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Digital elevation models (DEMs) are the framework for the modeling of numerous 

coastal processes including tsunami propagation and inundation, storm-surge, and sea-level-rise. 

The National Oceanic and Atmospheric Administration (NOAA) National Geophysical Data 

Center (NGDC) develops integrated bathymetric-topographic DEMs across coastal zones to 

support tsunami propagation and inundation modeling efforts.  The development of integrated 

bathymetric-topographic DEMs requires extreme interpolation across large distances between 

sparse bathymetric measurements in order for the model to retain the resolution of dense coastal 

topographic data, particularly lidar. This study examines the accuracy of three common 

interpolation methods used to develop bathymetric DEMs of Kachemak Bay, Alaska: inverse 

distance weighting (IDW), spline, and triangular irregular network (TIN). The goal of the study 

is to examine the relationship between interpolation deviations from measured depths and sample 

density, distance to the nearest depth measurement, and terrain characteristics.  

A split-sample method was used to determine that the accuracy of the three evaluated 

interpolation methods decreases in areas of high surface curvature, at greater distances from the 

nearest measurement, and at smaller sampling densities. Furthermore, spline is the most accurate 

interpolation method at all sampling densities. Predictive equations of interpolation uncertainty 

derived from the quantification of interpolation deviations in relationship to sample density and 

distance to the nearest depth measurement were developed.  These predictive equations of the 

uncertainty in DEMs introduced by interpolation methods can aid mitigation efforts for coastal 

communities prone to tsunamis, storm-surge, and other coastal hazards, by improving the 

understanding of the propagation of uncertainty into the modeling of such coastal processes that 

rely on integrated bathymetric-topographic DEMs. 
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CHAPTER 1: INTRODUCTION 

 

The research completed for this master’s thesis builds on previous studies that 

investigated the accuracy of spatial interpolation methods used to develop digital elevation 

models (DEMs). Interest in the accuracy of interpolation methods spans numerous academic 

disciplines including geography, hydrology, oceanography, geophysics, environmental science, 

and hazards.  While almost all previous studies focus on the accuracy of interpolation methods in 

developing DEMs from dense topographic data, this research is unique in that it addresses the 

accuracy of interpolation methods used to develop bathymetric DEMs from sparse bathymetric 

data. The accuracy of an interpolation method refers to the closeness of interpolated values to 

accepted values. In this study, measured depths are considered the accepted values. Interpolation 

accuracy is inversely related to the magnitude of deviations from measured depths, and thus 

interpolation methods with smaller deviations from measured depths are considered more 

accurate. However, interpolation is typically used in areas without measured depths, and thus the 

interpolation accuracy cannot be quantified. The lack of knowledge about interpolation 

deviations from accepted values represents the uncertainty introduced into DEMs by 

interpolation methods.  

 There is currently a lack of literature on predictive equations of interpolation uncertainty. 

There is widespread use of DEMs developed with interpolation methods across numerous 

disciplines in the academic, government, and private sectors with little or no accompanying 

estimates of the uncertainty inherent in the models. The significance of estimating the 

uncertainty of DEMs ranges from academically and commercially beneficial to potentially life-

saving. Estimating DEM uncertainty can aid academic research that utilize DEMs including 
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stream-flow, sediment-transport, and soil-landscape modeling, as well as commercial interests in 

natural resource extraction.  Similarly, the modeling of hazards such as tsunami inundation and 

hurricane storm-surge inundation require integrated bathymetric-topographic DEMs (Eakins and 

Taylor, 2010) typically developed with interpolation methods. Flood maps and subsequent 

evacuation routes are derived from such modeling, and estimating and then communicating the 

uncertainty inherent in the models and flood maps to the public can potentially mitigate future 

human loses.  

To address these issues, this thesis investigates the accuracy of three common spatial 

interpolation methods used to develop bathymetric DEMs: inverse distance weighting (IDW), 

spline, and triangular irregular network (TIN). The primary objective of this research is to assess 

the accuracy of these interpolation methods and the relationship between their deviations from 

measured depths and sampling density, distance to the nearest measurement, and terrain 

characteristics. After quantifying and characterizing the accuracy of various interpolation 

methods, predictive equations of interpolation uncertainty using distance to the nearest 

measurement and sampling density are presented. Such equations of interpolation uncertainty 

can provide valuable insight on the propagation of DEM uncertainty introduced by interpolation 

methods into the modeling of numerous oceanic, coastal, and land processes. 

 

1.1 Bathymetric Digital Elevation Models 

The oceans are truly Earth’s last great unknown. Surprisingly, the surfaces of Mars, 

Venus, and the Earth’s moon are mapped at a higher-resolution than the seafloor (Smith, 2004), 

as individual soundings can have data gaps of hundreds of kilometers in the Earth’s oceans 

(Smith and Sandwell, 1997). The National Oceanic and Atmospheric Administration (NOAA) 
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National Geophysical Data Center (NGDC) archives hydrographic surveys that date back to 

1837 (http://www.ngdc.noaa.gov/mgg/bathymetry/hydro.html). These surveys provide depth 

measurements at discrete locations, and more recent digital surveys are commonly stored in 

vector format. However, a continuous representation of the seafloor is typically required for the 

modeling of numerous oceanic and coastal processes including ocean circulation, tsunami 

propagation, and hurricane storm-surge. Bathymetric DEMs are continuous representations of 

the seafloor that are derived from depth measurements and are commonly stored in raster format 

comprised of a matrix of rectangular cells with each cell representing the average depth of the 

area contained within the cell (Figure 1).  

 
 

Figure 1. Perspective image of an integrated bathymetric-topographic DEM of Kachemak 
Bay, Alaska in raster format with 2-times vertical exaggeration (Friday et al., 2010). Dark 
blue coloring denotes areas of deeper bathymetry, while dark orange and red coloring 
denotes areas of higher topography. 
 

NOAA NGDC develops integrated bathymetric-topographic DEMs across coastal zones 

to support tsunami propagation and inundation modeling efforts. The development of integrated 

http://www.ngdc.noaa.gov/mgg/bathymetry/hydro.html�
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bathymetric-topographic DEMs requires extreme interpolation across large distances between 

sparse bathymetric measurements in order for the model to retain the resolution of the dense 

coastal topographic data, particularly lidar. The accuracy of such extreme interpolation is 

unknown, and therefore an unknown degree of uncertainty is propagated into tsunami 

propagation and inundation models.   

 

1.2 Depth Measurement Uncertainty 

Integrated bathymetric-topographic DEMs are the framework for the modeling of 

numerous oceanic and coastal processes including ocean circulation, tsunami propagation, and 

tsunami inundation (Eakins and Taylor, 2010). For example, the direction and magnitude of the 

energy of tsunami wave propagation and inundation is significantly impacted by both deep-ocean 

bathymetry (Kowalik et al., 2008) and coastal bathymetry (Horillo et al., 2008). The speed of the 

wave is determined by the depth, and the deeper the water, the faster the wave travels (Satake, 

1988). Consequently, as the tsunami travels over ridges, seamounts, and submarine canyons with 

various depths, segments of the wave travel at different speeds, causing the energy to change 

direction due to refraction. The accuracy of modeling oceanic and coastal processes such as 

tsunami propagation and inundation is therefore partly dependent on the accuracy of the DEM, 

which is primarily determined by the quality of the depth measurements. As a result, uncertainty 

in the depth measurements propagates into uncertainty in the modeling of such processes. 

Uncertainty in the depth measurements can originate from the platform, instrumentation, 

environment, integration, or calibration, and take the form of horizontal or vertical uncertainty or 

both (Figure 2; Hare et al., 2011). These sources of uncertainty are easier to quantify than other 

non-probabilistic sources of measurement uncertainty. For example, there is uncertainty in what 
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object is actually being detected by sonar or lidar measurements, such as suspended sediments, 

or penetration into the seafloor as a result of the sonar/lidar frequency and impedance of the 

material of the seabed (Hare et al., 2011). Other non-probabilistic forms of measurement 

uncertainty are even more difficult to quantify, such as the temporal change of the seafloor.  

 
 

Figure 2. An example of higher depth measurement uncertainty indicated by green 
coloring due to sound velocity errors (stripes), and to rougher seafloor topography in the 
lower left portion of the figure (U.S Department of Commerce - NOAA, 2008; NOS Survey 
H11983). 
 

