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I. Introduction

With operation speeds for sequential operations in high speed
digital computers approaching the limits imposed by signal propogation
times, it has been apparent for some time that radical improvements in
computer systems power will require architectures that make extensive use
of parallelism. 1In fact architectures for modern high speed systems
already do exploit parallelism to a fair extent. In general, however,
such parallelism applies only at a micro level, in areas such as instruction
look-ahead and overlapping computations, to speed the execution of what
remains a strictly sequential program.

If one is interested in achieving extensive high level parallelism,
it is necessary to look to architectures that differ substantially from the
traditional. This paper Wiil develop and examine one such architecture,

There are many problems whose most "natural" solution algorithms
involve extensive parallel computation [2, 5, 7]. In practice, algorithms
for these problems have been formulated as sequential routines only to
fit common architectures. The distinguishing feature of such problems is
that they require some procedure to be executed a number of time, using
different data for each execution. The procedure may be as simple as
comparing the contents of a memory location to a fixed reference value during
a memory search, or as complex as evaluating the consequences of choosing a
pqrticular action from among a set of alternatives in an artificial
intelligence program. Frequently it will involve numerical operations on
elements of arrays. In any case the nature of this type of problem is
such that all executions could be carried out in parallel, provided only

that a suitable architecture were available.



Although the concept is not especially new, it is only recently that
operational systems oriented toward this type of problem have been built
in even moderate numbers, Examples of such systems are the well-known
ILLIAC IV computer and its predecessor SOLOMAN, the Goodyear Company's
STARAN computer, and Bell Laboratory's PEPE system for radar signal
processing [1, 5, 8, 9]. These systems differ radically from one another
in the details of their design and operation, but share the central
characteristic that a large number of processing elements (PEs) execute
instructions concurrently under the direction of a single control unit
(CU). This makes for execution which is potentially very efficient, as
well as fast, since individual PEs need not duplicate the functions of
instruction fetching and decoding. This advantage may be offset by poor
utilization of individual PEs in actual applications, but in those cases
where high utilization can be maintained, it is difficult to conceive of
any conventional architecture which could match these systems in overall
economy and speed of operatioms.

Processors of the above type are variously referred to as associative
processors, array processors, or assoclative array processors. 'Associative
processor' refers most naturally to systems such as the STARAN computer, in
which the primary orientation of the system is toward associative accessing
and updating of data bases. "Array processor' is the more apt description
for the TLLIAC IV, which is oriented toward vector arithmetic operations
on data arrays. However there is not always a clear distinction between
one type of system and the other -— or none at least that has been widely

formalized. We will usually use the abbreviation AP to mean "associative



processor", but there will be cases in which it might as easily stand

for "array processor". The ambiguity is not serious, since what is meant
in any case is a system in which there is concurrent execution by multiple
processing elements of a single instruction stream.

The type of system with which this paper is concerned is an extension
of the concept of an AP with a single control unit to one having multiple
CUs, each of which may be simultaneously active over some subset of elements
from among a large pool of shared PEs. We refer to these as multi-
associative processor, or MAP systems. A MAP system may be viewed as a
multi-processing system in which each processor is an AP,

There are a number of points motivating an investigation of MAP systems.
Many of them are analogous to arguments that might be applied to any
multi-processing system, including most obviously increased computing
power. There are also, in many cases, both conceptual and practical
advantages in being able to organize jobs into systems of independent but
co~operating processes. This is perhaps even more true when the processes
are associative than when they are ordinary sequential processes. When
a sequential process is interrupted, the processor merely switches the focus
of its activity. The only cost associated with the idle period of the
interrupted process is due to the memory it holds (assuming it remains in
memory). An associative process, on the other hand, holds more than
just memory. It also holds a number of processing elements, whose idleness
during interruption may constitute loss of a significant fraction of total
system computing power. They may, of course, be reassigned during the

interruption, but only at the cost of what may be substantial overhead.



And reassignment is pointless if the new process already has its own
PEs., With multiple control units available to handle parallel processes,
individual processes will be more consistently active, and PEs will have
a higher net utilization,

The above refers to utilization of allocated PEs —— those owned by a
process and potentially active as long as the process itself is active.
The existence of multiple control units also allows higher utilization of
PEs in terms of the fraction of PEs allocated. AP jobs usually have
"natural" solutions requiring specific numbers of PEs, In air traffic
control, for instance, the number of PEs required would correspond to
the number of objects on track. When the number of PEs required for the
natural solution exceeds the number actually available, alternate
solutions are still possible, but always at a cost in program clarity and
efficiency. With multiple CUs, the number of PEs in the system may be
large enough to handle all but the most demanding problems according to
their "natural" solutions. At the same time, the operating system can take
advantage of a job mix and multi-processing to maintain good overall
utilization while running smaller problems. These advantages are, of course,
typical of the types of advantages motivating any shared resource system.

The purpose of this paper is to develop a tentative architecture for
a multi-associative processor system, identifying as much as possible the
constraints that apply and the tradeoffs that might be made. The archi-
tecture will serve as the basis for the development of an interpretive MAP
simulator, and as a takeoff point for further studies undertaken in this

department (Computer Science) at the University of Colorado.



II. General Design Considerations

Figure 1 shows a block diagram for a general MAP system. FEach control
unit potentially corresponds to one active process. With m control units,
there may be up to m independent processes concurrently running at any
one time. For our studies, we have assumed m < 8.

Instructions for the active processes reside in a common central
memory. Use of a common central memory facilitates inter-process communica-
tion as well as resulting in more efficient memory utilization. Each control
unit contains one or more high speed buffers for instructions and data to
be broadcast to its PEs, and the central memory uses interleaving, extended
words, or a combination of the two in order to support the high bandwidths
required by eight concurrently active CUs and I/0 processor (cf. ref. [4]).
Instructions go out from the CUs along instruction busses to the PEs,
which then, if activated, execute the instructions using either local
operands previously stored in their individual PE memories (PEMs), or
global operands broadcast along with the instructions over the common PE
input data bus.

There are several features of the system illustrated in figure 1
worth noting:

—-= There are no direct data paths between individual PEs. All data

communication is performed via common busses running to all PEs.

—— There are no physical characteristics of individual PEs which

distinguish one from another, or restrict their ability to be

interchanged.



