matrix representing documents. The equation can

be written as

A = USV T (4.1)
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U and V are orthogonal matrices whereas S is a diagonal matrix with main diagonal entries sorted

in decreasing order. In practice, A could be approximated with Ak by preserving the first k singular

values and the corresponding first k columns in U and V . The approximation can be written as

Ak ≈ UkSkV T
k , (4.2)

where Uk is a term-by-k matrix, Sk is a k-by-k matrix and Vk is a document-by-k matrix. The

interesting thing about this approximation is not only that Ak has minimal error, but it translates

the term-by-document matrix into a correlated topic space. In consequence, each row vector of

UkSk represents a word in the topic space, and has k columns which give the occurrence of the

word in the topic space. Likewise, each row vector of VkSk represents a document vector which

correlates topics in the topic space.

In short, the SVD process on term-document matrix A, generated U and V to represent words

and document respectively in the reduced space. The low-rank approximation through preserving

the first k diagonal elements in S has produced the mutual constraint among words in different

documents.

4.3.1.1 Finding similar meaning words

Given a word, w, to find similar words in the topic space, w is projected into the reduced

space to become a word vector, ~w. This is done through finding the w corresponding vector in U .

It is then compared with each row of UkSk using cosine similarity measurement. Words that have

higher cosine are deemed more relevant than those that have lower cosine. To compute similarity

of two words, the words are projected into the space to obtain their corresponding vectors, and

their similarity is the cosine value.

SimLSA(w1, w2) = cos(U(w1,s)Sk, U(w2,s)Sk) (4.3)
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4.3.1.2 Finding similar documents

Finding similar documents in the reduced space is known as Latent Semantic Indexing (LSI).

Given a query, q, which is either a word or document. Query vector, ~q, is obtained through U if

the query is a word, otherwise, is an aggregation of word vector in the sentence. To find a cluster

of documents that are semantically closed to ~q in the topic space, ~q is compared against VkSk.

Documents that are related are those with high cosine score.

4.3.2 Li et al. Similarity Measures

The sentence similarity measure proposed by Li et al. [47] is conspicuous among others

because it is reported to work well on short texts[47]. One of the main reasons is it useful is it

attempts to preserve the word order information in sentences which is normally lost in the bag of

words method. The word order is regarded as crucial information because it represents the syntac-

tic information, which when combined with semantic information conveys the precise meaning of

sentences. The Li et al. similarity score is basically derived with the following information:Semantic

similarity between words; Word order similarity; and Statistic of corpus.

Clearly, the sentence similarity is an aggregated function of word similarity, word order in

sentences and corpus information content. The word similarity is computed by taking the path

length and the depth of two words in the hierarchical semantic knowledge base, i.e. Wordnet [56].

Word order similarity is then factored in, which is obtained by turning each sentence into a vector

by ordering the words as they appear and computing the difference of word order. Finally, in order

to separate the informative words from those that are not, information content of word is derived

statistically from the Brown corpus [52] and is normalized onto each word.

Li et al.’s argument for using Wordnet to measure word similarity is because it is one of the

richest and most accurate lexical dictionaries ever to have been crafted yet is readily available and

does not adhere to a specific domain. It is reported in Miller [56] that similarity measures based

on Wordnet correlate well with human judges. In addition, Li et al. report that it is useful to
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incorporate the word order into the approach to compromise the loss of information with the bag

of words method, especially with short texts. Finally, corpus statistics is used to reflect the actual

usage of words which gives the ability to adapt the application to a specific application.

4.3.2.1 Measuring Sentence Similarity

The following illustrates the procedures for computing the sentence similarity between two

candidate sentences. Given two sentences,

S1 = {RAM keeps things},

S2 = {The CPU uses RAM}.

The process begins with forming a joint word set from the sentences. The joint word set, J , is

basically all the unique words from the sentences. Note that words in J are not preprocessed or

stemmed and they remain as they appear in the sentences.

J = {RAM keeps things The CPU uses}

Once the joint word set is formed, each candidate sentence is mapped to J to produce a lexical

semantic vector. The elements of the lexical semantic vector represent words in the joint word set

and their values are the highest similarity of words from the candidate sentence.

RAM keeps things The CPU uses

RAM 1 0 0 0 0 0

keeps 0 1 0 0 0 0

things 0 0 1 0 0.2802 0.4433

Sim 1 1 1 0 0.2802 0.4433

Weight I(RAM)
I(RAM)

I(keeps)
I(keeps)

I(things)
I(things)

I(CPU)
I(things)

I(uses)
I(things)

~S1 0.390 0.330 0.179 0 0.074 0.08

Table 4.1: Deriving semantic vector for S1. The similarity scores were computed using Equation
4.4
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RAM keeps things The CPU uses

The 0 0 0 1 0 0

CPU 0 0 0 0 1 0

uses 0 0 0.25 0 0 1

RAM 1 0 0 0 0.33 0

Sim 1 0 0.25 1 1 1

Weight I(RAM)
I(RAM)

I(things)
I(uses)

I(The)
I(The)

I(CPU)
I(RAM)

I(uses)
I(uses)

~S2 0.190 0 0.16 0.03 0.389 0.04

Table 4.2: Deriving a semantic vector for S2. The similarity scores were computed using Equation
4.4

Table 4.1 shows the process of deriving the lexical semantic vector of S1 from the joint

sentence. The first row in the table represents words from joint word set J , and the first column

represents words in sentence S1. All words are listed in the order they appeared in both J and

S1. For the words that co-occur in both J and S1, the value is set to 1 at the cell of cross point

to represent exact match (the first three diagonal cells of “RAM”, “keeps”, “things”). Otherwise,

the cell at different words’ cross point (e.g RAM-keeps) is corresponded to the highest similarity

score, which is computed with the Equation 4.4, and if and only if the score exceeds the preset

threshold, 0.2. For example, the word “CPU” is not in S1 but the most similar word is “things”,

with a similarity of 0.2802. Thus, the cell at the cross point of “CPU” and “things” is set to 0.2802,

as it exceeds the threshold of 0.2. Note that most cells that have 0 as their similarity scores are

less than 0.2.

s(w1, w2) = e−αl.
eβh − e−βh

eβh + e−βh
(4.4)

Equation 4.4 is a word-word similarity function, where α and β represent the scaling param-

eters contributed by the shortest path length and depth in the Wordnet, and h is the length of

depth of words in Wordnet hierarchy. Li et al. have reported α = 0.2 and β = 0.45 as the optimal

parameters when working with Wordnet in particular.
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Word similarity is computed from the word information obtained from Wordnet. Words

in Wordnet are organized in a hierarchical structure and the similarity can be determined by

computing minimum length of path and depth of the given words. Two words are more similar if

they have shorter path length. For example in Figure 4.1, it is shown that “car” is more similar to

“bicycle” than “bus” because its travel path is shorter. Furthermore, words at the upper level of

the hierarchy are perceived as more general semantically and less similar to one another whereas

words at the lower layer of the hierarchy are more concrete and more similar to one another. Thus,

word depth, which is known as the scaling depth effect, is taken into account.

The lexical semantic vector, S1, is then obtained by selecting the largest value in each column

(see the third last row in Table 4.1). The reasons for setting the threshold are to eliminate noise,

and to make it less vulnerable when working with function words, since there is not preprocessing

involved.

The approach also takes into consideration the occurrence frequency of the words. It is rather

intuitive that higher frequency words contain less information than those with lower frequencies

[34] and information content of a word can be derived from the corpus with the following equation,

si = s.I(wi).I(wi) (4.5)

Each element in the semantic vector is weighted by multiplying with I(wi) and I(wj) (see

the second last row in Table 4.1) which is denoted by

I(w) = − logp(w)

log(N + 1)
(4.6)

where N is the total number of words in the corpus. The derivation ends with lexical semantic

vector, ~S1, which is shown in the last column in Table 4.1 The second sentence is also derived in

the same way to produce ~S2, see Table 4.2. The process yields

~S1 = [0.39, 0.33, 0.179, 0, 0.074, 0.008]

~S2 = [0.19, 0, 0.16, 0, 0.389, 0.04].
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Then, the similarity of two sentences is obtained through

Simsemantic(S1, S2) =
~S1. ~S2

‖ ~S1‖.‖ ~S2‖
(4.7)

Next, the process to derive the word order vectors is described. The word order vectors

are also derived using the joint word set, J . For that purpose, words in J are assigned with

unique indices according to the order they appear in candidate sentences. Oj is a word order index

container for J .

J = {RAM keeps things The CPU uses}

Oj = {1, 2, 3, 4, 5, 6},

To derive the word order vector for S1, we assign the order index in J to the corresponding words

in the candidate sentence. The first word “RAM” in S1 has an index of 1 and “keeps” has 2, etc. J

normally has more words than the candidate sentences. For instance, S1 doses not have the words

“The”, “CPU”, and “uses”. For such cases, the index is the most similar word index in J . For

example, according to the Table 4.2, “The” is similar to no other word and thus it has index value

of 0, whereas “CPU” and “uses” are most similar to is “things” in S1, which has index of 3. Thus

the word order vector for S1 is

~O1 = [1, 2, 3, 0, 3, 3]

The minimum similarity threshold also applies here. For any word that have similarity less than

the preset threshold, the value is zero. ~O2 is also derived similarly,

~O2 = [1, 0, 3, 4, 5, 6].

The word order similarity score is then

Simorder(S1, S2) = 1− ‖
~O1 − ~O2‖
‖ ~O1 + ~O2‖

(4.8)
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The overall sentence similarity is defined as the combination of lexical semantic similarity

and word order similarity,

SimLi(S1, S2) = γSimsemantic + (1− γ)Simorder (4.9)

where γ is a relative contribution of semantic similarity and word order similarity to the overall

similarity. According to Li et al, γ is a value greater than 0.5.

4.3.3 Mihalcea et al. Similarity Measure

The similarity measurement proposed by Mihalcea et al.[57] also utilizes corpus- and knowledge-

based measures of similarity. However, the similarity score is computed with the combination of

the following conceptual frameworks: word similarity, and word specificity.

Borrowing similarity metrics from applications such as malapropism detection and word sense

disambiguation, Mihcalcea et al. use six different word similarity metrics in their study: Leacock

and Chodorow [43], Lesk [46], Wu and Palmer [89], Resnik [70], Lin [48], and Jiang and Conrath

[32]. These metrics have originally been created to measure concept likeness, rather than word,

but they can be easily adapted to compute word similarity by computing the shortest distance of

given words’ synsets in the Wordnet hierarchy.

Mihalcea et al.’s similarity measure recognizes entailment. Given two texts, T1 and T2, the

entailment is thus defined as the directional semantic similarity of a text segment T1 with respect

to text segment T2. Pragmatically, it is a set of words from T1 with the maximal similarity to

word in T2, or vice versa. For that reason, word similarity is considered a directional measure.

Such definition provides the flexibility to handle applications that require entailment and is easily

converted to a bidirectional measure by taking the average of two unidirectional measures.

Word specificity refers to the specific meaning words (e.g. collie and sheepdog) versus generic

concept words (e.g. animal and mammal). The similarity measure gives specific meaning to words

with higher weight than generic concept words because specific meaning words are more precise

and concrete compared to generic concepts words which are abstract and intangible.
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Word specificity in the measure is computed using the inverse document frequency (IDF)

proposed in [34]. IDF assumes rare words, which occur in fewer documents have greater discrimi-

natory weight than common words, which inherently appear in almost every documents. Mihalcea

et al. use the British National Corpus to derive each word IDF.