While the accuracy of DEMs is primarily determined by the quality of the depth 

measurements, the low spatial resolution of especially older bathymetric soundings necessitates 

the use of interpolation methods to estimate areas of unknown depths. Consequently, the 

accuracy of modeling coastal processes is also partly dependent on the accuracy of the 

interpolation method used to develop the continuous representation of the seafloor.   
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1.3 Interpolation Methods 

Interpolation is a mathematical process of predicting the values of unknown locations 

based on surrounding measured values (Burrough and McDonnell, 1998). Interpolation requires 

two basic assumptions about the surface, that the surface is continuous and smooth, and that the 

neighboring data points have high correlation with the unknown area (Liu, 2007). Several 

different interpolation techniques exist for creating surfaces, including IDW, spline, TIN, natural 

neighbor, and kriging, all of which can create different DEM surfaces, even when built from the 

same source data (Maune et al., 2007). 

There are numerous interpolation methods, but all are based on the same assumption that 

bathymetry is spatially autocorrelated. The notion of spatial autocorrelation is largely attributed 

to Tobler’s 1st law of geography, “Everything is related to everything else, but near things are 

more related than distant things (Tobler, 1970).” That is, the depth at one location is more similar 

to depths nearby than the depths far away. The different mathematical algorithms used in each 

interpolation method produce divergent DEMs, even when developed from the same source data.  

Interpolation methods can be classified into general groups based on the assumptions and 

features used to estimate the depths of unknown areas using known measurements. Interpolation 

methods can be classified as either geostatistical or deterministic, local or global, and exact or 

inexact (Li and Heap, 2008). Geostatistical methods, such as kriging, use both mathematical and 

statistical functions to estimate depths, while deterministic methods, such as spline, IDW and 

TIN, use the measurements directly and mathematical functions only to predict unknown values 

(Childs, 2004). Geostatistical methods are typically more computationally and time-intensive in 

order to accurately quantify the statistical relationship between depths compared to deterministic 

methods, which have simpler parameters and are computationally faster (Bloschl and Grayson, 
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2001; Castiglioni et al., 2009). Local methods use a subset of measurements surrounding the 

location to be predicted and global methods use all available measurements (Burrough and 

McDonnell, 1998). Local methods are preferred when the seafloor structure is driven by local 

variation, and global methods should be used when the seafloor structure is driven by a trend 

over a larger area.  

Lastly, exact interpolators always honor the measurements by creating a surface that have 

the same values at the locations of measurements, in contrast to inexact interpolators, which are 

not constrained by the depth measurement values at those locations (Burrough and McDonnell, 

1998). Inexact interpolators can add additional uncertainty to the model by creating surfaces that 

diverge from the measurements (Hare et al., 2010), but can be useful when there is already large 

measurement uncertainty. Interpolation methods can be any combination of geostatistical or 

deterministic, local or global, and exact or inexact, and the method should be chosen based on 

the data quality, sampling distribution, terrain characteristics, and computational resources. More 

specifically, each interpolation method has particular mathematical constraints for predicting 

unknown values.  

Three deterministic methods were analyzed in this study because unlike geostatistical 

methods, deterministic methods do not provide an assessment of uncertainty along with the 

predicted values (Li and Heap, 2008). The first method, IDW, is a deterministic, local, exact 

interpolator that predicts values using a linearly-weighted combination of sample points (Liu, 

2007). The weight is a function of inverse distance and is raised to a user-defined mathematical 

power that controls the significance of known measurements based on their distance from the 

location to be predicted. A higher power results in distant measurements having less influence, 

which produces a more detailed and less smooth surface. Conversely, a lower power results in 
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distant measurements having a greater influence and results in smoother surfaces.  The number 

of measurements used for prediction can also be defined, with more depths resulting in smoother 

surfaces and more similar to global interpolation. 

 The main strength of IDW is its simplicity, which makes it easy to use and 

computationally fast. Akkala et al. (2010) also found IDW to work well with noisy data. Since 

IDW uses a weighted-average algorithm, the interpolated surface smoothes measurement errors. 

However, the weighted-average aspect is also one of the many disadvantages of IDW, as 

predicted values will always fall within the range of values of the input data and thus peaks and 

valleys cannot be predicted unless they have been sampled (Declercq, 1996). Another 

disadvantage is that the spatial arrangement of samples does not affect the weighting scheme 

(Myers, 1994; Akkala et al., 2010). The weight of samples is only determined by the user-

defined power and the distance from the measurement, and therefore the algorithm cannot take in 

consideration the degree of spatial correlation. Also, the user-defined size of the search window 

and power affects the quality of the interpolated surface (Isaaks and Srivastava, 1989; Burrough 

and McDonnell, 1998; Akkala et al., 2010). The most typical artifact created by IDW 

interpolation is the “bulls-eye” effect created at the location of sample points (Erdogan, 2009). 

Akkala et al. (2010) found that the best-suited scenario is moderately dense sampling with regard 

to local variation.  

 The second method evaluated was spline interpolation. There are numerous types of 

spline interpolation, including thin plate spline, regularized spline, and spline with tension. Thin 

plate spline produces a locally smoothed average that is an inexact interpolator (Burrough and 

McDonnell, 1998), while spline with tension and regularized spline are exact interpolators (Mitas 

and Mitasova, 1988).  The two exact interpolators, regularized spline, and spline with tension, 
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were evaluated in this study. In addition to being exact, these two spline types are deterministic 

and local interpolation methods. The regularized method creates a smooth, gradually changing 

surface and allows for values above and below the measurement values (ESRI, 2010). The 

tension method creates a less smooth surface and is more closely constrained by the sample data 

range (ESRI, 2010). A user can further fine-tune spline interpolation by the number of points and 

a weight parameter. The greater the number of points specified, the greater the influence of 

distant points and the smoother the surface. For regularized spline, a greater weight results in a 

smoother surface (ESRI, 2010). On the contrary, a greater weight results in a coarser surface for 

spline with tension (ESRI, 2010).     

 There are many advantages and disadvantages to spline interpolation. In contrast to trend 

surfaces and weighted-averages, spline interpolation retains local features (Burrough and 

McDonnell, 1998). In addition, spline can predict values outside of the data range, interpolating 

peaks and valleys if they were not sampled (Childs, 2004). Also, spline interpolation creates 

visually appealing curves or contour lines (Akkala et al., 2010). This method is best used for 

gently varying terrain as it can introduce “overshoots” in areas of large gradients (Mitas and 

Mitasova, 1999). While spline interpolation can predict maximum and minimum values greater 

than and less than the values of the sampled data, this allows for the previously mentioned 

“overshoots” that create peaks and valleys where they don’t actually exist. Furthermore, spline 

interpolation can provide a view of reality that is unrealistically smooth (Burrough and 

McDonnell, 1998). Lastly, spline interpolation may mask measurement uncertainty in the data 

(Akkala et al., 2010). Akkala et al. (2010) found that the best-suited scenario for spline 

interpolation is irregularly-spaced data.  
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 The third method evaluated is a vector representation of terrain, triangular irregular 

network (TIN). TINs are constructed by forming triangles between depth measurements using 

the Delaunay triangulation method. This method ensures that no measurements lie within the 

interior of any of the circumcircles of the triangles in the network, which maximizes the 

minimum interior angle of all triangles to avoid long, thin triangles (Soucy and Laurendeau, 

1996).  

 The main advantage of TINs is the ability to represent the surface at different levels of 

resolution, which limits data redundancy in areas of uniform terrain while maintaining high 

resolution in areas of complex relief (Burrough and McDonnell, 1998; Akkala et al., 2010). TINs 

can also incorporate other features, such as streams and ridgelines, into the model if available in 

a polyline format.  However, in most cases, TINs require visual inspection and manual control of 

the network (Akkala et al., 2010). Also, TINs are similar to weighted-average methods like IDW 

in that the minimum and maximum surface depths will be the same as the input depths and 

therefore peaks and valley will not be represented in the TIN surface unless they were sampled.  

Akkala et al. (2010) found that they best suited scenario for TINs was dense and moderate 

distribution of data points.  

There is no single “best” interpolation method (Chaplot et al., 2006; Fisher and Tate, 

2006), and the accuracy of all interpolation methods is degraded by heterogeneous seafloor 

morphology (Mackaness and Beard, 1993). The accuracy of all interpolation methods is related 

to the sampling density and distribution (MacEachren and Davidson, 1987; Aguilar et al., 2005; 

Anderson et al., 2005; Chaplot et al., 2006; Guo et al., 2010) and the terrain characteristics 

(Aguilar et al., 2005; Carlisle, 2005; Erdogan, 2009; Erdogan, 2010; Guo et al., 2010). 