~~ External I/0 is centralized via the I/0 subsystem processor. All
I/0 is buffered through central memory, and individual PEs have
no direct I/0 channels,

-~ Instruction busses are narrow (6 bits) and separate for each
control unit., A PE "listens" only to the bus for the control unit
to which it is assigned.

—— Data busses are wide (32 bits) and shared among the various CUs
and their assigned PEs on a cycle by cycle basis. PE registers
and operations are word oriented, rather than bit serial, and PE
memory size is appreciable (1024 16-bit words).

The PE memory size of 1024 words corresponds to the address space of
the 1024~bit IC chip now widely manufactured for mini-computer memories.
While the selection of this precise wvalue is somewhat arbitrary, it falls
within a general range whose choice is not arbitrary. Nor are most of
the other features described above arbitrary. They tend to follow from
various considerations arising from the initial decision to design an
assoclative processor with multiple control units, These considerations
are discussed below.

A principle advantage of a multi control unit system, as discussed
in Section I, is that PEs become a shared system resource. Dynamic allo-
cation of PEs, however, requires that individual PEs be indistinguishable
to the CUs using them, except, of course, in terms of their data contents,
This is also very desirable in terms of system reliability, but it
immediately rules out the use of "hard" parallel PE to PE data communication

paths of the type employed in ILLIAC IV to achieve extremely high inter-PE



data communication bandwidths. The latter communication scheme requires
a correspondence between the physical location of the PE within the
array of PEs and its logical function within a program.

Dynamic allocation of PEs also tends to rule out the extremely
simple, bit serial PEs of the type used in the STARAN computer. There is
a certain amount of overhead involved in providing for the switching of
PEs from one control unit to another, and individual PEs must be sufficiently
powerful to justify this overhead. Moreover, a major part of the justi-
fication for bit serial PEs is lost in a MAP system. In a uni~control
unit AP, each PE may have its own external I/0 channel, and a bit-serial
PE is well matched to the bit-serial I/0 from one track of a head-per-
track parallel I/0 device. In a MAP system, this type of parallel I/0
becomes unattractive. Because of the uncertainty as to which actual
?Es will be available for a particular execution of a job, parallel I/0
direct to the PEMs would require a very large switching matrix, allowing
any channel to connect to whatever PE happened to be available. This
problem does not arise in an ordinary AP, since the entire pool of PEs
is available for each job. It is therefore feasible for individual PEs
to be dedicated to individual channels.

The lack of direct parallel I/0 to the PEs in a MAP system is not
necessarily the handicap it might at first appear. Comparable I/0 band-
widths for loading the unloading PE memories can be achieved through the
use of a single high speed, word parallel bus operating between a central
memory buffer and-an interleaved set of PEs. Assuming an 80 ns cycle

time for the bus and a width of 32 bits, the bandwidth is 4 x 108 bps, or



the equivalent of 4000 one-bit channels operating at the lOprs typical for
direct channels to mass storage devices., Of course with the CM to PE bus
it is necessary to get the data into central memory before it can be
transmitted to the PEs, Imposition of the CM as a buffer for PE I/0,
however, has the advantage of isolating the I/0 subsystem from the AP
parts of the system, and allowing it to be designed independently, according
to the requirements of any particular installation, without affecting the
design of the MAP system itself. PE I/0 is discussed in more detail in
Section VI. In that section are discussed also portions of the "auxiliary
control systems" of figure 1 which relate to control of the data buss.
Other portions relating to selection and counting of PEs are discussed
in section V.

0f the features initially cited above, we have not yet discussed the
instruction bus and the motivation for the design choosen. This, however,
is a major topic and will be taken up in detail in the next section,
Remaining sections will then consider selective activation of PEs, CU
architecture and the co—ordination and control of concurrent processes,

and management of communication busses and other shared facilities.



III. Processing Elements and Instruction Broadcast Lines

As mentioned earlier, one of the attractions of associative pro-
cessors is that individual processing elements mneed not duplicate the
functions of instruction fetching and decoding. In a conventional AP
with a single control unit, the CU may broadcast instructions to the
PEs as timed sequences of gating signals, resulting in the simplest
possible PE design. 1In a‘MAP system this is not feasible. Control linés
of this type cannot readily be shared among multiple CUs, and the large
number of lines involved makes switching between independent sets of lines
for each CU infeasible., However it is possible to broadcast instructions
as encoded micro signals over a much smaller set of lines. In this
case the switching overhead needed to allow dynamic allocation of PEs is
not excessive. These signals do require decoding, but it is a much simpler
decoding than that needed for higher level machine instructions.
Additional PE costs due to the necessity of decoding are therefore held
to a minimum, This approach does have the potential disadvantage of
sequentializing some operations that might otherwise be carried out in
parallel, since only one micro instruction may be broadcast at a time.
However, with appropriate CU design and a careful choice of micro instruc-
tions, this effect can be masked, or at least kept to a minimal level.
(See section V, on optimizing the stream of PE micro instructions.)

Given the above system for instruction broadcasting, the method of
handling operands is straightforward. They are broadcast over the time-

shared CU to PE data buss as ordinary data. At the same time, signals to
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gate the operands into appropriate PE registers are broadcast over the
instruction bus. These signals are elements of the PEs regular micro
instruction repertoire. Before broadcasting an operand to its PEs,
however, a CU must first reserve a cycle on the data bus by signaling
to a central scheduler. Scheduler operation is discussed in section
VI. The cycle time and width of the data bus must be such that it

can deliver operands at a rate sufficient to satisfy all processes whose
control units are concurrently active, The data bus is therefore a
very critical subunit of a MAP system, and special techniques may be
needed to increase its bandwidth and, coincidentally, to increase
system reliability by providing a capability for "graceful degradation"
in the case of partial failures in the bus. These techniques are also
discussed in section VI; they consist, briefly, of splitting the bus
into a number of shorter, semi-independent busses; with each segment
having cross~bar connectioné to every CU.

Figure 2 is a block diagram of a processing element. It consists
of three main subunits -- the associative unit, or AU; the arithmetic
and logical unit, or ALU; and the PE memory, or PEM. The associative
unit is responsible for determining which instructions from the broadcast
instruction stream apply to that PE, and is discussed in section IV.
The ALU performs all operations which test or manipulate data. The
registers and switches shown in figure 2 act as interfaces between the
ALU and the AU, PEM, INPUT bus, and OUTPUT bus. (The INPUT and OUTPUT
busses of figure 2 together comprise what is labeled simply as the data

bus in figure 1. The two halves of the data bus operate independently.
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Each is 32 bits wide, and the INPUT bus may itself be split into two
independent halfword busses for delivery of short integer or address
operands.,) The ALU is shown in somewhat greater detail in figure 3.

