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Abstract 

White, Kenton (Ph.D., Economics) 

Supply, Demand and Drilling and Exploration Elasticities In Natural Gas:  An 

Empirical Estimation Framework 

Dissertation directed by Assistant Professor Jonathan E. Hughes 

Chapters 1 and 2 estimate short-run supply and demand, and drilling and 

exploration elasticities in U.S. natural gas.  The modeling framework presented 

here is the first to utilize weather-related instruments to identify both demand and 

supply-side parameters in natural gas. Weather shocks in the current month shift 

demand, permitting identification of short-run supply and drilling and exploration 

curves. Lagged, weather-induced storage shocks shift supply, permitting 

identification of the short-run demand curve.  

Preferred estimates of aggregate demand range from (-0.14) to (-0.19).  

Elasticity varies by consumer type with industrial users the most inelastic at (-0.20) 

and residential utilities the most relatively elastic at (-0.46).  Electricity generators 

exhibit elasticity of (-0.21). Estimates of supply elasticity range from (0.98) to (1.28). 

OLS regressions show that uninstrumented estimates are significantly downward 

biased. 

Estimates of drilling and exploration activity first show a statistically 

significant increase five to six months after a price shock. This is the first study to 

examine the price response dynamics of drilling activity on a time scale shorter 

than one year. Maximum elasticity for the exploratory wells is (1.0), for 

developmental wells is (1.24), and for the number of active rotary rigs is (0.57). 

Again, OLS regressions reveal that uninstrumented estimates are significantly 

downward biased.  

Chapter 3 examines the effect of entry on incumbent airline price dispersion. 

Three econometric methods are employed; a long-range event study, a control 

function and 2SLS regression. The primary hypothesis tested, is that dominant 

capacity share at the origin airport provides proportionately more protection for an 

incumbent’s premium fares. There is some evidence that this occurs.  Airlines with 

greater than 50% or 75% share are found to decrease base fares more than premium 

fares in response to competitor entry, although the effects are not statistically 

significant.  

The 2SLS regression finds that entry on a route by a low cost airline 

decreases incumbent price dispersion 26% and average fare by 68%. Entry by a 

legacy airline decreases incumbent price dispersion by 18% and average fare by 

10%.  Additionally, similar to other recent works incumbents are found to 

consistently decrease fares several quarters before entry actually occurs.
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Chapter 1 

SHORT-RUN SUPPLY AND DEMAND ELASTICITIES 

OF NATURAL GAS 

 Introduction 
The historically low price of natural gas in the last decade1 has had many 

causes. The improvement of horizontal drilling and hydraulic fracturing technology 

has led to abundant domestic supply with the discovery of large shale gas reservoirs 

in the West, Midwest and Northeast United States.  The lack of LNG export 

infrastructure and federal bans2 have prevented exports.  The completion of a 20-

year deregulation campaign by the federal government has helped to make the 

industry more dynamic and competitive than ever before.  Additionally, the gradual 

pace at which electricity generators and industrial users have adopted natural gas 

in previous decades has held growth in domestic demand low relative to production 

increases.  

                                                           
1
 With the exception of price spikes following September 11, 2001, winter of 2005/2006 and the beginning of the 

financial crisis in 2008  
2
 Bans have been lifted on select export projects beginning in May 2013 
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More recently, however, the adoption of gas in industrial and electricity 

generation sectors has begun to accelerate as users perceive that market conditions 

are likely to sustain low natural gas prices well into the future.  Adoption has 

benefited firms in these industries as well as the U.S. economy as a whole.3 In the 

summer of 2012 the percentage of electricity generated by natural gas exceeded that 

generated by coal for the first time in U.S. history.4 Natural gas has been widely 

credited with helping to reduce U.S. CO2 emissions.5,6  While the public debate spins 

around the potential ills of fracking, the industry continues to undergo structural 

changes as it adjusts to the windfall of domestic shale gas.  Gas markets are poised 

to experience a number of fundamental shifts in supply and demand and it will be 

especially valuable for market participants and policy makers to accurately forecast 

the impacts on base prices. An improved understanding of contemporary gas 

market dynamics and parameters will be necessary to make reliable price forecasts.  

In particular, an economic model which identifies the causal effect of price on 

supply and demand could improve the industry’s notoriously poor price prediction 

models.   

An additional contribution of this paper is that it replicates an estimation 

method recently developed for agricultural markets. Roberts and Schlenker (2013) 

                                                           
3
 A recent economic impact study found that natural gas contributed more than $380 billion to the U.S. economy 

4
 From the EIA  

5
 From the EPA; A kilowatt hour of electricity from natural gas has only about one third of the direct CO2 emissions 

as a kilowatt hour generated from coal or about 40% of the CO2 emissions from coal once methane leaks are taken 
into account.  
6
 From the Yale Forum on Climate Change and the Media; The transition away from coal to gas electricity 

generation is estimated to have reduced U.S. carbon emissions by 100 million metric tons since 2005. It is credited 
as the single largest contributing factor to the nearly 12% decline in U.S. CO2 emissions that occurred from 2008 to 
2013. 
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apply a similar methodology to estimating elasticities of corn, wheat, soy and rice.  

In some ways, it is natural to adjust their estimation framework to natural gas 

because of the similarities to agricultural markets. Both markets rely heavily on 

storage, are affected by weather, and influenced by expected price.  The application 

of this estimation framework across different types of markets demonstrates its 

robustness for estimating elasticities. It implies that this method may be applicable 

in other storage-dependent commodity markets; especially, where either demand or 

supply is influenced by weather (e.g. oil, natural gas liquids, cocoa, and coffee).  

Review of the Literature 
This paper’s estimation method deviates from standard practices in a long 

literature estimating natural gas elasticities beginning with Balestra and Nerlove 

(1966). In the literature, demand and supply are generally estimated alone rather 

than together.  Demand and supply are often estimated with the assumption that 

price is exogenous or by using autoregressive time series models.   Most studies do 

not account for the endogeneity of price. In fact, many demand estimation models 

explicitly assume that price is exogenous [Elkhafif (1992); Jack Wilkinson (1983); 

Beierlein, Dunn & McConnon (1981); Danielson (1978); Berndt & Watkins (1977)].  

Others assume supply is perfectly elastic or that wellhead price regulation makes 

simultaneous equation estimation impossible or inappropriate [Balestra and 

Nerlove (1966); Blattenberger, Taylor and Rennhack (1983); Gowdy (1983)]. Where 

simultaneous equations of demand and supply have been estimated they have 

tended to find negative supply elasticity [Krichene (2002); Chermak and Patrick 
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(1995)]. Still others have estimated supply and demand with cointegration and 

error correction models [Krichene (2002); Doane & Spulber (1994); Beierlin, Dunn & 

McConnor (1981)].  

A few attempts to estimate demand with instrumental variables have been 

made. Barnes, Gillingham and Hagemann (1982) estimate residential demand 

using price shocks of substitute fuels as instrumentals for natural gas price in a 

single equation model. They estimate residential demand of individual households 

rather than for local distribution companies (LDCs) and utilities, however, making 

their estimates incomparable with this paper.  There are two efforts to estimate 

demand with two-stage and three-stage least squares [Bowdy (1983); Krichene 

(2002)] which are most similar to this paper. Bowdy (1983) finds local demand 

elasticities that range from -0.12 to -1.49 for industrial gas users in New York. 

Krichene (2002) finds aggregate U.S. demand between -0.01 and -0.39; although, 

the estimates have large standard errors and are not statistically significant. In 

both studies the price of alternate fuels are the instruments used to identify 

demand. Unfortunately, these variables are weak instruments for gas price. 

Additionally, there is concern that alternate fuel prices could be correlated with 

demand and therefore not appropriate instruments.  This study improves on 

previous simultaneous equation estimations by using, exogenous, weather-related 

instruments that are strongly correlated with price. The weather-related IVs used 

in this paper generate a tighter range of elasticity estimates across model 

specifications and are statistically significant.  
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Aside from issues of price endogeneity and weak instrument problems, 

significant changes in the natural gas industry in recent years warrant a re-

estimation of price elasticities. Most academic work on this subject was undertaken 

prior to the year 2000.7 The completion of federal deregulation in 2000 and vast 

improvements in drilling technology have drastically altered the industry.  In order 

to construct an improved estimation framework it is necessary to understand how 

institutions in the industry have responded to regulation changes and the 

abundance of domestic shale gas.  

Weather, Storage and Price 
Thousands of producers, millions of consumers and well-developed spot and 

futures markets have transformed segments of the U.S. natural gas industry into 

commodity markets characterized by intense competition. As in any market, it is 

empirically difficult to separate supply and demand in the market equilibrium of 

prices and quantities because they are simultaneously determined.  

 Weather is a natural instrument for supply (Mayer 1977; Mu 2007). Severe 

cold weather in winter increases demand; this permits identification of the supply 

curve. Similarly, abnormally hot weather in the summer increases the demand for 

space cooling and natural gas electricity generation.  As long as weather-induced 

shifts in demand are unrelated to unobserved shifts in production capacity, then 

weather shocks can be used to make causal inferences about the effect of price on 

                                                           
7
 In fact all but a handful of academic studies on natural gas supply and demand elasticity were performed prior to 

1990 



6 
 

 
 

short-run supply decisions. Given the well-established effect of weather on demand, 

it is somewhat surprising that weather-based instruments have so rarely been used 

to identify short-run supply in natural gas.  

 The estimation framework proposed here relies on exogenous weather shocks 

to identify short-run demand as well as supply. The effect of storage on demand has 

been widely examined in the competitive storage literature [Scheinkman and 

Schechtman (1983); Bobenrieth H. et al (2002)]. In this paper, consecutive, 

compounding weather shocks are assumed to cause changes in storage levels; 

changes in storage levels constitute shifts in supply, which can be used to identify 

short-run demand.  

Intuition for the identification strategy is demonstrated in the following 

example. Imagine the U.S. experiences an unusually mild winter and the demand 

for natural gas is lower than anticipated; demand shifts in and price falls.  In 

response to lower prices producers allocate additional quantities to storage in the 

current month. The sensitivity, with respect to price, of producer decisions to 

reinsert gas into storage or alternatively, to sell into market, is the short-run supply 

elasticity. Short-run supply elasticity can be identified by instrumenting for spot 

price with current month weather shocks in the supply equation.  

Additionally, the increase in storage levels shifts out future supply. If storage 

increases occur in consecutive months, due to compounding weather shocks, the 

shift in supply will be significant enough to move price and identify demand. 
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Demand elasticity can, therefore, be identified by instrumenting for spot price with 

the sum of weather-induced storage shocks in previous months.   

In the simultaneous equation framework current weather shocks are used to 

identify supply elasticity if they are included in the demand equation and excluded 

from the supply equation.  Likewise, weather-induced storage shocks in previous 

months are used to identify demand elasticity when they are included in supply and 

excluded from the demand equation.  The main assumption necessary for demand 

identification is that, after controlling for current month weather shocks, the sum of 

weather-induced storage shocks in previous months affects demand only through its 

effect on price.  The main assumption necessary for supply identification, is that 

current weather shocks do not affect production capacity. The defense of these 

assumptions is the objective of the next section.  

Methodological Concerns 
Weather-induced Storage Shocks and the Exclusion Restriction  

 In order for weather-induced storage shocks to satisfy the exclusion 

restriction as instruments for price in the demand equation, they must not be 

correlated with current consumption through any mechanism other than their effect 

on spot price. This could be problematic if, consecutive months of compounding 

weather shocks are correlated with weather shocks in the month that follow.  This 

would be the case if consecutive months of storage depleting weather shocks tend to 

be followed by a month in which weather shocks drive abnormally low demand. In 

this instance, the magnitude of the demand elasticity would be overestimated; the 
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higher price driven by storage depletion shocks would appear to explain decreased 

demand that is actually due to both the price increase and the low demand weather 

shock. Fortunately, it does not seem likely that compounding weather shocks of one 

type should systematically be followed by a weather shock of the opposite type.  

Admittedly, it is more likely that compounding weather shocks would be 

systematically followed by a month with a weather shock of the same type. As 

would be the case if consecutive months of storage depleting shocks are followed by 

a month of weather shocks that drives abnormally high demand.  Here the 

magnitude of the demand elasticity would be underestimated since strong weather-

driven demand, following months of storage depletion and high prices, would seem 

to indicate extreme insensitivity to price. In this paper, I assume that the extent of 

correlation between compounding weather shocks and the weather in the following 

month in the sample is not atypical. If months of compounding weather shocks are 

correlated with severe weather in subsequent months in the sample in a way that is 

unusual, then my estimates may be biased in one of the ways described above. 