4.3.4 Measuring Sentence Similarity

Mihalcea et al.’s measure was originally used to measure text similarity. It was reported used

to measure similarity at the sentence level in [57]. Given two candidate sentences, S1 and S2, the

measurement begins with tokenization and part-of-speech tagging all the words in the sentence into

respective word classes (noun, verb, adverb, adjective and cardinal). For each word in the sentence,

it is measured against all the words from the other sentence to find the highest semantic similarity

(maxSim) with the six word-word metrics. The word-word similarity is computed only on the

words from the same word class which are either from noun or verb word classes. The reason for

this is that noun and verb semantic trees in Wordnet are separated and it is not possible to obtain

similarity between nouns and verbs. For word classes that do not have readily available knowledge

bases (e.g. adverb, adjective and cardinal) lexical or word matching is used instead. The equation

used to compute the similarity of two words is thus

SimMihalcea(S1, S2) =
1

2
×

∑
(w∈S1)

maxSim(w, S2)× IDF (w)

∑
(w∈S1)

IDF (w)
+

∑
(w∈S2)

maxSim(w, S1)× IDF (w)

∑
(w∈S2)

IDF (w)

(4.10)

4.4 Limitations of the Reviewed Sentence Similarity Measures

We have presented three candidate sentence similarity measures and we are keen to apply

them in our study to measure construct relationships. Although these measurements have proven

their effectiveness in various applications, they do come with limitations. We discuss each measure’s

limitations and then provide workarounds in the upcoming section.
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4.4.1 LSA Limitations

LSA may be used for examination of a variety of text units even very small ones such as

individual words. However, LSA works through the creation of a semantic space from a large set

of paragraph size or larger texts. If such a set of texts is not available, or primarily contains short

texts, LSA will not work properly. This shortcoming has been reported extensively in [87, 69, 85].

We cannot build a semantic space with construct items, name and definition, because we mostly

have only short sentences averaging 11 words, thus limiting our ability to use LSA.

4.4.2 Limitations in Li et al. and Mihalcea et al. Similarity Measures

Both measurements proposed by Li et al. and Mihalcea et al. utilize Wordnet as the lexical

knowledge base. Although the latest version of Wordnet does contain a substantially wide range

of common and general words, it does not cover specific domain vocabulary such as those from the

IS, education and psychology disciplines. Wordnet is primarily designed to act as an underlying

database for different applications, and cannot be used in specific domains that it does not cover.

To prove that, we carried out a pilot study on judging the effectiveness of similarity on a number

of construct items.

Table 4.3 shows the similarity score of two sentences with Wordnet-based sentence similar-

ity measures and LSA. The Wordnet-based sentence similarity measure works reasonably well on

sentences that consist of common words (see first and second rows). The table also highlights that

for a few particular cases, the Wordnet-based sentence similarity measure is rendered null for two

sentences that are somewhat related (see third, fourth and fifth rows) because the other sentences

contain IS specific terms e.g. electronic mail, enterprise resource planning and e-commence. It can

be seen that LSA manages to capture the relationship, though given low similarities. Supposedly

these terms are associated with technologies, and should be assigned a certain degree of similarity,

but since they are not contained in Wordnet, the sentence similarity measure is not able to recognize

the context.
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In the coming section, the necessary adaptions to the measures are addressed.

4.5 Proposed Similarity Measures for Construct Relationships

4.5.1 Construct Similarity Measure derived from Li et al. (ConSimLi)

The result of the pilot study in Table 4.3 has clearly shown that sentence similarity measures

built upon the Wordnet-based word-word similarity measure does not suit this study well, as it

requires a domain-specific corpus. This shortcoming can be overcome by replacing Wordnet with

LSA, which is built on the specific corpus being studied. Instead of computing words’ semantic

distance in hierarchical structure of Wordnet, the cosine angle of row vector representing words in

LSA is computed.

Li et al. incorporated word order vector which is derived from sentence to capture sentence

semantic and syntactic information. However, recent findings suggest that the word order vectors

do not significantly improve the similarity measure [29]. Thus, in this study, the operator that uses

word order vector as part of the similarity computation is discarded. This, in turn, yields the final

equation which is:

s(w1, w2)
′ = SimLSA(w1, w2) (4.11)

4.5.2 Construct Similarity Measure derived from Mihalcea et al. (ConSimMi)

For the same reason as with Li et al., the term-term similarity measure was replaced in

Micalcea et al.[57] with LSA which yields the following equation,

SimMihalcea(S1, S2) =
1

2
×

∑
(w∈S1)

SimLSA(w, S2)× IDF (w)

∑
(w∈S1)

IDF (w)
+

∑
(w∈S2)

SimLSA(w, S1)× IDF (w)

∑
(w∈S2)

IDF (w)

(4.12)
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4.6 Predicting Construct Similarity with the Proposed Approaches

The three proposed similarity measures discussed above are used in construct properties to

reveal construct relationship. The relationships can be predicted through the semantic context

embedded in construct properties.

Construct relationships can be predicted by comparing the same construct property: name to

name, definition to definition, where each property is treated as natural text and a similarity score

is produced to indicate its degree of semantic similarity. To transform the score into binary rela-

tionships, a cutoff threshold is preset where any score above the threshold renders the relationship

as correspondent, otherwise, independent.

Item similarities are computed for all items from two constructs and then the item scores

are subsumed to indicate a construct relationship. Two functions are formulated to subsume item

similarities into the construct relationship.

The first function is to use the second highest score among all inter-construct item rela-

tionships. The function hypothesizes that two constructs relationship can be predicted from the

measurement items and when two constructs share two highly similar measurement items, it in-

dicates that they are related. Taking the minimum score of the two reduces false positive which

results from high score of just one pair of items that share high similarity.

The second function to represent the construct similarity is by taking the average of the

two most similar item scores. This function tends to compensate items pairs that are made up of

highly similar and very dissimilar item pairs. It was anticipated that the average score can better

represent the construct relationship without the skewness demonstrated by the first function.

To sum up, with three derived similarity measures, LSA, ConSimLi, ConSimMi, on three

different construct properties, name, definition, items, where two functions are used on items,

results in building 12 computational models.
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4.7 Evaluation

In the next chapter, the process of gold standard creation, which will be used to benchmark

the 12 models is described. The goal is to identify one model whihc most accurately infers construct

relationships based on the properties, as compared with human judgment.

4.8 Conclusion

This chapter began with a presentation of a variety of related literature, specifically in the

area of text similarity measures, and detecting the semantics and meaning of a sentence. The

problem of measuring construct similarity based on the textual properties, which mostly consists of

short natural language text, is no different than the text similarity detection. For that reason, three

sentence similarity measures that are well studied and well received were selected and discussed in

detail. We presented the limitations of these approaches and followed by presenting solutions to

the limitations. The discussion ends with a brief explanation of how the adapted approaches are

used as an automated, unsupervised solution to predict construct relationships.
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Construct item n Construct item m LSA Li Mihalcea

“I know the features of the
technologies.”

“I know the cost of deploying
the technologies.”

0.75 0.40 0.44

“I know the features of the
technologies.”

“I don’t know the type of busi-
ness activities in which these
technologies have been can be
deployed.”

0.60 0.74 0.63

“I know the features of the
technologies.”

“I don’t know the type of busi-
ness activities in which these
technologies have been can be
deployed.”

0.15 0.00 0.00

“I know the features of the
technologies.”

“How knowledgeable are you
on using enterprise resource
planning.”

0.10 0.00 0.00

“I know the features of the
technologies.”

“What is your general knowl-
edge of e commerce.”

0.24 0.00 0.00

Table 4.3: Pilot study: How Li et al. and Mihalcea et al. similarity measures operating on Wordnet
are not able to capture domain-specific words.



Chapter 5

Building a Gold Standard

5.1 Overview

The main goal of the study is to device automated approaches appropriate for weaving of

related constructs into a network here termed ConstructNet. We conjecture ConstructNet as a

metatheory–a theory which is built on existing theories—which can be visualized as a map that

explain the interplay of constructs. Instead of finding the construct similarities operationally, we

use Natural Language Language (NLP) techniques to reveal construct semantic relationship based

on their properties

But how well does ConstructNet reflects the real scenario? We can measure the accuracy of

ConstructNet by comparing it with a construct network that has been created by the experts. This

human-crafted network is known as a gold standard (or ground truth or hypothesis). The outcome

of each of the computational approaches is compared against the gold standard with evaluation

metrics to determine which computational approaches are able to produce a ConstructNet close to

the gold standard.

5.2 Objective

For this study, we require a gold standard where the relationships of constructs are annotated

either as correspondent or independent. One way of doing this was to place the correspondent

constructs in the same cluster and the independent constructs in different clusters. With that, the

construct relationship can be deduced automatically from these clusters: correspondent if they are
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from the same cluster, or independent if they come from different clusters.

5.3 Related Works

Evaluation and error analysis with gold standard are not new in NLP. Works [64, 27] in

computational linguistic have suggested the standards to design a gold standard. One such standard

is performed through double blind annotation followed by the adjudication of disagreement. The

blind annotation is proposed to eliminate errors or biases that are introduced by a single annotator.

To improve the quality of annotation, the approach normally calls for more than one annotator

to annotate the same instance independently a number of times. If there is disagreement, the

annotators adjudicate among themselves to reach a consensus so that the gold standard produced

is free of bias and error. Creating a gold standard is an expensive process. In order to alleviate

the tedious process, many of the annotation tasks in NLP make use of readily available knowledge

bases such as dictionaries and thesauri, as well as specific resources like Wordnet [56], FrameNet

[5] and The Proposition Bank [65].

5.4 Our Challenges

We are working with 1054 constructs. With this number of constructs, creating a gold

standard through blind annotation is far from possible. Note that this unprecedented task does

not have a reference or a knowledge base to begin with. If we were performing blind annotation

of every pair of constructs, taking into account the possibility of clusters that can be created and

the number of constructs a cluster can contain, we are facing with n! (n=1054!) possibilities.

Therefore, the blind annotation does not seem fit as it requires enormous resources in terms of

cost, time and effort.

5.5 Our Approach

In this section, we discussed our unique approach for creating a gold standard. The process

of creating the gold standard was separated into seven steps:
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• Step 1: Defining construct relationships;

• Step 2: Annotator training;

• Step 3: Colocating identical constructs;

• Step 4: Rough categorization;

• Step 5: Refined categorization;

• Step 6: Reconciling changes; and

• Step 7: Evaluating categories.

Step 1: Defining Construct Relationships

The first step to the gold standard creation is to learn how experts, who have prominent

experience in theory development measure the commonality of given constructs. Since the study

predicted two types of construct relationships: correspondent and independent relationships, the

experts are interviewed about the correct steps to judge the construct relationships based on the

construct properties. The experts feedback was collected and generalized as:

A construct, C ′, is defined to be correspondent to another construct, C, if some
construct measurement items for C ′ could also be used to measure the latent con-
struct measured by C. Operationally, a constructC ′ will be judged as correspondent
to another construct C if the domain experts determine that two or more poten-
tial construct measurement items for C ′ could also be used to measure the latent
construct measured by C.

The basis for such determination might include the similarity between construct
measurement items, definitions, names, citations, unit of analysis, and other evi-
dences for the two constructs.

Step 2: Annotator Training

Once the expert feedback was collected and generalized, it was used to develop a training

document (see Appendix A). The training document contained specific examples of construct

relationship that were collected from the construct collection. They are used to help annotators
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make correct judgements. The training document was distributed to all the annotators involved

in the categorization process. The document was an important guideline and had to be read and

understood before participation in the categorization process. After all annotators had read the

document, it was discussed with emphasis on its examples.

The annotators involved in the categorization process were project investigator (PI)1 , one

chief research assistant, one senior research assistant (RA)2 ,five experienced RAs, and three PhD

students3 . All of the annotators were carefully selected by the PI as it was important to include

only experienced researchers to ensure the high quality of the gold standard. The PI has more than

15 years of research experience in the IS discipline with multiple literature review and categorization

projects completed and the chief, senior and experienced RAs had on average half to two years of

research experience in extracting constructs from articles. All the RAs hired undergo extensive

training and familiar with construct extraction.