The architecture for the ALU is somewhat arbitrary, but is assumed
to be comparable to that of a small, modern minicomputer without the
circuitry for instruction fetching and decoding. We have assumed a
PEM word size of 16 bits, partly for efficiency in storing integer and
address operands, and in part simply to be compatible with commercial
minicomputer memories. Registers are 32 bits, and may require two
memory cycles to load. Arithmetic operands are either 16-bit integers
or 32-bit floating point numbers, with a 24~bit fraction, 7-bit hexa~
decimal exponent, and high order sign bit. One's complement notation
is assumed. Extended precision is provided through the accumulator
extension register, labeled ACX in figure 3. Autonomous circuitry to
perform floating point multiplication, division, normalization, and
truncation is assumed. All two-operand arithmetic and logical operations
(+, *, /,V';/\, and ®) apply between the contents of the accumulator
and one of the three registers IDR (Input Data Register), RMR (Read Memory
Register), or WMR (Write Memory Register), according to which of the
three is currently selected as the second operand register. The use of
separate registers for reading from memory, writing to memory, and
receiving data from the INPUT bus is not strictly necessary, but it gives
better utilization of ALU circuitry by allowing operations to overlap
that would otherwise have to be done in strict sequence. For instance,

the RMR may hold an operand which is currently being used in an arithmetic
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operation, while the results of a previous operation, transferred to WMR,
are being stored. The use of separate registers also provides an inter-

mediate storage capability that helps to reduce the number of fetches and
stores to local memory.

Table 1 is a list of the PE instructions associated with the ALU,
which comprise the greater part of the PE's instruction repertoire. Most
of them are reasonably self-explanatory. Most of them are either simple
gating signals or signals to set or reset various flip flops controlling
gates. In any case their execution takes only one cycle. The instructions
labeled "extended operations'" are a little different, in that they initiate
action by the autonomous floating point circuitry. After initiation, the
operation continues on its own until completion., Meanwhlle the instruction
bus is free to transmit other instructions that do not interfere with the
extended operation. WNote that addition is not listed as an extended
operation. The ALU adder is permanently active between the AC and the
selected operand register. The output of the adder can be gated to the AC
at any time in one cycle, provided that the adder has had time to stabilize
since the last change in either of its inputs. It is up to the CU to know
when this has occurred, based on the instructions it has previously issued?
and not to issue the gating signal too soon. Similar considerations apply
for the logical sum, product, and difference of the AC and the selected
operand register. The arithmetic difference must be obtained through a
complement and add.

In computing the arithmetic sum of the AC and the selected operand
register, the ALU circuitry does not consider the 7-bit exponent. The

operation is essentially a 25-bit integer add (counting the sign bit), and
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whatever exponent was previously present in the AC remains unaltered.

If the numbers to be added are floating point numbers, then instruction

29 of table 1 must be issued to align the exponents of the two registers
prior to the add. The adder does detect integer overflow, and sets an
internal indicator that overflow has occurred. If a normalization
instruction detects an integer overflow indicator, it automatically shifts
the fraction right by four bits, decrements the exponent by 1, sets bit
20 to a "1" if the number is positive or a "0" otherwise, and sets

bits 21-23 to the same value as the sign bit. If no indicator is set,
normalization proceeds conventionally.

It may be noticed that individual PEs do not have index registers,
per se, However the ability to load the MAR directly from the RMR
(instruction 6) makes for efficient indirect addressing, giving comparable
capabilities in those instances where individual PEs require distinct
index values. For accessing arrays in the more common case where all
PEs address the same relative word at any given time, a central CU index
register eliminates the need for index registers in individual PEs.

The remainder of the PE's instruction set will be taken up in the
next section following a general discussion of the problem of selective
activation of PEs. (The instructions of Table 1 relating to the ICIL
and OCTL registers are an exception., These registers and instructions
are intended to facilitate I/0 operations and are discussed in section

VI.)
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IV. Instruction Associativity

A commonly held opinion with regard to array processors is that
they are of quite limited utility as general purpose machines, coming
into their own only for a narrow class of special problems. Those would-
be problems in which large masses of data are to be manipulated according
to fixed patterns, with little or no conditional testing required. Classic
examples of such problems would be solving systems of partial differential
equations.

There is at least some justification to this belief, Every
conditional test which must be applied splits the set of PEs into two
distinct groups —- those for which the test holds true, and those for
which it does not. A CU can broadcast only one stream of instructions
at a time, and if those are not the instructions appropriate to the
results of a test in a given PE, that PE must simply wait until the CU
gets around to broadcasting the instructions appropriate to its parti-
cular set of conditions. If conditional tests are deeply nested, it is
easy for the set of PEs to become fractionated to the point that the CU
is serving an average of only one or two PEs at a time. One approach to
this problem is to limit the applications of the AP to the straight-forward
"number crunching" problems that avoid such highly data dependent
processing. This is the approach taken with the ILLIAC IV, As D. J. Kuck
notes [6], the range of problems which satisfy or can readily be cast
into this format through programming techniques is considerably larger

than it might at first appear. The approach is therefore not unusually
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restrictive, and in any case there are more than enough problems of
this type to justify -- at least in principle -- such a machine. The
STARAN computer, on the other hand, represents an approach in which the
reduction of the set of active PEs to a single PE through conditional
tests is not only acceptable, but may be a principle objective of the
program. Here the PEs are an integral part of the memory structure,
and cheap enough that idleness is not a major concern. They serve
primarily to implement associative memory and do parallel I/0, working
collectively as an auxiliary unit to a mainframe sequential processor.