The Problem of Short-Run Endogenous Production Response  

It is necessary to address the notoriously common perception in the literature 

and elsewhere that the production rate of natural gas responds immediately to 

price. This paper argues that both short-run demand and supply elasticities can be 

derived from exogenous weather-based instruments. There is little doubt that 

weather promptly shifts demand for natural gas.  It would, therefore, be a 

particular nuisance to this paper’s identification strategy if production is also 
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endogenous to price. This section examines the issue in detail and demonstrates 

that any short-run, causal links going from price to production are minimal or non-

existent.  

Production would be endogenous to price in the short run if, for example, the 

rate at which gas is extracted from reservoirs changes more or less instantaneously 

with price. It is generally understood that drilling new wells to increase production 

capacity takes time and effort.  Producers must secure leases, mineral rights and 

drilling permits in addition to building roads, pipelines, and mobilizing drilling rigs 

and personnel. Increasing capacity immediately by drilling wells is not possible. The 

concern, with respect to endogenous production, originates from the perception that 

gas wells can be easily shut in and flow rates reduced when prices are low.  It would 

be difficult to estimate short-run supply elasticity if flow rates from existing wells 

are adjusted instantaneously with weather shocks. It should be reiterated that it is 

assumed producers can respond to weather shocks, but only by allocating more or 

less of their production to storage. This is what allows the identification of short-run 

supply.  Fortunately for econometricians, if not well owners, a number of 

institutional and technological constraints prevent systematic, industry-wide, 

production rate responses in the short-run.   

First, a significant portion of natural gas is associated gas, meaning that it is 

contained in a reservoir along with crude oil.  Gas may sit on top of the oil in a gas 

cap, it may be dispersed within the reservoir along with oil, or it may be dissolved in 

the oil itself.  The conditions of associated gas along with geologic features of the 
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well determine whether or not it can be produced separately from oil. Where 

possible, producers use reservoir management techniques to control the extraction 

rate of oil and gas separately. Generally, extraction rates of both oil and gas are set 

to favor the recovery of oil, since it is more profitable.  

Second, in the last decade, a growing proportion of natural gas production 

has come from low permeability sandstones, shales and coal bed methane. 

Production capacity of “tight gas” has increased dramatically due to improvements 

in horizontal drilling and fracking technology. Fracked wells produce at higher 

rates, but are more expensive.  There is considerable uncertainty regarding the 

ability to return “tight gas” wells to prior production levels after being reduced or 

shut in. For this reason, operating companies generally do not tamper with tight 

gas wells’ production rates.    

Third, the majority of gas wells, including conventional ones, are bound by 

layers of contractual constraints; these include leasing and royalty agreements with 

land and mineral rights owners, as well as federal and state regulations. These 

constraints can stipulate that producers sustain production at rates which optimize 

the estimated economic value of a reservoir. A decision by well operators to shut in 

or temporarily reduce flow rates could decrease the total amount of recoverable gas. 

Even in cases without contractual constraints, producers must balance a decision to 

shut in wells against potential lost reserves and the cost to reopen wells later. 

Counter to common perceptions, the decision to shut in a well is neither cheap nor 

easy and is infrequently exercised.  
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The industry’s reticence to shut in wells is readily observed.  A series of 

figures is included in the Tables and Figures section to illustrate this fact.  Figures 

1 and 2 reveal no discernible correlation between monthly production and U.S. 

population-weighted HDD and CDD. Seasonal variation in HDD and CDD is 

generally predictable; this indicates that firms do not predetermine production 

capacity to match seasonal demand. Figures 3 and 4 show production by deviations 

of HDD and CDD from climate normals; there is no correlation between weather 

shocks and production. This demonstrates that firms do not adjust production rates 

in response to weather shocks.  

Finally, figures 5 and 6 plot production on weather-related price changes. 

Weather-induced price movements are the fitted values from a regression of price 

on current month weather shocks. Figure 5 plots these predicted values of price on 

production; there is no visible correlation.  Figure 6 examines whether there is a 

delayed production capacity response. It plots predicted values of price, from a 

regression on the sum of four months weather shocks, on production; again there is 

no clear correlation. Taken together, figures 1 through 6 offer strong evidence that 

producers’ short-run production rate is fixed; total industry production does not 

adjust to seasonal demand levels, demand spikes, or exogenous movements in price.  

It is clear that institutional and technological constraints make any quick, 

industry-wide production capacity adjustments impossible or undesirable. The 

obstacles facing producers who could wish to respond quickly to demand shifts 

effectively mitigate concerns of an endogenous production capacity response in the 
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short-run. Consequently, the main decision faced by producers in the short run is 

how much gas to sell down pipeline at current prices and how much to reinsert into 

storage.   

Given time, of course, producers have the ability to change production 

capacity. Long-run production capacity is determined primarily by producer 

decisions about when and whether to drill new wells. The rate at which producers 

explore and drill new wells to replace naturally declining production capacity has 

significant implications for production rates six months to several years in the 

future. Modeling long-run supply is therefore more complex.  It cannot be identified 

using weather shocks from a single month as an instrument for price. For this 

reason, parameter estimates from this model should be used with caution when 

forecasting anything beyond short-run supply and demand response.   

Furthermore, it is likely that weather-induced storage shocks can eventually 

shift production capacity. Producers are able to complete and operate new wells 

within five to six months of a storage shock (See Chapter 2).  Weather-induced 

storage shocks will therefore, not satisfy the exclusion restriction necessary for 

estimating demand elasticity beyond the short run. Long-run elasticities of supply 

and demand are a component of natural gas markets that requires additional study 

and further adjustments to the current method, or a new estimation framework 

altogether. 
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A Formal Model of Supply and Demand 
A formal model utilizing random weather and weather-induced storage 

shocks to identify short-run supply and demand elasticities is now developed. The 

theory of competitive storage is at the foundation of this framework. Storage by 

both producers and end-users is an important feature of natural gas markets.  

Natural gas is characterized by relatively smooth production and sharp, seasonal 

consumption patterns. Storage of gas produced in off-peak months allows suppliers 

to meet high and volatile demand during winter and summer. This makes gas 

prices less variable and more autocorrelated than they would be without storage 

capabilities. In the market equilibrium, it is not necessary to set price so that the 

quantity demanded in the current month equals the current month’s supply. 

Instead, the quantity delivered to end-users zt equals production qt plus the net 

withdrawals from storage xt (withdrawals minus insertion of both producers and 

end users).  

zt = qt + xt                                                                               (1) 

Some of the quantity delivered, zt, is contractually arranged in periods 

preceding month t.  End-users actual consumption ct cannot be entirely anticipated, 

however, and is equal to the quantity contracted subject to a multiplicative i.i.d. 

random weather shock wt.  

ct = wt * λt-i                                                     (2) 
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The portion of contractually arranged delivery is λt-i with the delivery 

quantity agreed to via a forward contract in month t-i. Residual or excess demand 

that is greater than contractually prearranged quantities must be met with 

purchases in the spot market. Residual demand in the current month is rt. 

Alternatively, consumption can then be defined as,  

ct = λt-i + rt                                                                   (3) 

When rt is positive it represents the need for additional purchases from the 

spot market by end-users because consumption is greater than contracted delivery 

amounts. When the residual demand rt is negative it indicates that contractually 

arranged quantities exceed actual consumption in the current month. In this case 

all gas that is delivered but not consumed must be restored by end-users.8 

Substituting (1) into (2) and then equating this with (3) demonstrates that residual 

demand, rt, is a function of exogenous weather shocks wt; this is shown in equation 

(4).  

λt-i * (wt - 1)  =  rt                                                      (4) 

 Furthermore, short-run production, qt, is fixed and contracted quantity, λt-i, 

is predetermined, therefore, an increase in residual demand, rt, can only be 

achieved by a symmetrical and opposite movement in net withdrawals from storage 

xt.  Equation (5) states that consumption cannot exceed total quantity delivered. 

Equation (6) is equivalent; it simply restates (5) in terms of forward commitments, 

                                                           
8
 Or a storage company must be paid to store the gas for them. 
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residual demand, current production and net withdrawals from storage. This 

equation shows that rt and xt have an exact, reciprocal relationship in month t. 

ct  =   zt                  (5) 

λt-i + rt  =  qt + xt            (6) 

Atypical or unforeseen purchases made in the spot market will cause greater 

than anticipated storage level depletion. It can then be extrapolated, that a 

weather-driven decision by end-users to purchase additional gas requires a 

reciprocal action by producers; they must withdraw from storage to meet increased 

demand. The consequence, is that producer storage levels, xt, are influenced by the 

same exogenous weather shocks, wt, that influence residual demand rt. In this 

paper’s identification strategy it is assumed that several months of compounding 

weather shocks are required for the effect on storage levels to be sufficiently large to 

move price and identify demand.  

Utilization of Competitive Storage Theory  

A number of studies on competitive storage examine the effect of demand for 

inventories on commodity price. While the nuances of this literature are expansive, 

I exploit just two main ideas.  The first, explicitly detailed above in the Formal 

Model of Supply and Demand, is that storage allows consumption to be transferred 

through time. The second, is derived in Scheinkman and Schechtman (1983), 

wherein the authors demonstrate that in rational, competitive storage model 
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equilibrium, exogenous shocks are optimally divided between current consumption 

and inventory adjustments.    

 From these foundations the model diverges from the types of models most 

often depicted in the competitive storage literature.  In this model, profit 

maximizing producers and utility maximizing end-users make two, sequential 

decisions. The first decision, made by end users, is the quantity of gas, λt, they 

commit in the current month, to receive and pay for in future months. Abstractly, 

the function g(λt) can be interpreted as the perceived price risk of forward contracts 

from the point of view of end-users.  Normally, risk of forward contracts is a 

function of both quantity commitments and contract duration.  Due to low volume 

risk and increased price volatility in the last decade, however, forward contracts 

that stipulate larger quantities or longer contract durations have been perceived to 

confer greater price risk on end-users. Since this paper estimates short-run 

elasticities, increases in g(λt) are here restricted to represent increases in the 

quantity of gas only (and not the contract duration).  In other words, it increases 

perceived risk for end-users to commit to marginally larger quantities of gas at a 

future date.  The cost of binding forward contracts g(λt) is, therefore, assumed to be 

increasing and convex in quantity.  

The second decision, made by producers, is how much gas to sell in the spot 

market to meet residual demand rt.  A fraction of gas reinserted into storage, -xt, is 

lost and short-run supply decisions to increase storage must be balanced with 

consideration to convex storage cost θ(-xt), as well as estimated future revenue from 
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an expected increase in price E[pt+i]*(-xt). Gas sold down pipeline to end-users, wt * λt-

i, is consumed; this gives consumers utility u(wt * zt) and generates revenue pt * (qt + 

xt) for producers.  

The Bellman equation for the social maximization problem is therefore  

v(zt)  =  maxx(t)λ(t){u[λt * wt+1] – g(λt) + pt * (qt + xt) – ϕ(-xt) + δE[pt+1](-xt) + δ E[v(zt+1 * wt+1)]}     

subject to                                                                                                                   

 zt+1 = (λt + rt+1)                                                                                                                                 

zt ≥ 0      λt ≥ 0 

Profit maximizing producers achieve the socially efficient outcome in the 

social planner’s problem by optimally balancing the marginal cost of storage and the 

expected change in prices. Utility maximizing end users optimally balance the 

perceived risk of forward purchase commitments given expected future consumption 

and expected price. As always, the marginal utility of consumption in the social 

planner’s problem is given by spot price.  When price is low producers benefit by 

reinserting gas into storage and waiting for market conditions to improve.  As a 

result, storage levels increase shifting out future supply and lower consumers’ 

expected price for the coming months. The reverse occurs when price is high. In 

either case, producers continue to adjust storage levels until discounted future price 

equals the current price.  The decisions made by end-users are similar since they 

must choose whether to increase commitments and accept greater price risk or 

satisfy increased residual demand with additional purchases in the spot market at 

future prices and incur volume risk.  
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The key theoretical underpinning of this formalized model is that weather 

shocks affect both current consumption and future supply. Current period weather 

shocks shift demand and result in movements along the supply curve.  Weather-

induced storage shocks shift future supply and result in a movement along the 

demand curve. Essentially, it is established that weather creates exogenous 

instruments for both price and expected price. These instruments can then be used 

to identify supply and demand in a 3SLS simultaneous equation estimation. 

