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Wagle, Neeti (Ph.D., Computer Science)

Transfer Learning for Characterization of Small Unmanned Aircraft Communication

Thesis directed by Prof. Eric W. Frew

This dissertation develops a nonparametric, computationally efficient method for modeling

the airborne communication environment for small unmanned aircraft systems (sUAS). Transfer

learning for Gaussian process regression (GPR) allows the communication model to adapt to the

spatial and temporal variations within an environment, and to the variations that arise across UAS

hardware and missions.

Environment-specific radio frequency (RF) variations are learned by augmenting a parametric

path loss model with a nonparametric Gaussian process (GP), which captures geospatial and time-

varying characteristics of signal strength measurements. This dissertation assesses the performance

of GP-based communication models through cross validation on 50 sets of real flight measurements

collected using two different frequencies, three different airframes, and employing static and mobile

transmitters. Measuring the performance using root mean squared error (RMSE) as well as mean

standardized log loss (MSLL) evaluates both the predicted estimate and its uncertainty, and shows

that the GP models improve prediction accuracy over the path loss model, with the spatio-temporal

GPs improving over the spatial GPs.

The value of GP-based communication modeling is further demonstrated through integra-

tion with UAS data ferrying to opportunistically learn geospatial variations in RF measurements

and use them in communication link scheduling. The iterative ferry-and-learn system is analyzed

through a simulation study, showing ferry achieves 80% of optimal within 4 iterations, and 93%

after 9 iterations, as the GP is able to converge quickly to the true radio frequency environment.

Comparison with parametric least-squares learners in two extremes of RF scenarios shows that

the GP better captures the stochasticity of the environment, especially in complicated cases. This

demonstrates that learning RF variations using GPs provides a significant boost to the performance
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of communication-aware UAS applications.

Because all communication in the environment is affected by the same factors, previously

learned GPs contain information that is relevant while learning communication models for sub-

sequent missions and on different UAS platforms. This dissertation proposes forward adaptive

transfer learning for Gaussian process regression, FAT-GP, which allows previously learned GP

models to be adapted forward as potential sources of knowledge for future learning tasks, which

can be especially valuable when limited training data is available for the new task. FAT-GP com-

bines the source task’s previously learned model, the source task’s training data, and target task’s

training data to learn the target hyperparameters as well as the correlation between the two tasks.

This extension to GPR not only generalizes transfers between GPs using different kernels, but also

results in amortization of the training cost.

Such an adapt-and-update framework is in keeping with the philosophy of lifelong learning,

and is valuable in UAS and other robotics missions, especially when operating in unstructured and

unexplored environments.
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Chapter 1

Introduction

1.1 Motivation

A wide variety of unmanned aircraft system (UAS) missions critically depend on sensing

and communication. Recent work in unmanned aircraft (UA) applications like cooperative path

planning, target tracking, and data ferrying has recognized the role of communication in these

tasks and designed control systems that specifically take bandwidth and sensing constraints into

consideration [17, 80, 46, 94, 38, 19]. Fig. 1.1 shows a few examples of such communication-aware

unmanned aircraft (UA) applications.

However, the performance of these tasks is limited by the communication models. In order to

exploit the capacity of communication and sensing onboard these unmanned aircraft it is important

to design refined models of the radio-frequency (RF) propagation.

The need for communication models is greater for UAS and other robotic missions operating

Figure 1.1: Motivating communication-aware unmanned aircraft applications
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in unstructured and unexplored environments. However, the challenge in deriving or learning the

model is also exacerbated by the inability to collect dense, extensive data in the environment.

Additionally, models which make simplifying assumptions or generalizations fail to capture the

environment specific artifacts and variations that arise in the field. To cope with the diverse

operating conditions that such missions present, it is important for models to adapt as they observe

the environment. This ability to learn and adapt is key in identifying sources of noise such as

interferences, obstacles, and even hostile adversaries.

The communication for small UAS can be modeled using parametric methods which assume

a functional form, and use the training data to estimate the parameters of the function. On the

other hand, nonparametric models only assume that training data are correlated, and perform

all inference using the training data directly. Modeling the communication using parametric and

nonparametric approaches provides different advantages. While physics-based parametric models

of radio propagation are complicated, estimating the parameters, i.e training the model, has a lower

computational cost. On the other hand, nonparametric models, which have higher time and space

complexities, provide tuned solutions entrenched in observed data. This direct trade-off between

the cost and expressibility of the model sets up an inherent compromise in developing adaptable

solutions in complex environments.

The training cost also impacts the ability to relearn, either when new data becomes available,

or when the learning task evolves. A need for relearning may arise when a learned model is moved

to different hardware platform, or when carrying out missions in dynamic environments which

encounter changes due to several explicit and implicit factors. If these changes to the underlying

learning task are drastic, they may render the existing model obsolete, requiring expensive and

extensive data collection and training phases be repeated. However if the changes are smoother,

it is desirable that, when possible, the model be updated by adapting to variations in the learning

task itself.

Such an adapt-and-update framework is in keeping with the philosophy of lifelong learning

[84], which would allow robots to accrue knowledge and exploit existing relationships between
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entities in the world. This outlook examines the possibility that outdated models may still contain

relevant and useful information, and considers how it can be reused to efficiently construct a new,

updated model. Such a transfer of information can not only enrich the consequent model but also

translate into significant savings in the training and learning process.

Transfer learning uses knowledge present in an one task and applies it to another, related

task [58]. The objective is to identify the nature of these similarities, extract pertinent information

from the source task, and use it effectively in the target task. In the case of RF propagation, we

hypothesize that the environmental factors latent in the signal strength measurements are common

to signal power reception in the same environment. Thus, the tasks of learning the RF model

for different flights or using different radio hardware are inherently related through the common

environment in which they operate.

Developing solutions that can seamlessly adapt to these various scenarios is central to al-

lowing robots and UAS to perform long term missions maximizing knowledge and endurance, and

minimizing cost. A formalized transfer learning framework for Gaussian processes has great value

in several control systems. The ability to model and predict the sensing of wireless signals and the

communication channels can enhance the performance of communication-aware path planning [80],

data ferrying [10], and WiFi indoor robot localization [2, 20]. In addition, it can also improve the

sensor model in estimation problems like target localization [86, 87], where the location of a radio

is determined based on the signal strength observed in the environment. Finally, it would also be

useful in other tasks using GPs to model time-varying fields such as temperature, winds, and other

dynamic phenomena.

1.2 Related Work

1.2.1 Communication modeling

In cellular and communication networks, radio propagation models are used to assess the cov-

erage provided by the selected transmitters or access points [61]. Increased pervasiveness of mobile
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devices also spurred interest in radio-frequency modeling for location-aware computing [2]. These

models have been further tuned for performing range estimation using wireless signals, required for

high accuracy localization of mobile phones and robots [41, 45]. In this manner, several different

platforms and their applications, have contributed to the advancement of communication modeling

techniques.

1.2.1.1 Physics based communication models

The most basic RF physics models assume that radio wave propagation behaves according

to electromagnetic wave theory without disruption [66]. Many others add parameters or corrective

terms to account for specific artifacts that affect signal strength measurements [61]. As such this

class of models thats a very restrictive view of RF behaviors, often based on small or localized set

of observations.

In contrast, ray tracing approaches work with a large and dense set of measurements, using

prior knowledge about the obstacles in the terrain, to map out every path that a signal transmission

may take, and thus predict received signal strength. However, not only is this modeling technique

expensive and time consuming, it makes the rigid assumptions that the environment is static.

The final class of physics based models capture the fading effects responsible for some of

the variations in RF measurements. These fading effects for settings with line of sight (LOS)

and non-LOS have been captured in the Rician and Rayleigh models, and generalized by the

Nagakami distribution[2, 53, 61]. While empirical assessment has shown that these models are

widely applicable, they cannot capture environment specific obstacles and interferences, and hence

cannot provide a complete communication modeling solution.

A detailed survey and taxonomy of physics based communication models can be found in

[61].
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1.2.1.2 Gaussian process communication modeling

Since traditional parametric radio models use physics-based formulations [14, 47], they fail to

account for RF variations and other artifacts that stem from interference and unknown environment-

specific characteristics. This missing flexibility can be achieved by using nonparametric models

which take a data driven approach, and can be tuned to the operating environment. Gaussian

processes are nonparametric probabilistic generalizations of linear regression. This dissertation

augments such a parametric, empirical path-loss radio model [66] with a nonparametric Gaussian

process [67], and learns local, receiver-location dependent RF variations.

Gaussian processes provide a flexible, nonparametric framework which models the distribu-

tion over functions. The learning phase of a GP involves the learning of its hyperparameters which

encode how correlation in the input space transforms to correlation in the output space. In order to

make a prediction for an unseen input, the GP calculates the input’s correlations with the inputs in

the training set and uses the hyperparameters to compute a mean and variance prediction for the

corresponding output. Because a GP is a continuous model it does not limit the input locations at

which it can be used for prediction. If the model is asked for a prediction at a location far from all

the training samples, the GP will indicate the lack of confidence in the prediction via a large value

of variance. The details of the Gaussian process framework can be found in [74, 67, 68].

Because of their ability to capture input-dependent variations, GPs have been popular in

modeling geospatial characteristics such as the coverage of wireless networks [61] and indoor RF

communications for ground robots [21]. They have also been extended to a latent variable version

to learn the location map simultaneously and consequently reduce calibration effort [20]. One

perspective to RF modeling [54, 24, 22] used the GP for probabilistic multi-scale channel modeling,

and captured the signal variations introduced by large scale and small scale fading. That work

viewed received signal strength as a combination of distance dependent path loss power, large

scale or shadowing component, and multipath small scale reflections [53]. Consequently, the spatial

correlations and noise components of these fading effects were incorporated into a stationary spatial
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GP [54, 24]. Model performance was validated by showing that improving the prediction for links

between nodes and the base station led to an improvement in the performance of communication-

aware motion planning for ground robots [26, 49, 48, 23].

Approaches that ignore temporal dependencies and limit their communication modeling to

spatial, stationary designs are unable to capture the space-time interactions that complex obstacles

and interference sources introduce into environments. Stationary models throw away some of the

complexity by assuming that the entire space adheres to a single distance of decorrelation. That

shortcoming was challenged and additional latent GPs were used to build non-stationary models

of radio frequency propagation [31, 71, 62]. However, these required extensive and dense training

data which was not only time consuming but also infeasible for applications that required modeling

of fairly inaccessible or unexplored environments. Alternatively, the model’s expressive ability

has also been increased by including temporal information into a stationary GP, which augments

the input space with another dimension. That approach has been used to model dynamic wind

fields [42], and this dissertation draws from it to capture the dynamic behavior of radio frequency

environments. Empirical assessment of spatio-temporal models for environmental monitoring of lake

temperatures and forest light intensities found the stationary and non-stationary versions of the

covariance functions to have comparable performance, but spatio-temporal models outperformed

spatial models [77].

1.2.2 Approximation and Adaptability in Gaussian processes

While flexibility and probabilistic design of GPs makes them attractive, their training cost

and space requirements introduces challenges [78]. Depending on the constraints of the application,

various approximations have been used to speed up their use.

Much attention has been given to performing online computation with large training sets, and

solutions for fast sparsification have been developed [92, 72, 75, 43, 64, 78, 13]. These approaches

use sufficient statistics to derive an approximation to the full GP, which is based on a selected set

of training samples. Thus, by performing additional, expensive computation at training time, the
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time and space complexities for prediction are reduced.

Because sparsification is expensive, resource constrained robotic applications with streaming

data have taken a different outlook. For example, decentralized applications can afford to discard

old data and only retain the most recent observations since the newest measurements made locally

are of most interest [93]. Another approach has been to incorporate new data as it arrives by using

stochastic gradient descent to learn hyperparameters in a cheap yet efficient manner [90, 27].

Unlike passive approaches which do not optimize their data collection, active learning uses

mutual information to select locations whose measurements will be most informative about the

remaining environment. Such planned data collection controls the amount of training data as well

as the quality of information it brings [29, 39, 40]. This explore-and-exploit paradigm provides

a systematic way to capture new changes in dynamic environments by switching from exploit to

explore and gathering more informative measurements.

However, changes to the learning task itself still warrant restarting the data collection and

learning effort. Instead of repeating these expensive and extensive phases, transfer learning can

help reuse the relevant knowledge from the old model.

1.2.3 Transfer Learning

In traditional machine learning, it is assumed that the training samples and the future samples

come from the same space and have the same distribution. However, this may not be true when

the underlying distribution of the problem space is changing or if the model is learned on one

corpus and intended to be used on a different but related corpus. Such learning problems where

the original source of training samples and targeted testing samples come from different domains

fall into the category of transfer learning problems [58].

Transfer learning refers to the problem of learning how information present in related tasks

can be used to improve one or both of these tasks. Depending on what information is available and

how the learning is done, such a transfer of knowledge between tasks is referred to by several names

like learning to learn, knowledge transfer, multitask learning, lifelong learning, or meta learning [58].
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Domain adaptation focuses on exploiting the synergy between similar tasks operating in different

domains on different data distributions.

Out of the various types of transfer learning problems, our research is specifically focused on

the subproblem of transductive transfer learning, wherein the original and goal tasks are the same

but deal with data having different distributions [1]. In the field of natural language processing

(NLP), this problem is more commonly referred to as domain adaptation [58], and has been solved

using different models like ensemble classifiers [18] and logistic regression [65]. Unfortunately,

majority of the transductive transfer learning work is focused on classification problems.

1.2.3.1 Hyperparameter Based Transfer Learning

Because most machine learning models learn parameters like weights, coefficients, or hyper-

parameters from the training data, transferring parameters has been one approach for transductive

transfer learning. The methods in this category are, in effect, using these parameters as prior in-

formation for the goal task. For example, [44] used meta-features from the original task for feature

selection in the goal task, inferring their different a priori relevance.

1.2.3.2 GP-based Transfer Learning

While parameter transfer methods have also been applied to Gaussian processes before ([51,

43, 73]), they all focused on multitask learning. All of these methods built on a perspective

introduced in [51] whereby the regression function of each related task was viewed as a sample

from a Gaussian process. This concept relates back to the GP being a distribution over functions.

Under this perspective, training with a number of related tasks became equivalent to training on

a set of function samples. Consequently, using this model on a new goal task was equivalent to

testing a new function sample. Analogous to traditional regression, the more the number of related

tasks in the training sample, better the performance on the new goal task. This perspective truly

related the transfer learning paradigm to the traditional regression methods. However, it limited

the relationship between tasks to a specific case whereby they all belonged to the same underlying
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distribution.

More recently semi-parametric Gaussian process approaches have extended the GP framework

in a natural manner for domain adaptation of a source or secondary task while learning a primary

or target task [12]. Adaptive Transfer Learning (AT-GP) is a prominent example of this approach

[7]. This research has its roots in indoor-localization transfer learning designed to reduce calibration

costs ([97, 57, 98, 59]). This involved multiple schemes, each of which reused calibration data and

was responsible for extending the model in one particular way: to new spaces, future times and

different devices. However, because the work was based on a fingerprinting localization technique,

it was not only restricted to indoor environments but also incapable of handling significant changes

in the geometry or conditions of the environment. These shortcomings were overcome by AT-GP,

which was GP-based and adaptive, and thus provided a more general modeling and transfer learning

platform.

AT-GP draws inspiration from multitask learning and trains target and source tasks simulta-

neously. It learns the source and target tasks with the same kernel (function and hyperparameters).

It learns the similarity between these tasks via a transfer kernel, which is a specially defined co-

variance matrix, and consequently tunes the impact that the source task has on predictions for

the target task. However, samples from the target task are given higher importance while making

predictions for a target sample. AT-GP is a prominent example of the semi-parametric transfer

learning approaches which naturally extend the GP framework for domain adaptation.

Unfortunately, AT-GP constrains the two tasks to have an implicit transfer even when the

tasks have zero or little correlation. In addition, the AT-GP formulation does not allow transfer

from already learned source tasks to new target tasks, only providing a method for simultaneously

learning the two tasks. When transfer learning is employed in robotic learning tasks with large

training sets for the source and relatively small target training set, not much information can

be gained by tuning the source’s hyperparameters. Consequently, the additional computational

complexity is undesirable, and performing a one-way transfer from source to the target can result

in significant amortization of training costs.
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1.3 Problem Statement

Compared to indoor and mobile ground robots, fixed-wing UAS typically operate over large

areas. These missions are time and resource constrained, and their data collection for learning

their airborne communication is typically done over larger distances, at faster timescales, taking

vehicle and environmental dynamics into consideration. While outdoor radio propagation is closer

to the ideal free space behavior [66], in some cases where the unmanned aircraft is operating close

to the ground or in urban canyons, interferers and obstacles cause local and correlated fading

effects making the RF environment as complex as indoor environments. Prior information about

factors that may influence the communication, such as interference sources and obstacles, may not

be available, especially during missions in unexplored and unstructured environments. Finally, the

use of commercial off the shelf (COTS) hardware in resource-constrained small UAS missions makes

it imperative to adapt and tune the RF model in the field.

Using relatively low resolution measurements, to implicitly capture the latent factors affect-

ing the communication, and learn high accuracy models of these complex radio frequency fields,

is a challenging problem. No work has explored combining parametric and non-parametric (Gaus-

sian processes) models for describing the airborne communication environment of small fixed wing

unmanned aircraft. Because of the complexity of the problem, it is important that communication

modeling solutions be assessed using real flight data collected under varying conditions. A key part

of the assessment is the selection of appropriate metrics which allow comparison between paramet-

ric and nonparametric models. Such a comparison should not only include likelihood and accuracy

of model estimates, but also factor in model uncertainty.

While nonparametric models provide high prediction accuracy, their tight coupling to training

data make them susceptible to changes. These changes can be implicit such as modification in the

radio field due to environmental factors, or explicit such as change in the hardware on which the

model is employed. Such changes may significantly alter the learning task itself, rendering the

model inaccurate and obsolete, and ultimately require that expensive and extensive data collection
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Figure 1.2: Problem Overview

and training phases be repeated. In order to allow the learned model to be used across flights or

missions, as well as across UAS platforms in heterogeneous fleets, it is desirable that, when possible,

the model adapt to variations in the learning task itself.

Because all communication in the environment is affected by the same factors, each learned

communication model contains information that is relevant to communications on different UAS

or during subsequent missions. Hence, when learning communication models for these new targets,

the previously learned model can act as a source of information. Measurements taken while learning

this new target task help establish the relationship or overlap between the source and target. By

transferring the common knowledge, the target model can be learned with minimal number of

measurements and limited number of computations.

There are several challenges in transferring knowledge from an existing model to a related

task. First and foremost, it is important to identify what nugget of information from the source

should be transferred. Second, how this information is to be included into learning the target has



12

to be determined. Finally, the extent of transfer should be ascertained based on the relatedness of

the two tasks. Addressing these design requirements is necessary for making the transfer efficient

and beneficial to the learning of the target task, and the success of the transfer hinges on it.

This dissertation addresses how to design a data-driven, cost-effective method of modeling

communication for small unmanned aircraft systems (sUAS), which takes all these challenges and

desiderata into consideration. The emphasis is on developing a solution that not only adapts to the

spatial and temporal variations within an environment, but also to the variations that arise across

UAS hardware and missions.

1.4 Solution Method

This thesis augments the a priori, parametric path loss radio propagation model (obtained

from the Friis transmission equation) [66] with a nonparametric Gaussian process model by learning

the RF variations introduced due to the environment’s medium, obstacles and interference sources.

Because these variations depend on the receiver’s location and other local effects, they are modeled

using a spatio-temporal Gaussian process (GP). This combination of path loss model with GP of

RF variations is shown by the orange block in Fig. 1.3.

GPs provide the flexibility to accommodate different RF propagation behaviors using a single

methodology. In addition, because a GP is a continuous model it does not suffer from quantization

errors during prediction. Spatio-temporal GPs use correlation between training samples to model

the underlying process [67], and these relationships between the training samples are captured by

learning the hyperparameters of the GP. Using these hyperparameters, the RF variations at an

unseen location at another time can be predicted by computing its correlation with the training

samples. This prediction is in the form of a probability distribution function because Gaussian

processes are fully probabilistic in nature and are equipped to handle uncertainty. As shown in Fig.

1.3, communication-aware UAS missions can use the model’s predictions to assess their bandwidth

and sensing limitations which operating the environment.

This dissertation assesses the performance of GPs in capturing diverse RF fields through cross
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Figure 1.3: Solution Overview

validation on 50 sets of real flight measurements collected under many diverse conditions. It also

demonstrates how the UAS mission of data ferrying benefits by learning the geospatial variations

in the field and using them in communication link scheduling. Both these assessments are done

using metrics that evaluate accuracy as well as uncertainty by means of likelihood.

Unfortunately, because the GP’s training is tightly coupled to its training setup, using this

model in subsequent missions or on different UAS can significantly reduce the predictive power

of the model. However, the existing GP model still contains valuable information about implicit

factors that affect communication in this environment. Hence we employ transfer learning to

allow the existing GP of variations to act as a source of information for updating or tuning the

communication model to these other setups. This dissertation proposes a forward adaptive transfer

learning for Gaussian process regression, or FAT-GP, which allows previously learned GP models

to be adapted forward as potential sources of knowledge for future learning tasks, as shown in the

purple block in Fig. 1.3.

FAT-GP combines the source task’s previously learned model, the source task’s training data,

and target task’s training data to learn correlations within the target task, as well as the correlation
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between the two tasks. A conceptual overview of the algorithm is presented in Figure 5.1. Finally,

FAT-GP decouples the kernel and hyperparameter selection for the target task from those of the

source task. This extension not only generalizes transfers between GPs using different kernels,

but lets the source task’s large covariance matrix be precomputed, resulting in amortization of the

training cost.

1.5 Contributions

Several subproblems have to be addressed before the proposed solution can be implemented.

Solutions to these subproblems are the contributions of this dissertation, and are as follows:

(1) Experimental assessment of spatio-temporal models of small unmanned aircraft

RF communication. This dissertation assesses how spatial and spatio-temporal Gaus-

sian processes improve airborne communication modeling over the a priori path loss model.

This is done using a total of 50 datasets of signal strength measurements taken during flight

experiments in the field. These datasets include 433MHz and 2.4GHz signal strength mea-

surements from static or mobile transmitter collected using three different airframes. The

GP is compared to the a priori model using root mean squared error (RMSE) and mean

standardized log loss (MSLL) which evaluate the predicted estimate as well as its uncer-

tainty. The prediction accuracy is also compared against the training cost to characterize

the inherent trade-off between the training phase computation and prediction performance.

(2) Simulation based assessment of improvements in UA mission performance. The

GP based RF estimation is integrated with the UA mission of data ferry planning, factoring

in considerations necessary for a smooth iterative ferry-and-learn process. The system is

analyzed through simulation, and the contributions consist of two parts

• With opportunistic GP learning, the ferry performance improves significantly, achiev-

ing 80% of optimal effective throughput within 4 iterations, and 93% after 9 iterations,

as the GP is able to converge quickly to the true radio frequency environment.
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• The iterative ferry-and-learn process is also implemented with parametric least squares

modeling techniques, and the GP is compared to these alternative learning systems.

This shows how the geospatial modeling and non-parametric adaptability of the GP

allows it to capture environmental artifacts, and thus perform well regardless of the

characteristics of the RF environment.

