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Solar thermal gasification of biomass is a promising route to renewable fuel production. In 

order to design efficient solar biomass gasifiers, the kinetic rate of the char gasification step must 

be determined. The key advantages of solar thermal gasification are the ability to operate at 

temperatures significantly higher than those used in traditional gasifiers and to operate with 

steam instead of oxygen to produce a product stream with higher energy content.  High 

temperature steam gasification kinetics are rarely studied in the literature, and the methods that 

are commonly used to measure low temperature gasification kinetics are often not applicable at 

high temperatures, for example due to heat and mass transfer limitations. The work presented in 

this thesis comprises studies designed to advance the state of the art in high temperature steam 

gasification by investigating char gasification kinetics, incorporating those kinetics into a CFD 

model, and facilitating gasification studies in aerosol flow through the development of a novel 

particle feeding system. 

A primary goal of this work was to develop a low-cost method to obtain an empirical rate 

expression for steam-char gasification. A modified fixed bed reactor was used to limit the effects 

of heat transfer, steam consumption, and hydrogen inhibition in order to ensure that the rate was 

measured at known conditions. After minimizing the above effects within the constraints of our 

laboratory system, the reaction rate was so rapid that our factory configured non-dispersive 

infrared analyzer could not provide high enough temporal resolution. In analyzing the data, we 

observed that the outlet flow meter could respond very quickly to changes in the gasification 
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rate. After further analysis and testing, it was determined that the flow meter alone could be used 

to measure the rate of gasification within the fixed bed. This gas flow measurement technique 

was able to provide high resolution data with a very low cost and simple to use flow meter. 

Using the gas flow measurement technique, data were collected over a range of 

temperatures, steam concentrations, hydrogen concentrations and degrees of conversion. The 

results were used to develop an empirical rate expression based on the Random Pore Model for 

the dependence on conversion and a Langmuir-Hinshelwood type expression for the dependence 

on the reactor conditions. To demonstrate the power of an accurate kinetic rate expression, a 

simplified CFD model of a small fixed bed gasifier was developed using the commercially 

available Ansys Fluent software package. Validation experiments were performed in a laboratory 

scale fixed bed reactor. The model was able to accurately predict the overall reaction rate 

throughout time, and to lend insight into steam gasification in a fixed bed configuration. 

In addition to the investigation of high temperature steam char kinetics, a novel particulate 

feeding system was developed to aid in aerosol flow studies. Aerosol flow reactors are a valuable 

tool for measuring extremely fast reaction rates with very small particles, but they require the 

feedstock to be delivered pneumatically at a very consistent rate. The feeding system developed 

in this thesis is capable of feeding a variety of organic and inorganic particles with a diameter of 

less than 150 µm, and has successfully fed milled biomass containing a high fraction of hard to 

feed, high aspect ratio particles. It has been successfully used in several studies in our lab to 

measure gasification kinetics with a variety of feedstocks. 
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Chapter 1 Motivation and Scope 

1.1 Motivation 

Abundant and affordable fossil fuels are the lifeblood of modern human civilization. 

Without access to cheap and easy to handle sources of energy, many of the conveniences we now 

view as necessities may not be accessible to the general public. While the future availability of 

fossil fuels is hotly debated, most can agree that they are a finite resource and many of us will 

see their decline within our lifetimes.  

The end of the age of fossil fuels will not come overnight. The forces of supply and 

demand will dictate a price that some will view as acceptable, and an increasing number will be 

unable to afford. With the invention of the derivatives markets that allow for the trading of 

enormous quantities of energy on a moment’s notice, price swings can be exacerbated far beyond 

the underlying forces of long term supply and demand as we saw with oil in 2008. The volatile 

and unpredictable nature of energy prices wreaks havoc on the consumers, some struggling at 

times to even heat their homes. With an economy now struggling to rebound from the worst 

economic downturn since the great depression, any increase in energy prices will dampen what 

little recovery we have seen. We may never fully recover if we cannot find a way to keep energy 

costs in check.  

Price is of course only one of the concerns surrounding excessive fossil fuel use. Climate 

change is increasingly viewed as a threat to the livelihoods of hundreds of millions of people. Be 

it coastal dwellers who must deal with increased risk of flooding during major storms, or farmers 

who depend on the rains and moderate temperatures that their ancestors experienced, many are 

already feeling the effects of a world undergoing change. At least a portion of this change can be 
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directly traced to the increase in global CO2 levels generated from burning carbon that has been 

stored in the earth for millions of years [1]. For the sake of future generations, it is imperative 

that we develop alternative sources of energy that limit the net amount of CO2
 
released to the 

atmosphere. 

One can argue that as a society we consume too much energy and could be equally as 

happy with much less. To a certain extent this is true, and conservation must be part of any plan 

to reduce consumption of fossil fuels, but the numbers are striking. According to the EIA’s 

Annual Energy Review 2010 only 8% of the energy consumption in the U.S. comes from 

renewable sources [2]. Even if energy usage was cut in half, a dramatic feat, renewables would 

only account for 16% of energy consumption in the United States. We must seek to expand the 

current sources of renewable energy that we have, and continue research in new and promising 

areas. 

Hydroelectric, wind, solar and geothermal all offer a promising future for renewable 

electricity generation. Unfortunately, these sources do little to satisfy our insatiable demand for 

hydrocarbon fuels. Electric vehicles may be able to lessen the demand by allowing renewable 

sources of electricity to satisfy some of our transportation needs, but there will always be 

technologies such as flight that require a denser source of energy. It is possible that futurist 

batteries will someday fill that void, but in the near term we must find a way to produce 

hydrocarbon fuels from renewable sources. Biomass derived fuels are one of the few 

technologies that show promise in this field. 

Utilization of biomass as an energy resource for power and fuel production has the 

potential to offset a sizeable portion of our current fossil fuel use. Current methods of biomass 
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processing include biological and thermochemical routes. Biomass with high water content or 

large amounts of easily digestible substrates like starches and sugars are often converted using 

biological methods. For feedstock with low inherent moisture content, thermochemical 

processing is often advantageous due to fast reaction kinetics and the ability to handle non-

digestible substrates such as lignin. One of the oldest and most widely used thermochemical 

methods is gasification. 

Biomass gasification has been used for over a century as a method to produce synthesis gas 

from low cost carbonaceous materials such as biomass and coal. Synthesis gas, a mixture of H2, 

CO, and CO2, can be used for power generation or as a feedstock for commodity chemicals and 

hydrocarbon fuel production. Long before the days of natural gas, “wood gas” produced from 

biomass gasifiers is said to have been supplied through pipelines in some big cities to provide 

lighting and heating. Today, gasification offers a method to utilize the carbon stored in plants 

during photosynthesis, breaking it down into a form that can be used to synthesize a number of 

fungible fuels. 

Currently, the most popular route for producing hydrocarbon fuels from synthesis gas is 

the Fischer-Tropsch process. Hydrogen and carbon monoxide are pumped to high pressures and 

exposed to catalysts such as iron and cobalt to produce a distribution of hydrocarbons that range 

from methane to waxes [3]. Other methods such as direct methanol synthesis and microbial 

utilization of synthesis gas are currently being researched. Whatever the final process may be, a 

cheap and renewable source of synthesis gas has the potential to replace some portion of the 

energy dense, easy to transport hydrocarbons that we depend on [4]. 
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In order to utilize the full potential of our biomass resources, gasification processes must 

be made as efficient as possible so that little of the precious stored carbon is wasted. One way to 

achieve this is to utilize concentrated solar thermal energy to drive the reaction, thus eliminating 

the need to burn some of the biomass to produce the heat needed for the reaction [5, 6]. Another 

is to develop a detailed understanding of the process and the physical conditions inside the 

reactor. Advances in computing have allowed the application of computational fluid dynamics 

(CFD) to gasification systems. CFD allows the engineer to identify potential design bottlenecks 

and optimize for the desired conditions before a full scale reactor is built. Unfortunately CFD is 

only as good as the inputs, and data on the gasification rate for specific biomasses under all 

conditions that may be encountered inside a reactor is difficult or impossible to find. A primary 

aim of this dissertation is to develop a method for measuring gasification reaction kinetics under 

conditions that are relevant to solar thermal gasification. 

1.2 Gasification Background 

Biomass gasification can be broken down into two semi-distinct steps. Upon heating to the 

range of 300-500 ºC, biomass undergoes pyrolysis to produce synthesis gas, tar, and char, a 

material composed mostly of carbon and ash. The tar is an undesired byproduct and must be 

further reacted to synthesis gas or removed in downstream processing. Pyrolysis is a thermal 

degradation reaction, no gaseous reactants are needed and the kinetics are very rapid at high 

temperatures [7]. 

In the second stage, char undergoes gasification with an oxidant such as oxygen or steam 

to produce more syngas. This reaction can be exothermic or endothermic depending on the 

oxidant used. The temperature range for this reaction varies greatly and is often performed in the 

range of 700-1000 ºC. A multitude of other reactions such as tar breakdown take place 
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simultaneously, but char gasification is widely accepted to be rate limiting [8]. For this reason 

the kinetic investigation and modeling presented in this dissertation will focus on biomass char 

gasification. 

Two different methods of gasification exist. Autothermal and allothermal gasification 

differ primarily in the method by which heat is supplied to the reactor. In traditional autothermal 

gasification, air or oxygen is used as the oxidizer to partially combust the char and this 

exothermic reaction provides the heat needed for the process. Partial combustion is ideal for heat 

transfer because the heat is produced in the same place that it is needed. Unfortunately, partial 

combustion significantly reduces the amount of syngas produced per unit biomass. It has been 

estimated that autothermal gasification of coal will consume at least 35% of the feedstock to 

provide the process heat alone [9]. Not only does this decrease the process efficiency, but carbon 

converted to CO2 from partial combustion will most likely be released to the atmosphere rather 

than stored in the final product, which increases the carbon footprint of the process. Additionally, 

the large quantity of CO2 generated during the combustion process dilutes the product stream and 

decreases the heating value. If pure oxygen is not available on-site, the products are further 

diluted with nitrogen from the air, resulting in product gas with a low heating value. 

Allothermal gasification is an alternative to traditional gasification that allows for a larger 

portion of the carbon in the feedstock to be stored as desirable products. Steam or CO2 is used as 

an oxidant in the place of oxygen and heat is supplied externally to drive the endothermic 

reactions. If a renewable heat source such as concentrated solar thermal energy is used, it is 

possible to design a process in which all of the carbon in the biomass is converted to desirable 

products. Additionally, an intermittent renewable source of heat can ultimately be stored as a 

fungible commodity. One potential drawback to allothermal gasification is that heat must be 
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transferred into the reactor. The low inherent thermal conductivity of biomass makes this 

difficult. 

1.3 Solar thermal gasification 

Concentrated solar thermal energy was used as early as the 19
th

 century as a method to 

produce steam from the sun’s rays. Unlike photovoltaic cells which convert the sun’s energy into 

electricity, concentrated solar uses large mirrors to focus the sun and generate intense heat. With 

the energy crisis of the 1970’s came a wave of innovation in the field of renewable energy, and 

the idea to combine concentrated solar with gasification technology was born [5]. D. W. Gregg 

of Lawrence Livermore Laboratories was a pioneer in the field and developed a simple reactor 

design based on direct irradiation of a fixed bed of coal.  He was able to show that up to 48% of 

the incident solar energy could be stored in the product gas, and that the energy in the product 

gas was 80% from the feedstock and 20% from solar [10]. M. J. Antal of Princeton University 

was another pioneer in the field.  His work included an investigation of biomass pyrolysis in a 

quartz drop tube reactor located at the focal point of a large solar concentrator.  A major setback 

was insufficient residence time.  It was advised that greater attention be paid to two phase flows 

in future reactor designs.  As a result of the limited residence time only 50% conversion 

efficiency was obtained [11]. 

Currently, the majority of the work on solar thermal biomass gasification takes place at 

ETH Zurich under Aldo Steinfeld and here in Alan Weimer’s lab. Our group has developed a 

multi-tubular reflective cavity reactor that is currently undergoing testing and analysis [12]. In 

this reactor opaque tubes are irradiated with concentrated solar to heat a flow of aerosol particles 

inside the tubes. Steinfeld’s group has worked with a vortex flow reactor where suspended 

particles are directly heated with incoming radiation [13]. Difficulties associated with keeping 
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the quartz window clean have led them to also investigate designs using indirect irradiation [9, 

14]. 

Solar thermal gasification gains its advantage by leveraging the benefits of two distinct 

renewable energy sources. Concentrated solar is a great way to produce high quality heat, but 

heat alone cannot power our transportation system. Gasification traditionally produces its own 

heat, but in doing so valuable carbon is wasted. By using solar energy to drive the gasification 

process, low value carbonaceous waste can be converted into a more valuable product. 

An additional advantage of solar thermal gasification is the relative ease with which high 

temperatures can be obtained. With concentrated solar, temperatures of 1000-1400 ºC and above 

are easily achievable. In contrast to the traditional gasification temperatures of 700-1000 ºC, high 

temperatures allow for faster reaction kinetics, higher rates of heat transfer, and reduced tar 

production [15]. These advantages lead to smaller reactor sizes, and a higher quality product 

stream that lacks high levels of N2, CO2, and tar. 

With the advantages offered by solar thermal gasification come unknowns. The body of 

literature surrounding gasification at temperatures below 1000 °C is enormous. High 

temperature, allothermal gasification on the other hand is a relatively new field, and lacks the 

supporting literature needed to design a successful reactor. While there is commercial interest in 

large scale fuel production using solar thermal gasification, the academic community has been 

limited to proof of concept tests. More data is needed to predict the reaction rate of high 

temperature steam gasification for various biomass sources, but the traditional methods used to 

measure gasification rates often fail when applied to high temperature reactions. 
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1.4 Current methods for measuring gasification rates 

The current methods for measuring gasification rates can be roughly divided into two 

categories, slow real-time analysis, and rapid single point analysis. Real-time analysis systems 

record the reaction rate continuously and provide information about how the reaction rate 

changes with time. Single point analysis systems record a single conversion value for a given 

reaction time. 

The most commonly used method for taking real-time measurements is thermogravimetric 

analysis (TGA). TGA is used to record the mass loss of a sample that is undergoing reaction. 

Kinetic rates of char gasification have been extensively studied using TGA in the temperature 

range of up to about 1000 ºC [16, 17]. Beyond this point heat and mass transfer often has an 

effect on steam gasification [18] and on gasification with CO2 [19]. The complexities associated 

with measuring a very small mass loss at high temperatures in an atmosphere of steam, H2 and 

CO heavily influence the system cost and reliability. A high-precision balance must be housed in 

an environment of inert gas, requiring a purge stream that often makes it difficult to ensure an 

environment of 100% steam at the reaction site. Additionally, the large number of gas tight seals 

increases the chances of small oxygen leaks which are unacceptable when measuring steam-char 

kinetics. With proper use, these drawbacks can be overcome, and quality data for low 

temperature steam-char gasification can be obtained. At high temperatures, heat and mass 

transfer issues begin to dominate and the accuracy of the data begins to suffer. 

In a traditional TGA, the sample is suspended in a basket or crucible in the high 

temperature region of a furnace and mechanically connected to a balance in a protected area. For 

optimal mass transfer, a mesh basket can be used to allow diffusion through the sample holder. 

For slow reactions, the temperature of the sample and gaseous environment around the sample 
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are close to the furnace temperature and reactant gas stream. As the temperature increases, the 

reaction rate increases along with the heat consumption, reactant consumption, and product 

generation. When the reaction rate becomes fast enough and the sample is no longer in 

equilibrium with its surroundings, the measured reaction rate shifts from the true kinetic rate to a 

rate dominated by external heat and mass transfer [18]. The temperature and conditions at which 

this shift occurs varies greatly with biomass source, but few authors use TGA to measure rates 

for reactions that take place in less than a minute. 

The fixed bed is another commonly used reactor for measuring gasification rates [20-22]. 

Like TGA, fixed beds allow for the continuous measurement of reaction rate throughout time. 