Instruments and the Identification Strategy    
There is substantial descriptive evidence that weather and weather-induced 

storage shocks affect price. The fact that weather drives gas demand is well known 

and accepted.  Figures 7 and 8 in the Tables and Figures section demonstrate the 

weather sensitive nature of demand.  Figure 7 shows a strong, positive relationship 

between HDD and market-wide gas consumption.  Figure 8 reveals a strong, 

positive correlation between CDD and gas consumption by electricity generators. 

This reflects the high demand for electricity during months with peak air 

conditioning use. The effects of CDD on market-wide gas consumption are more 

muted. 

Figure 9 shows the effect of weather-shocks on storage levels.  In months 

where HDD or CDD were above average (and demand was higher) storage levels 

are below average. Although the correlation is not immediately apparent, in 

regression there is a statistically significant and negative relationship between 

storage and weather shocks in the previous month.   
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Figure 10 displays the cumulative impact of weather shocks on storage. The 

sum of three months storage shocks are plotted on the sum of four months weather 

shocks; the sum of weather shocks from the three concurrent months and one 

preceding one. The relationship is visually and statistically stronger. 

Figure 11 shows the generally negative relationship between detrended, 

natural log of Henry Hub spot price and the sum of three month weather shocks.  

The detrended measure of log price is constructed by regressing it on a polynomial 

time trend and using only the residuals.     

Also, an extended number of cases in which demand elasticity is estimated 

with NYMEX futures prices are estimated and included in the Tables and Figures 

section. This is to account for the fact that end users may make forward contract 

commitments based partially on futures prices, or expected price. Figures 12 

through 15 plot detrended, natural log of NYMEX futures prices on the sum of 

weather shocks. The measures of price in each figure are the 1, 2, 3 and 4 month 

NYMEX futures price respectively. Similar to spot price, the sum of three month, 

weather-induced storage shocks are negatively correlated with futures prices. 

Descriptive evidence is widely consistent with the claim that weather shocks 

and weather-induced storage shocks generate significant, exogenous variation in 

natural gas spot and futures prices.  
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Empirical Model  
The empirical supply and demand equations are the following  

Supply:  ln(zt) = αs  + βs ln(pt) + δ∑      
   t-i + Δdxt + f(t) + ut   (1)                                                                                                                                                                                                           

Demand:  ln(qt + xt) = αd + βd ln(pt) + γwt + Δsxt + g(t) + vt    (2)                                                                            

The quantity of natural gas delivered in a given month is zt and is exactly equal 

to the sum of production and the net withdrawals from storage qt + xt. The price pt is 

the Henry Hub spot price.  In a series of extended cases the model is estimated with 

NYMEX futures prices in the demand equation. These are not the preferred 

specifications but results are included in the Tables and Figures section for 

comparison. The elasticities of supply and demand are βs and βd respectively. wt is 

the random weather shock which shifts consumption in the current period.  stort-i is 

the lagged weather-induced storage shock which shifts supply. The sum of three 

previous storage shocks is used in order to capture sufficiently large shifts in the 

supply curve. The determination over how many months to sum weather-induced 

storage shocks for the IV was made by comparing the first stage regressions using 

the sum of two, three, four, five and six previous months.  The first-stage 

regressions revealed that the sum of three preceding months’ storage shocks is the 

strongest predictor of price; it therefore results in the most precise elasticity 

estimates in stage two.  

xt are additional controls including the price of oil, net gas imports and a 

variable for the length and severity of hurricane supply disruptions; hurricane 

disruptions are included only on the supply side. f(t) and g(t) are year fixed effects or 
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polynomial time trends included to control for technological change, population 

growth and general macroeconomic conditions. ut and vt are the error terms and 

include all unobserved factors that shift supply and demand.  

Henry Hub spot price (or NYMEX futures prices in the extended cases) is the 

key endogenous variables on the RHS of supply and demand equations.  One clear 

way in which this identification strategy represents an improvement over previous 

estimation methods is that it enables weather-related instruments to be used for 

price in both the supply and the demand equation. By contrast, as previously 

stated, most studies assume price is exogenous. Weather is an ideal instrument 

since it is unlikely to be correlated with unobserved shifts in production capacity or 

other, non-weather related demand shifts that affect equilibrium prices. When the 

endogeneity of price is not addressed, elasticity estimates of supply and demand 

would most likely be closer to zero.  This occurs because an unobserved, positive 

shift in supply decreases price; this creates a negative correlation between the 

supply error term and price. Similarly, an unobserved, positive shift in demand 

increases price; this creates a positive correlation between the demand error term 

and price. Both circumstances make demand and supply appear less responsive to 

price. Alternatively, if unobserved supply and demand shifters in the error terms, ut 

and vt, are correlated with each other, then biases could go either way.  OLS 

estimates in this paper and most previous studies do, however, report elasticities 

closer to zero.  
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Additionally, one variation of the model specifications uses gross storage 

shocks as an instrument instead of weather-induced storage shocks. The benefit of 

gross storage shocks is that they are a stronger predictor of price and generate 

demand estimates with smaller standard errors. Since much of the total variation 

in storage levels is due to factors other than weather, however, this instrument is 

less credibly exogenous.  In order to minimize the potential for correlation between 

gross storage shocks and demand, gross storage shocks are detrended with a quartic 

polynomial time trend. The detrended variable is less likely to be correlated with 

general macroeconomic conditions that could also be correlated with demand.   

First Stage Regressions 

In the supply equation, Henry Hub spot price is used as the measure of the 

U.S. market spot price, pt. This is appropriate because Henry Hub is the most 

important natural gas distribution center in North America.  Prices reported at 

Henry Hub are generally used as the base price for all other trading centers.  All 

movements in other local market prices used by producers are closely correlated 

with movements in Henry Hub spot prices. 

The first-stage of supply regresses natural log of Henry Hub spot price on 

HDD and CDD shocks, lagged weather-induced storage shocks, and a polynomial 

time trend of order I and the control variables. Current month weather shocks are 

the instruments for spot price that identify short-run supply and are excluded in 

stage two. The first stage supply regression is: 
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ln(pt) =  πs0 + γwt + Δxt + δ∑      
   t-i + ∑   

   si ti + εst  

The first-stage for demand again, regresses natural log of Henry Hub spot 

price on HDD and CDD shocks, lagged weather-induced storage shocks, control 

variables, and a polynomial time trend of order I. Weather-induced storage shocks 

are the instrumental variables for Henry Hub price that identify demand and are 

excluded in stage two. The first stage demand regression is: 

ln(pt) = πd0 + γwt + Δxt + δ∑      
   t-i + ∑   

   di ti + εdt  

Second and Third Stage 

As in all 3SLS estimations, the second stage estimates the structural supply 

and demand equations (1) and (2) with predicted values of price from the first stage. 

In the third stage, residuals from the second stage are used to estimate the 

variance-covariance matrix. Then, an FGLS regression of quantity on the original 

independent variables including non-fitted price and using standard GLS weights is 

performed. This allows 3SLS, unlike 2SLS, to exploit the correlation of the 

disturbances across equations.  This improves efficiency and also accounts for 

heteroskedasticity. 

Identification of Supply 

 In order for elasticity of supply estimate βs to be unbiased and consistent, 

current month weather shocks must shift demand and be uncorrelated with any 

unobserved shifts in supply.  Weather is ideal since it shifts demand but producers 

cannot influence or predict it beyond the rough estimates provided by seasonal 
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climate normals.  Furthermore, weather patterns are unlikely to be correlated with 

general economic conditions, technological changes or other unobserved shifts in 

production capacity.   

An additional concern is that weather shocks may sometimes be correlated 

with hurricanes. Hurricanes often disrupt the supply of natural gas from the Gulf of 

Mexico and cause prices to spike.  To account for this, a control is included for 

duration and severity of hurricane supply disruptions in the last decade.  As would 

be expected, including these variables decreases the magnitude of estimates but 

also decreases the standard errors.  Additionally, oil price is included in the 

regression in order to soak up adjustments in production capacity that may be 

caused by capital reallocations. 

Identification of Demand 

The most novel facet of the estimation strategy employed in this paper is the 

use of lagged weather-induced storage shocks to identify demand. The intuition is 

that a weather-related rise or fall in storage levels constitutes a shift in future 

supply that can be used to identify short-run demand.   

The IV exclusion restriction requires that weather-induced storage shocks 

have zero covariance with unobserved demand shifters in the current month. In 

particular, there is a concern that weather factors are correlated over time. This is 

discussed in detail in the Methodological Concerns section but is largely mitigated 

by the fact that current month weather shocks are already included in the demand 

equation.  The identification assumption is that, after controlling for current 
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weather, lagged weather-induced storage shocks are only related to current demand 

through their effect on expected price.  

Data and Descriptive Statistics 
 Data for U.S. production, consumption, storage and price series of natural gas 

are from the U.S. Energy Information Administration (EIA) Natural Gas database.  

The data include total US production and consumption broken down by consumer 

type: Residential, commercial, industrial, electricity generation, and vehicle fuel.  

The data also include the quantities of natural gas injections and withdrawals from 

storage and total imports and exports for the US.  There are several price series 

including average wellhead prices, city gate prices and daily Henry Hub spot prices 

along with NYMEX futures prices for 1, 2, 3 and 4 month futures contracts. In this 

paper all production, consumption, storage and price data series are aggregated by 

month for the entire US.  Storage, production, Henry Hub price and residential and 

commercial gas use data exists from 1980 to 2010.  Futures prices exist from 1994 

onward and industrial, gas vehicle and electricity generator consumption data 

exists from 2001 to 2010. The EIA also publishes data on variables such as Cushing 

crude oil prices and oil related variables which can be found in the Petroleum & 

Other Liquids database. 

 U.S. weather data are from the National Oceanic and Atmospheric 

Administration NOAA.  Variables are the U.S. monthly HDD and CDD along with 

the climate normals; the thirty year month-specific averages.  HDD and CDD 

values are weighted by population in order to better predict total energy use.  
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Instruments are constructed from the weather and storage variables. Weather 

shocks are calculated as the observed deviations in HDD and CDD from the 

monthly climate normal. Weather shocks are summed over the previous three 

months in order to utilize only large cumulative shocks. Similarly, storage shocks 

are calculated as the observed deviations from thirty year month-specific averages. 

Fitted values from a regression of storage shocks on weather shocks are then used 

to represent weather-induced storage shocks. 

 Hurricane data is collected from the National Hurricane Center. Their 

website, maintained by the National Weather service, provides the names, dates 

and locations of hurricanes that have hit the US.  Data specific to which hurricanes 

caused natural gas supply disruption as well as the magnitude and duration of each 

disruption is detailed in an a public report submitted to The Energy Foundation by 

Energy and Environmental Analysis, Inc. in a report titled “Hurricane Damage to 

Natural Gas Infrastructure and Its Effect on the U.S. Natural Gas Market.” 

Figures 16 – 21 in the Tables and Figures section display a number of 

industry trends for aggregate production, storage and consumption of natural gas. 

Figure 16 reveals that production is relatively stable at the beginning of the sample 

period and begins increasing at a high rate in the second half of the decade.  This 

fact is mirrored by an increase in the number of wells drilled, shown in Figure 17. 

The sharp increase in new wells is largely due to improvements in fracking and 

horizontal drilling technology. Figure 18 demonstrates the pronounced seasonal 

consumption patterns; highest in the winter (November, December, January, and 
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February) and lowest during the shoulder months with a second, smaller uptick in 

warm summer months. Figure 19 shows how storage levels change both seasonally 

and in aggregate over the sample period. Figure 20 shows consumption over the 

sample. The series demonstrates both the seasonal component and a moderate 

aggregate increase in demand over time. Figure 21 displays Henry Hub spot price. 

The volatility of the price series, in comparison with consumption, suggests the 

inelastic nature of demand.   

Results 
Table 1 presents the first stage regression results. Weather shocks and 

weather-induced storage shocks have the expected signs and are all statistically 

significant. HDD and CDD shocks increase price; the sum of three months, weather-

induced storage shocks decreases price. 
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Table 1   First Stage Results for Demand and Supply Equations 

 

 

 

 

 

 

 

 

  

Results from the two and three-stage least squares regressions are displayed 

in table 2.  The estimates of the elasticity of supply and demand are the coefficients 

on Henry Hub spot price, pt, in the supply and demand equations. Column (1) 

displays OLS estimates for comparison with the preferred specifications. Column (2) 

displays two-stage least squares estimates and the remaining columns (3) – (6) 

present three-stage least squares estimates. Columns (3) - (6) differ by the order of 

the polynomial time trend and by the inclusion of certain control variables.   