(3) Theoretical and experimental assessment of forward adaptive transfer learning

for Gaussian process regression (FAT-GP). This dissertation develops FAT-GP, a

forward adaptive transfer learning method for Gaussian process regression, which provides

a framework for robotic learning tasks to leverage previously learned GP models, which can

be especially valuable when limited training data is available for the new task. Theoretical

analysis shows that FAT-GP amortizes cost by avoiding relearning the existing source GP.

Experimental assessment demonstrates how including the knowledge from the source GP

reduces the root mean squared error (RMSE) as well as the uncertainty in the predictions,

even when very few training samples are available for the target task.

1.6 Dissertation Outline

Chapter 2 details the UAS platforms used in flight experiments for collecting signal strength

measurements, introduces the traditional path-loss parametric radio model and outlines its short-

comings, and finally discusses the metrics that the later chapters use to assess and compare the

nonparametric solutions to their parametric counterparts. Chapters 3 presents the design and ex-

perimental assessment of the spatial and spatio-temporal GP for capturing RF variations. This

ability to learn and adapt to the environment using GP models of communication is integrated

into the UAS mission of data ferrying in Chapter 4, and the performance is assessed and compared

with parametric estimation technique via simulations. Chapter 5 extends the adaptability of the

GP communication models to work across missions and hardware changes by using old models as

sources of information in new learning tasks via forward adaptive transfer. Chapter 6 summarizes
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the results of this dissertation, discusses shortcomings, and consequently identifies opportunities of

future work.



Chapter 2

Experimental Platform and Evaluation Metrics

This dissertation aims to build improved models for airborne RF communication of small

unmanned aircraft. These models are evaluated using data and measurements from flight experi-

ments in the field. This chapter presents an overview of the different UAS and radios deployed, the

configuration of the flight experiments used for data collections, and characteristics of the various

measurement datasets. As a baseline, these datasets are modeled using the parametric, empir-

ical path-loss model, and its performance shortcomings are quantified to motivate the need for

nonparametric solutions.

Finally, a variety of metrics are introduced which evaluate different aspects of model perfor-

mance. They not only assess the prediction estimates of these models, but also their uncertainties,

and their ability to explain the observed data. Together these metrics provide a systematic way for

comparing the competing parametric and nonparametric models of communication.

2.1 Experimental Platform

2.1.1 UAS System Description

Signal strength measurement datasets were collected using three different unmanned aerial

systems (UAS). All three setups used different airframes and different radio frequencies in flight

operations.

The three airframes used were the NexSTAR, Tempest and Skywalker X8 UAS. The NexS-

TAR aircraft, shown in Fig. 2.1a, was built from the Hobbico’s hobby kit, consisted of a balsa wood
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(a) NexSTAR UAS (b) Tempest UAS

(c) Skywalker X8 UAS (d) RECUV Ground Station Van

Figure 2.1: Unmanned Aerial System (UAS) Components

airframe, with a wingspan of 1.75m, and was modified in order to outfit with the necessary sensors

[69]. The Tempest aircraft, shown in Fig. 2.1b, is a sturdy fiberglass airframe with a wingspan of

3.2m, and can carry up to 5.8kgs during take-off [70]. The Skywalker X8 [33], shown in Fig. 2.1c,

has a foam airframe and wingspan of 2.12m.

While Cloud Cap Technology’s Piccolo Plus Autopilot [16] was used during the NexSTAR

flights, the Tempest and Skywalker X8 flights used the SwiftPilot from Black Swift Technologies

[5]. The autopilots communicate with the aircraft via the ground station (shown in Fig. 2.1d),

which has a dedicated 900MHz link with the aircraft at all times. Further details of these UAS

shown in Fig. 2.1 can be found in [79].
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(a) 2.4GHz WiFi antenna (b) Beacon emitting 433MHz signals

Figure 2.2: Transmitters used to collect RF signal strength measurements.

2.1.2 RF Signal Strength Datasets

In all the flight operations, signal strength measurements were logged onboard the aircraft.

For example, during the NexSTAR flights, a WiFi omni-directional, spherical antenna on the air-

craft measured and logged the signal strength of a 2.4GHz WiFi transmitter on the ground, as

shown in Fig. 2.2a. In experiments conducted before June 2009, the antenna was a regular 2.4GHz

dipole antenna, whereas afterwards it was switched to a WiFi-Plus omni antenna [91]. Similarly,

during the Tempest flights, the aircraft logged 433MHz measurements from a mesh network ra-

dio (MNR) [6], shown in Fig. 2.2b. The Tempest and NexSTAR flights both used a static

i.e. stationary transmitter, which was placed at a fixed location, whose GPS coordinates were

recorded. Knowing the true location of the transmitter and the aircraft at all times, the range for

each signal measurement could be calculated. Tables 2.1 and 2.2 each enumerate 20 and 18 signal

measurement datasets, which were collected by Tempest and NexSTAR from 433MHz and 2.4GHz

static-transmitters, respectively.

While collecting measurements for mobile transmitters, a 433MHz beacon and a 2.4GHz WiFi

transmitter, along with a GPS sensor, were attached to the roof of the van, as shown in Fig. 2.3.

This setup ensured that, once again, ground truth on the transmitter location was logged. Table

2.3 lists 12 datasets of measurements collected by a Skywalker X8 UAS from a mobile transmitter.



20

Table 2.1: Tempest Flight Data for 433MHz Signal Strength Measurements

No. Dataset Flight Emitter No. Measurements

1 2013-01-26 1 mnr0 1258

2 2013-02-08 1 mnr0 4593
3 2013-02-08 2 mnr0 2704

4 2013-03-05 1 mnr0 425
5 2013-03-05 2 mnr0 543

6 2013-03-07 1.1 mnr0 166
7 2013-03-07 1.2 mnr0 208
8 2013-03-07 1.3 mnr0 1574

9 2013-03-13 1.1 mnr0 427
10 2013-03-13 1.2 mnr0 904

11 2013-03-22 1 mnr0 993

12 2013-04-12 1 mnr0 549
13 2013-04-12 1 mnr1 338

14 2013-04-30 1 mnr0 399
15 2013-04-30 1 mnr1 133

16 2013-05-14 1 mnr0 420
17 2013-05-14 2 mnr0 376

18 2013-05-17 1.1 mnr0 283
19 2013-05-17 1.2 mnr0 205

20 2013-06-27 1 mnr0 504

Table 2.2: NexSTAR Flight Data for 2.4GHz Signal Strength Measurements

No. Dataset Flight Emitter No. Measurements

1 2008-10-14 1 mnr0 1628

2 2009-03-13 1 mnr0 3777
3 2009-03-13 1 mnr1 3785
4 2009-03-13 1 trailer 4529

5 2009-05-12 1 mnr0 750
6 2009-05-12 1 mnr1 745
7 2009-05-12 1 trailer 1993

8 2009-05-20 1 mnr0 2737
9 2009-05-20 1 mnr1 2697
10 2009-05-20 1 trailer 3514

11 2009-09-24 1 mnr0 1920

12 2010-09-02 1 mnr2 2484
13 2010-09-02 2 mnr2 2551
14 2010-09-02 2 laptop 1630

15 2010-09-13 1 mnr2 2502
16 2010-09-13 2 mnr2 1995
17 2010-09-13 2 laptop 1995

18 2011-07-12 1 mnr0 255
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Figure 2.3: Setup for mobile transmitter experiments

Table 2.3: Skywalker X8 Flight Data for Signal Strength Measurements from Mobile Transmitters

No. Dataset Flight Emitter No. Measurements

1 2013-09-24 1 433 beacon 979
2 2013-09-24 2 433 beacon 2162

3 2013-10-17 1 433 beacon 1995
4 2013-10-17 1 2.4GHz WiFi antenna 1975

5 2013-10-25 1 433 beacon 1957
6 2013-10-25 1 2.4GHz WiFi antenna 1926
7 2013-10-25 2 433 beacon 1056
8 2013-10-25 2 2.4GHz WiFi antenna 1749

9 2013-11-01 1 433 beacon 1181
10 2013-11-01 1 2.4GHz WiFi antenna 2080
11 2013-11-01 3 433 beacon 967
12 2013-11-01 3 2.4GHz WiFi antenna 1899

These datasets in Tables 2.1-2.3 will be used in RF characterization experiments in this thesis.

2.2 Empirical Path Loss Radio Model

The signal power Pt,r, from a transmitter at location pt, received at a location pr, can be

empirically modeled with the path loss model [66]

Pt,r = P0

(
d0

‖pt − pr‖

)α
Gt,r

=
k0

‖pt − pr‖α
Gt,r (2.1)
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where P0 and d0 are the reference power and reference distance, k0 = P0d
α
0 , and Gt,r captures

unmodeled variations in the path loss. Receivers measure the signal power1 in decibels

P dBt,r = 10 log10

(
k0

‖pt − pr‖α
Gt,r

)
= 10 log10

(
k0

rα

)
+ 10 log10(Gt,r)

= 10 log10(k0)− α10 log10(‖pt − pr‖) + ν

= κ− α10 log10(‖pt − pr‖) + ν (2.2)

where κ = 10 log10(k0), and ν is additive white Gaussian noise (AWGN). The terms κ and α are

radio model parameters and depend on the operating environment. While κ depends on the radio

source itself, the path loss exponent or the propagation decay exponent α depends on environmental

factors like atmospheric conditions and objects present in the environment.

Traditionally, simplistic empirical radio models Ξt,r have used only path loss to predict the

power received at a given range from the transmitter.

Ξt,r = Ξt(pr) = κ− α10 log10(‖pt − pr‖) (2.3)

These empirical models assume that the noise in the measurement zi,j , for transmitter i, made at

receiver location pj , is the additive white Gaussian noise (AWGN) ν.

zi,j = Ξi(pj) + ν (2.4)

Under this assumption, the radio model parameters, κ and α, can be estimated from a dataset

of measurements, z = [zi1, zi2, . . . , ziN ]T , collected by measuring a known transmitter i’s received

power at N known locations pj for j = 1, . . . , N . The estimation is done by fitting the signal

measurements using least squares.

2.2.1 Flight Data Validation of the Empirical Models

Fig. 2.4 shows flight experiment maps for 3 datasets with the unmanned aircraft’s trajectory

(shown as a blue solid line) as it collected signal strength measurements from the transmitter

1 Often, this is derived from received signal strength indicator (RSSI) whose mapping to received signal power is
unique to the manufacturer.
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(shown as a red triangle).

Because the true locations of both the receiver and transmitter are known, we can compute

the range at which each measurement was made. This range data can be used to generate the plots

in Fig. 2.5, which shows the each measurement by a blue mark. Fitting these measurements using

least squares estimates the radio model parameters. For example in Fig. 2.5a the radio model

parameters are estimated to be κ = −51.99 and α = 0.5. These estimated parameters can then be

used to predict the signal strength measurement at any range, which is shown by the red curve.

In Fig. 2.5a several measurements are normally distributed around the least squares fit. This

is confirmed by the normplot shown in Fig. 2.6a, where the pink line is close to the black line

but does deviate slightly, showing that the noise is not entirely AWGN. This is indicative of the

relatively cleaner nature of the 433MHz communications. In contrast, in Example 2, although Fig.

2.5b shows that while a fair portion of the 2.4GHz measurements are clustered around the fitted

curve, there are several outliers. These outliers are clearer in the normplot view shown in Fig. 2.6b,

where both tails of the normplot are severely deviated from the straight black line.
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(c) 2.4GHz NexSTAR dataset 4

Figure 2.4: Maps of the flight experiment setups with transmitter locations and flight trajectories

The WiFi noise problem is exacerbated in Example 3, shown in Fig. 2.5c, where systematic

large outliers between ranges of 300m and 500m cause the least squares solution to fail completely.

This failure is further apparent in Fig. 2.6c where the pink line massively deviates from the solid

black line. The presence of these outliers in a narrow band signals towards some local interference

issues, which results in large variations not consistent with the path loss model. Together, examples
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Figure 2.5: Estimation of radio model parameters from RSSI measurements using least squares
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Figure 2.6: Normplot of RF variations or residuals of the a priori empirical path loss model

2 and 3 represent a widespread problem faced by communication-aware UAS missions using 2.4GHz

communications. In the presence of such errors, UAS data ferrying, which plans UA trajectories

through regions of good communication, will over or under estimate the actual environment, con-

sequently achieving a worse throughput than planned. Similarly, these errors can result in filter

divergence when performing radio source localization with the communication model as the sensing

model, leading to large estimation errors. This motivates the need for refined, nonparametric radio

models which learn the RF variations.

2.3 Evaluation Metrics

The rest of this thesis develops nonparametric models to improve over the a priori, empirical

path loss model. Flight datasets are used to evaluate whether these models do in fact perform better

than the a priori models. This quantitative evaluation compares the models by using metrics that
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measure errors and the uncertainty. This section outlines the metrics that will be used in the rest

of the thesis for presenting detailed performance comparison of models.

Each of these metrics assess a model’s performance by comparing it’s prediction on a val-

idation set against their known measurement. Each sample in the validation set consists of the

input variable ρi and the corresponding response variable zi. Thus, the validation set is given by

{(ρi, zi)} for i = 1, . . . , Nv. In this thesis, z represents the received signal strength, and ρ represents

the receiver state, which is either its position p = [x, y]T , or its position and time [pT tk]
T .

2.3.1 Root Mean Squared Error (RMSE)

The root mean squared error (RMSE) measures the accuracy of a model’s predictions or

estimates. RMSE of a model on the validation set is calculated as

RMSE =

√√√√ 1

Nv

Nv∑
i=1

(zi − µi)2 (2.5)

where µi is the model’s estimate or mean prediction for the ith sample. Note that the term inside

the root is the sample variance of the errors, and hence RMSE is the sample standard deviation of

the model’s prediction errors.

2.3.2 Average Normalized Estimation Error (ANEES)

The RMS error does not capture the uncertainty predictions of fully probabilistic models

because it ignores the variance. Average NEES (Normalized Estimation Error Squared) or the

squared Mahalanobis Distance (MD) [4] helps assess the mean and variance of the prediction by

comparing it with measured RF variation

NEES = MD2 =
(zi − µi)2

σ2
i

(2.6)

ANEES =
1

Nv

Nv∑
i=1

(zi − µi)2

σ2
i

(2.7)

where µi and σ2
i are the model’s mean and variance predictions for the ith sample.
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2.3.3 Mean Standardized Log Loss (MSLL)

A standard method for evaluating a model is to measure how it performs relative to a baseline

model MB in terms of mean standardized log loss (MSLL) [68]. It represents the disagreement

between the model and measurements taken in the real world. Thus, it can be viewed as a loss

function to be minimized, and hence is also called the log loss. The MSLL for model M is defined

as the mean of the differences between negative log likelihoods of a given validation set.

MSLLM =
1

Nv

Nv∑
i=1

(− log p (zi|M,ρi)− [− log p (zi|MB, ρi)]) (2.8)

The negative log likelihood in this equation is defined as

− log p(zi|M,ρi) = − log

 1√
2πσ2

i

exp

(
−(zi − µi)2

2σ2
i

)
=

1

2
log(2πσ2

i ) +
(zi − µi)2

2σ2
i

(2.9)

where µi and σ2
i denote the mean and variance of the predictive distribution for the ith sample.

Consequently, the MSLL will be approximately zero for models similar to the baseline, while better

models have negative MSLL.

2.4 Summary

50 real flight datasets of signal strength measurements are used for evaluating airborne RF

communication models. These datasets consist of 433MHz and 2.4GHz signal strength measure-

ments from stationary and mobile transmitters, collected from three different small unmanned

aircraft. Measuring the performance using root mean squared error (RMSE), Average normalized

estimation error (ANEES), and mean standardized log loss (MSLL) evaluates both the predicted

estimate and its uncertainty, and can be used to compare the accuracy of nonparametric solutions

against that of the a priori empirical model.



Chapter 3

Spatio-temporal Models of Airborne RF Communication

Traditional radio models use physics-based parametric formulations [14, 47], which fail to

account for RF variations and other artifacts that stem from unknown interference and environment-

specific characteristics. Section 2.2 presented the path-loss radio model [66], which is an example

of such a parametric communication model, and highlighted its shortcomings.

This dissertation augments such parametric models with a nonparametric spatio-temporal

Gaussian process (GP) [67], and learns local, receiver-location dependent RF variations. Fig.

3.1 shows how the residuals of the empirical path-loss model are used for learning a GP of RF

variations. In this manner the GP adapts an a priori model to learn the time-varying and geospatial

characteristics specific to the environment in which the small unmanned aircraft is operating.

The experiments presented in this chapter use flight experiment data to show how spatio-

temporal GPs reduce the error in communication models for small UAS. These techniques, however,

can be used more broadly for learning other airborne communication networks.

Figure 3.1: Overview block diagram of nonparametric spatio-temporal characterization of airborne
RF environments
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3.1 Nonparametric Model of Receiver-Dependent Variation

Several factors influence the noise in the signal measurement at a location. In general, radio

noise comes from a variety of sources (e.g. fast fading, shadow fading, multipath, interference)

that can be correlated with the transmitter state, receiver state, or their relative positions and

orientations.

This work assumes that the noise has a component which is a function of the measurement

location pr and time tk. This dependence on receiver state ρr = [pTr , tk]
T is expressed as

Pt,r = κ− α10 log10(‖pt − pr‖) + vr

= Ξt,r + vr (3.1)

where vr ∼ N (µ(ρr), σ
2(ρr)) represents local RF variation at pr and tk.

Specifically, this model for the RF variations can be learned using the same dataset of mea-

surements, z = [zi1, zi2, . . . , ziN ]T , mentioned in Subsection 2.2. Because the variation is captured

in a separate, standalone term, it can be isolated when measurements are taken from a friendly,

known radio. The variation ej at a receiver state ρj is the error or residual of the empirical radio

model, and is calculated as

ej = zi,j − Ξi,j = vj j = 1, . . . , N (3.2)

i.e the difference between the signal measurement zi,j and the empirical radio model estimate Ξi(pj)

(Equation 2.3). This set of isolated, location- and time-tagged RF variations can now be used to

learn vj ∀j i.e. Gaussian distribution predictions for RF variations throughout the environment.

Our approach makes use of a nonparametric model to describe the environment variations

[87]. Specifically, the N samples of RF variations computed from Equation (3.2), serve as the

training set {ρj , ej}j=1:N to train a Gaussian process.
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Figure 3.2: Overview of Gaussian process learning and prediction.

3.1.1 Spatial and Spatio-temporal GP

The details of the Gaussian process framework can be found in [68, 74, 4]. The overview of

the GP framework is illustrated in a block diagram in Fig. 3.2, and the main points are summarized

in this section.

Once the GP is trained, the learned model can be used to predict the RF variation e′ at

unseen state ρ′. This prediction is in the form of a probability density function (PDF), which

comprises of the expected value (mean) and the variance,

(µe(ρ
′), σ2

e(ρ
′)) = GP(ρ′|{ρ1:N , e1:N , θ}) (3.3)

where θ are the hyperparameters of the Gaussian process. This PDF is obtained by calculating the

joint distribution of the unseen state with the states of the training samples, as follows

µe(ρ
′) = k(ρ,ρ′)T (K + σ2

nI)−1e

σ2
e(ρ
′) = k(ρ′,ρ′)− k(ρ,ρ′)T (K + σ2

nI)−1k(ρ,ρ′)

(3.4)

Here k(ρ,ρ′) is the N ×1 vector of correlations of the new state with all the training points’ states,

e is the N × 1 vector of measured variations at the training points, K is an N ×N kernel matrix

with entries kij = k(ρi,ρj), and σ2
n is assumed to be the noise variance of the original process.
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In the rest of the thesis, the short form GP ′ is used to represent prediction based on the learned

stochastic model, as shown in (3.3).

The GP computes correlations using a kernel function k(ρ,ρ′). The choice of the correlation

function or kernel is a key design decision when using a GP. Due to its infinite differentiability, a

squared exponential or Gaussian kernel is popularly used. It is defined as

k(ρ,ρ′) = σ2
f exp

(
−1

2
(ρ− ρ′)TL−1(ρ− ρ′)

)
(3.5)

where σ2
f is the signal variance, and L is a D × D diagonal matrix when ρ ∈ RD. The diagonal

elements are given by L(d, d) = l2d, where ld is the lengthscale of dimension d, where d = 1, . . . , D.

The nature of the correlations and the number of lengthscales differ depending on what

dimensions are included in the state, and whether they are given equal importance or not. For

example, in a spatial GP where ρ = p = [x, y]T , if the X and Y dimensions of the position are

given equal importance, it results in a spatial isotropic GP, with the following kernel

ksIso(ρ,ρ
′) = σ2

f exp

(
−1

2

(x− x′)2 + (y − y′)2

l2s

)
= σ2

f exp

(
−1

2
(ρ− ρ′)TL−1(ρ− ρ′)

)
where L = lsI2

On the other hand, we can use a different lengthscale for each dimension, to determine their

importance or relevance to the problem being modeled. This method when used with a spatial GP,

is known as spatial automatic relevance determination (ARD). The following kernel function allows

for non-isotropy along the X and Y dimensions.

ksARD(ρ,ρ′) = σ2
f exp

(
−1

2

[
(x− x′)2

l2x
+

(y − y′)2

l2y

])

= σ2
f exp

(
−1

2
(ρ− ρ′)TL−1(ρ− ρ′)

)
where L =

l2x 0

0 l2y


Cross-diagonal terms can also be includd to define a fully anisotropic kernel function which can

directional effects present in the environment. Finally, if ARD is used with a spatio-temporal GP,
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the kernel function has the following form

kstARD(ρ,ρ′) = σ2
f exp

(
−1

2

(x− x′)2

l2x
+

(y − y′)2

l2y
+

(t− t′)2

l2t

)

= σ2
f exp

(
−1

2
(ρ− ρ′)TL−1(ρ− ρ′)

)
where L =


l2x 0 0

0 l2y 0

0 0 l2t


Since the GP uses the difference between timestamps to compute temporal correlation, the times-

tamp t can be a GPS timestamp, or times since beginning of flight.

Note that in the case of the mobile transmitter, because the transmitter location is also

included, the spatial ARD GP will have 4 lengthscales: l2xr, l
2
yr, l

2
xt, and l2yt. Similarly, the spatio-

temporal ARD GP for a mobile transmitter will have these 4 lengthscales as well as l2t .

Training a Gaussian process involves learning σn, σf , and ld which are the hyperparameters

θ of the model. The hyperparameters are derived by maximizing the log likelihood function of the

Gaussian process for the n sample points in the training data set

θ = arg min
θ

ln p(e|θ)

= arg min
θ

[
−1

2
eTC−1

N e− 1

2
ln |CN | −

N

2
ln 2π

] (3.6)

where CN (θ) = K({ρ}1:n;σf , L) + σ2
nI.

3.1.2 GP based modeling of RF Communication

Prior work has shown that shadow fading effects have a log normal distribution in the non-

dB domain, which results in a Gaussian distribution in the dB domain [54]. Their correlations

have been modeled in ground robots using an exponential autocorrelation function [54, 24, 22].

Since these fading effects are responsible for the geospatial RF variations, and the exponential

autocorrelation function maps to a GP with a squared exponential or Gaussian kernel, we use a

GP to model these receiver dependent variations.