Continuous measurement is achieved by monitoring the gas flow and product concentration 

exiting the system. In a fixed bed reactor, biomass char is loaded into a sample holder at a typical 

loading rate of several grams. The sample is heated to the desired reaction temperature and 

reactant gases are flowed either through or around the bed. The product gas stream is then passed 

through a condenser to remove residual water vapor, and often passed through a filter and tar 

trap. The clean gas then exits the reactor through a flow meter and the concentration of product 

gases is measured, most commonly with gas chromatography (GC). 

Fixed bed reactors are advantageous due to their simplicity and ease of use, but several 

design features of traditional fixed beds limit their applicability to high temperature rapid 

reactions. Firstly, it is extremely difficult to ensure that temperature and gas composition are 

uniform throughout the reacting bed. Low thermal conductivity and high heat of reaction can 

lead to large temperature gradients. High reaction rates and low diffusion can lead to localized 

areas of low steam and high hydrogen concentrations. Beds that are designed in the flow through 

configuration can limit the effect of gas concentration gradients if they are run in differential 
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mode. By maintaining a high reactant to product ratio it is possible to ensure relatively constant 

gas composition throughout the bed. Unfortunately this does little to help the temperature 

gradients within the bed, as the latent heat of steam is only a fraction of the reaction enthalpy.  

Secondly, the time constant associated with the flow system is generally large enough to 

severely restrict the frequency response of the system. Excess volume associated with the 

cooling region of the reactor, steam condenser, gas cleanup, and analysis system can lead to slow 

response.  

Finally, one of the most accurate and widely used methods of gas composition analysis is 

GC. To make a GC measurement, a discrete sample of the gas stream is taken and analyzed over 

a period of one to several minutes. Even with a modern micro GC, the measurement frequency is 

limited to approximately one sample per minute, making it impossible to measure reactions on 

the order of a minute or two in duration. The limitation of measurement frequency can be 

partially mitigated through the use of a rapid sample collection system that allows for offline 

measurement, but these systems are difficult and expensive to operate. A promising real-time 

alternative to GC analysis is non-dispersive infrared (NDIR). Because it is based on an optical 

measurement the response of the measurement itself is nearly instantaneous, but it is limited by 

the flow constraints mentioned above and smoothing for signal conditioning. It cannot measure 

hydrogen, but reaction rate can be estimated by monitoring the carbon containing gases CO, 

CO2, and CH4. NDIR also suffers from aliasing with compounds that have overlapping spectra 

such as water vapor, but proper gas conditioning can reduce this effect. 

Rapid single point measurements differ greatly from real time analysis. Rather than 

measuring the reaction rate over a period of time, single point measurements are made by 
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subjecting the sample to the desired reaction conditions for a specified period of time, after 

which the reaction is quenched and the sample is analyzed. Examples of single point 

measurements include wire mesh [23, 24], and drop tube reactors [25-27]. In a wire mesh 

reactor, the sample is sandwiched between two resistive heating elements and reactant gases are 

forced through the mesh. The reaction is initiated by switching on the heating elements and 

quenched by turning them off. Temperature is controlled by adjusting the current through the 

heating elements based on a thermocouple located with the sample. Jamil et al. used a wire mesh 

reactor to measure conversion after as little as 5 seconds [24].  

Drop tube reactors are continuous flow reactors that operate with concurrent gas and 

particle flow from the top to the bottom of a furnace tube. The residence time that the particles 

spend at reacting conditions is controlled by the downward gas velocity, and the slip velocity 

between the particles and the gas stream. Very short reaction times are possible, and to the 

author’s knowledge, drop tubes are the only reactors capable of measuring gasification reaction 

rates on the order of a second. If the particles are appropriately dispersed in the gas stream, heat 

and mass transfer resistances are very low.  

For both wire mesh and drop tube reactors, only one conversion value is collected per 

experiment and populating even one reaction rate vs. conversion plot would take a large number 

of experiments. To develop a detailed kinetic rate expression, the kinetic rate must be measured 

for many different conversion values at many different reaction conditions and the number of 

experiments grows to an enormous task. 
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1.5 Objectives 

The research presented in this dissertation aims to advance the state of the art in solar-

thermal biomass gasification through three specific objectives: 

1. Develop a measurement system for high temperature steam gasification of 

switchgrass char and construct and empirical rate expression to predict the kinetic 

rate as a function of temperature, steam and hydrogen concentration, and degree of 

conversion. 

2. Incorporate the empirical kinetic rate expression into a simple CFD model of a 

fixed bed gasifier and compare to experimental results. 

3. Develop a particle feeding system for pneumatic delivery of various milled biomass 

feedstocks with a particle diameter less than 150 µm to facilitate aerosol flow 

gasification studies. 

1.5.1 Gas flow measurement technique 

A primary goal of this dissertation is the development of a kinetic measurement system 

that provides a method for real time measurement of high-temperature steam-char gasification. 

In order to develop an empirical rate expression for a specific sample of biomass char, the 

system must be able to measure the reaction rate vs. the degree of conversion for a wide range of 

operating conditions. Attempts were made throughout the course of this dissertation to use 3 of 

the 4 kinetic measurement methods listed above. For one reason or another they failed to produce 

data that could lead to the development of a global rate expression to be incorporated into a CFD 

model. Work then shifted to the development of a new technique that has proved successful in 

providing the necessary data. 
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The gas flow measurement technique is based on a modified fixed bed design. The 

simplicity and ease of use of the fixed bed provided an excellent starting point for the 

development of an optimized system. The effect of mass transfer can be easily mitigated by 

ensuring a flow-through configuration with a high rate of reactant flow. By forcing a high rate of 

reactant through the bed, the reactor can be run in differential mode and it can be assumed that 

the gas concentration at any point in the bed is approximately equal to the inlet concentration. 

At high temperature and steam concentration the gasification reaction is very rapid and the 

temperature of the bed plummets nearly instantaneously due to the endothermic reaction. Under 

these conditions the reaction becomes heat transfer limited and it is difficult to know at what 

temperature the kinetic rate is being measured. After much trial and error it was found that a 

500:1 mass ratio of inert ZrO2 pellets to biomass char could dramatically reduce the temperature 

drop during gasification. 

With high reactant flow and large amounts of thermal mass the reaction of switchgrass 

char and steam is complete in approximately 20 seconds at a temperature of 1150 °C. At these 

rates the response time of our analytical system was far too long to capture the shape of the 

gasification curve. In analyzing the data we noticed that the outlet flow meter would respond 

almost instantaneously to the initiation of gasification. After an in depth investigation into the 

quality of data produced by the outlet flow meter, we determined that the flow meter alone could 

provide all of the data necessary to calculate the rate of reaction. Chapter 2 describes in detail the 

development of this kinetic measurement system. 
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1.5.2 Fixed bed steam gasification 

Fixed beds can be used not only to measure kinetics, but also as a reactor design for 

commercial gasifiers. Fixed beds are advantageous because they decouple the gas and solid 

residence time, allowing for feedstocks with minimal processing to be utilized. They are 

commonly used for autothermal gasification, but the high endothermicity of the steam-char 

reaction means that the reactor design and operation must be changed considerably for steam 

gasification.  

Heat may be transferred to the bed of particles in several ways. Direct particle irradiation 

can be used if the heat source is concentrated solar energy. Direct irradiation is the most efficient 

form of heat transfer and has been applied with success to a fixed bed of coal by D. W. Gregg 

[10]. Other researchers, attempting to avoid the difficulties associated with an optically 

transparent reactor wall, have investigated indirect particle radiation with the use of a radiation 

absorber/emitter [9]. Another method involves flowing superheated steam into the bottom of an 

adiabatic reactor, but it is very difficult to maintain high temperatures in the majority of the bed. 

As a result, the product stream can be polluted with large amounts of tar [28].  

Another potential design is the externally heated downdraft fixed bed. In this design 

biomass is added at the top of a vertically oriented tube and undergoes pyrolysis and gasification 

as it moves toward the heated zone of the reactor. The biomass is suspended in the reactor with a 

high temperature movable grate that allows ash and gases to pass through while retaining larger 

biomass pieces. This type of fixed bed and grate has been employed with success in a similar but 

autothermal downdraft reactor at the pilot scale [29]. In the proposed design, steam instead of 

oxygen is injected at the top of the reactor and moves downward through the bed of biomass. 

Any tars that are produced in the pyrolysis section are carried with the steam to the high 
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temperature section of the reactor where they undergo secondary reactions and primarily break 

down into synthesis gas. The major drawback with this design is the need to conduct heat 

through the packed bed of biomass with low thermal conductivity. 

The modeling and experimental work presented in Chapter 3 is aimed at investigating the 

potential of fixed bed gasification in an externally heated tube and demonstrating the usefulness 

of an accurate kinetic rate expression. The dimensions of the reactor are such that it could be 

easily incorporated into the multi-tubular reactor already in operation at NREL’s high flux solar 

furnace [12]. Externally heated fixed bed reactors for steam gasification have been studied in the 

past, but little work was done to investigate the inhibiting effects of heat transfer and gas 

concentration on performance of the bed [30, 31]. 

1.5.3 Feeder development 

The initial focus for this dissertation was the measurement of gasification rates of <150 µm 

biomass particles in a drop tube reactor. The lack of a commercial feeder capable of producing a 

fine dispersion of particles at the desired feed rate drove the development of a novel brush based 

feeding system. The background, design, and testing of the feeding system are described in 

Chapter 4. After preliminary testing of <150 µm particles in a drop tube, the focus of this 

dissertation shifted to minimally processed biomass char of a much larger particle size and the 

feeder system and drop tube were no longer applicable. The residence time capability of our drop 

tube reactor was on the order of 1 second, far too short to fully react large biomass particles. The 

feeder has however facilitated research by several other graduate students and undergraduates in 

our lab and continues to be a dependable and valuable piece of laboratory equipment. 
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Chapter 2 Kinetic measurements of high-temperature steam 

gasification of char using a novel measurement technique 

2.1 Abstract 

Solar thermal gasification of biomass is a promising technology that allows for operation at 

high temperature without burning a large portion of the biomass feedstock. Additionally, the 

process allows for solar energy to be stored and transported in chemical form. In order to design 

efficient solar reactors, a kinetic rate expression for high-temperature steam gasification is 

needed. Various methods have been used to measure the steam gasification rate of coal and 

biomass char at temperatures up to around 1000 °C. These conventional techniques often fail to 

collect accurate kinetic data at temperatures above 1000 °C due to heat and mass transfer 

resistance, and the time constants associated with the analysis system. In this chapter we discuss 

a novel measurement technique based on a modified fixed bed and data collected solely from a 

gas flow meter. The technique is then used to collect data over a range of reaction conditions 

between 1000 °C and 1150 °C. The Random Pore Model was found to adequately describe the 

reaction rate as a function of conversion, and the initial kinetic rate was fit to a Langmuir-

Hinshelwood expression. 
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2.2 Introduction 

Concerns about energy security and greenhouse gas emissions have driven a renewed 

interest in alternative sources of fuel. Gasification of carbonaceous material has been used for 

more than a century to produce synthesis gas, a mixture of CO, CO2, and H2. Synthesis gas can 

be burned directly for heat and electricity production, or used as a feedstock for the production of 

liquid fuels and commodity chemicals. One method to achieve the high temperatures needed for 

gasification is through the use of concentrated solar thermal energy. Using solar energy to supply 

the heat of reaction eliminates the need to burn a portion of the biomass and produces a higher 

quality synthesis gas. 

Proper design of a solar thermal gasification reactor requires detailed knowledge of the 

kinetic rate under the varying conditions in the reactor. Unfortunately, the kinetic rate of biomass 

gasification is highly dependent on the biomass source and the method of preparation. Predicting 

accurate kinetic rates for a specific biomass source based on the available literature is difficult. It 

is therefore important to measure the kinetic rate of the intended biomass under the conditions 

expected in the reactor.  

The kinetic investigation in this paper will focus on the steam-char reaction. Upon heating, 

biomass undergoes pyrolysis to produce synthesis gas, tar, and char, a material composed mostly 

of carbon and ash. In the second stage, char undergoes gasification with an oxidant such as 

oxygen or steam to produce more syngas. This reaction can be exothermic or endothermic 

depending on the oxidant used. A multitude of other reactions such as tar breakdown take place 

simultaneously, but the char gasification step is widely accepted to be rate limiting. It should be 

noted that this is an idealization and various products of pyrolysis may have an effect on the 

gasification rate [1]. 



20 

 

The conventional methods for measuring gasification rates can be roughly divided into two 

categories; rapid single-point measurements, and slow real-time measurements. Rapid 

measurement techniques utilize reactors with high rates of heat and mass transfer to react the 

biomass for a specified amount of time, usually on the order of 1 second to several minutes. The 

sample is then removed and the degree of conversion is calculated. Examples of this type of 

reactor include drop tubes [2-4] and wire mesh reactors [5]. While this method is effective in 

measuring reactions that take place over a short period of time, extensive analysis over a range of 

temperatures, gas concentrations and degrees of conversion is difficult due to the limitations 

associated with measuring only one extent of conversion per experiment. 

Real time measurement systems such as thermogravimetric analysis (TGA) [6-8] and fixed 

beds [9-13] have been widely applied to coal and biomass gasification. These methods are 

traditionally employed for reactions taking place over 5 minutes to an hour. For reaction times 

less than 5 minutes, heat and mass transfer limitations often begin to dominate, and inherent 

limitations with these systems become more apparent. Using TGA, care must be taken to avoid 

diffusional effects within the bed due to the nature of flow around the sample crucible [14]. With 

fixed beds, determining the reaction rate with high temporal resolution is difficult due to the time 

constants associated with the gas cleanup system and the analysis loop.  

The authors have experimented with a fixed bed reactor utilizing non-dispersive infrared 

(NDIR) for real-time gas analysis. After much trial and error, the response time of the system 

was reduced to a point that allowed for the observation of reactions that complete in as little as 

30 seconds. While this method provides a basis for approximating rapid reaction rates it is far 

from ideal. One modification includes increasing the gas flow through the analyzer to a level 

well above the manufacturer’s recommendations. Additionally, aliasing of water vapor with the 
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CO2 signal is an issue that is very difficult to avoid. Common desiccants such as Drierite cannot 

be used, and complete removal with a cold bath is difficult under the restrictions of high flow 

and low reactor volume.  It is therefore of interest to develop an alternative to NDIR analysis that 

can be used to measure rapid gasification reactions. 

The proposed method for measuring rapid gasification kinetics is based on a modified 

fixed bed designed to minimize the effects of heat and mass transfer. The gasification rate is 

calculated solely from the total gas flow exiting the reactor, allowing for very fast response to 

changes in the reaction rate. Because the only piece of analytical equipment that is required is a 

flow meter, the total system cost is much lower than with traditional methods. In this paper we 

use the gas flow technique to measure the steam-char reaction over a wide range of conditions 

and compare the results to select points measured with NDIR. 

2.3 Methods 

2.3.1 Gas flow measurement technique 

The gas flow measurement technique is based on the molar flow rate of gaseous reaction 

products leaving the reactor. The steam-char gasification reaction can be represented as: 

              . (1) 

In this gasification reaction, two moles of gas are created for every one mol of carbon 

consumed. If the excess water is condensed, the reaction rate of carbon can be directly measured 

by measuring the molar flow rate out of the reactor. 

 In real world systems water gas shift also occurs as follows: 
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                . (2) 

If excess steam is removed before the flow meter as it is in most reactor systems, water gas shift 

complicates the measurement of the reaction rate because one mol of CO generates two moles of 

gas. In this case three moles of gas are produced for every one mol of carbon, and the molar flow 

rate is not representative of the reaction rate. To counteract this effect the gas may be passed 

through a CO2 scrubber that removes the CO2 from the gas stream. If CO2 is removed, two moles 

of gas are generated for every one mol of carbon regardless of the extent of water gas shift. 