Elasticity of supply estimates in Table 1 fall between 1.16 and 1.29.  All 

estimates are significant at the 1% level. By contrast, the OLS estimate of supply 

elasticity is 0.32, much smaller in magnitude and substantially different from all 

FIRST STAGE: LN(HENRY HUB PRICE) 

3 Month Storage Shock -0.0279*** 

Weather-induced (0.007) 

(100MMcf)  

HDD Weather Shock 0.14*** 

wt  (100 HDD) (0.04) 

  

CDD Weather Shock 0.23** 

wt  (100 CDD) (0.1) 

  

Hurricane Disruption 0.4 

(MMcf-days) (0.3) 

  

LN(Crude Price) 0.85*** 

 (0.09) 

  

Net imports 0.13* 

(100MMcf) (0.07) 

Observations 120 

Time Trend I 3 

Adj R-squared = 0.75  

F STAT = 34.13   
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instrumented estimates. Bias is in the expected direction.  If unobserved shifts in 

supply are negatively correlated with price, as is typical, then OLS should generate 

more inelastic estimates. The preferred estimates are displayed in columns (4), (5) 

and (6). These columns employ three-stage least squares and include a 3rd order 

polynomial time trend.  In addition, column (5) contains controls for net imports of 

natural gas and Cushing crude oil prices. Column (6) includes these and hurricane 

supply disruption.  The estimated supply elasticity has smaller standard errors and 

is larger in magnitude when additional controls are included.    

Demand elasticity is estimated separately using two different instruments, 

weather-induced storage shocks and gross storage shocks. Elasticity of aggregate 

demand estimates range from -0.14 to -0.19 for weather-induced storage shocks and 

from -0.11 to -0.14 for gross storage shocks.  Not surprisingly, standard errors are 

larger when instrumenting with weather-induced storage shocks. These shocks are 

more credibly exogenous but somewhat weaker predictors of Henry Hub price than 

gross storage shocks. The OLS estimate of demand elasticity is -0.049, meaningfully 

smaller and more inelastic than the instrumented estimates. Again, bias is in the 

expected direction. If unobserved shifts in demand are positively correlated with 

price, as is typical, then OLS should generate more inelastic estimates in demand.  

Clearly, bias in the uninstrumented estimates is substantial, especially on the 

supply side.  This is intuitive since shifts in supply were larger and more frequent 

than shifts in demand in the years studied.  Accordingly, more substantial bias due 

to price endogeneity would be expected on the OLS supply-side estimates. 
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Table 2    Demand and Supply of Natural Gas 

 OLS 2SLS 3SLS 3SLS 3SLS 3SLS 

Dependent 

Variable: 

(1) (2) (3) (4) (5) (6) 

Quantity Delivered   Demand    

 Instrumenting for expected price with weather-induced storage shocks  

Henry Hub Price  -0.049** -0.19* -0.176* -0.189* -0.14*** -0.15*** 

pt (0.022) (0.11) (0.10) (0.11) (0.06) (0.06) 

       

HDD 0.0009*** 0.0009*** 0.0009*** 0.0009*** 0.0009*** 0.0009*** 

Pop. weighted (.00002) (.00003) (.00003) (.00003) (.00002) (.00002) 

CDD 0.0008*** 0.0008*** 0.0009*** 0.0009*** 0.0009*** 0.0008*** 

Pop. weighted (.00007) (.00009) (.00007) (.00007) (.00006) (.00007) 

         Instrumenting for expected price with gross storage shocks 

Henry Hub Price  -0.049** -0.14** -0.13** -0.14** -0.12*** -0.11*** 

pt (0.022) (0.06) (0.05) (0.06) (0.04) (0.04) 

       

   Supply    

 Instrumenting for Henry Hub spot price with HDD and CDD weather shocks  

Henry Hub Price  0.32*** 1.16*** 1.27*** 1.16*** 1.29*** 1.27*** 

pt (0.075) (0.32) (0.36) (0.31) (0.22) (0.21) 

       

Ln(storaget-3) 1.7e-07*** 2.6e-07** 2.9e-07** 2.6e-07** 3.9e-07*** 3.7e-07*** 

Past three months (6.3e-08) (1.3e-07) (1.4e-07) (1.2e-07) (1.0e-07) (1.0e-07) 

       

Additional Controls       

Net exports Yes No No No Yes Yes 

Hurricane shut ins* Yes No No No No Yes 

Crude oil price Yes No No No Yes Yes 

* supply equation only       

Observations 120 120 120 120 120 120 

Time Trend I 3 3 2 3 3 3 

R-squared Supply 0.29      

R-squared Demand 0.95      

Notes: The dependent variable is the total monthly quantity of natural gas delivered to consumers. For demand, coefficients 

on Henry Hub price are estimates of demand elasticity. This table displays estimates when both gross storage shocks and 

weather-induced storage shocks are used as instruments. For supply, coefficients on Henry Hub Price are estimates of supply 

elasticity. Columns (1)-(6) vary by the estimation method, types of controls and the order of the polynomial time trend 

included. All columns except (3) include a 3rd order polynomial time trend. Column (1) presents the OLS estimates with no 

IVs. All columns include a control on the RHS for the quantity of gas in storage. Controlling for storage levels increases the 

strength of the correlation between current month weather, HDD and CDD and Henry Hub price.  Monthly data covers the 

time span from January 2001 through December 2010. Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

Table 3 presents estimates of demand for different natural gas consumer 

types.  Elasticity of demand is compared for commercial, residential, industrial, and 

electrical consumers as well as for natural gas vehicles. The models use Henry Hub 

price and again compare estimates from both instruments on the demand side. 

Estimates of supply are consistent across all specifications.  
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Table 3     Demand by Consumer Type 

   Model   

 3SLS 3SLS 3SLS 3SLS 3SLS 

 (1) (2) (3) (4) (5) 

VARIABLES Commercial Quantity  

Demanded 

Residential Quantity  

Demanded 

Industrial  

Quantity  

Demanded 

Electricity Quantity  

Demanded 

Vehicle  

Quantity  

Demanded 

Instrument with weather-induced storage shocks 

Elasticity of Demand      

Ln(Henry Hub) -0.30*** -0.46*** -0.20*** -0.21*** 0.12** 

pt (0.097) (0.14) (0.067) (0.07) (0.05) 

      

Elasticity of Supply 1.27*** 1.27*** 1.27*** 1.28*** 1.28*** 

pt  (0.21) (0.21) (0.21) (0.21) (0.21) 

      

Instrument with gross storage shocks 

Elasticity of Demand      

Ln(Henry Hub) -0.32*** -0.56*** -0.13*** -0.17*** 0.18*** 

pt (0.06) (0.11) (0.04) (0.05) (0.05) 

      

Elasticity of Supply 0.98*** 0.98*** 0.99*** 0.98*** 0.99*** 

pt (0.15) (0.15) (0.15) (0.15) (0.15) 

      

Observations 120 120 120 120 120 

Time Trend I 3 3 3 3 3 

Notes: The dependent variable for both the supply and demand equations is the total monthly quantity of natural gas 

delivered to consumers. Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1 

 

Estimates for commercial demand elasticity are -0.30 and -0.32 and 

significant at the 1% level. As expected, standard errors are larger when estimating 

with the less precise instrument, weather-induced storage shocks. Estimates for 

residential demand represent demand by utilities and LDCs rather than actual 

residential consumption at the burner tip.  Utilities and LDC’s maintain the largest 

private storage capacity of all consumer types. It is, therefore, not surprising that 

residential demand estimates are the largest in the sample -0.46 and -0.56; these 

estimates are also significant at the 1% level.  All estimates are significant at the 

1% level and standard errors are smaller when using the more precise instrument. 

Estimates of industrial demand are the most inelastic at -0.20 and -0.13 and 

significant at the 1% level.  Industrial consumers own a smaller percentage of 
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private storage capacity than either residential or commercial consumers.  Demand 

for their products (e.g. gypsum, cement, industrial chemicals) is highly dependent 

on macroeconomic factors and for these reasons might be expected to be the most 

inelastic consumer type. On the other hand, industrial consumers are often more 

likely than other consumers to be able to switch between fuel types in response to 

high prices.  It is thus unclear, a priori, whether industrial consumers should be 

much more or only a little more inelastic than other consumer types.  

Estimates of electricity generation demand for natural gas are -0.17 and -0.21 

and significant at the 1% level.  Estimates of natural gas vehicle demand elasticity 

diverge from the other consumer types. Demand estimates are positive and 

significant at 0.12 and 0.18. While gas consumption by vehicles is certainly likely to 

be inelastic and perhaps close to zero, this result remains somewhat surprising.  It 

seems possible, however, that gas consumption by vehicles may have more to do 

with the price differential between gasoline and natural gas than the price of 

natural gas alone.  If natural gas price increases have tended to coincide with much 

larger increases in gasoline prices, then omitted variable bias resulting from the 

exclusion of gasoline prices may explain this result. Controlling for the price of 

crude oil, which is highly correlated with gasoline price, and using year fixed effects 

does result in the demand estimates becoming negative or smaller in magnitude 

where still positive. Supply estimates in all these models range from 0.9 and 1.28 

similar to previous estimates.  
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Robustness  
A number of robustness checks are run in order to test the sensitivity of 

parameter estimates to the model specification. In the first set of tests, the models 

are re-estimated with year fixed effects in order to determine whether elasticity 

estimates are sensitive to the structure of the time variables. Table 4 in the Tables 

and Figures section displays the simultaneous equation results when year fixed 

effects are substituted in place of a polynomial time trend. The elasticity coefficients 

are not meaningfully different from those estimated with a polynomial time trend.  

This shows that the specification is not particularly sensitive to different methods of 

controlling for the time trend.   

Demand elasticity is re-estimated using only hurricane pipeline disruption as 

an instrument for price. The magnitude and duration of the disruption is used to 

construct the instrument.  Hurricanes present an intuitive and less complex IV 

mechanism with which to estimate demand within a simultaneous equation 

framework.  Their main drawback, from an econometric standpoint, is that they 

occur infrequently and are less significantly correlated with price in the first stage.   

Table 5, in the Tables and Figures section, presents the results when only 

hurricane disruptions are used to instrument for price. The first stage results are 

presented at the bottom of the table. Hurricane disruption has an intuitive sign and 

a statistically significant correlation with price. Elasticity estimates by consumer 

type are all within two of their own standard errors of the primary estimates.  

Aggregate elasticity and the elasticity of electricity generators and industrial users 
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are very close to the primary estimates. Standard errors are similar in size and 

coefficients are still significant at the 10% level.  The estimates of commercial and 

residential utilities are substantially smaller and less precisely estimated, however. 

A possible explanation is that hurricanes occur only from June to November; when 

demand for heating is low or nonexistent. Since the instrument is a poor predictor of 

price during months of peak LDC gas usage, we might expect that it would estimate 

these elasticities imprecisely. 

Finally, consumption quantity and Henry Hub price time series are tested for 

unit roots.  Previous studies have used cointegration ECM approaches to estimate 

demand elasticities in natural gas.  If the data used in this study is also 

cointegrated, a similar model could be estimated in order to compare the results. An 

ADF test with Elliot, Rothenberg and Stock critical values is run for both series.  

The null hypothesis of a unit root is rejected for the quantity variable. See Table 6 

in the Tables and Figures section. Notably, the test does reveal a correlation 

between the current month and the 12 month lag.  A clear indicator that 

consumption in a given month is correlated from one year to the next. The null 

hypothesis of a unit root cannot be rejected for the Henry Hub price; see Table 7 in 

the Tables and Figures section. ACF and PACF tests indicate that there is likely 

AR(1) or AR(2) type autocorrelation in the price variable.  Since quantity and price 

do not share a common stochastic drift they are not cointegrated. Consequently, an 

ECM approach to provide comparable estimates and validate the instrumental 

variables approach is not possible for the sample period examined in this paper.  
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For additional consideration, price elasticity is estimated with NYMEX futures 

prices in the demand equation instead of Henry Hub price.  NYMEX futures prices 

are considered because end users commit to receive some portion of the gas they 

consume with forward contracts. For this reason, demand may be more closely 

related to expected price rather than spot price. NYMEX futures price are used as a 

proxy of expected price. These results are included at the end of the Tables and 

Figures section. NYMEX price elasticities are slightly smaller in magnitude but not 

substantially different from than those estimated with Henry Hub prices.  The 

conclusion drawn in this paper is that Henry Hub price and NYMEX futures prices 

are similarly useful measures for estimating demand elasticity. This is not 

surprising since natural gas spot and near-term futures prices are strongly 

correlated. 

