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Choi, Jinho D. (Ph.D., Computer Science)

Optimization of Natural Language Processing Components for Robustness and Scalability

Thesis directed by Dr. Martha Palmer

This thesis focuses on the optimization of nlp components for robustness and scalability. Three

kinds of nlp components are used for our experiments, a part-of-speech tagger, a dependency parser,

and a semantic role labeler. For part-of-speech tagging, dynamic model selection is introduced. Our

dynamic model selection approach builds two models, domain-specific and generalized models, and

selects one of them during decoding by comparing similarities between lexical items used for building

these models and input sentences. As a result, it gives robust tagging accuracy across corpora

and shows fast tagging speed. For dependency parsing, a new transition-based parsing algorithm

and a bootstrapping technique are introduced. Our parsing algorithm learns both projective and

non-projective transitions so it can generate both projective and non-projective dependency trees

yet shows linear time parsing speed on average. Our bootstrapping technique bootstraps parse

information used as features for transition-based parsing, and shows significant improvement for

parsing accuracy. For semantic role labeling, a conditional higher-order argument pruning algorithm

is introduced. A higher-order pruning algorithm improves the coverage of argument candidates and

shows improvement on the overall F1-score. The conditional higher-order pruning algorithm also

noticeably reduces average labeling complexity with minimal reduction in F1-score.

For all experiments, two sets of training data are used; one is from the Wall Street Journal

corpus, and the other is from the OntoNotes corpora. All components are evaluated on 9 different

genres, which are grouped separately for in-genre and out-of-genre experiments. Our experiments

show that our approach gives higher accuracies compared to other state-of-the-art nlp components,

and runs fast, taking about 3-4 milliseconds per sentence for processing all three components. All

components are publicly available as an open source project, called ClearNLP. We believe that this

project is beneficial for many nlp tasks that need to process large-scale heterogeneous data.
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Chapter 1

Introduction

1.1 Research questions and objectives

Unlike earlier stages of Natural Language Processing (nlp) where it was used by certain groups of

people for specific purposes (e.g., Darpa using nlp for machine translation),1 the application of

nlp has expanded to everyday computing and has also broadened to a general audience. For exam-

ple, Google and Bing Translators are developed using an nlp technique called statistical machine

translation, and they provide an online service that instantly translates texts and web pages.2

IBM Watson is based on an nlp application called question-answering, and has shown outstanding

performance in answering Jeopardy type questions (www.watson.ibm.com). NLP is no longer in the

future; it has become a present-day reality.

As nlp components mature, more attention is drawn to the practical aspects of these com-

ponents. In this respect, two things must be evaluated. First, nlp components should be tested

for robustness in handling heterogeneous data.3 Many recent nlp components take statistical

learning approaches, which usually perform well when training and testing data are from similar

sources. However, the performance degrades increasingly as the discrepancy between the training

and testing data becomes larger. Thus, nlp components need to be evaluated on data from several

different sources to ensure their robustness. Second, nlp components should be tested for scalability

in handling a large amount of data. Lately, these components have been used for processing data
1 Darpa: Defense Advanced Research Projects Agency.
2 Google Translator: translate.google.com, Bing Translator: translator.bing.com
3 The term “heterogeneous data” is used to indicate a mixture of data collected from several different sources.
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that are not fixed but growing indefinitely. The scope of this data type can be as large as the entire

content of the web. Thus, nlp components need to be evaluated for speed and complexity to ensure

their scalability.

The objective of this thesis is to answer the following research question: “how can nlp com-

ponents be optimized for better robustness and scalability”. Three nlp components are used in

experiments to answer this question: a part-of-speech tagger, a dependency parser, and a seman-

tic role labeler. A part-of-speech tagger assigns lexical categories to word tokens, a dependency

parser finds dependency relations between word pairs, and a semantic role labeler finds semantic

arguments of predicates. Since there are many nlp tasks highly dependent on output generated

by these components (e.g., information retrieval, machine translation, question-answering), it is

important to optimize them for robustness as well as scalability so that they can provide reliable

information without becoming bottlenecks for other tasks.

Three goals are to be accomplished in this research. First, to prepare gold-standard data

from several different sources, which can be used to evaluate system performance for both in-genre

and out-of-genre experiments. This step involves automatic generation of dependency trees with

semantic roles. Second, to develop a part-of-speech tagger, a dependency parser, and a semantic

role labeler showing robust results across this data. This step involves dynamic model selection for

part-of-speech tagging, feature bootstrapping for dependency parsing, and higher-order argument

pruning for semantic role labeling. Third, to reduce the expected running time of these components

while retaining good accuracy. This step involves optimization of tagging, parsing, and labeling

algorithms.

Although experiments are done in English, all three components use statistical, data-driven

learning approaches so they can be easily ported to other languages with some feature engineering.

Moreover, they already have been used for several projects and are publicly available as an open

source project called ClearNLP (clearnlp.googlecode.com). We believe this research helps make

nlp components available for more applications and brings these components closer to a greater

number of users.



3

1.2 Background

1.2.1 Part-of-speech tagging

Part-of-speech tagging is the task of assigning a lexical category known as a “part-of-speech” (e.g.,

noun, verb) to a word. Part-of-speech tagging is useful for two reasons. First, it can disambiguate

meanings of words belonging to multiple lexical categories. For example, a word spring belongs to

two lexical categories, noun and verb, and means either the season of growth or to move forward by

leaps and bounds when used as a noun or a verb, respectively.4 Thus, the meaning of spring can only

be disambiguated by identifying its part-of-speech in the context of the current sentence. Second,

part-of-speech tagging provides back-off features of lexical items for nlp components. Lexical items

are perhaps the most important features for many nlp components; however, they are often biased

to the source data. Using only lexical items as features can be problematic when nlp components,

trained on this particular source data, are used to process data from different sources where lexical

items are very different from ones in the training data. Part-of-speech tags group lexical items into

certain grammatical categories and provide more generalized features to nlp components, which

improves robustness in handling new data.

Part-of-speech tagging is performed as a preprocessing step to many nlp tasks such as named

entity recognition, NP chunking, dependency parsing, etc. It has been used widely for various

applications and is considered one of the most useful nlp techniques in existence.5

1.2.2 Dependency parsing

Dependency parsing is the task of finding a dependency structure for an input sentence. A depen-

dency refers to either a syntactic or semantic relation between a pair of word tokens. There are

syntactic dependencies like subject or object and semantic dependencies like locative or temporal

(see Appendix D for more details about dependency labels). Dependency parsing is often compared

to constituent parsing, which groups word tokens into constituents and groups these constituents
4 The definitions of spring are captured from WordNet (http://wordnet.princeton.edu).
5 See Table A.2 for a list of Penn part-of-speech tags.
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again into bigger constituents (e.g., phrases, clauses); thus, the final output becomes a syntactic

tree (a constituent structure). Figure 1.1 shows an example of constituent and dependency struc-

tures. Unlike a constituent structure, also known as a phrase structure, there is no phrasal node

in a dependency structure: each node in a dependency structure represents a word token, and each

node is dependent on exactly one other node except for the root (e.g., bought in Figure 1.1).

He bought a car

NP

VPNP

S

yesterday

NP

bought

He car yesterday

a

nsubj dobj

det

npadvmod

Figure 1.1: An example of constituent (left) and dependency (right) structures. Tables A.3 and 2.3
show more details about these phrase level tags and dependency labels, respectively.

Dependency structures have several advantages over phrase structures. First, phrase structures are

more affected by word order in that different phrase structure rules need to be generated for phrases

with the same meaning but a different word order. Dependency structures are less affected by word

order, which makes them more suitable for representing flexible word order languages (e.g., Bul-

garian, Czech, Hindi, Korean). Second, many dependencies are applicable cross-linguistically such

that a similar set of dependencies can be applied to multiple languages with minor modifications.

This language independent aspect was one of the main reasons for CoNLL to choose dependency

parsing as a multilingual parsing task (Buchholz and Marsi, 2006; Nivre et al., 2007; Hajič et al.,

2009). Third, automatic dependency parsing is much faster than automatic constituent parsing,

which makes it more applicable for systems requiring fast processing of large-scale data.6

These advantages have resulted in considerable recent interest in applying dependency parsing

to many nlp tasks such as machine translation (Shen et al., 2008), sentiment analysis (Councill

et al., 2010), question-answering (Cui et al., 2005), etc. It is especially beneficial for those who need

to deal with a vast amount of data in many different languages.
6 Dependency parsing takes about 0.003 ∼ 0.157 seconds per sentence whereas constituent parsing takes about

0.25 ∼ 0.77 seconds per sentence (Cer et al., 2010).
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1.2.3 Semantic role labeling

Semantic role labeling is the task of identifying arguments of a predicate and labeling the arguments

with the semantic roles they play with respect to the predicate. In theory, a predicate can be any

lexical category (e.g., verb, noun) that forms its own predicate argument structure. An argument

is a participant of an event (or state) denoted by the predicate. Semantic roles, also known as

thematic roles, are the underlying relations between the predicate and its arguments. In Figure 1.2,

a verb predicate open forms an argument structure that consists of two arguments, He as an agent

and the door as a theme, and two adjuncts, with his foot as instrumental and at ten as temporal

(see Appendix B for more details about semantic roles).

Semantic role labeling has sparked much interest because it provides helpful information for

several nlp tasks (Shen and Lapata, 2007; Liu and Gildea, 2010). For example, to answer a question

like “How did he open the door?”, analyzing the syntactic trees in Figure 1.2 can only give a clue

to the answer (e.g., the answer may be found from one of PPs or PREP dependencies), but not the

exact answer. Semantic roles can give more fine-grained information with respect to the focus of

the question, in this case, the instrument of the event, with his foot.

He opened the door with his foot

NP

PPNP

VPNP

S

nsubj det
dobj

poss
pobj

prep
root

root

Agent

Theme
Instrument

at ten

PP

NP

Temporal

prep

pobj

Figure 1.2: An example of constituent (top) and dependency (bottom) trees labeled with semantic
roles. See Table B.2 for more details about these semantic role labels.

In the context of machine translation resources, parallel sentences from different languages, which

are translations of each other, often form the same predicate argument structures even when their
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syntactic structures appear to be different. In Figure 1.3, the surface locations of the agent him

and the recipient her are reversed between English and Chinese, but their semantic roles stay the

same. This implies that predicate argument structures can provide more generalizations useful for

multilingual tasks such as machine translation than syntactic structures.

这 本 书 是 他 给 她 的
This (unit) book was he gave her ('s)

This book was given to her by him

AgentRecipientTheme

Agent RecipientTheme

Figure 1.3: An example of English and Chinese parallel sentences labeled with semantic roles. The
lines show many-to-many (block) word alignments between the parallel sentences.

For our experiments, we use the PropBank style semantic role labels, which are coarse-grained on a

surface level (e.g., ARG0, ARG1) but can be mapped to more fine-grained labels (e.g., agent, theme)

through predefined mappings (Palmer et al., 2005).

1.3 Overall framework

Figure 1.4 shows the overall framework of this research. Prior to the development of the nlp compo-

nents, manually annotated constituent trees are taken from Treebanks and automatically converted

to dependency trees (Chapter 2). Semantic roles from PropBanks are added to dependency trees

during this conversion (Section 6.2.3). Once the conversion is done, dependency trees with semantic

roles are divided into training and evaluation sets. Given the training set, three models are built in

pipelines: part-of-speech tagging (Chapter 4), dependency parsing (Chapter 5), and semantic role

labeling (Chapter 6). During training, models in later pipelines are trained on automatic outputs

generated by previous models. For example, a semantic role labeling model is trained on data

consisting of automatic outputs from both part-of-speech tagging and dependency parsing models.

Finally, all models are tested on the evaluation set for their robustness and scalability (Chapter 3).
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Dependency
Conversion

Part-of-speech
Trainer

Part-of-speech
Tagging Model

Part-of-speech
Tagger

Training Set:
Dependency Trees
+ Semantic Roles

Evaluation Set:
Dependency Trees
+ Semantic Roles

Constituent
Treebanks 
PropBanks

Dependency
Trainer

Dependency
Parsing Model

Dependency
Parser

Semantic Role
Trainer

Semantic Role
Labeling Model

Semantic Role
Labeler

Start

Stop

Figure 1.4: The overall framework.
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1.4 Thesis statement

The goal of this thesis is to improve the robustness and scalability of three nlp components, a

part-of-speech tagger, a dependency parser, and a semantic role labeler. The term ‘robustness’

is used here to indicate how well nlp components respond to test data that varies from their

training data. Robustness is evaluated by measuring accuracies on both in-genre and out-of-genre

data. By building a generalized model for part-of-speech tagging, bootstrapping parse information

for dependency parsing, and applying higher-order argument pruning for semantic role labeling,

we improve the robustness of these three nlp components. The term ‘scalability’ is used here to

indicate how fast nlp components run when processing large scale data. Scalability is evaluated by

measuring the expected running times and speeds.7 By adapting dynamic model selection for part-

of-speech tagging, optimizing the engineering of transition-based parsing algorithms for dependency

parsing, and applying conditional higher-order argument pruning for semantic role labeling, we

improve the scalability of these three components.

7 The expected running time is how fast an algorithm is expected to run on average in terms of complexity and
the speed is how fast a system actually runs on a real machine.



Chapter 2

Dependency Conversion

2.1 Introduction

2.1.1 Motivation

Most current state-of-the-art dependency parsers take various statistical learning approaches (Mc-

donald and Pereira, 2006; Nivre, 2008; Huang and Sagae, 2010; Rush and Petrov, 2012). The biggest

advantage of statistical parsing is found in the ability to adapt to new data without modifying the

parsing algorithm. Statistical parsers can be trained on data from new domains, genres, or lan-

guages as long as they are provided with sufficiently large training data from the new sources. On

the other hand, this is also the biggest drawback for statistical parsing because annotating such

large training data is manually intensive work that is costly and time consuming.

Although a few manually annotated dependency Treebanks are available for English (Rambow

et al., 2002; Čmejrek et al., 2004), constituent Treebanks are still more dominant (Marcus et al.,

1993; Weischedel et al., 2011). It has been shown that the Penn Treebank style constituent trees

can reliably be converted to dependency trees using head-finding rules and heuristics (Johansson

and Nugues, 2007; de Marneffe and Manning, 2008a; Choi and Palmer, 2010b). By automatically

converting these constituent trees to dependency trees, statistical dependency parsers have access to

a larger amount of training data. Few tools are available for constituent to dependency conversion.

Two of the most popular ones are the Lth and the Stanford dependency converters.1 The Lth
1 The Lth dependency converter: http://nlp.cs.lth.se/software/treebank_converter/
The Stanford dependency converter: http://nlp.stanford.edu/software/stanford-dependencies.shtml
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converter had been used to provide English data for the CoNLL’07-09 shared tasks (Nivre et al.,

2007; Surdeanu et al., 2008; Hajič et al., 2009). The Lth converter makes several improvements

over its predecessor, Penn2Malt,2 by adding syntactic and semantic dependencies retained from

function tags (e.g., PRD, TMP) and producing long-distance dependencies caused by empty categories

or gapping relations.3 The Stanford converter was used for the SANCL’12 shared task (Petrov and

McDonald, 2012), and is perhaps the most widely used dependency converter at the moment. The

Stanford converter gives fine-grained dependency labels useful for many nlp tasks. Appendix C

shows descriptions of the CoNLL and the Stanford dependency labels generated by these two tools.

Both converters perform well for most cases; however, they are somewhat customized to the

Penn Treebank (mainly to the Wall Street Journal corpus; see Marcus et al. (1993)), so do not work

as well when applied to different corpora. For example, the OntoNotes Treebank (Weischedel et al.,

2011) contains additional constituent tags not used by the Penn Treebank (e.g., EDITED, META),

and shows occasional departures from the Penn Treebank guidelines (e.g., inserting NML phrases,

separating hyphenated words; see Figure 2.1). These new formats affect the ability of existing tools

to find correct dependencies, motivating us to aim for a more resilient approach.

ADJP

NNP JJ

New York-based

ADJP

NML

New York

NNP NNP

based

HYPH VBN

-

Figure 2.1: Structural differences in the Penn Treebank (left) and the OntoNotes Treebank (right).
The hyphenated word is tokenized, HYPH, and the nominal phrase is grouped, NML, in the OntoNotes.

Producing more informative trees provides additional motivation. The Stanford converter generates

dependency trees without using information such as function tags (Section A.1), empty categories

(Section 2.2), or gapping relations (Section 2.5.1), which is provided in manually annotated but

not in automatically generated constituent trees. This enables the Stanford converter to generate
2 Penn2Malt: http://stp.lingfil.uu.se/~nivre/research/Penn2Malt.html
3 The term “long-distance dependency” is used to indicate dependency relations between words that are not within

the same domain of locality.
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the same kind of dependencies given either manually or automatically generated constituent trees.

However, it sometimes misses important details such as long-distance dependencies, which can be

retrieved from empty categories, or produces unclassified dependencies that can be disambiguated

by function tags. This becomes an issue when this converter is used for generating dependency trees

for training because statistical parsers trained on these trees would not reflect these details.

The dependency conversion described here takes the Stanford dependency approach as the

core structure and integrates the CoNLL dependency approach to add long-distance dependencies,

to enrich important relations like object predicates, and to minimize unclassified dependencies. The

Stanford dependency approach is taken for the core structure because it gives more fine-grained

dependency labels and is currently used more widely than the CoNLL dependency approach. For

our conversion, head-finding rules and heuristics are completely reanalyzed from the previous work

to handle constituent tags and relations not introduced by the Penn Treebank. Our conversion

has been evaluated with several different constituent Treebanks (Marcus et al., 1993; Nielsen et al.,

2010; Weischedel et al., 2011; Verspoor et al., 2012) and showed robust results across these corpora.

2.1.2 Background

2.1.2.1 Dependency graph

A dependency structure can be represented as a directed graph. For a given sentence s = w1, . . . , wn,

where wi is the i’th word token in the sentence, a dependency graph Gs = (Vs, Es) can be defined

as follows:

Vs = {w0 = root, w1, . . . , wn}

Es = {(wi
r−→ wj) : i 6= j, wi ∈ Vs, wj ∈ Vs − {w0}, r ∈ Rs}

Rs = A subset of all dependency relations in s

wi
r−→ wj is a directed edge from wi to wj with a label r, which implies that wi is the head of wj

with a dependency relation r. A dependency graph is considered well-formed if it satisfied all of

the following properties:
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• Root: there must be a unique vertex, w0, with no incoming edge.

¬[∃k. (w0 ← wk)]

• Single head: each vertex wi>0 must have at most one incoming edge.

∀i. [i > 0⇒ ∀j. [(wi ← wj)⇒ ¬[∃k. (k 6= j) ∧ (wi ← wk)]]]

• Connected: there must be an undirected path between any two vertices.4

[∀i, j. (wi − wj)], where wi − wj indicates an undirected path between wi and wj .

• Acyclic: a directed path between any two vertices must not be cyclic.

¬[∃i, j.(wi ←∗ wj)∧ (wi →∗ wj)], where wi →∗ wj indicates a directed path from wi to wj .

Sometimes, projectivity is also considered a property of a well-formed dependency graph. When

projectivity is considered, no crossing edge is allowed when all vertices are lined up in linear-order

and edges are drawn above the vertices (Figure 2.2). Preserving projectivity can be useful because

it enables regeneration of the original sentence from its dependency graph without losing the word

order. More importantly, it reduces parsing complexity to O(n) (Nivre and Scholz, 2004).

Figure 2.2: An example of a projective dependency graph.

Figure 2.3: An example of a non-projective dependency graph. The dependency between car and
is is non-projective because it crosses the dependency between bought and yesterday.

Although preserving projectivity has a few advantages, non-projective dependencies are often re-

quired, especially in flexible word order languages, to represent correct dependencies (Nivre, 2008).

Even in rigid word order languages such as English, non-projective dependencies are necessary to
4 An ‘undirected path’ implies a path between two vertices, regardless of their directionality.
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represent long-distance dependencies. In Figure 2.3, there is no way of describing the dependency

relations for both “bought→ yesterday” and “car→ is” without having their edges cross. Because of

such cases, projectivity is dropped from the properties of a well-formed dependency graph for this

research.

A well-formed dependency graph, with or without the projective property, satisfies all of the

conditions for a tree structure, so is called a ‘dependency tree’.

2.1.2.2 Types of empty categories

Empty categories are syntactic units, usually nominal phrases, that appear in the surface form to

signal the canonical locations of syntactic elements in its deep structure (Cowper, 1992; Chomsky,

1995). Table 2.1 shows a list of empty categories used in constituent Treebanks for English. Some

of these empty categories have overloaded meanings. For instance, *PRO* indicates empty subjects

caused by different pro-drop cases (e.g., control, imperative, nominalization). See Bies et al. (1995);

Taylor (2006) for more details about these empty categories.

Type Description
*PRO* Empty subject of pro-drop (e.g., control, ecm, imperative, nominalization)
*T* Trace of wh-movement and topicalization
* Trace of subject raising and passive construction
0 Null complementizer

*U* Unit (e.g., $)
*ICH* Pseudo-attach: Interpret Constituent Here
*?* Placeholder for ellipsed material

*EXP* Pseudo-attach: EXPletives
*RNR* Pseudo-attach: Right Node Raising
*NOT* Anti-placeholder in template gapping
*PPA* Pseudo-attach: Permanent Predictable Ambiguity

Table 2.1: A list of empty categories used in constituent Treebanks for English.

2.1.3 Overview

Figure 2.4 shows the overview of our constituent to dependency conversion. Given a constituent

tree, empty categories are mapped to their antecedents first (step 2; see Section 2.2). This step
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relocates phrasal nodes regarding certain kinds of empty categories that may cause generation of

non-projective dependencies.5 Once empty categories are mapped, special cases such as apposition,

coordination, or small clauses are handled next (step 3; see Sections 2.3.2 to 2.3.4). Finally, general

cases are handled using head-finding rules and heuristics (step 4; see Section 2.3.1 and Section 2.4).

Secondary dependencies are added as a separate layer of this dependency tree (step 5; see

Section 2.5). Additionally, syntactic and semantic function tags in the constituent tree are preserved

as features of individual nodes in the dependency tree (not shown in Figure 2.4; see Section A.1).

NN CC NN WDT PRP VB -NONE-

joyandPeace that we *T*-1

NP

want

SBAR

WHNP-1 S

NP VP

NP

NP

joyandPeace that we want

cc
conj

rcmod

nsubj
dobj

root

root

joyandPeace that we want

cc
conj

root

5. Add secondary dependencies.

joyandPeace that we want

cc
conj

rcmod

nsubj
dobj

root

root

ref

3. Handle special cases.

4. Handle general cases.

NN CC NN PRP VB WDT

joyandPeace we that

NP

want

SBAR

S

NP VP

WHNP-1

NP

2. Map empty categories.

1. Input a constituent tree.

6. Output a converted dependency tree.

Figure 2.4: The overview of constituent to dependency conversion.

5 Although phrases in constituency trees are relocated, word order in dependency trees remains the same.
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2.2 Mapping empty categories

Most long-distance dependencies can be represented without using empty categories in dependency

structure. In English, long-distance dependencies are caused by certain linguistic phenomena such

as wh-movement, topicalization, discontinuous constituents, etc. It is difficult to find long-distance

dependencies during automatic parsing because they often introduce dependents that are not within

the same domain of locality, resulting in non-projective dependencies (McDonald and Satta, 2007;

Koo et al., 2010; Kuhlmann and Nivre, 2010).

Four types of empty categories are used to represent long-distance dependencies during our

conversion: *T*, *RNR*, *ICH*, and *PPA* (see Table 2.1). Note that the CoNLL dependency

approach used *EXP* to represent extraposed elements in expletive constructions, which is not used

in our approach because the annotation of *EXP* is somewhat inconsistent across different corpora.

2.2.1 Wh-movement

Figure 2.5: An example of wh-movement.

Figure 2.6: A dependency tree converted from the constituent tree in Figure 2.5
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Wh-movement is represented by *T* in constituent trees. In Figure 2.5, WHNP-1 is moved from the

object position of the subordinate verb liked and leaves a trace, *T*-1, at its original position. Fig-

ure 2.6 shows a dependency tree converted from the constituent tree in Figure 2.5. The dependency

of WHNP-1 is derived from its original position so that it becomes a direct object of liked (DOBJ;

Section D.2.2).

Figure 2.7: Another example of wh-movement.

Figure 2.8: A dependency tree converted from the constituent tree in Figure 2.7. The dependency
derived from the wh-movement, POBJ, is indicated by a dotted line.

Wh-complementizers can be moved from several positions. In Figure 2.7, WHNP-1 is moved from

the prepositional phrase, PP, so in Figure 2.8, the complementizer what becomes an object of the

preposition in (POBJ; Section D.8.2). Notice that the POBJ dependency is non-projective; it crosses

the dependency between knew and was. This is a typical case of a non-projective dependency caused

by wh-movement.
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2.2.2 Topicalization

Topicalization is also represented by *T*. In Figure 2.9, S-1 is moved from the subordinate clause,

SBAR, and leaves a trace behind. In Figure 2.10, the head of S-1, liked, becomes a dependent of the

matrix verb seemed (ADVCL; Section D.5.1), and the preposition like becomes a dependent of the

subordinate verb liked (MARK; Section D.5.3). The MARK dependency is non-projective such that it

crosses the dependency between Root and seemed.

Figure 2.9: An example of topicalization.

Figure 2.10: A dependency tree converted from the constituent tree in Figure 2.9. The dependency
derived from the topicalization, MARK, is indicated by a dotted line.

There are a few cases where *T* mapping causes cyclic dependency relations. In Figure 2.11, *T*-1

is mapped to S-1 that is an ancestor of itself. Thus, the head of S-1, bought, becomes a dependent

of the subordinate verb said while the head of the subordinate clause, said, becomes a dependent

of the matrix verb bought. Since this creates a cyclic relation in the dependency tree, such traces

are ignored during our conversion (Figure 2.12).
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Figure 2.11: An example of topicalization, where a topic movement creates a cyclic relation.

Figure 2.12: A dependency tree converted from the constituent tree in Figure 2.11.

2.2.3 Right node raising

Right node raising occurs in coordination where a constituent is governed by multiple parents that

are not on the same level (Levine, 1985). Right node raising is represented by *RNR* in constituent

trees. In Figure 2.13, NP-1 should be governed by both PP-1 and PP-2, where *RNR*-1’s are located.

Making NP-1 dependents of both PP-1 and PP-2 breaks the single head property (Section 2.1.2.1);

instead, the dependency of NP-1 is derived from its closest *RNR*-1 in our conversion. In Figure 2.14,

her becomes a dependent of the head of PP-2, in. The dependency between her and the head of

PP-1, for, is preserved as a secondary dependency, REF (referent; see Section 2.5). Thus, her is a

dependent of only PP-2 in our dependency tree while the dependency to PP-2 can still be retrieved

through the secondary dependency.6

6 Secondary dependencies are not commonly used in dependency structures. These are dependencies derived from
gapping relations, referent relations, right node raising, and open clausal subjects, which may break tree properties
(Section 2.5). During our conversion, secondary dependencies are preserved in a separate layer so they can be learned
either jointly or separately from other dependencies.
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Note that the CoNLL dependency approach makes her a dependent of the head of PP-1, which

creates a non-projective dependency (the dependency between for and her in Figure 2.15). This

non-projective dependency is avoided in our approach without losing any referential information.

Figure 2.13: An example of right node raising.

Figure 2.14: A dependency tree converted from the constituent tree in Figure 2.13. The secondary
dependency, RNR, is added to a separate layer to preserve tree properties.

Figure 2.15: A CoNLL style dependency tree converted from the constituent tree in Figure 2.13.
The dependency caused by right node raising, PMOD, is indicated by a dotted line.
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2.2.4 Discontinuous constituent

A discontinuous constituent is a constituent that is separated from its original position by some

intervening material. The original position of a discontinuous constituent is indicated by *ICH*

in constituent trees. In Figure 2.16, PP-1 is separated from its original position, *ICH*-1, by the

adverb phrase, ADVP. Thus, in Figure 2.17, the head of the prepositional phrase, than, becomes a

prepositional modifier (PREP; Section D.8.3) of the head of the adjective phrase (ADJP-2), expensive.

The PREP dependency is non-projective; it crosses the dependency between is and now.

Figure 2.16: An example of discontinuous constituents.