Fig. 3.3 shows a block diagram of our approach for modeling communication by learning RF

variations. As explained in 2.2, RF signal measurements are used to learn radio model parameters
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Figure 3.3: RF variation modeling block diagram

of an empirical path loss model. To make the system robust, in our experiments, the least squares

solution is estimated after removing the outliers. Outliers are samples which lie outside the inner

fences, given by Q1−1.5IQR and Q3+1.5IQR, where Q1 and Q3 are the 25th and 75th percentiles,

and IQR = Q3−Q1 is the interquartile range [85]. This inexpensive pre-processing step results in

improved path loss radio models, whose residuals are more tuned to their physical significance.

These residuals of the a priori path loss model, or receiver dependent RF variations e, and

their corresponding receiver state ρ serve as the input and response variables of the Gaussian

process. Correlations in the training data are learned using spatial isotropic, spatial ARD, or

spatio-temporal ARD kernels presented in Section 3.1.1. All three of these kernels are Gaussian,

learn hyperparameters using MLE, and provide a Gaussian PDF prediction. Yet, they help to

capture different and increasingly complex environmental characteristics. In the case of stationary

transmitters the input variable represents the state of only the receiver. When the GP is used to

capture only spatial correlations, ρj = pj , whereas for a spatio-temporal GP, ρj = [pTj , tkj ]
T . In

the case of mobile transmitters, the states in the spatial and spatio-temporal GPs are given by

[pTj ,p
T
i ]T and [pTj ,p

T
i , tkj ]

T ,respectively. If other aspects of the receiver are considered relevant to

the variations, those can also be included in the receiver state, and consequently in GP.

This ability to model different radio environments using a single methodology exhibits the
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true modeling flexibility of a GP. In this manner the nonparametric nature of the GP can capture

a wide range of diverse RF behaviors. There are a few more advantages to using a GP to model

the RF variations. Because a GP is a continuous model, it does not limit the states at which it

can be used for prediction, consequently eliminating issues that stem from quantizations. On the

other hand, it does indicate lack of confidence i.e. uncertainty in the prediction via a large value

of variance. Finally, because its prediction is in the form of a Gaussian PDF, a GP can provide a

concise yet fully probabilistic framework.

Because the GP only learns the RF variations in the environment, to obtain a prediction for

signal strength received at pj from transmitter pi, we have

Mi,j = Ξi,j + GPj (3.7)

where the GP’s mean prediction is added to the prediction of the empirical path loss model.

3.2 Flight Data Validation Results

This section evaluates the RF characterization obtained by modeling RF variations using a

Gaussian process.

3.2.1 Example Runs

The same three example datasets presented in Section 2.2.1 are used here to explain how

Gaussian processes learn RF variations. The first two are examples of 433MHz and 2.4GHz datasets,

respectively, where the GP learns the RF variations and reduces the error in the radio model. The

third example illustrates how the GP identifies a region of local interference, considerably improving

the prediction accuracy compared to the a priori, empirical path loss model.

Once outlier detection is completed, and radio model parameters for the path loss model are

estimated from location and time tagged measurement dataset, the residuals give the RF variations

for that dataset. The Gaussian process models are trained on RF variation datasets, as explained

in Section 3.1.1. The trained GP then provides mean and variance predictions for the RF variations
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(a) 433MHz Tempest dataset 2
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(b) 2.4GHz NexSTAR dataset 10
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(c) 2.4GHz NexSTAR dataset 4

Figure 3.4: Mean prediction of the spatial isotropic GP of RF variations

throughout the field, as shown in Figs. 3.4 and 3.5 respectively. Both figures show 2D (top row)

and 3D (bottom row) views for predictions obtained from a spatial isotropic GP. Note that the

GP mean predictions in Fig. 3.4 are predictions of the RF variations. Thus, they are corrections

to be applied to the empirical radio model estimates. Purple and red represent regions where

the empirical radio model has underestimated and overestimated the signal strength, respectively.

Regions where the GP predicts that the truth does not deviate from the path loss model are shown

in white.

The variances, shown in Fig. 3.5, represent the uncertainty in the mean predictions. Higher

variance corresponds to higher uncertainty and is depicted by the darker colors. The lighter colors

represent lower variances i.e. lower uncertainty. The variance at a location is dependent on the

location’s proximity to samples in the training set, the overall signal variability seen in the training

set (represented by the hyperparameter σ2
f ), as well as the noise variance σ2

n.

The mean and variance plots for all examples have the same colorbar, for a side-by-side visual

comparison. Once again, the cleaner 433MHz example contains very sparse deviations, as seen from
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(a) 433MHz Tempest dataset 2
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(c) 2.4GHz NexSTAR dataset 4

Figure 3.5: Variance prediction of the spatial isotropic GP of RF variations

Fig. 3.4a. Because the UA flies the same two paths repeatedly throughout this mission (Fig. 2.4a),

most of the field is unexplored. Consequently, the variance in most of these unexplored regions, as

seen in Fig. 3.5a, is relatively high to signify the possibility that other small pockets of high signal

variability may exist. Adding exploration into the trajectory can reduce this high uncertainty, as

seen in Fig. 3.5b for example 2, where the variance in most of the region has reduced, with only

the corner regions at a higher value. The mean prediction for Example 2 in Fig. 3.4b identifies

regions where moderate RF variations exist. However, for the most part, these corrections are

locally clustered and small in magnitude.

In contrast to the first 2 examples, in Fig. 3.4c, Example 3 identifies a region (shown in purple)

in the north-west corner of the field where the empirical radio model has grossly underestimated

the signal strength. This exemplifies the GP’s ability to start for an a priori model, and learn and

adapt to significant environmental artifacts like localized interference. Also, the fully probabilistic

nature of the GP’s predictions warn of the presence of such artifacts with high variances outside

the explored regions, as seen in Fig. 3.5c.
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Fig. 3.6 highlights how the least squares solution used to learn the path loss model can fail

in the presence of outliers arising from local interference, as in Example 3. Since RF variations

are residuals of the empirical radio model, these failures impact the Gaussian process regression as

well. This is seen in the GP’s mean prediction (shown in second row of Fig. 3.6a), which requires

large negative correction for most of the region.
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(b) With Outlier Detection

Figure 3.6: Comparison of path loss models and GP mean and variance predictions for 2.4GHz
NexSTAR dataset 4 with and without outlier detection
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Fig. 3.6b shows that removing the outliers results in low RF variations in most of the region

other than top left corner. This makes it easier to identify local artifacts of the region. In addition,

smaller residuals reduce the variability in the GP and lead to higher confidence (i.e. lower variance

predictions) for the entire region. In contrast to the 2.4GHz dataset 4, the other two examples

remain unchanged with outlier detection. Consequently, outlier detection is an inexpensive pre-

processing step which can improve the baseline empirical communication models in the presence of

some local variability.

3.2.2 Gaussian Process Cross Validation

The three examples presented in Section 3.2.1 differ in their communication frequencies, UA

trajectory, and magnitude and nature of RF variations. The GP provides an elegant methodology

for adapting the empirical radio model to their specific environments and challenges. This section

quantitatively examines how the GP models i.e M = Ξ + GP improve over the empirical radio

model Ξ.

The performance of the GP radio models is evaluated using 5-fold cross validation, with root

mean squared error (RMSE) and mean standardized log loss (MSLL) as the metrics. 5-fold cross

validation divides the dataset into 5 equal-sized, randomly selected groups. In each run, one group

is used as validation data for testing the performance of a GP trained on all the data from the 4

other groups. This process is repeated 5 times, leaving out a different group as the validation set

each time. The final reported metric is the average of the validation RMSE and MSLL over the 5

runs.

The K-fold cross validation methodology provides a generalized assessment of model perfor-

mance, and we use it as a platform for comparing different types of GPs. Specifically, we train

and assess spatial isotropic, spatial ARD, and spatio-temporal ARD Gaussian processes for each

of the datasets in Tables 2.1, 2.2, and 2.3. The RMSE and MSLL of these GPs are also compared

against the empirical radio model from Section 2.2. Finally, each of these models (i.e. empirical

or GP radio models) are learned with and without outlier detection. These detailed, per-dataset,
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comparative results are shown in the Appendix A. Note that spatio-temporal ARD models could

not be constructed for the 433MHz datasets because accurate timestamps were unavailable.

3.2.2.1 Root Mean Squared Error (RMSE)

The RMSE results for each dataset in the 3 groups, presented in Tables A.1-A.3 in the

appendix, are summarized here in Table 3.1 by averaging over all datasets within each group. In

all 3 groups, the GPs improve over the empirical radio model. Also, where available, the spatio-

temporal GP does better (i.e. has lower RMS error) than its spatial isotropic and ARD counterparts.

Table 3.1: Model comparison using cross validation Root Mean Squared Error (RMSE) averaged
over datasets in each group

433 MHz 2.4 GHz Mobile
Outlier detection Model Tempest NexSTAR Skywalker X8

Without Empirical radio model 4.07 2.95 3.63
Spatial Isotropic GP 3.45 1.97 3.04
Spatial ARD GP 3.44 1.98 2.98
Spatio-temporal ARD GP – 1.58 2.78

With Empirical radio model 4.05 3.20 3.63
Spatial Isotropic GP 3.46 1.98 3.04
Spatial ARD GP 3.44 1.99 2.98
Spatio-temporal ARD GP – 1.59 2.78

However, these averages presented in Table 3.1 do not reflect the large variability seen in

the RMSE across datasets of any group. These are better illustrated using violin plots [32] shown

in Fig. 3.7. Each violin represents a different type of radio model, marked on the Y-axis. For

comparison, the RMSE of radio models constructed without and with outlier detection are shown

side by side in orange and yellow respectively. The median and mean are shown by black diamond

and black circle within, respectively. The shape of a violin captures the distribution of the RMS

errors of datasets in a group. Said differently, the mass of the violin is concentrated around the

RMSE values obtained in that group.

In all three groups of datasets, we see that the RMSE decreases from left to right i.e. both
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Figure 3.7: GP RMSE performance on groups of datasets collected using stationary transmitters

the median and mean of the RMSE for the GP models are lower than the empirical radio model.

The improvement is especially prominent in Fig. 3.7b where the empirical radio model does much

worse on some datasets than the corresponding GPs. Even when the extremes of two violin plots

are similar like in the case of the GP models, the distribution of the mass shows that the spatio-

temporal GP model improves over the spatial GPs.

Also, the addition of outlier detection in preprocessing does not change performance of any

radio models. However, as explained in Section 3.2.1, the resulting models have better physical

interpretability, and in the case of the GP have higher confidence in their mean predictions.

Because the 433MHz measurements are fairly clean, with mostly AWGN, the improvement
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in this flight group is muted. However, in the case of 2.4GHz data, where the measurements are

very noisy, the Gaussian process models, especially the spatio-temporal ARD GP, help prevent

large errors seen due to environmental artifacts. This is clearly seen by comparing Figs. 3.8 and

3.9, which shows the error histograms for Example 2 from Section 3.2.1. Each of the histograms

(a) Spatial isotropic (b) Spatial ARD

Figure 3.8: Error omparison between empirical radio model and spatial GPs of the RF variations
for 2.4GHz NexSTAR dataset 10

compare the validation set errors of a GP model (shown in blue) with those of the empirical radio

model (shown in red), with the purple region representing their overlap. While the errors from the

spatial isotropic and ARD GPs collect around zero, they are still have a fair amount of overlap

Figure 3.9: Error comparison between empirical radio model and spatio-temporal GP of the RF
variations for 2.4GHz NexSTAR dataset 10
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with the errors of the empirical model. In contrast, Fig. 3.9 shows that the spatio-temporal ARD

GP reduces most of the errors to be below 5, with over 400 of them having a magnitude of less

than or equal to 1.

It is important to note that the performance of the spatial ARD GP is limited because it is

restricted to a diagonal lengthscale matrix L. A richer model can be obtained by learning an L

matrix with off-diagonal terms to capture the cross correlations between the x and y dimensions,

allowing for a completely anisotropic model. However, these additional terms will increase the

number of hyperparameters, consequently increasing the training time.

3.2.2.2 Mean Standardized Log Loss (MSLL)

As explained in Section 2.3.3, MSLL provides a method for comparing models using their

predictive distributions given by N (µi, σ
2
i ) for response variable zi. This is done by evaluating the

log loss which measures the disagreement between the probability density function predicted by the

model and the measurements. For the RF characterization problem, the MSLL is calculated for

a dataset of receiver locations ρi and the corresponding signal measurements zi for i = 1, . . . , N .

The baseline model is the empirical radio model Ξ,which is assumed to have the training points

made available to the GP models i.e M = Ξ + GP. The baseline’s predictive variance is equal to

the sample variance of its residuals, given by σ̂2. Table 3.2 summarizes the mean and variance of

the predictive distributions of these models.

Table 3.2: Model-wise Predictive Distributions for zi

Model µi σ2
i

Baseline Ξi σ̂2

M using Spatial Isotropic GP Ξi + µe,sIso(ρi) σe,sIso(ρi)
2

M using Spatial ARD GP Ξi + µe,sARD(ρi) σe,sARD(ρi)
2

M using Spatio-temporal ARD GP Ξi + µe,stARD(ρi) σe,stARD(ρi)
2

Tables A.4-A.6 in the appendix show the MSLL for each of the datasets in the 3 groups as

a mean and standard deviation across 5 cross validation runs. The MSLL of the 3 GP models are

summarized in Table 3.3, and visually displayed using violin plots in Fig. 3.10.
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Figure 3.10: GP MSLL on groups of datasets collected using stationary transmitters

Table 3.3: Model comparison using cross validation Mean Standardized Log Loss (MSLL) averaged
over the datasets in each group

433 MHz 2.4 GHz Mobile
Outlier detection Model Tempest NexSTAR Skywalker X8

Without Spatial Isotropic GP -0.16 -0.30 -0.14
Spatial ARD GP -0.17 -0.30 -0.15
Spatio-temporal ARD GP – -0.54 -0.22

With Spatial Isotropic GP -0.15 -0.35 -0.14
Spatial ARD GP -0.16 -0.35 -0.15
Spatio-temporal ARD GP – -0.59 -0.22

More negative MSLL indicates better models while close to zero indicates that the model

is comparable to the baseline. As noted before, because 433MHz is a cleaner frequency, the im-
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provement seen by using a GP in this group is small. This is confirmed by the MSLL values in

Fig. 3.10a, which are concentrated just below zero with means between −0.15 and −0.16 for the

different models. However, in the case of 2.4GHz, shown in Fig. 3.10b, the spatial models are at

−0.30 and −0.35 without and with outlier detection. This number is nearly doubled in the case

of the corresponding spatio-temporal models. Thus, once again, we see that the spatio-temporal

models (where available) perform better than the spatial counterparts.

Also of note are the MSLL values for 2.4GHz NexSTAR dataset 4, where even the spatial

GP models have a much more negative MSLL of around −1.47. Performing outlier detection

and including the temporal dimension in the GP further reduces this to around −2.60. These

values indicate that learning a GP in this example drastically improves the performance because it

identifies and accounts for an environment specific artifact missed by the a priori empirical path

loss model.

3.2.3 Computation vs Accuracy Trade-off in GPs

A GP’s prediction accuracy is critically dependent on the size of the training set. As the

size of the training set grows, so does the diversity, improving the GP’s ability to predict across

the field. Unfortunately, an increase in the training set also drastically increases the training time,

primarily due to increased cost of inverting a larger covariance matrix during every iteration of

the MLE optimization. These conflicting characteristics of a GP introduce a trade-off between

accuracy and training cost.

To examine this, the GP was trained iteratively, with more training samples in each iteration.

The training time and the corresponding prediction RMSE were compared for increasing sizes of

the training set to illustrate the nature of this trade-off. Two versions of this experiment were

carried out. The first one performed percentage-wise iteration, where 20% of the data was set

aside as validation set, and the training set was grown from 10% to 80%. In the second version of

the experiment 150 random samples made up the validation set, while the remaining samples were

added to the training set in fixed increments of 50.
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The detailed results of these two experiments are presented in Appendix A. Fig. 3.11 shows

the results for the three examples from Section 3.2.1, which can be used for understanding the

implications of this trade-off. In both cases, percentage-wise and fixed-increment iteration, the
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(b) Spatio-temporal ARD for 2.4GHz
NexSTAR dataset 10
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(c) Spatio-temporal ARD for 2.4GHz
NexSTAR dataset 4

Figure 3.11: Training time vs prediction RMSE trade-off for increasing training set sizes obtained
by iteratively training GPs percentage-wise (top row) and using fixed increment (bottom row).

training time or cost rises almost exponentially. In contrast, the RMSE drops linearly, plateauing

for some iterations in both experiments. These plateaus correspond to iterations where newly

added training samples are similar to the existing training data, and do not contribute any new

information to reduce the prediction error. However, these additional samples do add to the training

costs. This illustrates not only the need for exploration of unseen regions, but also the diminishing

returns property of localized samples.

Note that these experiments quantify training expenditure for offline GP training, where the

training cost comprises mostly of training time. When a GP is trained online during a UA mission,

several factors such as fuel, computation time, endurance, etc. factor into and contribute to the

training cost. However, the general nature of the findings in this Section will extend to the online
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training process as well.

Fortunately, once the GP is trained and the hyperparameters are learned, the covariance

matrix does not change and inverting it is a one time operation. This inversion can be precomputed

and used for all future predictions, making predictions much cheaper than the training phase.

3.3 Summary

Airborne radio frequency (RF) communication for small unmanned aircraft can be character-

ized by capturing local, receiver-dependent RF variations from baseline models. By learning these

spatial or spatio-temporal variations using the nonparametric, data-driven approach of a Gaussian

process (GP), an a priori model like the empirical path loss model can be adapted to a specific

environment. Diverse RF behaviors can be captured by this fully probabilistic methodology using

a variety of kernel functions. This chapter evaluates and compares the performance of spatial and

spatio-temporal GP models against the a priori empirical model by performing cross validation

on 50 flight measurement datasets. These datasets consist of 433MHz and 2.4GHz signal strength

measurements from stationary and mobile transmitters, collected from three different small un-

manned aircraft. Measuring the performance using root mean squared error (RMSE) as well as

mean standardized log loss (MSLL) evaluates both the predicted estimate and its uncertainty, and

shows that the GP models improve prediction accuracy over the a priori empirical model, with

the spatio-temporal GPs improving over the spatial GPs. Finally, examining the effect of training

set size on the performance illustrates the inherent trade-off that exists between training cost and

accuracy of the GP model.



Chapter 4

Improving Data Ferrying by Iteratively Learning the RF Environment

Learning RF variations using a Gaussian process can help adapt a priori communication

models to specific environments. This improved knowledge of the communication model can provide

a significant boost to the performance of communication-aware UAS applications which are designed

to take bandwidth and sensing constraints into consideration. This chapter assesses how the ability

to learn and adapt the communication model to the environment impacts performance of the

communication critical UAS application of data ferrying.

4.1 Data Ferrying

An unmanned aircraft can benefit communication-challenged sensor networks, acting as a

data ferry for the network. A data ferry is more than just a wireless relay; the ferry physically

carries data as it moves through the environment in order to communicate with the sensor nodes

[76, 3]. The unmanned aircraft’s mobility extends communication range, enabling communication

Figure 4.1: Overview of the data ferrying problem.
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between distant and otherwise disconnected nodes [95]. A data ferrying system controls two distinct

sets of dynamics: the communication link scheduling between nodes and aircraft, and the motion

of the aircraft through the environment [96, 83, 25]; and doing this well requires knowledge of the

radio-frequency (RF) environment throughout large areas.

RF environments can be modeled theoretically based on signal propagation and decay [66].

Probabilistic shadowing and fast fading [26], as well as terrain features [47] add more detail. Though

these models can provide a reasonable starting point for planning, additional variations in the RF

environment where the sensors and ferry are deployed will yield modeling errors [55], leading to

significant differences between planned and actual data ferry performance [10]. Thus for accurate

ferry planning, some form of on-line learning and model refinement is necessary.

Reinforcement learning has been examined for data ferrying [60], avoiding RF models alto-

gether. Here, the ferry can fly many paths with varied communication schedules to determine the

optimal solution, in a process similar to stochastic optimization. However, this suffers from the

amount of candidate trajectories that the ferry must fly, requiring exponentially more time and

energy to reach the optimal solution [28]. Further, RF environments typically exhibit spatial cor-

relations that can be learned and modeled [66, 87, 54, 26]. Instead of the slow model-free approach

of reinforcement learning, a model-based approach has the advantage of learning and refining an

RF model with fewer passes, resulting in better ferry paths faster.

This idea has been tested with an unscented Kalman filter [81] to fit a physics-based model,

showing RF model refinement rapidly after the ferry takes flight. However, [81] limits the com-

munication model to a few set of parameters to represent an omni-directional antenna in the RF

environment, which restricts the accuracy of the refined model. Resolution can be improved by

incorporating more parameters to capture additional propagation effects, such as fading [52] and

directionality [8]. The improved resolution of these models not only requires a larger training

set, but will still fall short of the complexity of the RF environment. The parametric nature of

physics-based models limits the accuracy in modeling stochastic environments.

Gaussian processes are a non-parametric alternative for measurement prediction in stochastic



48

environments. While the predictions of the GP improve as more training data from the environ-

ment become available, its data requirements are modest compared to the extensive in-flight data

collection required for model-free reinforcement learning [60]. The work presented in this chapter

uses the GP framework described in Chapter 3 to capture RF variations, i.e. deviations from an a

priori physics-based model.

Most motion control work for learning these RF variations has focused on environment learn-

ing as the sole objective, eg. random motion [87], signal extremum seeking [22, 80], or full environ-

ment characterization [22, 35]. Here our objective is data ferrying. Rather than taking time away

from ferrying to explore the environment, this work learns the RF environment only opportunisti-

cally while ferrying. The unmanned aircraft ferries data between the nodes, along a path planned

using some initial RF model. While ferrying, the aircraft is able to sense the received signal strength

from each node, and feed these measurements into the GP. The GP uses these measurements to

refine the RF model, enabling the ferry to replan a smarter ferrying route. Section 4.2 describes

the aircraft’s path and communication planner, which requires a model of the RF environment.

This chapter details the integration of the ferry planner with the GP’s RF estimation (Section

4.3). Important considerations are described to smooth this iterative ferry-and-learn process, and

the general behavior of the integrated system is discussed. The system is analyzed through sim-

ulation in Section 4.4, showing significant ferry performance improvement with opportunistic GP

learning. The ferry-and-learn process is then implemented with alternative estimation approaches

in Section 4.5. The second contribution is the evaluation of the Gaussian process against learn-

ing systems using model-based parameters through least-squares fitting, similar to [81] and [8].

This shows how the geospatial modeling and non-parametric adaptability of the GP allows it to

capture environmental artifacts, and thus perform well regardless of the characteristics of the RF

environment.
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4.2 Data Ferry System

Data ferrying refers to an unmanned aircraft transferring data between stationary ground

nodes by augmenting wireless communication with physically moving with the data for some portion

of its delivery. This work focuses on two nodes, A and B, where source node B needs data delivered

to destination node A through the data ferrying aircraft. This specific scenario simplifies the

discussion of the ferrying process; the process can easily be extended to more nodes with more

communication flows. To implement on-line, the fast near-optimal discrete-time ferry planner from

[11, 9] is used1 , and described here.

The ferrying system is optimized by controlling the ferry’s motion um and communication uc

to form a closed path within a fixed time horizon. This closed path is then discretized into N steps.