Table 8 presents results of different model specifications using the 3-month 

NYMEX futures price in place of Henry Hub; this table is directly comparable to 

Table 2 in the Results section.  Table 9 presents aggregate elasticity estimates using 

1, 2, 3 and 4-month NYMEX futures prices; results in this table are most directly 

comparable to column (6) in Table 2.  Table 10 displays elasticity estimates of 

different consumer types using 1, 2, 3 and 4-month NYMEX futures prices; this 

table is comparable to Table 3 in the Results section.  Tables 8, 9 and 10 are found 

at the end of the Tables and Figures section. 
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Conclusions 
The primary objective of this paper is to demonstrate that weather shocks 

can be used as instruments for price in a 3SLS estimation framework to produce 

unbiased estimates of both supply and demand of natural gas. The influence of 

weather on demand in this industry is well acknowledged. In spite of this, it has 

rarely been used as an instrumental variable in natural gas models and then only 

for estimation of the supply curve. This paper shows how weather-induced storage 

shocks can be used to generate relatively precise estimates of short-run demand. 

Most importantly, this framework presents an effective way to address price 

endogeneity in both supply and demand estimation; an issue which has often been 

ignored in previous work. Ultimately, the ability to credibly estimate causal 

parameters for both supply and demand means that the estimates can be used to 

forecast short-run price movements based on expected shifts in supply or demand. 

A second objective of this paper was to extend the general estimation method 

utilized in agriculture by Roberts and Schlenker (2013) to a different, but similar-

enough commodity market.  The robustness of the method across commodity 

markets similar in key respects, yet still as diverse as agriculture and natural gas, 

implies that it may be applicable in other storage-dependent, weather-influenced 

industries. Additional commodity markets with potential for successful application 

of this estimation method include oil, gas liquids and agricultural products such as 

cocoa and coffee. 
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The model generates elasticity estimates of short-run demand and supply in 

the post deregulation, shale gas era, from 2000 to 2010. Aggregate U.S. natural gas 

elasticity during this time ranges from -0.19 to -0.28 across model specifications.  

Elasticity varies by consumer type with industrial users the most inelastic ranging 

from -0.13 to -0.21 and residential utilities the most relatively elastic, ranging from 

-0.38 to -0.56 across specifications; commercial utilities range from -0.21 to -0.32. 

Electricity generators exhibit an elasticity ranging from -0.17 to -0.28. Natural gas 

vehicles demonstrate positive and significant demand elasticity. These estimates 

may be biased due to the omission of gasoline prices or other variables that account 

for different usage patterns in natural gas automobiles. The estimates of short-run 

supply elasticity range from 0.98 to 1.28, implying that producers exhibit something 

near unit elasticity.  
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Figure 1 

 

Figure 2 

 

Notes: Top panel plots monthly gas production on monthly U.S. HDD (heating degree days). Bottom level plots monthly gas 

production on the y-axis on monthly U.S. CDD (cooling degree days). HDD and CDD have predictable seasonal variation and the 

lack of correlation shows there is no systematic, seasonal (and endogenous) production response to seasonal weather 

variation. 
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Figure 3 

 

Figure 4 

 

Notes: Top panel plots deviations from month-specific average gas production on deviations in HDD from monthly climate 
normals. Bottom level plots deviations from month-specific average gas production on deviations in CDD from monthly climate 
normals. Lack of correlation shows there is no systematic, instantaneous (and endogenous) production response to weather 
shocks. 
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Figure 5 

 

Figure 6 

 

Notes: Top panel plots gas production on the Henry Hub spot price predicted by current month weather. Bottom panel plots 
gas production on the Henry Hub spot price predicted by weather in the previous four months. This demonstrates that 
production is not endogenous to the fluctuation in spot prices caused by weather. 
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Figure 7 

 

Figure 8 

 

Notes: Top panel plots total U.S. gas consumption on HDD. Bottom panel plots gas consumption by electricity generators on 

CDD. These show a clear relationship between consumption and weather. 
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Figure 9 

 

Figure 10 

 

Notes: Top panel plots storage shocks on the previous month’s weather shocks and includes a fitted line. Bottom panel plots 

storage shocks on the sum of the previous four months’ weather shocks and includes a fitted line. These scatter plots reveal the 

correlation between weather and storage levels; a key relationship link in the identification strategy of demand elasticities. 
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Figure 11 

 

Figure 12 

 

Notes: Figures 11 shows the relationship between Henry Hub price and storage shocks. Figure12 shows the relationship 

between 1-month NYMEX futures prices and storage shocks.  The storage shock used is the sum of the last three months’ 

storage shocks. Fitted lines are included to emphasize the downward sloping trend; storage build-ups are correlated with lower 

futures prices while storage draw-downs are correlated with higher futures prices.  
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Figure 13 

 

Figure 14 

 

Notes: Figure 13 and 14 show the relationship between 2-month and 3-month NYMEX futures prices and storage shocks.  The 

storage shock used is the sum of the last three months’ storage shocks. Fitted lines are included to emphasize the downward 

sloping trend; storage build-ups are correlated with lower futures prices while storage draw-downs are correlated with higher 

futures prices.  
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Figure 15 

 

Notes: Figure 15 shows the relationship between 4-month NYMEX futures prices and storage shocks.  The storage shock used is 

the sum of the last three months’ storage shocks. Fitted lines are included to emphasize the downward sloping trend; storage 

build-ups are correlated with lower futures prices while storage draw-downs are correlated with higher futures prices.  
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Figure 16 

 

Figure 17 

 

Notes: Figures 16 and 17 illuminate general trends in production over the sample. Figure 16 shows the upward trend in 

production since 1990. Figure 17 shows a corresponding increase in the number of developmental and exploratory wells drilled. 

 

 Figure 18. 

 Figure 18. 

 Figure 18. 
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Figure 18 

 

Figure 19 

 

Notes: Figures 18 and 19 illuminate general trends in consumption and storage over the sample. Figure 18 shows the average 

monthly consumption. Consumption peaks in winter months and again during July and August. Figure 19 shows storage levels 

of natural gas. 
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Figure 20 

 

Figure 21 

 

Notes: Figures 20 and 21 illuminate general trends in price and consumption over the sample. Figure 20 shows both the 

seasonal nature of consumption along with the moderate increase in demand that occurred over the sample. Figure 21 shows 

the Henry Hub price series. The high volatility of price relative to consumption suggests that demand is inelastic. 
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Table 4   Year fixed effects used instead of a 3rd order polynomial time trend  

   Model   

 3SLS 3SLS 3SLS 3SLS 3SLS 

 (1) (2) (3) (4) (5) 

VARIABLES Commercial 

Quantity  

Demanded 

Residential 

Quantity  

Demanded 

Industrial  

Quantity  

Demanded 

Electricity 

Quantity  

Demanded 

U.S. Total  

Quantity 

Demanded 

Instrument with weather-induced storage shocks 

      
Ln(Henry Hub) -0.21** -0.389* -0.21** -0.23 -0.198** 
w/Yr Fixed 

Effects 
(0.14) (0.23) (0.10) (0.17) (0.10) 

Ln(Henry Hub) -0.30*** -0.46*** -0.20*** -0.21*** -0.15*** 
w/poly time 

trend 
(0.097) (0.14) (0.067) (0.07) (0.06) 

      
Elasticity of 

Supply 
1.28*** 1.28*** 1.28*** 1.28*** 1.28*** 

pt (0.23) (0.23) (0.23) (0.23) (0.23) 
      

Instrument with gross storage shocks 

      
Ln(Henry Hub)*** -0.25** -0.479** -0.20*** -0.28** -0.28** 
w/Yr Fixed 

Effects 
(0.12) (0.20) (0.07) (0.14) (0.14) 

Ln(Henry Hub) -0.32*** -0.56*** -0.13*** -0.17*** -0.11*** 
w/poly time trend (0.06) (0.11) (0.04) (0.05) (0.04) 
      
Elasticity of 

Supply 
1.06*** 1.06*** 1.06*** 1.06*** 1.06*** 

pt (0.19) (0.19) (0.19) (0.19) (0.19) 
      
Observations 120 120 120 120 120 
Fixed Effects  

Time Trend  
Yes 

 

Yes 

 

Yes 

 

Yes 

 

Yes 

 
Notes: The dependent variable for both the supply and demand equations is the total monthly quantity of 

natural gas delivered to consumers. Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1 
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Table 5   Demand by Consumer Type Using Only Hurricane Shocks to Instrument for Price 

   Model   

 3SLS 3SLS 3SLS 3SLS 3SLS 

 (1) (2) (3) (4) (5) 

VARIABLES Commercial 

Quantity  

Demanded 

Residential 

Quantity  

Demanded 

Industrial  

Quantity  

Demanded 

Electricity 

Quantity  

Demanded 

Total  

Quantity  

Demanded 

Instrument with hurricane shocks only 

      

Ln(Henry Hub Price) -0.06 -0.18 -0.27*** -0.257** -0.13* 

pt (0.12) (0.13) (0.09) (0.12) (0.07) 

      

Observations 120 120 120 120 120 

Time Trend I 3 3 3 3 3 

First-stage of hurricane shocks regression 

Hurricane disruption 0.88** 0.88** 0.88** 0.88** 0.88** 

(MMcf-days) (0.41) (0.41) (0.41) (0.41) (0.41) 
Notes: The dependent variable for both the supply and demand equations is the total monthly quantity of 

natural gas delivered to consumers. Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1 
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Table 6.   DF-GLS UNIT ROOT TEST    

VARIABLE     

Ln(Quantity)  Critical Value 

Lags DF-GLS tau Test Statistic 1% 5% 10% 

12 -1.920 -3.537 -2.794 -2.519 

11 -2.523 -3.537 -2.815 -2.538 

10 -1.802 -3.537 -2.836 -2.558 

9 -1.422 -3.537 -2.856 -2.576 

8 -1.751 -3.537 -2.875 -2.594 

7 -2.804 -3.537 -2.893 -2.611 

6 -3.090 -3.537 -2.911 -2.627 

5 -3.974 -3.537 -2.928 -2.643 

4 -3.649 -3.537 -2.944 -2.657 

3 -3.801 -3.537 -2.958 -2.671 

2 -4.744 -3.537 -2.972 -2.683 

1 -6.368 -3.537 -2.984 -2.694 

Test uses Elliot, Rothenberg and Stock (1996) critical values 

              

 

Table 7.   DF-GLS UNIT ROOT TEST             

VARIABLE     

Ln(Henry Hub)  Critical Value 

Lags DF-GLS tau Test Statistic 1% 5% 10% 

12 -1.166 -3.521 -2.803 -2.527 

11 -1.275 -3.521 -2.822 -2.544 

10 -1.204 -3.521 -2.840 -2.561 

9 -1.157 -3.521 -2.858 -2.578 

8 -1.672 -3.521 -2.875 -2.594 

7 -1.810 -3.521 -2.891 -2.609 

6 -1.939 -3.521 -2.907 -2.623 

5 -1.776 -3.521 -2.922 -2.636 

4 -1.934 -3.521 -2.936 -2.649 

3 -1.686 -3.521 -2.949 -2.661 

2 -1.684 -3.521 -2.961 -2.672 

1 -1.541 -3.521 -2.972 -2.682 

Test uses Elliot, Rothenberg and Stock (1996) critical values 
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Table 8 Demand and Supply of Natural Gas with NYMEX Futures prices 

This table is most directly comparable to Table 2 in the Results 

   Model    

 OLS 2SLS 3SLS 3SLS 3SLS 3SLS 

Dependent Variable: (1) (2) (3) (4) (5) (6) 

Quantity Delivered   Demand    

 Instrumenting for expected price with gross storage shocks 

Ln(Futures_3mo) -0.07*** -0.14*** -0.14*** -0.13*** -0.13*** -0.11*** 

E[pt|t-3] (0.016) (0.032) (0.03) (0.03) (0.02) (0.02) 

 Instrumenting for expected price with weather-induced storage shocks 

Ln(Futures_3mo) -0.08*** -0.21*** -0.26*** -0.24** -0.21*** -0.23*** 

E[pt|t-3] (0.017) (0.07) (0.10) (0.10) (0.06) (0.07) 

       

HDD 0.0009*** 0.0009*** 0.001*** 0.001*** 0.0009*** 0.0009*** 

Pop. weighted (.00002) (.00002) (0.00002) (0.00002) (.00002) (.00002) 

CDD 0.0009*** 0.0009*** 0.001*** 0.001*** 0.0009*** 0.0008*** 

Pop. weighted (0.00006) (0.00006) (0.00006) (0.00006) (0.00006) (0.00006) 

       

   Supply    

 Instrumenting for Henry Hub spot price with HDD and CDD weather shocks 

Henry Hub Price  0.225*** 1.03*** 1.028*** 1.07*** 0.94*** 0.83*** 

pt (0.05) (0.19) (0.18) (0.19) (0.11) (0.10) 

       

Ln(storaget-3) 0.33*** 0.38*** 0.44*** 0.39*** 0.38*** 0.38*** 

Past three months (0.04) (0.06) (0.08) (0.06) (0.058) (0.05) 

       

Controls       

Net exports No No No No No Yes 

Hurricane shut ins Yes Yes No No Yes Yes 

Crude oil price* Yes Yes No No Yes Yes 

* included in both equations      

Observations 120 120 120 120 120 120 

Time Trend I 3 3 3 2 3 3 

R-squared Supply 0.38 -0.74 -0.74 -0.91 0.12 0.27 

R-squared Demand 0.96 0.95 0.95 0.94 0.95 0.96 

Notes: The dependent variable is the total monthly quantity of natural gas delivered to consumers. For demand 

coefficients on futures price are estimates of 3-month demand elasticity. For supply coefficients on Henry Hub 

Price are estimates of supply elasticity. Columns (1)-(6) vary by the estimation method, types of controls and the 

order of the polynomial time trend included. All columns except (4) include a 3rd order polynomial time trend. 