Differences are largest in morphologically complex areas, areas of high curvature, where the 
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accuracy of all interpolation methods decreases. However, some interpolation methods more 

accurately represent different morphologic regimes.  

Since depth is a spatially autocorrelated process, it is expected that interpolation 

deviations from the measured surface would also be spatially autocorrelated, with deviations 

greater in magnitude in areas of high curvature. Furthermore, since interpolation deviations are a 

non-stationary process, a global statistic, such as root mean square error (RMSE) or mean 

absolute error (MAE), is often insufficient in characterizing the accuracy of the interpolation 

method (Carlisle, 2005). In areas of flat terrain, the interpolation deviations are presumably very 

small, whereas the interpolation deviations are larger in areas of high curvature. The inadequacy 

of global measures of accuracy has been addressed by creating deviation maps that spatially 

visualize clusters of high and low accuracy (Carlisle, 2005; Erdogan, 2009).   

The overarching goal of this research is to characterize the relationship between 

interpolation accuracy and sampling density, distance to the nearest measurement, and terrain 

characteristics using sparse bathymetric data. While there is a clear relationship between 

sampling density and distance to the nearest measurement, a distinction is made as the random 

nature of the sampling density implemented in this study was capable of producing a wide-range 

of distances to the nearest measurement, especially at low sampling densities. Characterizing the 

accuracy of each method using various sampling densities and in different terrains will provide 

insight on the strengths and limitations of each method, and permit the derivation of equations 

that can be used to estimate DEM uncertainty introduced by interpolation.  

Studies on divergent DEMs developed from different interpolation methods with dense 

topographic data have improved the understanding of the uncertainty of hydrologic modeling of 

stream flows (Peralvo and Maidment, 2004; Vazquez and Feyen, 2007). However, the 
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uncertainty of bathymetric DEMs developed from different interpolation methods with sparse 

depth measurements has yet to be comprehensively characterized and quantified. This research 

seeks to determine the interpolation method that most closely replicates measured bathymetry, 

using Kachemak Bay, Alaska as a representative region, by quantifying the interpolation 

deviations from the measured depths for each method for various sampling densities. In addition, 

this research will identify the optimal interpolation method parameters, quantitatively and 

qualitatively assess the relationship between interpolation deviations and terrain characteristics, 

and derive predictive equations of interpolation uncertainty based on the distance to the nearest 

measurement and sampling density. 
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CHAPTER 2: DATA & KACHEMAK BAY, ALASKA STUDY AREA 

 

2.1 Hydrographic Survey  

The bathymetry of Kachemak Bay, Alaska (Figure 3) was used to quantify the 

interpolation deviations from measured depths and assess the relationship between interpolation 

deviations and sampling density, distance to the nearest measurement, and terrain characteristics. 

Kachemak Bay was chosen because of its varying terrain that ranges from areas of constant 

depths to areas of rapidly changing depths. An area with varied terrain was chosen in order to 

evaluate the effect of terrain on interpolation deviations, with the initial assumption that 

interpolation deviations would be greatest in magnitude in areas of high surface curvature. 

Kachemak Bay is fed by glacial run-off and the area surveyed has a variety of glacial sediments 

covered by a layer of sand that produces several types of bedforms and changes in depths 

(Bouma et al., 1980).  

 
Figure 3. Location of Kachemak Bay, AK study area; red box outlines area of analysis. 
Background is ESRI World 2D imagery (ESRI, 2009). 
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Kachemak Bay was surveyed in 2008 with high-resolution multibeam swath sonar as part 

of a large-scale project called NOAA Hydropalooza (http://www.hydropalooza.noaa.gov/). The 

goal of the project was to map Kachemak Bay’s seafloor and coastline to support safe maritime 

transportation, protect coastal communities, assess fisheries and critical marine habitats, and to  

better understand the Bay. The digital hydrographic survey, H11934, was downloaded from the 

NGDC National Ocean Service (NOS) Hydrographic Survey database 

(http://www.ngdc.noaa.gov/mgg/bathymetry/hydro.html) in Bathymetric Attributed Grid (BAG) 

format. The survey was downloaded as a thoroughly evaluated combined BAG with a 4-meter 

horizontal resolution referenced to UTM Zone 5 North. 

 

2.2 Measured Depth Raster 

The survey BAG was converted to XYZ (eastings, northings, depth) format, then 

averaged using the Environmental Systems Research Institute (ESRI) ArcGIS 10.0 

(http://www.esri.com/) ‘Point to Raster’ tool at a 10-meter  by 10-meter cell size. This averaging 

ensured that every 10-meter cell had one constraining data point derived from depth 

measurements (Figure 4).  

http://www.hydropalooza.noaa.gov/�
http://www.ngdc.noaa.gov/mgg/bathymetry/hydro.html�
http://www.esri.com/�
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Figure 4. Measured depth raster of Kachemak Bay with no interpolation at a 10-meter cell 
size. 
 

2.3 Semivariogram 

The degree of spatial autocorrelation of the measured Kachemak Bay depth raster was 

quantified using a semivariogram. Spatial autocorrelation is the statistical correlation between an 

attribute (e.g., depth) and distance, with the assumption that the values of an attribute nearby are 

typically more similar than the values farther apart (Tobler, 1970). The semivariogram shows the 

variance or the difference between every depth measurement paired with another measurement in 

the study area as a function of the distance between the depths. The distance at which the 

variance levels off is known as the range, which defines the distance at which depths are no 

longer spatially autocorrelated. Quantifying the spatial autocorrelation can aid in the selection of 

interpolation parameters, particularly the search radius for IDW. The semivariogram below was 

developed using a random 1% sampling of the measured depths as the focus of this study was on 

interpolation across large distances. The model of the semivariogram indicates that depths 
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separated by a distance greater than approximately 200 meters (20 cells) have little or no spatial 

autocorrelation and are not useful for interpolation (Figure 5). 

 
 

Figure 5. The semivariogram of a random 1% sampling of depths of Kachemak Bay. 
 

2.4 Slope & Curvature 

Slope and curvature rasters were derived from the original measured depth raster with no 

interpolation using ArcGIS 10.0. The slope (also referred to as gradient) represents the maximum 

rate of change of depths in a 3 by 3 cell window that is moved over the entire original depth 

raster (Figure 6; Burrough and McDonnell, 1998). A greater slope (units in degrees) corresponds 

to steeper surfaces. 
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Figure 6. Slope of the Kachemak Bay study area derived from the measured depth raster. 
 

Curvature is the rate of change of the slope, or the slope of the slope. There are three 

types of curvature: profile, plan, and total curvature. Profile and plan curvatures are the 

curvatures on a line formed by the intersection of a plane and the terrain surface.  The curvature 

of a line is the reciprocal of the radius of curvature, so a gradually changing curve has a small 

curvature, while a tight curve has a large curvature (Galant and Wilson, 2000).  Profile curvature 

represents the rate of change of slope in the direction of the maximum slope, which affects the 

acceleration and deceleration of flow and therefore influences erosion and deposition. Profile 

curvature also differentiates between upper and lower slopes (Galant and Wilson, 2000). The 

plan curvature represents the rate of change of the slope perpendicular to the direction of the 

maximum slope and influence convergence and divergence of flow and differentiates between 

ridges, valleys, and hillslopes (Galant and Wilson, 2000). The total curvature represents the 

curvature of the surface itself, not the curvature of a line across the surface in a given direction 
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(Galant and Wilson, 2000). A positive total curvature value represents an upwardly convex 

surface, while a negative total curvature value represents an upwardly concave surface. A zero 

curvature value represents an area of constant slope (Figure 7). In addition to the slope, the total 

curvature was used to characterize the relationship between interpolation deviations and terrain 

characteristics. 

 
 

Figure 7. Curvature of the Kachemak Bay study area derived from the measured depth 
raster. 
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CHAPTER 3: METHODOLOGY 

 

The accuracy of the three deterministic interpolation methods was analyzed in this study 

using ArcGIS 10.0. Desmet (1997) defines the accuracy of interpolation methods used to 

develop DEMs as a compromise between “precision” and “shape reliability”. Precision can be 

evaluated by comparing interpolated depths to measured values using non-spatial, dimensionless 

indices such as MAE or RMSE, while shape reliability is evaluated through statistical analysis of 

the spatial properties of a surface, such as slope and curvature (Desmet, 1997; Chaplot et al., 

2006). In this study, the accuracy of interpolation methods refers to the precision described by 

Desmet (1997) and the “shape reliability” of the individual methods was not investigated. 