Let the sequence of state trajectories be p = {pi} for vehicle poses, t = {ti} for the associated

times, and B = {bi} = {bai , bbi , b
f
i } for the nodes and ferry, for i from 0 to N . The vehicle dynamics

can be described as

pi+1 = fm (pi, um,i) (4.1)

ti+1 = ft (ti, um,i) . (4.2)

while the buffer dynamics are described by

bi+1 = fc (bi,MA,MB, uc,i) (4.3)

where the stochastic radio frequency (RF) environments are represented by MA,MB. These map

locations to probability density functions (e.g. the mean received signal strength for node A at

location i, sa,i and its associated variance σ2
a,i). The ferry planner uses the mean signal strengths

to predict throughput through Shannon-Hartley Channel Capacity c = β log2(1 + s), where β is

the channel’s bandwidth. Further, channel coding and MAC-Layer protocols (such as those defined

by 802.11 [36]) determine specific communication rates in a stair-stepped fashion based on the

channel’s capacity. Buffer limits on the nodes and ferry complicate this system even more. For

1 These algorithms were designed and implemented by Anthony Carfang
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example, when the ferry’s buffer is full, it can no longer collect more data regardless of the RF

channel’s capacity. These two factors lead to modal nonlinear system dynamics for Equation 4.3,

which are described fully in [11].

In addition to the free initial conditions, the entire input is u = [um,uc, p0, b0, N ], and the

periodic ferrying problem is

max
u

J (p(um), t(um),B(uc)) (4.4a)

s.t. Eqs. (4.1)-(4.3) (4.4b)

p0 = pN (4.4c)

t0 = 0 (4.4d)

p0, b0, N free. (4.4e)

The objective J is the effective throughput evaluated over the closed ferry path, specifically here

the average rate of delivering data to node A:

J(p, t,B)) =
baN − ba0
tN

(4.5)

Even with just two sensor nodes, optimizing the ferry’s performance is a challenging nonlinear

problem with modal dynamics. However, the dynamics exhibit a naturally cascaded structure that

can be exploited [11]. The motion and time dynamics in (4.1) and (4.2) depend only on um. Since

channel signal strength generally depends on position and time [87], the buffer dynamics depend

on both um and uc. The full problem objective (4.4a) can be transformed to

max
um

J (p, t, π(p, t)) (4.6)

where the optimal bandwidth control policy is dependent on the vehicle’s motion:

π(p, t) = arg max
uc

Jc(p, t,B(uc)) (4.7)

At the top level, the ferry planning algorithm optimizes over motion control; then at the lower

level, an optimal bandwidth policy is determined for the given motion trajectory.
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To solve the higher level nonlinear problem, this work uses a genetic algorithm [89] that

controls the ferry’s motion. Each candidate chromosome is fed to the lower level policy in (4.7). To

reduce computational burden, this policy uses the fast near-optimal implementations described in

[9], obtaining solutions that are on average 99.8 % of the optimal. Significantly, the policy (and the

ferry problem) assumes accurate knowledge of the RF environment. Inaccurate knowledge results in

discrepancies between the performance that the ferry planner expects and the performance actually

achieved. Specifically, over estimating the RF environment can result in the ferry not meeting

its data delivery guarantees. Hence, it is critical to learn the RF environment to reduce these

discrepancies and improve the ferrying solution. This chapter assesses the impact that learning GP

based communication models has on the ferrying performance.

4.3 RF Characterization for Data Ferrying

This section describes how the GP-based approach is combined with the ferrying process,

using data collected while ferrying, to improve the RF model. The general combined process flow

is first described, followed by several key integration details to help ensure smooth operation.

4.3.1 Integrated System Overview

In the first iteration, the ferry plans its trajectory based on a priori RF models that cover

the full environment for both nodes, setting MA,0 = ΞA and MB,0 = ΞB. These models can be

generated using basic radio propagation theory or modeling tools such as SPLAT! [47]. The initial

models do not need to be very accurate, though a bound on a priori error is still to be determined.

The simulation studies in Sections 4.5 and 4.4 will show how over-estimating the RF environment

generally leads to better performance.

The genetic algorithm optimizes the ferry’s first path with these initial models. The un-

manned aircraft then flies along this path in the real environment, collecting and delivering data

to nodes A and B. During this process, it simultaneously measures and logs the strength of the

signal zi,j it is receiving from each of the two nodes. Each of these datasets can be compared to the
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a priori models’ estimates for signal strengths at each location along the path. These differences,

given by

eA,i = zA,i − ΞA,i i = 1, . . . , NA (4.8)

are node A’s RF variations, as in Equation (3.2). Node B’s variations, eB,i for i = 1, . . . , NB, can

be similarly computed from the flight measurements.

For each of the nodes, a GP is trained on these location-tagged datasets of RF variations for

all measurements taken by the ferry up until that point. These variations are spatial in nature, and

are used by the GP to learn hyperparameters θ·,n for each radio for every interval, which include

the lengthscale or the distance of correlation ls, signal variance σ2
f , and noise variances σ2

n. These

hyperparameters and the training set can then predict, through (3.4), the RF variation for each

node at any location in the entire environment

(µA(p′), σ2
A(p′)) = GP(p′|{p1:n, eA,1:n, θA,n})

(µB(p′), σ2
B(p′)) = GP(p′|{p1:n, eB,1:n, θB,n}). (4.9)

Thus, once the training is complete, the learned model can be used to predict the RF variation

at any given location p′. In the rest of the chapter, we use the short forms GPA,n and GPB,n to

represent these learned stochastic models, which predict the signal correction values for some or all

of the locations in an environment.

The GP predictions are then combined with the a priori model to improve the RF estimates.

At the end of iteration n, the updated models of the RF environments are

MA,n = ΞA + GPA,n

MB,n = ΞB + GPB,n (4.10)

and are used by the ferry planner in the next iteration to select path pn+1. The entire process is

summarized in the block diagram shown in Fig. 4.2.

In this manner, improvements learned from the previous iteration’s data are incorporated in

ferry planning and decision making during the subsequent iteration. The subsequent improvements
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Figure 4.2: Integrating RF characterization with data ferrying involves iterating through planning
ferry paths based on a predicted environment, and improving the predictions based on signal
strength samples gathered while ferrying.

are a result of accumulating more variation data, which increases the size of the training set, and

consequently improves the GP predictions. With better accuracy in the RF models, the ferry can

plan a better trajectory.

It is possible that the paths generated between sequential models pn and pn+1 have no

intersections if the predicted environments drastically change betweenMA,n−1 andMA,n. For this

work, the transition between paths pn and pn+1 is ignored. Future work will investigate adding

further constraints to p0 in (4.4e), as well as transitioning toward a receding horizon framework.

4.3.2 Detailed Integration Considerations

4.3.2.1 Initializing Subsequent Iterations

The genetic algorithm to optimize the ferry path uses a population of 20 chromosomes over 200

generations. The initial 20 chromosomes are generated randomly, and evolve according to various

crossover and mutation rates that are tuned to work reasonably well for data ferrying (similar to

those in [11]). After 200 generations, the best path is then flown to sample the environments.

With these measurements known, this trajectory is then used to seed one chromosome of the next

iteration, with random chromosomes for the remaining 19. If the RF environment is perfectly

known and unchanging between iterations, then seeding the genetic algorithm in this way ensures

the ferry’s performance will not decrease through iterations. Note this is not guaranteed through
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changing environments, i.e. as the RF model changes through learning.

Optimizing the GP hyperparameters has a similar initialization process. The first iteration

initializes the hyperparameters to a set of values expected to perform decently for most Signal-

Strength applications. In subsequent iterations, the GP is optimized over all accumulated data,

rather than just the most recent sampling flight data. Since the data set accumulates, the hyper-

parameters for each optimization begin with the previous iteration’s values. This tends to result

in faster GP optimization time.

4.3.2.2 Limited measurement

The data for each iteration’s estimates are sampled from optimized ferry paths, which will

tend to be flight patterns near and between both nodes. Over the full environments, this leads to a

heavy sampling from a limited region. For a ferry that wants to fly mostly between the nodes, such

a sampling region is useful. However, this means the predicted values far from this sampling region

will have high variances (low confidence), and high potential for error. The result is that the ferry

may miss out on trajectories through unexplored pockets of strong communication. Future work

will examine integrating an exploration method in the ferry’s trajectory optimization to alleviate

this issue.

4.3.2.3 Preventing GP Minimization Failure

Another issue from heavily sampling a small region is the risk of the GP over-fitting data. In

extreme cases, the optimization of the GP may fail, resulting in divergent signal strength estimates.

This type of failure can be detected by examining the log marginal likelihood values returned by

the conjugate gradient optimization function: if the negative log likelihood values are higher than

a preset threshold, the learning is considered to have failed. Empirically, successful maximum

likelihood estimations return values of negative log likelihood below 104; negative log likelihood

values above 105 indicate that the optimization failed after getting stuck in a local minimum. Such

failures are mostly seen in the early iterations, when limited training data is available. When this
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happens, the resulting GP is thrown out, and the ferry returns to the previous model (e.g. set

MA,n+1 = MA,n instead of (4.10)). This allows the ferry to plan based on the last-known good

environment estimate.

4.4 Case Study: Results and Discussion

This section presents a simulation case study to illustrate the process of integrating Data

Ferrying with Gaussian process RF Estimation, and then to further analyze the system’s behavior

and performance.

4.4.1 Initial Configuration

Two sensor nodes are set in an obstacle-free environment, 800 meters apart. The aircraft

flies at a constant speed of 25 m/s as it ferries data between the nodes. Its goal is to maximize

the amount of data transferred over a closed trajectory with maximum duration of 2 minutes. The

true RF environments for the nodes are based on dipole antennas, several interferers and additional

RF noise. Though simulated, this type of environment is similar to those commonly seen during

flight experiments [81]. Figure 4.3 shows the mean fields of the RF propagation models for each

node. The inherent stochastic nature of the RF environments is reflected by adding a zero-mean

normally-distributed variation term ν = N (0, 0.5) to this mean field as the ferry flies through these

truth environments. Here, the variance is chosen to reflect the stochasicity of RF signal sampling,

based on experiments between ground nodes and unmanned aircraft across the UHF communication

band; a value of 0.5 balances the low variance seen at 433MHz [82] and with the higher variance

seen at 2.4GHz [81].

Note that though the figures are separated, the two environments do overlap; they are dis-

played separately for clarity of the environments. Significantly, the signal propagation within these

RF environments is such that the spacing of the nodes is far enough to make direct communication

a challenge; thus the nodes need the aircraft to ferry data for them.

The a priori environment estimates Ξ(.) shown in Fig. 4.4 have the correct node locations,
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(b) True RF environment for Node B

Figure 4.3: True RF environments.
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(b) Node B RF estimate

Figure 4.4: Initial estimates of RF environments.

but higher power levels, less interferers, and incorrect antenna angles than the true environment.

In practice, the combined ferry-and-learn system would continue through the duration of the

ferrying aircraft’s flight. For this evaluation, the system is run for 20 iterations. The performance

of our combined ferry-and-learning system is bounded by what the ferry would achieve if optimized

with the true RF environment known; for the environments in Figs. 4.3, the optimal path achieves

an average throughput of 22.4 Mbps.
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(b) After iteration 20

Figure 4.5: The ferry path evolves as the RF model predictions are improved from (a) iteration 1
to (b) iteration 20.

4.4.2 Ferrying Performance

Figure 4.5 shows how the optimized paths vary from the first iteration to the 20th. The

red sections of the paths indicate the ferry listening to B, and the blue for delivering to A. The

first iteration generates a trajectory based on Ξ(.), with an expected throughput of 18.2 Mbps, but

actually achieving 6.9 Mbps because of the drastic model error. The contour lines behind the ferry

paths represent the predicted RF environments after the GP is trained. Over 20 iterations, the

predictions are very different in Fig. 4.5b in comparison to Fig. 4.5a, with much more detail in

the contour lines between the two nodes where the ferry has sampled the most data. With a much

better prediction here, the ferry can plan to take advantage of rapid variations in signal strength by

switching links frequently between A and B. As a result, the ferry’s actual performance converges

to its predicted performance, ultimately improving to an effective throughput of 21 Mbps.

The ferry’s actual performance improves rapidly while also converging to its predicted perfor-

mance as the GP predictions are refined (Fig. 4.6). The first 4 iterations show quick convergence

between the ferry’s expected performance based on M(.),i and what is actually obtained while fly-

ing through the true environment; the trend also shows rapid improvement for both planned and

actual performance. The same trend is evident from iterations 5 to 16. After 16 iterations, the
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Figure 4.6: Planned and actual ferry throughput performance, ferrying through the estimated RF
models and the true RF environment.

solutions have converged to within the signal strength sensing noise.

The dip in performance at iteration 5 results from a significant change in planned path (Fig

4.7). The ferry path at iteration 4 passes through a region just southwest (down and left) of node

B. In sampling this region, the GP determined the signal strength was generally weaker in that

region than the a priori estimate had predicted. An unsampled region above and right of node

B was predicted to have good signal strength (shown by the contour lines in Fig. 4.7a), which

would improve the ferry’s performance. When flying that path, performance drops as it learns

after Iteration 5 that the region has poor signal strength as well. Then with the improved GP

predictions of this region, following iterations are able to avoid that region, shown immediately

with Iteration 6 (Fig. 4.7c).

4.4.3 GP Performance

4.4.3.1 General Behavior

Figure 4.8 shows the RF variations e(·) from the true environment that are not captured in the

a priori model, as explained in Eqs. (3.2) and (4.8). These variations are large and negative around

the nodes as the a priori model’s incorrect antenna angles and higher power levels overestimate
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Figure 4.7: Evolution of ferry paths and predicted environments from (a) a previous good trajectory
through (b) the region north of node B with previously over-estimated signal strength, then learning
to avoid that region in (c).
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(a) RF variations for node A
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(b) RF variations for node B

Figure 4.8: RF variations for the a priori models of (a) Node A and (b) Node B.

signal strength. Away from the nodes, the a priori model assumes a much cleaner decay to 0 than

the true environment, resulting in small positive variations. These RF variations are not Gaussian

in nature, and thus cannot be modeled by a single additive white Gaussian noise (AWGN) term

as in Eq. (2.4). They do however exhibit spatial similarity in the case of both nodes; it is this

location-dependent noise (Eq. (3.1)) that can be learned.

The goal of the GP is to learn these RF variations from the a priori model by capturing

the spatial correlations via its hyperparameters. Figures 4.9a and 4.9b show the mean field of the

GPB,1 and GPB,20 predictions, respectively. As the training dataset grows with each iteration,

the GP learns the RF variations for node B in greater detail by further tuning its hyperparameters.
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(a) After iteration 1
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(b) After iteration 20

Figure 4.9: Mean prediction for GP learned on RF variations for Node B
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Figure 4.10: Variance for GP learned on RF variations for Node B

For example, after iteration 1, the GP mean prediction (Fig. 4.9a) has very little detail and has

not captured any of the key features of Fig. 4.8b. However, by iteration 20 the mean prediction of

GP (Fig. 4.9b) has learned most of the dark red region surrounding node B, and closely matches

the initial error (i.e the RF variations of the a priori model, Fig. 4.8b).

Besides the mean field, GP predictions also provide a variance, which represents the uncer-

tainty in the mean predictions. Figures 4.10a and 4.10b show the GP variance throughout the

environment, at iterations 1 and 20, respectively. The white color marks the regions of very low

variance, i.e. high certainty, which correspond to the sampled region where the ferry has flown.
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Because the GP’s ability to accurately predict decreases further away from the sampled regions,

the corresponding variance increases, represented by darker colors. As the ferry samples more of

the environment with each iteration, the regions with low variance grow from Fig. 4.10a to Fig.

4.10b. Similar behavior is seen in the GP progression for node A. The white box in Fig. 4.10b

represents a symmetric area around the nodes that represents a region intuitively of most interest to

a data ferrying unmanned aircraft; and importantly, the variance within this region is significantly

reduced.

The largest values of variance in Figs. 4.10a and 4.10b, however, differ greatly. This discrep-

ancy stems from the different hyperparameters learned from different size training sets at these two

iterations. At iteration 1, when the training set and sampled region are small, the training samples

don’t exhibit much variability. Hence, the GP learns hyperparameters with small values for σ2
f and

σ2
n, and calculates the maximum variance of 2.81, assuming the rest of the environment has small

variance as well. As the training set grows, the GP learns that the signal deviations are in fact

highly variable, and it increases the signal variance σ2
f . Now the maximum variance at iteration 20

is at 11.72 in Fig. 4.10b, which in fact reflects the increase in the uncertainty of the unexplored far

away regions, which may also prove to be highly variable.

The value of the GP’s learning can be seen by comparing the model error for the a priori

model Ξ(.) (Fig. 4.11a) with the model error for M(.),20, close to the region of ferrying interest

(shown by the white box in Fig. 4.10b). Figure 4.11 zooms into this box, and shows that the high

error regions of Fig. 4.11a (represented by the darker colors) have shrunk considerably after 20

iterations. The exception to this is around the left side of Fig. 4.11b with a non-zero error, an area

not flown and sampled by the ferry during the 20 iterations.

4.4.3.2 Root Mean Squared Error (RMSE)

The GP and the overall model’s prediction performance at any iteration i can be measured

by calculating the mean prediction’s error on unseen measurement data, i.e a validation dataset.

The errors over the entire validation dataset can be aggregated using root mean squared (RMS)



62

−500 0 500
−400

−300

−200

−100

0

100

200

300

400

West − East [m]

S
ou

th
 −

 N
or

th
 [m

]

 

 

∆ 
S

N
R

−10

−8

−6

−4

−2

0

2

4

6

8

10

(a) A priori ΞB model error
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(b) Learned MB,20 model error

Figure 4.11: Model error comparison for Node B
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Figure 4.12: GP validation error over 20 iterations.

error (Fig. 4.12). The bold lines represent the RMS error for the path-based validation set, which

at iteration i comprises of points sampled by the path flown during iteration i+ 1, and are used to

evaluate GP i. This path is optimized given the predictions of GP i, and being a new path means

the new sampled points are not part of GP i’s training set. The path-based RMS error starts out

higher than 2dB, but converges to 0.5dB, approaching the variance seen in the true environment.

In fact, by the 7th iteration, the RMSE of A and B reduce by 84% and 69%, respectively. The thick

dashed lines in Fig. 4.12 represent the RMS error of mean predictions at locations on a uniform
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grid over the entire environment, which includes boundary points far outside the sampled regions.

Since the ferry paths naturally remain within a small region, the unsampled points dominate this

error and prevent it from reducing significantly.

The thin dotted lines in Fig. 4.12 represent the RMSE over the focused ferrying region

(defined by the white box in Fig. 4.10b). Note that from Fig. 4.4a, the most significant a priori

error occurs near the nodes, which bias the RSME values within this focused region. As the ferry

flies through this region, the RSME for node B in this region reduces below the full environment

error, as expected. However, after 20 iterations, the model’s remaining error is biased by the left

side of the region (Fig. 4.11b), which has been left unsampled; hence the region error of 2.57 is only

marginally better than the full environment error at 2.68. This is even more drastic for node A,

where the unsampled left side of the region includes those high a priori errors, which mostly remain

through the 20 iterations. This biases the regional RSME of 4.2 higher than the full environment

error of 2.3. Significantly though, the ferrying system is able to perform well despite these errors.

Because the true environment for node A includes a strong region to the right of the node (Fig.

4.3a), the ferry planner’s erroneously high expectation of throughput around and left of the node

was not enough to draw the ferry to that area, leaving that area unsampled. The different behaviors

of these regional RMS errors, and the full environment errors, make a compelling case that wider

exploration throughout the environment can produce significant reduction in model error, which

may help further close the gap between good ferry performance after 20 iterations, and the upper

bound in Fig. 4.6.

4.4.3.3 Average Normalized Estimation Error (ANEES)

The RMS error does not capture the fully probabilistic prediction of the GP, because it

ignores the variance. To capture this aspect of the GP we evaluate the model using Average NEES

(Normalized Estimation Error Squared) or the squared Mahalanobis Distance (MD) (presented in

Section 2.3.2. Fig. 4.13 presents the ANEES of the GPs for nodes A and B over 20 iterations.

A high value of NEES indicates optimistic predictions with a low GP variance in spite of
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Figure 4.13: GP performance consistency (ANEES) over 20 iterations.

the error being high. For example, GPA,1 has a RMSE of 3.22 over the path validation set,

with variances ≤ 0.42, resulting in ANEES=10.40. In contrast, the same GP, GPA,1, predicts

pessimistically on the full environment dataset, setting the variance of the far away boundary

regions to 16.40 when the RMSE=2.36, leading to a low ANEES=0.39. However, in subsequent

iterations, with more data, the ANEES values for both nodes along the path, in the white box

region, as well as the full environment quickly converge, indicating that the GP predictions become

more consistent and tuned to the inherent characteristics of the field being learned.

4.4.3.4 Mean Standardized Log Loss (MSLL)

As in Section 3.2.2.2 for flight validation of the GP models, the MSLL for the ferry’s GP is

calculated for a dataset of receiver locations ρi and the corresponding signal measurements zi for

i = 1, . . . , N . This is the dataset of the accumulated path, i.e. the training set at the end of 20

iterations. The baseline model at each iteration is the a priori model, and its predictive variance

σ2
Ξ is equal to the sample variance of its residuals across the entire environment. The GP learned

at each iteration is compared to this fixed, a priori baseline. For comparison, we also compute the

MSLL of the true distribution and a trivial model. The trivial model is defined in the GP literature

[68] as the Gaussian with sample mean and sample variance of the training data, denoted by µ̂n and
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Figure 4.14: Mean Standardized Log Loss (MSLL) for the accumulated path

σ̂2
n respectively, for the nth iteration. Table 4.1 summarizes the mean and variance of the predictive

distributions of these models. Note that yi is the true mean field at ρi, and the measurement zi is

Table 4.1: Model-wise Predictive Distributions for zi.

Model µi σ2
i

Baseline Ξi σ̂2
Ξ

Trivial Ξi + µ̂n σ̂2
n

Gaussian Process Ξi + µe(ρi) σe(ρi)
2

True Distribution yi 0.5

drawn from true distribution i.e zi ∼ N (yi, 0.5).

Fig. 4.14 shows the MSLL comparison of the models in Table 4.1 for nodes A and B. The

predictive distributions are calculated along the accumulated path, i.e. the training set at the end

of 20 iterations. For both the nodes, the trivial and a priori models perform almost identically,

resulting in an MSLL close to zero throughout. However, the red and blue solid lines show that the

GP MSLL gets more negative over 20 iterations, improving over the baseline. This is because as

the GP receives more training data, i.e. more information about the environment, what the model

learns agrees more with what is observed during ferrying. Through this iterative learning the GP

not only outperforms the a priori and trivial models, but also begins to approach the MSLL of the

true distribution.
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(b) For node B

Figure 4.15: Mean Standardized Log Loss (MSLL) for the white boxed region.
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(b) For node B

Figure 4.16: Mean Standardized Log Loss (MSLL) for uniform grid over environment.

Fig. 4.15 shows the MSLL for the white box region for the two nodes. For node B, the trend

and relative behavior of the three models matches those in Fig. 4.14. However, because the ferry

does not explore and correct the large errors around node A as explained in Section 4.4.3.2, its

MSLL does not reduce over the 20 iterations. Fig. 4.16 shows MSLL for uniform grid points

over the entire environment, which is higher than in Fig. 4.14. However, in the absence of training

samples from the boundary regions, the disagreement between the GP and unexplored areas cannot

be fully removed, resulting in higher log loss and higher MSLL.