In terms of PE activity, as in other matters already discussed,
the APs of a MAP system are intermediate between the extremes represented
by the ILLIAC IV and the STARAN. Their PEs are simpler and more
numerous than those of the ILLIAC, so that there is less need to select
and tailor applications so as to keep them all busy. At the same time
they are not so simple and numerous that they can be regarded simply as
mechanisms for implementing associative memory. They are significant
processors in their own right, and any devices which will help to achieve
efficient utilization are likely to be justified. The role of multiple
control units in achieving high PE utilization was discussed in the
introduction. Of equal, though perhaps less obvious significance is
the mechanism controlling selective activation of PEs according to the
results of conditional tests. If the range of useful AP applications is
to be significant in a MAP system, a more sophisticated selection mechanism

is needed than those available in either the STARAN or the ILLIAC IV,



PE selection in the STARAN and the ILLIAC computers both involve
a one-bit activity switch which can be set by the results of local data
tests. Through the mechanism of this switch, PEs can be deactivated

when the CU is broadcasting instructions not appropriate to their local

conditions. This method is in principle adequate for any algorithm, and

for the simplest it is straightforward and efficient. However it can
become unwieldy for algorithms involving even moderately complex
conditional execution structures, and may tend to obscure the natural
structure of the algorithm with operations necessary to insure that the
proper processors and no others are activated.

As an illustration of this problem, consider the flowchart of
figure 4. All PEs are to perform the initial processing, P1, following
which an accumulator register is tested to determine activation for the
next portion of processing. Processors with accumulators greater than
zero are activated for execution of processing step 2, while all others
are deactivated. Following P2, a test is again made on the accumulator
among active PEs, and those with a non-zero accumulator are activated
for processing step 3. Now following P3, it is necessary to reactivate
for step P4 those processors deactivated following the second test
because of zero accumulators. At the same time, the set of processors
deactivated after the first test because of zero accumulators must not
be reactivated. There is, however, no immediate way to distinguish the

two sets, and the algorithm fails.
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Naturally, there are ways around the above problem. For instance,
it would be possible to follow a policy of activating after a test the
complement of the set ultimately desired, and storing in that set some
type of identifier. The activation would then be reversed, and the
next processing step would commence on its proper set 6f processors.

For reactivation of old sets, then, all processors would be reactivated
for a test of their set identifiers, and all of those not in the desired
set would again be deactivated. This method is inelegant at best, and
wastes a lot of time re-establishing conditions that are already "known"
(in the sense that they héve been previously established by the system
and that no intervening steps could have altered them). This is mainly
a consequence of having only one bit of information concerning processor
status =- the activity switch -- available at an immediate hardware
level. The problem is not actually unique to APs. It has an analog

in ordinary sequential processors, where instructions, if encountered,
must be executed. They cannot be conditionally skipped based on status
information held in the processor except through explicit testing or
retesting of flags and status data prior to their execution. In programs
where efficiency is important and memory is not critical, programmers
may take advantage of the so~called "space/time tradeoff" to eliminate
such redundant tests by —-— in effect -- storing status information in the
instruction counter. Each conditional test directs the processor to a
distinct section of code, and status information is preserved to the

extent that a given section of code can only be reached as a result of a
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specific sequence of test conditions. To store 4 bits of status
information requires 16 distinct sections of code. Individual sections
may be highly similar, differing only in one or two instructions. The
differences, however, are critical.

In an AP, this type of space/time tradeoff does not work. For any
conditional test, there are likely to be some PEs representing either
result, so that all, or nearly all sections of code must eventually be
executed. This actually results in an inverse to the usual space/time
tradeoff. The more compact the code, the faster the program executes.
(Or stated otherwise, the more compact the code, the higher the PE
utilization due to code sharing.) This places a burden on the architec-
ture, however, to provide an efficient means for storing status information
in individual PEs. The mechanism must allow selective exeuction of
instructions while eliminating redundant tests.

Such a mechanism is possible, and is illustrated in figure 5 for
our hypothetical MAP system. Status information is stored in an 8-bit
select register in each PE. Each instruction has associated with it two
8-bit tag fields called a key and a mask, which define the set of PEs to
which that instruction applies, based on the contents of the select
registers. For an instruction to apply to a given PE under normal
selection procedures, the contents of the select register must match the
key bitwise in all positions designated by "0" bits in the mask. There is

also complement selection, in which mode the set of PEs to which an

instruction applies is the complement of the set to which it would apply

under normal selection.
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As an example of how PE selection operates, suppose that bits O,
1, and 2 of the select register (numbering from low order to high order,
or right to left) record the boolean values of conditions designated as
A, B, and C respectively. An instruction applying to PEs for which
A and B are true but C is false can be designated by a key of "0316"
and a mask of "F8_," under normal selection, An instruction applying

16

to all PEs for which A was true or B was false -- with C irrelevant —-

1"

could be designated by a key of "0116" and a mask of "FC16 under

complement selection. (The latter makes use of the logical equivalence

between A v B and (XAA B).) Translating boolean expressions for the
set of PEs to which an instruction applies into appropriate keys and
masks would normally be a compiler function and not a problem for the
programmer. However the selection power of such "associative instructions"
eliminates the need for much duplicated code and results in extremely
compact programs that can execute efficiently on an AP regardless of
the conditional dependency of individual instructionmns,

Although keys and masks apply conceptually to every imstruction,
it is necessary for the CU to broadcast them only when they change —- and
perhaps not even then if the new key and mask have been recently used.
The associative unit of the PE, shown in figure 6, contains two registers,
Kl and K2, for storing the two most recently used combinations of key and
mask. A third register, KO, is a virtual register corresponding to a
permanently stored key/mast configuration of all zeros, defining the

universal set of all PEs assigned to a given CU. If the new key and mask



are present in one of the registers, it requires only a single micro
instruction to indicate which of the registers should currently control
selection. These are instructions 55, 56, and 57 of table 2, and their
operation is illustrated by the signal lines labelled with these numbers
in figure 6, Likewise it takes only a single micro instruction to
switch between normal and complement selection modes (instructions 53
and 54, also labelled as signal lines in figure 6). These features save
considerable time in the relatively common case in which instructions
apply in rapid succession between the universal set of PEs and sets
designated by ‘two recurring combinations of key and mask. In the case
where the new key and mask are different from any stored in the K
registers, instructions 49-52 allow new combinations to be loaded from

either half of the INPUT bus.

The selection mechanism described above is of course useless without

some means of storing conditional results into the select register in

the first place. One of the two main mechanisms for doing this is shown
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in figure 7. There are seven switches, labelled SW1 thru SW7 in figure 7,

six of which are also shown in figure 2 as interfaces between the
associative unit and the ALU. (SW7 is a virtual switch corresponding
to a defined true, or a permanently set "1".) These switches carry
information on various conditions within the ALU. For instance, SW1
is set whenever the contents of the AC register are less than those of
the selected operand register. SW2 is set when the two contents are
equal, while SW3 being set indicates that the contents of the AC are

greater., SW4 is a copy of the sign bit of the accumulator, and so is
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set whenever the contents of the AC are negative. (This includes

the case of a negative zero, arising due to the use of ones complement
notation.) The meanings of SW5 and SW6 depend on the particular
instruction last executed. Following a multiplication or divide, for
example, SW5 is set to indicate floating point overflow, while SW6 is
set to indicate underflow. Other uses will be discussed later.