The annotators worked as teams. Each team that consisted of two or three annotators from

a mixed group of research assistants and PhD students designed to always pair the least RAs with

a Ph.D. student. In addition, another special team, known as the adjudicator team, was made up

of the PI and one RA.

Step 3: Colocating Identical Constructs

To slightly simplify the categorization tasks all identical constructs (defined as those con-

structs with identical names and at least two identical construct items) were identified. The rough

categorization was carried out by the PI alone though use of a special-purpose application allowing

the detection of identical constructs.

1 Kai Larsen.
2 Heather Witte and Leslie Grush.
3 Chih How Bong (Computer Science), JingJing Li (Business), and Jeffrey Ryan Sweeney (Business).
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Step 4: Rough Categorization

Because there are 1054 constructs, finding pairwise relationships for slightly over a thousand

constructs is indeed a complex problem and can be tedious. The possibility of relationships gener-

ated from this number is 1
2 × 1054× 1053 = 650, 000. With over half of a million relationships, it is

almost impossible to annotate every construct pair. Fortunately, the study focuses on discovering

correspondent constructs, it is easier to begin the categorization process by grouping highly related

constructs instead of choosing any random construct pair. The rough categorization is carried out

by whole team. Overall, the categorization task was divided into two stages: rough categoriza-

tion and refined categorization with repeated iterations through the refined categorization. The

purpose of rough categorization is to group constructs that have highly similar properties into the

same cluster to simplify the task enough to make it cognitively tractable.

Step 5: Refined Categorization

The purpose of refined categorization is to turn the clusters generated through the rough

categorization into subcategories. The outcome is a hierarchical taxonomy of constructs, which is

also a gold standard to evaluate the proposed computational approaches.

The refined categorization process begins by assigning the hierarchical clusters labels. This

is done by putting a blue triangle paper on top of the stack of construct groups from the same

cluster. The taxonomy in this study to is restricted to two hierarchical levels. For example, main

category “Trust” has subcategories like “Trust in Benevolence”, “Credibility” and “Trust”. The

subcategories are known as correspondence in the thesis. For this exercise, the individual constructs

were printed on a white rectangle of paper, and constructs were stacked together under a green

rectangle sheet if they were believed to fit the definition of correspondence.

For example, Figure 5.1 shows the “Group” and “Academic” main categories (blue triangle),

some correspondences (green rectangle) and constructs (white rectangle).

The labels for main categories are usually the general area descriptions: organization, com-
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Figure 5.1: Main categories, correspondences and constructs.

munication, task, leadership, etc. The purpose of labeling is an attempt to group the constructs

pertaining to the same field of study under one main category. The grouping eases the classifica-

tion process by breaking up about a thousand constructs into a number of main category and it is

especially helpful in providing a cue for annotators, allowing an ambiguous construct to be moved

into the general area it belongs, if not to the correct construct group. With that, the ambiguities

can be first resolved by identifying the area of study, based on the construct description. This

normally is done by judging the properties of constructs such as name, definition and items. For

some rare cases, the adjudicator was called in to resolve the ambiguities.

Once every cluster is labeled and every construct is clustered, annotator-teams take turn in

examining each construct in the clusters. Examination involves cross-checking whether constructs

have similar contexts and whether all constructs in a group truly fit the definition of correspondence.

Each team is required to examine the clusters at least one time. Some clusters—usually those with

a high number of constructs—require several examinations by different teams. The members of
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the team cross-examine the constructs to determine if they can be categorized together based on

their definition, items and name with primary focus on items because these have been rigorously

developed and statistically tested. Once a team has completed a correspondence, the team can

move on to work on a new cluster or main category, which has been already reviewed by other

teams. However, there are cases when the properties do not reveal any clue. For cases like these,

the sources (i.e. articles) of the construct are normally re-examined in order to better grasp its

context.

The reviewing process is designed to examine the work carried out by other teams. The

process can be carried out in the presence or absence of the teams who have previously created or

reviewed them. Each team takes the opportunity to review every main category and correspondence

and the process continues for a number of rounds before being finalized.

Figure 5.2: Reconciliation in progress.
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Step 6: Reconciling Changes

The annotators who review the clusters or main categories were allowed to create new corre-

spondences to group similar constructs. They were allowed to rename the existing correspondences.

They were also permitted to split a correspondence or merge correspondences if it seems appro-

priate. They were also free to relocate the construct from one correspondence to other, and this

occurred frequently after annotators had seen more correspondences. In fact, experience from the

process showed that a construct group could easily belong to multiple categories. The challenge,

then, was to make sure multiple correspondent construct groups do not exist in separate categories.

Any change made to the correspondences has to be reviewed and consented to by other

annotators, followed by the adjudicator. Sometimes, reconciliation has to be done several times

before reaching a decision. Also, the correspondences can be reviewed multiple times by the same

annotators. Changes can only be accepted with major votes. If consent cannot be reached among

the annotators, the adjudicator is normally brought in to resolve the independent. In fact, for any

change to be made, it is compulsory to obtain approval from the adjudicator.

Both the rough and refined categorization tasks were carried out in stages across six days and

consumed about 200 person-hours. The categorization task resulted in two hierarchies taxonomy of

category and correspondences, and all constructs were grouped and resided in the correspondences.

The gold standard has 28 main categories and 343 correspondences and the number of constructs

in each construct group was between one and 69. Figure 5.3 shows examples of main categories

and correspondence found in the gold standard. IS Development: Risk Factor and IS Development:

Etc are the smaller categories which are broken down from parent category, IS Development.

When carrying out the annotation process, in order to reduce the complexity of the problem,

only one construct was assigned to one correspondence. In the case where there was a possibility

that a construct can belong to a number of correspondences, the most likely category was selected.

However, for the purposes of this dissertation, it bears repeating that the hierarchical structure

represented only temporal cognitive scaffolding.
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Figure 5.3: Example of hierarchical taxonomy in the gold standard. IS Development: Risk Factor
and IS Development: Etc are the smaller categories which are broken down from IS Development.

Step 7: Evaluating Categories

The purpose of validating a gold standard is to ensure that the gold standard has good inter-

rater agreement between annotators and experts. Statistical measures are used to compute the

agreement reflecting the quality of the gold standard. A high quality gold standard should have

high inter-rater agreement between experts. In this exercise, two IS experts were appointed from

different institutes who have proficient knowledge on most of the constructs being worked with.

Both experts were tenured professors, had more than a decade of experience with IS research, and

had extensive experience with review work, and one expert had received a best-paper award for

a review article in a top IS journal. To compute the inter-agreement, each expert is expected to

classify the relationships of the same set of constructs. Instead of classifying every construct in the

gold standard, which is too laborious, the task was simplified by requesting that the experts classify

300 relationships of construct pairs that were semi-randomly selected from the gold standard.

Since the gold standard is made up of highly imbalanced data—less than 2 percent correspondent

construct pairs and 98 percent independent construct pairs–an Independent Drawing mechanism

was devised to randomly select construct pairs. The advantage of the mechanism is that it is able
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to select a balanced sample which consists of equal proportions of correspondent and independent

construct pairs, and is therefore not influenced by the highly skewed distribution of independent

construct pairs. Algorithm 1 shows the pseudocode for the Independent Drawing mechanism.

Algorithm 1: Pseudocode for Independent Drawing

input: α, probability likelihood

input: n, desired sample size

input: P , construct pairs

output: samples

samples←− Ø

while samples ≤ n do

prob←− random(0, 1)

if prob ≥ α then

randomly select a correspondent construct pair

add the correspondent construct pair to samples

remove the correspondent construct pair from P

else

randomly select a independent construct pair

add the independent construct pair to samples

remove the independent construct pair from P

return samples

The mechanism uses a preset probability likelihood, α. When α = 1.0, the selection is

made up of entirely correspondent constructs; when α = 0 the selection ends up entirely with

independent constructs. The selection can be better illustrated with the following example: if we

intend to randomly draw 300 samples having equal proportion of corespondent and independent

constructs, we can set α = 0.5. The sample drawing begins with the system randomly rolling the

“dice”, which is a random number generator between 1 and 0. If the dice first rolls a 0.7 and

since it is higher than α, the construct pair to be chosen is a correspondent construct pair. The
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selection is completely random and non-replacing. Next, if the dice rolls a 0.2, and since it is less

than α, a independent construct pair is randomly picked and included in the samples. The process

is repeated until it contains enough sample pairs.

The decisions made by the experts are stored in the database and are used later to compute

agreement with the gold standard. For this purpose, web-based application was created to collect

expert annotations. The web-based application is depicted in Figure 5.4.

Figure 5.4: Screen shot of the web-based application used to collect expert annotations.

For the example above, although α = 0.5—a fair chance of drawing both types of construct

pairs—an equal number of construct pairs is not always the result. Instead, the 300 construct pairs

may make up either more correspondent pairs or fewer. As already discussed above, the core of

selection is primarily decided by the random dice during the randomization of the samples.

5.6 Gold Standard Validity

Cohen’s Kappa coefficient [12], κ, was used to compute inter-agreement. Once the experts

had independently completed assigning relationships to the same 300 construct pairs, agreement

was measured against the gold standard. In addition, κ was computed between experts to learn the
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relative agreement between them. To allow meaningful interpretation, guidelines were employed

from Landis and Koch [41] who have characterized κ less than 0 as indicating no agreement and 0

to 0.20 as slight agreement, 0.21 to 0.40 as fair, 0.41 to 0.60 as moderate, 0.61 to 0.80 as substantial,

and 0.811 as almost perfect agreement. Table 5.1 gives the results.

Inter-agreement κ

Expert 1 vs Gold Standard 0.77

Expert 2 vs Gold Standard 0.68

Expert 1 vs Expert 2 0.66

Table 5.1: The degree of agreement between the experts and the gold standard.

Based on the guidelines given above, the results show that both experts have substantial

agreement with the gold standard, 0.77 and 0.68 respectively. The results also show that the two

experts yield substantial agreement between them, yet lower agreement than either expert had

with the gold standard. Hence, the gold standard that was created is considered to be relatively

accurate and appropriate for the task at hand. In the next chapters, the gold standard will be

used to evaluate the robustness of the proposed computational approaches in finding construct

relationships.

5.7 Conclusion

Exploring and labeling over a thousand construct relationships can be tedious and time con-

suming. As was explained in this chapter, an relatively standard approach was adopted to rapidly

create a gold standard without involving enormous resources. First, a computational approach was

used to find identical constructs. Once the constructs are clustered, they were reviewed by annota-

tors and sub-categorized into more refined categories. This yielded the gold standard of construct

relationships. To validate the gold standard, 300 construct pairs were semi-randomly drawn and

provided to experts for labeling. The Kappa coefficient showed that there is substantial agreement

between experts and the gold standard. In the following chapter, the gold standard will be used to

benchmark the proposed computational approaches.



Chapter 6

Evaluation

6.1 Overview

This chapter describes a systematic methodology to evaluate the similarity measures used to

predict construct relationships. It begins by finding the optimal dimensionality to perform Singular

Vector Decomposition (SVD) for (Latent Semantic Analysis) LSA. Then, benchmarks all the 12

computational models with Receiver Operating Characteristic (ROC) plots. It then proceeds to

select only the best generalized function based on construct items. This reduces the number of

models to be investigated into nine. By comparing the nine models, it is intended to settle for a

cutoff score that is able to produce a cutoff sample that has high accuracy. The chapter concludes

by presenting the outcome of combined measures.

6.2 LSA Dimensionality

It is necessary to find an optimal dimensionality to perform Singular Value Decomposition

(SVD) because some of the computational models are generated with Latent Semantic Analysis

(LSA).

This is because the performance of the LSA is heavily dependent on the different dimen-

sionality used during the SVD process. According to [19], lower dimensionality allows broader

comparison of semantic concepts while a higher dimensionality allows more specific comparisons of

concepts. Although higher dimensionality promise a more accurate result to a point, they require

more computational resources when computing similarity. It is important to seek a dimensionality
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that produces an appropriate compromise between accuracy and performance.