Although Declerq (1996) found that accurate interpolation methods do not necessarily preserve 

spatial patterns, a comprehensive evaluation of the “shape reliability” of the interpolation 

methods was outside of the scope of this research. Furthermore, the original measured depths are 

considered “true” depths and the uncertainties inherent in the measurements, as discussed in the 

first chapter of this thesis and by Hare et al. (2011) are ignored.  

 

3.1 Split-sample Process 

There are numerous methods to assess the accuracy of interpolation methods. One 

approach is using a higher-resolution independent dataset to evaluate the accuracy of the 

interpolated surface (Chang and Tsai, 1991; Robinson and Metternicht, 2005; Fisher and Tate, 

2006; Erdogan 2009). This is often not possible due to the time and monetary resources needed 

to collect the independent dataset. Furthermore, it would make little sense to develop a DEM 

using interpolation and sparse measurements if there was a higher-resolution DEM already 
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available. More often, cross-validation and split-sample methodologies are used to determine the 

accuracy of interpolation methods. Both cross-validation and split-sample use similar 

approaches. The most common form of cross-validation is the “leave one technique (Erdogan 

2009).” This method consists of omitting one depth measurement prior to using an interpolation 

method, and then the difference between the interpolated depth and the omitted measured depth 

is calculated. This process is the repeated so that all depth measurements are omitted once. The 

differences between interpolated depths and omitted depths are then aggregated and an indication 

of the accuracy of the interpolation method is provided by a global statistics such as MAE or 

RMSE. A split-sample procedure uses exactly the same method as cross-validation except for 

one key difference. A split-sample procedure randomly omits a percentage of depth 

measurements (more than one depth measurement) at a time and calculates the differences 

between the omitted depths and interpolated depths. The split-sample method is often used to 

assess the stability of an interpolation method when using fewer measurements (Declerq, 1996; 

Smith et al., 2005; Erdogan, 2009).   

A cross-validation procedure results in interpolating only 1 cell with depth measurements 

on all adjacent cells and may be more appropriate for interpolating dense data such as lidar. 

However, sparse hydrographic sounds collected using older single-beam sonar technology often 

necessitates extreme interpolation across many cells. This extreme interpolation between sparse 

bathymetric soundings is typically required for integrated topographic-bathymetric DEMs used 

for tsunami propagation and inundation modeling in order to retain the morphological detail of 

dense coastal, topographic lidar surveys (Hare et al., 2011). A split-sample method (Figure 8) 

was developed in this research to simulate a sparse bathymetric data set because of the interest in 

interpolating across many cells. The Kachemak Bay measured depth raster was the source for all 
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the random split-sample data sets. The split-sample process was repeated at the sampling 

densities to be used for analysis (1%, 5%, 10%, 25%, and 50%).  

 
 
Figure 8. Flowchart depicting the split-sample methodology for quantifying interpolation 
deviations. 
A) The original data are averaged to have exactly one depth value per grid cell. They are 
then randomly split by a fixed percentage (e.g., 50%) into training and test data. 
B) An interpolation method (e.g., spline) is applied to the training data to build an 
interpolated DEM. 
C) The interpolated DEM is compared to the test data to quantify the interpolation 
deviations. 
Steps A to C are repeated at the same split percentage (randomness resulting in different 
training and test data) to account for bathymetric variability. The method is run iteratively 
using different split-percentages to evaluate the stability (e.g., ability to reproduce the 
principal bathymetry) of the chosen interpolation method with various sampling densities. 
 

3.2 Raster Query 

The deviations between the interpolated depths and the original measured depths were 

divided by the original measured depths and multiplied by 100 to obtain the interpolation percent 

deviation. The percent deviation was used in order to eliminate the effect of ocean depths on the 
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magnitude of deviations. For example, a 5 meter interpolation deviation in 10 meters of water is 

a more significant deviation than a 5 meter interpolation deviation in 1,000 meters of water, and 

is reflected by a 50% deviation compared to a 0.5% deviation, respectively. In addition, tsunami 

modeling requires more accurate, higher-resolution DEMs in shallow waters near-shore 

compared to less accurate, lower-resolution DEMs in deeper waters off-shore (Titov et al., 

2003). Normalizing the deviation by the measured depth balances the importance of the absolute 

deviation for both shallow and deep waters. Furthermore, developing predictive equations of 

percent deviation will allow it to be used in any area of sparse measurements, from deep-ocean 

to shallow coastal waters.  

After implementing the split-sample method, the Euclidean distance to the nearest 

measurement was calculated for every cell using the ArcGIS 10.0 ‘Euclidean Distance’ tool. The 

distance was originally in map units (meters), but was transformed to raster cell units by dividing 

by the cell size (10-meters). The percent deviation was then compared on a cell-to-cell basis to 

the values of the distance to the nearest measurement raster, as well as the slope and curvature 

rasters derived from the original depths (Figure 9). The comparison between the rasters was then 

used to identify any relationships between the variables and to develop predicate equations of 

interpolation uncertainty than could be used in other areas of sparse depth measurements. 
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Figure 9.  The interpolation percent deviations (A) are compared to the distance to the 
nearest measurement (B), slope (C), and curvature (D) rasters on a cell-to-cell basis in 
order to identify the relationship between percent deviations and these explanatory 
variables. 
 

3.3 Data Buffers 

To ensure an accurate analysis of the relationship between interpolation deviations and 

distance to the nearest measurement, and terrain characteristics, two data buffers were 

implemented to avoid edge effects. The first data buffer that was used to extract the depths along 

the borders in order to guide interpolation to the edge of the study area is shown in Figure 10.  
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Figure 10. Implementation of a data buffer to eliminate interpolation edge effects (shown at 
30-meter cell size for visualization purposes). 

A. The original measured depths are extracted from the perimeter of the study area 
(yellow points). 

B. The border depths are removed, leaving only depths inside of the buffer (black 
points). 

C. Depths are randomly selected at a given sampling density to be used for 
interpolation (e.g. 1%; yellow points). 

D. The randomly selected points are merged with the border points to guide 
interpolation along the edges of the study area. 
 

There was a negative effect of the first data buffer that was implemented to always use 

depths along the border of the study area for interpolation. This data buffer resulted in cells 

adjacent to the inside of the border cells always being one cell away from a depth measurement. 
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Cells 2 away from the border were always less than or equal to 2 cells away from depth 

measurements, and so forth. A main research objective was to identify the relationship between 

interpolation deviations and distance to the nearest depth measurement. Since the cells near the 

border were always no less than a set distance away from a measurement, it would not have been 

possible to accurately identify the relationship between interpolation deviations and distance to 

the nearest measurement in these areas.  

To determine how many cells should be excluded from analysis due to the bias of the 

border measurements, the split-sample process and subsequent “Euclidean Distance” tool was 

implemented using the lowest sampling density analyzed (1%), which would result in the 

greatest possible distances to the nearest depth measurement. The distances to the nearest 

measurement were aggregated, and it was found than 99% of the distances were less than 12 

cells away from a measurement (Figure 11).  

 

Figure 11. Histogram of distances to the nearest depth measurement; 99% of cells are less 
than 12 cells away from a measurement when using a 1% sampling density. 
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Thus, the area of analysis was restricted to a subset of the original study area by 12 cells 

on each side (Figure 12). This ensured that the edge of the area of analysis had a range of 

distances to the nearest measurement, without being biased towards the depths always kept along 

the outermost border of the study area. This subset for analysis also ensured that slope and 

curvature values were accurate by having a full 3 by 3 window for calculation.  

 

 

Figure 12. An example of the distance to the nearest depth measurement raster created 
using the “Euclidean Distance” tool. The red box outlines the region of analysis (shown at 
30-meter cell size for visualization purposes). 
 

The split-sample and raster query process was then repeated 200 times for all three 

methods with each method using exactly the same depth measurements for interpolation and 

evaluation to quantify the deviations. Each interpolation method always using the same depth 

measurements ensured an accurate comparison between the methods. The rationale for repeating 

the split-sample process 200 times is described in Section 3.6. The distance to the nearest 
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measurement, slope, and curvature values at the location of each deviation was queried and this 

process was repeated using 5 different sampling densities (1%, 5%, 10%, 25%, and 50%).  

 

3.4 Optimization of Interpolation Parameters 

Prior to assessing the accuracy of interpolation methods, the parameters of each method 

were optimized also using the same split-sample methodology. Using inappropriate parameters 

can cause significant artifacts in the interpolated surface, especially with IDW (Burrough and 

McDonnell, 1998; Akkala et al. 2010) and spline interpolation (Mitasova and Mitas, 1993; 

Cebecauer et al. 2002).  Numerous parameters were evaluated with a brute-force methodology.  