The contents of the select register are altered by writing the
value of a specified switch or its complement into all positions of the
select register designated by "1" bits in an 8-bit write mask. This is
kinstruction 42 of table 2. The write mask for this instruction is taken
from the low order byte of the IDR during execution, while the switch
designator comes from the nextmost low order byte. Bits 1~7 of this
byte (bits 9-15 of the IDR) correspond to SWL1 - SW7, respectively,
while bit 0, if set, indicates that the complement of the indicated
switch (or switches) is to be used. 1If more than one switch is
indicated by having its corresponding bit set, the value written is the
logical sum of all indicated switches, or their complements if appropriate.
As an example, the select register may be cleared by issuing instructiomn
42 after loading the IDR with the 16-bit designator-mask combination
of "81FF16". The “8116" corresponds to an 8-bit switch designator of
'10000001", indicating that the complement of SW7, a defined "0",
is the value to be written. The "FF16" defines an 8-bit write mask of

"11111111", indicating that the value is to be written into all eight

positions of the select register. The same operation with a write mask
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of "OF16" would clear the four low order bits of the select register,
while leaving the upper four unchanged.

With instructions 43-46 of Table 2, it is also possible to alter
the contents of the select register based on its own prior contents.
This corresponds to defining new boolean variables as logical functions
of others previously defined. In this type of instruction, the low order
byte of the IDR serves as a write mask just as above; the second byte,
however, specifies not a switch or set of switches, but rather a set of
bits from the select register itself which are to participate in the
computation of the function. The function may be the logical sum or
product of the indicated bits, or the complements of the same. Finally,
instructions 47 and 48 of Table 2 allow the entire contents of the
select register to be loaded from or stored to the accumulator register
of the ALU. This allows processes to be interrupted when necessary and
later restored.

The final group of instructions of Table 2 require some comment.

It is frequently necessary to find which PE among a set has the highest
or lowest value for some particular variable. Instructions 61 - 63
provide the basis for a fast means of doing so. The procedure involves a
comparison in each PE between the value in its accumulator register and

a value which is the logical sum of all the values participating in the

*
comparison . If the logical sum contains a "1" in a position preceding

%
The logical sum is obtained by writing the accumulator values for all
participating PEs to the OUTPUT bus simultaneously. The CU then rebroad-

casts this value over the INPUT bus. to all PEs participating in the comparison.
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any in which a PE's own accumulator contains a "1", then some other accumu-
lator must have contained a larger value. (It is necessary to bias the sign

bit prior to the compare operation so that positive numbers will compare as

larger than negative numbers.) One such operation does not in general
find the element with the maximum value, but it may eliminate a number
of contenders. Each PE contains a special associative compare cursor,
which is initially set to the leftmost bit of the accumulator. During
the compare, the cursor is advanced to the right until a position is
found where the logical sum of all values contains "1", but the local
accumulator value contains a "0". If the scan encounters such a "1/0Q"
condition before the first "1/1" condition is found, then SW5 is cleared,
indicating that the PE is no longer a candidate for having the maximum
value. After the scan, each PE broadcasts a word over the OUTPUT bus
consisting of a single "1" bit in the stopping location of its cursor.
The logical sum of these words is returned over the INPUT bus to the IDR
in each PE still active. The PE then checks for "1" bits to the right
of its own cursor location. If any are found, then it knows that some
other PE contains a value larger than its own, and SW5 is cleared. PEs
with SW5 cleared then drop out, and the cycle isvrepeated for the remaining
PEs. The process continues until the cursor for at least one PE has‘
advanced all the way to the right, which the CU detects by finding a "1"
in bit location 0 on the OUTPUT bus when the PEs broadcast their cursor

locations. At the completion of the cycle in which that condition occurs,
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any PEs with SW5 still set share the same maximum value. If it is
necessary to further reduce this set to a single element, the PEs are
instructed to signal to the count and selection unit, which then selects
one of them and sets SW6 in that element, simultaneously resetting SW6
in all other elements which signaled to it.

The above procedure generally requires only a few cycles to find the
element with the largest value in its accumulator. Since the cycles
themselves are micro-level cycles, the whole procedure can be implemented
as a single machine instruction, as viewed from the control unit instruc-
tion repertoire. A similar instruction to find the minimum value would
operate by finding the maximum value of the complements of the values

in the PE accumulators.
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V. Control Units and Inter-Process Communication

Since they drive the remainder of the system, the control units are
in many respects the most important elements of a MAP system. Yet from
an architectural design viewpoint, they are perhaps the least critical
elements as well. Given any reasonable amount of CU design effort, it
is unlikely that CUs will constitute limiting factors in system
performance. Those would almost certainly be found, rather, in instruction
and data bus cycle times, and in PE operation and memory access times.
Furthermore CUs are so far outnumbered by PEs that they may be considerably
more powerful and complex than individual PEs without greatly impacting
overall system cost; hence the options available for CU design are wider
and less critical than they are for other parts of the system. Accordingly
we will not consider CU design in any great detail, but will discuss
it in general terms and will specify only a "first pass'" design for the
purposes of our simulation studies,

The essential functions of the CU are: 1) to interpret the program
and to generate and broadcast the appropriate stream of instructions and
operands to the PEs; 2) to perform certain conditional tests which
apply directly at the control unit level - as, for instance, to test
the number of PEs currently active, or to perform loop counts; 3) to co~-
ordinate its operations with those of other processes and to transmit
and process messages; and 4) to perform various housekeeping chores

connected with its other functions.,
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O0f the above functions, the most critical is generation of the
stream of micro-instructions and data to be broadcast to the PEs.