Past literature has reported that 300 dimensions will usually give the best results with tens

of thousands of documents. However, recent studies [8, 38, 60] have reported that the range of

50-1000 dimensions are suitable, depending on the length of documents. Also, the dimensionality

is sometimes limited by the number of documents in the collection.

To obtain the optimal LSA dimensionality, five semantic spaces were built with the dimen-

sionality between 200-500. The gold standard was then used to evaluate how accurately each model

retrieving relevant measurement items from the corresponding constructs. R-Precision is reported

[50] for each model, and the dimensionality from the model which has the highest score is settled

on. R-precision is defined as the precision at R-th position in the ranking of results for a query

that has R relevant documents. This measure is highly correlated to average precision.

The semantic spaces are created with article paragraphs as a unit of document. All models

use the exact settings except the number of dimensionality when generating the semantic spaces.

For each model, every construct measurement item in the database was projected into the semantic

spaces. The result of the projection is the item‘s specific semantic locations in the semantic space.

The locations, which are represented as vectors, are then stored in the semantic subspace. This

subspace is named meta-semantic space, and it contains the semantic location of each item. It is

presumed that the identical items should be clustered together in the semantic spaces even though

they are from different constructs.

Each unit of evaluation is performed by projecting a measurement item text into the main

semantic space and then using the projected location vector stored in the meta-semantic space to

find the relevant items by computing the cosine angle. An accurate model is the one which is able

to return more relevant measurement items at the highest similarity score.

Table 6.1 summarizes the durations of each evaluation process and the R-Precision scores

for each model. From the table, it is obvious that the high dimensionality models take more

computational resources. It is also clear that highers number of dimensionality does not actually

improve R-Precision, although the R-Precision score at dimensionality of 400 seems a little better.
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Dimensionality Duration(mins) R-Precision

200 33.17 0.35

300 41.49 0.35

400 50.53 0.36

500 58.11 0.35

600 67.58 0.35

Table 6.1: Comparison of different dimensionality model in retrieving relevant measurement items.

This implies that different numbers of dimensionality do not have significant influence on the

models.

For the upcoming experiments, the LSA dimensionality of 300 is set.
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6.3 Comparison of Construct Similarity Measures

This section is comparing how well the three proposed similarity measures, LSA, ConSimLi

and ConSimMi, perform in predicting construct relationships based on their name(N), definition(D),

and the two generalized functions on construct items: minimum score of the two most similar items

(Min) and average score of two the two most similar items (Avg). For ease of reference in the

coming section, ConSimLi(N) is used to refer to the computation model that is built with ConSimLi

measure on construct names.

The prediction task is to label whether the construct relationship is either correspondent

or independent, by judging the semantic context embedded in the textual properties. A baseline

is included in the comparisons. The baseline here is basically a simple algorithm that randomly

assigns the construct relationships to either correspondent or independent relationship.

The performance of similarity measures using a very popular graphical data mining evaluation

scheme known as Receiver Operating Characteristic (ROC) is reported. The performance of each

measure in ROC curves is represented by plotting the true positive rates (TPR) on Y axis against

the false positive rates (FPR) on X axis. TPR and FPR are defined as

TPR =
TP

TP + FN
,FPR =

FP

FP + TN
(6.1)

where TP is the true positive, FP is the false positive, TN is the true negative and FN is the false

negative.

The values of both TPR and FPR are between 0 and 1. The ROC normally shows as a

diagonal line from lower left to upper right. The diagonal line indicates random guess and a good

classifier should have points above the line.

Traditionally, ROC is used to gauge the performance of binary classifiers which can be de-

termined by the Area Under ROC (AUC). For a perfect and error free classifier, the increment of

TPR does not entail the increment of FPR and the AUC is exactly one (the line goes up straight

along the Y axis). However, in most computational classification tasks, when the sample size is
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increased, the number of FP increases as well. In other words, the classifier miss-labels negative

instances as positive. In general, a good curve is always the one that crawls to the upper left hand

of the corner (0.0,1.0). This indicates that the ratio of TPR to FPR is high. On the other hand,

researchers are less happy when the ROC curve follows a diagonal path from the lower left hand

corner to the upper right hand corner. This means that every improvement in false positive rate is

matched by a corresponding decline in the true positive rate.

One can quantify how quickly the ROC curve rises to the upper left hand corner by measuring

the area under the curve. The larger the area, the better the classifier. To sum up, the ROC figures

show a number of important characteristics:

(1) ROC plot graphically depicts the compromise between TPR and FPR.

(2) ROC curves start at (0.0,0.0) and end at (1.0,1.0).

(3) A perfect classification corresponded to the point at (0.0,1.0). The ROC is then a vertical

line with TPR of 1, which also has AUC of 1.

(4) The plot normally shows a diagonal line from lower left to upper right indicating that for

every TP, it is just as likely to encounter a FP. The diagonal line is also known as random

guess.

(5) A good classifier should have points far away from the diagonal line. Points below the

diagonal line represents poor classification results.

The ROC plots are presented for the three different similarity measures in Figure 6.1–6.3.

Each ROC plot includes the measure’s performance using different construct properties.

The ROCs were plotted based on the information collected at 21 cutoff thresholds: ranging

from 0.0 to 1.0 with an increment of 0.05 at each iteration. At each cutoff score, any construct pair

with a similarity score more than the cutoff is presumed to be correspondent, whereas the remaining

are presumed to be independent. The value of the TP and FP were computed by comparing them

to the gold standard. For ease of comparison, the ROC AUC for all models are also presented in
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Table 6.2. The AUCs are computed using a trapezoidal approximations of the curves. The ROC

for random guess is also plotted.
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Figure 6.1: ROC with LSA in terms of cosine cutoffs between 0 and 1.

Baseline LSA ConSim-Li ConSim-Mi

Min score 0.498 0.763 0.779 0.612

Averaged score 0.500 0.770 0.789 0.623

Definition 0.500 0.642 0.634 0.691

Name 0.493 0.663 0.691 0.680

Table 6.2: Area Under Curve for 12 models.

The ROC for LSA is depicted in Figure 6.1. In the figure, it is obvious that the models based

on the both construct items work better compared to the models based on construct name LSA(N)

and definition LSA(D). When judging which generalized function based on items (LSA(Min) or

LSA(Avg)) is better at predicting construct relationship, according to the plot, their differences

are not significant as both curves are very close to each other. When compared to AUC in Table
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Figure 6.2: ROC with ConSimMi in terms of cosine cutoffs between 0 and 1.

6.2, they each have an AUC of 0.763 and 0.770 respectively, it is clear that LSA(Avg) edges out

LSA(Min).

The curves are then followed by LSA(N). The figure shows that LSA(N) is able to pick up

the corresponding construct at the early higher cutoff score, but become flattened quickly as the

cutoff score decreases, simply impling that LSA(N) performs better than the other when high TPR

is required.

The curve is also labelled (only on curves for averaged item model) with the cutoff scores

which are used to compute the TPR and FPR. Its purpose to illustrate which cutoff scores produce

the points close to (0.0, 1.0).

The ROC plot for ConSimLi, which is shown in Figure 6.2, displays a similar pattern to the

LSA’s ROC plot. The similarity measure based on the construct items are the best of all. It should

be noted that ConSimLi(Avg) also performs marginally better than the ConSimLi(Min). They
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Figure 6.3: ROC with ConSimMi in terms of cosine cutoffs between 0 and 1.

are followed by the ConSimLi(N), and finally the ConSimLi(D). The four models also performed

significantly better than the baseline. Differently from the LSA, the ConSimLi(N) flatten out at a

higher FPR than LSA(N), which indicates that it is marginally better than the LSA. Overall, when

comparing AUC of every model with LSA, the similarity measures based on ConSimLi competitively

have an edge.

For ConSimMi, it was a surprise to see that the best model is achieved with ConSimMi(N). It

has the largest AUC among three measure based on the construct name (see Table 6.2). However,

unlike the two similarity measures just seen, ConSimMi(Min), ConSimMi(Avg) and ConSimMi(D)

perform poorly here and their curves are close to the diagonal line. That implies that the ConSimMi

does not perform as well as LSA and ConSimLi

In summary, LSA and ConSimLi work well with the construct items. The averaged score

model performs better than the minimum score model, but the improvement is not significant. The
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next best performer is the model based on construct name. All proposed measures with name are

able to pick up a number of correspondent constructs at high TPR to FPR ratio, but it flattens

out quickly. This is because there are a high number of similar name constructs in the database,

which are also corespondent. The curves flatten out at some points from which it may be inferred

that once the cutoff scores have passed the exact match score mark (similar name constructs have

similarity score of 1.0), similarity based on name becomes less meaningful (harder to predict), and

the number of FP is introduced at a much faster rate. Hence, we can conclude that the construct

names and definition are not good predictors for construct relationships when compared to the

construct items.

For the upcoming experiments, only averaged score, name and definition model of the three

measures will be included for comparisons. Hence, this leaves in total nine models for comparison.

6.4 Similarity Scores Distribution

The ROC curves assess the TPR against FPR and the overall performance of each model

predicting construct relationships by computing their AUC. However, they do not clearly inform

the accuracy of finding correspondent constructs at each cutoff sample. For example, in Figure 6.2,

it is shown that 0.45 is the closest cutoff score located to the (0.0,1.0), but it does not tell the actual

percentage of true correspondent pairs at this threshold. If an expert were asked to classify the

construct relationships, where the cutoff sample is obtained, the expert should be fed with more

correspondent construct pairs that are presumed to be similar in order to keep the expert constantly

motivated. If the expert sees many independent pairs, the expert might terminate the task with

a perception that upcoming construct pairs are likely to be independent. So, it is important to

determine a cutoff score that results in more correspondent pairs than independent pairs.

Since the similarity measures use scores to represent construct similarities, it is useful to

know which cutoff score of each model contributes the best accuracy. We recognize the fact that

in real life it is not possible to correctly predict all correspondent construct, we strike a balance

to settle for cutoff score which is able to produce the most corespondent constructs with the least
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error (more true positive, less false positive). In other words, we want to find a cutoff score that

maximize TP to FP ratio. With the gold standard, we evaluate each cutoff sample with accuracy

— the percentage of correspondent construct pairs in the cutoff sample where the sample and the

gold standard agree. Accuracy is formulated as

Accuracyc =
nc
Nc

(6.2)

where nc is the number of correspondent construct that the sample and the gold standard agree

at the specified cutoff, c. Nc is cutoff sample size at c. Similarly to the previous section, every

possible construct pair is computed using the similarity measures. Cutoff sample is obtained by

selecting construct pairs that have similarity scores equal or greater than the specified cutoff score.

6.4.1 Cumulative Frequency Distributions of Correspondents Constructs

Figure 6.4–6.6 present the cumulative frequency distributions of correspondent constructs at

21 different cutoff scores. The cumulative distributions are represented by histograms. The X-axis

shows various intervals of scores (the interval labeled 0.50 includes any score from 0.500 to 0.549).

Although the measures produce scores between -1 to 1, only distribution between cutoff scores 0

to 1 is shown because that includes almost all the correspondent construct pairs. The Y-axis of to

the right shows the number of correspondent constructs in the interval or below the interval.

The accuracy of correspondent constructs obtained at different cutoff scores is plotted and

overlayed over top of the histogram. The measures’ accuracy is presented by line plots. The Y-axis

to the left is the scale for the accuracy.

In the figures the accuracy of all models plummet as the cutoff scores move down. The de-

creasing accuracy is due to the increment of FP when increasing the cutoff samples. The accuracies

of all models with ConSimMi (see 6.6 ) drop at a much faster rate, even at higher cutoff than LSA

and ConSimLi. That implies that the model based ConSimMi does is not able to achieve high

accuracy when compared to the other two similarity measures.