Figure 2.17: A dependency tree converted from the constituent tree in Figure 2.16. The dependency
derived from the *ICH* movement, PREP, is indicated by a dotted line.
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2.3 Finding dependency heads

2.3.1 Head-finding rules

ADJP r JJ*|VB*|NN*;ADJP;IN;RB|ADVP;CD|QP;FW|NP;*
ADVP r VB*;RP;RB*|JJ*;ADJP;ADVP;QP;IN;NN;CD;NP;*
CONJP l CC;VB*;NN*;TO|IN;*
EDITED r VP;VB*;NN*|PRP|NP;IN|PP;S*;*
EMBED r S*;FRAG|NP;*
FRAG r VP;VB*;-PRD;S|SQ|SINV|SBARQ;NN*|NP;PP;SBAR;JJ*|ADJP;RB|ADVP;INTJ;*
INTJ l VB*;NN*;UH;INTJ;*
LST l LS|CD;NN;*
META l NP;VP|S;*
NAC r NN*;NP;S|SINV;*
NML r NN*|NML;CD|NP|QP|JJ*|VB*;*
NP r NN*|NML;NX;PRP;FW;CD;NP;-NOM;QP|JJ*|VB*;ADJP;S;SBAR;*
NX r NN*;NX;NP;*
PP l RP;TO;IN;VB*;PP;NN*;JJ;RB;*
PRN r VP;NP;S|SBARQ|SINV|SQ;SBAR;*
PRT l RP;PRT;*
QP r CD;NN*;JJ;DT|PDT;RB;NP|QP;*
RRC l VP;VB*;-PRD;NP|NN*;ADJP;PP;*
S r VP;VB*;-PRD;S|SQ|SINV|SBARQ;SBAR;NP;PP;*
SBAR r VP;S|SQ|SINV;SBAR*;FRAG|NP;*
SBARQ r VP;SQ|SBARQ;S|SINV;FRAG|NP;*
SINV r VP;VB*;MD;S|SINV;NP;*
SQ r VP;VB*;SQ;S;MD;NP;*
UCP l *
VP l VP;VB*;MD|TO;JJ*|NN*|IN;-PRD;NP;ADJP|QP;S;*
WHADJP r JJ*|VBN;WHADJP|ADJP;*
WHADVP r RB*|WRB;WHADVP;*
WHNP r NN*;WP|WHNP;NP|NML|CD;JJ*|VBG;WHADJP|ADJP;DT;*
WHPP l IN|TO;*
X r *

Table 2.2: Head-finding rules. l/r implies the search direction for the leftmost/rightmost con-
stituent. */+ implies 0/1 or more characters and -TAG implies any pos tag with the specific function
tag. | implies a logical or and ; is a delimiter between pos tags. Each rule gives higher precedence
to the left (e.g., VP takes the highest precedence in S).

Table 2.2 shows head-finding rules (henceforth, headrules) derived from various constituent Tree-

banks. For each phrase (or clause) in a constituent tree, the head of the phrase is found by using

its headrules, and all other nodes in the phrase become dependents of the head. This procedure

goes on recursively until every constituent in the tree becomes a dependent of one other constituent,
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except for the top constituent, which becomes the root of the dependency tree. A dependency tree

generated by this procedure is guaranteed to be well-formed (Section 2.1.2.1), and may or may not

be non-projective, depending on how empty categories are mapped (Section 2.2).

Notice that the headrules in Table 2.2 give information about which constituents can be the

heads, but do not show which constituents cannot be the heads. Some constituents are more likely

to be dependents than heads. In Figure 2.18, both Three times and a week are noun phrases under

another noun phrase. According to our headrules, the rightmost noun phrase, NP-TMP, is chosen to

be the head of this phrase. However, NP-TMP is actually an adverbial modifier of NP-H (NPADVMOD;

Section D.5.5); thus, NP-H should be the head of this phrase instead. This indicates that extra

information is required to retrieve correct heads for this kind of phrases.

Figure 2.18: An example of a noun phrase modifying another noun phrase.

Algorithm 2.1 : getHead(N,R)

Input: An ordered list N of constituent nodes that are siblings,
The headrules R of the parent of nodes in N .

Output: The head constituent of N with respect to R.
All other nodes in N become dependents of the head.

1: if the search direction of R is r then N .reverse() # the 2nd column in Table 2.2
2: for flag in {0 . . . 3} do
3: for tags in R do # e.g,. tags← NN*|NML
4: for node in N do
5: if (flag = getHeadFlag(node)) and (node is tags) then
6: head ← node
7: break the highest for-loop
8: for node in N do
9: if node 6= head then
10: node.head ← head
11: node.label ← getDependencyLabel(node, node.parent, head) # Section 2.4.2
12: return head
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The getHead(N,R) method in Algorithm 2.1 finds the head of a phrase (lines 2-7) and makes all

other constituents in the phrase dependents of the head (lines 8-11). The input to the method is the

ordered list of children N and the corresponding headrules R of the phrase. The getHeadFlag(C)

method in Algorithm 2.2 returns the head-flag of a constituent C, which indicates the dependency

precedence of C: the lower the flag is, the sooner C can be chosen as the head. For example,

NP-TMP in Figure 2.18 is skipped during the first iteration (line 2 in Algorithm 2.1) because it has

the adverbial function tag TMP, so gets a flag of 1 (line 1 in Algorithm 2.2). Alternatively, NP-H is

not skipped because it gets a flag of 0. Thus, NP-H becomes the head of this phrase.

Algorithm 2.2 : getHeadFlag(C)

Input: A constituent C.
Output: The head-flag of C, that is either 0, 1, 2, or 3.

1: if hasAdverbialTag(C) return 1 # Section D.5
2: if isMetaModifier(C) return 2 # Section D.10.4
3: if (C is an empty category) or isPunctuation(C) return 3 # Section D.10.8
4: return 0

The following sections describe heuristics to resolve special cases such as apposition, coordination,

and small clauses, where correct heads cannot always be retrieved by headrules alone.

2.3.2 Apposition

Apposition is a grammatical construction where multiple noun phrases are placed side-by-side and

later noun phrases give additional information about the first noun phrase. For example, in a

phrase “John, my brother ”, both John and my brother are noun phrases such that my brother gives

additional information about its preceding noun phrase, John. The findApposition(C) method in

Algorithm 2.3 makes each appositional modifier a dependent of the first noun phrase in a phrase

(lines 8-9). An appositional modifier is either a noun phrase without an adverbial function tag

(line 5), any phrase with the function tag HLN|TTL (headlines or titles; line 6), or a reduced relative

clause containing a noun phrase with the function tag PRD (non-VP predicate; line 7).
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Algorithm 2.3 : findApposition(C)

Input: A constituent C.
Output: True if C contains apposition; otherwise, False.

1: if (C is not NP|NML) or (C contains NN*) or (C contains no NP) return False
2: let f be the first NP|NML in C that contains no POS # skip possession modifier
3: b← False
4: for s in all children of C preceded by f do
5: if ((s is NML|NP) and (not hasAdverbialTag(s))) # Section D.5
6: or (s has HLN|TTL)
7: or ((s is RRC) and (s contains NP-PRD)) then
8: s.head ← f
9: s.label ← APPOS
10: b← True
11: return b

2.3.3 Coordination

Several approaches have been proposed for coordination representation in dependency structure.

The Stanford dependency approach makes the leftmost conjunct the head of all other conjuncts and

conjunctions. The Prague dependency approach makes the rightmost conjunction the head of all

conjuncts and conjunctions (Čmejrek et al., 2004). The CoNLL dependency approach makes each

preceding conjunct or conjunction the head of its following conjunct or conjunction.

Stanford Prague

CoNLL Clear

Figure 2.19: Different ways of representing coordination in dependency structure.

Our conversion takes an approach similar to the CoNLL dependency approach, which had been

shown to work better for transition-based dependency parsing (Nilsson et al., 2006). There is one

small change in our approach such that conjunctions do not become the heads of conjuncts (Clear
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in Figure 2.19). This way, conjuncts are always dependents of their preceding conjuncts whether or

not conjunctions exist in between.

Algorithm 2.4 : getCoordinationHead(C,R)

Input: A constituent C and the headrule R of C.
Output: The head of the leftmost conjunct in C if exists; otherwise, null.

1: if not containsCoordination(C) return null
2: p← getConjunctHeadPattern(C)
3: pHead ← null # previous conjunct head
4: isPatternFound ← False
5: let f be the first child of C
6: for c in all children of C do
7: if isCoordinatingConjunction(c) or (c is ,|:) then # Section D.6.2
8: if isPatternFound then
9: let S be a sub-span of C from f to c (exclusive)
10: pHead ← getConjunctHead(S,R, pHead)
11: c.head ← pHead
12: c.label ← getDependencyLabel(c, C, pHead) # Section 2.4.2
13: isPatternfound ← False
14: let f be the next sibling of c in C
15: elif pHead 6= null then
16: let S be a sub-span of C from f to c (inclusive)
17: for s in S do
18: s.head ← pHead
19: s.label ← getDependencyLabel(s, C, pHead) # Section 2.4.2
20: let f be the next sibling of c in C
21: elif isConjunctHead(c, C, p) then isPatternFound ← True # a conjunct is found
22: if pHead = null return null # no conjunct is found
23: let S be a sub-span of C from f to c (inclusive)
24: if S is not empty then getConjunctHead(S,R, pHead)
25: return the head of the leftmost conjunct

The getCoordinationHead(C) method in Algorithm 2.4 finds dependencies between conjuncts and

returns the head of the leftmost conjunct in C. The algorithm begins by checking if C is coordinated

(line 1). For each constituent in C, the algorithm checks if it matches the conjunct head pattern

of C (line 21), which varies by C’s phrase type. For instance, only a non-auxiliary verb or a verb

phrase can be a conjunct head in a verb phrase (see getConjunctHeadPattern(C) in Algorithm 2.6).

When a coordinator (a conjunction, comma, or colon) is encountered, a sub-span is formed (line 9).

If the span includes at least one constituent matching the conjunct head pattern, it is considered a
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new conjunct and the head of the conjunct is retrieved by the headrule of C (line 10). The head

of the current conjunct becomes a dependent of the head of its preceding conjunct if it exists (see

getConjunctHead(S,R,pHead) in Algorithm 2.8). If there is no constituent matching the pattern,

all constituents within the span become dependents of the head of the previous conjunct if it

exists (lines 16-19). This procedure goes on iteratively until all constituents in C are encountered.

Note that the getCoordinationHead(C,R) method is called before the findApposition(C) method in

Algorithm 2.3; thus, a constituent can be a conjunct or an appositional modifier, but not both.

The containsCoordination(C) method in Algorithm 2.5 decides whether a constituent C is

coordinated. C is coordinated if it is an unlike coordinated phrase (line 1), a noun phrase containing

a constituent with the function tag ETC as the rightmost child (line 2-4), or contains a conjunction

followed by a conjunct (lines 5-9).

Algorithm 2.5 : containsCoordination(C)

Input: Constituent C.
Output: True if C contains coordination; otherwise, False.

1: if C is UCP return True # unlike coordinated phrase
2: if (C is NML|NP) and (C contains -ETC) then # et cetera (etc.)
3: let e be a child of N with -ETC
4: if e is the rightmost element besides punctuation return True
5: for f in all children of C do # skip pre-conjunctions
6: if not (isCoordinatingConjunction(f) or isPunctuation(f)) then # App. D.6.2, D.10.8
7: break
8: let N be all children of C preceded by f
9: return N contains CC|CONJP

The getConjunctHeadPattern(C) method in Algorithm 2.6 returns a pattern that matches potential

conjunct heads of C. In theory, a verb phrase should contain at least one non-auxiliary verb or a verb

phrase that matches the pattern (VP|VB[ in line 9); however, this is not always true in practice (e.g.,

VP-ellipsis, randomly omitted verbs in web-texts). Moreover, phrases such as unlike coordinated

phrases, quantifier phrases, or fragments do not always show clear conjunct head patterns. The

default pattern of * is used for these cases, indicating that any constituent can be the potential

head of a conjunct in these phrases.
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Algorithm 2.6 : getConjunctHeadPattern(C)

Input: A constituent C.
Output: The conjunct head pattern of C if exists; otherwise, the default pattern, *.

If C contains no child satisfying the pattern, returns the default pattern, *.
VB[ implies a non-auxiliary verb (Section D.3).
S[ implies a clause without an adverbial function tag (Section D.5).

1: if C is ADJP then p← ADJP|JJ*|VBN|VBG
2: elif C is ADVP then p← ADVP|RB*
3: elif C is INTJ then p← INTJ|UH
4: elif C is PP then p← PP|IN|VBG
5: elif C is PRT then p← PRT|RP
6: elif C is NML|NP then p← NP|NML|NN*|PRP|-NOM
7: elif C is NAC then p← NP
8: elif C is NX then p← NX
9: elif C is VP then p← VP|VB[

10: elif C is S then p← S[|SINV|SQ|SBARQ
11: elif C is SQ then p← S[|SQ|SBARQ
12: elif C is SINV then p← S[|SINV
13: elif C is SBAR* then p← SBAR*
14: elif C is WHNP then p← NN*|WP
15: elif C is WHADJP then p← JJ*|VBN|VBG
16: elif C is WHADVP then p← RB*|WRB|IN
17: if (p is not found) or (C contains no p) return *
18: return p

A pattern p retrieved by the getConjunctHeadPattern(C) method in Algorithm 2.6 is used in the

isConjunctHead(C,P, p) method in Algorithm 2.7 to decide whether a constituent C is a potential

conjunct head of its parent P . No subordinating conjunction is considered a conjunct head in a

subordinate clause (line 1); this rule is added to prevent a complementizer such as whether from

being the head of a clause starting with expressions like whether or not. When the default pattern

is used, the method accepts any constituent except for a few special cases (lines 3-7). The method

returns True if C matches p (line 9).
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Algorithm 2.7 : isConjunctHead(C,P, p)

Input: Constituents C and P , where P is the parent of C,
and the conjunct head pattern p of P .

Output: True if C matches the conjunct head pattern; otherwise, False.

1: if (P is SBAR) and (C is ID|DT) return False # Section D.5.3
2: if p is * then # the default pattern
3: if isPunctuation(C) return False # Section D.10.8
4: if isInterjection(C) return False # Section D.10.3
5: if isMetaModifier(C) return False # Section D.10.4
6: if isParentheticalModifier(C) return False # Section D.10.5
7: if isAdverbialModifier(C) return False # Section D.5.2
8: return True
9: if C is p return True
10: return False

Finally, the getConjunctHead(S,R, pHead) method in Algorithm 2.8 finds the head of a conjunct

S and makes this head a dependent of its preceding conjunct head, pHead. The head of S is

found by the getHead(N,R) method in Algorithm 2.1 where R is the headrule of S’s parent. The

dependency label CONJ is assigned to this head except for the special cases of interjections and

punctuation (lines 4-6).

Algorithm 2.8 The getConjunctHead(S,R, pHead) method.

Input: A constituent C, a sub-span S of C, the headrule R of C, and the previous conjunct
head pHead in C.

Output: The head of S. All other nodes in S become dependents of the head.

1: cHead ← getHead(S,R) # Section 2.3.1
2: if pHead 6= null then
3: cHead.head ← pHead
4: if isInterjection(C) then cHead.label ← INTJ # Section D.10.3
5: elif isPunctuation(C) then cHead.label ← PUNCT # Section D.10.8
6: else cHead.label ← CONJ # Section D.6.1
7: return cHead
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2.3.4 Small clauses

Small clauses are represented as declarative clauses without verb phrases in constituent trees. Small

clauses may not contain internal subjects. In Figure 2.20, both S-1 and S-2 are small clauses but S-1

contains an internal subject, me, whereas the subject of S-2 is controlled externally. This distinction

is made because S-1 can be rewritten as a subordinate clause such as “I am her friend ” whereas such

a transformation is not possible for S-2. In other words, me her friend as a whole is an argument

of considers whereas me and her friend are separate arguments of calls.

Figure 2.20: Examples of small clauses with internal (left) and external (right) subjects.

Figure 2.21 shows dependency trees converted from the trees in Figure 2.20. A small clause with an

internal subject is considered a clausal complement (CCOMP; the left tree in Figure 2.20) whereas one

without an internal subject is considered an object predicate (OPRD; the right tree in Figure 2.20),

implying that it is a non-VP predicate of the object. This way, although me has no direct dependency

to friend, their relation can be inferred through this label.

Figure 2.21: Dependency trees converted from the constituent trees in Figure 2.20.

Note that the CoNLL dependency approach uses the object predicate for both kinds of small clauses

such that me and her friend become separate dependents of considers, as they are for calls. This

analysis is not taken in our approach because we want our dependency trees to be consistent with the
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original constituent trees. Preserving the original structure makes it easier to integrate additional

information to the converted dependency trees that has been already annotated on top of these

constituent trees (e.g., semantic roles in PropBank).

Figure 2.22: An example of a small clause in a passive construction.

For passive constructions, OPRD is applied to both kinds of small clauses because a dependency

between the object and the non-VP predicate is lost by the NP movement. In Figure 2.22, I is moved

from the object position to the subject position of considered (NSUBJPASS; Section D.1.6); thus, it

is no longer a dependent of friend. The dependency between I and friend can be inferred through

OPRD without adding more structural complexity to the tree.
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2.4 Assigning dependency labels

2.4.1 Clear dependency labels

Table 2.3 shows a list of dependency labels, called the Clear dependency labels, generated by our

dependency conversion. These labels are mostly inspired by the Stanford dependency approach,

partially borrowed from the CoNLL dependency approach, and newly introduced by the Clear de-

pendency approach to minimize unclassified dependencies. Appendix D shows detailed descriptions

of the Clear dependency labels. Section 2.4.3 shows a comparison between the Clear and the

Stanford dependencies.

Label Description Label Description
ACOMP Adjectival complement NEG Negation modifier
ADVCL Adverbial clause modifier NMOD∗ Modifier of nominal
ADVMOD Adverbial modifier NN Noun compound modifier
AGENT Agent NPADVMOD Noun phrase as ADVMOD
AMOD Adjectival modifier NSUBJ Nominal subject
APPOS Appositional modifier NSUBJPASS Nominal subject (passive)
ATTR Attribute NUM Numeric modifier
AUX Auxiliary NUMBER Number compound modifier
AUXPASS Auxiliary (passive) OPRD∗ Object predicate
CC Coordinating conjunction PARATAXIS Parataxis
CCOMP Clausal complement PARTMOD Participial modifier
COMPLM Complementizer PCOMP Complement of a preposition
CONJ Conjunct POBJ Object of a preposition
CSUBJ Clausal subject POSS Possession modifier
CSUBJPASS Clausal subject (passive) POSSESSIVE Possessive modifier
DEP Unclassified dependent PRECONJ Pre-correlative conjunction
DET Determiner PREDET Predeterminer
DOBJ Direct object PREP Prepositional modifier
EXPL Expletive PRT Particle
INFMOD Infinitival modifier PUNCT Punctuation
INTJ∗∗ Interjection QUANTMOD Quantifier phrase modifier
IOBJ Indirect object RCMOD Relative clause modifier
MARK Marker ROOT Root
META∗∗ Meta modifier XCOMP Open clausal complement

Table 2.3: A list of the Clear dependency labels. Labels followed by ∗ are borrowed from the
CoNLL dependency approach. Labels followed by ∗∗ are newly introduced by the Clear dependency
approach.
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2.4.2 Dependency label heuristics

The getDependencyLabel(C,P, p) in Algorithm 2.10 assigns a dependency label to a constituent C by

using function tags and inferring constituent relations between C, P , and p, where P is the parent of

C and p is the head constituent of P . Heuristics described in this algorithm are derived from careful

analysis of several constituent Treebanks (Marcus et al., 1993; Nielsen et al., 2010; Weischedel et al.,

2011; Verspoor et al., 2012) and manually evaluated case-by-case. All supplementary methods are

described in Appendix D. The getSimpleLabel(C) method in Algorithm 2.9 returns the dependency

label of a constituent C if it can be inferred from the pos tag of C; otherwise, null.

Algorithm 2.9 : getSimpleLabel(C)

Input: A constituent C.
Output: The dependency label of C if it can be inferred from the pos tag of C;

otherwise, null.

1: let d be the head dependent of C
2: if C is ADJP|WHADJP|JJ* return AMOD # Section D.10.1
3: if C is PP|WHPP return PREP # Section D.8.3
4: if C is PRT|RP return PRT # Section D.10.7
5: if isPreCorrelativeConjunction(C) return PRECONJ # Section D.6.3
6: if isCoordinatingConjunction(C) return CC # Section D.6.2
7: if isParentheticalModifier(C) return PARATAXIS # Section D.10.5
8: if isPunctuation(C|d) return PUNCT # Section D.10.8
9: if isInterjection(C|d) return INTJ # Section D.10.3
10: if isMetaModifier(C) return META # Section D.10.4
11: if isAdverbialModifier(C) return ADVMOD # Section D.5.2
12: return null
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Algorithm 2.10 : getDependencyLabel(C,P, p)

Input: Constituents C, P , and p.
P is the parent of C, and p is the head constituent of P .

Output: The dependency label of C with respect to p in P .

1: let c be the head constituent of C
2: let d be the head dependent of C
3: if hasAdverbialTag(C) then # Section D.5
4: if C is S|SBAR|SINV return ADVCL
5: if C is NML|NP|QP return NPADVMOD
6: if (label ← getSubjectLabel(C)) 6= null return label # Section D.1
7: if C is UCP then
8: c.add(all function tags of C)
9: return getDependencyLabel(c, P, p)
10: if P is VP|SINV|SQ then
11: if C is ADJP return ACOMP
12: if (label ← getObjectLabel(C)) 6= null return label # Section D.2
13: if isObjectPredicate(C) return OPRD # Section D.2.4
14: if isOpenClausalComplement(C) return XCOMP # Section D.4.3
15: if isClausalComplement(C) return CCOMP # Section D.4.2
16: if (label ← getAuxiliaryLabel(C)) 6= null return label # Section D.3
17: if P is ADJP|ADVP then
18: if isOpenClausalComplement(C) return XCOMP # Section D.4.3
19: if isClausalComplement(C) return CCOMP # Section D.4.2
20: if P is NML|NP|WHNP then
21: if (label ← getNonFiniteModifierLabel(C)) 6= null return label # Section D.7
22: if isRelativeClauseModifier(C) return RCMOD # Section D.7.10
23: if isClausalComplement(C) return CCOMP # Section D.4.2
24: if isPossessionModifier(C,P ) return POSS # Section D.10.6
25: if (label ← getSimpleLabel(C)) 6= null return label # Section 2.4.2
26: if P is PP|WHPP return getPrepositionModifierLabel(C) # Section D.8
27: if (C is SBAR) or isOpenClausalComplement(C) return ADVCL # Section D.4.3
28: if (P is PP) and (C is S*) return ADVCL
29: if C is S|SBARQ|SINV|SQ return CCOMP
30: if P is QP return (C is CD) ? NUMBER : QUANTMOD
31: if (P is NML|NP|NX|WHNP) or (p is NN*|PRP|WP) then
32: return getNounModifierLabel(C) # Section D.7
33: if (label ← getSimpleLabel(c)) 6= null return label # Section 2.4.2
34: if d is IN return PREP
35: if d is RB* return ADVMOD
36: if (P is ADJP|ADVP|PP) or (p is JJ*|RB*) then
37: if C is NML|NP|QP|NN*|PRP|WP return NPADVMOD
38: return ADVMOD
39: return DEP
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2.4.3 Comparison to the Stanford dependency approach

Treating dependency trees generated by the Stanford dependency approach as gold-standard, the

Clear dependency approach shows a labeled attachment score of 90.39%, an unlabeled attachment

score of 95.39%, and a label accuracy of 93.01%. For comparison, the OntoNotes Treebank is used,

which consists of various corpora in multiple genres (see Section 3.1 for more details about the

OntoNotes Treebank). Out of 138K dependency trees generated by our conversion, 3.69% of them

contain at least one non-projective dependency. Out of 2.6M dependencies, 3.62% are unclassified by

the Stanford converter whereas 0.23% are unclassified by our approach, that is a 93.65% proportional

reduction in error. A dependency is considered unclassified if it is assigned with the label, DEP

(Section D.10.2). Table 2.4 shows a list of the top 40 dependency labels generated by our approach

that are unclassified by the Stanford dependency approach.7

PUNCT 23.98 MARK 3.37 AMOD 0.83 PCOMP 0.49 PRECONJ 0.15
INTJ 14.18 PREP 1.97 NMOD 0.82 COMPLM 0.47 PREDET 0.14
APPOS 9.44 OPRD 1.86 NSUBJ 0.72 ACOMP 0.43 CSUBJ 0.12
META 7.25 ADVMOD 1.56 PARTMOD 0.70 NEG 0.39 INFMOD 0.12
NPADVMOD 6.86 XCOMP 1.07 NN 0.69 POBJ 0.29 IOBJ 0.09
CCOMP 6.71 PARATAXIS 1.06 QUANTMOD 0.67 DET 0.22 POSS 0.02
ADVCL 4.98 CONJ 1.06 CC 0.64 DOBJ 0.22 NUM 0.01
DEP 4.75 RCMOD 0.92 PRT 0.50 ATTR 0.18 AGENT 0.01

Table 2.4: A list of the Clear dependency labels that are unclassified by the Stanford dependency
approach. The first column shows the unclassified Clear dependency labels and the second column
shows their proportions to unclassified dependencies in the Stanford dependency approach (in %).

Table 2.5 shows mappings between the Clear and the Stanford dependency labels. Some labels

in the Stanford dependency approach are not used in our conversion. For instance, multi-word

expressions (MWE) are not used in our approach because it is not clear how to identify multi-word

expressions systematically. Furthermore, purpose clause modifiers (PURPCL) and temporal modifiers

(TMOD) are not included as dependencies but added as separate features of individual nodes in our

dependency trees (see Section A.1 for more details about these additional features).
7 The following options are used for the Stanford dependency conversion, which is the same setup that was used

for the SANCL’12 shared task (Petrov and McDonald, 2012): -basic -conllx -keepPunct -makeCopulaHead.
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Clear Count Stanford
ACOMP 20,325 ACOMP(98.19)
ADVCL 33,768 ADVCL(53.43), XCOMP(19.79), DEP(11.33), CCOMP(6.67), PARTMOD(6.04)
ADVMOD 101,134 ADVMOD(96.38)
AGENT 4,756 PREP(99.62)
AMOD 131,971 AMOD(97.93)
APPOS 17,869 APPOS(54.80), DEP(40.56)
ATTR 22,597 ATTR(81.87), NSUBJ(15.41)
AUX 106,428 AUX(99.98)
AUXPASS 19,289 AUXPASS(99.99)
CC 68,522 CC(99.26)
CCOMP 42,354 CCOMP(78.50), DEP(12.16), XCOMP(6.73)
COMPLM 13,130 COMPLM(94.94)
CONJ 61,270 CONJ(97.42)
CSUBJ 1,766 CSUBJ(92.19), DEP(5.32)
CSUBJPASS 72 CSUBJPASS(91.67), DEP(6.94)
DEP 4,046 DEP(90.06), NSUBJ(5.98)
DET 214,488 DET(99.82)
DOBJ 112,856 DOBJ(98.90)
EXPL 4,373 EXPL(99.20)
INFMOD 5,697 INFMOD(98.05)
INTJ 10,947 DEP(99.44)
IOBJ 2,615 IOBJ(86.16), DOBJ(10.48)
MARK 21,235 MARK(82.07), DEP(12.18), COMPLM(5.66)
META 5,620 DEP(99.00)
NEG 18,585 NEG(95.71)
NMOD 923 DEP(68.47), AMOD(30.23)
NN 149,201 NN(99.51)
NPADVMOD 21,267 TMOD(41.11), DEP(24.77), NPADVMOD(14.70), DOBJ(8.08), NSUBJ(5.01)
NSUBJ 208,934 NSUBJ(99.52)
NSUBJPASS 16,994 NSUBJPASS(99.82)
NUM 30,412 NUM(99.91)
NUMBER 3,456 NUMBER(98.96)
OPRD 2,855 DEP(49.91), ACOMP(26.90), XCOMP(22.42)
PARATAXIS 3,662 PARATAXIS(77.01), DEP(22.23)
PARTMOD 9,945 PARTMOD(94.17), DEP(5.39)
PCOMP 12,702 PCOMP(88.99), POBJ(7.98)
POBJ 222,115 POBJ(99.89)
POSS 45,156 POSS(99.91)
POSSESSIVE 16,608 POSSESSIVE(99.99)
PRECONJ 574 PRECONJ(76.83), DEP(20.56)
PREDET 2,409 PREDET(94.65), DEP(4.61)
PREP 231,742 PREP(97.52)
PRT 10,149 PRT(96.21), DEP(3.79)
PUNCT 280,452 PUNCT(93.39), DEP(6.56)
QUANTMOD 3,467 QUANTMOD(83.50), DEP(14.94)
RCMOD 22,781 RCMOD(96.28), DEP(3.09)
ROOT 132,225 ROOT(99.98)
XCOMP 25,909 XCOMP(89.61), CCOMP(7.13), DEP(3.17)

Table 2.5: Mappings between the Clear and the Stanford dependency labels. The Clear column
show the Clear dependency labels. The Count column shows the count of each label. The Stanford
column shows labels generated by the Stanford converter in place of the Clear dependency label
with probabilities (in %); labels with less than 3% occurrences are discarded.
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2.5 Adding secondary dependencies

Secondary dependencies are additional dependency relations derived from gapping relations (Sec-

tion 2.5.1), relative clauses (Section 2.5.2), right node raising (Section 2.5.3), and open clausal com-

plements (Section 2.5.4). These are separated from the other types of dependencies (Section 2.4)

because they can break tree properties (e.g., single head, acyclic) when combined with the others.