Since operands are broadcast along a time-shared bus, it is desirable
that the CU be able to broadcast operands, along with the instructions
for the PEs to accept such operands, in a quasi-parallel manner with
other PE instructions. If properly done, this allows the CU to take
advantage of available slots on the data bus as they cccur, without
forcing frequent short waits in the flow of instructions to the PEs.
An example of such quasi-parallelism is illustrated in figure 8 for

a hypothetical three-address instruction, "ADD A, B, C", where A, B,
and C are assumed to be base addresses in PE memory for full word,
in#eger operands,

Figure 8 illustrates a number of important features of both the
control unit operation and the PE instruction set., The instructions
whose boxes are marked with an "s" in the upper left~hand corner are
those which require utilization of the data bus, and hence must be
scheduled through the central controller for data bus accesses. The
operation of this controller is discussed in the next section on data
communication and I/0. Figure 8 is actually a precedence graph for
the execution of individual micro-instructions. The instruction appearing
in the left-hand column at time slot 4, for instance, may be executed any
time after the instruction in the central column at slot 3, and before
the one at slot 11. If the control unit can gain access to the data
bus at any one of slots 4, 5, 8, or 9, the execution of this instruction

does not impede the overall speed of execution for the micro-routine,
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since it occurs during a forced idle period in the main line of execution.
(Reads and writes to PE memory are assumed to require a period of time
equal to three instruction bus cycles.) If none of these slots is
available, the CU takes the earliest alternate slot that is, pre-empting
any instruction that might otherwise occupy that slot, and shifting
subsequent time slots accordingly. Notice that this instruction

(IDR -15 < B) may correspond to either of instructions 1 or 2 in table

2, according to which half of the INPUT bus is used to broadcast the value
of the address B. When the control unit requests a slot on a halfword
bus, the central controller tells it which bus it is getting, and this

in turn determines which of the two instructions the CU actually broad-
casts.,

This example also illustrates the nature of the PE adder circuitry
discussed in section III. Note that after the RMR has received the
contents of memory representing the B operand, no particular instruction
is necessary to initiate the add. Rather a two cycle waiting period
follows to allow the sum in the permanently active adder to stabilize.
When this has occurred, the sum is simply gated into the accumulator in
a single cycle. Of course this immediately begins to change the contents
of the adder, but with master/slave logic on the AC register, no race
condition can occur. In the meantime, the cycles during which the adder
was stabilizing have been availgble for other instructions, such as that
shown in the left-hand column at slot 19.

A further type of optimization which might be performed by the CU

involves carry-over of information from one micro-routine to the next.



For instance if the instruction "ADD A, B, C" were followed by "ADD

C, D, E", it would be highly desirable if the CU were able to recognize
that the contents of address C were already contained in the AC following
the first instruction, so that operations intended to fetch this operand
could be bypassed in the second instruction. This type of optimization
requires a highly sophisticated CU design, but could be attractive given
the number of PEs potentially driven by a single CU., Fortunately one of
the distinguishing features of AP programs, as a number of workers in the
area have noted [5, 6, 8], is that they tend to be "straight line" with
much less conditional branching than is found in ordinary programs. This
makes look—ahead both easier and considerably more profitable than it
would otherwise be, and allows the control unit to be built as a fairly
long pipeline. It takes in machine encoded instructions at one end,
interprets them with the aid of possibly several concurrent micro-
programs, and spews out a stream of optimized PE instructions and operands
at the other. An individual machine instruction may spend considerable
time in the pipeline while it is interpreted, global operands are fetched,
appropriate slots on the data bus are arranged, and optimization of PE
instructions is performed. As long as a high throughput rate can be
maintained, actual dwell time in the pipe is unimportant.

In order to perform loop counts and to access array data, the CU
must have at least one testable index register. For the sake of simplici-
ty, we have assumed one and only one such register. The first section
of Table 3 lists the instructions associated with the maintainance of this

register (load from memory, store to memory, initialize to a specified

28
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value, increment by a specified value, and add or subtract the contents
of a specified memory location). With these instructions, along with the
conditional branch instruétions in the second part of Table 3, a single
register is sufficient for any program needs. Additional registers would
eliminate the large number of loads and stores necessary when only one
register is available, but we have not felt that this was sufficiently
relevant to the AP aspects of the system to cause us to revise our
initial design.

The second part of Table 3 lists CU branch instructions. Two of
them are straightforward conditional branches based on tests of the index
register. A third is a special branch used for subroutine calls, which
loads the current value of the instruction counter into the index
register just before making the transfer. Return is effected by using
the unconditional jump to address zero, with indexing specified. This
results in a jump to the address contained in the index register, which
as a result of the earlier subroutine branch is simply the appropriate
return address,

The three remaining conditional branches require some comment.

They are conditional branches based on counts of the number of active
PEs for a given CU. Their meanings are obvious, but their implementa-—
tions involve significant architectural features of the MAP system.

The CU initiates the operation by broadcasting instruction 58 of Table
2 to its PEs, causing those active to signal to the count and selection
unit, The count and selection unit is a shared facility, so the CU

must reserve its use for one cycle. It must also indicate to the unit
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which operation it is that it wants it to perform. The count and
selection unit has subsystems to perform a high speed analog count,
returning answers of zero, one, or more than one; to perform a digital
count, returning an exact answer to the originating CU; or to return
a signal setting SW6 in one of the signaling PEs, while returning a
signal to reset SW6 in all others, as discussed in the last part of
section IV, It is the first of these subsystems that controls conditional
branching for the last three instructions in the second part of Table 3.
The thfid?gfoupaof”ingtfﬁééiéﬁs iﬁiTabie 3:éféafhbse Which
relate to interépr0cess communication, and co~ordination of parallel
tasks within the MAP environment. The system considered here is designed
to implement the protection and communication strategy of G. J. Nutt
and C. A, Ellis of the University of Colorado Department of Computer
Science [3]. The central feature of this strategy is the use of an
8-bit ID register associated with each CU. (The number of bits corresponds
to the number of CUs envisioned for the system.) The ID registers of
the set of CUs are used to establish what are potentially very general
communication hierarchies among the CUs, controlling the extent and
nature of communications possible between individual members of the
hierarchy.
Let: | s, €040, 1, 2,3, 4 5,6, 7}
he the set of ID register bits which are set for cu; . If SjSE,Si, then

CU, can communicate with CUj in a "privileged" manner. Specifically, it



may pre—empt the operation of CUj, broadcasting instructions to the PEs
allocated to CUj using CUj itself as a passive relay for its own
instructions. In this mode, it may also transfer PEs allocated to CUj
to itself and vice versa. Tﬂis is, in fact, the only way in which a
PE may be switched from one CU to another. CUi also has the ability
during pre—emption to reset IDj to any new Sj € Zsi, or to reset the
instruction counter of CUj so that it resumes execution at a new
location when it is released from pre—emption.