Comparing LSA to ConSimLi, it is obvious that both have similar trends of accuracy and
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Figure 6.4: Frequency and cumulative frequency distribution of correspondent pairs across different
cutoffs overlayed with precision (success rate) at each cutoff

the model based on the construct definition is more favorable for LSA while the model based on

construct items is favorable for ConSimLi. Overall, models built with ConSimLi have a slight

advantage over its rival as the accuracy rates drop at slower rates. This also complies with the

previous finding in Section 6.3, which concludes that ConSimLi(Avg) is the the best performer

among all.

Another fact worth noting is the similarity scores produced by each measure are not aligned

with each other. For example, both ConSimLi(Avg) and ConSimMi(Avg) (see blue color histograms

in Figure 6.5 and Figure 6.6) are able to find all the correspondent constructs at higher cutoff

score compared to LSA (see Figure 6.4). ConSimLi and ConSimMi are able to find all the 6,944

correspondent constructs before they hit cutoff score 0, and LSA has to go lower in order to get all

the correspondent constructs. Likewise,similarity based on name and definition require much lower

cutoff scores in order to cover all the correspondent pairs.
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Figure 6.5: Frequency and cumulative frequency distribution of correspondent pairs across different
cutoffs overlayed with precision (success rate) at each cutoff

6.4.2 Frequency Distributions of New Correspondents Constructs

The following are the frequency distributions of new correspondent constructs found at 21

different cutoffs. The accuracy of the cutoff sample is plotted and overlayed over the distributions.

Most of the models’ similarity scores are in normal distribution, see Figure 6.7-6.9, except

LSA(D), LSA(N), ConSimLi(N) and ConSimMi(N).

Moreover, the distribution histograms for all name models show concave shapes, indicating

a high number of true correspondent constructs at high and low cutoff scores. The high frequency

to the left is because the database contains a high number of similar name constructs which are

correspondent. Most of the similar name constructs have similarity scores of 1.0 and are easily

picked up at first cutoff, 1.0. That implies that similarity based on name is critical if dealing with

a database that has many similar name constructs. .

However, the higher frequency on the low end indicates that those construct relationships
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Figure 6.6: Frequency and cumulative frequency distribution of correspondent pairs across different
cutoffs overlayed with precision (success rate) at each cutoff.

are deemed to be independent by the similarity measures. That the name models do not follow

normal distribution is a strong indicator that construct names are not a good predictor, regardless

of which similarity measures are used. However, they can be useful if dealing with a high number

of similar name constructs.

The figures also show that the mean value of similarity scores in the frequency distributions

varies from one measurement to another. To ensure optimal accuracy, the different cutoffs for

each model need to be found. Based on the experiment, it is obvious that the ConSimLi based on

construct item is favorable at cutoff score, 0.8.

6.5 Combined Measurement

This section is investigating whether combining any of the nine models improves the chances of

discovering more correspondent constructs, accompanied with a minimum error rate. The previous
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Figure 6.7: Frequency and cumulative frequency distribution of correspondent pairs across different
cutoffs overlayed with precision (success rate) at each cutoff.

experiments concluded that the ConSimLi(Avg) is the best among the nine models, so in the

following experiment it will be used it as a baseline with combined measures.

For the sake of brevity, new notation for each model is introduced. LSA, ConSimLi and

ConSimMi continue to be used to refer to the similarity measures, which take I (item, averaged

function), D (definition) and N (name). For example, the notation ConSimLi (N+D) refers to

combined model of ConSimLi on construct name and definition.

A linear combination of the scores from the candidate models is performed to construct

combined measures models. Each candidate model is given an equal weight and the combined

model score is the average of the score that is added up from each candidate model. The combined

model is made up of either two or three candidate models with different measures or different

construct properties. This gives a total of 129 combined models (including the nine stand alone

models). For the sake of brevity, only the results of combined models of all properties of the three
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Figure 6.8: Frequency and cumulative frequency distribution of correspondent pairs across different
cutoffs overlayed with precision (success rate) at each cutoff.

measures, the best and the worst combined models that are achieved with different measures are

reported.

Similarly to the previous experiments, the similarity scores for all construct pairs are com-

puted and the cutoff samples at the 21 cutoff scores are obtained. Then the the success rates are

computed and the true correspondent construct relationships in the cutoff samples are counted.

The X-axis of the plot shows the error rate (which can be obtained by 1− accuracy) and it values

range between 0 to 1. The Y-axis shows the number of true correspondent constructs found at each

cutoff sample. In this experiment, the performance result of ConSimLi(I) is plotted as a baseline

for the comparison.

Figure 6.10 shows the results of this experiment. The ConSimLi(I+D+N) combined model is

the best model because it is able to pick the most correspondent pairs with the lowest error rate. It

is closely followed by LSA(I+D+N) combined model which is then over taken ConSimLi(I+D+N)
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Figure 6.9: Frequency and cumulative frequency distribution of correspondent pairs across different
cutoffs overlayed with precision (success rate) at each cutoff.

Total Exact Matches Correspondent Pairs Accuracy

LSA(I) 99 81 82%

LSA(D) 83 63 76%

LSA(N) 989 769 78%

Li(I) 105 87 83%

Li(D) 97 74 76%

Li(N) 1079 883 82%

Mi(I) 105 87 83%

Mi(D) 221 101 46%

Mi(N) 1079 883 82%

Table 6.3: The number of total matches and the accuracy in the nine models.

at error rate = 0.43. In addition, the ConSimMi(I+D+N) combined model does not perform as

well as the previous two.

The best combined model with different measures is attained by

ConSimLi(I)+ConSimLi(D)+LSA(D), which only uses construct definition and item. Although

it is the best heterogeneous measure model, it does not perform as well as homogeneous models
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Figure 6.10: Frequency and cumulative frequency distribution of correspondent pairs across differ-
ent cutoff overlayed with precision (success rate) at each cutoff.

(combining all construct properties with the same similarity measure) such as ConSimLi(I+D+N)

and LSA(I+D+N). Hence, it is clear that the performance can be improved without the necessity

of combining different measures.

The worst combined model is LSA(D)+ConSimLi(D)+ConSimMi(D) and it can be seen that

this model has poor results than baseline. This is another piece of strong evidence clearly showing

that the similarity based on definition alone (even combining it with different measures) is not able

to predict construct relationship like others.
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Figure 6.11: The performance of possible combined models generated by ConSimLi in finding new
correspondent construct pairs.

One of the reasons that combined construct properties, especially name, is able to yield more

correspondent constructs at a lower error rate is because there is a high number of similar name

constructs in the database and the majority of them are correspondent constructs (see Table 6.3).

Because of these exact matches, these constructs yield a similarity score of one, they inherently

increase the averaged score and render them more similar (see Figure 6.7-6.9). In figure 6.11,

the outcomes of all possible models generated with ConSimLi are shown, we can see that when

combining item and name scores (see ConSimLi(I+N)), the additional number of new construct

pairs found corresponds to the number of exact matches in the database, about 769. Likewise,

when combining the score of the item with the definition in ConSimLi(I+D), the increment is seen

to be due to the definition exact matches (see Table 6.3).

Detailed analysis reveals that the name property does have substantial impact on the overall

score, if and only if the database contains a high number of similar name constructs. This also
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can be seen in combined Mihalcea et al. measurement, which is considered less superior than other

two, but able to boost its performance overall (compared to the baseline).

In summary, the experiments in this section have proven that combined measures are indeed

able to find more correspondent constructs, especially when integrated with the name properties.

However, this is subject to whether the database consists of sufficient similar name construcst.

6.6 Conclusion

A number of experiments were carried out to evaluate the proposed similarity measures on

construct name, definition and items to find construct relationships. Through ROC plots it was

shown that measures based on ConSimLi with construct items perform best. A comparison of the

two generalized functions on items, an averaged score function was settled on which has a small

advantage over minimum score function. Although ROC is able to identify which approach works

best, it does not really show which model produces the most accurate cutoff sample. Thus, the

similarity score distribution of each model and accuracy at different cutoff scores were investigated.

The results have shown that the ConSimLi with the construct items is the favorable measure.

The experiments with combined models have suggested that incorporating construct name,

definition and items in the similarity measures increases the chance of discovering more true corre-

spondent constructs, particularly with ConSimLi.

In general, the construct item is very useful for predicting the construct relationships. Also,

the construct name is helpful when dealing with a high number of similar name constructs. Overall,

it was discovered that construct definition does not have predictive power like that of the construct

item and name.



Chapter 7

Use Case 1: Predicting Construct Similarity with a Unified Theory

7.1 Overview

The purpose of the use case study is to prove the efficacy of the proposed similarity measures

to integrate correspondent constructs into a “collective construct”. The whole idea is to cluster

the independent corresponding constructs, which are developed for different theories, into the same

cluster. The results attest to the efficiency of the proposed measures integrating the constructs

with the unified theory as reported in Venkatest et al. [84].

7.2 Background

7.2.1 Unified Theory of Acceptance and Use of Technology (UTAUT)

Technology usage and acceptance has always been one of the most widely studied areas

in the information system (IS) discipline. Research models have been created to predict system

use and understand how external variables (or constructs) effect internal beliefs, attitude and

intentions. Over the past 20 years, a multitude of research models have been developed to explain

how technologies are adopted to improve organization productivity. In 2003, Venkatesh et al. [84]

presented an unprecedented study consolidating eight prominent IS acceptance models into a unified

theory known as Unified Theory of Acceptance and Use of Technology (UTAUT). The elements

included in the UTAUT are basically formulated from the following eight different models:

(1) Theory of Reasoned Action (TRA),
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(2) Technology Acceptance Model (TAM),

(3) Motivational Model (MM),

(4) Theory of Planned Behavior (TPB),

(5) Combined TAM and TPB (C-TAM-TPB),

(6) Model of Personal Computer Utilization (MPCU),

(7) Innovations Diffusion Theory (IDT), and

(8) Social Cognitive Theory (SCT).

The unified theory can be seen as the first effort in the IS discipline to integrate similar

context constructs from different models. Instead of picking and choosing one among a multitude

of models and largely ignoring the others’ contributions, Venkatesh et al. argue that there is a

need for a unified theory whose goal is“to review and synthesize a unified view of user acceptance”

without compromising existing findings [84] (p. 426).

Figure 7.1: Unified Theory of Acceptance and Use of Technology Research Model.
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The UTAUT research model is shown in Figure 7.1. The UTAUT postulates that four key con-

structs (Performance Expectancy, Effort Expectancy, Social Influence, Facilitating Conditions) are

significant and are the direct determinants of usage intention and behavior for technology adoption

but are moderated by variables of gender, age, experience and voluntariness of use. For instance,

the study reports that Perceived Ease of Use become non-significant over extended and sustained

usage and, Perceived Ease of Use therefore can be significant only at the early stage of technology

adoption and that it can have a positive effect on Perceived Usefulness of the technology. The

UTAUT is able to account for 70 percent of the variance in usage intentions towards technologies

adopted, a considerable improvement on previous models which routinely explain around 40 percent

of acceptance.

7.2.2 Conceptualization

The conceptualization of UTAUT is a non-trivial task. In the paper, Venkatesh et al. claim

they took six months to collect data from four different organizations which involved giving out

questionnaires containing items measuring all the constructs from the eight models. The purpose

of collecting the data was to identify commonalities of the eight models and to find constructs

that were consistently significant and most influential in all time periods. Having reviewed and

empirically compared the eight models, they formulated four constructs out of the constructs in

the existing models which are considered the direct determinants of user acceptance and usage

behavior. However, the paper does not specifically describe in detail how those constructs were

derived.

They derived four constructs out of the constructs from the eight models. These four con-

structs are not new. Each of the constructs is, in fact, rooted on constructs from the eight models

which pertain to the respective concepts. In Appendix C, all the root constructs and their cor-

responding measurement items are listed in four separate tables, which map to the four derived

dominant constructs in UTAUT.

The final part of the conceptualization is to empirically validate the constructs with the
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collected data and cross-validate it with data from a different organization.