The suitability of this measurement technique is dependent on the residence time of the 

system due to the unique characteristics associated with measuring the gas flow rate. When a 

molecule of CO2 is first generated in the reactor it displaces another molecule of gas already in 

the system. A pressure wave is transmitted very rapidly through the condenser and CO2 removal 

system and registered on the outlet flowmeter as product gas. When that molecule then reaches 

the sorbent bed it is removed from the gas stream and subtracted from the outlet flow. Steam 

consumption contributes to a similar but opposite effect by not registering half of the reactant 

gases until they reach the condenser. When one molecule of steam reacts to form two molecules 

of product gas, one of the product molecules simply replaces the molecule of steam and is not 

registered on the outlet flowmeter until it passes through the condenser where that steam 

molecule would have been removed from the gas phase. To facilitate rapid steam condensation 

and CO2 removal, a nitrogen stream is added after the reactor to decrease the residence time of 

the gas conditioning system while maintaining an environment of 100% steam in the reactor. 
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2.3.2 Reactor design 

The theory behind the proposed measurement system is relatively simple, but the 

implementation requires care to be taken in many areas of the reactor system. Gas residence time 

and flow restrictions must be minimized to ensure accurate readings of the gas generation rate. 

Heat and mass transfer resistance must be minimized to provide the most accurate measurement 

of the kinetic rate. 

The reaction chamber is an 81 cm long alumina tube with a 2.54 cm O.D. and 1.9 cm I.D. 

suspended in a vertically oriented tube furnace. A diagram of the reactor system is shown in 

Figure 2-1. Product gases exit the reactor through a 6.4 mm tube made of inconel 600 that 

extends into the hot zone of the furnace and terminates 2 cm below a wire mesh. The wire mesh 

is held in place by supports welded to the side of the central tube. The central exhaust tube 

creates an undesirable dead zone between the inner inconel and outer alumina tube, but sealing 

this area would be very difficult without the use of purge gas. On top of the mesh, zirconia beads 

are mixed with the biomass to provide extra thermal mass and limit the temperature drop in the 

bed when the reaction is initiated. An inconel gas preheater is suspended above the reaction zone 

to adsorb radiant energy from the reactor walls and heat the incoming gas stream. Four K type 

thermocouples are located in the reaction bed; two at the bottom and two at a height of 3 cm. At 

each vertical position one thermocouple is located in the center of the bed and one at the wall. 

The vertical position of the reaction tube relative to the furnace was adjusted until the 

temperature at all locations was close to uniform. 
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Figure 2-1: Downflow fixed bed reactor: (1) Furnace cavity; (2) Reactant preheater; (3) ZrO2 and char bed; 

(4) Inconel mesh; (5) Inconel outlet tube; (6) Condenser; (7) Ice bath; (8) Condensate collection; (9) 

Condensate drain; (10) Soda lime bed; (11) Drierite; (12) Outlet flowmeter; (13), (14) Pressure transducers; 

(15) Nitrogen 3-way valve; (16) Mass flow controllers; (17) High-pressure water pump; (18) Water pre-

heater; (19) Steam generator; (20) Steam bypass 3-way valve. 
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The gas distribution system is equipped with three mass flow controllers and a custom 

built steam generator. Two mass flow controllers are used for nitrogen service and one for 

hydrogen. The system is designed such that the molar gas flow rate through the reaction tube and 

after the condenser is constant throughout the entirety of heat up and reaction. Constant flow 

ensures limited temperature changes in the bed due to changes in gas flow and quickly transports 

reactant gases through the analysis system. Rapid changes to the gas distribution are achieved 

using two 3-way valves to initiate gasification. Due to the slow response time of the mass flow 

controllers and steam generator, initiating steam flow by changing flow set points would be 

inadequate.  

Gases exiting the reactor are mixed with nitrogen flow equivalent to the steam flow and 

enter the cleanup and analysis section. First, the flow passes through a condenser in an ice bath 

with a water reservoir just large enough to hold the water from the longest experiment. After the 

condenser, a column of soda lime is used to remove the CO2 and Drierite is used to remove the 

residual water. The gas then passes through the outlet flow meter. For experiments using the 

NDIR, the soda lime and Drierite are replaced by a dry ice condenser to remove some of the 

residual water. The moisture must be reduced to limit aliasing with the CO2 signal on the NDIR, 

but Drierite cannot be used due to its affinity for CO2. Not all of the moisture is removed using 

this method, and the baseline CO2 signal with steam flow is subtracted from the data. 

Gas flow measurements are recorded using an Omega FMA series thermal based mass 

flow meter. In most cases, thermal based mass flow meters are unsuitable for measuring flows 

with variable concentrations. Fortunately, the calibration adjustment factor for the three main 

gases N2, CO, and H2 are all within 1% due to similar values for the product of specific heat 

capacity and density. Non-ideal mixing phenomena lead to a larger than predicted error when 
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measuring mixtures of nitrogen and hydrogen, but because the reaction rate is normalized by the 

total amount of gas produced, only large shifts in the CO/CO2 production ratio would have an 

effect on the measured gasification rate. Experiments performed using NDIR analysis showed 

some shift in the ratio of CO to CO2 during the course of a reaction, but a sensitivity analysis 

showed little effect on the measured rate even with changes in the ratio of carbon products. 

All experiments were performed at approximately atmospheric pressure. After accounting 

for decreased atmospheric pressure due to elevation, and slightly elevated pressure due to flow 

restrictions the system operates at an absolute pressure of approximately 0.95 bar. 

2.3.2.1 Steam generator 

Steady steam flow is a necessity in order to ensure the accuracy of measurements. No 

commercially available steam generators were found to deliver highly accurate steam flow in the 

range of 0-10 g/min at a reasonable cost. Several different steam generator designs were 

constructed and tested for consistency.  

It is difficult to directly measure the consistency of steam flow with a time scale of several 

seconds. Integral measurements may be taken using a condenser weighed before and after a fixed 

period of time to estimate the long term accuracy. Unfortunately, little information about short 

term variations can be collected using this method. Measuring the steam flow directly is difficult, 

but the outlet flow meter on the reactor system used for gasification can be used to measure 

fluctuations in the nitrogen flow while passing steam through the system. The reactor system is 

configured the same way as in gasification tests. The steam is condensed before it reaches the 

outlet flow meter, but pulsations can be detected by monitoring the variations in the nitrogen 

flowing out of the reactor. If there is a spike in the steam flow rate, a spike in the nitrogen is 
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followed by a dip when the steam pulse enters the condenser. This method was used to assess the 

short term variation of various steam generator designs. 

A syringe pump was originally used to deliver water to the reactor system by way of a 

capillary tube. The end of the capillary was inserted into the gas distribution system where 

heated nitrogen gas at roughly 150 °C was flowed past the tip. The system was extremely 

sensitive to changes in the steam flow rate, and often had large pulsations in flow due to a 

droplet forming at the outlet of the capillary tube. The droplet would continue to grow until it 

reached a point where it touched the heated walls of the nitrogen delivery system and it would 

vaporize suddenly. This issue was slightly lessened by the addition of alumina wool at the tip of 

the capillary to wick away some of the water, but steady flow was nearly impossible to achieve. 

In an attempt to further reduce the pulsations the capillary tube was also heated to approximately 

150 °C. This change resulted in even worse performance. It is likely that nucleation points within 

the capillary tube caused liquid water to be periodically ejected from the capillary into the heated 

nitrogen stream. Additionally, if the pressure in the capillary rose too high, the syringe pump 

would stall and steam flow would cease altogether.  

The failures described above led to the development of a steam generation system based on 

a Chromtech series 1500 high-pressure liquid pump, a liquid preheater, a nozzle, and a heated 

chamber. A diagram of the steam generator is shown in Figure 2-2. The HPLC pump was chosen 

over the syringe pump for the ability to pump water at high pressure. Operation at high pressure 

allowed for the use of an atomizer nozzle and a liquid preheater to bring the water to 

supercritical conditions before it enters the steam generator. In this system, Liquid water is 

pumped through a capillary tube heated to 300 ºC before passing through a nozzle and into a 

chamber heated to 250 ºC. Preheating the capillary under pressurized conditions ensured that no 
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phase transition with a discontinuous volume change would occur within the capillary. 

Preheating the fluid also decreased the amount of heat that was needed to be transferred from the 

walls inside the steam generator. Before the capillary heater was added pulsations in steam flow 

were observed. These pulsations were most likely due to droplets forming on the steam generator 

walls where the nozzle focused the majority of the spray.  

1
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2

Cross-sectional 

view

 

Figure 2-2: Diagram of the steam generator system. (1) 1” Copper tube; (2) Band heaters; (3) Nozzle; (4) 

Brass T fitting; (5) Pressure relief valve; (6) Preheater; (7) HPLC pump. 

Finding a nozzle small enough to slide inside the steam generator and maintain the 

appropriate pressure drop was difficult. No commercially available nozzles were identified so 

custom nozzles were built. The nozzles were crafted by fully crimping the end of the capillary 

tubing and filing away the crimped portion until the pressure drop was approximately 2000 psi. 

Several different nozzles were made to accommodate different steam flow rates.  



29 

 

All lines between the steam generator and the reactor are heated to approximately 150 °C. 

It is important to ensure that no section of tubing drops below the condensation point of the 

steam. Special attention must be given to preventing condensation in the 3-way steam valve and 

at mounting points. In preliminary testing, one poorly insulated mounting bracket was enough to 

cool a small section of the steam line and greatly affect the quality of the data.  

The system described above was used successfully for all experiments reported in this 

chapter. Steady steam flow was achieved in a consistent and repeatable manner.  

2.3.2.2 CO2 removal 

As described in section 2.3.2, the gas flow measurement technique requires the removal of 

CO2 from the gas stream when the water gas shift reaction occurs in any region of the reactor. 

Several different methods of CO2 removal were considered.  

Since CO2 condenses into a solid form at -78.5 ºC and CO condenses at -191.5 ºC it would 

be possible to use a cryogenic condenser to remove the majority of the CO2 from the gas stream. 

A mixture of liquid nitrogen with any of a number of other solvents could provide an appropriate 

temperature that would allow H2 and CO to pass while solidifying the CO2. As liquid nitrogen is 

readily available in most labs, it would be easy to replenish the cryogenic bath as needed. One 

drawback to this method is the dramatic temperature change and thus volume change the gas 

would experience when passing through the condenser. Additionally, removal of condensing 

solids from a high flow gas stream is very difficult and often leads to blockages. For these 

reasons the condensation method was not used. 

NaOH was also considered due to its high affinity for CO2. Unfortunately it also readily 

adsorbs water, and pellets of NaOH would quickly turn into a challenging to manage slurry. 
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Maintaining a high surface area would be difficult. It would be possible to deposit NaOH onto a 

porous inert substrate such as alumina, but an easier method was sought. 

Initial testing with zeolite MS-13x showed great results for the removal of CO2. The 

zeolite was preferred for its low toxicity and the ability to regenerate spent samples. Initial 

testing with the gasification system seemed to work, but an unexplained spike in the differential 

gas flow measurements raised concern. The initial spike in the product gas flow as shown in 

Figure 2-3 was eventually identified as an anomaly that is only present when the product gases 

are passed through the zeolite bed. It was initially hypothesized that the spike was due to an 

elevated reaction rate or unsteady steam flow. 

 

Figure 2-3: Product gas flow vs. time for gasification using the zeolite MS-13X CO2 removal system. The large 

spike at the beginning of the reaction is an artifact that is caused by the presence of hydrogen in the 

gasification products. 

The product gas flow shown in Figure 2-3 is obtained by subtracting the gas flow of a 

blank run from the total gas flow during gasification. Any perturbation in the 

adsorption/desorption characteristics of the zeolite between the gasification and blank runs 
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would be registered as an adjustment to the product gas flow. It was eventually determined that 

the introduction of a small amount of hydrogen in a background flow of nitrogen causes a spike 

identical to that seen during the gasification runs. The hydrogen in the gasification product 

stream causes the same effect, and since no hydrogen is present during the blank run, the effect is 

not canceled.  

Soda lime was identified as a alternative to the zeolite and has performed well under all 

conditions. Soda lime is traditionally used to remove CO2 from breathing gases in places like 

submarines and rebreathers. Because the soda lime does not also remove all of the moisture from 

the gas stream, a column of Drierite was used after the soda lime to remove the residual water 

vapor. 

2.3.3 Sample preparation 

Switchgrass samples were obtained from Colorado State University and chopped axially 

into approximately 1 cm sections. No other size reduction was performed. Samples were 

pyrolyzed to obtain char by heating to 1000 ºC at 20 ºC/min and holding for 20 min. Pyrolysis 

was performed in a separate reactor to prevent deposition of pyrolysis products in the kinetics 

reactor. Approximately 45 g of biomass were loaded for each pyrolysis reaction. Nitrogen at 4 

slpm was used during the process to remove the majority of volatiles produced. Elemental 

analysis was performed by Huffman Labs of Golden, CO and is listed in Table 2-1. All results 

other than drying loss are reported on a dry basis. The BET surface area is 1.74 m²/g and SEM 

images of two sections of char are shown in Figure 2-4. 
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Table 2-1: Compositional analysis of original and pyrolyzed switchgrass. All values other than drying loss are 

on a dry basis. 

 

Figure 2-4 SEM image of two char sections. 

  Switchgrass Switchgrass char 

Drying Loss 5.29% 5.74% 

Carbon 43.92% 66.54% 

H2 6.21% 1.18% 

N2 0.32% 1.53% 

Oxygen (diff) 45.80% 10.02% 

Sulfur 0.07% 0.17% 

Ash 3.68% 20.56% 

HHV (BTU/lb) 7499 9782 

100 µm 
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2.3.4 Experimental procedure 

For all experimental measurements the procedure was as follows. (1) To load the bed, 50 

mg or 150 mg of char were mixed with 25 g ZrO2 beads and loaded from the top of the reactor. 

150 mg of char were used for the slowest reactions to decrease the level of noise. (2) Two mass 

flow controllers were used to deliver a total of 8 slpm nitrogen to the top of the reactor. One 

mass flow controller was set to deliver nitrogen through a 3-way valve at a set point equivalent 

to the desired steam flow rate. The other was set to the sum of the desired nitrogen and hydrogen 

flow. (3) The heat tape, steam generator, and furnace were turned on. The furnace was set to 

ramp at 30 K/min to the desired final temperature. (4) At a time well before the reaction was 

initiated, the water flow to the steam generator was started and the steam exited through a 3-way 

valve to bypass the reactor. (5) Once the reactor temperature had nearly stabilized, a portion of 

the nitrogen flow was replaced with the desired hydrogen flow and the temperature was allowed 

to fully stabilize. (6) To initiate the reaction, both 3-way valves were switched simultaneously. 

The effect of this valve actuation was to replace a portion of the nitrogen entering the reactor 

with an equal amount of steam, sending the replaced nitrogen to the exit of the reactor. (7) After 

the reaction was complete, the valves were switched back to their original position. For the gas 

flow measurement technique, step 6 was repeated and a baseline measurement was recorded. 

2.4 Results and discussion 

2.4.1 Analysis of gas flow measurements 

The data collected during an experiment consist of gas flow measurements during the 

steam-char reaction and a blank run collected shortly after. Data from a typical run are shown in 

Figure 2-5. The first 10 seconds of the blank run are subtracted from the gasification data 

directly, after which the steady state value of the blank is used as a baseline to reduce 
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unnecessary noise. The large spike at the beginning of the experiment corresponds to the 

nitrogen in the reactor being displaced with steam. A plot of differential gas flow vs. time is 

shown in the bottom half of Figure 2-5. 

 

Figure 2-5: Steam gasification reaction at 1150 ºC and 100% steam at 0.95 bar. Top: Total reactor gas flow 

vs. time for gasification and a steam blank. Bottom: Differential gas flow corresponding to product gas 

generation. 

The degree of conversion is calculated as follows, 
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(3) 

 

where   is the cumulative amount of product gas at time t and    is the total amount of evolved 

gas for a given experiment. The reaction rate is defined as, 

 
  

  

  
 
 ̇

  
  

(4) 

 

where  ̇ is the differential volumetric flow rate.  

2.4.2 NDIR comparison to the gas flow measurement technique 

Several data points were selected to be tested with NDIR as a comparison to the proposed 

measurement technique. Results from these experiments are shown in Figure 2-6 and Figure 2-7. 