In the alternate case where Sj §f Si but Sj Is) Si # {e}, then CUi
may communicate with CUj’ but only through the much weaker medium of a
message buffer and a "message pending" flag which serves as an interrupt
to the signaled CU if it is enabled to accept such message interrupts.
Each CU has individual control over whether or not it will accept such
interrupts and how it will process them if it does. Finally, if
Sj g] Si ='{e}, the two control units cannot communicate with each other

at all.

The precise details of message processing and inter-CU communication

in the non-preemptive mode will not be developed here, since the subject
depends heavily on details of the operating system design and is not
germane to the AP aspects of the architecture which are of primary
concern. In general, however, such communication requires that the two
units involved share some mutually accessible central memory and some
common usage conveﬁtions. It is also useful, though perhaps not
absolutely necessary, if there is special hardware to pass at least one

initial argument to the interrupted routine so that the burden of mutual
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cognizance is not so severe. Consistent with the strategy of Nutt and
Ellis referenced earlier, mutually accessible central memory is provided
by allocating memory in blocks, with each block having associated with
it an 8-bit "OWNER" register and a 4~bit "MODE" register. The OWNER
register controls which CUs may access the block, and the MODE register

controls how it may be accessed.
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VI. Data Communication and I/0

As mentioned in section II, all I/0 to and from PEs in a MAP
system is buffered through central memory, with high speed, word
parallel busses transferring data from central memory to individual PEs,
and vice versa., The data bus is capable of operating on a much faster
cycle than an individual PE memory, so that in order to drive the bus
at capacity, data from a large set of PEs must be interleaved. The
interleaving is accomplished through the mechanism of the ICTL and OCTL
registers of figure 3, which stand for "input control" and "output control",

The ICTL and OCIL registers work in a similar manner. A register
is initially loaded with a value representing a delay time. For each
cycle to which the CU controlling the operation has access to the data
bus, the register is decremented by one. When the register reaches
zero, a gating signal is generated which, in the case of the ICTL
register, causes a word to be gated from the INPUT bus to the IDR. For
the OCTL register, the signal causes the contents of the ODR to be
gated to the OUTPUT bus. Generally the initial contents of the ICTL or
OCTL register will be different for each individual PE., The result is
that each PE reads or writes one word from a stream of words on the
data bus. It is, however, entirely possible for two or more PEs to have
the same starting value. If a set of PEs share a common ICTL value,
for instance, then each element of that set will accept the same word
from the data stream on the INPUT bus.

Data streams need not always originate from or terminate to central

memory. The CU may cause the contents of the OUTPUT bus to be fed back
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to the INPUT bus, so that its PEs may act simultaneously as source and
destination of the data stream. This allows exchange of data among PEs
in arbitrary patterns, according to the initial values loaded into the
ICTL and OCTL registers.

As an example, figures 9A and 9B illustrate how data would be
exchanged among PEs in a 5 x 7 array when every PE requires input from
each of its four nearest neighbors (as, for instance, in solving partial
differential equations in two dimensions). The operation consists of
either four or five data exchange operations in which designated subsets
of the PEs act as broadcastors, creating the data stream, and others
act as data receivers. Multiple exchange operations are necessary, since
we are assuming that an individual PE can receive only one word of data
in each operation. If the set of broadcasters and recelvers are to be
non~-intersecting -~ i.e., a particular PE may operate as a broadcastor
or receiver, but not both on the same operation -- then five exchanges
are required, The patterns of broadcastors and receivers would then be as
shown in figure 9A. If PEs may act as both broadcasters and receivers
within the same operation, then the complete exchange can be accomplished
in four operations, using the patterns shown in figure 9B. The difference
is not especially significant, since in either case the number of data
bus cycles required is the same —- one cycle for each PE in the array.
The second method saves a little setup overhead in having to initialize

ICTL and OCTL registers one less time.
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The communication bandwidth for data exchange in the above type of
operation is less than it would be in a machine such as ILLIAC IV with
hard parallel PE to PE data communication channels, but can be quite
respectable all the same. In the above example, each word of data
broadcast goes to four PEs simultaneously (ignoring boundary effects
where a PE has fewer than four neighbors), so the communication bandwidth
is four times the bandwidth of the data bus itself. If the data bus
operates on an 80ns cycle as suggested earlier, this amounts’to a bandwidth
for data communication in the gbove example of 1.6 x 109bps. With
higher multiplication factors arising when each PE broadcasts to a large
subset of other PEs, the figure would be still higher; however the
real advantage of the scheme is that it is completely general. It does
not depend on hard paths to specific PEs, and extends readily to three
dimensional arrays or irregular sets.

The above discussion ignores attenuation of the data communication
bandwidth for a given CU due to competition for the data bus from other
CUs. Although data streaming operations represent the only instances
in which individual control units can utilize more than a fraction of the
data bus bandwidth, they may be sufficiently common as to justify
measures for reducing competition. This can be done by sectioning the
data bus into a number of semi-independent ''sectors'., Each "sector"
then has cross-bar connections to every CU, as illustrated in figure 10
for the INPUT bus. If two CUs have no common sector in which each owns
active PEs, then they may have simultaneous access to the busses in their

respective sectors. If there are enough sectors that each sector contains



PEs from only one CU, then each CU has full access to a bus on every
cycle. In general, though, this cannot be counted on. One of the
required capabilities in a MAP system is the ability of a CU to transfer
a single PE or an arbitrary set of PEs to another CU. Except in the
extreme case where each sector serves a single PE, this leads to the
possibility of one sector serving PEs belonging to two or more different
CUs. When this happens, concurrent access by those CUs is excluded.
Sectoring therefore does not eliminate the need for bus scheduling, but
significantly reduces the number of CUs which mutually contend for cycles,
It also has implications for the design of MAP operating systems, since
the operating system should allocate PEs in such a way as to minimize
contention. This means trying to keep the number of CUs owning PEs in any
one sector down to a minimum, and where sharing is necessary, trying to
fulfill additional PE requirements from sectors where the PEs are owned
only by the requesting CU or CUs with which the requesting CU already
shares sectors.