7.3 Task Description

UTAUT is viewed as a highly validated model since the paper describing it has been cited over

3,600 times 1 , and it has also been extended a number of times in other studies [86, 77]. UTAUT

can be seen as a testing ground for the proposed construct similarity measures in predicting the

construct relationships. Of particularly interest are the 14 root constructs which are consolidated

into four key constructs in the unified theory. The consolidation in the original study is the result of

extensive longitudinal operational study examining construct convergent and discriminant validity.

By using the proposed similarity measures, it is believed that construct similarity could be computed

and the correspondent constructs placed near to each other whereas independent constructs are

placed far away from each other on a map.

To evaluate the similarity measures robustly, a semantic space with articles prior to year 2002

was built. This was done to exclude any evidence that was possibly linked to UTAUT which could

lead to overfitting in the semantic space.

Similarities of the 14 root constructs were computed with the three similarity measures. As

discussed, the construct similarity score is the average of the two most similar item scores. The

result of similarity is represented a in 14x14 inter point diagonal matrix, S, where each element

represents inter-construct similarity The S is then converted into a dissimilarity matrix2 , D = 1−S

then the D is transformed into configuration of points to provide original distance in 2D visual

representation.

For the purpose, MDSCALE a non-classical multidimensional scaling (MDS) function from

the statistic toolbox in Matlab software was used. MDS is a set of data analysis techniques that

display the structure of distance-like data as a geometrical picture. It is also known as Principal

Factor Analysis and can be used as a dimension reduction method, specifically reducing the data to

1 The number of citations is obtained through Google Scholar, as of 6/21/2011
2 The algorithm we used to visualize the construct similarity only accepts dissimilarity matrix
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a distance matrix and creating a new configuration of points retaining only the first few dimensions

of those points. It takes a dissimilarity matrix and outputs a coordinate matrix whose configuration

minimizes a loss function called strain. In this study, Sammon metric scaling was used which finds

a new reduced-dimensionality coordinate system for the configuration points such that the an error

criterion between distances in the given space, and distances in the result space, is minimized.

Once the configuration points corresponding to each construct are in place, they are visualized in

a scatter-plot.

7.4 Results and Discussion

Below is the scatter plot for the 14 configuration points generated with ConSimLi(I). The

average similarity score of the 14 constructs in this setting is 0.61 and the similarity scores range

between 1 to 0.45. The distances between configuration points in the plot represent the relative

similarity of constructs. Hence, the closer they are located, the more correspondent they are

proposed to be.

From the scatter plot in Figure 7.2, it can be seen that the 14 root constructs are spread

out and grouped into four “collective” clusters. The same color constructs are located next to

each other. The four clusters are the red cluster (Performance Expectancy) in the center of the

lower quadrants, the blue cluster (Social Influence) at the upper right quadrant, the black cluster

(Facilitating Conditions) at the upper left and the green cluster (Effort Expectancy) below the

black cluster. The root constructs in Performance Expectancy (the red constructs) are predicted

to be similar by the measure and are placed near to each other. They are also predicted to be

dissimilar to others, thus are placed far from them.

Likewise, data for root constructs that are from the Effort Expectancy (the green constructs)

and the Social Influence (the blue constructs), are nearly all being placed close together.

However, the black root construct, Perceived Behavioral Control (PBC), is placed close to the

green constructs instead of being placed close to the two similar member constructs, Facilitating

Condition (FC) and Compatibility (CMPT) are being placed close to the green constructs. Detail
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Figure 7.2: Visual representation of the pattern of similarity of 14 root constructs appearing in
Venkatesh et al.[84] that are computed with ConSimLi(I). Different colors are used to indicate the
same group of root construct as reported in the paper.

analysis of similarity at item level reveals that PBC has higher correlation to both the green

constructs Perceived Ease of Use (PEU) and Ease of Use (EU)(see Table 7.1–7.2), instead of its

root member constructs, FC and CMPT (see Table 7.3–7.4).

Perceived Behavioral Control(PBC) Items Perceived Ease of Use (PEU) Items Score

“It would be easy for me to become skillful
at using the system.”

“Given the resources, opportunities and
knowledge it takes to use the system, it
would be easy for me to use the system.”

0.75

“Learning to operate the system would be
easy for me.”

“Given the resources, opportunities and
knowledge it takes to use the system, it
would be easy for me to use the system.”

0.74

Table 7.1: Two most similar items and their score between Perceived Behavioral Control(PBC)
and Perceived Ease of Use (PEU).

PBC is placed closer to the construct belonging to Effort Expectancy due to having higher



87
Perceived Behavioral Control(PBC) Ease of Use (EU) Items Score

Overall, I believe that the system is easy to
use.

I have the resources necessary to use the
system.

0.66

Overall, I believe that the system is easy to
use.

I have the knowledge necessary to use the
system.

0.66

Table 7.2: Two most similar items and their score between Perceived Behavioral Control(PBC)
and Ease of Use (EU).

Perceived Behavioral Control(PBC) Items Compatibility (CMPT) Items Score

“The system is not compatible with other
systems I use.”

“Using the system is compatible with all
aspects of my work.”

0.67

“I have control over using the system.” “Using the system is compatible with all
aspects of my work.”

0.56

Table 7.3: Two most similar items and their score between Perceived Behavioral Control(PBC)
and Compatibility (CMPT).

Perceived Behavioral Control(PBC) Facilitating Control (FC) Items Score

“I have the resources necessary to use the
system.”

“Guidance was available to me in the selec-
tion of the system.”

0.67

“I have the knowledge necessary to use the
system.”

“Guidance was available to me in the selec-
tion of the system.”

0.62

Table 7.4: Two most similar items and their score between Perceived Behavioral Control(PBC)
and Facilitating Control (FC).

similarity scores (0.73 and 0.65 respectively) to two of the green root constructs, PEU and EU. The

main reason behind this is that they both have highly similar items with PBC which are about the

subjects of ease of use and operations of the system. In contrast, although PBC has high similarity

to the first item in CMPT, because of the lower score of the second item, it renders PBC less similar

to CMPT. Likewise, both the most similar items in PBC and FC are not that similar.

The green Complexity (COMPX) construct is an interesting one. When examining its inter-

point similarity with other constructs, it does not correlate well with the other 13 constructs and

its maximum pairwise construct similarity score is merely 0.6, which is a little below the average

similarity score. Due to its weak correlation to other constructs, its configuration point is placed far

to the right bottom of the plot, far away from other constructs. However, if the similarity matrix is
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examined, the two most similar constructs to COMPX are indeed PU and PEU, which are its root

member constructs. Because of that, it is located next to PU and PEU to project their relative

distances.

The following section includes the scatter plots for configuration points created with the

combined models: ConSimLi(I+N), ConSimLi(I+D) and ConSimLi(I+D+N).
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Figure 7.3: Visual representation of pattern similarity generated with ConSimLi(I+D)

Figure 7.4– 7.5 show the scatter plot of construct similarity with different combined measures.

Although the combined measures are also able to predict almost all of the construct relationships

correctly, the plot with the ConSimLi(I+N) (see Figure 7.4) can cluster the root constructs into the

four key constructs as they are reported in the original paper. The four key constructs are spread

out nicely into the four quadrants.

In contrast to our previous findings which show that the ConSimLi(I+N+D) is the best

construct relationship predictor, the plot created with ConSimLi(I+N+D) (see Figure 7.5) is not

as promising as others as there are some constructs being misplaced.

To sum up, we believe there is no single true or false answer to which measure does the

most accurate job. All the results are left to be investigated through operational research, which

is beyond the scope of this study. In general, we are excited to see that most proposed measures

(either stand alone or combined) are able to group the 14 root constructs into four key constructs

as reported in the original paper.
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Figure 7.4: Visual representation of pattern similarity generated with ConSimLi(I+N)

7.5 Conclusion

This chapter has showcased our proposed measures in the application of multi-model knowl-

edge integration. This is to simulate the process of integrating related knowledge that is represented

by constructs from multiple theories, such as how UTAUT [84] ] is operationalized. Instead of car-

rying out the full conceptualized operation in a full scale, which requires enormous resources, we

can first employ the proposed measures to narrow down to the constructs that are deemed sim-

ilar. Here, we have facilitated the proposed measures to predict construct similarities of 14 root

constructs which are in turn being transformed with distance functions and represented in scatter

plots. Corresponding constructs in the plot are assumed to be located near to each other whereas

independent constructs are located far from each other. The empirical results suggest that for

the most part, using the proposed measures, we are able to correctly predict almost all the root

constructs that pertain to the four key constructs. We indeed are excited to learn that the best
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Figure 7.5: Visual representation of pattern similarity generated with ConSimLi(I+D+N)

prediction can be achieved with ConSimLi(I+D). Also, in contrast with our previous findings, we

have learned that ConSimLi(I+D+N) does not perform as expected in this task. Finally, the rela-

tive construct distances visualized in the plots are by no means a real representation of construct

relationships, as the actual relationships can be only confirmed through operational study.



Chapter 8

Use Case 2: ConstructNet

8.1 Overview

In this chapter, we build a network of constructs termed ConstructNet, in order to examine

the efficiency of the similarity measures to relate constructs to the others based on construct items.

The goal is here to automatically create a visualization of ConstructNet that will allow experts to

immediately review relationships between constructs and make adjustments. In this use case, the

focus is on building the network, evaluating it using the gold standard, and examine reasons behind

structural failures in the network. Two construct networks are chosen for the in-depth study.

8.2 Task Description

To visualize the network of constructs, the similarity scores of construct relationships are

computed using ConSimLi(I). The reasons for using only construct items here are that:

(1) Items are operationally used to validate constructs (see Section 2.8);

(2) Definition is not a good predictor;

(3) Name ends up with lot of connectivity because of similar name constructs, but this con-

nectivity has low information value; and

(4) Combined models might end up with high connectivity because of similar construct name

(for the same reason as (3)), or degrade the connectivity if construct definitions are included.



93

In the following experiments, the ConstructNet is built with the construct relationships which

have similarity scores equal to or above 0.8. The threshold results in a total of 407 constructs with

1107 relationships. The ConstructNet is depicted in Figure 8.1.

8.3 Results and Discussion

Figure 8.1: ConstructNet.

Figure 8.1 shows a number of disconnected networks in the ConstructNet. Constructs are

represented as the red vertices, and all constructs are connected either with green or red edges.

The green edges represent correspondent relationships that are in agreement with the gold standard

whereas the red edges indicate constructs relationships that are not in agreement with the gold

standard.

There are independent construct networks because those construct relationships with simi-

larity score less than 0.8 are not being visualized here (thus makes them isolated visually). The

structure and location of the clusters are randomly determined by the Kamada-Kawai energy for

optimized visualization. So distances between constructs in the space do not represent construct
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similarity. If required for explanation, the construct similarities are represented by edge value

(Figure 8.1 does not show the construct similarities).
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8.3.1 Perceived Ease of Use and Perceived Usefulness

Figure 8.2: Connectivity for constructs pertaining to Perceived Usefulness and Perceived Ease of
Use.

Figure 8.2 shows the detail view of the largest construct network that is found at the upper

left corner in of Figure 8.1. Each construct in the network is labeled with the name, and followed

by their unique variable identity and the source identity (in the parenthesis) from the database.

The figure shows the connection of the constructs from the subcategories Perceive Usefulness

(to the right of the network) and Perceived Ease of Use (to the left of the network). And for the

most part, almost all construct relationships in the network are predicted correctly (green edges)

by the similarity measure used.

The figure also shows a small number of independent relationships (red edges). It is also

interesting to learn that the construct Perceived Usefulness (24537,6788) is bridging the constructs

from the two subcategories.

Is this a case of relationship misclassification? To answer the question, the properties of the

Perceived Usefulness (24537,6788) have to be examined and compared to one of the interconnected
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constructs, Perceived Usefulness(74,25). The main reason these two constructs are selected for

analysis because their relationship has a similarity score of 1.