Column (1) presents the OLS estimates with no IVs. All columns include a control on the RHS for the quantity 

of gas in storage. Controlling for storage levels increases the strength of the correlation between current month 

weather, HDD and CDD and Henry Hub price.  Monthly data covers the time span from January 2001 through 

December 2010. Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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 Table 9  Demand and Supply by Futures Price and Instrument Type 

 

This table is most directly comparable to column (6) in Table 2 in the Results 
 

  Model   

 3SLS 3SLS 3SLS 3SLS 

 (1) (2) (3) (4) 

VARIABLES Quantity  

Demanded 

Quantity  

Demanded 

Quantity  

Demanded 

Quantity  

Demanded 

Instrument with gross storage shocks 

     

Ln(Futures_1mo) -0.18***    

E[pt|t-1] (0.038)    

Ln(Futures_2mo)  -0.145***   

 E[pt|t-2]  (0.03)   

Ln(Futures_3mo)   -0.12***  

E[pt|t-3]   (0.026)  

Ln(Futures_4mo)    -0.12*** 

E[pt|t-4]    (0.025) 

Elasticity of Supply 0.940*** 0.938*** 0.938*** 0.942*** 

pt (0.11) (0.11) (0.11) (0.11) 

     

Instrument with weather-induced storage shocks 

     

Ln(Futures_1mo) -0.205***    

E[pt|t-1] (0.058)    

Ln(Futures_2mo)  -0.195***   

 E[pt|t-2]  (0.056)   

Ln(Futures_3mo)   -0.21***  

E[pt|t-3]   (0.068)  

Ln(Futures_4mo)    -0.21*** 

E[pt|t-4]    (0.06) 

Elasticity of Supply 1.03*** 1.03*** 1.02*** 1.03*** 

pt (0.13) (0.13) (0.13) (0.13) 

     

Hurricane shut ins Yes Yes Yes Yes 

Crude oil price* Yes Yes Yes Yes 

* included in both equations     

Observations 120 120 120 120 

Time Trend I 3 3 3 3 

R-squared     

Notes: The dependent variable for both the supply and demand equations is the total monthly quantity of natural gas 

delivered to consumers. Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1 

 

 

 

 

 

 

  



59 
 

 
 

 

Table 10  Demand with 1, 2, 3 and 4-month NYMEX futures prices by Consumer Type 

This table is most directly comparable to Table 3 in the Results 

   Model   
 3SLS 3SLS 3SLS 3SLS 3SLS 

 (1) (2) (3) (4) (5) 

VARIABLES Commercial Quantity  

Demanded 

Residential Quantity  

Demanded 

Industrial  

Quantity  

Demanded 

Electricity Quantity  

Demanded 

Vehicle  

Quantity  

Demanded 

Instrument with gross storage shocks 

      

Ln(Futures_1mo) -0.25*** -0.43*** -0.16*** -0.22*** 0.056 

E[pt|t-1] (0.05) (0.08) (0.035) (0.056) (0.04) 

Ln(Futures_2mo) -0.20*** -0.34*** -0.12*** -0.19*** 0.04 

 E[pt|t-2] (0.04) (0.06) (0.027) (0.047) (0.03) 

Ln(Futures_3mo) -0.18*** -0.31*** -0.10*** -0.15*** 0.05** 

E[pt|t-3] (0.038) (0.05) (0.02) (0.04) (0.026) 

Ln(Futures_4mo) -0.17*** -0.30*** -0.087*** -0.13*** 0.05** 

E[pt|t-4] (0.036) (0.05) (0.02) (0.03) (0.025) 

Elasticity of Supply 0.94*** 0.94*** 0.93*** 0.94*** 0.94*** 

pt (0.11) (0.11) (0.11) (0.11) (0.11) 

      

Instrument with weather-induced storage shocks 

      

Ln(Futures_1mo) -0.24*** -0.35*** -0.25*** -0.25*** -0.016 

E[pt|t-1] (0.077) (0.11) (0.068) (0.08) (0.05) 

Ln(Futures_2mo) -0.23*** -0.30*** -0.24*** -0.28*** -0.04 

 E[pt|t-2] (0.07) (0.097) (0.06) (0.09) (0.06) 

Ln(Futures_3mo) -0.27*** -0.34*** -0.25*** -0.28*** -0.02 

E[pt|t-3] (0.08) (0.11) (0.07) (0.10) (0.06) 

Ln(Futures_4mo) -0.27*** -0.36*** -0.23*** -0.24*** 0.004 

E[pt|t-4] (0.08) (0.11) (0.07) (0.09) (0.05) 

Elasticity of Supply 1.03*** 1.03*** 1.01*** 1.02*** 1.00*** 

pt (0.13) (0.13) (0.13) (0.13) (0.13) 

      

Observations 120 120 120 120 120 

Time Trend I 3 3 3 3 3 

Notes: The dependent variable for both the supply and demand equations is the total monthly quantity of natural gas 

delivered to consumers. Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1 

 

 

 

 

 

 

 

 

 



60 
 

 
 

 

 

 

 

 

Chapter 2 

DRILLING AND EXPLORATION 

Introduction  
The development of hydraulic fracturing and horizontal drilling technologies 

has resulted in an abundance of natural gas in the United States. This positive 

supply shock has increased adoption of natural gas as a source of energy and raised 

interest in the ability to predict future supply and production levels.  Accurate 

estimates of drilling and exploration elasticities could ultimately be used to help 

predict how supply will evolve over the intermediate future.  This paper uses 

exogenous weather-driven variation in price, within both a simultaneous equation 

and a single IV equation framework, to generate empirical estimates of the price 

elasticity of drilling and exploration.  

Numerous academic studies have examined the responsiveness of natural gas 

drilling and reserves to price.  A common assertion in this work is that demand is 

more volatile than supply. In particular, it is assumed that income and population 

growth, increasing electricity generation and gas heating have tended to shift 
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demand out over time.   Empirical studies have argued, therefore, that market 

equilibrium quantities and prices approximately trace out a supply curve [Fisher 

(1964); Erickson and Spann (1971); Pindyck (1974); Erickson; Millsaps and Spann 

(1974); Eyssell (1978); Deacon et al. (1983); Griffin and Moroney (1985)]. Working 

under this assumption most studies have sidestepped the issue of potential price 

endogeneity when estimating elasticities of drilling and exploration activities. While 

this has been expedient it may not be appropriate, especially in recent years. 

Significant technology-related supply shocks, including the development of 

hydraulic fracturing and horizontal drilling, make the assumption that shifts in 

demand are larger and more frequent than shifts in supply difficult to justify.   

While price increases do affect drilling, they also augment production which 

pushes price back down. This reverse causality creates a circumstance whereby the 

effect of price on drilling and exploration is no longer well defined. Supply shocks 

can also have a direct effect on drilling (e.g. fracking technology) as well as an 

indirect effect on drilling and exploration through their effect on price.  For these 

reasons, price endogeneity should be explicitly addressed in the models. 

Additionally, demand and drilling equations may be correlated with each other 

through their disturbance terms. This suggests that simultaneous equations may be 

more efficient than single IV equation estimation. Similar to the issue of price 

endogeneity, correlation in the error term has generally not been addressed in 

previous work; instead, drilling and exploration elasticities have been estimated in 

single equations. 
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This paper utilizes exogenous instruments for price within a simultaneous 

equation framework in order to explicitly account for the endogeneity of price and 

the correlation of demand and drilling and exploration equations through their 

error terms. Comparing instrumented estimates to OLS provides a test of the 

validity of the exogenous price assumption in previous work.  I find evidence that 

price is, in fact, endogenous and propose a more robust method for generating 

drilling and exploration elasticities in the current industry environment.  

Specifically, this model uses weather-related price shocks to identify the 

elasticity of drilling and exploration over time.  The dependent variables are 

measures of drilling and exploration activity each month for ten consecutive months 

in the future. This allows me to compare the effects of price on drilling and 

exploration activity in each month up to ten months after a price shock.  Current 

month weather shocks are the instruments for price in the drilling equation. Given 

enough time, producers can respond to spot price movements by drilling more or 

fewer wells. In the simultaneous equation framework weather-induced storage 

shocks are used to identify short-run demand. Storage shocks constitute a shift in 

supply and therefore identify the short-run demand curve. In the single IV 

equation, weather-induced storage shocks are used as instruments in the drilling 

equation. This is because, in the long run, producers can also respond to price 

movements caused by storage shocks. 

In Chapter 1 a similar simultaneous equation framework is applied to 

estimate short-run supply and demand in U.S. natural gas. The main difference 
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between that paper and this one is that production is less constrained in the 

intermediate term since firms have time to invest capital and augment production 

capacity with additional drilling and exploration. Supply in the short-run is 

constrained by the number of currently producing wells and inventory levels in 

storage. Suppliers can only respond to price changes in the short-run by 

augmenting sales with withdrawals from underground storage or by reinserting gas 

into storage to sell later.   

In the intermediate future, however, producers affect production and storage 

levels by choosing whether or not to conduct seismic exploration activities and drill 

new wells. Since production from existing wells declines over time, producer 

decisions to replace existing wells with more or fewer wells in the future, have 

strong implications for supply in the intermediate future.  It has been demonstrated 

that without new wells the production path follows an exponential decline curve 

(McCray 1975). In recent years, the time scale over which producer drilling 

decisions affect supply has shortened as the number of shale and other “tight gas” 

wells has increased; these wells often have very high initial production rates that 

drop off more rapidly than traditional wells.  Consequently, producer drilling 

decisions affect the domestic supply more quickly than in the past.  This paper 

attempts to provide further insight to the drilling and exploration process by 

assessing the level of drilling activity month to month after a price shock.  This 

differs from all previous studies in the literature which have estimated drilling 

elasticities on a yearly time scale. 
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Review of the Literature 
Many studies in the literature have estimated the elasticity of drilling and 

exploration in oil and gas.  As previously stated, these models have not explicitly 

addressed the endogeneity of price. Studies of oil and gas economics acknowledge 

that they have so far done a poor job predicting how production capacity and 

reserves respond to price. Conversely, they often tout their ability to estimate 

drilling elasticities. Fisher (1964) develops a method for estimating the elasticity of 

oil reserves that has become the basis of most long-run oil and natural gas studies. 

He finds the reserve elasticity of oil to be between 0.31 and 0.82. He does not 

estimate an elasticity of natural gas. His basic method has been used in most 

studies estimating the reserve, production capacity, and drilling elasticities of oil 

and gas over the last fifty years.  