The curves obtained using NDIR closely match the experiments using the gas flow measurement 

technique. For the fastest reaction rate shown in Plot A of Figure 2-6, the data from the NDIR are 

slower to rise and overall lower than the gas flow technique. This discrepancy is most likely due 

to the back mixing that occurs in the gas cleanup and analysis loop. As the response time of the 

system increases, the measured variables become smoothed and the apparent reaction rate 

decreases. It is likely that this discrepancy will continue to increase with an increase in reaction 

rate, giving the gas flow technique an advantage for even faster reaction rates. Unfortunately 

testing at higher temperatures was not possible with the current reactor design due to the 

materials of construction.  
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Figure 2-6: NDIR (black, foreground) vs. the gas flow measurement technique with 50 mg char loading. (A) 

1150 °C, 100% H2O, (B) 1075 ºC, 20% H2O, 80% N2. 
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Figure 2-7: NDIR (black, foreground) vs. the gas flow measurement technique with 150 mg char loading. (A) 

1000 ºC, 20% H2O, 80% N2, (B) 1075 ºC, 20% H2O, 40% N2, 40% H2. 
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Although every effort was made to achieve steady steam flow, the elevated reaction rate 

shown in Figure 2-7 below 5% conversion is most likely due to small discrepancies in the steam 

flow rate. During the steam purge period shown as a large spike at the beginning of the reaction, 

very small differences in the steam flow are registered on the outlet flow meter. Once the system 

has reached equilibrium, all of the excess steam is condensed in the condenser and the baseline 

flow is the sum of N2 and H2 entering the reactor. 

An inflection point can be seen at high conversion in many of the NDIR Plots. This 

behavior is caused from a small and slowly decreasing CO2 signal after the majority of the 

reaction had completed. If the NDIR plots are created using the CO signal there is no longer an 

inflection point. It is likely that the small CO2 signal is actually water vapor. While every effort 

was made to remove the residual water vapor from the gas stream, the dry ice condenser was not 

able to remove as much water as is predicted by the dew point. Some of the water vapor is 

condensed to ice crystals entrained in the gas stream. Every attempt to filter these ice particles 

resulted in a blockage before the reaction was complete. For all NDIR runs, the baseline CO2 

flow post-reaction was subtracted from the CO2 concentration throughout the experiment. 

The noise of the gas flow measurement technique increases substantially at slow reaction 

rates. For the slowest reactions the sample size was increased. The experiments in Figure 2-6 

were performed using a 50 mg sample while those in Figure 2-7 used 150 mg. At very slow 

reaction rates on the order of 0.003 1/sec the gas flow technique becomes unsuitable with the 

current reactor configuration because the gas production rate is so small. With a larger 

isothermal reactor, the zirconia and char loading could be increased, and the gas flow technique 

could be applied to slower reactions. 
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2.4.3 Temperature uniformity 

Due to the highly endothermic nature of the steam-char reaction, care must be taken to 

ensure that the reaction conditions match the desired conditions of the experiment in all regions 

of the bed. Initial experiments were carried out with 1 gram of char and no inert media. The 

temperature in the center of the bed dropped nearly 50 ºC and the reaction rate was much lower 

than that measured in subsequent experiments. The char loading was reduced to 50 mg, but the 

temperature drop observed in the bed was still too high to assume that the bed was isothermal. 

In an effort to further limit the temperature drop in the bed, 25 grams of 2 mm diameter 

ZrO2 milling media were mixed with the char to add inert thermal mass. A maximum 

temperature drop of 15 ºC below the desired temperature was observed under the worst 

conditions of 150 mg char, 1000 ºC, and a gas composition of 20% steam and 80% nitrogen. The 

temperature plots for the four thermocouples located within the bed are shown in Figure 2-8.  

 

Figure 2-8: Plot of temperature vs. time at 1000 ºC, 150 mg char, and a gas composition of 20% steam, and 

80% nitrogen. Thermocouple positions: (A) Top center, (B) Top wall, (C) Bottom wall, (D) Bottom center. 
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The highest temperature drop was observed at the bottom center of the bed. 

A more typical temperature plot is shown in Figure 2-9. The majority of the bed stays 

within 5 ºC of the target temperature while the center reaches a maximum deviation of 8 ºC. 

 

Figure 2-9: Plot of temperature vs. time at 1150 ºC, 50 mg char, and a gas composition of 70% steam, and 

30% nitrogen. Thermocouple positions: (A) Bottom wall, (B) Bottom center, (C) Top center, (D) Top wall. 

2.4.4 Potential sources of error 

The normalization factor used in Equation (4) has a large impact on which variables 

introduce error into the final measurement. The value measured during the experiment is the gas 

flow rate with respect to time. In order to be the most useful for kinetic analysis, the gas flow 

rate vs. time must be converted to reaction rate vs. conversion. There are two logical candidates 

to use as the normalization factor. The first is the expected total gas flow as calculated based on 

the amount of char loaded into the reactor. The primary advantage to this method is the 
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the nitrogen from the system. On the other hand, all of the errors associated with predicting the 

amount of gas generated, measuring the flow rate accurately, and determining the mass of char in 

the bed at the time of reaction are propagated through to the final measurement. The char 

measurement is particularly important because a small and difficult to estimate amount of char is 

blown out of the bed by the high gas velocities before the reaction is initiated. 

The second normalization method and the method used in this paper as shown in Equation 

(4) is performed by dividing by the total integral gas flow. Dividing by the total measured gas 

flow cancels all errors associated with char loading and linear variations in flow measurement. 

For instance, the calibration factor on the outlet flow meter could be changed by a factor of two 

with no effect on the calculated reaction rate. However, several sources of error remain including 

non-linear variations in flow measurement, flow anomalies during the purge phase, and drifting 

of the baseline between the gasification test and the blank run. 

Non-linear variations in flow measurement can occur due to non-ideal mixing phenomena 

between hydrogen and nitrogen. While the calibration factor of 1.01 from nitrogen to hydrogen 

suggests that the two should be nearly interchangeable, this is not the case for mixtures of the 

two gases. Figure 2-10 shows the incremental change in gas flow when hydrogen is added to a 

stream of 8 slpm nitrogen. The response is linear, but the flow meter only reads 86.6% of the 

actual hydrogen flow. As stated above, linear variations in the calibration factor are compensated 

by the normalization method. If the amount of hydrogen produced per unit reaction remains 

constant no error is introduced, but if extent of the water-gas shift reaction changes during the 

experiment, errors in the measurement are possible. 
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Figure 2-10: Measured vs. actual hydrogen flow with an 8 slpm nitrogen background. 

Fortunately, the NDIR comparison experiments also determine how much the CO/CO2 ratio 

changes during the gasification run. The change in the CO/CO2 can then be used as a proxy for 
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production. The gas composition data for the NDIR experiment performed at 1150 ºC and 100% 

steam was used to estimate the error in the instantaneous kinetic rate. The error contribution from 

the combination of the hydrogen calibration factor and the water-gas shift reaction is on the order 

of 0.4%. 

Another source of error in the gas flow measurement technique is due to steam flow 
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purge phase is a larger fraction of the total reaction time. Calculating a maximum error would be 

difficult or impossible without further knowledge of the system, but practical experience with 

multiple tests suggests an error up to approximately 5%. It should be noted that any steam 

condensation in the supply lines or unsteady steam production can greatly increase this value. 

Drifting of the baseline gas flow between the gasification and the blank runs can also affect 

the accuracy of the measurement. Gas temperature, humidity, and particulate matter can all have 

an effect on the flow meter reading. With a background gas flow rate of 8 slpm, a drift of even 

0.1% can have an effect on the measured reaction rate. The primary reason for baseline drift was 

determined to be a buildup of contaminants on the laminar flow element inside the flow meter 

during the reaction and better filtering of the gas stream nearly eliminated baseline drift. Given 

the level of noise in the flow data, a drift of approximately 0.003 slpm or greater can be detected 

and compensated for. For the fastest reactions, a drift of 0.003 slpm corresponds to a maximum 

error of approximately 2%, and for the slowest reactions it is up to 8%. 

2.4.5 Model selection 

In all experimental runs, the reaction rate initially increases until approximately 30% 

conversion. This phenomena has been observed in previous studies and is often characterized 

using the random pore model (RPM) [8, 11, 15]. The random pore model can be expressed as 

     (   )√     (   )  
(5) 

 

where    is the kinetic rate at    , and   is a geometric parameter. As noted by Hüttinger and 

Merdes, applying the RPM to gasification is only a curve fitting procedure, and it is possible that 

the geometry factor can change with reaction conditions even though it is based on physical 

parameters [13]. The exact physics that cause an increase in accessible reactive sites during our 
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experiments is unknown and may encompass a variety of factors including pore enlargement, a 

buildup of catalytic metals on the surface, or removal of pore-blocking carbonaceous deposits 

created during pyrolysis.  

A total of 14 experimental runs were performed under the conditions listed in Table 2-2. 

The conditions were chosen to investigate the effect of steam alone, and to approximate the types 

of conditions found inside a real world reactor where the hydrogen concentration increases as 

steam is consumed.  

Table 2-2: Summary of reaction conditions and fitted kinetic parameters. 

Microsoft’s Excel was used to fit a single shape factor along with kinetic parameters    for each 

run. Data were weighted to evenly represent the curve when plotted against conversion. 

Weighting was necessary due to the fact that time based points are more densely populated at 

Temperature (C) Steam (%) 
Hydrogen 

(%) 
Nitrogen (%) 

Char loading 

(mg) 
k0 (1/sec) 

1150 100* 0 0 50 6.99E-02 

1150 70 0 30 50 3.66E-02 

1150 70 15 15 50 1.91E-02 

1150 20 0 80 50 6.23E-02 

1150 20 40 40 150 3.05E-02 

1075 100 0 0 50 1.56E-02 

1075 70 0 30 50 4.19E-02 

1075 70 15 15 50 2.13E-02 

1075 20 0 80 50 1.01E-02 

1075 20 40 40 150 2.66E-02 

1000 100 0 0 50 1.55E-02 

1000 70 0 30 50 8.01E-03 

1000 70 15 15 50 8.89E-03 

1000 20 0 80 150 4.83E-03 

*All percentage values at 0.95 bar total pressure 
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high values of conversion where the reaction rate is low. The data were fit over the region of 10-

100% conversion; the first 10% of the reaction was ignored because it is largely affected by 

reactor stabilization. As can be seen in Figure 2-11 through Figure 2-15, a single shape factor of 

4.3 adequately represents the data at all reaction conditions, greatly simplifying the development 

of an empirical rate expression. With a fixed value for the geometric parameter, only the initial 

kinetic rate must be fit to the reactor conditions. 

 

Figure 2-11: Reaction rate vs. conversion at 100% steam. Temperature: Top: 1150 ºC, Mid: 1075 ºC, Bottom: 

1000 ºC. Experimental data in grey with a random pore model fit in black. For all fitted curves φ = 4.3. 
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Figure 2-12: Reaction rate vs. conversion at 70% steam, 30% nitrogen. Temperature: Top: 1150 ºC, Mid: 

1075 ºC, Bottom: 1000 ºC. Experimental data in grey with a random pore model fit. For all fitted curves φ = 

4.3. 

 

Figure 2-13: Reaction rate vs. conversion at 70% steam, 15% N2, 15% H2. Temperature: Top: 1150 ºC, Mid: 

1075 ºC, Bottom: 1000 ºC. Experimental data in grey with a RPM fit. For all fitted curves φ = 4.3. 
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Figure 2-14: Reaction rate vs. conversion at 20% steam, 80% N2. Temperature: Top: 1150 ºC, Mid: 1075 ºC, 

Bottom: 1000 ºC. Experimental data in grey with a random pore model fit. For all fitted curves φ = 4.3. 

 

Figure 2-15: Reaction rate vs. conversion at 20% steam, 40% N2, 40% H2. Temperature: Top: 1150 ºC, Mid: 

1075 ºC, Bottom: 1000 ºC. Experimental data in grey with a RPM fit. For all fitted curves φ = 4.3. 
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Modeling the kinetic rate of steam-char gasification with hydrogen inhibition is often 

performed using a Langmuir-Hinshelwood type expression [6, 7, 12] first described by Gadsby 

et al. [16]. For the case of steam-char gasification the expression takes the form of 

 
   

      

              
  

(6) 

 

Where        and    are calculated using the Arrhenius type expressions, 

         (      )  (7) 

 

         (      )  (8) 

 

         (      )  (9) 

 

It should be noted that while    represents a single activation energy,    and    result from the 

subtraction of two activation energies. 

Figure 2-16 shows the curve fit for the three pre-exponential factors and activation 

energies listed above. The L-H relationship provides a good fit over a wide range of 

concentrations and temperatures. The parameters used in the curve fit are shown in Table 2-3. 

 

 



49 

 

k1 E1 k2 E2 k3 E3 

(bar s)
-1

 kJ/mol (bar)
-1

 kJ/mol (bar)
-1

 kJ/mol 

2.51E+03 112.6 6.74E-02 -37.3 3.04E-01 -36.6 
 

Table 2-3: Fitted Langmuir-Hinshelwood parameters in equations 7-9 

2.4.6 Effect of temperature and gas concentration 

Figure 2-16 demonstrates the large effect that temperature has on the reaction rate. At 

temperatures up to 1150 ºC the reaction rate follows Arrhenius type behavior suggesting kinetic 

limitation rather than external heat and mass transfer. 

 

Figure 2-16: Langmuir-Hinshelwood fit for all experimental points. Reactant gas concentrations are listed as 

percent values in the order H2O.N2.H2. 
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Steam concentration had a large positive effect under all conditions investigated. The 

reaction rate was measured at concentrations of 20%, 70%, and 100% with a balance of nitrogen 

at a total pressure of 0.95 bar.  

Hydrogen was observed to have a strong inhibitory effect on the rate of steam-char 

gasification. For identical temperatures and steam concentrations, the supplementation of 

hydrogen for a portion of nitrogen dramatically lowered the reaction rate.  This effect has large 

implications for reactor modeling due to the presence of elevated levels of reaction products in 

real world reactors. Unless a reactor is run with a very large excess of steam, the reaction rate in 

portions of the reactor will drop well below the values measured at 100% steam concentration. 

Strong hydrogen inhibition also suggests that some amount of excess steam is necessary to 

achieve high conversion without an excessively large reactor. 

2.5 Conclusions 

The kinetics of the steam-char reaction were investigated in the range of 1000 ºC to 1150 

ºC at varying concentrations of steam and hydrogen. Experiments were performed using a novel 

low-cost experimental apparatus. High reactant flow rates and inert thermal mass were used to 

minimize the effects of heat and mass transfer. Rapid measurement of the reaction rate was 

achieved using thermal based flow measurements. Using this simple technique, the reaction rate 

was continuously measured over varying levels of conversion with high temporal resolution. 

Under the conditions investigated, switchgrass char gasification can be characterized using the 

random pore model to describe the change in reaction rate with conversion, and the initial kinetic 

rate can be estimated using Langmuir-Hinshelwood kinetics.  
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Chapter 3 Experimental and numerical studies of high-temperature 

steam-char gasification in a fixed bed 

3.1 Abstract 

A transient CFD model for a small fixed bed gasifier was developed to investigate the 

feasibility of allothermal gasification in a fixed bed. The highly endothermic nature of the 

reaction necessitates the use of a two-dimensional model to capture the temperature gradients 

within the bed. The model was developed using Ansys Fluent’s porous media model with user 

defined functions to account for the presence of the reacting char. Although many dramatic 

simplifications were made in the development of the model, a set of experimental validation 

experiments has demonstrated that it is capable of predicting the overall bed reaction rate with a 

high degree of accuracy. The model’s accuracy is largely possible because of an accurate kinetic 

rate expression developed in previous work using the same biomass char sample. The model 

results suggest that rapid, high temperature steam-char gasification is possible in an externally 

heated reactor, but careful attention must be paid to the reactor dimension tangential to the 

dominant direction of heat transfer. The reactor used in this study was only 19 mm in diameter, 

yet large radial temperature gradients developed which dramatically limited the rate of reaction 

in the center of the bed. Additionally, it was shown that it is exceedingly difficult to achieve high 

steam utilization while maintaining high reactor productivity.  
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3.2 Introduction 

Computational fluid dynamic (CFD) modeling is a valuable tool for understanding the 

important parameters of gasification. The number of reactions and interactions between the gas 

and solid phase in real world reactors is enormous. Modeling all aspects of a working gasifier 

would require far more computing power than is currently available. Nonetheless, simplified 

models of real world systems can often predict key variables with a high degree of accuracy, and 

can provide valuable insight into ways of improving performance. 