Name Perceived Usefulness (24537,6788) Perceived Usefulness (74,25)

Def The extent to which a technological inno-
vation is expected to improve the potential
adopters performance.

The extent to which a person believes that
using a particular technology will enhance
her/his job performance.

Source Research Report: Richness Versus Parsi-
mony in Modeling Technology Adoption
DecisionsUnderstanding Merchant Adop-
tion of a SmartCard-Based Payment Sys-
tem

User acceptance of information technol-
ogy: toward a unified view

Items 1.Using the system improves my perfor-
mance in my job.
2.Using the system in my job increases my
productivity.
3.Using the system enhances my effective-
ness in my job.
4.I find the system to be useful in my job.

1.Using the system improves my perfor-
mance in my job.
2.Using the system in my job increases my
productivity
3.Using the system enhances my effective-
ness
4.I find the system to be useful in my job

Table 8.1: Perceived Usefulness constructs from different articles.

In Table 8.2, both constructs can be seen having identical measurement items. This ex-

plains why the construct relationship has similarity score of one. When annotators and experts

categorized the two constructs during the gold standard creation, they placed them into different

categories because they have determined that the Perceived Usefulness (24537,6788) is describing

a concept at the organization level, whereas Perceived usefulness (74,25) is focusing on a concept

at the individual level. For that reason they were labeled as dissimilar which yields independent

relationship.

Finding two constructs at two different levels of scale is almost impossible by just looking

at the construct properties. Although the definition in Table 8.2 seems to have hint (adaptor and

person), but according to ConSimLi, the two definitions only yield similarity score of 0.80, which

is not really helpful to reflect the embedded context in them.

This is not a case of misclassification, as differentiating constructs at two different level

scales is a complicated task as it involves one’s background knowledge on the subjects and how
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the constructs are coded in the original paper. In this case, judging both construct properties does

not help revealing the actual relationship, and the relationship can be only confidently determined

through reading the articles where the constructs are extracted from.

Besides Perceived Usefulness (24537,6788), Figure 8.2 also shows three construct that are

independent. It should be noted that these construct are from the same article. Generally, con-

structs from the same paper are not categorized as correspondent. For example, both Usefulness

(24537,6788 and Result Demonstrability(24544,6788) have high similarity score but they are inde-

pendent because they are from the same paper.

The reason the same paper constructs included in the network is because they have high

similarity scores. The similarity score is due to the the word-word similarity measure with LSA

tends to associate co-occurred words from the same unit of document with high similarity. In Table

8.2, it can be seen that Usefulness (24537,6788) and Result Demonstrability(24544,6788) have high

similarity scores for their items.

Usefulness (24537,6788) textitResult Demonstrability(24544,6788) similarity

Using the Exact card system increases the
productivity of me and my staff.

The impact of using the Exact card system
is apparent to my staff and me.

0.831

Using the Exact card system enhances
the on-the-job effectiveness of me and my
staff.

The impact of using the Exact card system
is apparent to my staff and me.

0.813

Using the Exact card system improves the
job performance of me and my staff.

The impact of using the Exact card system
is apparent to my staff and me.

0.815

Using the Exact card system increases the
productivity of me and my staff.

My staff and I could communicate to oth-
ers the consequences of using the Exact
card system.

0.803

Table 8.2: Similarity scores on two set of items.

Detailed analysis reveals that the higher scores are due to the exact word matches and high

similarity score of the co-occurrence of certain words instead of determinant keywords. In fact,

even expert annotators without specific knowledge of the Result Demonstrability construct may be

tempted to code it as correspondent.
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8.3.2 Perceived Usefulness and Cognitive Absorption

There are studies show that users holistic experiences could be important in explaining in

technology acceptance and usage [3, 91]. One such experience is cognitive absorption (CA). CA

is an intrinsic motivation related construct, and it was found that it has a positive effect on the

perceived usefulness of the information technology[3, 91]. Hence, besides designing information

technologies (IT) that are perceived to be useful and easy to use, it is also very important to ensure

that it has pleasant and interesting qualities as these qualities directly enhance perceived usefulness,

and ease of use.

An example of CA is the experience of using technologies that are visually rich and appealing

such as game-based training environments and they are more enjoyable [82] and more likely to

result in cognitive absorption.

In the following section, construct network related to CA are visualized and discussed.

Figure 8.3: Connectivity for constructs pertaining to Cognitive Absorption.
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Figure 8.3 shows the construct network pertaining to CA. It shows that there are five con-

structs from the same article. They five constructs are: Perceived Usefulness, Heightened Enjoy-

ment, Curiosity, Temporal Dissociation, and Cognitive playfulness. These constructs are reported

in the article Time Flies When You’re Having Fun: Cognitive Absorption and Beliefs About Infor-

mation Technology Usage. The article reports five CA constructs and three of them are present in

the network.

The network shows that the new Perceived Usefulness (136,81) does not associate with the

network that pertains to the perceived usefulness seen in Figure 8.2. This may be because its items

is significantly different from the the Perceived Usefulness (24537,6788).
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Name Perceived Usefulness (74) Perceived Usefulness (132)

Source The degree to which a person believes that
using a particular system would enhance
his or her job performance.

Null (the definition was not found in the
paper).

Def. User acceptance of information technol-
ogy: toward a unified view

Time Flies When You’re Having Fun:
Cognitive Absorption and Beliefs About
Information Technology Usage

Items 1.Using the system improves my perfor-
mance in my job.
2.Using the system in my job increases my
productivity.
3.Using the system enhances my effective-
ness in my job.
4.I find the system to be useful in my job.

1.Using the Web improves my perfor-
mance in college.
2.Using the Web enhances my productiv-
ity.
3.Using the Web enhances my effective-
ness in college.
4.I find the Web useful in my college ac-
tivities

Table 8.3: Perceived Usefulness properties.

Table 8.3 shows the properties of the two constructs. The table shows that both constructs

have different items. Although both items measure performance in different aspects, the settings

when the measurements take place are completely different. Perceived Usefulness (74) which is

from [84] was used to measure a job performance related to a technology usage in an organization.

On the other hand, the itPerceived Usefulness (132) is measuring playful

During the categorization exercise, Perceived Usefulness (74) is placed under “usefulness,

Individual” whereas Perceived Usefulness (132) is categorized under “affect Towards Technology

(Use)”. Clearly, both constructs are deemed differently by experts.

In-depth analysis reveals the reason the proposed measure is able to differentiate them is

because of the use of the words “Web” in the items. The constructs in the original paper of the

Perceived Usefulness (132) are measuring playful and fun and the Web are used in every item. Due

to the way text-text similarity work, the two constructs are deemed differently by the similarity

measure.

Figure 8.4 also shows five construct which are from the same papers. As expected, four of

the interconnect relationships are labeled as independent except the relationship between Hightened

Enjoyment (132) and Curiousity (134). The two constructs, although they are from the same paper,
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are categorized in the same category because one of them have general item which measure what

the other construct measures.
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The connectivity can be consolidated by merging the constructs from the same paper into a

collective construct Cognitive Absorption, to clearly show the connection with constructs that are

in different papers.

Figure 8.4: Consolidate connectivity for constructs pertaining to Cognitive Absorption.

It is the intention of the study to discover construct relationship that exist between constructs,

that are appeared in different articles which have not been studied before. The use of ConstructNet

here is to draw multidimensional constructs from different theories so that the researchers can

analyze them and select them in a study before proceeding to derived the constructs operationally,

which is a laborious operation.

8.4 Conclusion

Metatheory is a theory that is built upon existing theories. The ConstructNet described

here by no mean a metatheory, but it can be seen as a potential and useful tool to leverage the

constructs helping scientists to expedite the process in building a metatheory through examining

the connectivity of the constructs. In this section, the focus of the study is to see the potential of
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nurturing the collected constructs and weave them into an interlocking system using the proposed

similarity measure. This allows scientists to study and adjust each other relationship. It is still too

early at this stage to claim that ConstructNet is able to represent the real knowledge, but we believe

that the ConstructNet can serve as a shortcut allowing scientist to integrate exiting knowledge and

develop new theory, which in turn expedite scientific progression. To evaluate ConstructNet, its

connectivity was evaluated using the gold standard and it was found that the majority of the

connectivity are in agreement with the gold standard. We uncovered that most of the independent

relationships were a result of the connectivity of the constructs from the same paper.



Chapter 9

Conclusion, Contributions and Future Works

9.1 Overview

In this chapter, the conclusion of the thesis is stated before discussing the contributions and

opportunities for future investigation.

9.2 Conclusion

Human Behavior Project (HBP) aims to integrate the existing knowledge from social and

behavioral science that is encoded in constructs. It is also the intention of the project to inter-

connect the constructs from different theories so that their correlations may be studied. It is

believed that if scattered constructs could be integrated into an interlocking system, the interplay

of the constructs can help scientists explain and predict human behavior. Scientists have reported

that 93 percent of human behavior is actually predictable.

In this thesis, the automated computational approaches which are derived from the natural

language processing advancements have been proposed to predict the construct relationships, even

though the relationships have not been studied and are rooted in different theories. Instead of

finding the construct relationships through psychometric methods, which is an extremely laborious

process, text similarity measures were employed on construct name, definition and items to predict

if constructs are correspondent (similar) or independent (dissimilar). The study has created oppor-

tunities to explore the semantic relationship of the constructs through automated computational

approaches such as text similarity measures.
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A gold standard was created by categorizing correspondent constructs into the same categories

in order to robustly evaluate the proposed measures. Construct categorization resulted in two levels

of hierarchical taxonomy which yielded the gold standard of construct relationships. To validate the

gold standard, 300 construct pairs in from the categories and with equal proportion of relationship

types were drawn and given to experts for labeling. Kappa coefficient were used to evaluate the

inter-agreement between the experts and the gold standard. The computed Kappa coefficient scores

has shown that the gold standard has substantial agreement with experts, which were 68 and 77

percent respectively. The efficacy of the derived measures were compared with Latent Semantic

Analysis (LSA), a reputable similarity measure. The study showed that the model built with

ConSImLi worked reasonably well in predicting construct relationships using construct items. The

study also extended the models to combined models, which were created by averaging similarity

scores in candidate models. The combined models were better at predicting construct relationship,

partly due the existence of high number similar name constructs in the database. Experimental

results showed that combining all the construct properties yielded the best combined model.

Perhaps the most encouraging finding was the demonstration of the proposed measures used

to “integrate” the 14 root constructs obtained from different theories into the four key constructs as

it was reported in [84]. By using Venkatesh et al. [84]’s unified model as a reference, the measures

based on the ConSimLi was able to place the same root member constructs close to each other

when they were projected into a scaled scatter-plot.

Finally, the study presented ConstructNet that was created with the construct relationships

computed by ConSimLi using construct items. The goal of building the ConstructNet is to allow

experts to learn and study the relationships between constructs from different disciplines. Prelim-

inary analysis on selected construct connectivity in the ConstructNet shows that the measure was

able to satisfactorily predict the construct relationships that are in the same category in the gold

standard.

It is the hope of the study to extend it to a search toolkit that will allow theory developers to

find related constructs or constructs pertaining to existing theories before engaging in the process
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of developing new theory. In addition, the ConstructNet can be treated as an additional knowledge

base in conjunction with the use of machine learning algorithm in predicting human judgement. It is

believed that many applications such as review systems, sentiment analysis and question-answering

can benefit from this knowledge base.

9.3 Contributions

This cross-discipline study has made a four major contributions in the computer science,

social and behavioral disciplines:

(1) The study has derived text similarity measures from prior literature which are able to

work within a specific domain and predict construct relationships based on the construct

properties

(2) The gold standard that has been created in this study not only can be used to evaluate the

proposed measures but can also be used to benchmark text similarity measures. To date,

most of the text similarity measures reported in the literature are evaluated independently

or in an adhoc manner, which lacks uniformity. The items used to measure a construct,

which have the same context are short sentences. They can be used to benchmark sentence

similarity measures.