Dahl and Duggan (1998) formalize and expand Fisher’s intuitive economic 

method in an attempt to give it a theoretical framework.  They reposition the 

estimation method within the framework of a firm objective function. Producers 

maximize the net present value of profit based on the expected return on 

investment of drilling and exploration. Production is a function of exploration 

activity, the number of wells drilled, the nature of the geology in the areas drilled 

and, as always, the random nature of gas discovery.  The production function of oil 

or gas is represented by the function F(E, W, N, ε, R) where E are exploration 

inputs (e.g. seismic geological surveys), W are the number of wells drilled, N are 

characteristics of the geology being explored, R is the quantity of known reserves 
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and ε captures the inherent randomness of discovery. Solving the firm profit 

maximization equation they show that the gas drilling equation is a function of the 

cost of drilling9, the expected value of gas prices, the price of oil, taxes and interest 

rates over the production horizon and the geology of the area.  They assert that 

economic theory necessitates the inclusion of all these variables in an OLS 

estimation equation. In a survey of the petroleum literature they then concluded 

that all major studies to date had failed to include variables suggested by economic 

theory and therefore suffered from omitted variable bias.   

Two early studies, using a dataset similar to Fisher, estimate the elasticity of 

wildcat drilling and drilling into known reserves separately [Erickson (1968); 

Erickson and Spann (1971)].  These studies divide the drilling into two different 

dependent variables; namely, wildcat wells, which are the riskier and more 

explorative type of drilling and developmental wells, which involve drilling into 

reserves with proved production potential. Their improvement over Fisher’s model 

is to account for the fact that wildcat wells and developmental wells are 

investments with different potential risks and benefits.  This more flexible model 

allows each type of drilling to have a different elasticity with respect to price.  

Kolb (1978) finds that drilling in proven reserves, an activity with a much 

higher probability of success is more sensitive to price. Several other studies 

estimate similar models with different datasets and include additional cost and 

interest rate variables [MacAvoy and Pindyck (1973); Pindyck (1974); and Pindyck 

                                                           
9
 Includes royalty, permit and other lifting costs 
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(1978); Walls (1994)]. Kolb (1979) presents the first attempt to estimate separate 

reserve elasticities of oil and gas following natural gas deregulation. He estimates 

the reserve elasticity of oil at 0.9 and natural gas at 0.84, both statistically 

significant. A more recent study uses a weighted average of oil and gas prices in 

order to estimate a single elasticity of petroleum reserves on U.S. aggregate data 

from 1960-1990; it finds drilling price elasticity to be 0.48 and significant [Al Shami 

(1995)]. Dahl and Duggan (1998) note in their survey that several studies use U.S. 

aggregate data and as a result, geological differences across regions do not appear 

to influence the estimations [Al Shami (1995); Porter (1992); Walls (1991)]. They 

conclude that models using aggregate data may be able to exclude geological 

variables in the estimation.  A few studies examine the elasticity of drilling at the 

firm level [Ghouri (1991); Lledare et al. (1995)].  

The estimates of natural gas drilling elasticities in the literature are varied 

and generally have much smaller magnitude than the estimates generated in this 

work. Wilkinson (1983) finds U.S. aggregate drilling elasticity to be 0.15 and 

statistically significant. Erickson and Spann (1971) find aggregate drilling elasticity 

to be 0.35 and Al Shami (1995) finds it to be 0.48, both are statistically significant.  

Many other studies find that gas drilling is not significantly correlated with price 

[Khazzoom (1971); MacAvoy and Pindyck (1973); Pindyck (1974)]. The study most 

similar in method to this one is Krichene (2002), which uses simultaneous equations 

to estimate drilling and demand on a data series ending in 1999. In nearly all 

specifications this study finds negative drilling elasticities. Weather variables were 
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not included in either of this paper’s simultaneous equations, however. A few 

studies find larger natural gas drilling elasticities, more similar to those found in 

this work. Epple (1975) finds drilling elasticity to be 0.74 and statistically 

significant. Lledare (1995) finds drilling elasticity in West Virginia to be 1.02 using 

individual firm data. In all of these studies, with the exception of Krichene (2002), 

the exogeneity of price is assumed, and variables suggested by economic theory are 

omitted. 

Empirical Model 
The simultaneous equations used to estimate drilling and exploration 

elasticity are the following: 

Drilling and Exploration:  ln(xt+i) = αs  + βs ln(pt)  + δ∑      
   t-i + δrt + f(t) + ut           (1)                                                                                                                   

Demand:  ln(qt) = αd + βd ln(pt)  + γdwt + g(t) + vt    (2)                                                                                                                                                                                                                                                                                                                            

The dependent variable in the drilling equation, xt+i, is any of three measures of 

drilling and exploration activity i months after a price shock. These include the 

number of active rotary rigs, the number of developmental wells, and number of 

exploratory wells. pt is the wellhead price or Henry Hub spot price. The relevant 

price from the perspective of the producers depends on the extent of each firm’s 

vertical integration. Small producers may sell their gas at the wellhead while 

integrated firms retain possession all the way to the spot market. Elasticities are 

measured and compared using both price measures. βs is the elasticity of drilling or 

exploration estimated by the model. δ∑      
   t-i is the sum of weather-induced 

storage shocks in the previous three months. In the simultaneous equation 
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framework weather-induced storage shocks are included in the supply equation only 

and therefore, become the instrument for price in the demand equation. rt 

represents the controls including the annual average cost per foot of drilling and the 

spot price of Cushing crude oil. The price of oil is included since many energy 

companies produce both natural gas and oil and must allocate limited capital 

between these two ventures. Cost of drilling is included for obvious reasons. f(t) is a 

polynomial or fixed effects yearly time trend. Controlling for levels of drilling 

activity at yearly intervals is important because technological advances from 2000 

to 2010 created significant increases in drilling and exploration activity. Lastly, ut is 

the random i.i.d. error term.  

The dependent variable in the demand equation qt is the quantity of natural 

gas actually delivered down pipeline to a buyer. wt is weather and includes four 

separate measures; the observed HDD and CDD per month and the deviation of 

HDD and CDD from the 30-year climate normal. Hereafter, the deviations in HDD 

and CDD from month-specific climate normals are simply referred to as weather 

shocks. Weather shocks are excluded from the supply equation and become the 

instruments for price that identify drilling elasticity. g(t) is a polynomial or fixed 

effects yearly time trend controlling unobserved shifts in demand due to 

macroeconomic factors and vt is the error term.  

The demand elasticities are not a focus of this study and the parameter 

estimates are not examined in any depth. There is evidence, however, that this 

estimation framework produces good estimates of short run demand elasticities. 
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The work on this topic in Chapter 1 demonstrates that this framework is limited 

and only appropriate for forecasting demand responses one to three or four months 

after a price shock. The reason the simultaneous equation framework is preserved 

and demand is included in this study, is to account for the fact that drilling and 

demand may be correlated through their error terms ut and vt.  

This error correlation is likely if demand for natural gas shifts out as 

potential consumers become aware of significant increases in domestic supply. 

These demand shifts are unobserved by the econometrician and could influence 

producer decisions to explore and drill new wells. Estimating drilling elasticities 

without accounting for these unobserved correlated demand shocks, as in single IV 

equation estimation, could be inefficient or even cause the model to overestimate 

the parameters.  From this perspective, it is preferable to estimate drilling and 

exploration elasticities within a simultaneous equation framework that includes 

demand. The preferred estimates in this study are therefore those assembled from 

the simultaneous equations. For comparison purposes the elasticity of drilling using 

a single IV equation is also estimated.  

Assumptions and the Identification Strategy 
Each identification strategy rests on two main assumptions. The first, in the 

simultaneous equation framework, is that weather shocks are a valid instrument 

for price. In order to estimate an unbiased, consistent elasticity of drilling βs the 

instrumental variables must isolate exogenous variation in price and be otherwise 

unrelated to drilling and exploration activity.  In this respect weather shocks 
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appear to be an ideal instrument. It is well established that they shift demand and 

raise price in spot markets [Mayer (1977); Mu (2007)]. Furthermore, they cannot be 

anticipated by producers before drilling and exploration decisions are made thereby 

satisfying the exclusion restriction.  The first assumption in the single IV equation 

is similar; namely, that consecutive, compounding weather-related price shocks in 

the previous three months are a valid instrument for price in the drilling equation. 

The second assumption is that movements in price in the current month, 

caused by either weather or weather-induced storage shocks, affect drilling and 

exploration behavior in future months. This assumption is less straightforward 

than the first. It is important to understand that producers have to obtain leases, 

permits, mineral rights and allocate capital in order to conduct drilling and 

exploration activity.  These processes take time and effort. For profit maximizing 

firms, this means decisions must be based on expected price.  I spell out two 

mechanisms by which current price shocks could plausibly affect producers’ 

expectations of future prices.  

First, producers may base their expectation of future price on current price 

and a random component. In other words, they may view price as a random walk. 

Positive price shocks today, especially large price shocks, thus increase the expected 

future price and increase future drilling activity. This is plausible given that oil 

prices have been shown to behave as a random walk (Walls 1994). Alternatively, 

producers may not view price as a random walk but instead monitor storage levels 

as an indicator of supply and future price.  Take the following example. When 
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consecutive compounding weather shocks occur, generating high demand, then spot 

prices go up. Also storage levels decrease. Producers, observing depletion in storage, 

anticipate that prices will remain elevated until storage quantities are returned to 

prior levels.  

Whether or not the reader finds these mechanisms of price-to-expected-price 

transference plausible, there is descriptive evidence that drilling responds to 

weather-related price shocks. Figure 1 below displays a series of linear fit plots in 

order to highlight the relationship between drilling activity and weather-related 

price shocks. On the left side are four fit plots of the number of wells drilled on 

wellhead price. The dependent variables are the number of wells drilled 2, 3, 5 and 

7 months forward of the observed wellhead price. Both variables are transformed 

with natural logs and detrended with year fixed effects.  This is achieved by 

regressing each of the dependent variables on year fixed effects and plotting the 

residuals on wellhead price. A linear function with 95% confidence intervals is then 

fit on the plot of developmental wells on price.  The same process is applied to fit 

plots on the right side, only this time, the instrumented value of wellhead price is 

used instead of actual wellhead price.  Instrumented wellhead price is constructed 

by regressing log price on current weather shocks and sum of lagged weather-

induced storage shocks, as in a first stage regression.  The number of wells drilled is 

then plotted on the predicted values for price.  The predicted values for price now 

represent exogenous, weather-related movements in price.   
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Figure 1 

 

 

 

   
Notes: Linear plots fit the natural log of the number of developmental wells drilled on wellhead price a indicated number of months following a price 

change.  Shaded regions represent the 95% confidence intervals. On the left side the natural log of observed price is used. On the right side the fitted 

values of price from a regression on the IVs is used. IVs include weather shocks and weather-induced storage shocks. 
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Plotting wells drilled on exogenous movements in price removes bias and the 

plots subsequently display a stronger visual correlation between the two variables.  

Comparing plots on the right and left side there are several key differences. 

First, while there is generally a positive relationship between price and the number 

of wells drilled on both sides, the upward trend is steeper for weather-related price 

movements. This indicates that the relationship between price and drilling activity 

is stronger when considering only weather-related variation in price. Additionally, 

the confidence intervals for predicted wells are smaller when fit on weather-related 

movements in price. This indicates that instrumented price is likely a better 

predictor of drilling activity than uninstrumented price. Differences in both the 

slope and precision of the linear plots highlight the potential endogeneity of price in 

plots on the left hand side. They also suggest the potential usefulness of weather as 

an instrument. The relationship between price and wells drilled is generally flatter 

and less precise in more recent months regardless of which price is used.  This 

further suggests that, in either case, price will be a better predictor of drilling 

activity many months after a movement in price rather than immediately after.  

This trend is confirmed with estimates in the empirical model. 

Data  
Data for the U.S. production, consumption, storage and price series of natural 

gas are from the U.S. Energy Information Administration (EIA) Natural Gas 

database.  Dependent variables are the number of rotary rigs in operation, the 

number of developmental wells and the number of exploratory wells. Rotary rigs are 
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mobile drilling equipment. The number of rigs in operation is a good leading 

indicator of drilling activity. Developmental wells are drilled into reservoirs proven 

to produce gas and are less risky than exploratory wells.  Exploratory wells are 

drilled into reservoirs at depths where geological evidence has indicated, but not 

proven, the possibility of gas or where it is believed production from a formerly 

producing reservoir can be augmented. The price series used are monthly wellhead 

price and monthly Henry Hub spot price. Controls are the annual average cost per 

foot of drilling gas wells and the price of Cushing crude oil which is found in the 

Petroleum & Other Liquids database.  All data series, except cost, are monthly. 