Each interpolation method used all possible combinations of parameters evaluated, and the 

median percent deviation was calculated for every combination as an indicator of accuracy. Fifty 

combinations of IDW parameters, 60 combinations of spline parameters, and 2 TIN conversion 

to raster methods were evaluated (Table 1).  

 
Table 1. Interpolation method parameters evaluated for each method. 
 

IDW 
Power 

IDW Radius Spline 
Type 

Spline 
Number 
of Points 

Spline 
Weight 

TIN to raster 
conversion method 

1 Variable 4 points Tension 20 0 Bilinear 
2 Variable 8 points Regularized 40 0.1 Natural Neighbors 
3 Variable 12 points  60 0.5 
4 Variable 16 points  80 1 
5 Variable 20 points  100 5 
 Fixed 20 meters   10 
 Fixed 40 meters 
 Fixed 60 meters 
 Fixed 80 meters 
 Fixed 100 meters 
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At each sampling percentage (1%, 5%, 10%, 25%, and 50%), the split-sample process 

was repeated three times using every combination of parameters to use different measurements 

for interpolation and account for bathymetric variability, and to ensure the identification of 

reasonable parameters. The combination of parameters that resulted in the smallest median 

percent deviation for each of the three interpolation methods were then used in subsequent 

analyses. The split-sample process was repeated only three times due to the large number of 

interpolation routines required to identify the optimal parameters for each interpolation method 

at each sampling percentage. There were 112 possible combinations of parameters for the three 

interpolation methods and every combination was used 3 times for each of the 5 sampling 

densities, resulting in a total of 1,680 interpolation routines to identify the optimal parameters for 

each interpolation method at each sampling percentage. 

 

3.5 Correlations 

From the aggregation of the 200 interpolation routines for each sampling density, the 

relationship between interpolation percent deviation, and distance to the nearest measurement, 

slope, and curvature were identified. The strength of association between the interpolation 

percent deviation and these three explanatory variables was individually quantified using the 

Spearman’s rank-order correlation. This is a nonparametric version of the Pearson product-

moment correlation, which was used since both the dependent and independent variables were 

not normally distributed (Mossa and McLean, 1997).  Furthermore, the Spearman’s rank-order 

correlation can capture any monotonic relationships (preservation of order) between variables, 

while the Pearson product-moment correlation is limited to assessing linear relationships.  
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The Spearman’s rank-order correlation calculates the association by ranking the 

dependent and explanatory variables by magnitude. For example, the smallest percent deviation 

is given a ranking of one, the second smallest a ranking of two, etc. The same process is repeated 

for the explanatory variable in question. After both the variables are ranked, the differences 

between the paired ranks are calculated. For example, the percent deviation with a ranking of 1 is 

differenced with the ranking of the explanatory variable (e.g., curvature) that was queried at the 

location of the percent deviation with a ranking of 1. This is repeated for all ranks and the 

following formula is used to calculate the Spearman’s rank-order correlation, rho (ρ), where di = 

difference in paired ranks and n = number of cases.  

 

 
A rho value of 1 corresponds to a perfectly positive monotone relationship between the 

two variables, indicating that an increase in one variable always corresponded with an increase in 

another variable. A rho value of -1 corresponds to a perfectly negative monotone relationship, 

indicating that an increase in one variable always corresponded with a decrease in another 

variable. A rho value of zero indicates no statistical relationship between the two variables.   

 

3.6 Median Percent Deviation Maps 

After repeating the split-sample and raster query processes 200 times, the median 

distance to the nearest measurement was calculated for every cell in the study area. Since the 

split-sample process was a random process, the median distance to the nearest measurement for 

every cell wasn’t exactly the same, but instead showed a Gaussian distribution (Figure 13).  
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Figure 13. Histogram of the median distance to the nearest measurement raster after 200 
split-sample routines. 
 

After 200 iterations, the median distance to the nearest measurement for each cell ranged 

from 4.3 to 5.7 cells, with a median of 5 cells (Table 2).  

 
Table 2. Statistics of the median distance to the nearest measurement raster. 
 

Statistic Median Distance to the Nearest Measurement (cells) 
Minimum 4.3 
1st Quartile 4.9 

Median 5.0 
Mean 5.0 

3rd Quartile 5.1 
Maximum 5.7 

 

Since all cells had a similar median distance to the nearest measurement, the relationship 

between interpolation deviation and terrain characteristics was isolated and could be more 
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accurately identified. Furthermore, the percent deviation maps were used to address the 

limitations of global statistics, such as RMSE, in characterizing the accuracy of a non-stationary 

process. 
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CHAPTER 4: RESULTS 

 

The results of this research indicate that the accuracy of interpolation methods is related 

to the user-defined method parameters, sampling density, distance to the nearest measurement, 

and terrain characteristics. These results support previous studies that investigated the accuracy 

of interpolation methods in relationship to method parameters, sampling density and terrain 

characteristics. Previous research focused on topographic DEMs, and this study indicates that the 

accuracy of interpolating bathymetric DEMs produces similar results. Furthermore, by 

implementing the split-sample and raster query methodology 200 times and aggregating the 

interpolation deviations, a clear relationship between interpolation deviations and terrain 

characteristics is shown with median percent deviation maps that were not biased by the distance 

to measurements. Lastly, equations are presented that can be used to predict interpolation 

uncertainty for other areas of sparse measurements using distance to the nearest measurement 

and sampling density.  

 

4.1 Optimal Interpolation Parameters 

The user-defined interpolation parameters were optimized using a brute-force 

methodology (See Ch. 3 Methodology). Identifying the optimal parameters ensured a reasonable 

analysis of the relationship between interpolation deviations and sampling density, distance to 

the nearest measurement, and terrain characteristics that would not be biased by poorly chosen 

interpolation parameters. The median percent deviation was calculated for each combination of 

parameters evaluated to determine the optimal parameters for each interpolation method. The 

importance of choosing appropriate interpolation method parameters is most significant when 



 

33 
 

interpolating across many cells due to a low sampling density, as the standard deviation of the 

median percent deviations from all combinations of evaluated parameters was the greatest at low 

sampling densities. Furthermore, the accuracy of IDW was the most sensitive method to the 

chosen parameters as indicated by having the greatest standard deviation of the median percent 

deviations from all combinations of parameters evaluated (Figure 14). The sensitivity of IDW 

accuracy to the user-defined parameters supports previous findings by Burrough and McDonnell 

(1998) and Akkala et al. (2010).  

 

Figure 14. Standard deviation of median percent deviations from all combinations of 
parameters evaluated for each interpolation method.  
 

In addition, the accuracy of spline interpolation was also found to be sensitive to the user-

defined parameters. The sensitivity of spline accuracy to the parameters supports previous 

studies by Mitasova and Mitas (1993) and Cebecauer et al. (2002), which indicated that spline 

interpolation with a tension value set too low can create overshoots in areas of rapid changes of 
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gradient. Since spline interpolation is not constrained to the data range of the measurements used 

for interpolation, poorly-chosen parameters created significant artifacts with overshoots 

producing positive values when all input measurements were negative (Figure 15).   
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Figure 15. Comparison of DEMs developed with spline interpolation with the optimal 
parameters and parameters that created artifacts. 

A. Original depth measurement with no interpolation.  
B. Spline interpolation using a random 1% sampling of depths with the optimal 

parameters (Spline Type = Regularized, Weight = 1, Number of Points = 100).  
C. Spline interpolation using a random 1% sampling of depths with parameters that 

created artifacts (Spline Type = Tension, Weight = 0, Number of Points = 20; Note 
overshoots producing positive values). 



 

36 
 

Lastly, there were insignificant differences in the conversion from TIN to raster using 

either linear or natural neighbor interpolation, especially at higher sampling densities. This 

research was most interested in extreme interpolation across many cells required at low sampling 

densities, and the optimal parameters identified when using a 1% sampling density were also 

found to be adequate to be used at the other sampling densities (Table 3).  

Table 3. Optimal interpolation method parameters identified using a 1% sampling density 
and used for subsequent analysis at all sampling densities. 
 

Interpolation 
Method 

Power Search 
Radius 

Spline 
Type 

Weight Number 
of Points 

Raster 
Conversion 

Method 
IDW 2 Variable: 

8 Points 
_________ _________ ________ _________ 

Spline ____________ ____________ Regularized 1 100 _____________ 
TIN ____________ ____________ _____________ _____________ ____________ Linear 

 

The optimal parameters identified for IDW and spline interpolation are related to the 

terrain of Kachemak Bay. For IDW, a higher power results in distant measurements having less 

influence, which produces a more detailed and less smooth surface. Conversely, a lower power 

results in distant measurements having greater influence, which produces a smoother surface.  