As the GP explores the spatially varying regions, its observations reveal more of the complex-
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ities of the environment. This increases the GP’s uncertainty for unexplored regions, and causes

a rise in the GP’s log loss. This can be seen for node B from iteration 4 to 6, and corresponds

to the situation explained in Fig. 4.7 where the ferry discovers two over-estimated regions around

node B. To explain such newfound variability and noise in the training data, the GP learns new

hyperparameters, which get better tuned as more training data is received in subsequent itera-

tions, resulting in the log loss and MSLL decreasing once again. In this manner, in a complex and

spatially varying environment the MSLL cannot be expected to monotonically decrease.

However, the GP’s MSLL at each iteration is negative and lower than the corresponding

trivial model. This shows that the GP is building improved models through opportunistic learning.

4.5 Learning Comparisons

The ferry-and-learn methodology can use any method for learning RF environments. This

section analyzes the choice of Gaussian process learning in comparison to two other common forms

of modeling, highlighting the benefits of the GP over the complex RF environments.

4.5.1 Radio Model Fidelity

Improving the RF model with a Gaussian process of RF variations takes a data-driven and

nonparametric approach to communication modeling. Because a GP defines a distributions over

functions, this single methodology can learn the RF variations stemming from diverse RF behaviors

and environmental artifacts. This does not require prior knowledge of the hardware of the nodes,

or the presence of interferers. Instead, the GP implicitly captures these factors from the training

data via the hyperparameters and the correlations within the measurements. While this approach

can be computationally more intensive, it provides a single, flexible method for modeling all kinds

of radio propagation, as well as for correcting any inaccurate a priori model.

In contrast to a GP, physics-based models have parameterized functional forms, which assume

specific antenna patterns and how RF transmission would propagate in the environment. These

models, then, capture the RF behavior from the training data by parameter estimation. The
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following are the two examples of physics models, which differ in the type of antenna they model,

and the number of parameters they use.

4.5.1.1 Omni-directional Antenna Model

The omni-directional antenna model [80] assumes that the signal power received at all loca-

tions at a range r away from the transmitter can be modeled as

PRx,dBm = 10 log10

(
k0

rγ

)
+ ν. (4.11)

This model is an example of the traditional empirical models represented in Equation (2.2), and

thus, ν represents the additive white Gaussian noise in the measurements. The term k0 represents

the transmitter’s power density, and γ represents the path-loss exponent, and is dependent on

environmental factors like atmospheric conditions, and obstacles in the environment.

4.5.1.2 Dipole Antenna Model

The dipole antenna [8] model represents the signal power received at a range r from the

transmitter as

PRx,dBm = 10 log10

(
k1 sin2(ξ) + k2 cos2(ξ)

rγ

)
+ ν (4.12)

where, once again, ν and γ are the AWGN and the path-loss exponents. In contrast to the omni-

directional antenna model, the dipole antenna model combines transmit power, gain, and fading

effects via directional power density terms k1 and k2. ξ is the angle of the aircraft in the frame of

the node’s antenna pattern:

ξ = ψ − φ (4.13)

where ψ is the nadir angle on the ground node’s antenna, and φ is the relative angle (from the axis

pointing East) between the aircraft and the ground node. While this model is designed to capture

directional effects, it can also model omni-directional antennas by setting k1 = k2.
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4.5.2 Evaluation Setup

To evaluate how the nonparametric approach of a GP overcomes the limitation of physics-

based radio modeling approaches, we compare it to estimation systems based on both the omni-

directional and dipole antenna models. Specifically, the ferry-and-learning system is implemented

with an estimator that uses either the omni-directional or the dipole antenna model in place of

the GP. In the case of the physics-based models, at each iteration, a least squares solver uses the

accumulated ferry measurements for each node, and calculates the radio parameters that best fit

the ferry measurements. For the omni-directional model, [k0, γ] are estimated with a linear least

squares fit, while the dipole model estimates [k1, k2, ψ, γ] with a nonlinear least squares solver [8].

These parameters are then used for predicting RF signal strengths within the ferry planner in the

following iteration. This process is continued for 15 iterations.

The comparison was performed on RF measurements from two specific truth environments:

1. nodes with near-omni-directional antennas, and little interference and thermal noise (Fig. 4.17),

and 2. nodes with highly directional dipole antennas, in an environment with interferers and

significant noise (Fig. 4.18). These cases validate the GP’s benefits over the two extremes of RF

environments. For a fair comparison between the solvers, and limited by the few parameters of the

omni-directional model, the estimators begin with an a priori model (Fig. 4.19) that reflects an

omni-directional antenna with erroneously high power densities, resulting in RMS errors of 13 dB

for the near-omni case, and 18 dB for the dipole case.

4.5.3 Comparison Results

4.5.3.1 Ferrying Performance

The ferry’s performance is bounded by what could actually be achieved if the true environ-

ment was known accurately. In both cases, optimizing the data ferry with perfect knowledge results

in an effective throughput of 16 Mbps - plus or minus 0.5 Mbps depending on the stochastic fluc-

tuations of the RF environments. Because of this randomness, the following results are averaged
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Figure 4.17: Case 1: a relatively clean omni-directional truth environment.

from each simulation run 8 times.

Figure 4.20 shows how the effective throughput that the ferry achieves grows over the itera-

tions, as the learned models of the environment improve. In Case 1, the ferry’s actual throughput

is 14.62 Mbps for the linear least squares estimator with the omni-directional antenna model, 14.30

Mbps for nonlinear least squares with the dipole antenna model, and 14.50 Mbps for the Gaussian

process. Because the true environment varies only slightly from what Eq. 4.11 can capture, the

actual performance for each learning system is fairly close over the 15 iterations.

In contrast, the ferry’s throughput for Case 2 shows a much larger variation as the least

squares models struggle to capture the nuances of the true RF environments. Not surprisingly, the

linear least squares fit of the omni-directional antenna model has the lowest throughput after 15

iterations at 9.31 Mbps; the nonlinear least squares fit of the dipole antenna model captures the

true environments a little better to yield a throughput of 13.36 Mbps; the GP captures the true

environment best, enabling a ferry performance of 14.61 Mbps.

The differences between the expected performance (dashed lines) and the actual performance

(solid lines) in Fig. 4.20 further compare the learner performances. In the first case, although

the actual performances are close among the three learners, the model error remaining after 15

iterations using the linear least squares model results in a performance error of 0.69 Mbps; the

nonlinear least squares model is a little better at 0.46 Mbps; the GP captures the truth model
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Figure 4.18: Case 2: a much more complicated truth environment, with dipole antennas, noise,
and many interferers.

the best, with a performance error of only 0.21 Mbps. In the more complex environments of Case

2, the errors have a larger range, where the performance error for the linear least squares model

is 1.1 Mbps; the nonlinear least squares has an error of only 0.28 Mbps; and the GP has a ferry

performance error of only 0.19 Mbps.

Though the least squares errors are larger than those of the GP, an error of 1.1 Mbps is

not enormous - that is, even the linear least squares model is able to somewhat predict the actual

performances of its resulting ferry path; and the nonlinear least squares model predicts performance

extremely well. This initially indicates that the least squares models are estimating the RF world

reasonably well, despite achieving a lower ferrying throughput. However, this is actually because of

model over-fitting. In the iterative ferry-and-learn system, a path is determined based on a limited

model; the models are then fit to the signal strength data sampled along these paths. The paths

and model predictions eventually stabilize, with the path changing very little, and the models then

being fit to very similar data.

This behavior is seen after Iteration 10 in Fig. 4.20b for the two Least Squares models,

where the ferry’s performance flattens, and the predicted performance converges to it. The same

condition can occur for the ferry-and-learn setup with the Gaussian process. However, because of

the limitations of the least squares models, the stabilized models and resulting paths are stuck at

lower local maxima than that of the GP. To reduce the probability of any models and paths getting
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Figure 4.19: Initial estimates, i.e. a priori models of the RF environment, used in both cases.

stuck in local maxima, future work will investigate including an exploration component into path

planning.

4.5.3.2 Estimator Analysis

The estimation errors on the path and full environment validation datasets loosely represent

the learners’ prediction performances in the region between the nodes and throughput the envi-

ronment, respectively. Consequently, the root mean squared error (RMSE) for the path validation

datasets indicates how well the RF environment is known while the ferry is being planned. On the

other hand, the RMSE for the full environment validation dataset indicates a learner’s ability to

extrapolate to unseen regions of the environment.

When the environment is fairly clean and near-omni-directional, all three learners perform

similarly, reducing the RMSE from the a priori 13 dB to 2 or below on the path validation set, as

shown in Fig. 4.21. In fact, with all three learners, the error reduces immediately and converges

3 iterations. This is consistent with the ferry performance of all learners exceeding 12 Mbps only

after 4 iterations, as shown in Fig. 4.20a.

In contrast, the path validation RMSE of the three learners after 15 iterations differ greatly

in the case of the complicated dipole environment, shown in Fig. 4.22. For both the nodes, the

RMSE of the linear least squares estimator is above 5.5 dB, and performs the worst of all 3 learners.

While the nonlinear least squares estimator performs better than its linear counterpart, with an
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(a) Case 1: near-omni-directional environment
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(b) Case 2: dipole environment

Figure 4.20: Ferry’s expected (dashed) and actual (solid) throughput performance compared be-
tween the three learners, averaged over 8 runs.
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Figure 4.21: Path (solid) and full environment (dashed) validation RMS error comparison of the
three learners, averaged over 8 runs of the near-omnidirectional environment

RMSE higher than 2.6 dB. Only the Gaussian process learner achieves performance comparable

to case 1 with a final RMSE below 2 dB for both nodes. However, faced with a more challenging

learning task, the convergence in this case is slower, with the errors falling below 2 dB only after 7

iterations once the training set grows sufficiently large.

When the true environment closely matches a clean omni-directional antenna, all the learned

models extrapolate well to most of the unexplored parts of the environment, as seen by the dashed

lines in Fig. 4.21. This is because in case 1 the signal largely decays with distance and the
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Figure 4.22: Path (solid) and full environment (dashed) validation RMS error comparison of the
three learners, averaged over 8 runs of the complicated dipole environment

correlations are stationary; and the parameter-based models can capture this trend. This clean

trend and stationarity is not present in case 2 with the presence of interferers, making it hard to

extrapolate to unexplored regions, consequently increasing the full environment validation RMSE,

as shown in Fig. 4.22. In addition, because the GP predicts based on correlations with training

data, it especially fails on the boundaries. While the GP does warn against the predicted means

in those regions with high variance there, the RMSE cannot capture this indication of uncertainty.

Comparing the models using Mean Standardized Log Loss or MSLL (defined in Section

4.4.3.4) provides an alternate view of how the estimators perform in these stochastic environments.

Fig. 4.23 and 4.24 show the MSLL for the three learners on the entire accumulated path, i.e. the

training data available to the learners in the last iteration. The line represents the average MSLL

over 8 runs, and the error bars show the standard deviation. These MSLL values are computed with

a priori model as the baseline, with more negative values being better. Once again, the predictive

variance of the a priori is taken to be the variance in its residuals across the environment.

In the omni-directional scenario, the least squares models are comparable to the a priori

model, and their MSLL remains close to zero through the 16 iterations. In the dipole case, the linear

and nonlinear least squares model achieve average MSLL values of −0.7 and 0.4, respectively. The

GP, on the other hand, outperforms the a priori and least-squares models in both omni-directional
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Figure 4.23: Mean Standardized Log Loss (MSLL) for three learners over the entire accumulated
path, averaged over 8 runs of the near-omni-directional environment

0 2 4 6 8 10 12 14 16
−4

−3

−2

−1

0

1

2

M
ea

n 
S

ta
nd

ar
di

ze
d 

Lo
g 

Lo
ss

 (
M

S
LL

)

Iteration

 

 

Linear Least Squares
Nonlinear Least Squares
Gaussian process

(a) For node A

0 2 4 6 8 10 12 14 16
−4

−3

−2

−1

0

1

2

M
ea

n 
S

ta
nd

ar
di

ze
d 

Lo
g 

Lo
ss

 (
M

S
LL

)

Iteration

 

 

Linear Least Squares
Nonlinear Least Squares
Gaussian process

(b) For node B

Figure 4.24: Mean Standardized Log Loss (MSLL) for three learners over the entire accumulated
path, averaged over 8 runs of the complicated dipole environment

and dipole scenarios, achieving average MSLL values of −2.1 and −1.7 respectively. Note that the

variations of MSLL over the 8 runs is larger in the dipole case than the omni-directional, reflective

of the dipole case being inherently more complex.

Table 4.2 summarizes the effectiveness of each learner, and its impact on ferrying performance.

The Gaussian process does not predict the RF environment over the full area as well as the nonlinear

least squares parameter-based model. However, learning how complicated the RF environment is

from the limited data it has seen, the GP better captures the stochastic characteristics of the
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environment. Comparing the full probabilistic predictions of the three learners shows how the

GP outperforms the least squares models. Thus, the GP is able to adapt to especially complex

environments over observed areas; and with the best RSME in the general ferrying region, the GP

enables the best and most accurate ferrying performance.

Table 4.2: Radio Model Comparison Summary

Near-omni-directional Complicated dipole
environment environment

Metric Node Linear Nonlinear GP Linear Nonlinear GP

Ferry Throughput [Mbps] - 14.62 14.30 14.50 9.31 13.36 14.61

Ferry Throughput
- 0.69 0.46 0.21 1.1 0.28 0.19

Error [Mbps]

Path Validation RMSE [dB]
A 1.86 1.74 1.62 6.77 2.98 1.62
B 1.89 1.77 1.65 5.70 2.63 1.62

Environment Validation A 6.70 6.85 6.82 8.48 6.82 9.19
RMSE [dB] B 6.52 6.73 6.55 8.63 7.22 9.78

MSLL over accumulated path
A -3.89 -3.77 -4.86 -0.98 -3.75 -2.74
B -3.55 -3.02 -4.87 -1.16 -2.71 -2.60

4.6 Summary

In a data ferrying unmanned aircraft system, ferrying performance requires knowledge of

the communication environment through which the aircraft moves. This work integrates ferry

optimization with opportunistically learning the radio environment through the use of a Gaussian

process (GP). The unmanned aircraft’s trajectory is initially optimized with an a priori model.

After flying one circuit of the closed trajectory, RF variations observed by the ferry are used to train

a GP and improve the model of the environment. This iterative ferry-and-learn system is analyzed

through a simulation study, showing ferry performance improves rapidly. The ferry achieves 80%

of optimal within 4 iterations, and 93% after 9 iterations, as the GP is able to converge quickly to

the true radio frequency environment. This work further compares the GP to common parameter-

based estimation methods through two extremes of RF environments. The non-parametric nature

of a Gaussian process allows for a higher resolution model, resulting in the ferry’s performance

converging to a significantly higher upper bound than parameter-based methods.



Chapter 5

Forward Adaptive Transfer for Gaussian Process Regression

Nonparametric learning techniques provide a data-driven approach that is useful for robotic

missions in unstructured, diverse, and unexplored environments. Gaussian process regression

(GPR) [68, 74] has been used in this manner to capture various environmental phenomena. As

demonstrated in the previous chapters, GPs accommodate diverse spatial and spatio-temporal

behaviors using a single methodology, learn inherent characteristics of the environment via hyper-

parameters, and provide fully probabilistic predictions at any location in the environment.

We can take greater advantage of these learned GP models by making them adaptable to

subsequent robotic missions in these dynamic environments. Unfortunately, the GP’s training is

tightly coupled to specific environmental conditions, and changes to the effective environment in

subsequent missions can significantly reduce the predictive power of the model. Relearning the

model, and achieving performance comparable to the previous model, incurs a large cost. While

the computational limitations can be overcome by moving the training optimization off the UA,

relearning may still be infeasible given time, endurance, and other resource constraints of the

mission. Even if a relearning effort is undertaken through exploration of the environment, the

problem remains that the UA does not have a model for reasoning about the world in the interim.

Instead of repeating the expensive and extensive data collection and training phases, transfer

learning can help reuse the relevant knowledge from the old model. In this way, the existing GP

model can act as a source of information for updating the new target task GP model [88]. This

flavor of transfer learning, wherein the source and target tasks are the same, but deal with different



78

data distributions, is known as transductive transfer learning or domain adaptation [1, 58].

Adaptive Transfer Learning (AT-GP) [12, 7] is the most prominent example of domain adap-

tation for Gaussian processes. Naturally extending the GP framework, AT-GP uses a transfer

kernel to learn task similarity, and uses it to determine the extent to which the source must con-

tribute in target task predictions. Unfortunately, this transfer kernel is designed as a single joint

covariance matrix, where both the source and target datasets use the same kernel function, and

consequently the same hyperparameters. This design choice imposes an unnecessary constraint on

the target task, resulting in an implicit transfer from the source, even when the tasks have zero or

little correlation. Because this formulation learns two tasks simultaneously using their combined

training corpi, it cannot address how to transfer knowledge from previously learned models, which

is a common scenario in robotic missions. Additionally, robotic missions are often resource and time

constrained, and the additional computational complexity of learning from the combined datasets

is especially undesirable.

In this chapter we describe forward adaptive transfer learning for Gaussian process regression,

FAT-GP, which allows previously learned GP models to be adapted forward as potential sources of

knowledge for future learning tasks. FAT-GP combines the source task’s previously learned model,

the source task’s training data, and target task’s training data to learn the target hyperparameters

as well as the correlation between the two tasks. A conceptual overview of the algorithm is presented

in Fig. 5.1.

FAT-GP decouples the kernel and hyperparameter selection for the target task from those of

the source task. Because the source task reuses already learned hyperparameters, its large covari-

ance matrix can be precomputed, reducing the computational complexity of the training. Finally,

in order to ensure that the joint covariance matrix is positive semidefinite, the cross covariance

kernel function is defined as a product of the task similarity and the convolution of the source and

target task kernels.

The main contribution of this chapter is providing a framework for robotic learning tasks

to leverage previously learned GP models, which can be especially valuable when limited training
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Figure 5.1: FAT-GP Overview

data is available for the new task. Reusing previously learned models allows past experience, while

staying intact, to factor into new decisions, as and when relevant. This feed-forward structure

exploits the synergy between old and new learning tasks in keeping with the idea of lifelong learning.

At the same time, the FAT-GP algorithm seamlessly handles situations where the environment

undergoes a drastic change, and relearning from scratch is inevitable. FAT-GP provides robots a

way to reason about the world, as it is transitioning. Such a transfer learning algorithm would be

useful while modeling time-varying fields like temperature, winds, and other dynamic phenomena.

5.1 FAT-GP: Forward Adaptive Transfer for Gaussian Processes

5.1.1 Target Task Prediction

Consider two regression tasks S and T , which operate on input and response variables x and

y of the same dimensionality, and may be related. Additionally, we assume that S has already been

completed, and a Gaussian process model GPS with hyperparameters θS has been learned. The

goal of FAT-GP is to transfer relevant knowledge from source task S to incomplete target task T .

Gaussian processes make the smoothness assumption, whereby the response variables yi have
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a Gaussian joint distribution.

y1

y2

...

yN


∼ N





m1

m2

...

mN


,



c11 k12 · · · k1N

k21 c22 · · · k2N

...
...

. . .
...

kN1 kN2 · · · cNN




(5.1)

In keeping with this, FAT-GP assumes that the source and target task labels are jointly distributed

as yT

yS

 ∼ N

mT

mS

 ,
CTT KTS

KST CSS


 (5.2)

where the mean and covariance matrices are denoted by mjoint and Cjoint. Subscripts S and T

represent components that are specific to source and target tasks, respectively, and superscript T

is the transpose of the matrix. The on-diagonal block matrices are given by C(·) = K(·) + σ2
n(·)I,

as defined in Section 3.1.1. Thus, CTT and CSS are square matrices with dimensions NT and NS

respectively, and are defined over the task-specific training samples XS and XT . KST = KT
TS are

the cross covariance matrices, where KTS is a NT ×NS rectangular matrix. Thus , matrix Cjoint

is a symmetric, square matrix with dimensionality NT + NS . Similarly, mjoint is a column vector

of length NT +NS .

Since Cjoint is a kernel covariance matrix, it must be positive semi-definite (PSD). One way

to ensure that Cjoint is PSD is to ignore task separation between the two datasets and define CTT ,

CSS , and KTS using the same kernel function and hyperparameters. Let this formulation of Cjoint

be denoted by CD, such that

CD(xi, xj) = k(xi, xj ; θ) + σ2
nδij for i, j = 1, . . . , ND (5.3)

where k is any valid kernel function with hyperparameters θ, ND = NT +NS , and xi and xj belong

to XD = [XT
T , X

T
S ]T . This is equivalent to learning a single standard GP (as defined in Section

3.1.1) by combining both tasks’ datasets. However, this formulation gets rid of valuable context

that the data comes from two different tasks with different distributions.



81

AT-GP, which learns source and target simultaneously, capitalizes on this contextual informa-

tion so that prediction for a certain task is based on all training data for that task, and the influence

of data from the other potentially-correlated task is controlled by a scaling factor λ ∈ [−1,+1].

Hence, this formulation of Cjoint is defined as

CATGP (xi, xj) =

 k(xi, xj ; θ) + σ2
n(·)δij

λk(xi, xj ; θ)

when xi and xj belong to the same task

when xi and xj belong to different tasks

(5.4)

where σ2
n(·) is the noise variance. Note that, in contrast to Equation (5.3), i, j = 1, . . . , N(·) when

xi and xj belong to the same task, whereas i = 1, . . . , NT and j = 1, . . . , NS when they belong to

different tasks. While this formulation still imposes the same kernel function on both tasks, its use

of λ distinguishes the CTT , CSS , and KTS , maintaining task boundaries.

FAT-GP also maintains task boundaries, but takes a modular approach with the design of

the block diagonal matrices of the covariance matrix. It assumes that the source and target tasks

have different and task-specific kernels and hyperparameters. Thus, the joint covariance matrix is

formulated as

Cτ (xi, xj) =


kτ(T )(xi, xj ; θτ(T )) + σ2

nτ(T )δij

kS(xi, xj ; θS) + σ2
nSδij

λkcross(xi, xj ; θS , θτ(T ))

when xi, xj ∈ T and i, j = 1, . . . , NT

when xi, xj ∈ S and i, j = 1, . . . , NS

when xi ∈ T and xj ∈ S i.e. different tasks

(5.5)

where θτ(T ) denotes target task hyperparameters learned during the FAT-GP training. Because

the kernel functions corresponding to the block diagonal matrices have different hyperparameters,

the selection of the kernel function for the cross covariance block matrices has to be made carefully

to ensure that Cτ is positive semidefinite. Results presented in [50] define the kernel function for

cross covariance matrices as the convolution of the kernels used in the block diagonal matrices.

kcross = kS ∗ kτ(T ) (5.6)

Similar to AT-GP, we multiply the cross covariance matrices by a scalar λ ∈ [−1,+1], which is a

measure of the similarity of the two tasks.