(3) The study also presents the first attempt at large-scale construct integration through a

computational approach, which was visualized in ConstructNet. It makes possible the

discovery of latent connections among constructs through constructs textual properties.

(4) The study serves as the only attempt to date that explores the possibility of automati-

cally creating construct maps and interrelating their relationships through computational

approaches in accordance to Cronbach and Meehls [14] suggestion, which said that the

constructs maps are the only method for theory representation as well as validation of

underlying constructs.
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9.4 Future Work

The proposed text similarity measures, ConSimLi and ConsimMi, that are used to predict

construct similarities are still far from perfect. Although this thesis has shown the efficacy of the

measures, many issues still exist which require further investigation. We are particularly interested

in investigating the following four issues in future work:

9.4.1 Improving the Proposed Similarity Measures

The text similarity measures rely on a knowledge base for computing word-word similarity.

Although our thesis has proven that it is possible to predict construct relationships with semantic

matching, our findings have also shown that the similarity measures did not work well on antonyms

and rare words. Besides deriving a more effective similarity measure, it is believed that it is also

important to improve the semantic knowledge base used for word-word similarity.

9.4.2 Attesting our Proposed Measures on a Much Large Scale Unified Model

The study results have shown positive outcomes when experimenting with the proposed

measures within the unified models. We believe it will be more convincing if they can be attested

with a theory which has more diverse constructs.

9.4.3 Qualitative Analysis of Construct Relationships in the ConstructNet

In the thesis, the gold standard was used to evaluate the predicted relationship in Construct-

Net. An in-depth qualitative analysis with domain experts on the validity of relationships in the

ConstructNet will make the study more valuable. It is impossible at this point to learn if discon-

nected constructs in the ConstructNet are independent constructs, or connecting constructs that

are truly related. This is because there is no large scale research model available to be evaluated. It

is believed that the most valuable follow-up task is to appoint experts to perform a thorough inves-

tigation on familiar areas (for example Perceived Usefulness or Perceived Ease of Use), and derive
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the construct relationships manually and operationally and use them to evaluate our similarity

measures.
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Appendix A

Training Document

A.1 Criteria for Classifying Constructs

We describe in this section a criteria that Project Investigator (PI) have established in helping

to determine the construct relationship. This guideline is distributed to annotator before the

categorization task begins to assert the categorization outcomes. However, deciding relationship of

constructs is a tedious task and is solely based on ones’ subjective judgment and prior knowledge.

Operationally, a construct A will be judged as corresponding to another construct B if the

domain experts determine that two or more potential construct measurement items for A could

also be used to measure the latent construct measured by B. The basis for such determination

might include the similarity between construct measurement items, definitions, names, citations,

unit of analysis, and other evidences for the two constructs. Thus, We define a construct, A, to be

corresponding to another construct, B, if some construct measurement items for A could also be

used to measure the latent construct measured by B.

We employ a straight forward guideline in helping annotators to identify correspondent con-

structs. The following is some examples how to identify correspondent and conflicting constructs:

(1) Constructs having different name but identical measurement items. For example, Perceived

Usefulness and Performance Expectancy.

(2) Constructs having identical measurement items but different in time, scale or technology

used. For example,



116

(a) Time: “I intend to use the CRC [Computing Resource Center] frequently this term”

vs.

“I intend to use the system in the next n months”.

(b) Scale: “After using this Web site, I am [very dissatisfied/very satisfied]” vs.

“Overall, I was satisfied with this online experience [strongly disagree/strongly agree]”.

(c) Technology: “Using CHART-MASTER would improve my job performance’ vs.

“Using a PWS improves my job performance”.

(3) Constructs having measurement items using different words (synonymy, antonymy, etc).

For example, “I trust my boss” vs “I do not distrust my boss often”, “The typical person

is sincerely concerned about the problems of others” vs “Most of the time, people care

enough to try to be helpful, rather than just looking out for themselves”.

(4) A Constructs having measurement items that are special case of other constructs. For

example, assuming that two constructs exist with identical names—Disposition to trust.

The first variable is measured by (among others) the item “I generally trust other people

unless they give me reasons not to”, and “I usually trust people until they give me a reason

not to trust them” , and an expert decides that the two constructs are correspondent.

However, assuming that the items in second construct can lead to measuring two sub-

constructs: one set of the items leading the expert to determine that the two original

construct are correspondent and one lead to the expert to believe they are conflicting to

the first construct.

In this case, the first construct is a special case of what the second construct measures.

Given that both are trying to measure disposition to trust, there would be some items

that would be potentially useful for the researchers involved, and the expert may conclude

that the constructs are correspondent. However, if the two sub-constructs in the second

construct are explicitly broken out, one will be considered correspondent with the first
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construct, and one will be considered conflicting.

Some scales are so broad as to subsume everything in a broad category under them. These

scales are in this case treated as separate constructs. This does introduce a consistency

problem, but one that cannot be solved unless the analysis is moved from the construct

level to the item level.

(5) A variable measuring the perception of the importance of a concept is different from one

measuring the perception of a variable. For example, the importance of ease of use is

different from ease of use.



Appendix B

Construct Categories in the Gold Standard
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Main category Name No. of correspondences

Academic 2

Communication 21

ETC. 2

Ethics/Morals 4

General Psychology 8

Group 14

Information/Data 18

Inter-Organizational 30

IS Development: Etc. 17

IS Development: Participation/Support 13

IS Development: Process Methodology 9

IS Development: Risk Factors 8

IT Adoption: Affective Factors 12

IT Adoption: Etc. 8

IT Adoption: Self-Efficacy Factors 6

IT Adoption: Social/Emotional Factors 8

IT Adoption: Technology Factors 21

IT Adoption: Use Factors 9

IT Function 18

Judgment and Decision Making 4

Knowledge 11

Leadership 7

Learning 15

Organizational Level 33

Privacy and Security 10

Purchase 12

Task/Job 20

Trust 3

Total Subcategories 343



Appendix C

UTAUT Constructs



121
Construct Definition Items

Perceived
Usefulness (PU)

The degree to which a person be-
lieves that using a particular sys-
tem would enhance his or her job
performance.

1. Using the system in my job would enable me
to accomplish tasks more quickly.
2. Using the system would improve my job per-
formance.
3. Using the system in my job would increase my
productivity.
4. Using the system would enhance my effective-
ness on the job.
5. Using the system would make it easier to do
my job.
6. I would find the system useful in my job.

Extrinsic
Motivation (EM)

The perception that users will want
to perform an activity because it
is perceived to be instrumental in
achieving valued outcomes that are
distinct from the activity itself,
such as improved job performance,
pay, or promotions.

Extrinsic Motivation is operationalized using the
same items as PU

Job-fit
(JF)

How the capabilities of a system
enhance an individuals job perfor-
mance.

1. Use of the system will have no effect on the
performance of my job (reverse scored).
2. Use of the system can decrease the time needed
for my important job responsibilities.
3. Use of the system can significantly increase the
quality of output on my job.
4. Use of the system can increase the effectiveness
of performing job tasks.
5. Use can increase the quantity of output for the
same amount of effort.
6. Considering all tasks, the general extent to
which use of the system could assist on the job.
(different scale used for this item).

Relative
Advantage (RA)

The degree to which using an inno-
vation is perceived as being better
than using its precursor.

1. Using the system enables me to accomplish
tasks more quickly.
2. Using the system improves the quality of the
work I do.
3. Using the system makes it easier to do my job.
4. Using the system enhances my effectiveness on
the job.
5. Using the system increases my productivity.

Outcome
Expectations
(OE)

Outcome expectations relate to
the consequences of the behav-
ior. Based on empirical evidence,
they were separated into perfor-
mance expectations (job-related)
and personal expectations (individ-
ual goals). For pragmatic For prag-
matic reasons, four of the high-
est loading items from the per-
formance expectations and three
of the highest loading items from
the personal expectations were cho-
sen from Compeau and Higgins
(1995b) and Compeau et al. (1999)
for inclusion in the current re-
search. However, our factor anal-
ysis showed the two dimensions to
load on a single factor

1. If I use the system I will increase my effective-
ness on the job.
2. If I use the system I will spend less time on
routine job tasks.
3. If I use the system I will increase the quality of
output of my job.
4. If I use the system I will increase the quantity
of output for the same amount of effort.
5. If I use the system My coworkers will perceive
me as competent.
6. If I use the system I will increase my chances
of obtaining a promotion.
7. If I use the system I will increase my chances
of getting a raise.

Table C.1: Performance Expectancy: Root Constructs, Definitions, and Items
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Construct Definition Items

Perceived Ease of
Use (PEU)

The degree to which a person be-
lieves that using a system would be
free of effort.

1. Learning to operate the system would be easy
for me.
2. I would find it easy to get the system to do
what I want it to do.
3. My interaction with the system would be clear
and understandable.
4. I would find the system to be flexible to interact
with.
5. It would be easy for me to become skillful at
using the system.
6. I would find the system easy to use.

Complexity
(CMPX)

The degree to which a system is
perceived as relatively difficult to
understand and use.

1.Using the system takes too much time from my
normal duties.
2.Working with the system is so complicated, it is
difficult to understand what is going on.
3.Using the system involves too much time doing
mechanical operations (e.g., data input).
4.It takes too long to learn how to use the system
to make it worth the effort.

Ease of Use (EU) The degree to which using an inno-
vation is perceived as being difficult
to use.

1.My interaction with the system is clear and un-
derstandable.
2.I believe that it is easy to get the system to do
what I want it to do.
3.Overall, I believe that the system is easy to use.
4.Learning to operate the system is easy for me.

Table C.2: Effort Expectancy: Root Constructs, Definitions, and Items

Construct Definition Items

Subjective Norm
(SN)

The persons perception that most
people who are important to him
think he should or should not per-
form the behavior in question.

1.People who influence my behavior think that I
should use the system.
2.People who are important to me think that I
should use the system.

Social Factors
(SF)

The individuals internalization of
the reference groups subjective cul-
ture, and specific interpersonal
agreements that the individual has
made with others, in specific social
situations.

1.I use the system because of the proportion of
coworkers who use the system.
2.The senior management of this business has
been helpful in the use of the system.
3.My supervisor is very supportive of the use of
the system for my job.
4.In general, the organization has supported the
use of the system.

Image (IMG) The degree to which use of an inno-
vation is perceived to enhance ones
image or status in ones social sys-
tem.

1.People in my organization who use the system
have more prestige than those who do not.
2.People in my organization who use the system
have a high profile.
3.Having the system is a status symbol in my or-
ganization.

Table C.3: Social Influence: Root Constructs, Definitions, and Items
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Construct Definition Items

Perceived Be-
havioral Control
(PBU)

Reflects perceptions of internal and
external constraints on behavior
and encompasses self-efficacy, re-
source facilitating conditions, and
technology facilitating conditions.

1.I have control over using the system.
2.I have the resources necessary to use the system.
3.I have the knowledge necessary to use the sys-
tem.
4.Given the resources, opportunities and knowl-
edge it takes to use the system, it would be easy
for me to use the system.
5.The system is not compatible with other sys-
tems I use.

Facilitating Con-
ditions (FC)

Objective factors in the environ-
ment that observers agree make an
act easy to do, including the provi-
sion of computer support.

1.Guidance was available to me in the selection of
the system.
2.Specialized instruction concerning the system
was available to me.
3.A specific person (or group) is available for as-
sistance with system difficulties.

Compatibility
(CMPT)

The degree to which an innova-
tion is perceived as being consistent
with existing values, needs, and ex-
periences of potential adopters.

1.Using the system is compatible with all aspects
of my work.
2.I think that using the system fits well with the
way I like to work.
3.Using the system fits into my work style.

Table C.4: Facilitating Conditions: Root Constructs, Definitions, and Items