Preserving tree structure is important because most dependency parsing algorithms assume their

input to be trees. Secondary dependencies give deeper representations that allow extraction of more

complete information from the dependency structure.

2.5.1 GAP: gapping

Gapping is represented by co-indexes (with the = symbol) in constituent trees. Gapping usually

happens in forms of coordination where some parts included in the first conjunct do not appear in

later conjuncts (Jackendoff, 1971). In Figure 2.23, the first conjunct, VP-3, contains the verb used,

which does not appear in the second conjunct, VP-4, but is implied for both NP=1 and PP=2. The

CoNLL dependency approach makes the conjunction, and, the heads of both NP=1 and PP=2, and

adds an extra label, GAP, to their existing labels (ADV-GAP and GAP-OBJ in Figure 2.25). Although

this represents the gapping relations in one unified format, statistical dependency parsers perform

poorly on these labels because they do not occur frequently enough and are often confused with

regular coordination.

Figure 2.23: An example of a gapping relation.
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In our approach, gapping is represented as secondary dependencies; this way, it can be trained

separately from the other types of dependencies. The GAP dependencies in Figure 2.24 show how

gapping is represented in our structure: the head of each constituent involving a gap (road, as9)

becomes a dependent of the head of the leftmost constituent not involving a gap (railways, as4).

Figure 2.24: The Clear dependency tree converted from the constituent tree in Figure 2.23. The
gapping relations are represented by the secondary dependencies, GAP.

Figure 2.25: The CoNLL dependency tree converted from the constituent tree in Figure 2.23. The
dependencies derived from the gapping relations, ADV-GAP, GAP-OBJ, are indicated by dotted lines.

2.5.2 REF: referent

A referent is the relation between a wh-complementizer in a relative clause and its referential

head. In Figure 2.26, the relation between the complementizer which and its referent Crimes is

represented by the REF dependency. Referent relations are represented as secondary dependen-

cies because integrating them with other dependencies breaks the single-head tree property (e.g.,

which would have multiple heads in Figure 2.26). The linkReferent(C) method in Algorithm 2.11

finds a wh-complementizer and makes it a dependent of its referent. Note that referent relations

are not provided in constituent trees; however, they are manually annotated in the PropBank as
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LINK-SLC (Bonial et al., 2010, Chap. 1.8). This algorithm was tested against the PropBank anno-

tation using gold-standard constituent trees and showed an F1-score of approximately 97%.

Figure 2.26: An example of a referent relation. The referent relation is represented by the secondary
dependency, REF.

Algorithm 2.11 : linkReferent(C)

Input: A constituent C.

1: if C is WHADVP|WHNP|WHPP then
2: let c be the wh-complementizer of C
3: let s be the topmost SBAR of C
4: if the parent of s is UCP then s← s.parent
5: if isRelativizer(c) and (s has no NOM) then
6: let p be the parent of s
7: ref ← null
8: if p is NP|ADVP then
9: let ref be the previous sibling of s that is NP|ADVP, respectively
10: elif p is VP then
11: let t be the previous sibling of s that has PRD
12: if s has CLF then ref ← t
13: if (C is WHNP) and (t is NP) then ref ← t
14: if (C is WHPP) and (t is PP) then ref ← t
15: if (C is WHADVP) and (t is ADVP) then ref ← t
16: if ref 6= null then
17: while ref has an antecedent do ref ← ref.antecedent
18: c.rHead ← ref
19: c.rLabel ← REF

Algorithm 2.12 : isRelativizer(C)

Input: A constituent C.
Output: True if C is a relativizer linked to some referent; otherwise, False.

1: return C is 0|that|when|where|whereby|wherein|whereupon|which|who|whom|whose
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2.5.3 RNR: right node raising

As mentioned in Section 2.2.3, missing dependencies caused by right node raising are preserved as

secondary dependencies. In Figure 2.14 (page 19), her should be a dependent of both for and in;

however, it is a dependent of only for in our structure because making it a dependent of both nodes

breaks a tree property (e.g., her would have multiple heads). Instead, the dependency between her

and for is preserved with the RNR dependency. Figure 2.28 shows another example of right node

raising where the raised constituent, VP-2, is the head of the constituents that it is raised from, VP-4

and VP-5. In this case, done becomes the head of can2 with the dependency label, RNR.

Figure 2.27: An example of right node raising where the raised constituent is the head.

Figure 2.28: The dependency tree converted from the constituent tree in Figure 2.27. Right node
raising is represented by the secondary dependency, RNR.
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2.5.4 XSUBJ: open clausal subject

An open clausal subject is the subject of an open clausal complement (usually non-finite) that is

governed externally. Open clausal subjects are often caused by raising and control verbs (Chomsky,

1981). In Figure 2.29, the subject of like is moved to the subject position of the raising verb seemed

(subject raising) so that She becomes the syntactic subject of seemed as well as the open clausal

subject of like (see Figure 2.30).

Figure 2.29: An example of an open clausal subject caused by a subject raising.

Figure 2.30: The dependency tree converted from the constituent tree in Figure 2.29. The open
clausal subject is represented by the secondary dependency, XSUBJ.

In Figure 2.31, the subject of wear is shared with the object of the control verb forced (object

control) so that me becomes the direct object of forced as well as the open clausal subject of wear

(Figure 2.32). Alternatively, me in Figure 2.33 is not considered the direct object of expected but

the subject of wear ; this is a special case called “exceptional case marking (ECM)”, which appears to

be very similar to the object control case but is handled differently in constituent trees (see Taylor

(2006) for more details about ECM verbs).
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Figure 2.31: An example of an open clausal subject caused by an object raising.

Figure 2.32: A dependency tree converted from the constituent tree in Figure 2.31. The open clausal
subject is represented by the secondary dependency, XSUBJ.

Figure 2.33: An example of exceptional case marking.

Figure 2.34: A dependency tree converted from the constituent tree in Figure 2.33.
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2.6 Adding function tags

2.6.1 SEM: semantic function tags

When a constituent is annotated with a semantic function tag (BNF, DIR, EXT, LOC, MNR, PRP, TMP,

and VOC; see Section A.1), the tag is preserved with the head of the constituent as an additional

feature. In Figure 2.35, the subordinate clause SBAR is annotated with the function tag PRP, so

the head of the subordinate clause, is, is annotated with the semantic tag in our representation

(Figure 2.36). Note that the CoNLL dependency approach uses these semantic tags in place of

dependency labels (e.g., the dependency label between is and let would be PRP instead of ADVCL).

These tags are kept separate from the other kinds of dependency labels in our approach so they can

be processed either during or after parsing. The semantic function tags can be integrated easily

into our dependency structure by replacing dependency labels with semantic tags (Figure 2.37).

Figure 2.35: A constituent tree with semantic function tags. The phrases with the semantic function
tags are indicated by dotted boxes.

Figure 2.36: A dependency tree converted from the constituent tree in Figure 2.35. The function
tags PRP, LOC, and TMP are preserved as additional features of is, here, and tomorrow, respectively.



43

Figure 2.37: Another dependency tree converted from the constituent tree in Figure 2.35. The func-
tion tags, PRP, LOC, and TMP, replace the original dependency labels, ADVCL, ADVMOD, and NPADVMOD.

2.6.2 SYN: syntactic function tags

When a constituent is annotated with one or more syntactic function tags (ADV, CLF, CLR, DTV, NOM,

PUT, PRD, RED, and TPC; see Section A.1), all tags are preserved with the head of the constituent as

additional features. In Figure 2.38, the noun phrase NP-1 is annotated with the function tag PRD

and TPC so the head of the noun phrase, slap, is annotated with both tags in our representation

(Figure 2.39). Similarly to the semantic function tags (Section 2.6.1), syntactic function tags can

also be integrated into our dependency structure by replacing dependency labels with syntactic tags.

Figure 2.38: A constituent tree with syntactic function tags. The phrase with the syntactic function
tags is indicated by a dotted box.

Figure 2.39: A dependency tree converted from the constituent tree in Figure 2.38. The function
tags, PRD and TPC, are preserved as additional features of slap.
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Experimental setup

All experiments for pos tagging (Section 4.7), dependency parsing (Section 5.6), and semantic role

labeling (Section 6.5) use the same setup. For each task, several systems are run for comparison and

two models are built for each system; one is trained on the Wall Street Journal corpus in OntoNotes,

called the WSJ model, and the other is trained on all corpora in OntoNotes, called the OntoNotes

model. These models are evaluated on corpora from six genres in OntoNotes and three genres in

medical domains (Section 3.1). The WSJ models demonstrate how the systems perform when they

are trained and evaluated on data from different genres. The OntoNotes models demonstrate how

the systems perform when they are trained on a mixture of genres and evaluated on genres that are

the same or different from the ones used for training. These experiments provide insights for those

who want to build a single model to process data from different sources.

All models are trained by a machine learning algorithm called Liblinear (Section 3.2). For

each system, both accuracies and speeds are measured. Accuracies are measured by the standard

methods generally used for evaluating each task (see Table 3.1). Speeds are measured by running

each system five times, cutting off the top and the bottom speeds, and averaging the middle three.

All systems are evaluated on an Intel Xeon 2.57GHz using a single core, a Linux v2.6.18-308.11.1.el5,

and a 64-Bit Java virtual machine v1.6.0_33. Note that the model loading times are excluded for

speed comparison because they are fixed costs that can be pre-processed, whereas the data reading

and the feature extraction times are included because they play an important role during decoding.

The accuracy and speed results demonstrate the robustness and scalability of each system.
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Task Measurement Equation
Pos tagging Accuracy Accp = ∀i. |Cp(wi)| / |wi|

Dependency parsing Labeled attachment score LAS = ∀i. |Ch∧l(wi)| / |wi|
Unlabeled attachment score UAS = ∀i. |Ch(wi)| / |wi|

Semantic role labeling

Argument identification +
Argument classification
- Precision Ph∧l = ∀i. |Ch∧l(ai)| / |ai|s
- Recall Rh∧l = ∀i. |Ch∧l(ai)| / |ai|g
- F1-score Fh∧l = 2 · (Ph∧l ·Rh∧l)/(Ph∧l +Rh∧l)

Table 3.1: Evaluation methods for different tasks. |wi|: the total # of word tokens, |ai|s: the total
# of system-generated arguments, |ai|g: the total # of gold-standard arguments, Cp(wi): a token
with the correct pos tag, Ch(wi): a token with the correct dependency head, Ch∧l(wi): a token
with the correct dependency head and label, Ch∧l(ai): an argument with the correct semantic head
(predicate) and label (semantic role).

3.1 Corpora

For the WSJ models, the Wall Street Journal sections 2-21 from OntoNotes (Weischedel et al.,

2011) are used for training. This training set consists of 30,060 sentences with 731,677 word tokens

and 77,826 verb predicates. We use the WSJ corpus from OntoNotes instead of the original Penn

Treebank (Marcus et al., 1993) because they use slightly different annotation guidelines which

our evaluation data follow. Table 3.2 shows the distributions of all genres used for training the

OntoNotes models. The latest version of OntoNotes, v4.99, is used for building these models.1

BC BN MZ NW TC WB ALL
Tokens 214,178 228,019 165,400 1,047,377 89,278 238,760 1,983,012
Sentences 14,131 11,366 6,924 41,553 11,386 11,046 96,406
Predicates 27,860 27,187 18,898 106,295 13,720 19,735 213,695

Table 3.2: Distributions of training sets for the OntoNotes models. BC: broadcasting conversation,
BN: broadcasting news, MZ: magazine, NW: newswire, TC: telephone conversion, WB: web-text,
ALL: all genres combined.

For evaluation, six corpora from OntoNotes are used: the MSNBC broadcasting conversation (BC),

the CNN broadcasting news (BN), the Sinorama news magazine (MZ), the WSJ newswire (NW),

the Callhome telephone conversation (TC), and the Gale web-text (WB), and three corpora from
1 The religious texts in OntoNotes v4.99, the Bible, are excluded from our experiments because they come from

a very specific domain that should be trained and evaluated separately.
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medical domains are used (Nielsen et al., 2010): the Mipacq clinical notes (MP), the Medpedia

articles (MD), and the Sharp clinical notes (SH). These corpora are first evaluated individually

then grouped together to demonstrate in-genre and out-of-genre experiments. For the WSJ models,

the WSJ corpus is used for in-genre and all other corpora are used for out-of-genre experiments.

For the OntoNotes models, all OntoNotes corpora are used for in-genre and all medical corpora are

used for out-of-genre experiments.

Source OntoNotes Medical
Genre BC BN MZ NW TC WB MD MP SH ALL
Tokens 31,704 31,328 32,120 39,590 32,444 34,707 34,022 35,721 33,291 304,927
Sentences 2,076 1,969 1,409 1,640 4,505 1,738 1,850 3,170 2,651 21,008
Predicates 4,429 4,001 3,849 4,138 5,408 3,673 4,356 4,244 2,182 36,280
Arguments 12,084 10,210 10,287 11,120 14,182 9,751 8,780 8,320 4,142 88,876

Table 3.3: Distributions of evaluation sets. BC: broadcasting conversation, BN: broadcasting news,
MD: Medpedia, MP: Mipacq, MZ: magazine, NW: newswire, SH: Sharp, TC: telephone conversion,
WB: web-text, ALL: all data combined.

Table 3.4 shows lexical similarities between the evaluation sets in Table 3.3. Given two sets of

lexical types, Si ans Sj , collected from corpora Ci and Cj , the lexical similarity of Ci against Cj is

measured as LSij = |Si∩Sj |
|Si| , where i and j indicate the indices of a column and a row in Table 3.4,

respectively. For example, LS14 (that is the value in the BC column and the NW row) implies that

out of 3,677 lexical types in BC, 50.88% of them intersect with lexical types in NW.

BC BN MZ NW TC WB MD MP SH
BC - 35.76 29.09 27.99 40.90 26.85 20.30 18.13 15.12
BN 48.74 - 36.78 35.26 47.66 33.08 25.75 22.57 18.34
MZ 43.95 40.77 - 33.84 47.42 32.81 28.48 23.83 20.02
NW 50.88 47.04 40.72 - 46.65 34.76 30.69 26.11 22.81
TC 31.90 27.28 24.48 20.01 - 19.74 16.64 15.19 11.98
WB 53.01 47.91 42.88 37.74 49.97 - 29.56 25.21 21.25
MD 30.79 28.66 28.59 25.59 32.36 22.70 - 33.89 28.82
MP 30.54 27.90 26.57 24.19 32.81 21.50 37.64 - 35.02
SH 14.01 12.47 12.28 11.62 14.23 9.97 17.61 19.26 -

Count 3,677 5,011 5,555 6,685 2,868 7,259 5,576 6,193 3,407

Table 3.4: Lexical similarities between the evaluation sets in Table 3.3 (in %). The count row shows
the total number of lexical types in each corpus.
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Table 3.5 shows Unix commands for listing the evaluation sets in Table 3.3; this table is added

for those who own these corpora and want to replicate our experimental setup. Note that some of

these commands assume the Bash shell with extended globing, which require running the following

command first: ‘bash; shopt -s extglob’.

Source Genre Command

OntoNotes

BC ls bc/msnbc/00/msnbc_000[5-7]*
BN ls bn/cnn/03/*
MZ ls mz/sinorama/10/ectb_10+(6[5-9]|7)*
NW ls nw/wsj/23/*
TC ls tc/ch/00/ch_00[4-5]*
WB ls wb/eng/00/eng_001*

Medical
MD ls mipacq2/0[1-2]/[4-9]*
MP ls medpedia/02/*
SH ls sharp-clinical/02/rec+(29|[3-4])*

Table 3.5: Unix commands for listing the evaluation sets in Table 3.3.

3.2 Machine learning

For machine learning, Liblinear L2-regularization, L1-loss support vector classification is used (Fan

et al., 2008). This algorithm shares the same underlying approach as support vector machines: given

a set of instance-label pairs (xi, yi) where xi ∈ Rd, yi ∈ {−1, 1}, it finds a hyperplane w maximizing

the margin between the two classes by solving the optimization problem in Equation (3.1) (C is a

penalty parameter).

w = min
w

1
2
wTw + C

n∑
i=1

max(1− yiw
Txi, 0) (3.1)

In our case, all features are binarized so xi ∈ {0, 1}d, where d is the dimensionality of the feature

space. Furthermore, since our tasks require predictions of multiple classes, a one-vs-all approach is

adapted, which generatesM numbers of hyperplanes, [wm : m ∈ {1, . . . ,M}], wherem is a class and

wm is a hyperplane separating the class m from the other classes. During decoding, the one-vs-all

approach uses Equation (3.2) to predict the class m given the instance xi.

m = arg max
m

wT
mxi (3.2)
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The main difference between support vector machines and Liblinear is that support vector machines

can handle non-linearly separable data using kernels (e.g., polynomial, gaussian) whereas Liblinear

performs only linear classification without using any kernel. This aligns well with our data because

our feature dimensionality is often very high (up to a few millions) so that classes essentially become

linearly separable through different dimensions. As a result, Liblinear significantly reduces both the

training and decoding times, yet performs very accurately (see Hsieh et al. (2008) for more details

about how Liblinear computes weights using a dual coordinate descent method).

Table 3.6 shows the Liblinear learning parameters used for our experiments; c is a cost, e is a

termination criterion, and B is a bias. These parameters are found by running cross-validations on

the WSJ training set2 with grid search on the hyper-parameters c and B; no parameter turning is

performed on e. It is possible to improve performance of the OntoNotes models by running separate

cross-validations on the OntoNotes training set, which we will explore in the future.

Task Model c e B

Pos tagging ModelD 0.1 0.1 0.9
ModelG 0.2 0.1 0.4

Dependency parsing - 0.1 0.1 0.0

Semantic role labeling Model← 0.1 0.1 0.0
Model→ 0.1 0.1 0.1

Table 3.6: Liblinear learning parameters for each task; c: cost, e: termination criterion, B: bias.
ModelD and ModelG are domain-specific and generalized models for pos tagging (Section 4.3.1).
Model← and Model→ are lefthand and righthand models for semantic role labeling (Section 6.4.2).

The crossValidate(CV, c, e, B) method in Algorithm 3.1 takes a list CV of cross-validation sets and

Liblinear parameters (c, e, B), and returns the average accuracy of all cross-validation sets. The

getModel(trni, c, e, B) method in line 4 takes a training set trni and the hyper-parameters (c, e, B),

and returns a Liblinear model mi. The getAccuracy(tst i, mi) method in line 5 takes an evaluation

set tst i and the Liblinear model mi, and returns the accuracy of mi on tst i. This crossValidate(CV,

c, e, B) method is performed several times with different combinations of the hyper-parameters and

a combination with the highest average accuracy is used for the final model (ones in Table 3.6).
2 Each section in the WSJ training set is considered a cross-validation set.
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Algorithm 3.1 : crossValidate(CV, c, e, B)

Input: A list CV of cross-validation sets, and Liblinear parameters c, e, and B.
Output: The average accuracy of all cross-validation sets.

1: acc ← 0
2: for tst i in CV do
3: trni ←

∑
cv, where [∀cv. (cv ∈ CV ) ∧ (cv 6= tst i)]

4: mi ← getModel(trni, c, e, B)
5: acc ← acc + getAccuracy(tst i, mi)
6: return acc / |CV |

It is worth mentioning that we had previously tried several supervised machine learning algorithms

for dependency parsing and found out that Liblinear worked the best for our experiments. Compared

to maximum entropy (Ratnaparkhi, 1998), Liblinear trained as fast yet performed significantly more

accurately. Compared to robust risk minimization (Zhang et al., 2002), Liblinear trained slightly

faster and performed slightly more accurately. Compared to support vector machines using a linear

kernel (Cortes and Vapnik, 1995), Liblinear trained significantly faster and performed as accurately.

Given this previous experience, we decided to use Liblinear for all our experiments although it would

be interesting to see the impact of other machine learning algorithms on different tasks.

Model WSJ OntoNotes
Features Train Decode Features Train Decode

POSD 435,462 2.4GB 0.7GB 1,063,175 6.5GB 1.5GBPOSG 412,405 1,034,895
DEP 973,400 6.5GB 1.2GB 1,797,232 12GB 2.1GB
SRL← 239,321 3.2GB 444,265
SRL→ 247,944 462,532

Table 3.7: The number of features and the amount of memory used for training and decoding the
WSJ and OntoNotes models. The Features column shows the number of features, and the Train
and Decode columns show the amount of RAM used for training and decoding, respectively.

Table 3.7 shows the number of features and the amount of memory used for training and decoding

each of our final models, which are referred to ‘ClearNLP’ in the following sections. To run the

WSJ models for all three tasks, 12.1GB and 2.4GB of RAM are required for training and decoding,

respectively. To run the OntoNotes models for all three tasks, 25.3GB and 4.3GB of RAMs are

required for training and decoding, respectively.



Chapter 4

Part-of-speech Tagging

4.1 Overview

Most state-of-the-art pos taggers take statistical learning approaches, which perform very well when

their training and testing data are from the same source, achieving over 97% accuracy (Toutanova

et al., 2003; Giménez and Màrquez, 2004; Shen et al., 2007). However, the performance drops when

they are used for tagging data that varies from their training data. Several domain adaptation

approaches have been proposed for the improvement of pos tagging in new domains (Daumé and

Marcu, 2006; Daume III, 2007). Although these techniques work well, they are limited in three ways.

First, they assume that target domains are already known, which is often not the case; especially

when pos tagging is used for real-time systems such as online machine translators or search engines.

Second, these approaches still require a relatively small but sufficient amount of manual annotation

from target domains, which is not always available. Third, they build different models for handling

new domains, which can be cumbersome when the number of target domains becomes large.

The dynamic model selection described in this chapter makes no assumption about the target

domains. The objective is not to adapt a model to a specific domain different from existing training

data, but to build a model that is general enough to work well for any domain. During training, two

models are built; one is optimized for lexical items specific to the training data, called a domain-

specific model, and the other is optimized for lexical items general to any domain, called a generalized

model. Both models are derived from the same training data; no extra data is required for building

either model. During decoding, one of these models is selected dynamically by measuring similarities
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between input sentences and lexical items used for the models. Our hypothesis is that the domain-

specific and generalized models perform better for sentences similar and dissimilar to the training

data, respectively.

Training
Data

Part-of-speech
Trainer

Part-of-speech
Tagger

Input
Sentences

Is
General?

Generalized
Model

Domain
Specific Model

Output
Sentences

No Yes

Figure 4.1: The overview of pos tagging using dynamic model selection.

Figure 4.1 shows the overview of pos tagging using our dynamic model selection approach. The

following sections describe how to build both domain-specific and generalized models using the

same training data (Section 4.3.1), and select an appropriate model for input sentences dynamically

during decoding (Section 4.3.2). Each model uses a one-pass, left-to-right pos tagging algorithm

(Section 4.4). Even with this simple tagging algorithm, our system shows tagging accuracy compa-

rable to two other state-of-the-art pos taggers, the Stanford pos tagger and the SVMTool, when

coupled with this dynamic model selection approach (Section 4.7.1). Furthermore, our system shows

noticeably faster tagging speed compared to the other two systems (Section 4.7.2).
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4.2 Background

The Penn Treebank project defined a set of pos tags (henceforth, the Penn pos tags) that has been

used as the standard pos tagset for English (Marcus et al., 1993). The Penn pos tags were originally

designed for annotating the Wall Street Journal corpus and later extended by the OntoNotes project

to annotate corpora from several different sources (Weischedel et al., 2011). Table A.2 shows a list

of the Penn pos tags.

Google Penn Description
. $|:|,|.|“|”|-LRB-|-RRB-|HYPH|NFP Punctuation
ADJ JJ|JJR|JJS Adjectives
ADP IN Prepositions, postpositions
ADV RB|RBR|RBS|WRB Adverbs
CONJ CC Conjunctions
DET DT|EX|PDT|WDT Determiners, articles
NOUN NN|NNP|NNPS|NNS Nouns
NUM CD Numerals
PRON PRP|PRP$|WP|WP$ Pronouns
PRT AFX|POS|RP|TO Particles
VERB MD|VB|VBD|VBG|VBN|VBP|VBZ Verbs
X ADD|FW|GW|LS|SYM|UH|XX Other categories

Table 4.1: Mappings between Google’s universal pos tags and the Penn pos tags. The Google
column shows Google’s universal pos tags and the Penn column shows lists of the Penn pos tags
map to Google’s pos tags (delimited by ‘|’).

The Penn pos tags are fine-grained and reflect several linguistic phenomena such as pluralities of

nouns, tenses of verbs, comparative forms of adjectives, etc. Recently, Google grouped the Penn

pos tags into more coarse-grained ones that can be applied cross-linguistically (Petrov et al., 2012).

Table 4.1 shows mappings between Google’s universal pos tags and the Penn pos tags.

Sentence He bought a car yesterday that is red .
Penn PRP VBD DT NN NN WDT VBZ JJ .
Google PRON VERB DET NOUN NOUN DET VERB ADJ .

Table 4.2: An example of the Penn pos tags and Google’s universal pos tags. The Penn and Google
rows show the Penn and Google’s pos tags with respect to the word tokens.
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4.3 Dynamic model selection

4.3.1 Training

Consider training data as a collection of documents where each document contains sentences focusing

on similar topics. For the Wall Street Journal corpus, a document can be an individual file or all

files within each section. Alternatively, a document may contain sentences covering many different

topics but written in similar styles. For instance, the OntoNotes Treebank consists of corpora from

various sources such that each corpus can be considered a document following similar writing styles

(see Section 3.1 for more details about the OntoNotes Treebank).

To build a generalized model, lexical features (e.g., n-gram word forms) that are too specific

to individual documents should be avoided; this way, a classifier can place more weights on features

general to any document. To filter out document-specific features, a threshold is set to the document

frequency of each lowercase simplified word form in the training data. A simplified word form is

derived by applying the following regular expressions sequentially to a word form, w. replaceAll

is a function that replaces all matches of the regular expression in w (the 1st parameter) with the

specific string (the 2nd parameter). All numerical expressions are replaced with 0 in a simplified

word form. A lowercase simplified word form is a decapitalized simplified word form.

(1) w.replaceAll(\d%, 0) (e.g., 1% → 0)

(2) w.replaceAll(\$\d, 0) (e.g., $1 → 0)

(3) w.replaceAll(∧\.\d, 0) (e.g., .1 → 0)

(4) w.replaceAll(\d(,|:|-|\/|\.)\d, 0) (e.g., 1,2|1:2|1-2|1/2|1.2 → 0)

(5) w.replaceAll(\d+, 0) (e.g., 1234 → 0)

Given a set of lowercase simplified word forms whose document frequencies are greater than a certain

threshold, a model is trained by using non-lexical features (e.g., pos tags of previously tagged word

tokens, ambiguity classes) and lexical features only associated with these lowercase simplified word

forms. For a generalized model, a threshold of 2 is used, meaning that only lexical features whose



54

lowercase simplified word forms occur in at least 3 documents of the training data are used. For a

domain-specific model, a threshold of 1 is used for our experiments. We have experimented with

models using different thresholds (e.g., 0, 3), which did not improve tagging accuracy for our data.

The generalized and domain-specific models are trained separately. The domain-specific model

is trained first; it is optimized by running n-fold cross-validation, where n is the number of documents

in the training data, and grid search on the Liblinear parameters c and B (Hsieh et al. (2008); see

Section 3.2 for more details about Liblinear). The generalized model is trained in a similar way,

n-fold cross-validation with grid search, except that it uses both the domain-specific model that is

previously built and the generalized model that is currently built during cross-validation and selects

either model for the best results guided by gold-standard annotation. It may be possible to improve

tagging accuracy by optimizing both models simultaneously, which will be explored in the future.

4.3.2 Decoding

Once domain-specific and generalized models are built, two approaches can be adapted for decoding.

One is to run both models and merge their outputs. This approach produces potentially more

accurate output than either model, but takes longer to decode because the merging process may

take a long time and cannot be started until both models are finished. Instead, an alternative

approach is taken; that is to select one of the models dynamically based on input sentences. With

an efficient model selection scheme, this approach can run as fast as a single model approach, yet

give more robust results.

The premise of this dynamic model selection is that the domain-specific model performs better

for sentences that are similar to its training space, whereas the generalized model performs better

for ones that are dissimilar. During training, a set of simplified word forms, say T , used for building

the domain-specific model is collected. During decoding, another set of simplified word forms, say

S, is collected from each input sentence. If the cosine similarity between T and S is greater than a

certain threshold, the domain-specific model is selected; otherwise, the generalized model is selected

for decoding. The threshold is derived by running another cross-validation on the training data. For
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each fold, both models are trained and evaluated simultaneously using the learning parameters found

from the previous cross-validation (Section 4.3.1). During this cross-validation, cosine similarities

are extracted for all testing sentences where the domain-specific model performs more accurately.
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Figure 4.2: Cosine similarity distributions. The top and bottom distributions show cosine similar-
ities extracted from the Wall Street Journal corpus and the OntoNotes corpora, respectively. The
y-axis shows the number of occurrences of each cosine similarity during cross-validation.