The optimal power identified was 2, which is relatively low and indicates that the measured 

depths of Kachemak Bay produced a smooth surface. For spline interpolation, the greater the 

number of points specified, the greater the influence of distant points and the smoother the 

surface. For regularized spline, a greater weight results in a smooth surface. The optimal 

parameters identified for spline interpolation, regularized spline type, weight of 1, and 100 

points, also confirms the smooth bathymetry of Kachemak Bay.  
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4.2 Interpolation Deviations & Sampling Density 

After the optimal interpolation method parameters were identified, the split-sample 

process was repeated 200 times for each sampling density of original measurements (See Ch. 3 

Methodology). As expected, the deviations of all three interpolation methods decreased when 

using more depth measurements (Figure 16). Many studies use a statistic such as RMSE as a 

global indicator of accuracy (Aguilar et al., 2005). However, this measure will be inflated in 

areas of deep water. Thus, the absolute median percent deviation was used instead, as it would 

not be as sensitive to the depth of water, and would allow for more accurate comparisons and 

applications to other study sites in deeper or shallower waters.  

 

Figure 16. Absolute median percent deviation as a function of sampling density.  
 

The largest differences in absolute median percent deviation between the three 

interpolation methods occurred when using 1% of the original measurements. As the percentage 
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of data used for interpolation increased, the median distance to the nearest measurement 

decreased, and the accuracy of all methods became more similar. Since the most notable 

differences between the interpolation methods occurred when using 1% of the original 

measurements, further analysis focused on this sampling density in order to determine the 

strengths and weaknesses of the various interpolation methods in relationship to terrain 

characteristics.  

The differences between the three interpolation methods were very small when using 

50% of the original measurements because there were typically measurements 1 cell away from a 

cell to be interpolated. Since the accuracy is comparable between the three methods at this 

sampling density, the choice of interpolation method should then be chosen based on 

computational and time resources. IDW is the fastest and least computationally intensive method 

and would therefore be adequate for most purposes when the median distance to measurements is 

approximately 1 cell. This finding supports previous studies that have indicated that IDW is 

comparable to much more complex statistical methods, such as kriging, when using higher 

sampling densities (Lloyd and Atkinson, 2002; Ali, 2004; Blaschke, 2004; Podobnikar, 2005; 

Chaplot et al., 2006; Liu et al., 2007). From Figure 16, the optimal sampling density can be 

identified for each interpolation method for this study area, depending on your required criteria 

of accuracy. The absolute median percent deviation for each method as a function of sampling 

density can be used to estimate interpolation uncertainty with a decaying power function (Table 

4).  
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Table 4. Equations to estimate interpolation uncertainty using the sampling density. Y 
represents the interpolation median percent deviation and X represents the percent 
sampling density. 
 

Interpolation Method Equation R2 
IDW y = 0.7676x-0.524 0.9997 

Spline y = 0.2236x-0.512 0.9537 
TIN y = 0.3502x-0.553 0.9866 

 

However, the equations in Table 4 provide global estimates of uncertainty and assume the 

median distance to the nearest measurement (Table 5) for every cell, which typically is not the 

case with sparse depth measurements. The inadequacy of these equations is addressed by 

deriving equations to estimate interpolation uncertainty using distance to the nearest 

measurement in Section 4.7. The median percent deviation had the greatest decrease when the 

sampling density increased from 1% to 5%. This is likely because the median distance to the 

nearest measurement decreases from 5 cells to 2 cells with this 5-fold increase in sampling 

density. When the sampling density increases 5-fold from 5% to 25%, the median distance to the 

nearest measurement only decreases from 22.26 meters (2 cells in this study) to 10 meters (1 cell 

in this study; Table 5). This smaller decrease in the median distance to the nearest measurement 

corresponds with a similar smaller decrease in absolute median percent deviation in Figure 16 

compared to the changes in deviation between the 1% and 5% sampling densities. 

 

Table 5. Relationship between sampling density and median distance to the nearest 
measurement. 
 

Sampling 
Density (%) 

Median Distance to the 
Nearest Measurement (m) 

Median Distance to the 
Nearest Measurement (cells) 

1 50 5 
5 22.26 ~2 
10 14.14 ~1 
25 10 1 
50 10 1 
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4.3 Correlations 

The split-sample and raster query processes were repeated 200 times at each sampling 

density with the optimal interpolation parameters. The distance to the nearest measurement, 

slope, and curvature rasters were queried for every interpolation percent deviation and the 

Spearman’s correlations were calculated between the percent deviation and these explanatory 

variables. The positive correlation between the absolute percent deviation and distance to the 

nearest measurement shows a similar decreasing trend with higher sampling densities for all 

methods (Figure 17). This decreasing trend suggests that the distance to the nearest measurement 

is a better predictor of interpolation accuracy at low sampling densities, while at higher sampling 

densities, all unconstrained cells will be close enough to cells constrained by measurements that 

the interpolation deviation will be more related to the terrain, and especially curvature.  

 

Figure 17. Spearman’s Correlation Rho between absolute percent deviation and distance to 
the nearest measurement as a function of sampling density.  
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Absolute percent deviation and slope are also positively correlated with each other for all 

methods. However, IDW has a much stronger positive correlation with slope than TIN and spline 

(Figure 18). TIN and spline show similar decreasing trends with higher sampling densities, while 

IDW remains relatively constant at all sampling densities. IDW is most strongly correlated with 

slope as a result of the weighted-average algorithm, which can cause the interpolated depth to be 

much different than surrounding measured depths in areas of steep slopes. 

 

Figure 18. Spearman’s Correlation Rho between absolute percent deviation and slope as a 
function of sampling density. 
 

The correlation between absolute percent deviation and absolute curvature increases with 

greater sampling densities for all methods, but the correlations also indicate differences in the 

interpolation methods. TIN interpolation is the most strongly correlated with absolute curvature, 

followed by spline, and IDW is the least correlated with curvature (Figure 19).  
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Figure 19. Spearman’s Correlation Rho between absolute percent deviation and absolute 
curvature as a function of sampling density. 
 

When the signs of percent deviation and curvature are taken into account, the correlation 

shows the same trends as the absolute percent deviation and absolute curvature, but the 

correlation is greater for all methods (Figure 20). This reflects the relationship between whether 

the interpolated depths are deeper or shallower than the measured depths and the surface 

convexity or concavity of the measured depths.  
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Figure 20. Spearman’s Correlation Rho between percent deviation and curvature as a 
function of sampling density. 
 

A simple 2-D cartoon profile illustrates the relationship between TIN interpolation 

deviations and curvature, and how the sign of the interpolation deviation changes with convex 

and concave surfaces (Figure 21). Further analysis on the relationship between interpolation 

deviations and terrain characteristics is provided in the next two sections. 
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Figure 21. 2-D cartoon profile showing relationship between the sign of TIN interpolation 
deviations and the surface curvature. TINs are typically deeper than the measured surface 
when the measured surface is convex and TINs are shallower than the measured surface 
when the surface is concave. TINs tend to become more accurate where the curvature of 
the surface is zero at the inflection point.   
 

4.4 Interpolation Deviations & Terrain 

The aggregated interpolation percent deviations after 200 split-sample routines using a 

random 1% sampling density were plotted as a function of slope and curvature, respectively. The 

absolute median percent deviation was calculated for binned slope values (Figure 22).  
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Figure 22. Absolute median percent deviation as a function of slope using a 1% sampling 
density. 
 

Likewise, the median percent deviation was calculated for binned curvature values 

(Figure 23). Since one doesn’t know the slope and the curvature of an area of the seafloor that 

requires interpolation due to a lack of depth measurements, these explanatory variables cannot be 

used to predict interpolation uncertainty. However, the graphs support the findings of the 

previous section that interpolation deviations are positively correlated with both slope and 

curvature for all methods. 
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Figure 23. Median percent deviation as a function of curvature using a 1% sampling 
density.  
 