Traditional autothermal fixed bed reactors have been extensively studied in the literature, 

both experimentally and using computational modeling [1-3]. In an autothermal reactor, oxygen 

is used to combust a portion of the feedstock to supply the process heat. Because the heat is 

generated within the bed, heat transfer limitations within the bed are limited. The disadvantage of 

autothermal gasification is the consumption of a portion of the feedstock and the dilution of the 

product gases with excess CO2. Piatkowski et. al. estimated that for autothermal coal gasification 

at least 35% of the feedstock must be burned to fuel the reaction [4]. 

Allothermal gasification uses steam instead of oxygen and offers an exciting alternative to 

autothermal gasification. The reaction of steam with biomass is an overall endothermic reaction 

and heat must be supplied externally. Because heat is added to the process, the calorific value of 

the product stream is higher than the feedstock, and valuable carbon resources are conserved. If 

the process heat is derived from a renewable source such as concentrated solar thermal energy, a 

completely renewable process for upgrading biomass can be realized [5]. The disadvantage of 

allothermal gasification is the need to transfer large amounts of energy into a material with an 

inherently low thermal conductivity.  
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Efficient heat transfer in allothermal gasifiers is often achieved through particle irradiation 

in an entrained flow reactor [6-8]. The radiation is provided either from the walls of the reactor 

or through a window using concentrated solar radiation. Most reactors of this type require a 

disperse cloud of particulates to achieve uniform heat transfer. This requirement limits the 

possible types of feedstock and often increases the feedstock processing cost. Another method, 

used to transfer concentrated solar thermal energy into a fixed bed, has been demonstrated with a 

top down concentrator design [4]. A silicon carbide plate is used to adsorb radiant energy and re-

radiate to the surface of a bed of char. This design has been shown to be successful, but requires 

complicated concentrator optics, and the surface area for heat transfer into the bed is limited.  

The latent heat of the gasifying agent can also be used to efficiently transfer heat into the 

char bed. Umeki et. al. have investigated the use of high temperature steam as both the gasifying 

agent and the heat carrier [9, 10]. The advantage of this system is that the heat transfer to the 

reaction site is not dependent on heat transfer through the biomass bed, effectively decoupling 

the heat transfer effects from the reactor diameter. Unfortunately, the large discrepancy between 

the heating requirements and the amount of heat carried by the steam needed for gasification 

requires the reactor temperature to be hundreds of degrees below the steam temperature. 

Experimentally, the low reactor temperature resulting from using only steam to deliver heat to 

the reactor was shown to result in a very high level of tar production. Additionally, the low 

reactor temperature will lead to very slow kinetics and an unnecessarily large reactor. 

The authors have envisioned a solar reactor where particles and gas travel downward 

through a heated tube in a fixed bed configuration. Containing the reaction in tubes allows the 

use of a more traditional solar concentrating field with tower configuration and a cavity receiver. 

The fixed bed of biomass is suspended by a moveable grate that allows ash to pass through on a 
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periodic basis. Biomass is loaded from the top of the reactor and quickly pyrolyzes to form 

synthesis gas, tar and char. The pyrolysis reaction is very rapid, leading to a fixed bed composed 

primarily of char [11]. Adequate heat transfer into the reacting bed of char is the primary concern 

with this reactor configuration. 

In this paper we investigate the feasibility of steam char gasification in an externally heated 

fixed bed reactor using a simplified transient model of a batch reactor and experimental 

validation experiments. Ansys Fluent 12.1 is used for the numerical simulations and the presence 

of the reacting bed is accounted for with the use of user defined functions (UDFs). A 2d 

axisymmetric model is used to represent the char bed and the reactor wall in the vicinity of the 

bed. The reaction time for the particles in a fixed bed configuration is compared to the reaction 

rate measured in previous work under ideal conditions. 

3.3 Experimental 

3.3.1 Experimental setup and procedure 

The reactor system used for experimental validation is similar to that reported in Chapter 2. 

Only the major design points will be listed here. A diagram of the complete system is shown in 

Figure 3-1. The char bed rests on an Inconel mesh that is held in place with Inconel supports. 

Three, 0.508 mm K type thermocouples are located within the bed; two just above the mesh in 

the center and near the wall, and one in the center at 1.9 cm above the mesh. The support system 

is inserted into the bottom of a 1.9 cm diameter alumina tube and char is loaded from the top. 

The system is run in batch mode and ash and slag are removed after every experiment.  
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Figure 3-1: Reactor diagram: (1) Furnace cavity; (2) Reactant preheater; (3) Char bed; (4) Inconel mesh; (5) 

Inconel outlet tube; (6) Condenser; (7) Ice bath; (8) Condensate collection; (9) Condensate drain; (10) 0.2 µm 

filter; (11) Outlet flow meter; (12) Booster pump; (13), (14) Pressure transducers; (15) NDIR; (16) Nitrogen 3-

way valve; (17) Mass flow controllers; (18) High-pressure water pump; (19) Water pre-heater; (20) Steam 

generator; (21) Steam bypass 3-way valve. 
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Gases exiting the reactor pass through a condenser to remove excess steam and a 0.2 µm 

filter to reduce particulates. The gases then pass through an Omega MFA series flow meter. 

After the flow meter, portion of the product stream is sent to a California Analytical Instruments 

ZRE model non-dispersive infrared gas analyzer (NDIR). Concentrations of CO, CO2, and CH4 

are measured continuously and the conversion is based on the amount of carbon that has left the 

system. While this method of gas analysis is not as accurate as gas chromatography, real time 

analysis is necessary because the reactions take place over 2-5 minutes. 

Char samples were identical to those used for the determination of kinetic rate reported in 

Section 2.3.3. The characteristics, preparation conditions, and elemental analysis can be found 

there. Char loading of 1 gram was used in all model validation experiments. The bed height was 

estimated by inserting the support platform into a clear tube of equal diameter to the reaction 

tube, and loading the char from the top as done before each experiment. A picture of the loaded 

char is shown in Figure 3-2. 

 

Figure 3-2: Char loaded into a clear tube to measure the bed height. 
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To ensure more uniform bed heights, the bottom of the tube was tapped several times before all 

measurements and experiments. The measured bed height was 3.8 cm. 

The reactor was heated to the desired set point at a rate of 30 K/min while nitrogen was 

flowed at 2 slpm through the bed to maintain an inert environment. Steam was supplied by a 

custom precision steam generator and sent to a bypass valve prior to the reaction. To initiate the 

reaction, the nitrogen flow was switched to the outlet of the reaction tube and steam was directed 

to the inlet. Rapid gas changes were achieved with the use of two 3-way valves. The reason 

nitrogen flow was directed to the reactor outlet rather than shut off was to facilitate efficient 

transport of the product gases through the analysis system.  

3.3.2 Particle characterization 

The density of the char particles was estimated by measuring the particle weight and 

approximating the void fraction in a packed bed. A cylinder of a known volume was filled with 

loosely packed switchgrass char. Two types of silica were added to measure the volume not 

occupied by the particles; ground (SIL-CO-SIL 106, 99% < 106 μm) and unground (U.S. Silica 

L-60, 99% < 425 μm). A char particle density of 181.0 kg/m
3
 was calculated and no significant 

difference was found between the ground and unground silica. The standard deviation of 6 

measurements was 23 kg/m
3
. 

 Porosity of the reactor bed was calculated separately based on the packing density in the 

reactor tube. The porosity was estimated separately from the density measurement because the 

presence of thermocouples may affect how densely the particles stack. A porosity of 0.487 was 

calculated using a particle density of 181.0 kg/m
3
, a measured bed height of 3.8 cm, 1.9 cm 

diameter, and a char loading of 1.00 g.  
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An equivalent spherical diameter was estimated using image analysis. Particles were 

loosely spread over a white sheet of paper with a printed grid of a known size. Images were 

analyzed with ImageJ software. ImageJ returns the length and width of an ellipse with an 

equivalent surface area. Since the majority of the particles are rectangular when viewed lying 

flat, these numbers were adjusted to fit a rectangle of equal area. Particles were then counted and 

weighed to determine an average particle weight. Using the previously calculated density of 181 

kg/m
3
, an average particle volume was calculated. Assuming rectangular cuboid particles, a 

mean thickness and surface area was calculated. A sphere with the equivalent surface are to 

volume ratio was found to have a diameter of 0.77 mm. 

3.4 Model 

Ansys Fluent is a powerful tool for performing numerical simulations in reacting flow 

systems. The goal of our current modeling work is to develop a model to assess the feasibility of 

steam-char gasification in a fixed bed.  

In this model, the presence of the char bed is represented using Fluent’s porous media 

model and a set of user defined functions (UDFs). The following assumptions are made: 

 Incompressible flow 

 Uniform particle size, porosity, and char composition 

 Bed properties (porosity, particle size, specific heat) except the solid density do not 

change over time 

 Thermal equilibrium between the particles and gas 

The governing equations are covered in extensive detail in the Fluent operator’s manual 

[12]. Fluent’s code allows for the definition of properties, boundary conditions and source terms 

through simple C programs that can access the variables used in the simulation. These functions 
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were used to define the kinetic rate, effective thermal conductivity, and heat and mass source 

terms. Mass source terms were used to account for the consumption of steam and generation of 

hydrogen and carbon monoxide. An enthalpy source term was used to account for the heat of 

reaction. In addition, a user defined scalar (UDS) was defined to track the degree of conversion 

for all areas of the bed. 

The development of the UDFs for the effective thermal conductivity, the heat of reaction, 

char heat capacity, and the porous media constants can be found in Appendix A. Michael’s work 

was performed at the University of Colorado under my guidance for the fulfillment of a master’s 

degree in mechanical engineering under Aldo Steinfeld at ETH Zurich. 

3.4.1 Mesh and boundary conditions 

A diagram of the mesh and boundary conditions are shown in Figure 3-3. A two-

dimensional axisymmetric mesh was designed to take into account the thermal inertia of the 

alumina tube. Initial modeling work neglected the effect of the alumina tube and was unable to 

produce realistic results very close to the wall. With a fixed temperature boundary condition on 

the inner wall, the temperature of the bed near the wall stays unrealistically high. With a fixed 

radiation temperature, the inner wall temperature was predicted to drop nearly instantaneously. 

Incorporation of an alumina wall that receives external radiation and extends above and below 

the bed drastically improved the near wall temperature effects. The length of the wall was chosen 

to extend far beyond the region that conducts heat into the bed. 
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Figure 3-3: Diagram of the mesh and boundary conditions.  

Predicting the steady state behavior of a continually replenished bed would be difficult 

without extensive knowledge of the solid flow characteristics of partially reacted char. Instead, a 

transient model of a stationary fixed bed was developed. At time t = 0, the char bed and alumina 

walls start at the same temperature as the externally applied radiation. Steam flow at the desired 

rate crosses the inlet boundary, and the initial steam concentration in the bed is 100%. 
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3.4.2 Kinectic model 

Initial experimental and modeling work highlighted the need for a precise kinetic rate 

equation. The measured rate of char gasification varies dramatically between different char types 

and even different measurement techniques. It is nearly impossible to use a rate parameter found 

in the literature to obtain modeling results that closely match experimental data. Additionally, 

attempts to measure the kinetic rate under controlled conditions can lead to disappointment if 

care is not taken to avoid the effects of heat and mass transfer.  

The authors tested several different reactor configurations with the intent of measuring the 

kinetic rate under conditions of known temperature and gas composition at 1000-1150 ºC. Very 

fast reaction rates were obtained with 1 g of biomass spread over a 4.57 cm diameter mesh. This 

configuration resulted in a bed approximately 6 mm in depth. It was assumed that at high 

temperatures the radiative heat transfer to the particles would be sufficient to keep them from 

appreciably dropping in temperature. The effect of hydrogen inhibition was ignored with the 

hope that a simple model could answer questions at the proof of concept level. The modeling 

results using the kinetic rate obtained in this manner failed to adequately match experimental 

data from fixed bed experiments. Further analysis showed that there were temperature limitations 

even in a thin bed, and hydrogen produced during the reaction has a strong inhibitory effect on 

the reaction rate. 

 Extensive work was performed in an attempt to ensure isothermal conditions and a well-

defined hydrogen concentration during rate measurement. A rate equation dependent on the 

temperature, steam concentration, hydrogen concentration, and degree of conversion was 

developed. The details of these experiments can be found in Section 2.4. Only the resulting 

equations will be covered here.  
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The initial kinetic rate was found to match a Langmuir-Hinshelwood type rate equation. 

Temperature, steam, and hydrogen concentrations are taken into account. The equation used can 

be written as, 

 
   

      

              
  

(10) 

 

Where        and    are calculated using the Arrhenius type expressions 

         (      )  (11) 

 

         (      )  (12) 

 

         (      )  (13) 

 

The reaction rate was observed to increase with increasing particle conversion until about 

30% of the original mass had been reacted. As many other authors have found, the shape of the 

curve is well described by the random pore model, 

     (   )√     (   )  
(14) 

 

where    is the kinetic rate at    , and   is a geometric parameter. 

This set of equations was shown to fit well with experimental results obtained in the range 

of 1000-1150 ºC, steam concentrations of 20-100%, and hydrogen concentrations of 0-40%. 
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3.4.3 Water gas shift 

The water gas shift reaction was included using Fluent’s built in homogenous reaction 

mechanism. Water gas shift is the only homogenous reaction that is commonly included in 

gasification studies [13]. The reaction is modeled with the Arrhenius rate equation with a pre-

exponential factor of 2,778 [m
3
/s kmol], a temperature exponent of 0, and an activation energy of 

12,560 [J/mol] [14]. 

3.5 Results and Discussion 

3.5.1 Mesh validation 

A mesh validation test was performed with 1150 ºC external radiation temperature and 2 

slpm steam flow. The mesh used for all simulations contains 15,682 elements. For the mesh 

validation simulation the number of mesh elements was increased by a factor of 4 to 62,728. The 

variation in CO flow between the two simulations is shown in Figure 3-4. 

 

Figure 3-4: Percent error in the CO flow rate vs. conversion for the mesh validation simulation. 
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The error between the baseline and the refined mesh is less than 1% for conversion values less 

than 99%. After 99% conversion the CO flow is so small that large percentage variations will 

have little effect on the overall results. 

3.5.2 Flow validation 

Experimental tests and simulations were performed under 5 different conditions as shown 

in Table 3-1. Both temperature and steam flow rate had a large effect on the reaction rate.  

Temperature (ºC) Steam flow (slpm) 

1150 2.0 

1150 1.0 

1150 4.0 

1075 2.0 

1000 2.0 

  
Table 3-1: Experimental conditions for the model validation experiments. 

The main variables tracked during the simulation were the mass flow of carbon containing 

gases exiting the reactor and the temperature at several locations within the bed. A reference 

condition of 1150 °C with 2 slpm steam flow was compared to 2 runs at lower temperature and 

runs with higher and lower steam flow. Figure 3-5 shows the rate of carbon containing gases 

exiting the reactor vs. time for the reference condition for both the simulation and experimental 

validation.  
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Figure 3-5: Validation and simulation results for steam gasification of switchgrass char at 1150 ºC and 2 slpm 

steam flow. 

The simulation matches the experimental data very well for all but the first few seconds of 

the reaction. This discrepancy is due to the different starting conditions between the model and 

the experiment. In the model at time t = 0 the bed begins at 100% steam concentration and a 

temperature equal to the external radiation temperature. Under these conditions the reaction rate 

is temporarily higher until the bed cools due to the reaction. In the experiment, the bed also 

begins at approximately the external radiation temperature, but due to the flow characteristics of 

the system, the steam concentration is ramped from 0% to 100% over several seconds. At no 

point during the experiment is the entire bed at conditions of maximum temperature and steam 

concentration. Regardless of this initial discrepancy, the simulation is able to predict the flow of 

carbon containing gases with a high degree of accuracy. 
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The change in the reaction rate between the ideal conditions used for the kinetic 

measurement and the full bed is substantial. Figure 3-6 shows the conversion vs. time for the 

kinetic measurement from previous work at 1150 °C and 100% steam and the full bed run under 

the same conditions. The reaction rate for the full bed run is significantly slower than the 

measurements taken under ideal conditions with the same reactor temperature. Heat transfer, low 

steam concentration and a buildup of hydrogen dominate the reaction, lengthening the time to 

90% conversion from 16.6 to 97 seconds. 