Figure 4.2 shows the distributions of cosine similarities extracted from the Wall Street Journal corpus

(top) and the OntoNotes corpora (bottom) during the cross-validation. From each distribution, the

similarity at the first 5% area is chosen as the threshold; that is 0.025 for the Wall Street Journal

corpus, and 0.018 for the OntoNotes corpora. This 5% area is not picked randomly but empirically

derived during the cross-validation. It is possible to improve tagging accuracy by choosing different

thresholds; we later found that picking the first 8% area, that is 0.022, gave the best results for

the OntoNotes models. However, this threshold is not used for our experiments because it was not

derived automatically, but rather ascertained by manual inspection.
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4.4 Tagging algorithm

Each model uses a one-pass, left-to-right pos tagging algorithm. This algorithm tags the leftmost

word token first and sequentially tags tokens on the right until all tokens are tagged. Each token

is visited only once during tagging. The motivation is to analyze how our dynamic model selection

works with a simple algorithm first then apply it to more sophisticated algorithms later (e.g., a bidi-

rectional tagging algorithm). Even with this simple algorithm, our system shows comparable results

against two other state-of-the-art pos taggers when coupled with the dynamic model selection.

4.5 Features

Lexical

fi−3, fi−2, fi−1, fi, fi+1, fi+2, fi+3,
(mi−2,mi−1), (mi−1,mi), (mi−1,mi+1), (mi,mi+1), (mi+1,mi+2),
(mi−2,mi−1,mi), (mi−1,mi,mi+1), (mi,mi+1,mi+2)
(mi−2,mi−1,mi+1), (mi−1,mi+1,mi+2)

POS
pi−3, pi−2, pi−1, ai, ai+1, ai+2, ai+3,
(pi−2, pi−1), (pi−1, ai+1), (ai+1, ai+2),
(pi−2, pi−1, ai), (pi−2, pi−1, ai+1), (pi−1, ai, ai+1), (pi−1, ai+1, ai+2)

Prefix c:1, c:2, c:3
Suffix cn:, cn−1:, cn−2:, cn−3:

Binary

all uppercase, all lowercase,
begins with a capital letter,
contains a capital letter not at the beginning,
contains two or more capital letters not at the beginning,
contains a period, contains a number, contains a hyphen

Table 4.3: Feature templates for pos tagging. i: the index of the current word token, f : simplified
word form (e.g., fi is the simplified word form of the i’th word token), m: lowercase simplified word
form, p: pos, a: ambiguity class, c∗: character sequence in wi (e.g., c:2: the 1st and 2nd characters
of wi, cn−1:: the n-1’th and n’th characters of wi).

Table 4.3 shows the feature templates used for our pos tagging experiments. Our feature templates

are mostly inspired by Giménez and Màrquez (2004) except for a few changes. For lexical features,

either simplified word forms or lowercase simplified word forms are used instead of the actual word

forms, which provide more generalization of these features. Furthermore, ambiguity classes are

derived selectively in our approach. Given a word form, we count how often each pos tag is used

with this word form in training data and keep only pos tags above a certain threshold for the
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ambiguity class. For instance, if the threshold is 40% and a word form is used as a noun 50%,

a verb 40%, and an adjective 10% in the training data, only the noun and verb pos tags are

taken (e.g., NN, VB) and make up the ambiguity class of this word form, NN_VB. For the generalized

model, a threshold of 90% is used, which favors precision more than recall. A threshold of 90%

is sufficient to guarantee only one pos tag in the ambiguity class. Moreover, many forms end up

not having ambiguity classes at all with this threshold. From our experiments, we find this to be

more useful than expanding ambiguity classes with lower thresholds for the generalized model. For

the domain-specific model, thresholds of 20% and 50% are used for the WSJ and the OntoNotes

models, respectively.

4.6 Related work

Toutanova et al. (2003) introduced a tagging algorithm using bidirectional dependency networks,

and showed improved results over other single directional model approaches. Giménez and Màrquez

(2004) used a one-pass, left-to-right and right-to-left combined tagging algorithm and achieved near

state-of-the-art performance. Shen et al. (2007) presented a tagging approach using guided learning

for bidirectional sequence classification and showed current state-of-the-art performance against the

other models trained and evaluated on the same data set. There are also semi-supervised learning

approaches using external data that showed better performance than these supervised learning

approaches (Spoustová et al., 2009; Søgaard, 2011).

Our individual models (generalized and domain-specific) are similar to Giménez and Màrquez

(2004) in that we use a subset of their features and adapt a one-pass, left-to-right tagging algorithm,

which is a simpler version of theirs. However, we use Liblinear for learning, which runs much faster

than their classifier, Support Vector Machines, for both training and decoding. Furthermore, we use

simplified word forms instead of the original word forms as features, which generalize more readily.

Most importantly, we prune out lexical features using document frequencies for these individual

models, which improves parsing accuracy (Section 4.7.1).
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4.7 Experiments

4.7.1 Accuracy comparisons

Tables 4.4 and 4.5 show tagging accuracies of all tokens achieved by the WSJ and OntoNotes models.

The Baseline and Baseline+ models are trained on features extracted from the original word forms

and the lowercase simplified word forms in Section 4.5, respectively. These models take all lexical

items as features regardless of their document frequencies. The Domain and General models are the

domain-specific and generalized models in Section 4.3. The ClearNLP model is our dynamic model

selection approach. The ClearNLP model is compared with two other state-of-the-art systems, the

Stanford pos tagger (Toutanova et al., 2003) and the SVMTool (Giménez and Màrquez, 2004). Both

systems are trained on the same training sets and use configurations optimized for their best results.

The “G over D” row shows how often the generalized model is chosen over the domain-specific model

during dynamic model selection.

Model BC BN MD MP MZ SH TC WB Avgi Avgo

Baseline 93.53 94.06 88.44 83.50 91.61 76.74 86.70 92.22 96.93 88.25
Baseline+ 93.70 94.37 88.51 83.79 91.69 77.47 88.08 92.39 96.98 88.64
Domain 93.07 95.23 90.91 87.57 93.78 82.07 87.22 94.08 97.39 90.43
General 93.13 95.09 91.18 87.95 93.14 84.15 87.01 93.68 97.24 90.61
ClearNLP 93.21 95.37 91.32 88.03 93.74 84.05 87.05 94.01 97.40 90.79
Stanford 87.72 95.50 90.77 88.45 92.79 84.03 86.24 94.00 97.41 89.92
SVMTool 87.82 95.13 90.54 87.86 92.95 81.87 85.96 93.98 97.31 89.49
G over D 52.12 40.99 42.65 71.23 23.28 85.51 81.00 38.20 10.98 61.15

Table 4.4: Tagging accuracies of all tokens from the WSJ models (in %).

OntoNotes Medical Average
Model BC BN MZ NW TC WB MD MP SH Avgi Avgo

Baseline 97.20 97.00 95.78 97.33 95.35 94.66 92.18 86.40 81.71 96.23 86.79
Baseline+ 97.24 97.08 95.88 97.48 95.39 94.76 92.16 87.29 83.74 96.32 87.75
Domain 97.34 97.27 96.22 97.61 95.49 95.43 92.37 88.65 84.68 96.58 88.60
General 97.29 97.09 95.93 97.49 95.48 95.06 92.61 88.97 86.13 96.41 89.26
ClearNLP 97.32 97.26 96.20 97.60 95.43 95.42 92.58 89.05 86.10 96.56 89.26
Stanford 97.13 97.31 96.07 97.61 95.44 95.42 92.53 90.03 84.89 96.52 89.20
SVMTool 97.15 96.81 95.69 97.43 94.71 95.18 91.55 88.49 82.66 96.19 87.61
G over D 26.69 27.58 13.13 6.89 68.50 27.10 30.76 62.15 70.95 37.13 57.62

Table 4.5: Tagging accuracies of all tokens from the OntoNotes models (in %).
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The Avgi and Avgo columns show the micro average accuracies for in-genre and out-of-genre ex-

periments. For the WSJ models, the accuracy of NW is measured for Avgi and the micro average

of all other corpora are measured for Avgo. For the OntoNotes models, the micro averages of the

OntoNotes and Medical corpora are measured for Avgi and Avgo, respectively. The Baseline+ mod-

els show improvements over the Baseline models for all experiments except for MD in Table 4.5.

The improvements are greater for out-of-genre experiments (e.g., 0.96% improvement for Avgo in

Table 4.5), which indicates that the lowercase simplified word forms give features that generalize

better for heterogeneous data. The domain-specific and generalized models perform better for in-

genre and out-of-genre experiments, respectively (as expected). The ClearNLP models show the

most robust results across genres.

Compared to the state-of-the-art systems, our dynamic model selection approach gives higher

tagging accuracies for Avgo in Table 4.4, and for both Avgi and Avgo in Table 4.5. The differences

between the ClearNLP and Stanford models in Table 4.5 are marginal. However, the difference for

Avgo in Table 4.4 is statistically significant (McNemar, p < .0001), which implies that our approach

is more effective when the training data is small and is used for tagging data with many varieties.

Considering that our model uses a simple one-pass, left-to-right tagging algorithm (Section 4.4),

these results are very encouraging.

Model BC BN MD MP MZ SH TC WB Avgi Avgo

ClearNLP 69.78 83.26 66.90 68.29 74.80 68.21 26.18 76.08 89.11 66.80
Stanford 19.24 87.31 64.25 70.94 66.32 67.35 20.64 78.08 88.30 61.16
SVMTool 19.08 78.35 62.94 66.53 65.23 61.45 19.62 76.43 86.88 57.70
Tokens 3,077 1,284 4,755 6,077 2,663 10,163 2,452 2,609 983 33,080

Table 4.6: Tagging accuracies of unknown tokens from the WSJ models (in %).

OntoNotes Medical Average
Model BC BN MZ NW TC WB MD MP SH Avgi Avgo

ClearNLP 82.37 83.71 87.39 88.24 59.70 78.82 72.32 68.21 73.15 81.25 71.48
Stanford 84.75 86.36 87.28 90.48 64.48 82.42 72.11 72.48 69.22 83.76 70.79
SVMTool 80.34 80.87 84.27 85.85 55.42 75.34 65.95 64.62 63.92 78.12 64.54
Tokens 295 528 928 714 397 1,553 3,342 5,065 8,216 4,415 16,623

Table 4.7: Tagging accuracies of unknown tokens from the OntoNotes models (in %).
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Tables 4.6 and 4.7 show tagging accuracies of unknown tokens achieved by the WSJ and OntoNotes

models. The Tokens row shows the number of unknown tokens found in each genre. For both Avgi

and Avgo in Table 4.6, the ClearNLP model shows higher accuracies than the other two systems;

the difference for Avgo is statistically significant (McNemar, p < .0001). For Avgo in Table 4.7, the

ClearNLP model also shows a higher accuracy that is statistically significant (McNemar, p < .05).

However, the Stanford model shows an advantage over our model for Avgi in Table 4.7. We suspect

that this is because the way we divide the OntoNotes training set into documents, treating each

corpus as one document, does not work the best for our dynamic model selection approach such

that a better document classification method is required to achieve better results. We will explore

the possibility of using unsupervised clustering techniques that automatically group the training

data into meaningful documents for dynamic model selection in the future.

For comparison, tagging accuracies of all tokens in MD, MP, and SH achieved by a model

trained on a small amount of medical data are provided in Table 4.8. There is a total of 133,110

tokens in the training data. This model shows a micro average of 94.84% for the medical genres;

the accuracy is higher for SH whose training data is larger. Notice that this model uses about 1
15

the number of training instances used by the OntoNotes model, which shows an average of 89.26%

on the same evaluation sets. This implies that even a small amount of training data in the same

genre can significantly improve tagging accuracy.

MD MP SH ALL
Tokens 30,367 16,122 86,621 133,110
Accuracy 93.93 93.38 97.34 94.84

Table 4.8: Tagging accuracies achieved by the medical model. The Tokens row shows the number
of tokens in the training data of each genre. The Accuracy row shows the tagging accuracy of each
genre. The ALL column indicates the mixture of all three genres.
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4.7.2 Speed comparisons

Tagging speeds are measured by running each system on a mixture of all data. The ClearNLP and

Stanford taggers are written in Java; the Stanford pos tagger provides APIs that allow us to make

fair comparisons between these two systems. The SVMTool is written in Perl. Table 4.9 shows

speed comparisons between all three systems; the top and bottom three rows show results from

the WSJ and OntoNotes models, respectively. The T# columns show how many milliseconds each

system takes for tagging one sentence in 5 trials, the Avg column shows the average tagging speeds

of the middle three trials, and the Tokens column shows how many tokens are tagged per second.

Our system tags about 39.5 - 39.9K tokens per second, including the runtime for both pos tagging

and dynamic model selection, which is noticeably faster than the other systems.1

Model T1 T2 T3 T4 T5 Avg Tokens

WSJ
ClearNLP 0.36 0.37 0.37 0.37 0.38 0.37 39,491
Stanford 57.47 58.01 58.03 58.13 60.12 58.06 250
SVMTool 13.10 13.40 13.83 13.91 14.07 13.71 1,058

ON
ClearNLP 0.36 0.36 0.37 0.37 0.37 0.36 39,882
Stanford 105.19 105.52 106.55 106.95 107.09 106.34 136
SVMTool 15.47 15.51 15.73 15.90 15.96 15.71 924

Table 4.9: Tagging speeds (in ms). The top and the bottom three rows show results from the WSJ
and OntoNotes models, respectively.

1 There is a pos tagger faster than our system, called the TnT pos tagger (Brants, 2000); however, it is written
in C++ and its tagging accuracy is significantly lower than these state-of-the-art systems; thus, the TnT pos tagger
is not included in our experiments.



Chapter 5

Dependency Parsing

5.1 Overview

Most current statistical dependency parsers take one of two parsing approaches. One is a transition-

based approach that greedily searches for local optima (highest scoring transitions) and uses features

based on parse history to predict the next transition (Nivre, 2008; Attardi and Dell’Orletta, 2009;

Huang and Sagae, 2010; Goldberg and Elhadad, 2010). The other is a graph-based approach that

searches for a global optimum (a maximum spanning tree) from a complete graph in which vertices

represent word tokens and edges, directed and weighted, represent dependency relations (McDonald

et al., 2005; Mcdonald and Pereira, 2006; Koo et al., 2010; Rush and Petrov, 2012). The transition-

based approach searches for local optima, so it usually performs better on short-distance dependen-

cies while the graph-based approach usually performs better on long-distance dependencies because

it searches for a global optimum (Nivre and McDonald, 2008).1 Some ensemble approaches using

integrated models of both transition-based and graph-based approaches had also shown improved

parsing results (Nivre and McDonald, 2008; Zhang and Clark, 2008; Surdeanu and Manning, 2010).

Lately, the usefulness of transition-based parsing has drawn more attention because it gen-

erally performs noticeably faster than graph-based parsing (Cer et al., 2010). Transition-based

parsing has worst-case parsing complexities as low as O(n) and O(n2) for the generation of pro-

jective and non-projective dependency trees, respectively, where n is the number of word tokens in
1 The relation between far apart tokens considered in later parsing states and earlier mistakes make it harder for

transition-based parsing to correctly establish long distance dependencies.
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a sentence (Nivre, 2003; Covington, 2001). The parsing complexity is lower for the generation of

projective dependency trees because it can deterministically drop tokens that can potentially vio-

late the projective property from the search space (Section 2.1.2.1) whereas that is not advisable

for the generation of non-projective dependency trees. Nevertheless, it is still possible to perform

non-projective parsing in expected linear time because the amount of non-projective dependencies

is notably smaller than the amount of projective dependencies (Nivre and Nilsson, 2005), so a parser

can perform projective parsing for most cases and perform non-projective parsing only when it is

needed (Choi and Nicolov, 2009; Nivre, 2009; Choi and Palmer, 2011a).

Another attractive aspect of transition-based parsing is that it can use features based on parse

history for statistical learning, which helps make more accurate predictions (Nivre, 2006). Thus,

many transition-based approaches incrementally build parsing states so that later parsing states can

use parse history derived from earlier states as features. During training, this parse history is derived

from gold-standard dependency trees. During decoding, however, it is derived from automatically

generated dependency trees, which may not provide the same type of features as the ones used for

training. By minimizing the gap between the features derived during training and decoding, it is

possible to improve parsing accuracy; especially on new data where automatic parse output is poor.

This chapter focuses on the engineering of different aspects of transition-based, non-projective

dependency parsing. To reduce the search space of non-projective dependency parsing, a new parsing

algorithm is proposed, which combines transitions in both projective and non-projective dependency

parsing algorithms (Section 5.2). To narrow down the gap between parse features derived from gold-

standard and automatic dependency trees, a bootstrapping technique is introduced (Section 5.3).

Additionally, a post-processing technique is suggested that guarantees an automatic parse output is

a tree instead of a forest (Section 5.4). All of these approaches together show significant improvement

for both in-domain and out-of-domain experiments. Our final model is evaluated on corpora from

several different genres and shows comparable results in parsing accuracy and a clear advantage in

parsing speed with respect to other state-of-the-art dependency parsers (Section 5.6). These results

demonstrate the benefit of careful engineering that effectively leverages linguistic knowledge.
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5.2 Transition-based dependency parsing

5.2.1 Transition decomposition

Table 5.1 shows functional decomposition of transitions used in Nivre’s arc-eager and Covington’s

algorithms. Transition-based parsing can be viewed as a search problem with a very large branching

factor. Nivre’s arc-eager algorithm is a projective parsing algorithm that shows a worst-case parsing

complexity of O(n) (Nivre, 2003). Covington’s algorithm is a non-projective parsing algorithm that

shows a worst-case parsing complexity of O(n2) without backtracking (Covington, 2001). Coving-

ton’s algorithm was later formulated as a transition-based parsing algorithm by Nivre (2008), called

Nivre’s list-based algorithm. Table 5.3 shows the relation between the decomposed transitions in

Table 5.1 and the transitions from the original algorithms.

Operation Transition Current state ⇒ Resulting state

Arc
Left-∗l ( [λ1|i], λ2, [j|β], A ) ⇒ ( [λ1|i], λ2, [j|β], A ∪ {i

l← j} )
Right-∗l ( [λ1|i], λ2, [j|β], A ) ⇒ ( [λ1|i], λ2, [j|β], A ∪ {i

l→ j} )
No-∗ ( [λ1|i], λ2, [j|β], A ) ⇒ ( [λ1|i], λ2, [j|β], A )

List
∗-Shiftd|n ( [λ1|i], λ2, [j|β], A ) ⇒ ( [λ1|i|λ2|j], [ ], β, A )
∗-Reduce ( [λ1|i], λ2, [j|β], A ) ⇒ ( λ1, λ2, [j|β], A )
∗-Pass ( [λ1|i], λ2, [j|β], A ) ⇒ ( λ1, [i|λ2], [j|β], A )

Table 5.1: Decomposed transitions grouped into the Arc and List operations.

Operation Transition Preconditions

Arc
Left-∗l [i 6= 0] ∧ ¬[∃k. (i← k) ∈ A] ∧ ¬[(i→∗ j) ∈ A]
Right-∗l ¬[∃k. (k → j) ∈ A] ∧ ¬[(i ←∗ j) ∈ A]
No-∗ ¬[∃l. Left-∗l ∨ Right-∗l]

List
∗-Shiftd|n [λ1 = [ ]]d ∨ ¬[∃k ∈ λ1. (k 6= i) ∧ ((k ← j) ∨ (k → j))]n

∗-Reduce [∃h. (h→ i) ∈ A] ∧ ¬[∃k ∈ β. (i→ k)]
∗-Pass ¬[∗-Shiftd|n ∨ ∗-Reduce*]

Table 5.2: Preconditions of the decomposed transitions in Table 5.1.

Table 5.2 shows preconditions of the decomposed transitions in Table 5.1. Some preconditions need

to be satisfied to ensure the properties of a well-formed dependency graph (Section 2.1.2.1). The

parsing states are represented as tuples (λ1, λ2, β, A), where λ1, λ2 are lists of partially processed
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tokens and β is a list of the remaining unprocessed tokens. A is a set of labeled arcs representing

previously identified dependencies. l is a dependency label, and i and j represent indices of their

corresponding word tokens, wi and wj . [λ1|i] implies wi is the last token in λ1, and [j|β] implies wj

is the first token in β. The initial state is ([0], [ ], [1, . . . , n], ∅). The 0 identifier corresponds to an

initial token, w0, introduced as the root of a dependency tree. The final state is (λ1, λ2, [ ], A), i.e.,

parsing terminates when all tokens in β are consumed (there is no remaining unprocessed token).

The decomposed transitions in Table 5.1 can be grouped into two operations, Arc and List.

The Arc operation, consisting of the top three transitions, determines the dependency between

the last token wi in λ1 and the first token wj in β using an oracle Od. In our case, Od is a

single multi-class classifier that predicts recomposed transitions in Section 5.2.2. It is possible to

build two separate oracles for the Arc and List operations; we tried this approach, which did not

lead to better parsing results than the single oracle approach. During training, Od consults parse

information derived from gold-standard dependency trees, whereas such information is provided by

a machine learning algorithm to Od during decoding. Left-∗l is performed when Od predicts wj is

the head of wi with a dependency label l (notated as i l← j). Similarly, Right-∗l is performed when

Od predicts wi is the head of wj with a dependency label l (notated as i l→ j). No-∗ is performed

when Od predicts there is no dependency between wi and wj . The Arc operation does not update

a state of any list (λ1, λ2, or β); only A gets updated after these transitions are performed.

The List operation, consisting of the bottom three transitions, determines which pair of word

tokens is compared next for a dependency using Od. ∗-Shiftd|n is performed when λ1 is empty

(∗-Shiftd: deterministic shift), or Od predicts there is no dependency between wj and any token

in λ1 other than wi (∗-Shiftn: non-deterministic shift). After a ∗-Shiftd|n transition, all tokens

in λ2 as well as wj are moved to λ1. ∗-Reduce is performed when wi has already found its head,

and Od predicts wi is not the head of any token in β. After a ∗-Reduce transition, wi is removed

from λ1. ∗-Pass is performed when the conditions for both ∗-Shiftd|n and ∗-Reduce fail. After a

∗-Pass transition, wi is moved to the front of λ2 so it can be compared to other tokens in β later.

This transition is added for non-projective parsing where a long-distance dependency is present.
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Transition decomposition as described here gives a clear distinction between the Arc and List

operations as compared to transitions used in transition-based parsing algorithms. This decompo-

sition makes it easier to integrate transitions from one algorithm into the other algorithm because

all decomposed transitions now use the same data structures with uniform notation (e.g., Nivre’s

arc-eager algorithm does not use λ2, which makes it harder to integrate its transitions into Nivre’s

list-based algorithm using λ2). Section 5.2.2 shows how these decomposed transitions can be re-

composed into transitions used in several different dependency parsing algorithms.

5.2.2 Transition recomposition

Any combination of two decomposed transitions in Table 5.1, one from each operation, can be

recomposed into a new transition. For instance, the combination of Left-∗l and ∗-Reduce makes a

transition, Left-Reducel, which performs Left-∗l and ∗-Reduce sequentially; the Arc operation

is always performed before the List operation. Table 5.3 shows how these decomposed transitions

are recomposed into transitions used in different dependency parsing algorithms.

Transition Nivre’03 Covington’01 Nivre’08 C&P’11 This work
Left-Reducel X X X
Left-Passl X X X X
Right-Shiftn

l X X
Right-Passl X X X X
No-Shiftd X X X X X
No-Shiftn X X X X
No-Reduce X X
No-Pass X X X X

Table 5.3: Transitions in different dependency parsing algorithms. The last column shows transitions
used in our parsing algorithm. The other columns show transitions used in Nivre (2003), Covington
(2001), Nivre (2008), and Choi and Palmer (2011a), respectively.

Nivre’s arc-eager algorithm allows no combination of ∗-Pass, which removes or skips tokens that can

violate the projective property (Nivre’03 in Table 5.3). As a result, this algorithm performs at most

2n− 1 transitions during paring, and can produce only projective dependency trees.2 Covington’s
2 The ∗-Shiftd transitions are not counted because they do not require comparison between word tokens.
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algorithm allows no combination of ∗-Shiftn or ∗-Reduce, which inevitably compares each token

with all tokens prior to it (Covington’01). Thus, this algorithm performs n(n+1)
2 transitions during

parsing, and can produce both projective and non-projective dependency trees.

The last three algorithms in Table 5.3 show cumulative updates to Covington’s algorithm;

they add one or two transitions from Nivre’s arc-eager algorithm to Covington’s algorithm. By

adding these transitions, a fewer number of transitions needs to be performed during parsing, which

reduces the expected running time of these approaches. Nivre (2008) introduced a concept of non-

deterministic shift that could skip some tokens in λ1 without comparing them to wj (No-Shiftn).

Choi and Nicolov (2009) implemented this algorithm and showed that it was possible to achieve a

linear time parsing speed in practice for non-projective parsing using non-deterministic shift. Choi

and Palmer (2010a) added Left-Reducel to this approach and reduced the search space more.

Our parsing algorithm makes another incremental update to Choi and Palmer (2010a) by

adding Right-Shiftn
l and No-Reduce. During training, it checks for the preconditions of all

transitions and generates training instances with corresponding labels. During decoding, the oracle

Od predicts which transition to perform based on the current parsing state. With the addition

of new transitions, Od can choose either projective or non-projective parsing: by choosing the

combinations with ∗-Shiftn or ∗-Reduce, the algorithm performs projective parsing, whereas it

performs non-projective parsing by choosing the combinations with ∗-Pass. Our experiments show

that these additional transitions can reduce the expected running time as well as the feature space

without compromising performance in parsing accuracy (Section 5.6.1). The advantage derives from

improving the efficiency of the choice mechanism; it is now simply a transition choice and requires

no additional processing.

Figure 5.1 shows the average number of transitions performed by each parsing algorithm in

Table 5.3 with respect to sentence lengths. For comparison, gold-standard dependency trees in the

OntoNotes Treebank are used. Covington’s algorithm shows a quadratic growth in transitions as the

sentence length increases while the other three approaches show more or less linear growths. The

bottom figure in Figure 5.1 demonstrates reduction in the average number of transitions performed



68

by our algorithm, in which the number of transitions grows linearly as the sentence length increases.

This implies that our algorithm gives an expected linear time parsing speed for this data set although

a worst-case parsing complexity is still O(n2).
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Figure 5.1: The average number of transitions performed by each algorithm in Table 5.3 with respect
to sentence lengths. Each sentence length indicates the number of word tokens in a sentence. The top
and the bottom figures show comparisons between the last four and three approaches in Table 5.3.

Note that Nivre (2009) introduced another transition-based parsing algorithm that could perform

non-projective parsing in expected linear time. This algorithm tries to resolve non-projectivity by

reordering tokens that are not within the same domain of locality. Transitions in this algorithm

are not integrated into our algorithm because it deviates from a different dependency parsing algo-

rithm (Nivre, 2004), which makes the integration difficult. We also tried to include two other tran-

sitions, Left-Shiftn
l and Right-Reducel, which did not lead to better parsing results. Adding

these transitions forces wj to have at most one dependent, which is often not the case in our data.
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5.2.3 Parsing algorithm

Algorithm 5.1 shows our non-projective dependency parsing algorithm using all recomposed transi-

tions in Table 5.3.

Algorithm 5.1 : getDependencyArcSet(S)

Input: A sentence S = w1, . . . , wn.
Output: A set A of labeled dependency arcs in S.

1: (λ1, λ2, β, A) := ([0], [ ], [1, 2, . . . , n], ∅)
2: while β 6= [ ] do
3: if λ1 = [ ] then
4: No-Shiftd

5: elif Od ⇒ (i l← j) then
6: if i = 0 then No-Shiftd

7: elif (∃k. (i← k) ∈ A) or ((i→∗ j) ∈ A) then No-Pass
8: elif Od ⇒ ¬(∃k ∈ β. (i→ k)) then Left-Reducel

9: else Left-Passl

10: elif Od ⇒ (i l→ j) then
11: if (∃k. (k → j) ∈ A) or ((i ←∗ j) ∈ A) then No-Pass
12: elif Od ⇒ ¬(∃k ∈ λ1. (k 6= i) ∧ ((k ← j) ∨ (k → j))) then Right-Shiftn

l

13: else Right-Passl

14: else
15: elif Od ⇒ ¬(∃k ∈ λ1. (k ← j) ∨ (k → j)) then No-Shiftn

16: elif (∃h. (h→ i) ∈ A) and (Od ⇒ ¬(∃k ∈ β. (i→ k))) then No-Reduce
17: else No-Pass
18: return A

The algorithm takes a sentence as input and produces a set of labeled dependency arcs in the sentence

as output. It starts by initializing the parsing state (line 1) and terminates when β becomes empty

(line 2). If λ1 is empty, it performs No-Shiftd (lines 3-4). If Od predicts that wj is the head of wi

with a dependency label l (line 5), it performs either No-Shiftd if wi is the root (line 6), No-Pass

if wi already has the head or is an ancestor of wj (line 7), Left-Reducel if Od predicts that wi is

not the head of any token in β (line 8), or Left-Passl (line 9). If Od predicts that wi is the head

of wj with a dependency label l (line 10), it performs either No-Pass if wj already has the head or

is an ancestor of wi (line 11), Right-Shiftn
l if Od predicts that there is no dependency between

wj and any token in λ1 other than wi (line 12), or Right-Passl (line 13). If Od predicts that there
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is no dependency between wi and wj (line 14), it performs No-Shiftn if Od predicts that there is

no dependency between wj and any token in λ1 (line 15), No-Reduce if wi already has the head

and is predicted not to be the head of any token in β by Od (line 16), or No-Pass. Finally, the

algorithm returns a set A containing all labeled dependency arcs in S.