4.5 Median Percent Deviation Maps 

The correlations and Figures 22 and 23 indicate an association between interpolation 

percent deviation and terrain characteristics. The absolute median percent deviation plotted as a 

function of sampling density in Figure 16 is a global statistic, and as previously mentioned, the 

interpolation percent deviation is highly non-stationary due to varied terrain. The interpolation 

median percent deviation maps address the issue of non-stationarity by highlighting clusters of 

higher deviations resulting from terrain without the bias of distance from measurements. At the 

lowest sampling density (1%), the percent deviations between the interpolated depths and the 

measured depths were the greatest and there were also the greatest differences between the 

interpolation methods. To show the effect of terrain on interpolation deviations, the median 
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percent deviation after 200 interpolation routines was calculated for every cell in the study area 

(Figures 24–26) 

 

Figure 24. Median percent deviation after 200 IDW interpolation routines using a random 
1% sampling density. 

 

Figure 25. Median percent deviation after 200 spline interpolation routines using a random 
1% sampling density. 
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Figure 26. Median percent deviation after 200 TIN interpolation routines using a random 
1% sampling density. 
 

The median percent deviation rasters also indicate that spline interpolation is the most 

accurate of the methods, while IDW and TIN show comparable deviations. More importantly, all 

interpolation methods show a similar pattern of deviations that is strongly associated with the 

terrain. The slope and curvature rasters of the study area shown in Chapter 2 indicate that the 

interpolation deviations for all methods are greatest in areas of high curvature. Furthermore, the 

sign of the deviation is strongly correlated with the sign of the curvature, which describes if the 

surface is concave up or convex up. This relationship between terrain and interpolation 

deviations was further investigated in an inset area of variable slope and curvature (Figure 27, 

red outline).  
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Figure 27. The depth of an area of variable slope and curvature used to investigate the 
relationship between terrain and interpolation deviations is outlined in red. 
 

A profile across this area was then extracted from the slope (Figure 28), curvature (Figure 

29), and median percent deviation rasters from each interpolation method (Figures 30–32) for 

further analysis. 
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Figure 28. Slope inset derived from measured depths. 
 

 

Figure 29. Curvature inset derived from measured depths. 
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Figure 30. Median percent deviation of inset area after 200 IDW interpolation routines 
using a random 1% sampling density. 
 

 

Figure 31. Median percent deviation of inset area after 200 spline interpolation routines 
using a random 1% sampling density. 



 

52 
 

 

Figure 32. Median percent deviation of inset area after 200 TIN interpolation routines 
using a random 1% sampling density. 
 

The largest median percent deviation for all methods is located at the area of highest 

curvature (Figures 33 and 34, red line).  Likewise, the median percent deviation is close to zero 

for all methods where the curvature is also close to zero (Figures 33 and 34, black line). 

 

 

 

 

 



 

53 
 

 
Figure 33. Profile comparing median percent deviation from the three interpolation 
methods. The black line corresponds to a deviation close to zero for all methods and the red 
line corresponds to the largest deviation for all methods.  

 
Figure 34. Profile of the curvature derived from measured depths. The black line 
corresponds to a curvature close to zero (small deviation in Figure 33) and the red line 
corresponds to the highest curvature (greatest deviation in Figure 33). 
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There is an obvious relationship between slope and curvature in that areas of higher slope 

are adjacent to areas of higher curvature. The location where the terrain changes from a flat area 

to an area of steep slope corresponds to an area of high curvature.  However, it is evident that the 

location where the deviation is close to zero for all methods (black line), the slope is a modest 4 

degrees (Figure 35). Furthermore, the location where the deviation is the greatest (red line) does 

not correspond to the highest slope. The correlations in Section 4.3 and Figures 33 and 34 

indicate that curvature is a better predictor of interpolation accuracy than slope. 

 
Figure 35. Profile of the slope derived from measured depths. The black line corresponds to 
a small deviation for all methods in Figure 33, but not an area of low slope. The red line 
corresponds to the largest deviation for all methods in Figure 33, but not the location of 
greatest slope. 
 

The profiles of the median interpolated depths from which the previous median percent 

deviation profiles were calculated also highlight some notable properties of the methods. Since 

IDW uses a weighted-average algorithm, local maxima and minima will never be represented 

unless they have been sampled. Local maxima and minima near steep slopes will not be 
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accurately represented by IDW as local maxima are “pulled” down and local minima are 

“pulled” up by surrounding measurements.  TIN is similar in that local maxima and minima will 

never be represented unless they are sampled and these areas will also either be too deep (local 

maxima) or too shallow (local minima). Lastly, spline exhibits “overshoots” near areas of high 

curvature as a result of the minimum curvature algorithm (Figure 36).   

 
Figure 36. Profiles of median interpolated depths after 200 iterations at a random 1% 
sampling density compared to the measured depths. All methods have small deviations at 
low curvature (black line) and large deviations at high curvature (red line). IDW and TIN 
produced local maxima that are “pulled” down and local minima that are “pulled” up. 
Spline can produce “overshoots” near areas of high curvature. 
 

4.6 Interpolation Deviations & Distance to the Nearest Measurement 

Since all interpolation methods evaluated in this study were exact interpolators, the 

interpolation deviations from the measured depths generally increase with greater distances from 

the nearest measurement used for interpolation. The same area and profile of varying slope and 

curvature used for analysis in Section 4.5 was used again to illustrate the relationship between 
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interpolation accuracy and distance to the nearest measurement. In this area, 9 depth 

measurements along the profile were purposely used for interpolation solely to investigate the 

differences between the methods with greater distances from these measurements (Figure 37).  

 
Figure 37. Area of varying slope and curvature used to investigate the relationship between 
interpolation deviations and distance to the nearest measurements. Dots represent depths 
used for interpolation, with the red dots used for reference for later figures. 
 

IDW interpolation is sensitive to “bulls-eye” effects (Erdogan, 2009). Since IDW is an 

exact interpolator, the interpolated depths will also be the same as the original depth 

measurements used for interpolation. This can create “bulls-eyes” near depth measurements, 

especially when the depth measurement is much different in magnitude than surrounding depths 

(Figure 38).  
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Figure 38. IDW interpolated surface developed with depths at locations of black and red 
dots. Note the “bulls-eye” effect near red dots.  
 

In between the measurements in areas of high slope and curvature, IDW is often 

inaccurate due to the weighted average algorithm used for prediction (Figure 39).  
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Figure 39. Profile comparing IDW interpolated depths with the measured depths.  
 

While spline interpolation was found to be the most accurate method, a common issue are 

“overshoots” that occur at greater distances from measurements used for interpolation, 

particularly near areas of high curvature (Figure 40). The “overshoots” are caused by the 

minimum curvature algorithm used by spline interpolation.  
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Figure 40. Profile comparing spline interpolated depths with the measured depths. 
 

TIN surfaces are unrealistically flat and thus deviations are largest between 

measurements in areas of high curvature (Figure 41). 

 
Figure 41. Profile comparing TIN interpolated depths with the measured depths. 
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4.7 Predictive Equations of Interpolation Uncertainty  

The slope and curvature of an area with no depth measurements is clearly unknown, and 

thus these variables cannot be used to predict interpolation uncertainty. Although slope and 

curvature can’t be used for prediction, these explanatory variables were shown in previous 

sections to characterize the strengths and limitations of each interpolation method in estimating 

heterogeneous terrain.  

The only known information when developing an interpolated DEM is the sampling 

density (ratio of cells constrained by depth measurements versus unconstrained cells at a given 

cell size), and the distance from an unconstrained cell to a depth measurement. Therefore, 

predictive equations of interpolation uncertainty were developed that could utilize this 

information. Figures 42 – 46 show the relationship between the absolute median percent 

deviation and the distance to the nearest measurement at the various sampling densities (1%, 5%, 

10%, 25%, and 50%). The relationship between these variables diverges from the stable linear 

trend when the statistical sample size becomes too small (less than 300 deviations). At sample 

sizes less than 300, the absolute median percent deviation could be biased by the terrain at the 

locations of the deviations as it was calculated from a sample that was not representative of the 

median slope and curvature of the entire study area. Another reason for the divergence of the 

linear trend at greater distances from the nearest measurement is that the model of the 

semivariogram in Figure 5 indicates that depths in this study area separated by a distance greater 

than approximately 200 meters (20 cells) have little or no spatial autocorrelation and thus are not 

useful for interpolation.  
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Figure 42. Relationship between absolute median percent deviation and distance to the 
nearest measurement at a 1% sampling density. Beyond 18 cells the small sample size 
produces statistically insignificant results. 
 

 
Figure 43. Relationship between absolute median percent deviation and distance to the 
nearest measurement at a 5% sampling density. Beyond 8 cells the small sample size 
produces statistically insignificant results. 
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Figure 44. Relationship between absolute median percent deviation and distance to the 
nearest measurement at a 10% sampling density. Beyond 6 cells the small sample size 
produces statistically insignificant results. 
 