As to the optimal size and number of sectors, this is a principle
parameter for system tuning. The more sectors there are, the less bus
conflict there will be under normal conditions. But each sector increases
the cost of the system somewhat, due to the wide crossbar connections
and to the enlargement of the conflict detection and resolution circuitry.
Furthermore, the benefit of additional sectors falls off fairly rapidly
beyond a certain point, as control units come to have essentially full
access to the bus. At that point, conflicts which still exist are likely

to be between control units that exchange processing elements as part of
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an integrated multi-processing scheme. In the latter case it is almost
inevitable that the two units will at times own active PEs in the same
sector, and conflicts arising in this manner are relatively insensitive
to the number of sectors. However it should be noted that a fairly

high level of conflict can be tolerated before significant degredation
shows up. For instance, if a CU requires access to a data bus one cycle
out of five, and the level of conflict is such that it must wait an
average of one cycle for every cycle it uses the bus, its performance is
degraded by at most ten percent, and possibly much less if dynamic

optimization of micro instructions, as discussed in section V, is employed.
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TABLE 1

ALU Gating Signals

) « INDU"
1e 1330*35‘ IWELTO~]5
I h [y ‘;E" . )
29 Il}}KQm”in} & &ENWEJ 16“"':‘51
. IDR. ., ® INPUT
- E}\Omﬁl INP i0m31
Ity MAR & MAR + 1

5. MAR & IDRO_&
6. MAR ¢« }}121‘«113":'{0”9
7. MAR € ACy g
8., AC & gelected register

9. AC ¢ .NOT. AC

10, AC ¢ AC + selected register

11, AC & AC ,0OR. selected register
12, AC & AC JAND., selected register
13. AC ¢ AC EQR. selected register

the AC, 4, € AC, #AC, 4, (left circular shift 1 bit)

150 AC; oy € AChg o4 °ACH oy (left circular shift 4 bits)
16. "lgi‘)mjz & ﬁ(}"m:%!.ACfﬂ (arithmetic right shift 1 bit)
17 AC, a4 6~A0km3?«@(A031) ( aeres. 4 bits)

18, AC &« ACX

19. AC%s selected register (simultaneous exchange)
20, WMR & AC

21. i@‘MRiéwB 1€ WMR
22 ODR ¢ AC

23. ICTL €« AC

24, OCTL ¢ AC

25, ACY & AC

15

Read and Write

26. RMR « 03 RMR, e PEM (MAR)

16-31 =15
27. TMR ¢ g4 € RMR, 453 RMR, 4o e PEM(MAR)

g e oY e
28, PEM(MAR) € WMR 6 o4
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ALU

TABLE 1 (Cont.)

Extended Operations

29
30,
31.
32,
33

ALY

align exponents of AC and selected register
normalize AC

convert AC to integer

AC.ACX'§ product of AC and selected register

AC ¢ ACSACY / selected register; ACY ¢ remainder

Control Signals

S
35.
36.
37
38.
39.
Lo,
k1,

designate IDR as selected register
designate AMR as selected vregister
desipgnate WMR as selected register
designate zero as selected register
activate ICTL for countdown

activate OCTL Ffor countdown

clock for countdown of ICTL and/or OCTL

write ODR to OUTPUT buss
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TABLE 2

Associative Unit Instructions

Lo, wWrite value of designated switch into SELECT

L4, Write OR of designated SELECT bits into SELECT
Wi, Write NOR of designated SELECT bits dinto SELECT
L, Write AND of designated SELECT bits into SELECT
LE ., Write NAND of designated SELECT bits dnto SELECT
477, SELECT ¢« AC

L&, AC & SELECT

Lo, K1 INPUT

« 0-15
50. K1 ¢« INPUT

s

{..o

16=731
£ ki@ TN r;{’\
51, K2 EUEU,Oulﬁ

£ v W LT

52, K2 lmELi16m31

5%, set MODE awitch for NORMAL

54k, set MODE switch for COMPLEMENT

55, designate KO as control register

56. designate K1 as control register
57. designate K2 as control register
58, signal to count and selection unit

59, set OWNER switch to designated CU

Associative Compare Instructions

60, initialize for associlative compare:

- transfer contents of AC to ODR, inverting sign bit

- reset associative compare cursor
- gset SWhH
61. compare AC to IDR using assocliative compare cursor
- resets SWH if comparison shows AC mot maximum
62, broadeast local cursor location over OQUTPUT buss

64. compare local cursor position to bits in IDR

- regets SW5H5 if there are any cursors farther right.
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Mrreumonic

TABLE 3

55

Control Unit Instructions

Operand(s)

Indexing? Description

Index Register Instructions

LD
STH
SETX
TNCR
ADDX
SUBX

CU RBranch

CM
CM

addresa

address

immediate

i
Ot
CM

mmediate

address

address

Instructions

BXP

DBXNE

SUBR

JUMP

BCTO

BO™T

BCTGH

Process

CM

CM

CM

CHM

CM

CM

CM

address

address

address

address

address

address

address

ves
ves
N/A
N/A
ves

ves

no
no
no
ves
o

1o

no

Communication and Control

Load index register from CM
Store contents of IR to CM

Load IR with specified value
Increment IR by specified wvalue
Add contents of CM address to IR
Subtract contents of CM address

from index register.

Branch to specified address if
contents of IR > O

Branch to specified addiress if
contents of TR s O

L.oad TR "with cirrert TC value + 1
and go to specified address

G0 to specified address

Branch if count of active Phs =0
Branch if count of active Pis =1
Branch 1if count of active PEs > 1

Instructions

PREMPT

DROP

TAKE

GIVE

Hebit TH
M address
1one |

none

no

N/A

N/ A

Pre-~empt operation of CU with
specified ITDh, if allowed

Drop any pre-emption currently in
effect, setting 1TC of pre-emplted
CU to specified address. (if addr
=0, TC unchanged)

Transfer active PRs of pre-empted
CU to pre-~ecmpting CU.

Transfer active PHEs of pre-empting

CU to pre-empted CU
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TABLE 3 (Cont.)

Mneumonic Operand(s) Indexing? Description

STGNAL B-bit ID and Generate message interrupt to CU
CM address no having specified ID and pass

specified address as argunent

DISABLE none N/A Disable message interruptls
ENABLE CM address no Fnable message interrupts, setiting

specified address as address of

interrupt processing routine.

0
-3
-
foourt

:
=
5
4
o
®

N/A Halts all activity within a CU

until CU is pre-empted.

Miscellaneocus CU Tnstructions

COUNT M address FaXe) Count active Phs and store count

at specified address.