The root, single head, and acyclic properties of a well-formed dependency graph in Sec-

tion 2.1.2.1 are ensured by the conditions in lines 6, 7, and 11. The connected property, on the

other hand, is ensured during post-processing (Section 5.4). Note that this algorithm performs only

non-projective parsing without lines 8, 12, 15, and 16, which is equivalent to Covington’s algo-

rithm. It is worth mentioning the soundness and completeness of our parsing algorithm (Shieber

et al., 1995). Let Tk(s) = {t1, . . . , tk} be a transition sequence generated by our algorithm for a

sentence s, and G(Tk(s)) be the dependency graph derived by Tk(s). A transition-based depen-

dency parsing algorithm is sound if and only if for every sentence s and every transition sequence

Tk(s), the root, single head, and acyclic properties are satisfied in G(Tk(s)) (Nivre, 2008). The

soundness of our algorithm can be proved by induction as follows:

• Base: G(T0(s)) satisfies all three properties for T1(s).

• Inductive: Assume that G(Tk(s)) satisfies all three properties for Tk(s), where k > 1. Let

Tk+1(s) be {t1, . . . , tk+1}, where tk+1 is one of the transitions in Table 5.3. If tk+1 is either a

Left-∗l or Right-∗l transition, a dependency arc δ generated by this transition preserves

all three properties because of the preconditions in Table 5.2. If tk+1 is a No-∗l transition,

no dependency arc is generated. This makes G(Tk+1(s)) either G(Tk(s)) or G(Tk(s))∪{δ};

thus, G(Tk+1(s)) satisfies all three properties.

A transition-based dependency parsing algorithm is complete if and only if for every sentence s and

every well-formed dependency graph G for s, there is a transition sequence T (s) generated by the

algorithm such that G = G(T (s)) (Nivre, 2008). The proof of completeness for our algorithm comes

free from the proof of completeness for Nivre’s list-based algorithm (Nivre, 2008, 5.1) because our

algorithm can generate any transition sequence that Nivre’s list-based algorithm generates.
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Transition λ1 λ2 β A
0 Initialization [0] [ ] [1|β] ∅
1 No-Shiftn [λ1|1] [ ] [2|β]
2 No-Shiftn [λ1|2] [ ] [3|β]
3 No-Shiftn [λ1|3] [ ] [4|β]
4 Left-Reduce [λ1|2] [ ] [4|β] A ∪ {3 ←nsubj− 4}
5 No-Pass [λ1|1] [2] [4|β]
6 Right-Shiftn [λ1|4] [ ] [5|β] A ∪ {1 −rcmod→ 4}
7 No-Shiftn [λ1|5] [ ] [6|β]
8 Left-Reduce [λ1|4] [ ] [6|β] A ∪ {5 ←aux− 6}
9 Right-Pass [λ1|2] [4] [6|β] A ∪ {4 −xcomp→ 6}
10 Left-Reduce [λ1|1] [4] [6|β] A ∪ {2 ←dobj− 6}
11 No-Shiftn [λ1|6] [ ] [7|β]
12 No-Reduce [λ1|4] [ ] [7|β]
13 No-Reduce [λ1|1] [ ] [7|β]
14 Left-Reduce [0] [ ] [7|β] A ∪ {1 ←nsubj− 7}
15 Right-Shiftn [λ1|7] [ ] [8] A ∪ {0 −root→ 7}
16 Right-Shiftn [λ1|8] [ ] [ ] A ∪ {7 −adv→ 8}

Table 5.4: Parsing states generated by Algorithm 5.1 for the example.

Table 5.4 shows a list of parsing states generated by Algorithm 5.1 for the example, assuming that

the oracle Od always makes correct decisions. After w3 and w4 are compared, w3 is removed from λ1

(state 4) so it is no longer compared to any other token in β (states 9 and 13). If w3 were the head

of any token in β, Left-Pass would be performed, in which case, w3 would be moved to λ2 instead.

After w2 and w4 are compared, w2 is moved to λ2 (state 5) so it can be compared to other tokens

in β (state 10). After w1 and w4 are compared, ∗-Shiftn is performed (state 6) because there is

no dependency between w4 and any other token in λ1. On the other hand, ∗-Pass is performed

after w4 and w6 are compared (state 9) because there is a dependency between w6 and w2 in λ1

(state 10). After w6 and w7 are compared, w6 is removed from λ1 (state 12) because it is no longer

needed for the later parsing states.
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5.3 Bootstrapping

5.3.1 Bootstrapping parse history

Transition-based parsing, in comparison to graph-based parsing, has the advantage of using the

parse history as features to make more accurate predictions without increasing parsing complexity.

When wi and wj are compared in any parsing state (wi is the last token in λ1 and wj in the first

token in β; see Table 5.1), the subtree and head information of these tokens is partially provided

by earlier parsing states. Figure 5.2 illustrates the range of subtree and head information given to

wi and wj .

wi

w0 ≤ h < j

w1 wj-1

wj

wj-1wi+1

wi < p < j

Figure 5.2: The range of subtree and head information, where i < j, and the dotted line indicates
ancestors in the head relation.

Graph-based parsing can also take advantage of using the parse history. This is done by performing

higher-order parsing, which improves parsing accuracy but also increases parsing complexity (Car-

reras, 2007; Koo and Collins, 2010; Rush and Petrov, 2012).3 Transition-based parsing is attractive

because it can use parse information from earlier parsing states without increasing parsing complex-

ity. The qualification is that parse information provided by gold-standard dependency trees during

training may not give the same type of features provided by automatically generated dependency

trees during decoding. This can confuse a statistical model trained on features derived only from the

gold-standard trees. The problem becomes more severe as the discrepancies between gold-standard

and automatically generated trees get larger.

To reduce the gap between gold-standard and automatically generated trees, a bootstrapping

technique is applied during training. First, a statistical parsing model is trained using gold-standard
3 Higher-order, non-projective, graph-based dependency parsing is NP-hard without performing approximation.
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trees. Next, the training data is parsed using this model. During parsing, new features are extracted

for each parsing state, which consist of parse information derived from an automatically generated

tree, then a training instance is created by joining these features with a gold-standard label. The

gold-standard label is achieved by consulting the relation between wi and wj in the gold-standard

tree. Figure 5.3 shows an automatically generated tree for the example in Table 5.4, where the

DOBJ dependency is incorrectly predicted. Given a parsing state where wi = wanted and wj = see,

the oracle Od would predict a Right-Shiftn transition. However, according to the gold-standard

tree, this is not the correct transition to perform; a Right-Pass transition should be performed

given this parsing state (state 9 in Table 5.4). Thus, the gold-standard label, Right-Pass, and

features extracted from the tree in Figure 5.3 are joined to create a training instance for this state.

The parsing state is then updated with the incorrectly predicted transition, Right-Shiftn, so the

algorithm can continue parsing (with the incorrect parse).

Figure 5.3: An automatically generated tree for the example in Table 5.4. The DOBJ dependency is
incorrectly predicted compared to the gold-standard tree in Table 5.4.

When the parsing is done, a different parsing model is built using the training instances induced

by the previous model. This procedure is repeated until a certain stopping criterion is met, which

is determined by cross-validation. For each iteration, cross-validation is performed to check if the

average parsing accuracy of the current cross-validation set is higher than the one from the previous

iteration. The procedure is stopped when the parsing accuracy on the cross-validation set starts

decreasing. During decoding, only the last model is used for parsing. Figure 5.4 shows a flowchart

of our bootstrapping technique.



74

The concept of using automatically generated data for training is not new; it is common to use auto-

matically generated pos tags for training, which is known to be more useful than using gold-standard

pos tags for dependency parsing. Here, we go one step farther by bootstrapping parse information.

Our experiments show that this bootstrapping technique gives a significant improvement to pars-

ing accuracy (Section 5.6.1). This technique is not limited to transition-based dependency parsing

but can be applied to other nlp components such as a pos tagger or an NP chunker that make

incremental updates in predictions.

Automatic
Features

Machine Learning
Algorithm

Dependency
Parser
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Gold-standard
Features
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Stop?

Begin

End
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NO
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Data

Figure 5.4: A flowchart of our bootstrapping technique.

5.3.2 Related work

Daumé et al. (2009) presented a learning algorithm, called Searn, for integrating search and learn-

ing to solve complex structured prediction problems. Our bootstrapping technique can be viewed as

a simplified version of Searn. During training, Searn iteratively creates a set of new cost-sensitive

examples using a known policy. In our case, the new examples are training instances consisting of
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parse information derived from automatically generated trees induced by the previous model. Our

technique is simplified because the new examples are not cost-sensitive. Furthermore, Searn inter-

polates the current policy with the previous policy whereas we do not perform such interpolation.

During decoding, Searn generates a sequence of decisions and makes a final prediction. In our

case, the decisions are predicted dependency arcs and the final prediction is a dependency tree.

Searn has been successfully adapted to several nlp tasks such as named entity recognition, syn-

tactic chunking, and pos tagging. To the best of our knowledge, this is the first time that this idea

has been applied to transition-based dependency parsing and shown improved results.

Brill (1995) introduced transformation-based learning that starts with simple rules for pre-

dicting certain values (e.g., pos tags, transitions) using baseline features, applies transformations

to the features using a set of rule templates, reconstructs the rules using the transformed features,

and selects transformations that derive the best rules for predicting the values. The transforma-

tions are applied repeatedly until they do not affect or hurt the performance. Transformation-based

learning is similar to our bootstrapping approach in the sense that it iteratively transforms features

to achieve better results and stops when no more benefit is found from the transformations.

Zhang and Clark (2008) suggested a transition-based projective dependency parsing algorithm

that kept B different sequences of parsing states and chose the one with the highest score. They used

beam search and showed a worst-case parsing complexity of O(n) given a fixed size of beam. Their

learning mechanism, using the structured perceptron algorithm, involves training on automatically

derived parsing states that closely resemble potential states encountered during our decoding.

5.4 Post-processing

Just like many other transition-based dependency parsing algorithms, our parsing algorithm does

not guarantee that the parse output is a connected tree. This implies that after the algorithm is

finished, there can be headless tokens. For each token wp for which the algorithm could not find the

head during parsing, the same oracle Od is used again to predict the head of wp but this time, wp

is compared to all other tokens which may have been skipped during parsing. For each comparison,
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the oracle keeps track of the head candidate with the highest score and makes it the head of wp.

Any dependency which creates a cyclic relation is avoided during post-processing. Although this

post-processing technique is simple, it not only ensures the connected property (Section 2.1.2.1),

but also improves parsing accuracy (Section 5.6.1).

The postProcess(D) method in Algorithm 5.2 takes a dependency forest D and adds depen-

dency arcs for all headless tokens in D. The head of each headless token is initialized to the artificial

root, w0 (line 3). If the oracle Od predicts a dependency arc between wi and wj with a label l and

a score si (0 ≤ i < j) and if wj is not an ancestor of wi, a dependency arc with the highest score is

kept (lines 4-8). Similarly, if Od predicts a dependency arc between wj and wk with a label l and a

score sk (j < k ≤ n) and if wj is not an ancestor of wk, a dependency arc with the highest score

is kept (lines 9-13). The dependency arc with the overall highest score is added to A as the head

of wj . Notice that the postProcess(D) method process headless tokens left-to-right. The final parse

output may vary if headless tokens are processed right-to-left, which we will explore in the future.

Algorithm 5.2 : postProcess(D)

Input: A dependency forest D.

1: N ← an ordered list of headless tokens in D # e.g,. N ← [w2, w3, w5]
2: for wj in N do
3: (am, sm)← (0 l→ j, 0), where l← ROOT
4: i← (j − 1)
5: while i ≥ 0 do # 0 is the id of the artificial root
6: if (Od ⇒ (i l→ j, si)) and ((i ←∗ j) /∈ A) and (si > sm) then
7: (am, sm)← (i l→ j, si)
8: i← (i− 1)
9: k ← (j + 1)
10: while k ≤ n do # n is the id of the rightmost token in D
11: if (Od ⇒ (j l← k, sk)) and ((j →∗ k) /∈ A) and (sk > sm) then
12: (am, sm)← (j l← k, sk)
13: k ← (k + 1)
14: A← (A ∪ am)
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5.5 Features

Table 5.5 shows the feature templates used for our dependency parsing experiments. λ1[0] and β[0]

are the last token in λ1 and the first token in β, which are equivalent to wi and wj in Table 5.1,

respectively. λ1[n] and β[n] are the n’th to the last token in λ1 and the n’th token in β, respectively.

wx+n is the token whose distance from wx is n. For instance, wi−1 and wi+1 are the tokens prior and

next to wi, respectively. Note that wi−n may or may not be equivalent to λ1[n]. It is possible that

wi−n is already removed by the ∗-Reduce transition from a previous parsing state (Section 5.2.1),

so it no longer exists in any list and can only be retrieved from the original sentence. hd(x) stands

for the head of x. ld(x) and rd(x) stand for the leftmost and rightmost dependents of x, respectively.

Token Form Lemma POS Deprel
λ1[0] X X X X
λ1[1] X X
λ1[2] X X
hd(λ1[0]) X X
ld(λ1[0]) X X
rd(λ1[0]) X
β[0] X X X
β[1] X X X
β[2] X X
β[3] X
ld(β[0]) X
wi−2 X X
wi−1 X X
wi+1 X X
wi+2 X X
wj−2 X X
wj−1 X X

Table 5.5: Feature templates for dependency parsing.

The Form, Lemma, POS, and Deprel columns indicate the word form, lemma, pos tag, and de-

pendency label features of the corresponding token. These features are used either individually or

jointly (e.g., pos tags of both λ1[0] and β[0] make one feature). Additionally, three binary features

are used, which check if wi is the leftmost token in the original sentence, if wj is the rightmost token

in the original sentence, and if wi and wj are adjacent.
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5.6 Experiments

5.6.1 Accuracy comparisons

Tables 5.6 and 5.7 show labeled attachment scores for all trees achieved by the WSJ and OntoNotes

models, respectively. The Baseline model uses the parsing algorithm in Section 5.2.3. The Base-

line+ model is the Baseline model with the post-processing in Section 5.4. The ClearNLP model

is the Baseline+ model with the bootstrapping technique in Section 5.3. The C&N’09 and C&P’11

models are the transition-based dependency parsing approaches introduced by Choi and Nicolov

(2009) and Choi and Palmer (2011a), respectively (see Section 5.2.2). These models use the same

machine learning algorithm (Liblinear L2-L1 svm, see Section 3.2), post-processing, and bootstrap-

ping technique as the ClearNLP model. We use feature templates optimized for the best results

achieved with the CoNLL’09 shared task data for English (Hajič et al., 2009).

The ClearNLP model is compared against two state-of-the-art dependency parsers, Malt-

Parser and MSTParser. For MaltParser, a non-projective transition-based parsing algorithm using

Swap transitions is used for parsing (Nivre, 2009) and Liblinear multi-class support vector classifi-

cation is used for learning (Crammer and Singer, 2002). We use feature templates provided by the

MaltParser team instead of their default templates, which show improved parsing accuracy. For

MSTParser, a non-projective graph-based parsing algorithm, Chu-Liu-Edmonds algorithm, is used

for parsing (McDonald et al., 2005) and the margin infused relaxed algorithm (MIRA) is used for

learning (Crammer and Singer, 2003). Only 1st-order features are used for MSTParser; 2nd-order

features create a huge feature space for building the OntoNotes model, requiring too much memory

for our machine. Thus, only the 1st-order features are used for our experiments; therefore, one must

consider that parsing accuracy is expected to be higher but parsing speed is expected to be slower

with the 2nd order features for MSTParser.4 Note that neither MaltParser nor MSTParser have

been optimized for our experiments. Their results are there to give a sense of how well our approach

performs against these state-of-the-art parsers off-the-shelf but not for absolute comparisons.
4 See Mcdonald and Pereira (2006) for more details about the 2nd order features.



79

Model BC BN MD MP MZ SH TC WB Avgi Avgo

Baseline 75.38 80.75 78.34 71.49 80.19 60.50 68.58 78.68 86.94 74.18
Baseline+ 75.73 81.13 78.69 72.10 80.64 60.77 69.82 78.98 87.18 74.68
ClearNLP 76.04 82.02 79.07 72.84 81.30 63.44 70.19 79.56 88.10 75.50
C&N’09 75.85 81.54 78.76 72.84 80.86 63.61 69.64 79.13 87.79 75.23
C&P’11 75.96 81.55 79.00 72.80 81.10 63.55 69.70 79.45 88.03 75.34
MaltParser 73.53 80.39 77.54 72.46 79.77 63.26 68.28 77.86 86.49 74.10
MSTParser 74.99 79.84 77.34 72.39 79.31 63.85 70.25 78.09 86.03 74.46

Table 5.6: Labeled attachment scores for all trees from the WSJ models (in %).

OntoNotes Medical Average
Model BC BN MZ NW TC WB MD MP SH Avgi Avgo

Baseline 85.54 85.00 85.26 87.56 81.36 81.89 80.81 74.10 61.88 84.51 72.37
Baseline+ 85.67 85.18 85.48 87.77 81.89 82.13 81.15 74.56 62.17 84.76 72.73
ClearNLP 86.35 85.96 86.33 89.00 83.39 82.58 81.72 75.57 64.98 85.68 74.18
C&N’09 86.40 85.75 85.84 88.66 83.00 82.33 81.26 75.14 64.83 85.41 73.83
C&P’11 86.25 85.74 86.12 88.96 83.03 82.31 81.53 75.02 64.80 85.49 73.86
MaltParser 84.76 84.22 84.78 87.45 81.76 80.87 80.27 75.14 64.73 84.05 73.47
MSTParser 84.39 83.69 84.15 87.11 81.23 80.85 80.27 74.40 65.01 83.66 73.30

Table 5.7: Labeled attachment scores for all trees from the OntoNotes models (in %).

The Avgi and Avgo columns show the micro average labeled attachment scores for in-genre and

out-of-genre experiments. For the WSJ models, the score of NW is measured for Avgi and the

micro average of all other corpora are measured for Avgo. For the OntoNotes models, the micro

averages of the OntoNotes and Medical corpora are measured for Avgi and Avgo, respectively. The

Baseline+ models show improvements over the Baseline models for all experiments. The ClearNLP

models show additional improvements over the Baseline+ models; the improvements are greater for

out-of-genre experiments (e.g., 1.45% improvement for Avgo in Table 5.7), which indicates that our

bootstrapping technique is more effective where automatic parse results are poor. The ClearNLP

models show higher scores than the C&N’09 and C&P’11 models for both in-genre and out-of-genre

experiments; all differences are statistically significant (McNemar, p < 0.01) except for the one

between the C&P’11 and ClearNLP models for Avgi in Table 5.6. More importantly, the ClearNLP

model uses about 1
5 the number of features used by the C&N’09 and C&P’11 models (e.g., for

the OntoNotes models, 5.43M, 4.84M, and 0.97M features are used by the C&N’09, C&P’11, and

ClearNLP models, respectively), indicating that the ClearNLP model can perform as accurately as
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the other two models using a much smaller set of features. Compared to MaltParser and MSTParser,

the ClearNLP models again show higher scores for both in-genre and out-of-genre experiments. We

believe that it is possible to improve MaltParser’s parsing accuracy by applying our bootstrapping

and post-processing techniques, which can bring its performance closer to ours, whereas it is more

difficult to apply these techniques to MSTParser, which is based on a graph-based parsing algorithm.

Model BC BN MD MP MZ SH TC WB Avgi Avgo

Baseline 79.20 83.34 81.88 75.88 83.42 65.14 74.36 81.46 88.57 78.04
Baseline+ 79.60 83.80 82.24 76.57 83.90 65.44 75.82 81.83 88.81 78.60
ClearNLP 79.90 84.60 82.53 77.10 84.41 68.13 76.12 82.46 89.68 79.36
C&N’09 79.79 84.32 82.07 77.36 84.04 68.01 75.43 81.97 89.50 79.08
C&P’11 79.91 84.27 82.36 77.16 84.34 67.91 75.55 82.31 89.74 79.18
MaltParser 77.89 83.29 81.17 77.33 83.23 67.88 74.69 81.14 88.23 78.29
MSTParser 79.84 83.55 81.84 77.91 83.44 68.74 77.15 81.92 88.36 79.26

Table 5.8: Unlabeled attachment scores for all trees from the WSJ models (in %).

OntoNotes Medical Average
Model BC BN MZ NW TC WB MD MP SH Avgi Avgo

Baseline 87.72 86.89 87.40 88.87 83.95 84.10 83.48 78.38 66.60 86.54 76.26
Baseline+ 87.87 87.12 87.68 89.11 84.55 84.40 83.86 78.87 66.90 86.83 76.65
ClearNLP 88.47 87.86 88.49 90.32 86.17 84.87 84.32 79.89 69.67 87.75 78.05
C&N’09 88.58 87.71 87.90 90.06 85.61 84.67 83.75 78.96 69.32 87.48 77.43
C&P’11 88.45 87.70 88.20 90.36 85.62 84.67 84.02 78.69 69.26 87.57 77.40
MaltParser 87.27 86.44 87.06 89.06 84.73 83.47 83.10 79.59 69.67 86.40 77.54
MSTParser 87.49 86.67 87.10 89.23 85.29 84.08 83.72 79.49 70.36 86.70 77.94

Table 5.9: Unlabeled attachment scores for all trees from the OntoNotes models (in %).

Tables 5.8 and 5.9 show unlabeled attachment scores for all trees achieved by theWSJ and OntoNotes

models, respectively. The ClearNLP model shows the most robust results across genres. For all out-

of-genre experiments, the ClearNLP models show higher scores than the other models. For in-genre

experiments, the ClearNLP model shows a higher score than all other models in Table 5.9; however,

the C&P’11 model shows a higher score than the ClearNLP model in Table 5.8. We suspect that

this is because the additional features used by the C&P’11 model help make more accurate predic-

tions for Avgi in Table 5.8, which is trained and evaluated on the same corpus (WSJ), whereas they

give less impact on other corpora. Notice that MSTParser consistently performs more accurately
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than MaltParser except for MP in Table 5.9, which is not the case for labeled attachment scores in

Tables 5.6 and 5.7. This implies that graph-based parsing has an advantage in finding arcs whereas

transition-based parsing has an advantage in finding labels.

Tables 5.10 and 5.11 show labeled attachment scores and Tables 5.12 and 5.13 show unlabeled

attachment scores for non-projective trees achieved by the WSJ and OntoNotes models, respectively.

A non-projective tree is a dependency tree consisting of at least one non-projective dependency.

The Trees row shows the number of non-projective trees in each genre. There are not many non-

projective trees in our corpora; English is a rigid word-order language that does not contain many

non-projective dependencies. In the future, we will explore the possibility of comparing parse results

for non-projective trees with languages such as Czech (Hajič et al., 2000), Danish (Kromann, 2003),

and Sloven (Džeroski et al., 2006) that contain more non-projective dependencies. Note that our

previous approach, C&P’11, was evaluated on the CoNLL’09 shared task data for Czech and showed

the second highest score against other parsers (Choi and Palmer, 2011a). Considering that our

current approach, ClearNLP, gives comparative results to our previous approach, it is expected to

perform well for Czech and other languages as well.

Model BC BN MD MP MZ SH TC WB Avgi Avgo

ClearNLP 75.43 76.02 75.89 74.23 75.56 72.35 65.46 73.78 82.25 73.87
C&N’09 75.53 75.28 76.32 74.50 73.85 72.97 64.80 72.95 82.83 73.41
C&P’11 75.24 75.42 76.00 72.42 75.23 72.56 66.45 73.78 83.07 73.67
MaltParser 72.64 74.68 75.16 73.06 75.03 70.27 61.90 71.80 80.89 71.94
MSTParser 73.52 73.14 74.32 69.17 73.72 71.31 63.43 72.63 80.99 71.67

Trees 109 94 28 45 51 22 96 65 65 510

Table 5.10: Labeled attachment scores for non-projective trees from the WSJ models (in %).

OntoNotes Medical Average
Model BC BN MZ NW TC WB MD MP SH Avgi Avgo

ClearNLP 82.28 79.77 80.11 86.47 76.37 77.69 78.74 76.13 76.09 80.61 77.10
C&N’09 82.97 80.23 79.64 85.26 76.54 76.36 80.11 75.59 76.30 80.45 77.41
C&P’11 82.38 79.60 79.51 85.55 76.92 77.37 80.32 76.04 75.68 80.42 77.57
MaltParser 79.67 77.63 78.33 84.68 73.74 76.77 77.37 75.77 72.14 78.58 75.68
MSTParser 79.20 76.96 76.15 83.07 73.41 77.23 77.26 72.88 75.26 77.88 74.97

Trees 109 94 51 65 96 65 28 45 22 480 95

Table 5.11: Labeled attachment scores for non-projective trees from the OntoNotes models (in %).
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Model BC BN MD MP MZ SH TC WB Avgi Avgo

ClearNLP 78.79 79.06 77.58 76.67 78.52 75.47 71.05 76.68 84.38 77.15
C&N’09 78.89 78.43 77.79 77.31 77.40 76.09 69.79 75.85 84.92 76.71
C&P’11 78.42 78.70 77.58 75.23 79.12 75.68 71.71 76.45 85.50 76.99
MaltParser 76.53 78.29 77.79 76.67 78.79 74.01 68.26 75.16 83.32 75.88
MSTParser 77.16 77.49 77.26 73.78 78.46 75.26 69.85 77.14 83.51 76.11

Table 5.12: Unlabeled attachment scores for non-projective trees from the WSJ models (in %).

OntoNotes Medical Average
Model BC BN MZ NW TC WB MD MP SH Avgi Avgo

ClearNLP 84.13 82.47 82.48 88.12 78.95 79.67 80.74 79.11 79.00 82.79 79.70
C&N’09 84.98 82.98 82.35 86.81 78.67 78.61 81.89 78.12 79.63 82.68 79.82
C&P’11 84.39 82.01 82.15 87.15 79.44 79.67 82.11 78.93 78.79 82.63 80.09
MaltParser 82.09 80.47 81.95 86.71 76.70 79.21 79.58 78.48 76.09 81.25 78.44
MSTParser 82.09 80.57 79.64 85.26 77.30 81.05 80.11 76.22 79.63 81.17 78.32

Table 5.13: Unlabeled attachment scores for non-projective trees from the OntoNotes models (in %).

The ClearNLP model shows the highest score for Avgo whereas the C&P’11 model shows the highest

score for Avgi in Tables 5.10 and 5.12. However, their results are reversed in Tables 5.11 and 5.13;

the ClearNLP model shows the highest score for Avgi whereas the C&P’11 model shows the highest

score for Avgo. This is probably because the ClearNLP model makes early ∗-Shift and ∗-Reduce

transitions that hurt performance in finding some non-projective dependencies, but more thorough

study needs to be done to make sure which transitions help or hurt performance in finding what

kind of non-projective dependencies.

5.6.2 Speed comparisons

Parsing speeds are measured by running each system on a mixture of all data. All systems are

written in Java; C&N’09 and C&P’11 are implemented in the same project called ClearParser,5

and the other systems are implemented in their own projects. Table 5.14 shows speed comparisons

between all five systems; the top and bottom five rows show results from the WSJ and OntoNotes

models, respectively. The T# columns show how many milliseconds each system takes for parsing

one sentence in 5 trials, and the Avg column shows the average parsing speeds of the middle three
5 ClearParser: clearparser.googlecode.com
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trials, and the Trees column shows how many trees are parsed per second. The transition-based

parsing approaches, the top four systems, take about 1 - 2 milliseconds per sentence, whereas the

graph-based parsing approach, MSTParser, shows over 30 times slower parsing speeds than the

transition-based parsing approaches. Our system takes about 1.16 - 1.28 milliseconds per sentence,

which is fast but not as fast as C&P’11. This contradicts our transition comparison in Figure 5.1; it

is caused by an implementation difference between ClearParser and ClearNLP. ClearParser assumes

input and output to be a tree so it is optimized for generating a tree structure whereas ClearNLP

does not make such an assumption so that it is designed for generating a graph structure, which is

more complicated and gives higher overheads during runtime.