 
Figure 45. Relationship between absolute median percent deviation and distance to the 
nearest measurement at a 25% sampling density. There were no interpolated cells where 
the distance to the nearest measurement was greater than 4 cells. 
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Figure 46. Relationship between absolute median percent deviation and distance to the 
nearest measurement at a 50% sampling density. Beyond 2 cells the small sample size 
produces statistically insignificant results. 
 

As the sampling density becomes greater, the distances to the nearest measurement are 

constrained to closer distances. Also, while all five graphs show a linear trend, the slope of the 

regression line decreases with higher sampling densities (Note differences in Y-axis units). The 

differences in regression slope signify that it is not only the distance to the nearest measurement 

to an unconstrained cell that determines the accuracy of the interpolated cell, but that the 

accuracy is also related to the sampling density. Even if the distance to the nearest measurement 

is the same when using different sampling densities, the distance to the next nearest 

measurement that is also used for interpolation will likely be closer at higher sampling densities, 

and thus more similar to the depth to be interpolated, resulting in smaller interpolation 

deviations.  
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Therefore, both the sampling density and distance to the nearest measurement were used 

together to predict the interpolation uncertainty on a cell-to-cell basis. The statistically 

insignificant results due to low sample size were eliminated for each sampling density and then 

linear regression equations were derived using ordinary least squares regression for each 

sampling density with the y-intercept set to zero since all three methods are exact interpolators 

(Table 6).  If the sampling density is between one of the percentages evaluated in this study, a 

weighted-average of the two closest linear regression equations provided in Table 6 could be 

calculated to predict the median percent uncertainty. These regression equations are best-suited 

for Kachemak Bay and for other areas of similar topography. However, they can be applied to 

other study areas with the caveat that these equations will underestimate interpolation deviations 

in areas of higher in magnitude curvature than Kachemak Bay, and overestimate interpolation 

deviations in areas of lower curvature.  

Table 6. Regression equations modeling interpolation percent uncertainty (y) as a function 
of distance to the nearest measurement in cells (x) for various data densities.  

 
Interpolation Method Sampling Density (%) Regression Equation R2 

IDW 1 y=0.1462x 0.9774 
IDW 5 y=0.1162x 0.9256 
IDW 10 y=0.109x 0.9497 
IDW 25 y=0.0976x 0.9724 
IDW 50 y=0.0848x 0.9819 

Spline 1 y=0.068x 0.9884 
Spline 5 y=0.0354x 0.9895 
Spline 10 y=0.0302x 0.9759 
Spline 25 y=0.0259x 0.9139 
Spline 50 y=0.0306x 0.9822 
TIN 1 y=0.0893x 0.9906 
TIN 5 y=0.0599x 0.9921 
TIN 10 y=0.0565x 0.9911 
TIN 25 y=0.0453x 0.9933 
TIN 50 y=0.0429x 0.9988 
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CHAPTER 5: DISCUSSION & CONCLUSIONS 

 

The findings of this research support previous studies on the accuracy of interpolation 

methods used to develop DEMs. The interpolation deviations for all methods were positively 

correlated with distance to the nearest measurement, slope, and curvature. As expected, higher 

sampling densities resulted in greater accuracy for all interpolation methods. The split-sample 

methodology has been used in numerous previous studies that investigated interpolation 

accuracy (e.g., Desmet, 1997; Lloyd and Atkinson, 2002; Smith et al., 2003; Erdogan, 2009). 

However, these studies did not repeat the random split-sample process to use different 

measurements for interpolation and evaluation. Furthermore, the aggregation of the 200 split-

sample routines allowed for a more comprehensive investigation of the relationship between 

interpolation accuracy and terrain characteristics that was not biased by the distance to the 

nearest measurement. The results from this study highlight important strengths and weakness of 

three commonly-used interpolation methods in areas of heterogeneous terrain with varied slope 

and curvature values. 

Spline was found to be the most accurate interpolation method at all sampling densities 

(1%, 5%, 10%, 25%, and 50%), followed by TIN, and IDW was the least accurate. The largest 

differences in accuracy between the methods occurred at the lowest sampling density (1%). 

When using 50% of the depths, there was typically a measured depth 1 cell away from an 

unconstrained cell to be interpolated and thus there were insignificant differences between the 

three interpolation methods. A sensible question that should be asked by any DEM developer is: 

“What is the acceptable level of interpolation accuracy?” The answer clearly depends on the 

purpose of the DEM. If the DEM will be used simply for visualization for outreach activities, 
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any method would most likely be acceptable, but spline would be preferred because of its 

smooth, visually appealing surfaces. Furthermore, if there is only a minimal loss of accuracy 

when using 10% of the available data, it may be more efficient to only use this data subset and 

apply an interpolation method to minimize computational resources. This is especially true when 

using dense lidar data that can require terabytes in computer storage. Regardless of the desired 

accuracy of the interpolated DEM, an accompanying estimate of DEM accuracy is extremely 

beneficial. People who develop or use DEMs may forget that the “M” in DEM stands for model 

and may not even consider how close the model mimics reality. The findings of this research can 

be used to develop uncertainty surfaces to accompany DEMs. Uncertainty surfaces would be 

extremely valuable for people using DEMs for other modeling purposes, such as tsunami 

propagation and inundation, to aid in quantifying the propagation of uncertainty (Hare et al., 

2011). An uncertainty surface would ideally encompass both source measurement and 

interpolation uncertainty.  

Based on the findings of this research, the following recommendations are provided on 

using an interpolation method to develop a DEM and estimating the uncertainty introduced by 

interpolation. First, determine the horizontal resolution and the desired vertical accuracy based 

on the intended purpose of the DEM. Next, calculate the sampling density by comparing the ratio 

of cells constrained by measurements to unconstrained cells at the chosen cell size. If greater 

than 25% of the cells are constrained by measurements, than the median distance to the nearest 

measurement will be approximately 1 cell away and the accuracy of spline, IDW, and TIN will 

be comparable. If the sampling density is less than 25%, then spline interpolation will provide a 

significantly more accurate DEM. Next, for every cell in the DEM, calculate the distance to the 

nearest measurement using the ArcGIS “Euclidean Distance” tool or a comparable method and 
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convert the distance from map units to cells by dividing the distance by the cell size. After 

selecting an interpolation method to develop the DEM, the interpolation percent uncertainty can 

be estimated for each cell by using the appropriate equation in Table 6. If the sampling density 

falls between two sample densities evaluated in this study, calculate a weighted-average of the 

interpolation percent uncertainty provided by the two bounding sample densities. 

The uncertainty of interpolation methods is a complex subject with many important 

aspects not able to be adequately addressed within the scope of this study. There were numerous 

assumptions that were made in this research that should be considered when analyzing and 

applying the results. Most significantly, the uncertainty inherent in the source measurements was 

ignored, and the original measured depths were considered a “true” depiction of reality. This 

simplistic view was required to quantify interpolation deviations and to develop predictive 

equations of interpolation uncertainty, but it would be worthwhile to investigate the propagation 

of measurement uncertainty into interpolation uncertainty.  

Another possible limitation is that the results obtained from this study may not be directly 

applicable to other areas with different terrain. Kachemak Bay, AK was considered an ideal 

study area to investigate the accuracy of interpolation methods as the terrain varied from areas of 

constant depths to areas of rapidly changing depths. The heterogeneous terrain should allow for 

the results of this study to be applicable to many other locations. However, if the results found at 

Kachemak Bay were applied to another study area that was relatively flat with low curvature, the 

provided estimates of interpolation uncertainty would be overestimated. Likewise, if another area 

had higher curvature values, then the estimates of interpolation uncertainty provided in this study 

would be underestimated. However, the variability of terrain between sparse depth 

measurements can’t be known. Since the Kachemak Bay study area had varied terrain, 
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estimating interpolation uncertainty using only the distance to the nearest measurement and 

sampling density with the equations provided in Table 6 should produce reasonable results for a 

wide range of terrain.   

The predictive equations of interpolation uncertainty presented in this research assume 

uniform uncertainty with distance to the nearest measurement, and it has been shown in this 

thesis that interpolation accuracy is highly non-stationary, as a result of variable terrain and thus 

variable spatial autocorrelation. The predictive equations, while simplistic and applicable to 

Kachemak Bay, are a good first step in estimating interpolation uncertainty for deterministic 

interpolation methods, despite their limitations. The predictive equations should be evaluated in 

other areas for validation, and to provide confidence in their estimates of uncertainty.  
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