 

Figure 3-6: Conversion vs. time for the kinetic measurement from previous work at 1150 ºC and 100% steam 

and the full bed validation and simulation results at 1150 ºC and 2 slpm steam flow. The decrease in the 

reaction rate due to temperature and gas concentration effects within the full bed is captured well by the 

model predictions.  

The model shows a high degree of accuracy in predicting the overall gasification rate as a 

function of steam flow. The degree of conversion vs. time at 1150 °C for three different rates of 

steam flow is show in Figure 3-7. The gasification rate increases substantially at higher steam 
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flow rates because of the increased steam concentration, decreased hydrogen concentration, and 

the increased thermal energy carried with the inlet steam. This observation has important 

implications for reactor design because it highlights the tradeoff between excess steam flow and 

the volumetric productivity of the reactor.  

 

Figure 3-7: Model validation experiments for three different steam flow rates at a furnace temperature of 

1150 ºC. The model predicts the overall reaction rate well over a large range of steam flows. 

The simulation results fit marginally well over a range of external radiation temperatures. 

Figure 3-8 shows the conversion vs. time for 3 different temperatures ranging from 1000 ºC to 

1150 ºC. The simulation is capable of capturing the decrease in overall reaction rate with a 

decrease in temperature, but over predicts the reaction rate substantially at lower temperatures. 

This result is not surprising as the kinetic rate was measured between 1000 ºC and 1150 ºC and 

all temperatures in the simulation with 1000 ºC external radiation were below this range. 
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Figure 3-8: Model validation experiments for three different reactor temperatures. The model fits less well at 

low temperatures because the kinetic rate was developed for temperatures of 1000 ºC or higher. For the 

experiment performed at a furnace temperature of 1000 ºC, the entirety of the reacting bed quickly cools to 

well below 1000 ºC.  

3.5.3 Temperature validation 

The temperature profiles predicted in the simulation fail to match the thermocouple 

measurements from the experimental validation. Figure 3-9 shows the experimental and 

simulation results for the temperature vs. time at various locations in the bed. The curve shape 

follows the same trend, a sharp drop in temperature followed by a slow bottom and a steep return 

to the radiation temperature. However, the magnitude of the temperature drop is much greater in 

the simulation. 
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Figure 3-9: Temperature vs. time for the model and validation experiment at 1150 ºC and 2 slpm steam flow. 

The thermocouples in the experimental setup cannot measure the particle temperature during the reaction. It 

is likely that the actual particle temperature is very near the temperature predicted by Fluent. 

The discrepancy in temperature is most likely due to the endothermic nature of the reaction 

and the assumption of thermal equilibrium between the particles and the gas. Since the 

thermocouple itself is not consuming thermal energy, it is likely that it is at a higher temperature 

than the endothermic particles. On the other hand, the temperature predicted in Fluent is much 

closer to the particle temperature because it is a heat capacity weighted average of the gas phase 

and the solid phase. Since the predicted temperature in Fluent is used to calculate the kinetic rate, 

the close match between predicted and measured conversion suggests that the predicted 

temperatures have physical relevance.  

The above conclusion rests on the reasonable but difficult to verify assumption that the 

particle temperature in the kinetic measurements was close to the reactor temperature. In the 
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kinetic measurement experiments 25 g of inert ZrO2 beads were used with 50 mg or 150 mg 

biomass char with the larger amount used for the slowest reactions. With the large mass ratio and 

direct contact between the thermal media and reacting char it is reasonable to believe that the 

char particles are close to the temperature of the ZrO2 beads and the initial reactor temperature. 

In addition, the close match between the measured and predicted kinetic rates in the full bed runs 

suggest that the kinetic rate expression is suitable for simulations in the range of 1000 ºC to 1150 

ºC. 

3.5.4 Steam utilization 

To further investigate the effect of excess steam flow, several additional simulations were 

performed. Figure 3-10 shows the percentage of utilized steam vs. the time to 90% conversion. 

As the steam utilization increases, the overall reaction rate decreases substantially. This behavior 

is expected because increased steam flow transports more thermal energy into the bed. In 

addition, a portion of the bed must simultaneously be at a very low steam concentration and high 

hydrogen concentration to achieve high steam utilization. As a consequence, a high efficiency 

allothermal gasifier must either be very large in size, or operate in such a way that a large 

amount of excess steam does not reduce the thermal efficiency. 
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Figure 3-10: Steam utilization after 10 seconds of reaction compared to the time to reach an average of 90% 

conversion in the bed for a reactor temperature of 1150 ºC. The 90% conversion time from the previous 

kinetic work is included as a reference. As the steam utilization increases the conversion time increases 

significantly. Steam flow rates from left to right in slpm: 0.5, 0.75, 1, 2, 4, 6, 8. 

3.5.5 Water gas shift 

One of the major drawbacks to the current reactor design is the lack of gas composition 

data for the gases at the exit of the fixed bed. The product gases exiting the bed are free to 

diffuse into a region of the reactor with a volume many times greater than the reacting bed and 

an ill-defined temperature profile. Because the water gas shift reaction is a homogenous reaction, 

it will occur at varying rates within the dead volume. While this does not affect the measured rate 

of conversion, it does make it impossible to estimate the extent of the water gas shift reaction 

within the bed. 

The predicted level of CO2 in the gas stream is much lower than the values measured 

during the experiments. As shown in Figure 3-11, there is a large discrepancy in the ratio of CO 
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to CO2 between the simulation and validation experiments, but the total flow of carbon 

containing gases is very close.  

 

Figure 3-11: Carbon containing product flow for the simulation and validation experiments at 1150 ºC and 2 

slpm steam. The large discrepancy in the species distribution is most likely due to the water gas shift reaction 

occurring in the dead zone beneath the char bed. 

The increased level of CO2 should also correspond to a higher level of hydrogen in the 

product gas, although difficulties with measuring the hydrogen concentration in real time 

prevented direct hydrogen measurement. If the majority of the water gas shift reaction in the 

experimental validation is occurring within the bed rather than below the bed as hypothesized, it 

could have a large effect on the reaction rate. One mole of hydrogen is produced for every mole 

of CO converted into CO2. If the hydrogen is generated within in the bed, it would inhibit the 

reaction rate and could lead to discrepancies between the model and the validation. 
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To investigate the effect of an increase in the rate of the water gas shift reaction within the 

reacting bed, a sensitivity analysis on the pre-exponential factor was performed. The pre-

exponential factor for the water gas shift reaction was increased from 2,778 [m
3
/s kmol] to 

50,000 [m
3
/s kmol]. The results for the simulation with A = 50,000 [m

3
/s kmol] are compared to 

the validation experiments in Figure 3-12.  

 

Figure 3-12: Sensitivity analysis for the water gas shift pre-exponential factor. The simulation still closely 

predicts the overall reaction rate even if all of the water gas shift reaction were occurring within the char bed. 

Increasing the rate of water gas shift within the bed only marginally decreases the overall 

reaction rate. The fit for the total carbon containing gases between the model and the 

experimental validation is still fairly good, suggesting that the location of the water gas shift 

reaction in our experimental reactor has only a minimal effect on the reaction rate. One reason 

the inhibitory effect of increased H2 from the water gas shift reaction may be minimized is the 
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increased thermal conductivity of H2. The minimum temperature in the simulations with 

increased water gas shift is 20 ºC higher than in the original simulations. This effect is partially 

due to the slightly slower rate, but may also be due to the higher thermal conductivity of H2. The 

potential ability for H2 to partially mitigate it’s inhibitory effect through increased thermal 

conductivity is an exciting observation, and should be further investigated in future work. 

3.5.6 Contour plots 

One of the strong points of CFD simulation is the ability to estimate the value of key 

variables at any location in the reactor. Analysis of contour plots generated from the simulation 

can help to develop an intuitive feel for the inner workings of the reactor. Gradients in the bed 

that would be difficult to detect through experimental means can be identified, and future reactor 

designs can be shaped around the information gained. Figure 3-13 through Figure 3-15 show the 

progression of the conversion, reaction rate, temperature, steam concentration and hydrogen 

concentration for the simulation performed at 1150 °C radiation temperature and 2 slpm steam 

flow. The time points shown are at 5, 50, and 100 seconds.  

Figure 3-13 shows the state of the reactor after 5 seconds of reaction. At this point in time 

the bed is mostly unreacted and the conversion value has little effect on the reaction rate. At the 

reactor inlet, the temperature and steam concentration are high while the hydrogen and 

conversion are low. These conditions lead to a reaction rate approaching that measured under 

ideal conditions, but only at the very inlet to the bed. Further into the bed the temperatre has 

plumeted nearly 200 °C just 1 cm below the inlet. Only 5 seconds earlier this region of the bed 

was at the same temperature as the external radiation.  
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At the 5 second time point the reaction rate is the lowest at the bottom center of the bed. At 

this location the temperature is not at a minimum, but the lower steam concentration and higher 

hydrogen concentration causes the reaction rate to be lower than at the temperature minimum. 

The temperature minimum is located in the upper region of the bed. At 5 seconds it occurs just 

below the inlet because the highest reaction rates are in the upper region of the bed. Heat transfer 

from the walls raises the bed temperature in the lower regions where the reaction rate is limited 

by the gas composition. 

As shown in Figure 3-14, after 50 seconds the temperature minimum is approximately 230 

ºC below the radiation temperature and it has shifted to a position lower in the bed. The first 

several millimeters of the bed is now completely reacted, and the contours of the reaction rate 

look dramatically different. Because the region near the inlet of the bed is fully reacted, no 

further reaction rate takes place in this area. Further into the bed the first char that the reactant 

steam reaches is at a very high level of conversion. Based on the Random Pore Model the 

reaction rate will be very low in this region. Still further into the bed the conversion reaches a 

region of approximately 30% where the random pore model predicts the highest rate of 

conversion. By this point the temperature is much lower than the external radiation and some 

hydrogen is present. These observations explain why no region of the bed is experiencing a 

reaction rate as high as that seen at the inlet for the 5 second time point. 

The radial variation in the reaction rate is somewhat apparent after 5 seconds and much 

more pronounced after 50 seconds. The region of the bed near the walls is at a higher 

temperature but similar gas composition compared the center of the reactor. These conditions 

lead to a higher overall reaction rate along the walls and an inversion in the radial steam 

concentration gradient from the top to the bottom of the reactor. Near the inlet after 50 seconds 
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of reaction, the region adjacent to the walls has fully reacted while the center still has some 

unreacted char. As a consequence, the steam concentration at the top of the reactor is higher near 

the walls than in the center. Toward the exit of the reactor this concentration gradient has 

reversed due to the higher reaction rate along the walls over the majority of the bed. 

The radial variation in the extent of conversion also decreases the accuracy of the model as 

regions of the bed become fully reacted. To simplify the model development, the bed properties 

including porosity are assumed to be constant throughout time. For values of conversion less 

than 70%, assuming a constant porosity is a reasonable assumption. Mermoud et. Al observed 

that for the reaction of charcoal and steam, the particle size varies very little up to 50% 

conversion and most of the original shape and size are retained until 70% conversion [15]. After 

that point, the particles begin to disintegrate and the porosity of the bed in those regions will 

change dramatically. It is possible that as the conversion along the walls increases and the 

porosity decreases, more steam will flow to the walls, further increasing the reaction rate and 

decreasing the porosity. As such, little confidence should be given to the contour plots in Figure 

3-15 due to the high levels of conversion in much of the bed. Since the model still predicts an 

accurate overall reaction rate at high conversion, the plots were included for comparison 

purposes. 
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3.6 Conclusions 

A transient CFD model was developed to investigate the steam-char reaction in a fixed 

reactor. Validation experiments closely matched the simulation results for the flow of carbon 

containing gases vs. time. The overall reaction rate in a fixed bed configuration was significantly 

lower the rate measured during kinetic experiments with limited heat transfer resistance and high 

reactant flow. The inhibition of the reaction rate was primarily due to a temperature decrease of 

up to 230 ºC in the center of the bed, the consumption of steam, and the buildup of inhibitory 

hydrogen.  

The simulation results also demonstrated that it is very difficult to achieve 100% steam 

utilization. As the steam flowing through the bed is consumed, the reaction rate decreases both 

due to a lower concentration of reactant, and a higher concentration of products. In order to 

achieve high steam utilization while maintaining high thermal efficiency, the reactor must either 

be large to compensate for slow kinetics, or incorporate recuperative heating with high excess 

steam flow. 
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3.8 Appendix A: Model Development 

The work presented in this appendix was performed by Michael Kruesi under my guidance 

for the fulfillment of his master’s thesis in mechanical engineering at ETH Zurich under Aldo 

Steinfeld [1]. It has been reproduced here with minor editing to account for references outside of 

the reproduced material. 

3.8.1 Heat transfer model 

In the energy equation an effective thermal conductivity is applied for the heat flux within 

the packed bed. A comparison of a broad variety of different models [2] showed that the model 

of Yagi and Kunii [3] is suitable for heat conduction calculations of coal with ash deposits at 

high temperatures. The semi-empirical model of Yagi and Kunii that is followed in this work is a 

resistance network model. By applying the diffusion approximation for radiation within a solid 

medium, it includes the radiative conductivity in the network of resistances. The heat transfer 

within a packed bed can be described as seven mechanisms that can be separated into two terms, 

a fluid flow independent and a fluid flow dependent term.  

Fluid flow independent heat transfer mechanisms: 

1. Thermal conduction through solid particle 

2. Thermal conduction through contact surface of particles 

3. Radiative heat transfer between the surfaces of particles 

4. Radiative heat transfer between neighboring voids 

Fluid flow dependent heat transfer mechanisms: 

5. Thermal conduction through the fluid film near the contact surface of two particles 

6. Convective heat transfer, solid-fluid-solid 

7. Heat transfer by lateral mixing of fluid 
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For small Reynolds numbers the boundary layers around the solid particles are thick and the 

mechanisms 1, 3, 4, and 5 are predominant. However, for large Reynolds numbers, mechanism 7 

controls the heat flux in any packed bed. Yagi and Kunii include mechanism 5 in the fluid flow 

independent term since the effect of the flow has only little effect on the mechanism. The model 

equation for the effective thermal conductivity  consisting of the conductivity for motionless 

fluids  and the conductivity due to lateral mixing of the fluid  is 

 

In the case of gas-filled voids the effective conductivity for motionless fluid can be expressed as 

 (1) 

where the radiation heat transfer coefficient through the contact surface is 

 

where  is the emissivity. The radiation heat transfer coefficient through the voids is 
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For a wide range of packings, parameter  lies between 0.82 and 1. According to existing data, 

parameter  can be approximated as 



 0.04 [2]. In order to get the best fit to the experimental 

data
1
,  was set to 0.9 and  to 0.7. 

In the present case the fluid flow is perpendicular to the direction of the main heat transfer. 

Although the Reynolds number is small, the effect of the fluid flow is not negligible. 

 

with .  is the mass velocity of the fluid based on the empty tube. For spheres, 

cylinders, pellets, or broken granules the values of  cover a narrow range of 0.1 to 0.14 for 

the different packing conditions [3]. Since no explicit values for the packed bed of char particles 

could be found in literature an intermediate value of 0.12 was chosen for . 

For the solid thermal conductivity in Equation 1 the correlation of Atkinson and Merrick 

[4] for carbonaceous material was chosen. 

 

Although this correlation is not specifically for switchgrass char, it is considered a reasonable 

approximation for chars with a high carbon content. Based on a composition-dependent 

correlation for subbituminous chars [5], a true density of  the char was estimated. 

This correlation was found to give good agreement with the experimental results (Chapter 5.1, 

Figures 19 and 20 from Michael’s thesis [1]). The internal porosity of the particles was not 

                                                 

1
 Experiments were performed in the absence of reaction in a larger bed to fit the thermal conductivity 

parameters, details can be found in Michael’s thesis. 
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considered and is part of the error. Since the sensitivity of the effective thermal conductivity to 

the solid thermal conductivity  is very small, no further attention was paid to this.  