Model T1 T2 T3 T4 T5 Avg Trees

WSJ

ClearNLP 1.15 1.15 1.16 1.16 1.20 1.16 865
C&N’09 1.23 1.24 1.25 1.25 1.39 1.25 801
C&P’11 1.05 1.06 1.09 1.11 1.22 1.08 922
MaltParser 2.13 2.14 2.14 2.15 2.19 2.14 467
MSTParser 61.71 62.44 62.55 62.62 62.79 62.38 16

ON

ClearNLP 1.28 1.28 1.28 1.29 1.30 1.28 780
C&N’09 1.23 1.23 1.27 1.27 1.46 1.26 795
C&P’11 1.06 1.07 1.08 1.21 1.22 1.12 892
MaltParser 2.12 2.13 2.14 2.16 2.17 2.14 467
MSTParser 65.60 66.36 66.77 67.73 67.79 66.62 15

Table 5.14: Parsing speeds (in ms.). The top and the bottom five rows show results from the WSJ
and OntoNotes models, respectively.

Figure 5.5 shows average parsing speeds with respect to sentence lengths achieved by the WSJ (the

top figure) and OntoNotes (the bottom figure) models. MSTParser is excluded from this comparison

because its parsing speed is noticeably slower than the other four systems. All four systems show

similar growth rates that are close to linear although some systems begin to show curves towards

the end (e.g., sentence groups 70 and 80). Considering there are not many sentences in these groups,

all four systems show linear parsing speeds in practice. Notice that ClearNLP and MaltParser show

very similar growth rates with the OntoNotes models whereas that is not really the case with the

WSJ models. This is probably because they start performing a similar number of non-projective
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transitions (∗-Pass for ClearNLP and Swap for MaltParser) with the OnteNotes models where

non-projective dependencies are classified more accurately.
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Figure 5.5: Average parsing speeds with respect to sentence lengths. The top and the bottom figures
show parsing speeds achieved by the WSJ and OntoNotes models, respectively. The bottom table
shows the number of sentences in each group. : MaltParser, : C&N’09, : C&P’11,

: ClearNLP.



Chapter 6

Semantic Role Labeling

6.1 Overview

Recently, dependency-based semantic role labeling has demonstrated two advantages over constituent-

based semantic role labeling. First, semantic role labeling is often performed after syntactic parsing,

either dependency parsing or constituent parsing, because it uses syntactic parses as its input. Syn-

tactic parsing is usually considered a bottleneck to semantic role labeling in terms of execution time;

however, since dependency parsing is much faster than constituent parsing (Cer et al., 2010), this

becomes less of an issue. Second, dependency structures are more similar to predicate argument

structures than constituent structures because they can directly define relations between predicates

and arguments with labeled arcs (see Figures 6.2 and 6.3). Unlike constituent-based srl that maps

phrases to semantic roles, dependency-based srl maps head-tokens to semantic roles and considers

the subtrees of the head-tokens as arguments. This may lead to a concern about getting the actual

semantic chunks back, but previous studies have shown that it is possible to recover the original

chunks from the head-tokens with minimal loss (Ekeklint and Nivre, 2007; Choi and Palmer, 2010a).

We use predicate argument structures in PropBank for our experiments (Palmer et al., 2005).

For both constituent-based and dependency-based srl, it is possible to reduce the search space by

pruning argument candidates. This is because the PropBank guidelines generally restrict argument

candidates to constituents within the same domain of locality as their predicates (e.g., siblings of

the predicates in constituent trees, direct dependents of the predicates in dependency trees); thus, a
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semantic role labeler does not need to search beyond these candidates for argument identification.1

This pruning strategy works well when semantic role labeling is performed on gold-standard trees;

however, it does not work as well when automatically generated trees are used. This motivates the

development of an enhanced pruning algorithm that gives better recall for argument identification,

yet effectively prunes out argument candidates.

Traditionally, semantic role labeling is done in two steps, argument identification and argu-

ment classification (Gildea and Jurafsky, 2002; Johansson and Nugues, 2008). Argument identifi-

cation is the task of finding arguments of each predicate, and argument classification is the task

of assigning a semantic role to each argument with respect to the predicate. This is from a gen-

eral belief that each task requires a different set of features (Xue and Palmer, 2004), and training

these tasks in a pipeline takes less time than training them as a joint-inference task. However,

recent machine learning algorithms can train a large scale feature space quickly (Hsieh et al., 2008).

Furthermore, Choi and Palmer (2011b) have shown that this joint-inference approach performs as

accurately as the pipeline approach without using two separate sets of features. Thus, argument

identification and classification is performed jointly in our approach.

This chapter first illustrates how PropBank predicate argument structures, annotated on

constituent trees, can be mapped to dependency trees (Section 6.2). An enhanced argument prun-

ing algorithm, called a conditional higher-order argument pruning algorithm, is introduced next

(Section 6.3). Our experiments show that this new pruning algorithm improves both argument

identification and classification, yet keeps the average number of argument candidates close to the

original pruning algorithm (Section 6.5).
1 There are exceptional cases such as verb-particle constructions, prepositional phrases, coordinations, etc.
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6.2 Semantic roles in dependency structure

6.2.1 Predicate argument structures in PropBank

PropBank is a corpus in which arguments are annotated with the semantic roles they play with re-

spect to their predicates (Palmer et al., 2005). Predicates can be verbs, including light verbs (Hwang

et al., 2010), nouns, or even adjectives (Hawwari et al., 2011). Each predicate encompasses one or

more senses defining their own predicate argument structures in PropBank. For example, the verb

predicate open contains three senses, {open.01, open.02, open.03}, and each sense defines its own

argument structure (Figure 6.1). Thus, the verb open in “He opened the door with his foot at ten”

takes the first sense, open.01, and forms the argument structure described in Figure 6.2.

open

open.01: open open.02: begin open.03: cause to be not closed

ARG0: opener

ARG1: thing opened

ARG2: instrument

ARG3: benefactive

ARG0: causer of opening

ARG1: thing opened

ARG0: opener

ARG1: thing opened

ARG2: instrument

ARG3: benefactive

Figure 6.1: Three senses of the verb open and their argument structures in PropBank. The sense
open.03 is for a verb-particle construction, open up.

Figure 6.2: An example of a PropBank predicate argument structure. The verb predicate open is an-
notated with the sense open.01 and the argument structure containing three numbered arguments,
ARG0, ARG1, and ARG2, and one modifier, ARGM-TMP.

PropBanks in most languages are annotated on top of constituent Treebanks except for Hindi where

annotation is done on a dependency Treebank (Vaidya et al., 2011). When a constituent Treebank
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is used, each argument is annotated on one or more phrasal nodes (indicated by dotted boxes

in Figure 6.2). ARG0 and ARG1 represent an agent and a theme, respectively. ARG[0-4], called

numbered arguments, are elements that frequently co-occur with their predicates. These numbered

arguments do not always correspond to core arguments. For instance, PropBank annotates with

his foot as a numbered argument, ARG2 (an instrument), which is considered an oblique argument

in some other Linguistic theories (Van Valin, 1997, Chap. 3.2). Additionally, PropBank annotates

general event modifiers such as a temporal adjunct with ARGM-* labels (e.g., ARGM-TMP). Section B.1

provides more details about the semantic role labels used in PropBank.

6.2.2 Syntactic and semantic dependencies

When a dependency Treebank is used for PropBanking, arguments are labeled on the head-tokens

of the phrases instead. Head-tokens are retrieved by the headrules and heuristics described in Chap-

ter 2. Figure 6.3 shows an example of a dependency tree annotated with the semantic arguments in

Figure 6.2, where the top arcs show syntactic dependencies from the dependency conversion (Chap-

ter 2) and the bottom arcs show semantic dependencies extracted from PropBank. The head-token

of each argument phrase (indicated by a dotted box) has an incoming arc from its predicate with a

PropBank label. For instance, door is the head-token of the NP, the door, so it becomes a semantic

dependent of opened with the label, ARG1. This implies that the syntactic subtree of this head-token,

the door, is a semantic argument of the predicate open with the semantic role, ARG1.

Figure 6.3: A dependency tree annotated with the semantic arguments in Figure 6.2. The top arcs
show syntactic dependencies from the dependency conversion in Chapter 2, and the bottom arcs
show semantic dependencies extracted from PropBank.
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Semantic and syntactic dependencies are often aligned together. In Figure 6.3, door is a syntactic de-

pendent, DOBJ (direct object), as well as a semantic dependent, ARG1 (patient), of opened. Table 6.1

shows mappings between the semantic and syntactic dependencies in the OntoNotes Treebank. The

R-* and C-* labels represent referent and continuous arguments, respectively (see Section 6.2.3 for

more details about these labels).

SRL DEP Diverge Count
ARG0 NSUBJ:66.13 30.31 158,931
ARG1 DOBJ: 34.88, NSUBJ: 21.71 12.69 245,924
ARG2 PREP:24.59, ACOMP:20.06 3.22 84,368
ARG3 PREP:41.78 6.07 5,572
ARG4 DIR:57.43, PREP:24.77 2.92 4,898
ARGA NSUBJ:56.52 30.43 23

R-ARG0 NSUBJ:82.56 17.04 9,989
R-ARG1 NSUBJ:42.6, DOBJ:33.37 7.38 11,454
R-ARG2 ATTR:33.53 3.34 1,736
R-ARG3 NSUBJ:24.05 12.66 79
R-ARG4 DIR:78.46 0.00 65
C-ARG0 NSUBJ:34.91 23.08 169
C-ARG1 XCOMP:59.71 2.07 2,807
C-ARG2 PREP:38.14 10.31 97
C-ARG3 PREP:42.86 7.14 14
C-ARG4 DIR:50, PREP:25 0.00 8

C-V PRT:70.31 17.44 8,825
ARGM-ADJ AMOD:73.45 3.54 339
ARGM-ADV ADVMOD:41.34, ADVCL:29.54 5.74 28,780
ARGM-CAU PRP:80.94 6.27 4,990
ARGM-COM PREP:91.84 3.15 539
ARGM-DIR DIR:45.98, PRT:22.47 1.36 4,785
ARGM-DIS CC:34.24, INTJ:23.71, ADVMOD:22.42 6.05 28,316
ARGM-EXT ADVMOD:43.45 3.27 1,802
ARGM-GOL PREP:61.73 3.23 1,147
ARGM-LOC LOC:78.38 10.42 18,352
ARGM-MNR MNR:56.42 7.65 17,509
ARGM-MOD AUX:92.3 7.41 28,357
ARGM-NEG NEG:91.35 3.15 14,776
ARGM-PNC PRP:62.46, PREP:23.38 4.85 1,031
ARGM-PRD ADVCL:42.68, PREP:28.74 5.20 3,845
ARGM-PRP PRP:80.22 5.02 5,304
ARGM-REC NPADVMOD:51.95 3.90 154
ARGM-TMP TMP:85.61 7.93 50,528

Table 6.1: Mapping between semantic and syntactic dependencies. The SRL column shows semantic
labels, the DEP column shows syntactic labels associated with the semantic labels with probabilities
(in %), the Diverge column shows the probabilities of semantic dependents whose heads are not their
syntactic heads (in %), and the Count column shows the count of each semantic label. The R-* and
C-* labels represent referent and continuous arguments, respectively.
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Note that the syntactic dependencies in Table 6.1 use the semantic function tags from constituent

trees for dependency labels, as described in Figure 2.37 (page 43). This gives a clearer idea about how

the semantic function tags in constituent trees correspond to the semantic role labels in PropBank.

Our experiments show that the semantic and syntactic dependents are aligned about 86.44%.

6.2.3 Adding semantic roles to dependency trees

In principle, the head-token of each argument phrase becomes a semantic dependent of its predicate

with the same PropBank label in a dependency tree (Figures 6.2 and 6.3). However, for numbered

arguments containing discontinuous constituents, the same label is used for the leftmost constituent

whereas the C-* labels, indicating continuous arguments, are used for the remaining pieces of the

constituent in the parse tree. These continuous arguments are caused by linguistic phenomena such

as subject raising or right node raising, represented by secondary dependencies like XSUBJ or RNR

(Sections 2.5.4 and 2.5.3) in a dependency tree. In Figure 6.4, PropBank annotates S-2 as an ARG1

of the verb predicate allow, which is linked to NP-1 by the empty category *-1, representing subject

raising (see the constituent tree on the left). As a result, the numbered argument ARG1 consists of

the discontinuous constituents, NP-1 and S.

Figure 6.4: An example of a continuous argument. The dependency tree on the right is converted
from the constituent tree on the left, and the top and the bottom arcs show syntactic and semantic
dependencies, respectively. The numbered argument ARG1 consists of discontinuous constituents,
NP-1 and S. The secondary dependency XSUBJ is indicated by a dotted line.
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When this constituent tree is converted into a dependency tree (the rightmost tree in Figure 6.4),

there is no token whose subtree includes all tokens in both NP-1 and S; that is, He, to, and enter. At

least two tokens, He and enter, are required to represent the ARG1 of allowed in this dependency tree.

Note that the subtree of enter would have covered all of these tokens if the secondary dependency

XSUBJ were assumed; however, this assumption cannot be generally made because most dependency

parsers do not produce such secondary dependencies (Section 2.5). Labeling both He and enter as

ARG1s of allowed creates the ambiguity of them being either two separate arguments or one argument

with discontinuous constituents. Thus, only He is labeled as an ARG1 whereas enter is labeled as a

C-ARG1, meaning that it is still an ARG1 of allowed but is a continuation from another ARG1, He.

Figure 6.5: An example of discontinuous constituents, repeated from Figures 2.16 and 2.17. The
dependency tree at the bottom is converted from the constituent tree at the top with semantic roles.

Figure 6.5 shows the constituent and dependency trees in Figures 2.16 and 2.17 labeled with semantic

roles. PropBank annotates the ADJP-2 as an ARG2 of the verb predicate be, which is linked to PP-1

by the empty category, *ICH*-1. Unlike the previous case, this dependency tree has the head-token,

expensive, whose subtree contains all the tokens in both ADJP-2 and PP-1; that is, more, expensive,

than, and before. Thus, only expensive is labeled as an ARG2 of is, and the head-token of PP-1, than,
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is not labeled as a C-ARG2. Referent arguments are labeled as R-* when they are annotated in a

dependency tree. In Figure 6.6, PropBank annotates NP-2 as an ARG1 of the verb predicate head,

which is linked to WHNP-1 by the empty category *T*-1 representing wh-movement, then linked to

NP-3 by the linkReferent(C) method in Algorithm 2.11 (Section 2.5.2). Although there is a head-

token, highway, whose subtree contains all tokens in NP-3 and WHNP-1, this subtree also contains

other tokens including the predicate, which creates a cyclic relation. Thus, only the subtree of

highway excluding the subtree of heads is considered an ARG0 in the dependency tree; that is, The

and highway. This leaves out that as an argument, so it is labeled as a R-ARG0, meaning that it is

an ARG0 of heads, and its referent, highway, is also an ARG0 of the same predicate.

Figure 6.6: An example of a referent argument. The dependency tree at the bottom is converted
from the constituent tree at the top with semantic roles.

Note that referent arguments can be applied to modifiers as well. For instance, wh-complementizers

such as when or where are often labeled as a R-ARGM-TMP or a R-ARGM-LOC, meaning that it is a

temporal or a locative modifier with a referent, respectively.
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6.3 Argument pruning

6.3.1 First-order argument pruning

Xue and Palmer (2004) introduced a pruning algorithm for constituent-based semantic role labeling

that reduces the size of argument candidates by visiting only phrases that are siblings of either the

predicate or predicate’s ancestors. In Figure 6.2, NP-2, PP-3, and PP-4 are siblings of the predicate,

open, and NP-1 is a sibling of the predicate’s parent, VP; thus, all of these four phrases would be

considered argument candidates by this algorithm. Additionally, their algorithm considered direct

children of prepositional phrases argument candidates as well; thus, INs and NPs under PP-3 and

PP-4 would also be considered argument candidates.

Johansson and Nugues (2008) adapted this algorithm for dependency-based semantic role

labeling by visiting only direct dependents of either the predicate or predicate’s ancestors. Let us

term this first-order argument pruning since it takes only direct dependents into account. The term

‘n’th-order’ is borrowed from dependency parsing where only direct dependents are used for first-

order parsing whereas indirect dependents such as grand-dependents are also used for higher-order

parsing. In Figure 6.3, He, door, with, and at are direct dependents of opened, so these tokens are

considered argument candidates by this algorithm. Coupled with their predicate-argument reranker,

Johansson and Nugues (2008) achieved state-of-the-art performance for dependency-based semantic

role labeling in the CoNLL’08 shared task (Surdeanu et al., 2008) using this pruning algorithm.

6.3.2 Higher-order argument pruning

Although first-order argument pruning works well and effectively reduces the number of argument

candidates, it is based on a Linguistic theory called “domain of locality” (Joshi, 2004), which is most

effectively applied to gold-standard dependency trees, but does not apply as well to automatically

generated ones. Our experiments show that this first-order pruning algorithm visits over 99% of all

arguments using gold-standard dependency trees in our evaluation data sets, but visits less than

93% using automatically generated trees (see Figure 6.7). Argument coverage is particularly low for
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corpora whose automatic parse results are poor. This implies that the upper bound for recall for

semantic role labeling using this pruning algorithm is lower than 93% when automatically generated

dependency trees are used. Such a low upper bound in recall affects the overall F1-score; thus, a

higher-order pruning algorithm is needed for better argument coverage.

Algorithm 6.1 shows a method that takes a dependency tree T as input and produces a set

of semantic dependency arcs in T as output. This algorithm uses higher-order argument pruning,

which significantly improves the argument coverage when automatically generated dependency trees

are used for input (Figure 6.7). Note that all predicates are assumed to be identified in T ; predi-

cate identification is often not considered a part of semantic role labeling (Carreras and Màrques,

2004; Carreras and Màrquez, 2005; Hajič et al., 2009) although it is a necessary step. The diffi-

culty of building a predicate identification model comes from incomplete annotation in PropBank.

Currently, PropBank annotation in the OntoNotes v4.99 misses about 5% of verb instances, which

brings enough noise to negatively impact training and evaluation. Thus, gold-standard predicate

identification is used for our experiments.2

Algorithm 6.1 : getArgumentArcSet(T )

Input: A dependency tree T , where predicates are already identified.
Output: A set A containing semantic dependency arcs in T .

1: A← ∅
2: for p in all predicates in T do
3: getArgumentArcSetDown(p, p,A) # Algorithm 6.2
4: if p has the head h then getArgumentArcSetUp(p, h,A) # Algorithm 6.3
5: return A

Algorithm 6.2 : getArgumentArcSetDown(p, n,A)

Input: A predicate p, a dependency node n, and a set of dependency arcs A,
where n is either p or a descendant of p.

1: for d in all dependents of n do
2: if d is an argument of p with a label l then A← A ∪ {d l← p}
3: getArgumentArcSetDown(p, d,A)

2 The PropBank annotation is expected to be complete in v5.0. Once the OntoNotes v5.0 is released, we will train
and evaluate models for predicate identification.
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Algorithm 6.3 : getArgumentArcSetUp(p, h,A)

Input: A predicate p, a dependency node h, and a set of dependency arc A,
where h is an ancestor of p.

1: if h is an argument of p with a label l then A← A ∪ {h l← p}
2: for d in all dependents of h do
3: if d is an argument of p with a label l then A← A ∪ {d l← p}
4: if h has the head h′ then getArgumentArcSetUp(p, h′, A)

For each predicate in T , the getArgumentArcSetDown(p, d,A) method in Algorithm 6.2 is called

first, which finds semantic dependencies between the predicate and all descendants of the predicate.

This is where our algorithm is distinguished from the previous algorithm; only direct dependents of

the predicate are considered argument candidates in the first-order pruning algorithm. Then, the

getArgumentArcSetUp(p, h,A) method in Algorithm 6.3 is called, which finds semantic dependencies

between the predicate and predicate’s ancestors as well as their direct dependents. This time, only

direct dependents of the predicate’s ancestors are considered argument candidates; our experiments

show that visiting all descendants of the ancestors significantly increases the number of argument

candidates (Figure 6.10) without giving much improvement in labeling accuracy (Section 6.5.1).
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Figure 6.7: Argument coverage rates achieved by different pruning algorithms and input trees
(in %). W* and O* stand for pruning algorithms using trees automatically generated by the Wall
Street Journal and the OntoNotes models, and G* stands for algorithms using gold-standard trees,
respectively. *-F and *-H stands for the first-order and the higher-order pruning algorithms.

Figure 6.7 shows argument coverage rates achieved by different pruning algorithms and input trees

(in %). Given gold-standard dependency trees, both first-order and higher-order pruning algorithms
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show above 99% argument coverage rates. However, given automatically generated trees, the first-

order pruning algorithm shows around 91-93% whereas the higher-order pruning algorithm shows

around 97-98% argument coverage rates; the differences are statistically significant (McNemar’s test,

p < .0001). The argument coverage rates are higher for the OntoNotes model because it generates

higher quality dependency trees than the WSJ model (Section 5.6.1).

6.3.3 Conditional higher-order argument pruning

Higher-order argument pruning gives better argument coverage to semantic role labeling; however,

it also increases the number of argument candidates. To reduce the average number of argument

candidates, conditional higher-order argument pruning is proposed, which brings the complexity

close to the one achieved by the first-order argument pruning, yet still shows noticeably better

argument coverage. During training, dependency paths between predicates and dependency nodes

whose subtrees contain arguments of the predicates are collected. These paths are used to prune

out argument candidates that are not likely to form predicate argument structures during decoding.

Algorithm 6.4 : collectPathSets(T, cd, cu)

Input: A dependency tree T , where predicates are already identified.
Cutoffs cd and cu for down-paths and up-paths, respectively.

Output: Two sets Sd and Su containing down-paths and up-paths in T , respectively.

1: (Dd, Du)← ({ }, { }) # initialize empty dictionaries
2: for p in all predicates in T do
3: for d in all grand-dependents of p do
4: collectPathsDown(p, d,Dd) # Algorithm 6.5
5: if p has the grand-head h then collectPathsUp(p, h,Du) # Algorithm 6.6
6: Sd ← Dd.getKeys(cd)
7: Su ← Du.getKeys(cu)
8: return (Sd, Su)

Algorithm 6.4 shows a method that takes a dependency tree T and two cutoffs, cd and cu, as

input and produces two sets, Sd and Su, as output. The algorithm begins by initializing two

dictionaries, Dd and Du, in which keys and values are dependency paths and their occurrences

in T , respectively (line 1). For each predicate, dependency paths between the predicate and its
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descendants whose subtrees contain arguments of the predicate, called down-paths, are added to

Dd (lines 3-4). Note that dependency paths between the predicate and its direct dependents are not

collected because they are always considered argument candidates regardless of their paths to the

predicate. Similarly, dependency paths between the predicate and its ancestors whose dependents

are arguments of the predicate, called up-paths, are added to Du (line 5). Again, dependency paths

between the predicate and its head are not collected because the head and head’s dependents are

always considered argument candidates. Once this procedure is done, two sets Sd and Su are created

by selecting only paths in Dd and Du whose occurrences are greater than the cutoffs cd and cu,

respectively (lines 6-7). For our experiments, cutoffs of 5 and 0 are used for cd and cu, respectively.

Algorithm 6.5 : collectPathsDown(p, n,Dd)

Input: A predicate p, a dependency node n, and a dictionary Dd, where n is a descendant of p,
and keys and values in Dd are down-paths and their occurrences, respectively.

1: if n is an argument of p then
2: for a in getPathList(p, n.head) do Dd[a] ← Dd[a] + 1 # Algorithm 6.7
3: for d in all dependents of n do
4: collectPathsDown(p, d,Dd)

Algorithm 6.5 shows a method that collects down-paths between a predicate p and p’s descendant

n, where n is an argument of p (lines 1-2). In Figure 6.8, what is an R-ARG1 of the predicate see;

thus, dependency paths are collected between saw and what, ↓CONJ and ↓CONJ↓PREP, indicating that

these are paths from p to p’s descendants whose subtrees contain arguments of p. This procedure

is repeated recursively until all descendants of n are visited (lines 3-4).

Figure 6.8: An example of a down-path. For the predicate see and its argument what, two depen-
dency paths are collected, ↓CONJ and ↓CONJ↓PREP.



98

Algorithm 6.6 : collectPathsUp(p, h,Du)

Input: A predicate p, a dependency node h, and a dictionary Du, where h is an ancestor of p,
and keys and values in Du are up-paths and their occurrences, respectively.

1: if h has a dependent that is an argument of p then
2: for a in getPathList(h, p) do Du[a] ← Du[a] + 1 # Algorithm 6.7
3: if h has the head h′ then
4: collectPathsUp(p, h′, Du)

Algorithm 6.6 shows a method that collects up-paths between a predicate p and p’s ancestor h whose

dependent is an argument of p (lines 1-2). In Figure 6.9, He is an ARG0 of the predicate join; thus,

dependency paths are collected between saw and He, ↑XCOMP and ↑XCOMP↑CONJ, indicating that

these are either intermediate or full paths from p to p’s ancestor whose dependent is an argument

of p. This procedure is repeated recursively until all ancestors of h are visited (lines 3-4).

Figure 6.9: An example of an up-path. For the predicate join and its argument He, two dependency
paths are collected, ↑XCOMP and ↑XCOMP↑CONJ.

Algorithm 6.7 shows a method that takes dependency nodes t and b as input, where t is an ancestor

of b, and a list L of dependency paths between t and b as output. A dependency path can have a

height of one (e.g., ↓CONJ) or many (e.g., ↓CONJ↓PREP), depending on the hierarchy between t and b.

Algorithm 6.7 : getPathList(t, b)

Input: Dependency nodes t and b, where t is an ancestor of b.
Output: A list L containing dependency paths between t and b.

1: L← [ ]
2: while t 6= b do
3: L.add(the dependency path between t and b) # e.g., ↓CONJ, ↑XCOMP
4: b← b.head
5: return L
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Given the sets of dependency paths collected by Algorithm 6.4, the higher-order pruning algorithm

in Section 6.3.2 can be rewritten as a conditional higher-order pruning algorithm. Algorithm 6.8

shows a method that uses conditional higher-order argument pruning; it is similar to the method in

Algorithm 6.1, except that it calls Algorithms 6.9 and 6.10, which prune out argument candidates

more rigorously than Algorithms 6.2 and 6.3 called in Algorithms 6.1.

Algorithm 6.8 : getArgumentArcSetCon(T, Sd, Su)

Input: A dependency tree T , a set of down-paths Sd, and a set of up-paths Su,
where predicates are already identified in T .

Output: A set A containing semantic dependency arcs in T .

1: A← ∅
2: for p in all predicates in T do
3: getArgumentArcSetDownCon(p, p,A, Sd) # Algorithm 6.9
4: if p has the head h then getArgumentArcSetUpCon(p, h,A, Su) # Algorithm 6.10
5: return A

Algorithm 6.9 shows a method that is similar to the method in Algorithm 6.2, except that it checks

if the down-path from predicate p to its descendant d exists in Sd, which contains down-paths

collected by Algorithm 6.5 (line 3). If Sd does not contain the down-path between p and d, all

descendants of d are discarded from being argument candidates of p.

Algorithm 6.9 : getArgumentArcSetDownCon(p, n,A, Sd)

Input: A predicate p, a dependency node n, a set of dependency arcs A, and
a set of down-paths Sd, where n is either p or a descendant of p.

1: for d in all dependents of n do
2: if d is an argument of p with a label l then A← A ∪ {d l← p}
3: if Sd contains the dependency path between p and d then # conditional
4: getArgumentArcSetDownCon(p, d,A, Sd)

Algorithm 6.10 shows a method that is similar to the method in Algorithm 6.3, except that it checks

if the up-path from predicate p to its ancestor h′ exists in Su, which contains up-paths collected by

Algorithm 6.6 (line 5). If Su does not contain the up-path between p and h′, all dependents and

ancestors of h′ as well as h′ itself are discarded from being argument candidates of p.
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Algorithm 6.10 : getArgumentArcSetUpCon(p, h,A, Su)

Input: A predicate p, a dependency node h, a set of dependency arc A, and
a set of up-paths Su, where h is an ancestor of p.

1: if h is an argument of p with a label l then A← A ∪ {h l← p}
2: for d in all dependents of h do
3: if d is an argument of p with a label l then A← A ∪ {d l← p}
4: if (h has the head h′) and
5: (Su contains the dependency path between h′ and p) then # conditional
6: getArgumentArcSetUpCon(p, h′, A, Su)
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Figure 6.10: The average number of argument candidates for different pruning algorithms with
respect to sentence lengths. The top and the bottom figures show results achieved by the Wall Street
Journal and OntoNotes models, respectively. *A stands for an algorithm considering all dependency
nodes as argument candidates. *F, *H, and *H+ stand for the first-order, the higher-order, and the
conditional higher-order pruning algorithms, respectively.