KTS = λKcross = KT
ST (5.7)
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Making use of Theorem 1 from [7], it can be shown that the Cτ is PSD when the cross covariance

matrices KTS and KST are defined as in Equation (5.7). The similarity measure, |λ| ≤ 1, is an

additional hyperparameter, which captures the correlation between the source and target task, and

is learned along with θτ(T ). When the source GP is a previously learned model, a value of λ close

to zero signifies that past experience is obsolete, and the new model must be learned from scratch,

possibly after extensive data collection. Thus, the joint covariance matrix for FAT-GP is given by

Cτ =

CTT KTS

KST CSS

 =

 Cτ(T )(XT , XT ) λKcross(XT , XS)

λKT
cross(XT , XS) CS(XS , XS)

 (5.8)

where all the block matrices are functions of (source-specific, task-specific, and task-similarity

based) hyperparameters. Of these, the source hyperparameters are known a priori. The remaining

unknown hyperparameters, denoted by θτ = {θτ(T ), λ}, are learned during training.

The similarity between the two tasks can also be captured by making λ a function of in-

puts to the kernel function i.e. making λ a function of x. While this nonstationary formulation

would provide a higher resolution understanding of the correlations across tasks, the number of

hyperparparameters would increase by NS ×NT , making the transfer cost prohibitive.

Consider, for example, a FAT-GP where both tasks use a Gaussian kernel with θS = {σ2
fS , σ

2
nS , LS}

and θτ(T ) = {σ2
fT , σ

2
nT , LT }, respectively. In both tasks, σ2

f(·) represents the signal variance, while

L(·) is the diagonal matrix of lengthscales. Thus, the kernel functions for the on-diagonal matrices

is given by

k(·)(xi, xj) = σ2
f(·) exp

[
−1

2(xi − xj)
TL−1

(·) (xi − xj)
]

(5.9)

and the cross covariance kernel is given by

kcross(xT,i,xS,j) = 2D/2
√
σ2
fτ(T )σ

2
fS

|Lτ(T )|
1
4 |LS |

1
4∣∣Lτ(T ) + LS
∣∣ 12

exp

[
−1

2
(xT,i − xS,j)

T

(
Lτ(T ) + LS

2

)−1

(xT,i − xS,j)

] (5.10)

where D is the number of anisotropic input dimensions. If, however, the GP is isotropic i.e. the
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same lengthscale is used for all input dimensions, the cross covariance kernel would be given by

kcross(xT,i,xS,j) =
√
σ2
fτ(T )σ

2
fS

√
2lτ(T )lS

l2τ(T ) + l2S
exp

[
−
‖xT,i − xS,j‖2

l2τ(T ) + l2S

]
(5.11)

An important and notable characteristic of the cross covariance kernel function in Equations (5.10)

and (5.11) is that they are non-stationary [56, 62] in the task domain i.e. kernel function averages

over the lengthscales local to each of the tasks. As a result, this kernel function implicitly captures

the covariance between two x inputs as a combination of the characteristics of both tasks.

Once the FAT-GP is trained and the hyperparameters are known (as explained in Section

5.1.2) it can be used to predict the target task response y′T for any unseen input variable x′. The

joint distribution of y′ with yT and yS can be written by calculating x′’s correlation with target as

well as source training samples.
y′

yT

yS

 ∼ N



mτ(T )(x

′)

mτ(T )(XT )

mS(XS)

 ,

kτ (x′,x′) kτ (x′, XT ) kτ (x′, XS)

kτ (x′, XT )T CTT KTS

kτ (x′, XS)T KST CSS



 (5.12)

The kernel functions kτ are interpreted based on the task assignment of their two inputs. Hence,

since x′ belongs to the target task, based on Equation (5.5)

kτ (x′,x′) = kτ(T )(x
′,x′)

kτ (x′, XT ) = kτ(T )(x
′, XT ) (5.13)

kτ (x′, XS) = λkcross(x
′, XS)

Consequently, the prediction for y′ is given by its conditional distribution

p(y′|x′,yT , XT ,yS , XS , θτ , θS) = N
(
µ′τ , C

′
τ

)
where

µ′τ = mτ(T )(x
′) +

[
kτ (x′, XT ) kτ (x′, XS)

]
C−1
τ


yT
yS

−
mτ(T )(XT )

mS(XS)


 (5.14)

C ′τ = kτ (x′,x′) + σ2
nτ(T ) −

[
kτ (x′, XT ) kτ (x′, XS)

]
C−1
τ

kτ (x′, XT )

kτ (x′, XS)
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Equations (5.12), (5.14) and (5.13) easily scale from predictions for individual target inputs x′ to

individual or joint prediction for multiple target inputs X ′.

5.1.2 Computational Complexity of Hyperparameter Learning

The unknown hyperparameters in Equations (5.16) and (5.7) are θτ = {θτ(T ), λ}, where τ

represents a forward transfer inference, and θτ(T ) denotes target task hyperparameters learned by

FAT-GP.

Unlike the convential GP, FAT-GP learns the hyperparameters by maximizing the log marginal

likelihood of only the target response variables given the source data.

θ∗τ = arg max
θτ

ln p(yT |yS , XT , XS , θS , θτ ) (5.15)

Using Baye’s rule on Equation (5.2), the marginal distribution of the response variables of the

target task, yT , is conditionally inferred from source task as follows

p(yT |yS , XT , XS , θT , θS) = N
(
µT |S , CT |S

)
(5.16)

where µT |S = mT +KTSC
−1
SS (yS −mS)

CT |S = CTT −KTSC
−1
SSKST

This approach mitigates two problems encountered when maximizing log likelihood of the joint

distribution of source and target (Equation 5.2). First, it avoids calculation and inversion of an

ND = NS + NT size covariance matrix at each iteration of the maximization, instead calculating

and inverting CT |S which NT ×NT . Second, and more importantly, because the source has already

been learned, it focuses the learning on the target.

Using the multivariate normal distribution from Equation (5.16) in Equation 5.15, the MLE

is written as

θ∗τ = arg max
θτ

ln

[
1

2πNT /2|CT |S |
1
2

exp

{
−1

2
(yT − µT |S)TC−1

T |S(yT − µT |S)

}]

= arg max
θT

[
−1

2
(yT − µT |S)TC−1

T |S(yT − µT |S)− 1

2
ln |CT |S | −

NT

2
ln 2π

]
(5.17)
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The first term in Equation (5.17) is the Mahalanobis distance between the observed target response

variables yT and the FAT-GP predictive distribution. It quantifies the empirical risk of the learned

FAT-GP. The second term is a regularization term which prevents overfitting. The ML estimator

finds θ∗τ by trading off between these two components.

MLE can be performed using a gradient descent optimizer. This requires the computation

of the derivative of the log marginal likelihood with respect to each of the hyperparameters in θτ

[68, 4]. Note that the covariance matrix is dependent on the hyperparameters, but the response

variables yT are not.

∂

∂θτ
ln p(yT |θτ ) = −2

[
1

2
(yT − µT |S)TC−1

T |S
∂(yT − µT |S)

∂θτ

]
− 1

2
(yT − µT |S)T

∂C−1
T |S

∂θτ
(yT − µT |S)− 1

2

∂ ln |CT |S |
∂θτ

which can be reduced to

∂

∂θτ
ln p(yT |θτ ) = (yT − µT |S)TC−1

T |S
∂µT |S

∂θτ

+
1

2
(yT − µT |S)TC−1

T |S
∂CT |S

∂θτ
C−1
T |S(yT − µT |S)− 1

2
Tr

(
C−1
T |S

∂CT |S

∂θτ

)
(5.18)

The cost for each iteration of the training optimization comprises of calculating CT |S and

then inverting it. Equation (5.16) shows that the calculation of CT |S is dominated by the inversion

of CSS . If both θS and θT were unknown (and equal as in AT-GP), the cost of evaluating Equation

(5.17) is O
(
N3
S + N3

T

)
, which is dominated by O

(
N3
S

)
cost of inverting the square matrix CSS

of dimension NS(> NT ). However, in the FAT-GP formulation, θS is known a priori. Hence

C−1
SS can be precomputed. This reduces the computational complexity to O

(
N3
T + NSNT

)
. The

final cost savings will depend on the relative sizes of the source and task training sets. Thus,

rehashing transfer learning in the context of robot based lifelong learning changes the computational

requirements, as summarized in Table 5.1.

The key difference between FAT-GP and AT-GP is that FAT-GP allows θS and θT to be

different. Note that adding the constraint θS = θT , and learning them simultaneously transforms

FAT-GP to AT-GP as defined in [7]. Thus, AT-GP a special case of FAT-GP.
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Table 5.1: Computational cost comparison between AT-GP and FAT-GP (where NS > NT )

Source Task Per iteration cost Training cost

Learning of computing C−1
SS

AT-GP
Simultaneously

O
(
N3
S

)
O
(
N3
S +N3

T

)
with target task

FAT-GP
Completed

Precomputed O
(
N3
T +NSNT

)
previously

5.1.3 FAT-GP Demonstration via 1-D problems

This section uses 1-D problems to illustrate how FAT-GP can harness previously learned

models for learning new models efficiently. More importantly, it highlights the improvement in

performance that FAT-GP provides over the target GP i.e. GP learned with the limited target

training samples. By selecting two 1-D signals which are related through transformation and where

the similarity can be visually verified, it is clear how forward adaptive transfer for Gaussian process

regression reduces the target task’s validation error in spite of the limited amount of training data.

In the first example, shown in Fig. 5.2, the (purple) target task is a translation of the (orange)

source task. Visual inspection of these 1D signals in Fig. 5.2a easily shows they are identical in

shape even though yT = yS + 2. The (orange) source signal is learned using a Gaussian process

regression on a training set of 65 samples. The output is GPS , which is a nonparametric model for

the source task. The mean and variance of the model are represented by the solid black line and the

shaded gray area in Fig. 5.2b, while the training samples are denoted by orange dots. Finally, the

points in the validation set are denoted by smaller black dots. Testing the prediction performance

of GPS on this validation set of 30 samples results in a root mean squared error (RMSE) of 0.43.

The target learning task, on the other hand, has access to only 10 training samples, resulting

in a high validation RMS error of 0.82. As shown in Fig. 5.2c, the GPT learns the peak and the

trough near x = 0 and x = 1, respectively. However, due to the limited number of training samples

it fails to capture any of the features for x ≤ −1 and x ≥ 1. In fact, the high variance at these x

values signifies the GP’s lack of confidence in these predictions.

FAT-GP algorithm learns the hyperparameters by combining the 10 target training samples,
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(b) Source GP (RMSE=0.43)
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(c) Target GP (RMSE=0.82)
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(d) Target FAT-GP (λ = 0.99, RMSE=0.53)

Figure 5.2: Example where target task T is a translation of source task S i.e. yT = yS + 2

65 source training samples, and source model GPS . During this training process, it learns that the

similarity between tasks T and S is λ = 0.99. Consequently, the source task heavily contributes to

target task, and the resulting FAT-GP is shown in Fig. 5.2d. This FAT-GP’s prediction achieves

a much higher fidelity with the original (purple) target signal in Fig. 5.2a, and this is reflected in

the low validation RMSE of 0.53. In addition, the FAT-GP is also more confident in its estimates

having based its inference on a larger dataset of 75 samples.

Similar to the first example, in the second example in Fig. 5.3 the target and source tasks

are related through an affine transformation. Fig. 5.3a shows that the target signal yT is obtained

by scaling the source task yS by a factor of 2. This is the same source signal which was used in the
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(b) Source GP (RMSE=0.43)
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(c) Target GP (RMSE=1.63)
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(d) Target FAT-GP (λ = 0.99, RMSE=0.85)

Figure 5.3: Example where target task T is a scaling of source task S i.e. yT = 2yS

first example, and hence the validation RMSE is 0.43. Once again, the target prediction in Fig.

5.3c suffers from high variance i.e. high uncertainty for x ≤ −1 and x ≥ 1, where no target samples

are available, as well as between x = 0 and x = 0.5, where there is a large gap between samples. In

this case, the RMSE is 1.63. Combining these 10 target samples with the 65 source samples and

GPS results in the FAT-GP shown in Fig. 5.3d, which has a much lower RMSE of 0.85.

In both examples, including data from a similar task helps the GP regression confidently

predict for x values not captured in its own dataset. On one hand, this makes up for the low

density of training data in regions of the target task which have been poorly sampled, for example

between −1 and 1 on the X-axis, and reduces the uncertainty in the prediction. On the other hand,
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(b) Target GP
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(c) FAT-GP without λ
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(d) FAT-GP with λ

Figure 5.4: Example yT = −2× yS which demonstrates the value of λ in learning negative correla-
tions

perhaps more importantly, the transfer provides the target task information about completely

unexplored regions of its task space, such as the regions between 1 and 2, in both examples. As

expected, the improvement does not extend to the regions where neither task has sampled. This

can be seen by observing that both FAT-GPs continue to have high prediction variance between

−3 and −2 even after the forward adaptive transfer.

The design choice of λ ranging from −1 to 1 is deliberate, and meant to capture negative

correlation. Fig. 5.4a shows source and target tasks where yT = −2 × yS . Once again, the target

GP in Fig 5.4b is learned using only 10 samples, and is a very crude model of the true signal.

Limiting λ to positive values, results in a failed transfer as shown in Fig. 5.4c. On the other
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hand, when λ is allowed to be in the range [−1, 1], Fig. 5.4d learns λ = −0.9984. This shows that

FAT-GP, as detailed in Section 5.1.1, is capable of capturing negative correlation between source

and target tasks.

5.2 Relationship between FAT-GP and Target GP

The FAT-GP combines information from the target with transferred information from the

source to learn a model of the target task. In order to understand what is transferred, how the

target and transfer components interact, and when the transfer boosts the target performance, it

is important to understand the relationship between FAT-GP with the conventional Target GP.

The target GP learns the target task using only the limited target task training data, contains

the standard GP hyperparameters, and is trained using maximum likelihood estimation on the

target data as follows

Hyperparameters: θT = {σ2
fT , σ

2
nT , LT ,mT } (5.19)

Training: θ∗T = arg max
θT

ln p(yT |XT , θT )

Similarly, the prediction for target test sample x′ is given by the standard GP equations

µT (x′) = mT (x′) + kT (x′, XT )CT (XT , XT )−1(yT −mT (XT ))

σ2
T (x′) = kT (x′,x′) + σ2

nT − kT (x′, XT )CT (XT , XT )−1kT (XT ,x
′)

This GP provides a baseline for the performance that can be obtained without transfer. On the other

hand, Forward Adaptive Transfer Learning i.e. FAT-GP (τ) uses a priori source hyperparameters,

and then learns θτ(T ) and λ using source and target data.

5.2.1 Impact of Transfer on Mean and Variance Prediction

To investigate the benefits of transfer, we analyse how the mean predictions from both these

GPs compare. As shown in Appendix B.1, using properties of positive semidefinite matrices,

and equations defined in Section 5.1, we find that the FAT-GP mean prediction comprises of two
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(a) For yT = yS + 2
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(b) For yT = 2yS

Figure 5.5: FAT-GP mean prediction components, and its comparison to Target GP

components.

µ′τ =

 mτ (x′)+

kτ (x′, XT )C−1
TT (yT −mτ (XT ))


︸ ︷︷ ︸

Target component

+

[
kτ (x′, XT )C−1

TTKTS − kτ (x′, XS)
]
×[

CSS −KSTC
−1
TTKTS

]−1×[
KSTC

−1
TT (yT −mτ (XT ))− (yS −mS(XS))

]︸ ︷︷ ︸
Transfer component

(5.20)

Fig. 5.5 shows these target and transfer components as blue and red solid lines, respectively. The

mean predictions for FAT-GP and target GP are also shown using solid and dashed black lines.

The blue target component is very close to the dashed black target GP prediction, since they both

represents the information that is available in the target training set, shown by purple dots at

the bottom of the figure. The red transfer component is primarily responsible for the differences

between the FAT-GP and the Target GP. Note that its major contributions are in regions where

no target samples are available; the gaps are filled by transferring from the source GP. Finally, for

x ≤ −2, where neither source nor target data is available, the FAT-GP cannot provide meaningful

predictions.

Analogous to Equation 5.20, the variance prediction of the FAT-GP also comprises of two
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components,

σ2
τ (x′) =

 kτ (x′,x′) + σ2
nτ(T )−

kτ (x′, XT )C−1
TTkτ (XT ,x

′)


︸ ︷︷ ︸

Target Component

−

[
kτ (x′, XT )C−1

TTKTS − kτ (x′, XS)
]
×[

CSS −KSTC
−1
TTKTS

]−1×[
KSTC

−1
TTkτ (XT ,x

′)− kτ (XS ,x
′)
]︸ ︷︷ ︸

Transfer Component

(5.21)

which can also be viewed as

σ2
τ (x′) = σ2

fτ(T ) + σ2
nτ(T )︸ ︷︷ ︸

prior variance

− kτ (x′, XT )C−1
TTkτ (XT ,x

′)︸ ︷︷ ︸
Reduction in uncertainty due to target data

−
[
kτ (x′, XT )C−1

TTKTS − kτ (x′, XS)
] [
CSS −KSTC

−1
TTKTS

]−1 [
KSTC

−1
TTkτ (XT ,x

′)− kτ (XS ,x
′)
]︸ ︷︷ ︸

Reduction in uncertainty due to transfer

(5.22)

The perspectives of Equations (5.21) and (5.22) are illustrated in Figures 5.6 and 5.7, respectively.

Note that in Fig. 5.6, the FAT-GP variance prediction represented by the black solid line is obtained

by subtracting the red solid line from the blue solid line. Since the blue line represents the target

component of the variance prediction or uncertainty, it is low or zero where target samples are

available, and rises to σ2
fτ(T ) + σ2

nτ(T ) elsewhere. The transfer component shown by the red line

represents a reduction in uncertainty due to transferring, and analogously provides zero correction

where no source data is available.

More interestingly, however, it also provides zero correction where target samples are present.

This alternating behavior is more clearly apparent in Fig. 5.7 in which the components from

Equation (5.22) are represented by flat dashed blue, solid blue, and solid red lines, respectively.

Here, the red and blue lines are both subtracted from the dashed blue line, reducing the uncertainty,

to give the solid black line. Thus, the reduction in uncertainty from the transfer (shown in red)

counters only the uncertainty not corrected by the target data itself.

Analyzing how transfer behaves based on the relative positions of the target and source data

samples reveals a link to the signal-to-noise ratio (SNR) of the target task. As shown in Appendix

B.2, how a source sample xS and a target sample xT reduce the uncertainty at an unseen sample
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Figure 5.6: FAT-GP variance prediction components and its comparison to Target GP
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Figure 5.7: Reduction of uncertainty in FAT-GP

x′ depends on their relative positions, and is captured in the coefficient of transfer b is given by

b =



σ2
nτ(T )

σ2
nτ(T )

+σ2
fτ(T )

cTScτ(T )σ
2
fτ(T )

σ2
nτ(T )

+σ2
fτ(T )

−cS

when source and target are colocated at x′

when target is close to x′

when only a source is close to x′

(5.23)
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Figure 5.8: Coefficient of transfer b as a function of SNR

where

cTS = exp

[
−‖xT − xS‖2

l2τ(T ) + l2S

]

cS = exp

[
−‖x

′ − xS‖2

l2τ(T ) + l2S

]

cτ(T ) = exp

[
−‖xT − x′‖2

2l2τ(T )

]

Note that here close to implies being within the distance of correlation.

Because σ2
fτ(T ) and σ2

nτ(T ) represent the signal and noise variance respectively,
σ2
fτ(T )

σ2
nτ(T )

rep-

resents the signal-to-noise ratio (SNR) of the target portion of the FAT-GP. Hence, the first two

cases in Equation (5.23) can also be viewed as

b =


1

1+SNR

cTScτ(T )SNR

1+SNR

when source and target are colocated at x′

when target is close to x′
(5.24)

Under this perspective, as shown in Fig. 5.8, when SNR < 1, the source will contribute heavily

to predictions even when target data is available in the same region. On the other hand, when

SNR > 1, for co-located source and target datapoints, the contribution is muted with growing

SNR. As the distance between the source datapoint and x′ grows, the influence of the transfer is
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routed via the target datapoints close to x′, and dictated by a combination of the SNR and the

correlation between the tasks.

5.2.2 Dissimilar source and target tasks

When the target and source are dissimilar i.e. λ = 0, all cross covariance terms go to zero.

Then the difference between the two GPs’ mean predictions is given by

µ′τ = mτ(T )(x
′) + kτ(T )(x

′, XT )C−1
TT (yT −mτ(T )(XT )) (5.25)

Comparing this against (5.20), we see that Equation (5.25) has the same form as the mean prediction

for the target GP. These predictions would be equal if θτ(T ) = θT i.e. target hyperparameters learned

in both GPs are identical. To investigate this we revisit the log marginal likelihood that the FAT-GP

maximizes.

θ∗τ = arg max
θT
−1

2
(yT − µT |S)C−1

T |S(yT − µT |S)− 1

2
ln |CT |S | −

NT

2
ln 2π (5.26)

When λ is set to zero, from Equation (5.16) we see that KTS = 0 = KST , and this maximization

becomes

θ∗τ = arg max
θT
−1

2
(yT −mT )TC−1

TT (yT −mT )− 1

2
ln |CTT | −

NT

2
ln 2π (5.27)

which is the maximization used by the target GP to learn the hyperparameters. Therefore, the

remaining hyperparameters θτ(T ) that are learned are the same as θT learned by the target GP.

Hence, the difference between their mean predictions is given by

µ′τ − µ′T = 0 (5.28)

Thus, when the target and source task have no similarity i.e. λ = 0, the learned FAT-GP is in fact

the same as the target GP.
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5.3 Comparing the FAT-GP and Target GP

5.3.1 RMSE and MSLL Comparisons

Using an obsolete or incorrect model can have adverse effects on performance of the mission.

This section uses root mean squared error (RMSE), and mean standardized log loss (MSLL) to

quantify how different learning schemes involving source and target task compare to the FAT-GP.

We enumerate these different learning configurations here

(1) Source GP (S): Only the source data {XS ,yS} is used for training and prediction. This

configuration maps to the scenario where a previously learned GP model is considered

plausible for the current mission and used as is. Comparing this configuration to FAT-GP

will help illustrate the drawbacks of using outdated models.

Hyperparameters: θS = {σ2
fS , σ

2
nS , LS ,mS}

Training: θ∗S = arg max
θS

ln p(yS |XS , θS)

Prediction: µ′S = mS(x′) + kS(x′, XS)CS(XS , XS)−1(yS −mS(XS)) (5.29)

C ′S = kS(x′,x′) + σ2
nS − kS(x′, XS)CS(XS , XS)−1kS(XS ,x

′)

(2) No retraining (N): While only the source data is used for learning the hyperparameters

during training, the prediction combines these learned hyperparameters with source and

target data XD = {XT , XS}. This configuration represents the scenario where data col-

lected after training is added to the training set under the assumption that the underlying

distribution is unchanged. Comparing this configuration with FAT-GP will help quantify

the value of knowing the task assignment for the datasets.

Hyperparameters: θS = {σ2
fS , σ

2
nS , LS ,mS}

Training: θ∗S = arg max
θS

ln p(yS |XS , θS)

Prediction: µ′N = mS(x′) + kS(x′, XD)CS(XD, XD)−1(yD −mS(XD))(5.30)

C ′N = kS(x′,x′) + σ2
nS − kS(x′, XD)CS(XD, XD)−1kS(XD,x

′)
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(3) All data training (D): As mentioned in Section 5.1.1, this configuration ignores separation

between the XT and XS , and uses XD = [XT
T , X

T
S ]T for learning hyperparameters. Like

the no-retraining (R) configuration, this also helps quantify the value of knowing the task

assignment, but this incurs an additional training overhead.