Since no values for emissivity of switchgrass char could be found, the emissivity  was 

assumed to be 0.92, the same as the one from straw char [6] 

3.8.2 Reference Enthalpy and Reaction Enthalpy of Gasification 

The reference enthalpy of the used biomass was calculated based on the higher heating 

value (HHV) and the composition of the biomass  (Table 9, Michael’s thesis [1]). For 

the combustion reaction 

 (2) 

the enthalpy of combustion per mole of biomass ( ) can be written as 

 

where the molar mass is defined as 

 

The standard enthalpy of the biomass  can then be derived from the standard 

enthalpies of the combustion reaction (Equation 2). 

 (3) 

Since the standard enthalpies of elementary substances are 0, Equation 3 can be simplified to  
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Based on the standard enthalpy of the switchgrass char the reaction enthalpy of the gasification 

reaction can be determined. Equation 4 describes the simplified complete steam gasification of 

the switchgrass char.  

 (4) 

The enthalpy change for this reaction can is 

 

In the present case the gasification enthalpy on a daf basis was found to be 

 

The resulting source term to be introduced in the energy equation is 

 

Although sulfur is not included in the simplified chemistry applied in this model, the 

reaction enthalpy of sulfur is considered. 

3.8.3 Heat Capacity 

The heat capacity of the switchgrass char was estimated following the approach described 

by Merrick [7]. The model applies the Einstein form of the quantum theory specific heat 

description for solids. The theory assumes that all atoms in the solid oscillate independently in 

three directions with a common characteristic frequency. This leads to a specific heat for dry and 

ash free (daf) char given by 
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where 

 

The mean atomic weight  is defined as 

 

where  is the mass fraction of carbon, hydrogen, oxygen, nitrogen and sulfur on a daf basis. 

 

The effect of ash was included by assigning the following specific heat to the ash.

 

 

By assuming additivity, the specific heat of the char can be expressed as 

 
 is the mass fraction of as received char of daf char, ash and moisture. Since the present model 

assumes that the char is completely dry by the time the experiment is started only the mass 

fraction of daf char and ash are considered.  
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Figure 3-16 Specific heat switchgrass char. 

For the implementation of the specific heat into Fluent the formula for the specific heat 

was evaluated over the temperature and stored as a polynomial. The polynomial coefficients for 

the switchgrass char can be found in Table 3-. Figure 3-16 depicts the specific heat of the 

switchgrass char in dependence on the temperature.  

Table 3-2 Polynomial coefficients specific heat switchgrass char 
 

A B C D E 

-1.1235e+03 8.6873 -0.0104 5.9015e-06 -1.2771e-09 

 

3.8.4 Momentum Conservation 

In the porous media model the packed bed is not physically present. Instead, a momentum 

source term is added to the governing momentum equation to take the resistance of the medium 



Cp  ABT CT 2 DT 3 ET 4 J /kg K 
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into account. Fluent defines the source terms as shown in Equation 5 below.  is the source term 

for the i-th (x or y) momentum equation. It contains a viscous loss term (1
st
 term RHS) and an 

inertial loss term (2
nd

 term RHS). 

 (5) 

The introduced momentum sink represents the pressure gradient in the porous media. The 

pressure gradient depends upon the superficial velocity, which is defined as 

 

where  is the macro porosity. 

In the case of an isotropic porous medium, which is assumed here, Equation 5 simplifies to  

 (6) 

where  is the permeability and  the internal resistance factor. 

In order to specify the permeability and the internal resistance factor, the flow regime has 

to be determined. An interstitial Reynolds number can be used to characterize the flow regime in 

fixed beds. 

 

The flow regime can be described as creeping, viscous-inertial, or turbulent (Figure 3-17): 
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 creeping or Darcian regime 

 nonlinear-laminar or viscous-inertial regime 

 turbulent regime 

The boundaries of the different flow regimes cannot be seen as sharp boundaries since the 

transition between the different regimes is gradual. In our case the interstitial Reynolds number 

lies in the lower end of the viscous-inertial regime ( ). In this regime both viscous and 

inertial forces affect the fluid dynamics. The pressure drop depends nonlinearly on fluid velocity 

but the flow is still laminar. Therefore, a laminar solution of the flow through the packed bed of 

biomass was computed. [8] 

 

Figure 3-17 Characterization of different hydrodynamic regimes in fixed beds by means of pressure drop–

flow rate behavior [8] 
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As mentioned previously the flow through the bed is in the viscous-inertial regime. In this 

regime the simple Darcian law (Equation 7) is not valid anymore (Figure 3-). 

 (7) 

Since the Reynolds numbers is greater than 1 ( ) inertial effects need to be accounted for 

in the momentum equation. The correlation of Ergun [9] was chosen (Equation 8) to derive 

appropriate constants for the permeability and the inertial resistance factor in Equation 6. The 

Ergun equation is applicable over a wide range of Reynolds numbers and many types of 

packings. In the semi-empirical correlation, viscous losses and kinetic energy losses are assumed 

to be additive.  

 (8) 

The representative particle diameter  is defined as the diameter of a sphere with the same 

surface to volume ratio as the particles present in the reactor.  is the macro porosity of the 

packed bed. [8, 10, 11] 

This leads to a permeability of 

 

and a viscous loss coefficient of 
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to be implemented in Equation 6. 
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Chapter 4   A Novel Brush Feeder for the Pneumatic Delivery of 

Small Particles at Steady Feed Rates 

4.1 Abstract 

A novel particle feeding system capable of pneumatically dispensing dispersed particles at 

low and consistent feed rates has been developed. The feeder is based on a rotating brush that 

continually cleans the outlet orifice in a hopper filled with particles. The system was designed 

specifically for biomass particles that have been milled and sieved to less than 150 µm as a 

feedstock for laboratory scale aerosol flow reactors. This feedstock often contains a large 

fraction of high aspect ratio particles that form obstructions in many conventional feeding 

systems. In addition to biomass, the feeder has successfully fed all particles less than 150 µm 

that have been tested. Feed rates varying from 4.25 to 2420 mg/min have been obtained with 

spray dried algae at a constant carrier gas flow of 0.75 slpm, and steady and consistent feeding 

with milled switchgrass has been demonstrated. The design, construction, and preliminary testing 

of the feeding system are presented in this paper. 
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4.2 Introduction 

Feeding of dispersed particulate matter to laboratory scale reactors is a problem that has 

resisted a universal solution for decades. The highly diverse range of properties that small solid 

particles exhibit often prevents one design from working with many different particle types [1]. 

Many researchers have found themselves unexpectedly in the field of feeder design when their 

original topic was some other aspect of solids processing. For a wide range of laboratory scale 

processes, the suitability of the data collected is primarily determined by the quality of the 

particle feeding system. In many cases, optimization of the feeder can dramatically increase the 

quality of measurements. 

A particular challenge is the measurement of steam gasification reaction kinetics for fine 

biomass particles (<150 µm size fraction) at high reaction temperatures (> 1000
o
C).  The 

particles must be rapidly heated and then held at temperature for short residence times on the 

order of fractions of a second to several seconds. A most suitable reactor for carrying out this 

type of reaction is the drop tube reactor (DTR) where particles entrained in a stream of reactant 

gas flow downward through a heated transport tube. High rates of heat and mass transfer are 

achieved if the particles can be well dispersed in the reactant stream. Otherwise, the feeding of 

aggregates results in stochastic mass/heat transfer resistances that are rate limiting and intrinsic 

kinetics cannot be measured directly.  For optimal performance, it is extremely desirable to be 

able to feed a steady stream of dispersed particles independent of the amount of carrier gas flow. 

Limited carrier gas flow gives more flexibility in the range of residence times and reactant 

concentrations that is achievable.  

Some biomass types can be difficult to feed due to their light, fluffy nature. Others contain 

a high fraction of high aspect ratio particles. All contain a wide range of particle sizes when 
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prepared by conventional milling and sieving processes. Since particle size can have a large 

effect on the reaction rate, it is important that size separation does not take place inside the 

feeder. Many different feeder designs were considered, but all are non-ideal in some aspect for 

this difficult to feed particle group. 

Fluidized bed feeders (FBF) are commonly used as laboratory feeders and especially in 

situations where an agglomerative power must be broken up before feeding [2-4]. The powder is 

loaded into a bed and sometimes mixed with a milling media to aid in fluidization. Fluidization 

gas is flowed into the bed and a stream of gas and particles is extracted. While FBFs have proven 

reliable in many applications, the high aspect ratio particles present in many biomass types 

proved exceedingly difficult to fluidize on a small scale. Additionally, it is difficult to ensure that 

no size separation takes place within the bed. 

Another class of feeders relies on a suction tube that is progressively moved toward a bed 

of particles. Examples of this type of feeder are the moving cup and rotary table feeder [4-6]. 

These designs are advantageous because particles are presented to the feeder outlet at a steady 

rate regardless of their size and morphology. Size separation in the feeder is completely 

eliminated with this approach. Unfortunately, clogging at the inlet of the suction tube is a major 

concern with many biomass types, and maintaining a pressurized and air-free environment with 

sliding seals is difficult. 

Screw and rotary valve feeders have also been used in a wide range of applications [7, 8]. 

In processes where high flow rates are needed and where particle agglomeration and pulsation of 

flow are not issues, such feeders are often the best choice. For kinetic measurements in a DTR, 
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agglomeration and pulsation of flow can severely affect the heat and mass transfer, and obtaining 

small and precise flows is difficult.  

Vibratory feeders have also been used to successfully feed particles in laboratory 

conditions [8]. These designs are based on a conical hopper attached to a vibrating platform. 

Vibration of the particle bed provides fluidization like conditions and a steady stream of particles 

may be extracted from the bottom of the hopper. Unfortunately, feeding of small agglomerative 

particles can be difficult, and feeding of particles with a high aspect ratio can be nearly 

impossible if they form a bridged network inside the hopper. 

To combat the difficulties listed above, a novel brush based feeding system was developed. 

This paper details the design of the feeding system and presents some initial testing with a 

several particle types. 

4.3 Feeder design 

4.3.1 Design constraints 

Many different prototype feeding systems were developed and tested for their performance 

with biomass feedstocks. The feeders were tested against the following criteria: 

1. Steady particle flow over long periods of time. 

2. Ability to feed paritcles up to 150 µm in diameter. 

3. Limited clogging with high aspect ratio particles. 

4. Operates with approximately 1 slpm carrier gas flow. 

5. Operate at pressures up to 4 psi with an air-free environment. 

6. Feed at least 120 mg/min. 

7. Gravimetric measurement of real time feed rate. 
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8. Limited size/morphology separation in feeder. 

4.3.2 Vibratory feeder testing 

Initial testing with a vibrating hopper showed marginal results. An extensive experimental 

campaign was carried out using particles ranging in size from 150 µm to 2 mm. A hopper with 

sloped sides and a 12.7 mm outlet tube was attached to a vibrating platform as shown in Figure 

4-1. The hopper is loaded though a rear port with an O-ring seal. The top of the hopper is 

equipped with an inlet to allow purge gas to be passed through the particle bed. Initial testing 

showed that the particle flow rate at a constant vibration rate was highly erratic and frequently 

ceased altogether. Without visual inspection there was no way to guarantee that particles were 

flowing into the reactor system.  

 

Figure 4-1: Photo of the vibratory feeder. A sloped-wall hopper is attached to a vibrating platform to 

dispense particles from the bottom of the hopper. Purge gas may be flowed through the bed from the top of 

the hopper. 



99 

 

In order to continuously monitor the flow rate of particles leaving the feeder a clear piece 

of vinyl tubing was used to connect the feeder outlet to the reactor system. The tubing was fitted 

over the feeder outlet and reactor inlet and sealed with hose clamps. Because the inlet to the 

reactor is high above the laboratory floor and the particles must be able to freely fall into the 

reactor, a webcam was positioned such that the operator could view the vinyl tubing through a 

window on the control computer. The vibration rate was manually and continuously adjusted 

based on a visual inspection of the particles falling through the vinyl tube. If the feeder became 

clogged, pulsing the vibration rate to the maximum could usually restore particle flow. Due to 

the high variability of particle flow rate, experiments were carried out for anywhere from 20 to 

45 minutes, a seemingly endless amount of time for the operator to be monitoring the flow and 

adjusting the vibration rate.  

Even with the above listed disadvantages, an experimental campaign was performed to test 

the effect of several variables on the degree of conversion using milled corn stover. Data from a 

typical run are shown in Figure 4-2. Gas composition was determined by NDIR for the CO and 

CO2 and by mass spec for H2 on selected runs. Large fluctuations in the concentration of product 

gases indicated that large variations in particle flow were occurring and a more suitable method 

of feeding was needed. Additionally, the results indicated that particle size had a huge effect on 

the degree of conversion. Given the limited residence time of the laboratory scale aerosol flow 

reactor the degree of conversion was limited to about 80% for particles larger than 150 µm. To 

achieve high conversion in a small reactor we would need to be able to feed particles that were 

smaller than 150 µm. 
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Figure 4-2: Gas concentration vs. time for a gasification run using the vibratory feeder. Large variations in 

the product gas concentration are due to variability in the particle feed rate. 

The marginal effectiveness of the vibratory feeder and the lack of a commercially available 

replacement led to an extended effort to improve the hopper and particle entrainment system 

while maintaining the use of the vibratory platform. Several prototypes were developed that were 

designed to prevent the agglomeration issues seen with the original hopper when using small 

particles. The results with algae were mildly encouraging, but milled terrestrial plants such as 

corn stover and switchgrass proved impossible to feed consistently. The fibrous nature of these 

terrestrial plants leads to a high fraction of rod-like particles after conventional milling processes. 

These particles with lengths up to a millimeter would quickly accumulate at the outlet of the 

hopper to form a bridged network that completely restricts particle flow. In the end the vibrating 

platform was abandoned and the feeding system was completely redesigned. 
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4.3.3 Brush feeder design 

To combat the issue of bridging over the outlet, a novel feeder was designed such that the 

outlet is the minimum point of restriction and is continually cleaned. A diagram of the feeder is 

shown in Figure 4-3. A goat hair brush is enclosed in a fully sealed hopper. The brush covers the 

inlet and outlet holes in the bottom of the feeder. A motor is enclosed in a separately sealed 

housing that turns the brush at 0-100 rpm. As the brush rotates, particles percolate down through 

the bristles and are swept into the outlet hole by the carrier gas. The brush head may be equipped 

with wipers to continually disturb the particle bed to prevent bridging in the hopper. The top and 

bottom caps are held together with 4 threaded rods not shown in the figure. 
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Figure 4-3: Cross sectional view of the rotary brush feeder. (1) Gas and particles outlet; (2) Outlet orifice; (3) 

Carrier gas inlet; (4) Goat hair brush; (5) Wiper; (6) Aluminum conical insert; (7) Brass bearing; (8) 

Protective housing for driveshaft; (9) Driveshaft; (10) Acrylic housing; (11) Set screws; (12) Drive motor; (13) 

Particle loading port; (14) Support for motor mount (1 of 3); (15) Particle loading port stopper; (16), (17), 

(18) O-ring seals. 
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For easy to feed spherical particles, the design work ends at the exit orifice of the feeder. 

From here a 1/8” O.D. tube is used to pneumatically transport the particles to the reactor. For 

particles with a high aspect ratio, it is much more difficult to prevent bridging where the 1/8” 

feed tube must be coupled. In an ideal application there are at least two connections to be made, 

one where the flexible tube connects to the feeder, and the other where the metal reactor tube 

connects to the flexible tube. Clogging at the feeder outlet was solved by machining the brass 

outlet orifice to have a nipple that the flexible tube can slide over as shown in Figure 4-4.  
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Figure 4-4: Diagram of the exit orifice assembly: (1) Brush; (2) Exit orifice; (3) Exchangeable brass piece; (4) 

Feeder base; (5) Machined nipple; (6) Flexible outlet tube; (7) Swagelok fitting; (8) Swagelok nut; (9) 

Swagelok ferrule; (10) Particle and gas exit. 