Figure 6.10 shows the average numbers of argument candidates compared by different pruning

algorithms with respect to sentence lengths. For both the Wall Street Journal (W+) and OntoNotes

(O+) models, the higher-order pruning algorithm (*H) consistently compares about twice as many

argument candidates as the first-order pruning algorithm (*F), although it compares significantly
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less than the algorithm comparing all dependency nodes (*A). The conditional higher-order pruning

algorithm (*H+) gives an average number of argument candidates close to the one achieved by

the first-order pruning algorithm. The gap between these two algorithms becomes smaller as the

sentence length increases, which implies that the conditional higher-order pruning algorithm is even

more effective for longer sentences.

6.4 Features

6.4.1 Feature templates

Table 6.2 shows the feature templates used for our semantic role labeling experiments. Our feature

templates are inspired by Johansson and Nugues (2008) although we combine their feature sets, one

for argument identification and the other for argument classification, into one.3 wp and wa stand

for the current predicate and the argument candidate, respectively. wx+n stands for the word token

whose distance from wx is n. hd(x) stands for the head of x. ld(x) and rd(x) stand for the leftmost

and rightmost dependents of x. ls(x) and rs(x) stand for the left-nearest and right-nearest siblings

of x. The Form, Lemma, POS, Deprel, Depset, SubcatL, and SubcatR columns indicate the word

form, lemma, pos tag, dependency label, sub-dependency label set, left subcategorization, and right

subcategorization features of the corresponding token, respectively. These features are used either

individually or jointly (e.g., pos tags of both wp and wa make one feature).

The dependency label set is derived by collecting all dependency labels of wpred’s direct

dependents. For the predicate open in Figure 6.3, the dependency label set is {NSUBJ,DOBJ, PREP}.

Unlike Johansson and Nugues (2008), we decompose subcategorization features into two parts: one

representing the left-hand side and the other representing the right-hand side dependencies of wpred.

For the predicate open in Figure 6.3, the left-hand side subcategorization is ←−−−NSUBJ and the right-

hand side subcategorization is −−−−−−−−−−−→DOBJ-PREP-PREP. Our experiments show that with this separation,

the subcategorization features generalize better. In addition to the features in Table 6.2, three
3 Johansson and Nugues (2008)’s feature templates are also inspired by previous work on constituent-based se-

mantic role labeling (Gildea and Jurafsky, 2002; Pradhan et al., 2008).
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kinds of path features are added: pos paths, dependency paths, and height paths. In Figure 6.9,

the pos and dependency paths between the predicate join and its argument He are ↑VBD↑VBD↓PRP

and ↑XCOMP↑CONJ↓NSUBJ, respectively. The height path, introduced by Choi and Palmer (2011b),

indicates the height between a predicate and its argument. Let LCA be the lowest common ancestor

of join and He in Figure 6.9; that is came. The height path between these two tokens is ↑2↓1,

implying that the height between join and LCA is 2 and the height between He and LCA is 1.

Token Form Lemma POS Deprel Subset SubcatL SubcatR
wp X X X X X X X
wp−1 X X
wp+1 X X
hd(wp) X X X X
ld(wp) X X
rd(wp) X X
wa X X X X
wa−1 X X
wa+1 X
hd(wa) X
ld(wa) X X
rd(wa) X X
ls(wa) X
rs(wa) X X

Table 6.2: Feature templates for semantic role labeling.

We also use the last two predicted numbered argument labels of the current predicate as features.

Finally, two kinds of binary features are used: if warg is a syntactic head of wpred and if wpred is a

syntactic head of warg.

6.4.2 Positional feature separation

Features in Section 6.4.1 are divided into two sets and trained separately: one contains features for

arguments on the left-hand side and the other contains features for arguments on the right-hand side

of the predicate. From our experiments, we found that separating these features improves the overall

F1-score of semantic role labeling, evaluated for both argument identification and classification,

whereas having one combined set of features shows an advantage when semantic role labeling is

evaluated for only argument identification.
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6.5 Experiments

6.5.1 Accuracy comparisons

Tables 6.3 and 6.4 show F1-scores for semantic role labeling (Fh∧l in Table 3.1), achieved by the WSJ

and OntoNotes models, respectively. The Baseline model uses the first-order pruning algorithm in

Section 6.3.1. The Baseline+ model is the Baseline model with positional feature separation from

Section 6.4.2; positional feature separation is also applied to all the other models. The High-order

model uses the higher-order pruning algorithm in Section 6.3.2. The No-pruning model does not use

any pruning algorithm. The ClearNLP model uses the conditional higher-order pruning algorithm

in Section 6.3.3. The ClearNLP model is compared to another dependency-based semantic role

labeler, ClearParser, which uses a transition-based semantic role labeling algorithm showing state-

of-the-art performance on the CoNLL’09 shared task data for English (Choi and Palmer, 2011b).

ClearParser uses the same positional feature separation and does not use any pruning algorithms.

Model BC BN MD MP MZ SH TC WB Avgi Avgo

Baseline 72.79 75.84 69.40 68.68 73.21 61.67 69.82 71.53 81.88 71.07
Baseline+ 73.20 76.51 69.93 69.66 73.76 62.26 70.29 72.02 82.28 71.64
High-order 73.56 76.86 70.19 70.00 73.93 62.15 70.38 72.48 82.52 71.90
No-pruning 73.63 76.87 70.47 70.08 73.99 62.18 70.46 72.25 82.48 71.95
ClearNLP 73.45 76.80 70.07 69.97 74.11 62.21 70.39 72.21 82.42 71.85
ClearParser 73.37 76.40 68.52 68.36 73.57 62.76 71.03 72.53 82.26 71.52

Table 6.3: F1-scores of semantic role labeling from the WSJ models (in %).

OntoNotes Medical Average
Model BC BN MZ NW TC WB MD MP SH Avgi Avgo

Baseline 81.76 80.62 78.99 82.90 82.57 76.17 71.84 71.63 62.67 80.73 70.02
Baseline+ 82.00 81.27 79.43 83.43 83.35 77.14 72.42 72.03 63.26 81.33 70.54
High-order 82.32 81.47 79.36 83.68 83.54 77.28 72.56 72.32 63.11 81.51 70.68
No-pruning 82.33 81.50 79.37 83.62 83.50 77.12 72.79 72.26 63.43 81.48 70.81
ClearNLP 82.33 81.46 79.37 83.66 83.57 77.33 77.04 72.23 63.26 81.52 70.68
ClearParser 82.53 81.36 79.66 83.66 83.96 77.50 71.32 71.57 63.88 81.69 70.01

Table 6.4: F1-scores of semantic role labeling from the OntoNotes models (in %).

The Avgi and Avgo columns show the micro average F1-scores for in-genre and out-of-genre ex-

periments. For the WSJ models, the F1-score of NW is measured for Avgi and the micro average
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of all other corpora are measured for Avgo. For the OntoNotes models, the micro averages of the

OntoNotes and Medical corpora are measured for Avgi and Avgo, respectively. The Baseline+ model

shows higher scores than the Baseline model and the High-order model shows higher scores than

the Baseline+ model for all experiments, which indicates that the positional feature separation and

the higher-order pruning algorithm improve labeling accuracy for both in-genre and out-of-genre

experiments. Although the High-order model performs better than the No-pruning model for all

in-genre experiments, the No-pruning model performs better for all out-of-genre experiments; this is

expected because the higher-order pruning algorithm performs less accurately when syntactic parse

input is poor, which is the case for out-of-genre experiments.

The ClearNLP model shows lower scores than the High-order model for both Avgi and Avgo

in Table 6.3; however, it shows similar or slightly higher scores than the High-order model for both

Avgi and Avgo in Table 6.4. This is because the ClearNLP model could not learn enough conditions

from the WSJ corpus whereas enough conditions are learned from the OntoNotes coprora so the

ClearNLP model can perform as accurately as the High-order model. For both Avgi and Avgo in

Table 6.3, the ClearNLP model shows higher scores than ClearParser. In Table 6.4, ClearParser

performs better for Avgi whereas the ClearNLP model performs significantly better for Avgo. This

implies that our approach works more effectively for out-of-genre experiments.

WSJ: Avgi WSJ: Avgo Onto: Avgi Onto: Avgo

Model P R P R P R P R
Baseline 84.74 79.20 72.39 69.79 83.20 78.41 66.63 73.77
Baseline+ 86.52 78.44 74.07 69.36 85.24 77.77 68.12 73.14
High-order 86.65 78.78 74.29 69.65 85.12 78.19 68.21 73.33
No-pruning 86.94 78.45 74.70 69.40 85.30 77.99 68.64 73.13
ClearNLP 86.47 78.73 74.13 69.70 85.05 78.28 68.08 73.48
ClearParser 84.45 80.17 71.74 71.29 83.50 79.96 65.92 74.64

Table 6.5: Precisions (P) and recalls (R) for in-genre (Avgi) and out-of-genre (Avgo) experiments
(in %). The WSJ and Onto columns show scores achieved by the WSJ and OntoNotes models.

Table 6.5 shows precisions and recalls for in-genre and out-of-genre experiments. The No-pruning

model shows the highest precisions whereas ClearParser shows the highest recalls for all experiments.

The High-order model shows higher recalls than the Baseline+ model for all experiments, which
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is expected. Interestingly, the ClearNLP model shows higher recalls than the No-pruning models

for all experiments; the differences are statistically significant (McNemar, p < .01). Furthermore,

the ClearNLP models show higher recalls than the High-order models for most experiments even

with the more aggressive pruning algorithm; the differences for the OntoNotes experiments are

statistically significant (McNemar, p < .01). We suspect that this is because the conditional higher-

order pruning algorithm reduces more noise for recall than the naive higher-order pruning algorithm

so it performs better even with fewer argument candidates. On the other hand, the ClearNLP models

do not show high precision for all experiments. We will explore the possibility of improving precision

for the ClearNLP models through error analysis in the future.

WSJ: Avgi WSJ: Avgo Onto: Avgi Onto: Avgo

Model ARGN ARGM ARGN ARGM ARGN ARGM ARGN ARGM
Baseline 85.81 71.14 75.91 59.07 84.69 71.76 73.49 60.81
Baseline+ 86.27 71.18 76.52 59.35 85.40 71.93 74.06 60.94
High-order 86.49 71.43 76.76 59.58 85.51 72.28 74.08 61.39
No-pruning 86.54 71.08 76.83 59.56 85.53 72.10 74.25 61.38
ClearNLP 86.48 71.07 76.72 59.56 85.53 72.29 74.14 61.22
ClearParser 86.66 70.21 76.58 58.98 85.90 72.15 73.90 59.70

Table 6.6: F1-scores of numbered arguments (ARGN) and modifiers (ARGM) for in-genre and
out-of-genre experiments (in %).

Table 6.6 shows F1-scores of numbered arguments and modifiers for in-genre and out-of-genre ex-

periments. The ClearNLP model shows the highest scores for predicting both numbered arguments

and modifiers for the OntoNotes in-genre experiment (Onto: Avgi), whereas the other models show

advantages for other experiments.

6.5.2 Speed comparisons

Labeling speeds are measured by running each system on a mixture of all data. All systems are

written in Java; ClearParser has its own implementation and the other models are implemented in

the same system. Table 6.7 shows speed comparisons between five models; the top and bottom five

rows show results from the WSJ and OntoNotes models, respectively. The T# columns show how

many milliseconds each model takes for labeling all arguments of each predicate in 5 trials, and the
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Avg column shows the average labeling speeds of the middle three trials, and the Arguments column

shows how many arguments are labeled per second. The ClearNLP models take about 0.42 - 0.45

milliseconds per predicate, which is slower than the Baseline+ model but faster than all the other

models. The ClearNLP model labels over 1,500 more arguments per second than the high-order

model, which is noticeably faster. Notice that ClearParser shows faster speeds than the No-pruning

model even though neither of them uses any pruning algorithm. This comes from implementation

differences between these two systems; ClearParser walks through an array for searching arguments

whereas the No-pruning model traverses a tree. Since accessing an array is quicker than traversing

a tree, the No-pruning model shows slower labeling speeds than ClearParser although they compare

an equal number of argument candidates.

Model T1 T2 T3 T4 T5 Avg Arguments

WSJ

Baseline+ 0.34 0.34 0.34 0.35 0.39 0.34 7,111
High-order 0.58 0.60 0.60 0.60 0.61 0.60 4,062
No-pruning 0.77 0.78 0.80 0.81 0.88 0.80 3,081
ClearNLP 0.41 0.42 0.42 0.42 0.42 0.42 5,856
ClearParser 0.60 0.61 0.63 0.66 0.69 0.63 3,877

ON

Baseline+ 0.35 0.35 0.35 0.35 0.39 0.35 6,934
High-order 0.62 0.62 0.62 0.64 0.64 0.63 3,904
No-pruning 0.80 0.82 0.83 0.84 0.86 0.83 2,947
ClearNLP 0.45 0.45 0.45 0.45 0.46 0.45 5,410
ClearParser 0.61 0.63 0.63 0.63 0.66 0.63 3,882

Table 6.7: Labeling speeds (in ms.). The top and the bottom five rows show results from the WSJ
and OntoNotes models, respectively.

Figure 6.11 shows labeling speeds with respect to sentence lengths achieved by the WSJ (the top

figure) and OntoNotes (the bottom figure) models. ClearParser and the No-pruning models show

almost complete linear growth whereas the other models show somewhat similar logarithm growth,

implying that the pruning algorithms work more effectively for longer sentences. The ClearNLP

model shows labeling speeds close to the Baseline+ model; especially for longer sentences. This

implies that the ClearNLP model, using the conditional higher-order pruning algorithm, runs almost

as fast as the Baseline+ model, using the first-order pruning algorithm, yet performs more accurately.
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Figure 6.11: Average labeling speeds with respect to sentence lengths. The top and the bottom
figures show parsing speeds achieved by the WSJ and OntoNotes models, respectively. The bottom
table shows the number of sentences in each group. : No-pruning, : ClearParser, :
High-order, : ClearNLP, : Baseline+.



Chapter 7

Conclusion

This thesis focuses on the optimization of nlp components for robustness and scalability. All trees

in constituent Treebanks are converted into dependency trees in the Clear dependency format and

semantic roles in PropBanks are mapped accordingly to these dependency trees. For dependency

conversion, new head-finding rules and heuristics are introduced to handle format changes in recent

English Treebanks, allowing us to generate richer and more robust dependency representations than

previous approaches. For pos tagging, dynamic model selection is introduced, which shows more

robust tagging accuracy across different genres and runs noticeably faster than two other state-of-

the-art pos taggers. Our selection approach is more effective when training data is small and is

used for tagging data with many varieties. For dependency parsing, a new transition-based parsing

algorithm and a bootstrapping technique are introduced. Our parsing algorithm shows linear time

parsing speed for generating both projective and non-projective dependency trees and shows a lower

average number of transitions performed compared to other transition-based parsing algorithms.

Our bootstrapping technique gives significant improvement on parsing accuracy showing higher

performance against two other state-of-the-art dependency parsers. For semantic role labeling,

a conditional higher-order argument pruning algorithm is introduced. A higher-order argument

pruning algorithm improves the coverage of argument candidates and shows improvement on the

overall F1-score. The conditional higher-order argument pruning algorithm noticeably reduces the

average number of argument candidates with little compromise of the F1-score.
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To the best of our knowledge, this is the first time that these three components have been evaluated

on such a wide variety of English data using the same experimental settings. Our results for in-genre

and out-of-genre experiments give helpful feedback for many nlp tasks such as machine translation

or information extraction that depend significantly on the outputs of these components and need

to process large-scale heterogeneous data. Processing all three components takes about 2.49-2.69

milliseconds per sentence using our approaches and implementations (0.36-0.37 milliseconds for pos

tagging, 1.16-1.28 milliseconds for dependency parsing, and 0.97-1.04 milliseconds for semantic role

labeling), which handles over 370 sentences per second. Additionally, our dependency conversion is

useful for those who want to generate gold-standard dependency trees for training. All components

are implemented in an open source project called ClearNLP and are publicly available.1 It is

worth mentioning that the main advantage of ClearNLP over ClearParser comes from modular

programming. ClearParser is designed specifically for dependency parsing and semantic role labeling

and it runs fast for those tasks, but it is hard to extend its APIs to other components. ClearNLP

is designed to be more modular and to interface easily with other nlp components in general i.e.,

it is easier to extend its APIs to other nlp components such as a pos tagger or a DAG (directed

acyclic graph) parser.2

There is still much room for improvement. For all three tasks, no extensive feature engineering

is performed, which needs to be done for optimum results. We will try to apply automatic feature

selection techniques such as Chi-square (Liu and Setiono, 1995) that may improve the speed and

accuracy of our nlp components. For pos tagging, we will try to integrate our dynamic model

selection approach with more sophisticated tagging algorithms such as bidirectional dependency

networks (Toutanova et al., 2003) in hopes of improve accuracy further. Moreover, we will explore

the possibility of using unsupervised clustering techniques to automatically group training data

into meaningful document sets for dynamic model selection. For dependency parsing, we will try

to compare parse results for non-projective trees with languages containing more non-projective
1 ClearNLP: clearnlp.googlecode.com, ClearParser: clearparser.googlecode.com
2 ClearNLP includes a DAG parser that is still experimental.
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dependencies such as Czech (Hajič et al., 2000), Danish (Kromann, 2003), Sloven (Džeroski et al.,

2006), etc. and see which transitions help or hurt performance in non-projective parsing. We will also

try to apply more exhaustive search techniques such as k-best parsing or beam search to improve our

parsing accuracy further. For semantic role labeling, we plan to implement a predicate identification

module in ClearNLP so the entire srl process can be automated. We also plan to implement an

argument spanning module in ClearNLP so it can produce the actual spans of semantic arguments

instead of just head-tokens. Most importantly, we will analyze what types of errors made by our

dependency parser hurt the most for semantic role labeling and try to improve labeling accuracy

for these error cases.
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Appendix A

Constituent Treebank Tags

This appendix shows tags used in various constituent Treebanks for English (Marcus et al., 1993;

Nielsen et al., 2010; Weischedel et al., 2011; Verspoor et al., 2012). Tags followed by ∗ are not the

typical Penn Treebank tags but used in some other Treebanks.

A.1 Function tags

Syntactic roles
ADV Adverbial PUT Locative complement of put
CLF It-cleft PRD Non-VP predicate
CLR Closely related constituent RED∗ Reduced auxiliary
DTV Dative SBJ Surface subject
LGS Logical subject in passive TPC Topicalization
NOM Nominalization

Semantic roles
BNF Benefactive MNR Manner
DIR Direction PRP Purpose or reason
EXT Extent TMP Temporal
LOC Locative VOC Vocative

Text and speech categories
ETC Et cetera SEZ Direct speech
FRM∗ Formula TTL Title
HLN Headline UNF Unfinished constituent
IMP Imperative

Table A.1: A list of function tags for English.
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A.2 Part-of-speech tags

Word level tags
ADD Email POS Possessive ending
AFX Affix PRP Personal pronoun
CC Coordinating conjunction PRP$ Possessive pronoun
CD Cardinal number RB Adverb
CODE Code ID RBR Adverb, comparative
DT Determiner RBS Adverb, superlative
EX Existential there RP Particle
FW Foreign word TO To
GW Go with UH Interjection
IN Preposition or subordinating conjunction VB Verb, base form
JJ Adjective VBD Verb, past tense
JJR Adjective, comparative VBG Verb, gerund or present participle
JJS Adjective, superlative VBN Verb, past participle
LS List item marker VBP Verb, non-3rd person singular present
MD Modal VBZ Verb, 3rd person singular present
NN Noun, singular or mass WDT Wh-determiner
NNS Noun, plural WP Wh-pronoun
NNP Proper noun, singular WP$ Possessive wh-pronoun
NNPS Proper noun, plural WRB Wh-adverb
PDT Predeterminer XX Unknown

Punctuation like tags
$ Dollar -LRB- Left bracket
: Colon -RRB- Right bracket
, Comma HYPH Hyphen
. Period NFP Superfluous punctuation
“ Left quote SYM Symbol
” Right quote PUNC General punctuation

Table A.2: A list of part-of-speech tags for English.
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A.3 Clause and phrase level tags

Clause level tags
S Simple declarative clause
SBAR Clause introduced by a subordinating conjunction
SBARQ Direct question introduced by a wh-word or a wh-phrase
SINV Inverted declarative sentence
SQ Inverted yes/no question, or main clause of a wh-question

Phrase level tags
ADJP Adjective phrase NX N-bar level phrase
ADVP Adverb phrase PP Prepositional phrase
CAPTION∗ Caption PRN Parenthetical phrase
CIT∗ Citation PRT Particle
CONJP Conjunction phrase QP Quantifier Phrase
EDITED Edited phrase RRC Reduced relative clause
EMBED Embedded phrase TITLE∗ Title
FRAG Fragment TYPO Typo
HEADING∗ Heading UCP Unlike coordinated phrase
INTJ Interjection VP Verb phrase
LST List marker WHADJP Wh-adjective phrase
META Meta data WHADVP Wh-adverb phrase
NAC Not a constituent WHNP Wh-noun phrase
NML Nominal phrase WHPP Wh-prepositional phrase
NP Noun phrase X Unknown

Table A.3: A list of clause and phrase level tags for English.
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Semantic Role Labels

B.1 PropBank semantic role labels

This appendix shows a list of the PropBank semantic role labels. See Bonial et al. (2010) for more

details about the PropBank semantic role labels.

Label Description
ARG0 Agent
ARG1 Patient, theme
ARG2 Instrument, benefactive, attribute
ARG3 Staring point
ARG4 Ending point
ARGA External causer
ARGM-ADJ Adjectival
ARGM-ADV Adverbial
ARGM-CAU Cause
ARGM-COM Comitative
ARGM-DIR Direction
ARGM-DIS Discourse
ARGM-GOL Goal
ARGM-EXT Extent
ARGM-LOC Location
ARGM-MNR Manner
ARGM-MOD Modal
ARGM-NEG Negation
ARGM-PRD Secondary predication
ARGM-PRP Purpose (previously, ARGM-PNC)
ARGM-REC Recipricol
ARGM-TMP Temporal

Table B.1: A list of the PropBank semantic role labels.
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B.2 VerbNet thematic role labels

This appendix shows a list of the VerbNet thematic role labels. See Bonial et al. (2011) for more

details about the VerbNet thematic role labels.

Label Description
actor1,2 pseudo-agents, used for some communication classes
agent animate subject, volitional or internally controlled
asset currency, used for Build/Get/Obtain Classes
attribute changed quality of patient/theme
beneficiary Entity benefiting from action
cause entity causing an action, used for psychological/body verbs
destination End point/target of motion
experiencer Participant that is aware of experiencing something
extent Range or degree of change
instrument Objects/forces that come into contact and cause change in another object
location Underspecified destination/source/place
material Starting point of transformation
patient1,2 Affected participants, used for some combining/attaching verbs
predicate Predicative complement
product End result of transformation
recipient Target of transfer
source Spatial location, starting point
stimulus Events/objects that elicit a response from an experiencer
theme Participants in/undergoing a change of location
theme1,2 Indistinct themes, used for differ/exchange classes
patient Affected participants undergoing a process
time Class-specific, express temporal relations
topic Topic of conversation, message, used for communication verbs
proposition Complement clause indicating desired/requested action, used for order class

Table B.2: A list of the VerbNet thematic role labels.
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Dependency Labels

C.1 CoNLL dependency labels

This appendix shows a list of the CoNLL dependency labels. See Johansson (2008, Chap. 4) for

more details about the CoNLL dependency labels.

Labels retained from function tags
ADV Unclassified adverbial MNR Manner
BNF Benefactor PRD Predicative complement
DIR Direction PRP Purpose or reason
DTV Dative PUT Locative complement of put
EXT Extent SBJ Subject
LGS Logical subject TMP Temporal
LOC Locative VOC Vocative

Labels inferred from constituent relations
AMOD Modifier of adjective or adverb OPRD Object predicate
CONJ Conjunct P Punctuation
COORD Coordination PMOD Modifier of preposition
DEP Unclassified dependency PRN Parenthetical
EXTR Extraposed element PRT Particle
GAP Gapping QMOD Modifier of quantifier
IM Infinitive marker ROOT Root
NMOD Modifier of nominal SUB Subordinating conjunction
OBJ Object or clausal complement VC Verb chain

Table C.1: A list of the CoNLL dependency labels.
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C.2 Stanford dependency labels

This appendix shows a list of the Stanford dependency labels. See de Marneffe and Manning (2008b)

for more details about Stanford dependency labels.

Label Description Label Description
ABBREV Abbreviation modifier NPADVMOD Noun phrase as ADVMOD
ACOMP Adjectival complement NSUBJ Nominal subject
ADVCL Adverbial clause modifier NSUBJPASS Nominal subject (passive)
ADVMOD Adverbial modifier NUM Numeric modifier
AGENT Agent NUMBER Element of compound number
AMOD Adjectival modifier PARATAXIS Parataxis
APPOS Appositional modifier PARTMOD Participial modifier
ATTR Attribute PCOMP Prepositional complement
AUX Auxiliary POBJ Object of a preposition
AUXPASS Auxiliary (passive) POSS Possession modifier
CC Coordination POSSESSIVE Possessive modifier
CCOMP Clausal complement PRECONJ Preconjunct
COMPLM Complementizer PREDET Predeterminer
CONJ Conjunct PREP Prepositional modifier
COP Copula PREPC Prepositional clausal modifier
CSUBJ Clausal subject PRT Phrasal verb particle
CSUBJPASS Clausal subject (passive) PUNCT Punctuation
DEP Dependent PURPCL Purpose clause modifier
DET Determiner QUANTMOD Quantifier phrase modifier
DOBJ Direct object RCMOD Relative clause modifier
EXPL Expletive REF Referent
INFMOD Infinitival modifier REL Relative
IOBJ Indirect object ROOT Root
MARK Marker TMOD Temporal modifier
MWE Multi-word expression XCOMP Open clausal complement
NEG Negation modifier XSUBJ Controlling subject
NN Noun compound modifier

Table C.2: A list of the Stanford dependency labels.
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The Clear Dependency Labels

This appendix gives descriptions of the Clear dependency labels. Algorithms introduced here are

called by the getDependencyLabel(C,P, p) method in Algorithm 2.10. Algorithms followed by >

(e.g., setPassiveSubject(D,H)> in Algorithm D.2) are called after the getDependencyLabel(C,P, p)

method and applied to all dependency nodes.

D.1 Arguments: subject related

Subject-related labels consist of agents (AGENT), clausal subjects (CSUBJ), clausal passive subjects

(CSUBJPASS), expletives (EXPL), nominal subjects (NSUBJ), and nominal passive subjects (NSUBJPASS).

Algorithm D.1 : getSubjectLabel(C, d)

Input: Constituents C and d, where d is the head dependent of C.
Output: CSUBJ, NSUBJ, EXPL, or AGENT if C is a subject-related argument; otherwise, null.

1: if C has SBJ then
2: if C is S* return CSUBJ # Section D.1.2
3: if d is EX return EXPL # Section D.1.4
4: return NSUBJ # Section D.1.5
5: if C has LGS return AGENT # Section D.1.1
6: return null



126

Algorithm D.2 : setPassiveSubject(D,H)>

Input: Dependents D and H, where H is the head of D.
Output: If D is a passive subject, append PASS to its label.

1: if H contains AUXPASS then
2: if D is CSUBJ then D.label ← CSUBJPASS # Section D.1.3
3: elif D is NSUBJ then D.label ← NSUBJPASS # Section D.1.6

D.1.1 AGENT: agent

An agent is the complement of a passive verb that is the surface subject of its active form. In our

approach, the preposition by is included as a part of AGENT.

(1) The car was bought [by John] AGENT(bought, by), POBJ(by, John)

(2) The car bought [by John] is red AGENT(bought, by), POBJ(by, John)

D.1.2 CSUBJ: clausal subject

A clausal subject is a clause in the subject position of an active verb. A clause with a SBJ function

tag is considered a CSUBJ.

(1) [Whether she liked me] doesn’t matter CSUBJ(matter, liked)

(2) [What I said] was true CSUBJ(was, said)

(3) [Who I liked] was you CCOMP(was, liked), NSUBJ(was, you)

In (3), Who I liked is topicalized such that it is considered a clausal complement (CCOMP) of was;

you is considered a nominal subject (NSUBJ) of was.

D.1.3 CSUBJPASS: clausal passive subject

A clausal passive subject is a clause in the subject position of a passive verb. A clause with the SBJ

function tag that depends on a passive verb is considered a CSUBJPASS.

(1) [Whoever misbehaves] will be dismissed CSUBJPASS(dismissed, misbehaves)
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D.1.4 EXPL: expletive

An expletive is an existential there in the subject position.

(1) There was an explosion EXPL(was, There)

D.1.5 NSUBJ: nominal subject

A nominal subject is a non-clausal constituent in the subject position of an active verb. A non-

clausal constituent with the SBJ function tag is considered a NSUBJ.

(1) [She and I] came home together NSUBJ(came, She)

(2) [Earlier] was better NSUBJ(was, Earlier)

D.1.6 NSUBJPASS: nominal passive subject

A nominal passive subject is a non-clausal constituent in the subject position of a passive verb. A

non-clausal constituent with the SBJ function tag that depends on a passive verb is considered a

NSUBJPASS.