Hyperparameters: θD = {σ2
f , σ

2
n, L,mD} (5.31)

Training: θ∗D = arg max
θD

ln p(yD|XD, θD)

Prediction: µ′D = mD(x′) + kD(x′, XD)CD(XD, XD)−1(yD −mD(XD))

C ′D = kD(x′,x′) + σ2
nD − kD(x′, XD)CD(XD, XD)−1kD(XD,x

′)

The learning configurations were compared by learning models for the 1D examples presented

in Figures 5.2 and 5.3. Each learner was provided with the same data: source GP, 65 source training

samples, and 10 target training samples. The experiment was repeated 20 times. Table 5.2 presents

RMSE and MSLL for each of the learning configurations, averaged over 20 runs. Since the source

GP makes no use of target data, the MSLL values were calculated with the source GP as the

baseline. All other configurations were expected to improve over this baseline i.e. have negative

MSLL values.

Table 5.2: FAT-GP vs Other GP Configurations

yT = yS + 2 yT = 2yS
Learning configuration RMSE MSLL RMSE MSLL

Source GP (S) 2.06 0 1.83 0
No retraining (R) 1.99 -4.62 1.75 -6.41
Target GP (T) 0.75 -43.32 1.42 -38.18
FAT-GP (τ) 0.59 -40.16 0.57 -38.79
All data training (D) 1.95 -41.62 1.78 -36.97

Examining the MSLL values in the table shows that ignoring target data, as in the source GP

case, results in the worst performance. While the no-retraining (N) case improved over the source

GP, models that learned hyperparameters from the target data did significantly better than the S

and N configurations. While configurations T, τ , and D had comparable MSLL values, FAT-GP

reduced the RMSE over the other learners.
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Figure 5.9: Effect of Target Data Size on MSLL for FAT-GP and other learning configurations

5.3.2 Effect of Target Data Size on Transfer

To examine the effect of increasing target training data, the FAT-GP and the other learners

was trained iteratively. Starting with 10 training samples from the target task at iteration 1, a new

random target training sample was added at each iteration. This was repeated for 56 iterations till

both the source and target task had 65 measurements. The performance of the learners at each

iteration was evaluated against a fixed validation set.

Fig. 5.9 shows the MSLL and RMSE results of the 5 learners over 56 iterations. Increasing

the target data has no impact on the source GP, which shows up as a flat (orange) line in all 4

plots. In the case of configuration N, as the proportion of the target data goes up, it begins to

capture the statistics of the target task, gradually improving its MSLL. However, as in Section

5.3.1, configurations T, τ , and D outperform S and N in terms of MSLL. Even so, Fig. 5.10 shows

that the RMSE of learner D is close to that of N, with the Target GP and FAT-GP achieving a

much lower RMSE by the last iteration.

Figures 5.11 and 5.12 take a closer look at how the Target GP and FAT-GP compare. While

the FAT-GP’s MSLL is marginally better than the Target GP, Fig. 5.12 shows that the FAT-GP

has a lower RMSE compared to Target GP. In fact, in both examples, the Target GP RMSE at the

last iteration is reached by FAT-GP around iteration 20. This highlights how FAT-GP can provide
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Figure 5.10: Effect of Target Data Size on RMSE for FAT-GP and other learning configurations
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Figure 5.11: FAT-GP vs Target GP MSLL Comparison

an efficient interim model while more target task data is being collected.

As the target task’s training set grows beyond 40, the big divide between the RMSE per-

formance of the Target and FAT GP begins to narrow. As the information in the target training

set increases, the need to transfer knowledge decreases. This is reflected in Fig. 5.13, which shows

change in the mean components (discussed in Section 5.2.1) between the first and last iteration.

Top row reproduces the plots from Fig. 5.5 for comparison with those in the bottom row, which

are from the last iteration. Compared to iteration 1, the target GP (black dashed), FAT-GP (black

solid), and FAT-GP’s target component (blue solid) all closely match the (purple) true target, while
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Figure 5.12: FAT-GP vs Target GP RMSE Comparison
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Figure 5.13: Evolution of FAT-GP’s mean components from iteration 1 with 10 target samples
(shown in top row) to iteration 56 with 65 samples (shown in bottom row)

the (red) transfer component is mostly a flat line. On the lines of the SNR discussion in Section

5.2.1, as the noise in the data goes down and SNR grows, the contribution of transfer greatly

diminishes.
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5.4 FAT-GP for Transfer Learning Communication Models

This section uses a simulation study to illustrate how FAT-GP would be useful in learning

communication models in the presence of little training data, and limited exploration.

The source and target task are setup such that

yS = f(XS) + vS (5.32)

yT = g(f(XT )) + vT (5.33)

where the first term represents the mean field, and the second term represents the geospatial

variations. The variations vS and vT are sampled from the same distribution N (0,Kvariation). In

Figure 5.14, which show the source and target tasks, their mean fields, and variations, g(·) = 2×(·).

The source GP is learned using a dense set of 2500 training samples as shown in Figure 5.15a. The
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(b) Source mean field
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(e) Target mean field
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(f) Target noise

Figure 5.14: True environments in source and target tasks

mean prediction of this source GP achieves a high fidelity with the original source task, which can

be seen by comparing Fig 5.15b with Fig. 5.14a.
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(a) Source Samples
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(b) Source GP Mean Predictions

Figure 5.15: Source GP learned using 2500 samples of the source task

Figure 5.16 presents two scenarios for learning the target task with limited training set of

size 50. In Fig. 5.16a the samples are spread over the entire environment, representing a situation

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

Dimension x
1

D
im

en
si

on
 x

2

 

 

S
ou

rc
e 

S
ig

na
l

0

5

10

15

20

25

30

35

(a) Samples available throughout entire environment
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(b) Samples available in part of the environment

Figure 5.16: Two scenarios with limited target training set of size 50 available.

where a low density of data is available for the target task. Fig. 5.16b, on the other hand, represents

the situation where due to the large scale of environments in robotic missions, target data is only

available for part of the environment. In both these cases, FAT-GP can leverage the high fidelity

source GP, which has captured inherent characteristics of the environment, and learn better models

until more target data can be collected.
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(a) Target GP Mean Predictions
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(b) Target GP Variance Predictions
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(c) FAT-GP Mean Predictions
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(d) FAT-GP Variance Predictions

Figure 5.17: Target GP and FAT-GP learned using 50 samples of the target task taken over the
entire environment

Figures 5.17 and 5.18 show a comparison of the Target GPs and FAT-GPs learned using the

two datasets shown in Fig. 5.16. In the first example, where samples are available throughout

the entire environment, the Target GP shows an RMSE of 3.58. In spite of the high error, its

confidence is high in most of the region. Due to similarity between the tasks, FAT-GP learns a

value of λ = 0.94 during the training. Using the source GP and source data in its predictions, the

FAT-GP reduces the RMSE to 2.97. Seeing the variability of the larger source dataset also causes

the FAT-GP to adapt its uncertainty, so that it has very high confidence only locally around the

target samples. The resulting predictive distribution outperforms the over-confident Target GP.

Consequently, MSLL of the FAT-GP with the target GP as the baseline is −0.2276.
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(a) Target GP Mean Predictions

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

Dimension x
1

D
im

en
si

on
 x

2

 

 

S
ou

rc
e 

M
ea

n 
P

re
di

ct
io

n

0

5

10

15

20

25

30

35

40

45

50

55

(b) Target GP Variance Predictions
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(c) FAT-GP Mean Predictions
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(d) FAT-GP Variance Predictions

Figure 5.18: Target GP and FAT-GP learned using 50 samples of the target task taken over half
the environment

In the second example, because the environment is observed only partially, the RMSE and

variance predictions are higher than in the first example. The higher RMSE of 5.75 is mostly due

to the right half of the environment, where the target GP predicts a flat field with value equal to

mean of the observed yT . As this region is outside the distance of correlation for all the training

data, it also has the highest variance. The FAT-GP, which learns λ = 0.96 and transfers source

data proportionally, reduces the uncertainty of the unobserved half of the region, and achieves an

RMSE of 4.46. Once again, because it outperforms the over confidence target GP in terms of

accuracy and uncertainty, the MSLL of the FAT-GP with respect to the target GP is −0.11.

In both these case, the FAT-GP makes use of the correlation between the source and target
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task to make up for the limited information in the small target dataset. In this manner, previ-

ous observations and models of the environment can help inform model updates, especially as the

environment is being explored for updated observations. However, efficient and beneficial transfer

largely depends on the locations at which target samples are taken. The choice of target locations

not only affects the information they provide about the task itself, but also helps learn the corre-

lations between the tasks effectively. Hence, future work must focus on transfer planning, which is

active learning based on the combined objectives of transfer and target learning.

5.5 Summary

This chapter proposes a forward adaptive transfer learning method, FAT-GP, which allows

robots to leverage previously learned Gaussian process regression models and use them as sources of

information in new learning tasks. This is especially valuable when limited training data is available

for the new target task. FAT-GP decouples the kernel and hyperparameter selection for the target

task from those of the source task, providing an inference framework that is desirable when dealing

with real world, dynamic environments. Additionally, because the source task’s large covariance

matrix is precomputed, FAT-GP amortizes cost and is computationally cheaper than AT-GP and

other GP approaches using transfer kernels. Simulations studies on 1D and 2D examples show

that similar source tasks can considerably improve the target’s performance. More importantly,

the FAT-GP exploits the correlations between the source and target to achieve a low error with

much less target data, and can thus serve as an efficient model in the interim as more target data

is collected through exploration.



Chapter 6

Conclusion

6.1 Spatiotemporal Characterization of Airborne RF Communication

Chapter 3 presented a nonparametric Gaussian process based approach for learning the en-

vironment specific residuals or RF variations for an a priori model such as the empirical path

loss model. In addition, an inexpensive pre-processing step involving outlier detection was used to

obtain models with better physical interpretability.

The improvements in performance obtained by augmenting spatial isotropic, spatial ARD,

and spatio-temporal ARD GPs to the empirical model were evaluated by performing cross valida-

tion experiments on 50 datasets of signal strength measurements, collected using two different radio

frequencies, three different airframes, and employing static or mobile transmitters. These compar-

isons showed that GPs not only learn receiver dependent noise but also help identify environmental

artifacts like localized interference.

The assessment of prediction error as well as the model uncertainty using metrics RMSE

and MSLL illustrated that the GPs build improved models by learning time-varying and geospatial

characteristics of the environment. Spatio-temporal GPs further reduced the error and uncertainty

compared to their spatial counterparts.

6.2 GP Modeling for Data Ferrying and Other UAS Applications

Chapter 4 addressed the issue of uncertain RF communication environments when planning

ferry routes. Errors between an a priori model and the true environment were sampled as the air-



107

craft ferries data. These errors were fed to a Gaussian process to better predict the RF environment

elsewhere, leading to more accurate plans for the ferry’s path.

The simulation studies showed the adaptability of the GP in comparison to parameter-based

estimators. Through relatively clean RF environments where the parameter-based methods per-

form well, the GP performed just as well and converged just as quickly. In more complicated

environments, the non-parametric nature of the GP allowed it to more accurately capture complex

RF behaviors in the ferrying region between the sensor nodes. Further, the quick convergence of the

ferry-and-learn process to improve RF models enabled the ferry to plan better paths and increase

effective throughout with the nodes.

6.3 Forward Adaptive Transfer Learning

Chapter 5.3.2 presented a new inference framework which allows GP for new target learning

tasks to use previously learned GP models for transfer of knowledge. By using convolution of kernels

and task correlations for cross covariance terms, FAT-GP decouples the two tasks and allows them

to have different kernel functions and hyperparameters. 1D examples demonstrated how forward

adaptive transfer allowed FAT-GP to reduce both the prediction error and the uncertainty of the

target task by transferring from similar, correlated source task.

Investigation of transfer components of the mean and variance predictions of the FAT-GP

showed that the influence of the source on the predictions was directly linked to the signal-to-

noise ratio (SNR) of the target components. This was further demonstrated in experiments that

iteratively increased the target training set, where the increase in target task knowledge i.e. an

increase in SNR corresponded with diminishing contribution from transfer.

The FAT-GP was compared to other learning configurations including the target GP using

RMSE and MSLL and found to provide a better model with reduced prediction error. In the

iterative experiments, the low error shown by the target GP after 56 iterations was attained by

the FAT-GP in 20 iterations. This highlighted how FAT-GP can provide an efficient interim model

while more target task data is being collected. 2D results further emphasized how FAT-GP learn
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models for the entire environment using limited, sparse, or localized measurements.

6.4 Future Work

6.4.1 Explore-vs-Exploit for Spatio-temporal GPs

To reduce the uncertainty in environments, it is important to explore and take measurements

throughout to capture the diversity in the environment. Since localized sampling provides dimin-

ishing returns, yet drives up the training time, it is important to chose these locations carefully.

Previous work has demonstrated how active learning can be used to set up an explore-and-exploit

paradigm for GP learning in sensor networks, ground robots, and underwater vehicles. However,

exploration policies for spatio-temporal GP models onboard small unmanned aircraft will have to

additionally take vehicle dynamics and temporal variations into consideration.

This thesis also presented results for mobile transmitters, which increases dimensionality of

the GP’s input variable. The solution to this variation of the communication modeling problem can

be greatly improved by planning the UA trajectory to increase observability of the measurements

as well as reduce the uncertainty in the model.

The planning objective may be further complicated by competing or even conflicting objec-

tives of the UAS mission. For example, opportunisitic communication learning for data ferrying,

as presented in Chapter 4, used the trajectories planned for the ferrying objective. Under the mis-

sion’s planning objective, regions of overestimated signal strength would inherently get explored

and corrected, but the opposite case of finding a strong signal in an expected weak region would not

occur in this framework. Thus, lack of exploration could be a significant hindrance. A challenging

open question lies in how to combine UAS mission objectives with the active learning objective for

improving the model.
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6.4.2 Transfer Planning

The success of transfer learning hinges to a great extent of the relative locations at which

source and task measurements are available, which help ascertain the degree to which the tasks are

correlated. Active learning i.e. selecting which locations to sample for the target task can result in

a quick convergence of the hyperparameter λ, and help further reduce the uncertainty in the model.

Planning how the target task is sampled will also provide a controlled framework for analyzing the

PAC (probably approximately correct) guarantees of FAT-GP. Future work should investigate how

to design an objective function that balances the learning and transfer objectives.

6.4.3 Heteroscedastic GPs

While Gaussian processes presented in this thesis provide great way to capture geospatial

variations, they assume homoscedasticity i.e. the noise variance σ2
n is the same everywhere in the

environment. UKF-based radio source localization using such homoscedastic GPs showed good

results for cleaner frequencies like 433MHz, but was plagued by filter divergence for noisier RF

communications using 2.4GHz. Relaxing this assumption and learning heteroscedastic GPs may

be critical to learning models for such missions with higher precision requirements. Future work

should assess how heteroscedastic models compare to their homoscedastic counterparts.

6.4.4 Application of FAT-GP to other robotic missions

Due to their flexibility and ability to handle uncertainty, GPs are becoming increasingly

ubiquitous in robotic learning tasks. They have been used for monitoring environmental phenomena

[29, 39], mapping the terrain in which the robot navigates [62, 34], modeling motion control and

dynamics [37, 15], as well as tracking dynamic obstacles [30]. They have also been employed for

communication modeling and energy harvesting [42, 63] for robots in terrestrial, aerial, and aquatic

environments. In each of these applications, changes in the underlying environment or setup can

require that a new, updated GP be learned. In the cases where the new learning task has overlap

with the previously learned model, FAT-GP can be used to adapt to the changes with a relatively
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smaller set of measurements. Future work should assess how FAT-GP can impact the performance

of other robotic missions which encounter dynamic environments and setups. The result of applying

FAT-GP to these diverse robotic missions, will also highlight FAT-GP’s limitations, which can be

used for further improving its transfer learning framework.
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Appendix A

Gaussian Process Performance Results

Table A.1: GP RMSE Performance for 433MHz Tempest Datasets

Without outlier detection With outlier detection
Empirical Spatial Spatial Spatio- Empirical Spatial Spatial Spatio

Radio Isotropic ARD temporal Radio Isotropic ARD temporal
No. Model GP GP ARD GP Model GP GP ARD GP

1 4.56 3.40 3.41 – 4.54 3.39 3.40 –
2 5.16 3.21 2.98 – 5.18 3.37 2.98 –
3 4.99 3.09 3.09 – 5.00 3.09 3.09 –
4 4.65 4.29 4.18 – 4.39 4.28 4.20 –
5 3.57 3.14 3.15 – 3.42 3.14 3.14 –
6 3.66 3.44 3.38 – 3.64 3.42 3.37 –
7 5.10 4.63 4.74 – 5.11 4.64 4.76 –
8 4.01 2.28 2.27 – 4.05 2.27 2.27 –
9 3.33 3.30 3.05 – 3.37 3.28 3.04 –
10 4.73 2.90 2.91 – 4.75 2.91 2.92 –
11 4.01 3.65 3.66 – 4.02 3.65 3.66 –
12 4.62 4.45 4.41 – 4.62 4.45 4.41 –
13 4.47 3.52 3.55 – 4.47 3.53 3.56 –
14 4.09 3.93 4.02 – 4.10 3.93 4.01 –
15 3.49 3.45 3.55 – 3.46 3.43 3.52 –
16 4.24 4.00 4.00 – 4.23 4.07 4.10 –
17 3.84 3.83 3.85 – 3.84 3.83 3.85 –
18 3.49 3.41 3.51 – 3.48 3.40 3.49 –
19 3.03 2.78 2.76 – 3.03 2.90 2.76 –
20 2.32 2.30 2.29 – 2.32 2.30 2.29 –

Avg 4.07 3.45 3.44 – 4.05 3.46 3.44 –
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Table A.2: GP RMSE Performance for 2.4GHz NexSTAR Datasets

Without outlier detection With outlier detection
Empirical Spatial Spatial Spatio- Empirical Spatial Spatial Spatio-

Radio Isotropic ARD temporal Radio Isotropic ARD temporal
No. Model GP GP ARD GP Model GP GP ARD GP

1 3.55 3.35 3.35 3.04 3.68 3.40 3.41 3.06
2 1.90 1.43 1.40 0.99 1.92 1.40 1.40 1.00
3 1.68 1.52 1.54 1.03 1.71 1.52 1.54 1.03
4 12.10 2.75 2.80 1.05 14.42 2.71 2.70 1.09
5 1.55 1.23 1.24 1.02 1.52 1.22 1.23 1.03
6 1.73 1.47 1.47 1.53 1.74 1.47 1.47 1.54
7 2.49 1.89 1.88 1.10 3.47 2.02 2.02 1.14
8 2.62 1.90 1.90 1.27 2.63 1.90 1.90 1.27
9 3.06 2.08 2.08 1.37 3.04 2.07 2.08 1.37
10 4.46 3.28 3.29 1.57 4.55 3.31 3.32 1.57
11 1.49 1.09 1.11 0.95 2.30 1.09 1.10 0.94
12 1.97 1.42 1.42 1.42 2.06 1.43 1.43 1.43
13 2.19 1.52 1.52 1.52 2.22 1.49 1.49 1.49
14 0.86 0.80 0.80 0.80 0.87 0.81 0.81 0.81
15 2.86 2.35 2.36 2.36 2.99 2.43 2.43 2.43
16 3.21 2.92 2.92 2.92 3.23 2.94 2.94 2.94
17 2.81 2.28 2.30 2.30 2.81 2.28 2.30 2.30
18 2.53 2.15 2.17 2.12 2.53 2.15 2.17 2.13

Avg 2.95 1.97 1.98 1.58 3.20 1.98 1.99 1.59

Table A.3: GP RMSE Performance for Skywalker X8 Mobile-Emitter Datasets

Without outlier detection With outlier detection
Empirical Spatial Spatial Spatio- Empirical Spatial Spatial Spatio-

Radio Isotropic ARD temporal Radio Isotropic ARD temporal
No. Model GP GP ARD GP Model GP GP ARD GP

1 5.05 4.61 3.89 3.89 5.05 4.61 3.89 3.89
2 7.17 6.61 6.64 6.64 7.17 6.61 6.64 6.64
3 6.09 5.23 5.26 4.92 6.09 5.23 5.26 4.92
4 0.37 0.34 0.34 0.35 0.37 0.34 0.34 0.35
5 5.89 5.38 5.40 5.39 5.89 5.38 5.40 5.39
6 0.35 0.33 0.33 0.32 0.35 0.33 0.33 0.32
7 6.14 4.86 4.86 4.07 6.14 4.86 4.86 4.07
8 0.38 0.35 0.35 0.33 0.38 0.35 0.35 0.33
9 5.32 3.31 3.30 2.94 5.32 3.31 3.30 2.94
10 0.37 0.35 0.35 0.34 0.37 0.35 0.35 0.34
11 6.07 4.83 4.72 3.88 6.07 4.83 4.72 3.88
12 0.31 0.28 0.28 0.27 0.31 0.28 0.28 0.27

Avg 3.63 3.04 2.98 2.78 3.63 3.04 2.98 2.78
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Table A.4: GP MSLL for 433MHz Tempest Datasets

Without outlier detection With outlier detection
Spatial Spatial Spatio- Spatial Spatial Spatio-

Isotropic ARD temporal Isotropic ARD temporal
No. GP GP ARD GP GP GP ARD GP

1 -0.38 ± 0.03 -0.37 ± 0.03 – -0.38 ± 0.03 -0.37 ± 0.03 –
2 -0.53 ± 0.14 -0.63 ± 0.04 – -0.47 ± 0.15 -0.64 ± 0.04 –
3 -0.47 ± 0.04 -0.47 ± 0.04 – -0.47 ± 0.04 -0.47 ± 0.04 –
4 -0.05 ± 0.13 -0.10 ± 0.06 – -0.00 ± 0.10 -0.04 ± 0.05 –
5 -0.13 ± 0.01 -0.12 ± 0.02 – -0.09 ± 0.03 -0.08 ± 0.03 –
6 0.12 ± 0.32 0.03 ± 0.20 – 0.12 ± 0.32 0.05 ± 0.22 –
7 -0.09 ± 0.06 -0.06 ± 0.09 – -0.09 ± 0.06 -0.06 ± 0.09 –
8 -0.59 ± 0.05 -0.58 ± 0.06 – -0.60 ± 0.05 -0.59 ± 0.06 –
9 0.02 ± 0.05 -0.08 ± 0.06 – -0.00 ± 0.05 -0.10 ± 0.08 –
10 -0.49 ± 0.06 -0.50 ± 0.08 – -0.49 ± 0.07 -0.49 ± 0.07 –
11 -0.09 ± 0.02 -0.09 ± 0.03 – -0.10 ± 0.02 -0.09 ± 0.03 –
12 -0.04 ± 0.03 -0.04 ± 0.03 – -0.04 ± 0.03 -0.04 ± 0.03 –
13 -0.23 ± 0.07 -0.22 ± 0.08 – -0.23 ± 0.08 -0.22 ± 0.08 –
14 -0.04 ± 0.04 -0.02 ± 0.03 – -0.04 ± 0.04 -0.02 ± 0.03 –
15 0.01 ± 0.05 0.06 ± 0.12 – 0.01 ± 0.08 0.07 ± 0.16 –
16 -0.06 ± 0.05 -0.06 ± 0.05 – -0.04 ± 0.04 -0.03 ± 0.04 –
17 -0.00 ± 0.00 0.00 ± 0.01 – -0.00 ± 0.00 0.00 ± 0.01 –
18 -0.02 ± 0.03 0.00 ± 0.01 – -0.03 ± 0.03 -0.00 ± 0.02 –
19 -0.10 ± 0.08 -0.10 ± 0.08 – -0.03 ± 0.10 -0.10 ± 0.08 –
20 0.01 ± 0.04 -0.01 ± 0.01 – 0.01 ± 0.04 -0.01 ± 0.01 –
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Table A.5: GP MSLL for 2.4GHz NexSTAR Datasets