The tube is then held in place with a bored through threaded Swagelok fitting that is screwed into 

the outlet port. The coupling at the transition between the flexible tube and the metal tubing is a 
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Swagelok coupling. This coupling performs satisfactorily under most conditions, but 

occasionally clogs with high aspect ratio particles. 

The feeder is loaded with biomass from the top through a feeding port that passes through 

the motor enclosure. This port is sealed with either an expandable stopper for low pressures, or a 

screw plug for higher pressure. Because the entire feeder is sealed, the operating pressure is only 

limited by the materials of construction. With the current polycarbonate housing, pressures up to 

35 psi have been tested. Polycarbonate was chosen for its shatter resistance and the ability to 

visually inspect the bed behavior.  

The feeder is placed on a lab balance with 10 mg precision and is enclosed in an acrylic 

housing. A housing is needed to prevent air currents in the lab from affecting the balance reading 

as shown in Figure 4-5. Long lengths of pliable 1/8” tubing and coiled copper wire make the gas 

and electrical connections to the housing. It is important to ensure that the connections have 

limited residual strain to reduce drift in the balance reading. The motor housing is equipped with 

gas connections for purging. The feeder must be fully purged with the desired carrier gas before 

use to prevent changes in weight due to displacement of air. If argon is used as the carrier gas, a 

weight change of up to a gram is possible as the chamber is purged. 
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Figure 4-5: Diagram of the brush feeder system. A mass flow controller supplies gas to the base of the feeder 

through strain relieved tubing. For testing purposes the outlet of the feeder is connected to a filter assembly. 

The rotational velocity of the brush is controlled by the voltage setting. The balance reading is recorded by 

Labview and the real-time feed rate is calculated. 

The balance value is recorded by a Labview program to analyze the data in real-time. The 

feed rate is continually calculated based on a user defined number of previous points, and the 

current balance reading is plotted on a chart. While not currently implemented, it would be 

possible to create a feedback loop to set the motor speed based on a desired feed rate. 

4.3.4 Methods of feed rate adjustment 

A multitude of adjustment mechanisms were built into the design to facilitate testing of a 

wide range of particle types. A list of adjustable parameters, the difficulty of adjustment, and the 

scale of the potential change in feed rate are listed in Table 4-1. 
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Adjustment Difficulty Magnitude 

Brush speed Easiest Medium 

Screw position Easy Small 

Bottom plate rotation Medium Large 

Orifice size Medium n/a 

Brush shaft length Hard Large 

   
Table 4-1: Methods of feed rate adjustment 

The easiest mechanism to adjust the feed rate is the rotational speed of the brush. As the 

brush speed increases, the rate at which particles are swept over the outlet orifice is increased 

and more particles exit the feeder. To facilitate the movement of new particles down through the 

bristles of the brush, an adjustable screw protrudes into the bristles. As the bristles pass over the 

top of the screw the added resistance causes them to spread apart, allowing particles to advance 

towards the bottom of the brush. This screw is adjustable from the bottom of the feeder.  

Macro adjustment of the feed rate can be controlled through three different mechanisms. 

The first and easiest method of adjustment is the rotational position of the base plate. The radial 

position of the outlet orifice with respect to the brush has a dramatic effect on the number of 

particles that exit the feeder. Engineering a method to move the location of the orifice would be 

difficult. Instead, the motor, drive shaft, and brush are located slightly off-center to allow for 

radial positioning of the outlet by rotating the baseplate with respect to the motor housing. 

Because the baseplate has 4 bolt holes in a square pattern, 4 different positions are possible. 

Another mechanism to vary the distance between the edge of the brush and the exit orifice is the 

drive shaft length. By lengthening the shaft, the brush is splayed out against the bottom plate. At 

the same time, the angle and density of the bristles change such that the bristles are more closely 

packed and oriented closer to horizontal. The final mechanism for adjustment is the size of the 
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outlet orifice. The orifice is designed as a removable brass insert to facilitate easy changes in 

diameter or shape.  

4.4 Results and discussion 

The performance of the feeder exceeded expectations on all fronts. All of the design 

criteria in Section 4.3.1 have either been met or exceeded. Numerous different organic and 

inorganic particles have been successfully fed using the rotating brush design and no particles in 

the <150 µm diameter range have proven impossible to feed.  

While steady feeding was attainable with all test particles, several areas of sensitivity were 

identified. As mentioned in the design section, the most difficult issue to overcome is the 

clogging of high aspect ratio particles in the downstream transport tube. In almost every instance 

where particle flow ceased it was due to clogging in the unions that connected the 1/8” transport 

tube to the reactor system. In cases where particle flow through the outlet orifice decreased or 

stopped it was always due to bridging in the hopper. Small adjustments to the wiper located 

above the brush and connected to the drive shaft were able to eliminate this problem.  

Maintaining an accurate measurement of the mass of particles still in the feeder was also 

difficult at times. Before the protective housing was installed small air disturbances caused by 

the building ventilation system and movement in the lab would cause discrepancies in the 

reading. Installing an acrylic housing completely eliminated the effect of air currents, but it is 

important to ensure that all connections between the feeder and the housing are as simple as 

possible. The plastic gas lines and copper electrical connections should be at least several inches 

long to reduce the amount of force they can exert and they should touch the feeder and the 

housing in only two locations. Before feeding is started, the balance reading must be allowed to 
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stabilize, sometimes taking up to several minutes to relieve strain in the plastic lines and purge 

the air from the feeder. Once feeding has started, large changes in the total system pressure can 

also affect the balance reading by changing the forces exerted by the plastic tubing.   

Spray dried algae was tested over a large range of feeder settings and performed very well 

under all conditions. An SEM image of the particle feed is shown in Figure 4-6.  

 

Figure 4-6: SEM image of the algae particles. 

All adjustable parameters were varied and tested to their maximum settings other than the outlet 

orifice size. Mass fed vs. time plots for three different settings are shown in Figure 4-7 and 

Figure 4-8. Steady particle flow was achieved at feed rates varying over several orders of 

magnitude from 0.07 to 40.3 mg/s. The experiments were carried out with a carrier gas flow of 

0.75 slpm corresponding to particle loadings of 0.0056 to 3.22 kg/m^3.  
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Figure 4-7: Mass fed vs. time for high-flow settings with algae feedstock. Feed rate: 2421 mg/min 

 

Figure 4-8: Mass fed vs. time for medium and low flow settings with algae feedstock. (A) 31.5 mg/min. (B) 

7.60 mg/min. 

Switchgrass was milled and sieved to <150 µm particles and tested under a limited set of 

conditions. An SEM of the processed switchgrass is shown in Figure 4-9.  
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Figure 4-9: SEM image of switchgrass particles. 

Mass fed vs. time for three different rotational speeds is shown in Figure 4-10. Careful 

positioning of the wiper was necessary to prevent bridging just above the outside edge of the 

brush. Without the wiper in place, a small void would form preventing the edge of the brush 

from being replenished with particles.  
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Figure 4-10: Mass fed vs. time for three different voltage settings with milled switchgrass. (A) 118 mg/min; 

(B) 49.6 mg/min; (C) 28.4 mg/min. 

Proof of concept feeding was performed with many other particle types including spent 

barley grains, rice hulls, acetylene black, and alumina. All particles were less than 150 µm in 

diameter and all were able to be fed at steady feed rates over long periods of time. Laser imaging 

was performed for algae, acetylene black and alumina using an Oxford Lasers 6301 particle 

sizing system. Images were taken just after the outlet of the 1/8” feed tube and are shown in 

Figure 4-11. High levels of dispersion were obtained for all three feedstocks.  
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Figure 4-11: Laser images taken just after the outlet of the feed tube using the rotary brush feeder. A) Spray 

dried Algae; B) Acetylene black; C) Alumina. 

A) 
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4.5 Conclusions 

A novel particulate feeding system based on a rotating brush was developed to support 

kinetic measurements in a drop tube reactor. The feeding system has performed well with all 

feedstocks tested to date. Steady flow over long time periods and with high levels of dispersion 

has been demonstrated. An added advantage of the brush feeder is the ability to feed rod like 

particles with high aspect ratios.  
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Chapter 5 Conclusions and Future Direction 

5.1 Conclusions 

A novel, low cost experimental system for measuring high temperature steam-char 

kinetics was developed. The goal of developing this system was to provide an easy way to obtain 

high quality kinetic rate data for endothermic gasification reactions that are very rapid. The 

motivation to obtain such data comes from the application of concentrated solar power to 

biomass gasification. 

The novel measurement technique developed in this work was based on a modified fixed 

bed design. A large amount of inert thermal media was used to limit the temperature drop during 

the reaction so that the bed could be assumed to be isothermal. A high rate of reactant flow was 

forced through the bed to approximate conditions of constant gas concentration.  

Under these optimized reaction conditions, the reaction rate of switchgrass char at 1150 

°C was far too rapid to use conventional methods such as gas chromatography to monitor the 

reaction rate. Initial experiments using a non-dispersive infrared (NDIR) analyzer showed that 

even real-time measurements with a factory configured NDIR were too slow to capture the shape 

of the curve for the most rapid reaction rates.  

While analyzing the data from the NDIR experiments we observed that the outlet flow 

meter on the system responded very rapidly to changes in the gasification rate. After further 

analysis it was determined that the flow meter alone could provide a measurement of the reaction 

rate with a fast response time and high temporal resolution, provided the CO2 was removed from 
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the gas stream. If the CO2 is not removed, large changes in the CO/CO2 ratio due to the water gas 

shift reaction can affect the results. 

Further work with the NDIR measurement system decreased the response time to a point 

where reasonable data could be collected and used as a comparison to the gas flow measurement 

technique. The two methods produced very similar results, with the response time of the gas flow 

measurement technique being slightly better for the fastest reaction rates. The results were 

particularly striking considering that the price of the NDIR is roughly 30 times that of the flow 

meter.  

The gas flow measurement technique was then used to collect data over a range of 

operating conditions that are relevant to solar thermal gasifiers. Using the collected data, an 

empirical kinetic rate expression was developed based on the Random Pore Model (RPM) for the 

dependence on the degree of conversion, and a Langmuir-Hinshelwood type expression to 

predict the initial kinetic rate. The Langmuir-Hinshelwood expression is capable of estimating 

the initial kinetic rate based on the temperature, steam concentration and hydrogen concentration. 

Using the empirical kinetic rate expression, a computational fluid dynamics (CFD) model 

was developed to assess the feasibility of an externally heated allothermal fixed bed gasifier. A 

two-dimensional axisymmetric model of our laboratory scale fixed bed reactor was developed 

using the commercially available Ansys Fluent software package. The presence of the fixed bed 

was incorporated using Fluent’s porous media model with user defined functions (UDFs) to 

account for the heat and mass source terms.  

The Fluent model was experimentally validated using our fixed bed reactor with a 1 gram 

loading of switchgrass char. This amount of char fills a bed approximately 19 mm in diameter 
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and 38 mm deep. Even with this very small bed, the overall reaction rate of the bed was much 

lower than that measured during the kinetic experiments with identical reactor temperatures and 

inlet steam concentrations. The inhibition of the reaction rate was primarily due to the effects of 

heat transfer, consumption of steam, and a buildup of inhibitory hydrogen. 

Further investigation was performed to determine the effect of the steam flow rate on the 

overall reaction rate within the fixed bed. Simulations were performed outside of the range of 

experimental validation to estimate the dependency of the steam utilization on the time for the 

bed to reach an average conversion of 90%. While an industrial reactor would not operate in a 

batch fixed bed mode as done in our experiments and simulations, the steam utilization after 10 

seconds of reaction was used to approximate the conditions in a continually replenished fixed 

bed. The time to 90% conversion was found to be highly dependent on the steam flow rate, and 

by extension the steam utilization at 10 seconds. A steam utilization value of 92% was achieved 

with a time to 90% conversion of 187 seconds, whereas the utilization drops to 18% to achieve 

90% conversion after 62 seconds. As a comparison, the kinetic experiments with the same 

reactor temperature and inlet steam concentration were 90% complete in 20.5 seconds.  

The steam utilization results were striking in that they highlight the tradeoff between high 

volumetric reactor productivity, and excess steam flow. To design an externally heated 

allothermal gasifier to be very efficient, the reactor volume must either be large, or else it must 

incorporate excess steam flow with heat recuperation. 

In addition to the work done with switchgrass char, a novel particulate feeding system 

capable of delivering a consistent stream of particles to an aerosol flow reactor was developed. 

To the author’s knowledge, the kinetics of biomass gasification for very small particles can only 
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be measured in an aerosol flow reactor. To obtain quality kinetic data, a very consistent stream of 

particles must be delivered with a minimal amount of carrier gas flow. 

A novel brush based feeding system was developed after numerous failed attempts to 

deliver particles with a vibrating hopper. The brush feeder is designed such that the outlet of a 

hopper is the minimum restriction between the feeding device and the reactor, and a rotating 

brush continually sweeps the outlet clean. 

The brush feeder has performed exceptionally well with all particle matter less than 150 

µm in diameter, including milled biomass containing a large number of high aspect ratio 

particles that are difficult to feed.  

5.2 Future work 

 The gas flow measurement technique combined with the modified fixed bed described in 

this thesis provide a method for measuring kinetics under conditions with reduced heat transfer 

resistance. It is impossible to completely eliminate the temperature differential between the 

particles and the reactor temperature, and future work should be done to estimate the temperature 

of the particles during the kinetic measurements. The assumption made in this work is that the 

particles are maintained at the initial bed temperature by means of intimate contact with a large 

reservoir of inert thermal media. It is difficult to verify that assumption due to the complicated 

geometry of the system, and the difficult to quantify contact area between the thermal media and 

the reacting char. 

 The empirical rate expression developed in Chapter 2 is valuable for researchers that are 

developing CFD models of potential reactor designs to be used with a yet to be determined 

biomass source. For reactors designed to operate with a specific type of biomass, it would be 
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valuable to know how the kinetic rate differs from the empirical rate expression for switchgrass 

char. Studies could be performed with various other char types to determine which parts of the 

model remain the same and which parts must be modified when the feedstock changes. It is 

possible that the geometric factor in the Random Pore Model, or various constants in the 

Langmuir-Hinshelwood fit are constant over certain broad categories of biomass. If the number 

of fitted values can be reduced, fewer experimental points will be needed to develop a rate 

expression for an arbitrary char source. 

 The computational fluid dynamics model makes two simplifying assumptions that should 

be investigated in more depth. First, the porosity and other bed properties other than density are 

assumed to be constant. The porosity can have a major effect on the gas flow in the bed, and a 

positive feedback loop may result near the walls. The char near the walls is hotter than the char 

in the center and reacts at a faster rate. As this char approaches 70% conversion it will begin to 

disintegrate and more of the steam flow will be directed to the region near the walls, further 

increasing the reaction rate. The model was still capable of predicting the reaction rate at high 

conversion, but little attention should be paid to the details inside the bed at high conversion 

unless the effect of increasing porosity with increasing conversion is included. 

 Second, the model assumes that the particle and gas phases are at equal temperatures. 

Because the reaction is endothermic, and the temperature results between the model and the 

thermocouples in the bed do not match, it is likely that this assumption is not valid. Further 

investigations using the simple model presented in this work should include two separate phases 

with a heat transfer coefficient between them to represent the interaction between the char and 

gas phase. 
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 The rotary brush feeder results with milled switchgrass are very encouraging, but further 

work should be done to reduce blockages in the tubes used to connect the feeder to the reactor. 

The use of the rotating brush has completely eliminated blockages at the outlet of the hopper, but 

occasionally particles accumulate in the couplings used to connect the feeder to the reactor 

system. To eliminate this issue, a specially designed coupling should be fabricated to provide a 

smooth transition between the feeder tube and the reactor inlet tube. One way the coupling could 

be designed is with a bored through Swagelok fitting. If the receiving tube had an inward taper 

and the feeder tube was tapered in the opposite direction, the two tubes could directly couple in 

the middle of the bored through fitting. Gas sealing would still be provided by the Swagelok 

ferrules, but the extra edges inside the coupling would be eliminated. It is conceivable that this 

modification could fix all clogging issues encountered with milled switchgrass. 
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