(1) I [am] drawn to her NSUBJPASS(drawn, I)

(2) We will [get] married NSUBJPASS(married, We)

(3) She will [become] nationalized NSUBJPASS(nationalized, She)

D.2 Arguments: object related

Object-related labels consist of attributes (ATTR), direct objects (DOBJ), indirect objects (IOBJ), and

object predicates (OPRD).

Algorithm D.3 : getObjectLabel(C)

Input: A constituent C whose parent is VP|SINV|SQ.
Output: DOBJ or ATTR if C is in an object or an attribute; otherwise, null.

1: if C is NP|NML then
2: if C has PRD return ATTR # Section D.2.1
3: return DOBJ # Section D.2.2
4: return null
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D.2.1 ATTR: attribute

An attribute is a noun phrase that is a non-VP predicate usually following a copula verb.

(1) This product is [a global brand] ATTR(is, brand)

(2) This area became [a prohibited zone] ATTR(became, zone)

D.2.2 DOBJ: direct object

A direct object is a noun phrase that is the accusative object of a (di)transitive verb.

(1) She bought me [these books] DOBJ(bought, books)

(2) She bought [these books] for me DOBJ(bought, books)

D.2.3 IOBJ: indirect object

An indirect object is a noun phrase that is the dative object of a ditransitive verb.

(1) She bought [me] these books IOBJ(bought, me)

(2) She bought these books [for me] PREP(bought, for)

(3) [What] she bought [me] were these books DOBJ(bought, What), IOBJ(bought, me)

(4) I read [them] [one by one] DOBJ(read, them), NPADVMOD(read, one)

In (2), for me is considered a prepositional modifier although it is the dative object in an unshifted

form. This information is preserved with a function tag DTV as additional information in our

representation (Section 2.6.2). In (3), What and me are considered direct and indirect objects of

bought, respectively. In (4), the noun phrase one by one is not considered an IOBJ, but an adverbial

noun phrase modifier (NPADVMOD) because it carries an adverbial function tag, MNR. This kind of

information is also preserved with semantic function tags in our representation (Section 2.6.1).

Algorithm D.4 : setIndirectObject(C)>

Input: A dependent D.
Output: If D is an indirect object, set its label to IOBJ.

1: if (D is DOBJ) and (D is followed by another DOBJ) then D.label ← IOBJ
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D.2.4 OPRD: object predicate

An object predicate is a non-VP predicate in a small clause that functions like the predicate of an

object. Section 2.3.4 describes how object predicates are derived.

(1) She calls [me] [her friend] DOBJ(calls, me), OPRD(calls, friend)

(2) She considers [[me] her friend] CCOMP(considers, friend), NSUBJ(me, friend)

(3) I am considered [her friend] OPRD(considered, friend)

(4) I persuaded [her] [to come] DOBJ(persuaded, her), XCOMP(persuaded, come)

In (2), the small clause me her friend is considered a clausal complement (CCOMP) because we treat

me as the subject of the non-VP predicate, her friend. In (4), the open clause to come does indeed

predicate over her but is not labeled as an OPRD but rather an open clausal complement (XCOMP).

This is because the dependency between her and come is already shown in our representation as an

open clausal subject (XSUBJ) whereas such information is not available for the non-VP predicates in

(1) and (3); thus, without labeling them as object predicates, it can be difficult to infer the relation

between the objects and object predicates.

Algorithm D.5 : isObjectPredicate(C)

Input: A constituent C.
Output: True if C is an object predicate; otherwise, False.

1: if (C is S) and (C contains no VP) and (C contains both SBJ and PRD) then
2: if the subject of C is an empty category return True
3: return False

D.3 Auxiliaries

Auxiliary labels consist of auxiliaries (AUX) and passive auxiliaries (AUXPASS). The getAuxiliaryLa-

bel(C) method in Algorithm D.6 shows how auxiliary labels are distinguished. Note that a passive

auxiliary is supposed to modify only a past participle (VBN), which is sometimes annotated as a

past tense verb (VBD). The condition in lines 5 and 8 resolves such an erroneous case. Lines 6-7 are
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added to handle the case of coordination where vp1 is just an umbrella constituent that groups VP

conjuncts together.

Algorithm D.6 : getAuxiliaryLabel(C)

Input: A constituent C whose parent is VP|SINV|SQ.
Output: AUX or AUXPASS if C is an auxiliary or a passive auxiliary; otherwise, null.

1: if C is MD|TO return AUX # Section D.3.1
2: if (C is VB*) and (C contains VP) then
3: if C is be|become|get then
4: let vp1 be the first VP in C
5: if vp1 contains VBN|VBD return AUXPASS # Section D.3.2
6: if (vp1 contains no VB*) and (vp1 contains VP) then # for coordination
7: let vp2 be the first VP in vp1

8: if vp2 contains VBN|VBD return AUXPASS
9: return AUX
10: return null

D.3.1 AUX: auxiliary

An auxiliary is an auxiliary or modal verb that gives further information about the main verb (e.g.,

tense, aspect). The preposition to, used for infinitive, is also considered an AUX. Auxiliary verbs for

passive verbs are assigned with a separate dependency label AUXPASS (Section D.3.2).

(1) I [have] [been] seeing her AUX(seeing, have), AUX(seeing, been)

(2) I [will] meet her tomorrow AUX(meet, will)

(3) I [am] [going] [to] meet her tomorrow AUX(meet, am), AUX(meet, going), AUX(meet, to)

D.3.2 AUXPASS: passive auxiliary

A passive auxiliary is an auxiliary verb, be, become, or get, that modifies a passive verb.

(1) I [am] drawn to her AUXPASS(drawn, am)

(2) We will [get] married AUXPASS(married, get)

(3) She will [become] nationalized AUXPASS(nationalized, become)
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D.4 Complements

Complement labels consists of adjectival complements (ACOMP), clausal complements (CCOMP), and

open clausal complements (XCOMP). Additionally, complementizers (COMPLM) are included to indicate

the beginnings of clausal complements.

D.4.1 ACOMP: adjectival complement

An adjectival complement is an adjective phrase that modifies the head of a VP|SINV|SQ, that is

usually a verb.

(1) She looks [so beautiful] ACOMP(looks, beautiful)

(2) Please make [sure to invite her] ACOMP(make, sure)

(3) Are you [worried] ACOMP(Are, worried)

(4) [Most important] is your heart ACOMP(is, important), NSUBJ(is, heart)

In (4), Most important is topicalized such that it is considered an ACOMP of is although it is in the

subject position; your heart is considered a nominal subject (NSUBJ) of is.

D.4.2 CCOMP: clausal complement

A clausal complement is a clause with an internal subject that modifies the head of an ADJP|

ADVP|NML|NP|WHNP|VP|SINV|SQ. For NML|NP|WHNP, a clause is considered a CCOMP if it is neither

a infinitival modifier (Section D.7.3), a participial modifier (Section D.7.7), nor a relative clause

modifier (Section D.7.10).

(1) She said [(that) she wanted to go] CCOMP(said, wanted)

(2) I am not sure [what she wanted] CCOMP(sure, wanted)

(3) She left no matter [how I felt] CCOMP(matter, felt)

(4) I don’t know [where she is] CCOMP(know, is)

(5) She asked [should we meet again] CCOMP(asked, meet)
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(6) I asked [why did you leave] CCOMP(asked, leave)

(7) I said [may God bless you] CCOMP(said, bless)

(8) The fact [(that) she came back] made me happy CCOMP(fact, came)

In (4), where she is is considered a CCOMP although it carries arbitrary locative information. Clauses

such as polar questions (5), wh-questions (6), or inverted declarative sentences (7) are also considered

CCOMP. A clause with an adverbial function tag is not considered a CCOMP, but an adverbial clause

modifier (Section D.5.1).

Algorithm D.7 : isClausalComplement(C)

Input: A constituent C whose parent is ADJP|ADVP|NML|NP|WHNP|VP|SINV|SQ.
Output: True if C is a clausal complement; otherwise, False.

1: if C is S|SQ|SINV|SBARQ return True
2: if C is SBAR then
3: if C contains a wh-complementizer return True
4: if C contains a null complementizer, 0 return True
5: if C contains a complementizer, if, that, or whether then
6: set the dependency label of the complementizer to COMPLM # Section D.4.4
7: return True
8: return False

D.4.3 XCOMP: open clausal complement

An open clausal complement is a clause without an internal subject that modifies the head of an

ADJP|ADVP|VP|SINV|SQ.

(1) I want [to go] XCOMP(want, go)

(2) I am ready [to go] XCOMP(ready, go)

(3) It is too soon [to go] XCOMP(soon, go)

(4) He knows [how to go] XCOMP(knows, go)

(5) What do you think [happend] XCOMP(think, happened)

(6) He forced [me] [to go] DOBJ(forced, me), XCOMP(forced, go)

(7) He expected [[me] to go] CCOMP(expected, go), NSUBJ(me, go)
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In (7), me to go is not considered an XCOMP but a clausal complement (CCOMP) because me is

considered a nominal subject (NSUBJ) of go (see Section 2.5.4 for more examples of open clauses).

Algorithm D.8 : isOpenClausalComplement(C)

Input: A constituent C whose parent is ADJP|ADVP|VP.
Output: True if C is an open clausal complement; otherwise, False.

1: if C is S then
2: return (C contains VP) and (the subject of C is an empty category)
3: if (C is SBAR) and (C contains a null complementizer) then
4: let c be S in C
5: return isOpenClausalComplement(c)
6: return False

D.4.4 COMPLM: complementizer

A complementizer is a subordinating conjunction, if, that, or whether, that introduces a clausal

complement (Section D.4.2). A COMPLM is assigned when a clausal complement is found (see the

line 6 of isClausalComplement(C) in Section D.4.2).

(1) She said [that] she wanted to go COMPLM(wanted, that)

(2) I wasn’t sure [if] she liked me COMPLM(liked, if)

(3) I wasn’t sure [whether] she liked me COMPLM(liked, whether)
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D.5 Modifiers: adverbial related

Adverbial related modifiers consist of adverbial clause modifiers (ADVCL), adverbial modifiers (ADVMOD),

markers (MARK), negation modifiers (NEG), and noun phrases as adverbial modifiers (NPADVMOD).

Algorithm D.9 : hasAdverbialTag(C)

Input: A constituent C.
Output: True if C has an adverbial function tag; otherwise, False.

1: if C has ADV|BNF|DIR|EXT|LOC|MNR|PRP|TMP|VOC return True
2: return False

D.5.1 ADVCL: adverbial clause modifier

An adverbial clause modifier is a clause that acts like an adverbial modifier. A clause with an

adverbial function tag (see hasAdverbialTag(C)) is considered an ADVCL. Additionally, a subordinate

clause or an open clause is considered an ADVCL if it does not satisfy any other dependency relation

(see Appendices D.4.2 and D.4.3 for more details about clausal complements).

(1) She came [as she promised] ADVCL(came, promised)

(2) She came [to see me] ADVCL(came, see)

(3) [Now that she is here] everything seems fine ADVCL(seems, is)

(4) She would have come [if she liked me] ADVCL(come, liked)

(5) I wasn’t sure [if she liked me] CCOMP(sure, liked)

In (2), to see me is an ADVCL (with a semantic role, purpose) although it may appear to be an

open clausal complement of came (Section D.4.3). In (4) and (5), if she liked me is considered an

ADVCL and a clausal complement (CCOMP), respectively. This is because if in (3) creates a causal

relation between the matrix and subordinate clauses whereas it does not serve any purpose other

than introducing the subordinate clause in (4), just like a complementizer that or whether.
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D.5.2 ADVMOD: adverbial modifier

An adverbial modifier is an adverb or an adverb phrase that modifies the meaning of another word.

Other grammatical categories can also be ADVMOD if they modify adjectives.

(1) I did [not] know her ADVMOD(know, not)

(2) I invited her [[as] well] ADVMOD(invited, well), ADVMOD(well, as)

(3) She is [already] [here] ADVMOD(is, already), ADVMOD(is, here)

(4) She is [so] beautiful ADVMOD(beautiful, so)

(5) I’m not sure [any] more ADVMOD(more, any)

In (5), any is a determiner but considered an ADVMOD because it modifies the adjective, more.

Algorithm D.10 : isAdverbialModifier(C)

Input: A constituent C.
Output: True if C is an adverbial function tag; otherwise, False.

1: if C is ADVP|RB*|WRB then
2: let P be the parent of C
3: if (P is PP) and (C’s previous sibling is IN|TO) and (C is the last child of P ) return False
4: return True

D.5.3 MARK: maker

A marker is a subordinating conjunction (e.g., although, because, while) that introduces an adverbial

clause modifier (Section D.5.1).

(1) She came [as she promised] MARK(promised, as)

(2) She came [because she liked me] MARK(liked, because)

Algorithm D.11 : setMarker(C,P )

Input: Constituents C and P , where P is the parent of C.
Output: If C is a marker, set its label to MARK.

1: if (P is SBAR) and (P is ADVCL) and (C is IN|DT|TO) then C.label ← MARK

The setMarker(C,P ) method is called after P is identified as an adverbial modifier.
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D.5.4 NEG: negation modifier

A negation modifier is an adverb that gives negative meaning to its head.

(1) She decided not to come NEG(come, not)

(2) She didn’t come NEG(come, n’t)

(3) She never came NEG(came, never)

(4) This cookie is no good NEG(is, no)

Algorithm D.12 : setNegationModifier(D)>

Input: A dependent D.
Output: If D is a negation modifier, set its label to NEG.

1: if (D is NEG) and (D is never|not|n’t|’nt|no) then D.label ← NEG

D.5.5 NPADVMOD: noun phrase as adverbial modifier

An adverbial noun phrase modifier is a noun phrase that acts like an adverbial modifier. A noun

phrase with an adverbial function tag (see hasAdverbialTag(C)) is considered an NPADVMOD. More-

over, a noun phrase modifying either an adjective or an adverb is also considered an NPADVMOD.

(1) Three times [a week] NPADVMOD(times, week)

(2) It is [a bit] surprising NPADVMOD(surprising, bit)

(3) [Two days] ago NPADVMOD(ago, days)

(4) It [all] feels right NPADVMOD(feels, all)

(5) I wrote the letter [myself] NPADVMOD(wrote, myself)

(6) I met her [last week] NPADVMOD(met, week)

(7) She lives [next door] NPADVMOD(lives, door)

In (6) and (7), both last week and next door are considered NPADVMOD although they have different

semantic roles, temporal and locative, respectively. These semantic roles can be retrieved from

function tags and preserved as additional information (Section 2.6.1).
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D.6 Modifiers: coordination related

Coordination related modifiers consist of conjuncts (CONJ), coordinating conjunctions (CC), and

pre-correlative conjunctions (PRECONJ).

D.6.1 CONJ: conjunct

A conjunct is a dependent of the leftmost conjunct in coordination. The leftmost conjunct becomes

the head of a coordinated phrase. Section 2.3.3 describes how conjuncts are derived.

(1) John, [Mary], and [Sam] CONJ(John, Mary), CONJ(John, Sam)

(2) John, [Mary], and [so on] CONJ(John, Mary), CONJ(John, on)

(3) John, [Mary], [Sam], [etc.] CONJ(John, Mary), CONJ(John, Sam), CONJ(John, etc.)

Although there is no coordinating conjunction in (3), the phrase is considered coordinated because

of the presence of etc.

D.6.2 CC: coordinating conjunction

A coordinating conjunction is a dependent of the leftmost conjunct in coordination.

(1) John, Mary, [and] Sam CC(John, and)

(2) I know John [[as] [well] as] Mary CC(John, as), ADVMOD(as, as), ADVMOD(as, well)

(3) [And], I know you CC(know, And)

In (1), and becomes a CC of John, which is the leftmost conjunct. In (2), as well as is a multi-word

expression so the dependencies between as and the others are not so meaningful but there to keep

the tree connected. In (3), And is supposed to join the following clause with its preceding clause;

however, since we do not derive dependencies across sentences, it becomes a dependent of the head

of this clause, know.
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Algorithm D.13 : isCoordinatingConjunction(C)

Input: A constituent C.
Output: True if C is a coordinating conjunction; otherwise, False.

1: return C is CC|CONJP

D.6.3 PRECONJ: pre-correlative conjunction

A pre-correlative conjunction is the first part of a correlative conjunction that becomes a dependent

of the first conjunct in coordination.

(1) [Either] John [or] Mary PRECONJ(John, Either), CC(John, or), CONJ(John, Mary)

(2) [Not only] John [but also] Mary PRECONJ(John, Not), CC(John, but), CONJ(John, Mary)

Algorithm D.14 : isPreCorrelativeConjunction(C)

Input: A constituent C.
Output: True if C is a pre-correlative conjunction; otherwise, False.

1: if (C is CC) and (C is both|either|neither|whether) return True
2: if (C is CONJP) and (C is not only) return True
3: return False
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D.7 Modifiers: noun phrase related

Noun phrase related modifiers consist of appositional modifiers (APPOS), determiners (DET), infini-

tival modifiers (INFMOD), modifiers of nominals (NMOD), noun compound modifiers (NN), numeric

modifiers (NUM), participial modifiers (PARTMOD), possessive modifiers (POSSESSIVE), predeterminers

(PREDET), and relative clause modifiers (RCMOD).

Algorithm D.15 : getNonFiniteModifierLabel(C)

Input: A constituent C whose parent is NML|NP|WHNP.
Output: INFMOD or PARTMOD.

1: if isOpenClausalComplement(C) or (C is VP) then # Section D.4.3
2: if isInfinitivalModifier(C) return INFMOD # Section D.7.3
3: return PARTMOD # Section D.7.7

Algorithm D.16 : getNounModifierLabel(C)

Input: A constituent C whose parent is NML|NP|NX|WHNP.
Output: AMOD, DET, NN, NUM, POSSESSIVE, PREDET, or NMOD.

1: if C is VBG|VBN return AMOD # Section D.10.1
2: if C is DT|WDT|WP return DET # Section D.7.2
3: if C is PDT return PREDET # Section D.7.9
4: if C is NML|NP|FW|NN* return NN # Section D.7.5
5: if C is CD|QP return NUM # Section D.7.6
6: if C is POS return POSSESSIVE # Section D.7.8
7: return NMOD # Section D.7.4

D.7.1 APPOS: appositional modifier

An appositional modifier of an NML|NP is a noun phrase immediately preceded by another noun

phrase, which gives additional information to its preceding noun phrase. A noun phrase with

an adverbial function tag (Section D.5.1) is not considered an APPOS. Section 2.3.2 describes how

appositional modifiers are derived.
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(1) John, [my brother] APPOS(John, bother)

(2) The year [2012] APPOS(year, 2012)

(3) He [himself] bought the car APPOS(He, himself)

(4) Computational Linguistics [(CL)] APPOS(Linguistics, CL)

(5) The book, Between You and Me APPOS(book, Between)

(6) MacGraw-Hill Inc., New York NPADVMOD(Inc., York)

D.7.2 DET: determiner

A determiner is a word token whose pos tag is DT|WDT|WP that modifies the head of a noun phrase.

(1) [The] US military DET(military, The)

(2) [What] kind of movie is this DET(movie, What)

D.7.3 INFMOD: infinitival modifier

An infinitival modifier is an infinitive clause or phrase that modifies the head of a noun phrase.

(1) I have too much homework [to do] INFMOD(homework, do)

(2) I made an effort [to come] INFMOD(effort, come)

Algorithm D.17 : isInfinitivalModifier(C)

Input: A constituent C whose parent is NML|NP|WHNP.
Output: True if C is an infinitival modifier; otherwise, False.

1: if C is VP then vp← C
2: else
3: let t be the first descendant of C that is VP
4: vp← (t exists) ? t : null
5: if vp 6= null then
6: let t be the first child of vp that is VP
7: while t exists do
8: vp← t
9: if vp’s previous sibling is TO return True
10: let t be the first child of vp that is VP
11: if vp contains TO return True
12: return False



141

D.7.4 NMOD: modifier of nominal

A modifier of nominal is any unclassified dependent that modifies the head of a noun phrase.

D.7.5 NN: noun compound modifier

A noun compound modifier is any noun that modifies the head of a noun phrase.

(1) The [US] military PREDET(military, US)

(2) The [video] camera PREDET(camera, video)

D.7.6 NUM: numeric modifier

A numeric modifier is any number or quantifier phrase that modifies the head of a noun phrase.

(1) [14] degrees NUM(degrees, 14)

(2) [One] nation, [fifty] states NUM(nation, One), NUM(states, fifty)

D.7.7 PARTMOD: participial modifier

A participial modifier is a clause or phrase whose head is a verb in a participial form (e.g., gerund,

past participle) that modifies the head of a noun phrase.

(1) I went to the party [hosted by her] PARTMOD(party, hosted)

(2) I met people [coming to this party] PARTMOD(people, coming)

D.7.8 POSSESSIVE: possessive modifier

A possessive modifier is a word token whose pos tag is POS that modifies the head of a noun phrase.

(1) John[’s] car NMOD(John, ’s)

D.7.9 PREDET: predeterminer

A predeterminer is a word token whose pos tag is PDT that modifies the head of a noun phrase.

(1) [Such] a beautiful woman PREDET(woman, Such)

(2) [All] the books we read PREDET(books, All)
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D.7.10 RCMOD: relative clause modifier

A relative clause modifier is a either relative clause or a reduced relative clause that modifies the

head of an NML|NP|WHNP.

(1) I bought the car [(that) I wanted] RCMOD(car, wanted)

(2) I was the first person [to buy this car] INFMOD(person, buy)

(3) This is the car [for which I’ve waited] RCMOD(car, waited)

(4) It is a car [(that is) worth buying] RCMOD(car, worth)

In (2), to buy this car is considered an infinitival modifier (INFMOD) although it contains an empty

wh-complementizer in the constituent tree. (4) shows an example of a reduced relative clause.

Algorithm D.18 : isRelativeClauseModifier(C)

Input: A constituent C whose parent is NML|NP|WHNP.
Output: True if C is a relative clause modifier; otherwise, False.

1: if C is RRC return True
2: if (C is SBAR) and (C contains a wh-complementizer) return True
3: return False

D.8 Modifiers: prepositional phrase related

Prepositional phrase related modifiers consist of complements of prepositions, objects of preposi-

tions, and prepositional modifiers.

Algorithm D.19 : getPrepositionModifierLabel(C)

Input: A constituent C whose parent is NP|WHPP.
Output: POBJor PCOMP.

1: if C is NP|NML return POBJ # Section D.8.2
2: return PCOMP # Section D.8.1
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D.8.1 PCOMP: complement of a preposition

A complement of a preposition is any dependent that is not a POBJ but modifies the head of a

prepositional phrase.

(1) I agree with [what you said] PCOMP(with, said)

D.8.2 POBJ: object of a preposition

An object of a preposition is a noun phrase that modifies the head of a prepositional phrase, which

is usually a preposition but can be a verb in a participial form such as VBG.

(1) On [the table] POBJ(On, table)

(2) Including us POBJ(Including, us)

(3) Given us POBJ(Given, us)

D.8.3 PREP: prepositional modifier

A prepositional modifier is any prepositional phrase that modifies the meaning of its head.

(1) Thank you [for coming [to my house]] PREP(Thank, for), PREP(coming, to)

(2) Please put your coat [on the table] PREP(put, on)

(3) Or just give it [to me] PREP(give, to)

In (1), to my house is a PREP carrying a semantic role, direction. These semantic roles are preserved

as additional information in our representation (Section 2.6.1). In (2), on the table is a PREP,

which is considered the locative complement of put in some linguistic theories. Furthermore, in

(3), to me is the dative object of give in the unshifted form, which is also considered a PREP in our

analysis. This kind of information is also preserved with syntactic function tags in our representation

(Section 2.6.2).
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D.9 Modifiers: quantifier phrase related

Quantifier phrase related modifiers consist of number compound modifiers (NUMBER) and quantifier

phrase modifiers (QUANTMOD).

D.9.1 NUMBER: number compound modifier

A number compound modifier is a cardinal number that modifies the head of a quantifier phrase.

(1) [Seven] million dollars NUMBER(million, Seven), NUM(dollars, million)

(2) [Two] to [three] hundred NUMBER(hundred, Two), NUMBER(hundred, three)

D.9.2 QUANTMOD: quantifier phrase modifier

A quantifier phrase modifier is a dependent of the head of a quantifier phrase.

(1) [More] [than] five AMOD(five, More), QUANTMOD(five, than)

(2) [Five] [to] six QUANTMOD(six, Five), QUANTMOD(six, to)

Quantifier phrases often form a very flat hierarchy, which makes it hard to derive correct dependen-

cies for them. In (1), More than is a multi-word expression that should be grouped into a separate

constituent (e.g., [More than] one); however, this kind of analysis is not used in our constituent trees.

Thus, More and than become an AMOD and a QUANTMOD of five, respectively. In (2), to is more like a

conjunction connecting Five to six, which is not explicitly represented. Thus, Five and to become

QUANTMODs of six individually. More analysis needs to be done to derive correct dependencies for

quantifier phrases, which will be explored in future work.

D.10 Modifiers: miscellaneous

Miscellaneous modifiers consists of adjectival modifiers (AMOD), unclassified dependents (DEP), inter-

jections (INTJ), meta modifiers (META), parenthetical modifiers (PARATAXIS), possession modifiers

(POSS), particles (PRT), punctuation (PUNCT), and roots (ROOT).
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D.10.1 AMOD: adjectival modifier

An adjectival modifier is an adjective or an adjective phrase that modifies the meaning of another

word, usually a noun.

(1) A [beautiful] girl AMOD(girl, beautiful)

(2) A [five year old] girl AMOD(girl, old)

(3) [How many] people came AMOD(people, many)

D.10.2 DEP: unclassified dependent

An unclassified dependent is a dependent that does not satisfy conditions for any other dependency.

D.10.3 INTJ: interjection

An interjection is an expression made by the speaker of an utterance.

(1) [Well], it is my birthday INTJ(is, Well)

(2) I [um] will throw a party INTJ(throw, um)

Algorithm D.20 : isInterjection(C)

Input: A constituent C.
Output: True if C is an interjection; otherwise, False.

1: return C is INTJ|UH

D.10.4 META: meta modifier

A meta modifier is code (1), embedded (2), or meta (3) information that is randomly inserted in a

phrase or clause.

(1) [choijd] My first visit META(visit, choijd)

(2) I visited Boulder and {others} [other cities] META(Boulder, others), CONJ(Boulder, cities)

(3) [Applause] Thank you META(Thank, Applause)
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Algorithm D.21 : isMetaModifier(C)

Input: A constituent C.
Output: True if C is a meta modifier; otherwise, False.

1: return C is CODE|EDITED|EMBED|LST|META

D.10.5 PARATAXIS: parenthetical modifier

A parenthetical modifier is an embedded chunk, often but not necessarily surrounded by parenthet-

ical notations (e.g,. brackets, quotes, commas, etc.), which gives side information to its head.

(1) She[, I mean,] Mary was here PARATAXIS(was, mean)

(2) [That is to say,] John was also here PARATAXIS(was, is)

Algorithm D.22 : isParentheticalModifier(C)

Input: A constituent C.
Output: True if C is a parenthetical modifier; otherwise, False.

1: return C is PRN

D.10.6 POSS: possession modifier

A possession modifier is either a possessive determiner (PRP$) or a NML|NP|WHNP containing a pos-

sessive ending that modifies the head of a ADJP|NML|NP|QP|WHNP.

(1) I bought [his] car POSS(car, his)

(2) I bought [John’s] car POSS(car, John)

(3) This building is [Asia’s] largest POSS(largest, Asia)

Note that Asia’s in (3) is a POSS of largest, which is an adjective. Such an expression does not occur

often but we anticipate it to appear more when dealing with informal texts (e.g., text-messages,

conversations, web-texts).
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Algorithm D.23 : isPossessionModifier(C)

Input: Constituents C and P , where P is the parent of C.
Output: True if C is a possession modifier; otherwise, False.

1: if C is PRP$ return True
2: if P is ADJP|NML|NP|QP|WHNP then
3: return C contains POS
4: return False

D.10.7 PRT: particle

A particle is a preposition in a phrasal verb that forms a verb-particle construction.

(1) Shut [down] the machine PRT(Shut, down)

(2) Shut the machine [down] PRT(Shut, down)

D.10.8 PUNCT: punctuation

Any punctuation is assigned the dependency label PUNCT.

Algorithm D.24 : isPunctuation(C)

Input: A constituent C.
Output: True if C is punctuation; otherwise, False.

1: return (C is :|,|.|“|”|-LRB-|-RRB-|HYPH|NFP|SYM|PUNC)

D.10.9 ROOT: root

A root is the root of a tree that does not depend on any node in the tree but the artificial root

node whose ID is 0. A tree can have multiple roots only if the top constituent contains more than

one child in the original constituent tree (this does not happen with the OntoNotes Treebank but

happens quite often with medical corpora).