Without outlier detection With outlier detection
Spatial Spatial Spatio- Spatial Spatial Spatio-

Isotropic ARD temporal Isotropic ARD temporal
No. GP GP ARD GP GP GP ARD GP

1 -0.05 ± 0.02 -0.05 ± 0.02 -0.15 ± 0.03 -0.08 ± 0.02 -0.07 ± 0.02 -0.18 ± 0.02
2 -0.38 ± 0.08 -0.35 ± 0.07 -0.77 ± 0.07 -0.33 ± 0.04 -0.33 ± 0.03 -0.77 ± 0.08
3 -0.10 ± 0.01 -0.09 ± 0.03 -0.60 ± 0.02 -0.12 ± 0.02 -0.11 ± 0.04 -0.61 ± 0.02
4 -1.47 ± 0.06 -1.46 ± 0.05 -2.45 ± 0.07 -1.66 ± 0.04 -1.67 ± 0.05 -2.60 ± 0.08
5 -0.23 ± 0.13 -0.22 ± 0.14 -0.42 ± 0.15 -0.22 ± 0.13 -0.21 ± 0.13 -0.39 ± 0.14
6 -0.16 ± 0.05 -0.16 ± 0.05 -0.00 ± 0.27 -0.16 ± 0.05 -0.16 ± 0.05 0.01 ± 0.29
7 -0.28 ± 0.06 -0.28 ± 0.06 -0.82 ± 0.09 -0.54 ± 0.06 -0.54 ± 0.05 -1.11 ± 0.09
8 -0.32 ± 0.03 -0.32 ± 0.04 -0.71 ± 0.06 -0.32 ± 0.04 -0.32 ± 0.04 -0.72 ± 0.06
9 -0.39 ± 0.04 -0.39 ± 0.04 -0.84 ± 0.06 -0.39 ± 0.04 -0.39 ± 0.04 -0.83 ± 0.06
10 -0.29 ± 0.01 -0.29 ± 0.01 -1.03 ± 0.05 -0.30 ± 0.01 -0.30 ± 0.01 -1.06 ± 0.04
11 -0.29 ± 0.06 -0.28 ± 0.04 -0.45 ± 0.03 -0.72 ± 0.07 -0.72 ± 0.05 -0.89 ± 0.05
12 -0.35 ± 0.05 -0.34 ± 0.05 -0.34 ± 0.05 -0.38 ± 0.05 -0.38 ± 0.05 -0.38 ± 0.05
13 -0.42 ± 0.05 -0.42 ± 0.05 -0.42 ± 0.05 -0.41 ± 0.04 -0.41 ± 0.04 -0.41 ± 0.04
14 -0.06 ± 0.02 -0.06 ± 0.02 -0.06 ± 0.02 -0.07 ± 0.02 -0.07 ± 0.02 -0.07 ± 0.02
15 -0.19 ± 0.04 -0.19 ± 0.04 -0.19 ± 0.04 -0.20 ± 0.04 -0.20 ± 0.04 -0.20 ± 0.04
16 -0.09 ± 0.02 -0.09 ± 0.02 -0.09 ± 0.02 -0.08 ± 0.03 -0.08 ± 0.03 -0.08 ± 0.03
17 -0.20 ± 0.02 -0.19 ± 0.01 -0.19 ± 0.01 -0.20 ± 0.02 -0.19 ± 0.01 -0.19 ± 0.01
18 -0.16 ± 0.09 -0.15 ± 0.09 -0.17 ± 0.11 -0.16 ± 0.09 -0.15 ± 0.09 -0.17 ± 0.11

Table A.6: GP MSLL for Skywalker X8 Mobile-Emitter Dataset

Without outlier detection With outlier detection
Spatial Spatial Spatio- Spatial Spatial Spatio-

Isotropic ARD temporal Isotropic ARD temporal
No. GP GP ARD GP GP GP ARD GP

1 -0.10 ± 0.04 -0.23 ± 0.05 -0.23 ± 0.05 -0.10 ± 0.04 -0.23 ± 0.05 -0.23 ± 0.05
2 -0.07 ± 0.01 -0.06 ± 0.01 -0.06 ± 0.01 -0.07 ± 0.01 -0.06 ± 0.01 -0.06 ± 0.01
3 -0.15 ± 0.03 -0.14 ± 0.03 -0.21 ± 0.05 -0.15 ± 0.03 -0.14 ± 0.03 -0.21 ± 0.05
4 -0.09 ± 0.01 -0.10 ± 0.02 -0.11 ± 0.02 -0.09 ± 0.01 -0.10 ± 0.02 -0.11 ± 0.02
5 -0.09 ± 0.03 -0.08 ± 0.03 -0.08 ± 0.03 -0.09 ± 0.03 -0.08 ± 0.03 -0.08 ± 0.03
6 -0.05 ± 0.02 -0.04 ± 0.02 -0.10 ± 0.04 -0.05 ± 0.02 -0.04 ± 0.03 -0.10 ± 0.04
7 -0.21 ± 0.03 -0.22 ± 0.03 -0.43 ± 0.06 -0.21 ± 0.03 -0.22 ± 0.03 -0.43 ± 0.06
8 -0.06 ± 0.03 -0.09 ± 0.04 -0.13 ± 0.03 -0.06 ± 0.03 -0.09 ± 0.04 -0.13 ± 0.03
9 -0.46 ± 0.07 -0.46 ± 0.07 -0.57 ± 0.05 -0.46 ± 0.07 -0.46 ± 0.07 -0.57 ± 0.05
10 -0.07 ± 0.02 -0.07 ± 0.02 -0.10 ± 0.01 -0.07 ± 0.02 -0.07 ± 0.02 -0.10 ± 0.01
11 -0.21 ± 0.05 -0.22 ± 0.02 -0.43 ± 0.05 -0.21 ± 0.05 -0.22 ± 0.02 -0.43 ± 0.05
12 -0.08 ± 0.02 -0.09 ± 0.02 -0.15 ± 0.05 -0.08 ± 0.02 -0.09 ± 0.02 -0.15 ± 0.05
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Table A.7: Percentage-wise Iterative Training GPs for 433-Tempest Dataset

First Iteration Last Iteration
Training Training Prediction Prediction Training Training Prediction Prediction

No. Set Size Time RMSE MSLL Set Size Time RMSE MSLL

1 126.00 1.20 5.32 0.36 1007.00 31.60 3.29 -0.41
2 460.00 5.33 4.90 -0.06 3675.00 719.65 3.21 -0.56
3 271.00 1.83 4.83 0.27 2164.00 68.72 3.37 -0.41
4 43.00 0.35 4.49 0.01 340.00 5.54 3.65 -0.00
5 55.00 0.33 3.60 0.04 435.00 4.16 3.06 -0.12
6 17.00 0.30 5.29 0.35 133.00 0.72 3.85 0.02
7 21.00 0.28 8.64 4.14 167.00 0.95 4.40 -0.11
8 158.00 1.16 4.14 -0.04 1260.00 29.18 2.02 -0.63
9 43.00 0.37 3.56 0.03 342.00 3.40 3.29 -0.04
10 91.00 0.57 4.74 -0.20 724.00 10.30 2.73 -0.52
11 100.00 0.54 4.05 0.06 795.00 13.35 3.77 -0.05
12 55.00 0.45 5.03 0.08 440.00 6.44 4.41 -0.07
13 34.00 0.32 4.40 0.29 271.00 1.79 3.70 -0.23
14 40.00 0.34 4.27 0.09 320.00 2.40 3.65 -0.06
15 14.00 0.20 5.94 2.50 107.00 1.03 4.37 -0.04
16 42.00 0.34 4.16 0.25 336.00 2.62 3.41 -0.07
17 38.00 0.32 4.72 0.12 301.00 2.81 4.32 -0.00
18 29.00 0.31 3.82 0.44 227.00 1.64 3.22 -0.07
19 21.00 0.28 2.90 0.02 164.00 0.69 2.52 -0.12
20 51.00 0.42 2.62 0.19 404.00 3.59 2.43 0.05

Average 85.45 0.76 4.57 0.45 680.60 45.53 3.43 -0.17

Table A.8: Percentage-wise Iterative Training GPs for 2.4GHz NexSTAR Dataset

First Iteration Last Iteration
Training Training Prediction Prediction Training Training Prediction Prediction

No. Set Size Time RMSE MSLL Set Size Time RMSE MSLL

1 163.00 1.00 12.34 0.03 1303.00 40.24 3.35 -0.15
2 378.00 4.48 19.46 26.42 3022.00 349.78 1.06 -0.73
3 379.00 5.57 23.94 35.86 3028.00 496.04 1.05 -0.57
4 453.00 8.21 27.67 1.27 3624.00 399.41 1.08 -2.45
5 75.00 0.55 1.56 -0.00 600.00 7.35 0.86 -0.50
6 75.00 0.54 2.36 -0.01 596.00 4.90 1.44 5.11
7 200.00 1.63 97.59 56.27 1595.00 76.73 1.17 -1.04
8 274.00 2.20 2.93 -0.02 2190.00 160.02 1.32 -0.69
9 270.00 2.48 3.14 -0.08 2158.00 169.80 1.56 -0.72
10 352.00 3.15 12.56 -1.46 2812.00 288.12 1.52 -1.07
11 192.00 1.30 2.18 -0.30 1536.00 77.93 0.97 -0.84
12 249.00 1.82 2.40 0.08 1988.00 75.56 1.42 -0.37
13 256.00 1.57 2.80 -0.27 2041.00 84.10 1.53 -0.38
14 163.00 0.96 0.89 0.18 1304.00 36.91 0.75 -0.07
15 251.00 1.75 86.45 -322.98 2002.00 107.21 2.41 -0.19
16 200.00 1.82 16.98 1.01 1596.00 51.87 3.18 -0.07
17 200.00 1.21 2.87 0.00 1596.00 52.07 2.17 -0.23
18 26.00 0.33 2.66 -0.22 204.00 1.44 2.01 -0.17

Average 230.89 2.25 17.82 -11.35 1844.17 137.75 1.60 -0.29
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Table A.9: Percentage-wise Iterative Training GPs for Skywalker X8 Mobile-Emitter Dataset

First Iteration Last Iteration
Training Training Prediction Prediction Training Training Prediction Prediction

No. Set Size Time RMSE MSLL Set Size Time RMSE MSLL

1 98.00 1.44 14.30 -1.63 784.00 20.97 3.92 -0.19
2 217.00 3.03 23.85 0.03 1730.00 85.20 6.97 -0.05
3 200.00 1.74 10.95 0.30 1596.00 98.22 5.00 -0.26
4 198.00 1.66 0.53 -0.09 1580.00 113.78 0.33 -0.06
5 196.00 1.65 6.39 -0.03 1566.00 152.31 5.23 -0.06
6 193.00 2.08 0.30 -0.04 1541.00 112.56 0.26 -0.13
7 106.00 0.85 6.47 -0.19 845.00 34.85 3.74 -0.52
8 175.00 1.63 0.35 -0.02 1400.00 77.89 0.31 -0.12
9 119.00 0.89 9.58 -0.62 945.00 26.12 3.09 -0.54
10 208.00 1.70 0.40 -0.05 1664.00 103.84 0.35 -0.14
11 97.00 0.80 57.30 -7.51 774.00 25.35 3.81 -0.39
12 190.00 1.49 0.35 -0.09 1520.00 121.53 0.27 -0.14

Average 166.42 1.58 10.90 -0.83 1328.75 81.05 2.77 -0.22

Table A.10: Fixed-Increment Iterative Training GPs for 433MHz Tempest Dataset

First Iteration Last Iteration
Training Training Prediction Prediction Training Training Prediction Prediction

No. Set Size Time RMSE MSLL Set Size Time RMSE MSLL

1 50.00 0.45 4.64 -0.03 1158.00 55.01 2.65 -0.50
2 50.00 0.42 5.37 0.03 4493.00 341.88 2.65 -0.68
3 50.00 0.39 14.88 -1.63 2604.00 100.44 3.13 -0.49
4 50.00 0.46 5.67 0.04 325.00 2.49 4.27 -0.05
5 50.00 0.42 3.56 0.05 443.00 5.01 3.34 -0.05
6 50.00 0.41 3.24 -0.04 66.00 0.48 3.02 -0.07
7 50.00 0.37 6.79 0.15 108.00 0.59 4.98 -0.04
8 50.00 0.38 18.49 0.34 1474.00 40.07 2.06 -0.67
9 50.00 0.74 3.82 0.04 327.00 4.22 3.28 -0.06
10 50.00 0.66 5.16 0.21 804.00 16.42 2.82 -0.58
11 50.00 0.54 5.19 0.02 893.00 21.32 3.43 -0.15
12 50.00 0.64 5.28 0.01 449.00 6.67 4.38 -0.04
13 50.00 0.63 3.36 -0.21 238.00 2.33 3.28 -0.23
14 50.00 0.55 4.22 -0.01 299.00 3.27 4.03 -0.08
15 – – – – – – – –
16 50.00 0.58 4.04 0.01 320.00 7.81 4.23 0.08
17 50.00 0.60 5.07 0.69 276.00 2.76 4.25 -0.02
18 50.00 0.62 3.80 0.11 183.00 2.18 3.76 0.06
19 50.00 0.61 2.99 0.00 105.00 0.84 2.78 -0.10
20 50.00 0.63 2.38 -0.03 404.00 5.80 2.50 0.04

Average 47.50 0.51 5.40 -0.01 748.45 30.98 3.24 -0.18
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Table A.11: Fixed-Increment Iterative Training GPs for 2.4GHz NexSTAR Dataset

First Iteration Last Iteration
Training Training Prediction Prediction Training Training Prediction Prediction

No. Set Size Time RMSE MSLL Set Size Time RMSE MSLL

1 50.00 0.52 6.10 0.08 1478.00 48.41 3.89 -0.12
2 50.00 0.54 23.74 321.79 3627.00 565.80 1.13 -0.79
3 50.00 0.49 3.35 -1.39 3635.00 834.17 0.82 -0.66
4 50.00 0.47 30.46 -87.92 4379.00 629.77 0.98 -2.49
5 50.00 0.48 1.70 -0.02 600.00 6.54 0.98 -0.39
6 50.00 0.55 1.80 0.02 595.00 9.28 1.62 -0.06
7 50.00 0.50 265.47 5868.80 1843.00 98.56 1.11 -1.04
8 50.00 0.53 2.80 0.09 2587.00 230.27 1.22 -0.75
9 50.00 0.52 2.82 0.10 2547.00 230.39 1.04 -0.98
10 50.00 0.49 187.93 -165.97 3364.00 434.73 1.91 -0.79
11 50.00 0.49 86.14 -384.35 1770.00 107.36 0.89 -0.71
12 50.00 0.45 2.21 -1.43 2334.00 87.78 1.40 -0.33
13 50.00 0.50 4.21 0.23 2401.00 96.56 1.38 -0.35
14 50.00 0.51 0.88 39.62 1480.00 41.83 0.72 -0.11
15 50.00 0.48 18.60 8.89 2352.00 139.27 2.30 -0.28
16 50.00 0.47 24.34 0.79 1845.00 67.57 2.97 -0.05
17 50.00 0.46 16.94 0.24 1845.00 67.87 2.33 -0.21
18 50.00 0.47 2.25 -0.12 105.00 0.69 2.13 -0.19

Average 50.00 0.50 37.87 311.08 2154.83 205.38 1.60 -0.57

Table A.12: Fixed-Increment Iterative Training GPs for Skywalker X8 Mobile-Emitter Dataset

First Iteration Last Iteration
Training Training Prediction Prediction Training Training Prediction Prediction

No. Set Size Time RMSE MSLL Set Size Time RMSE MSLL

1 50.00 0.69 10.79 0.11 829.00 22.04 4.43 -0.12
2 50.00 0.68 74.52 3.38 2012.00 102.19 7.08 -0.04
3 50.00 0.66 19.45 0.10 1845.00 97.34 4.48 -0.20
4 50.00 0.75 7.13 15.12 1825.00 164.82 0.29 -0.20
5 50.00 0.58 42.48 0.37 1807.00 164.04 5.41 -0.10
6 50.00 0.68 1.05 0.04 1776.00 150.19 0.37 -0.07
7 50.00 0.66 6.61 0.06 906.00 43.77 4.20 -0.43
8 50.00 0.69 7.05 -55.91 1599.00 113.68 0.31 -0.17
9 50.00 0.66 139.77 27.18 1031.00 34.49 2.82 -0.59
10 50.00 0.70 2.16 0.97 1930.00 166.19 0.33 -0.13
11 50.00 0.73 88.95 -81.16 817.00 28.40 4.32 -0.26
12 50.00 0.64 11.24 23.38 1749.00 190.91 0.23 -0.17

Average 50.00 0.68 34.27 -5.53 1510.50 106.50 2.86 -0.21



Appendix B

FAT-GP Prediction Analysis

B.1 FAT-GP Mean Components

The mean prediction equation for the FAT-GP is given by

µ′τ = mT (x′) + kτ (x′, XD)Cτ (XD, XD)−1(yD −mτ (XD))

= mT (x′) +

[
kτ (x′, XT ) kτ (x′, XS)

]CTT KTS

KST KSS


−1

yT

yS

−
mT (XT )

mS(XS)




Using the formula for inverses of block matrices we get

Cτ (XD, XD)−1 =

CTT KTS

KST KSS


−1

=

C−1
TT + C−1

TTKTSMKSTC
−1
TT −C−1

TTKTSM
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−1
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where M =

[
CSS −KSTC

−1
TTKTS

]−1
. Notice that

M = C−1
S|T =

[
CSS −KSTC

−1
TTKTS

]−1

which is given by

p(yS | yT , XT , XS , θT , θS) = N
(
µS|T , CS|T

)
where µS|T = mS +KSTC

−1
TT (yT −mT )

CS|T = CSS −KSTC
−1
TTKTS
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Plugging the inverse back into the mean prediction expression we get

µ′τ = mT (x′)+

[
kτ (x′, XT ) kτ (x′, XS)

]C−1
TT + C−1

TTKTSC
−1
S|TKSTC

−1
TT −C−1

TTKTSC
−1
S|T

−C−1
S|TKSTC

−1
TT C−1

S|T


yT −mT (XT )

yS −mS(XS)


and expanding the expression we get

µ′τ = mT (x′) + kT (x′, XT )C−1
TT (yT −mT (XT ))

+ kT (x′, XT )C−1
TTKTSC

−1
S|TKSTC

−1
TT (yT −mT (XT ))

− kT (x′, XT )C−1
TTKTSC

−1
S|T (yS −mS(XS))

− kS(x′, XS)C−1
S|TKSTC

−1
TT (yT −mT (XT ))

+ kS(x′, XS)C−1
S|T (yS −mS(XS))

Grouping the terms with common factors,

µ′τ = mT (x′) + kT (x′, XT )C−1
TT (yT −mT (XT ))

+
[
kT (x′, XT )C−1

TTKTS − kS(x′, XS)
]
×[

CSS −KSTC
−1
TTKTS

]−1 ×[
KSTC

−1
TT (yT −mT (XT ))− (yS −mS(XS))

]
This equation can also be written in terms of cross covariance matrices and similarity measure as

µ′τ = mT (x′) + kT (x′, XT )C−1
TT (yT −mT (XT ))

+
[
λkT (x′, XT )C−1

TTKcross(XT , XS)− kS(x′, XS)
]
×[

CSS − λ2Kcross(XS , XT )C−1
TTKcross(XT , XS)

]−1 ×[
λKcross(XS , XT )C−1

TT (yT −mT (XT ))− (yS −mS(XS))
]
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B.2 Impact of SNR on Variance Components

Equation (5.22) (stated here again) shows that the variance prediction of a FAT-GP contains

two terms that reduce the uncertainty

σ2
τ (x′) = σ2

fτ(T ) + σ2
nτ(T )︸ ︷︷ ︸

prior variance

− kτ (x′, XT )C−1
TTkτ (XT ,x

′)︸ ︷︷ ︸
Reduction in uncertainty due to target data

−
[
kτ (x′, XT )C−1

TTKTS − kτ (x′, XS)
] [
CSS −KSTC

−1
TTKTS

]−1 [
KSTC

−1
TTkτ (XT ,x

′)− kτ (XS ,x
′)
]︸ ︷︷ ︸

Reduction in uncertainty due to transfer

Fig. 5.7 shows that the reduction due transfer goes to zero when a target sample is co-located with

a source sample. This section analyzes the root of this interesting behavior.

To understand how training samples affect variance predictions, we examine the interactions

between individual samples with an unseen input sample x′. The correlations of x′ with a source

task sample xS and a target task sample xT , for a given set of source and FAT-GP hyperparameters,

are given by

kτ (x′,xT ) = cτ(T )σ
2
fτ(T )

kτ (x′,xS) = λcS
√
σ2
fτ(T )σ

2
fS

√
2lτ(T )lS

l2τ(T ) + l2S

where

cS = exp

[
−‖x

′ − xS‖2

l2τ(T ) + l2S

]

cτ(T ) = exp

[
−‖xT − x′‖2

2l2τ(T )

]
Their correlation of the source and target samples can also be calculated as

k(xT ,xS) = λ
√
σ2
fτ(T )σ

2
fS

√
2lτ(T )lS

l2τ(T ) + l2S
exp

[
−‖xT − xS‖2

l2τ(T ) + l2S

]

= λcTS
√
σ2
fτ(T )σ

2
fS

√
2lτ(T )lS

l2τ(T ) + l2S

where

cTS = exp

[
−‖xT − xS‖2

l2τ(T ) + l2S

]
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Thus, the reduction due to transfer (last term in Equation (5.22)) is be written as

KSTC
−1
TTkτ (XT ,x

′)− kτ (XS ,x
′) = λb

√
σ2
fτ(T )σ

2
fS

√
2lτ(T )lS
l2
τ(T )

+l2S

where b is a coefficient of transfer and is given by

b =
cTScτ(T )σ

2
fτ(T ) − cSσ

2
fτ(T ) − cSσ

2
nτ(T )

σ2
fτ(T ) + σ2

nτ(T )

Depending on the relative positions of xS , xT , and x′, the coefficient of transfer will differ. When

the source and the target sample are co-located with x′, cTS = cS = cT = 1. Then the coefficient

of transfer is given by

b = −
σ2
nτ(T )

σ2
fτ(T ) + σ2

nτ(T )

When x′ is outside the source’s distance of correlation, i.e cS = 0, it influences x′ via the target

samples close to it. Here the coefficient of transfer is given by

b =
cTScτ(T )σ

2
fτ(T )

σ2
nτ(T ) + σ2

fτ(T )

When x′ is outside the distance of correlation of all target samples i.e. cτ(T ) = 0, but is close to a

source sample, the source will impact x′ proportional to

b = −cS

Thus, in the absence of target samples in the region of x′, the variance prediction depends directly

on correlation between xS and x′.