U.S. weather data are from the National Oceanic and Atmospheric 

Administration NOAA.  Variables are the U.S. monthly HDD and CDD along with 

the climate normals; the thirty year month-specific averages.  Values are weighted 

by population in order to better predict total energy use.  

Instruments are constructed from the weather and storage variables. 

Weather shocks are calculated as the observed deviations in HDD and CDD from 

the monthly climate normal. Weather shocks are summed over the previous three 

months in order to characterize weather shocks as successive, compounding shocks. 

Similarly, storage shocks are calculated as the observed deviations from thirty year 

month-specific averages. Fitted values from a regression of storage shocks on 

weather shocks are then used to represent weather-induced storage shocks. 



75 
 

 
 

Results 
In order to demonstrate that weather shocks satisfy the relevancy restriction 

as instruments for both Henry Hub and wellhead price the first stage results are 

presented in tables 1 and 2.  

 

Next, unit root tests are performed to see whether either price series is a random 

walk. To restate, the assumption is that random-walk-like persistence of price 

shocks into the future is one potential mechanism by which current price could 

influence producers’ future drilling decisions. The Augmented Dickey-Fuller-GLS 

test for a unit root with Eliot, Rothenberg and Stock (1996) critical values is used to 

test for the presence of a unit root. The ADF test fails to reject the null hypothesis of 

a unit root for both the Henry Hub and wellhead price series at the 10% level. This 

implies that price shocks, to some extent, persist through time and provides partial 

evidence that weather-related price shocks in the current month may shape 

Table 1.   Table 2.  

FIRST STAGE: LN(WELLHEAD PRICE)  FIRST STAGE: LN(HENRY HUB PRICE) 

HDD Weather Shock  0.06***    HDD Weather Shock 0.12*** 

100 HDD wt  (0.01)    100 HDD wt (0.02) 

        

CDD Weather Shock  0.04**    CDD Weather Shock 0.25*** 

100 CDD wt  (0.01)    100 CDD wt (0.05) 

LN(Crude Price)  0.46***    LN(Crude Price) 0.71*** 

  (0.16)     (0.19) 

Drilling Cost  0.4    Drilling Cost 0.2 
Per foot($1000)  (0.5)    Per foot($1000) (0.7) 

3 Month Storage Shock  -0.0241***    3 Month Storage Shock -0.262*** 
Weather-induced (100MMcf)  (0.006)    Weather-induced (100MMcf) (0.007) 

Observations  84     Observations 84 

Time Trend I  3    Time Trend I 3 

F STAT = 33.34      F STAT = 25.74  
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producers expectation of future price. The ADF test statistics and critical values are 

displayed in tables 3 and 4 below. 

Table 3.   DF-GLS UNIT ROOT TEST    

VARIABLE     

Ln(Well Head Price)  Critical Value 

Lags DF-GLS tau Test Statistic 1% 5% 10% 
17 -0.892 -3.480 -2.819 -2.536 

16 -0.984 -3.480 -2.823 -2.541 

15 -1.073 -3.480 -2.828 -2.545 

14 -1.159 -3.480 -2.833 -2.549 

13 -1.185 -3.480 -2.837 -2.553 

12 -1.272 -3.480 -2.841 -2.557 

11 -1.337 -3.480 -2.846 -2.561 

10 -1.121 -3.480 -2.850 -2.565 

9 -1.035 -3.480 -2.854 -2.569 

8 -1.145 -3.480 -2.858 -2.572 

7 -1.463 -3.480 -2.862 -2.576 

6 -1.422 -3.480 -2.866 -2.579 

5 -1.370 -3.480 -2.869 -2.582 

4 -1.239 -3.480 -2.873 -2.586 

3 -1.371 -3.480 -2.876 -2.589 

2 -1.344 -3.480 -2.880 -2.592 

1 -1.778 -3.480 -2.883 -2.595 

 

 

    

Table 4.   DF-GLS UNIT ROOT TEST    

VARIABLE     

Ln(Henry Hub Price)  Critical Value 

Lags DF-GLS tau Test Statistic 1% 5% 10% 
13 -1.534 -3.478 -2.806 -2.529 

12 -1.690 -3.478 -2.820 -2.542 

11 -1.797 -3.478 -2.834 -2.555 

10 -1.739 -3.478 -2.847 -2.567 

9 -1.718 -3.478 -2.860 -2.579 

8 -2.199 -3.478 -2.873 -2.590 

7 -2.415 -3.478 -2.885 -2.601 

6 -2.403 -3.478 -2.896 -2.612 

5 -2.205 -3.478 -2.907 -2.622 

4 -2.399 -3.478 -2.918 -2.631 

3 -2.076 -3.478 -2.927 -2.640 

2 -2.038 -3.478 -2.936 -2.648 

1 -1.923 -3.478 -2.945 -2.656 

 

Table 5 shows results from the simultaneous equation model using Henry 

Hub spot price. Displayed are results for each of the dependent variables from one 

to ten months following a weather-related price shock. Column (1) displays the 
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elasticity of drilling exploratory, wildcat wells, column (2) displays the elasticity of 

developmental wells and column (3) displays the elasticity of active rotary rig 

counts.  In the column to the right of each estimate is the r-squared value and chi-

square for each drilling equation.  All models include controls for the average cost 

per foot of drilling, the natural log of oil price and a polynomial time trend. 

Coefficients should be interpreted as the percent change in drilling and exploration 

activity t months after a price shock. The counterfactual is the drilling and 

exploration activity in the month preceding the price shock.  There is a statistically 

significant uptick in the number of active rotary rigs two to three months after a 

price shock, a significant increase in developmental wells four months afterwards 

and a significant increase in exploratory wells five months afterwards. Each of 

these effects persists up to eight months after the initial price shock before 

declining or becoming statistically insignificant.   

The maximum elasticity of developmental wells is 0.6, implying that a 10% 

increase in the Henry Hub price results in a 6% increase in drilling within seven to 

eight months of a price shock. Notably, this estimate is larger and has smaller 

standard errors than what has most often been found in previous work when no 

instrument is used for price.  Also, the elasticity is approximately the same for 

exploratory drilling as it is for developmental drilling, although on a one month lag. 

Table 6 displays results when the model uses wellhead price on the RHS.  

The columns and control variables are the same as before. The maximum elasticity 

for exploratory drilling is 1.0 and for developmental drilling is 1.24. A 10% increase  
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in wellhead price is now correlated with a 10% increase in exploratory drilling and a 

12.4% increase in developmental drilling within 7 months of a price shock.  

The relative timing across the dependent variables is consistent and 

intuitive. Rotary rig activity, moving to location and drilling, precedes the 

completion of a well. Exploratory wells are higher risk and more likely to require 

additional planning or preparation than developmental wells. 

Table 5   Drilling and Exploration Activity After a Henry Hub Price Shock 

 

 

 3SLS  3SLS  3SLS  

VARIABLES 

Ln(Henry Hub 

Price) 

Ln(Explor. Well) 

(1) 

R-sq  

(chi2) 

Ln(Develop. Well) 

(2) 

R-sq  

(chi2) 

Ln(Rotary Rigs) 

(3) 

R-sq  

(chi2) 

 1 month forward -0.36** 0.86 -0.22** 0.79 0.01 0.90 

 (0.16) (565.2) (0.09) (322.6) (0.07) (820.8) 

 2 months forward -0.21 0.86 -0.10 0.79 0.10 0.91 

 (0.16) (559.9) (0.09) (325.9) (0.06) (921.9) 

 3 months forward -0.013 0.87 0.01 0.81 0.21*** 0.92 

 (0.16) (567.4) (0.09) (358.2) (0.06) (1055.3) 

 4 months forward 0.05 0.87 0.26*** 0.85 0.32*** 0.93 

 (0.16) (559.9) (0.08) (467.2) (0.06) (1190.7) 

 5 months forward 0.39*** 0.89 0.49*** 0.86 0.37*** 0.93 

 (0.14) (677.3) (0.07) (563.1) (0.06) (1216.0) 

6 months forward 0.48*** 0.88 0.61*** 0.81 0.37*** 0.94 

 (0.15) (618.8) (0.09) (417.3) (0.05) (1318.4) 

 7 months forward 0.59*** 0.87 0.61*** 0.79 0.31*** 0.94 

 (0.16) (567.7) (0.09) (371.7) (0.05) (1398.6) 

 8 months forward 0.66*** 0.84 0.54*** 0.76 0.22*** 0.94 

 (0.17) (482.7) (0.10) (308.8) (0.05) (1506.6) 

 9 months forward 0.49*** 0.86 0.30*** 0.80 0.12** 0.95 

 (0.16) (520.5) (0.09) (362.5) (0.05) (1694.2) 

 10 months forward 0.27 0.85 0.03 0.83 -0.00006 0.95 

 (0.16) (493.2) (0.09) (427.7) (0.05) (1850.8) 

       

Avg. Cost/Foot Yes  Yes  Yes  

Ln(Crude oil price) Yes  Yes      Yes  

Observations (min) 84  84       85      

Time Trend I 3  3        3  

*Estimates for elasticity of demand not shown 

Each row presents the elasticity of drilling and exploration equation results of a unique simultaneous equation model t 

months following a weather-related price shock.  The measure of price used is the U.S. average Henry Hub price of natural 

gas. Monthly data covers the time span from January 1, 2001 to December 31, 2007. Demand estimates not shown. Standard 

errors in parentheses*** p<0.01, ** p<0.05, * p<0.1 
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Table 6  Drilling and Exploration Activity after a Wellhead Price Shock 

 3SLS  3SLS  3SLS  

VARIABLES 

Ln(Wellhead price) 

Ln(Explor. Well) 

(1) 

R-sq 

(chi2) 

Ln(Develop. Well) 

(2) 

R-sq 

(chi2) 

Ln(Rotary Rigs) 

(3) 

R-sq 

(chi2) 

 1 month forward -0.33** 0.87 -0.29*** 0.77 -0.33 0.85 

 (0.13) (567.9) (0.08) (301.7) (0.18) (552.2) 

 2 months forward -0.24 0.86 -0.14 0.78 -0.15 0.89 

 (0.13) (549.2) (0.08) (317.3) (0.16) (716.1) 

 3 months forward 0.03 0.87 0.02 0.80 0.08 0.92 

 (0.13) (575.1) (0.07) (346.2) (0.13) (1036.9) 

 4 months forward -0.23 0.85 0.21 0.84 0.35*** 0.93 

 (0.35) (503.8) (0.17) (458.3) (0.08) (1117.6) 

 5 months forward 0.44 0.87 0.81*** 0.75 0.53*** 0.91 

 (0.32) (597.2) (0.22) (294.5) (0.14) (979.3) 

6 months forward 0.68** 0.88 1.16*** 0.56 0.58*** 0.91 

 (0.31) (638.2) (0.29) (174.31) (0.14) (924.2) 

 7 months forward 1.00*** 0.83 1.24*** 0.49 0.57*** 0.91 

 (0.37) (460.7) (0.32) (149.5) (0.14) (944.6) 

 8 months forward 0.96*** 0.84 1.17*** 0.48 0.44*** 0.93 

 (0.36) (487.9) (0.33) (142.6) (0.13) (1230.7) 

 9 months forward 0.49 0.88 0.69*** 0.73 0.25** 0.95 

 (0.30) (663.1) (0.23) (268.2) (0.11) (1763.2) 

 10 months forward 0.34 0.86 0.18 0.83 0.03 0.95 

 (0.33) (549.7) (0.19) (426.5) (0.10) (1985.2) 

       

Avg. Cost/Foot Yes  Yes      Yes  

Ln(Crude oil price) Yes  Yes      Yes  

Observations (min) 84  84       85      

Time Trend I 3  3        3  

*Estimates for elasticity of demand not shown 

Each row presents the elasticity of drilling and exploration equation results of a unique simultaneous equation model t 

months following a weather-related price shock.  The measure of price used is the U.S. average wellhead price of natural gas. 

Exploratory wells are drilled in search of new gas reservoirs and carry the highest risk. Developmental wells are drilled into 

proven reservoirs and rotary rigs are the number of mobile drilling rigs active in the field. Monthly data covers the time span 

from January 1, 2001 to December 31, 2007. Demand estimates not shown. Standard errors in parentheses*** p<0.01, ** 

p<0.05, * p<0.1 

 

Additionally, ample anecdotal evidence exists to suggest that this time scale is 

reasonable for drilling.10 

For robustness, the models were re-estimated with year fixed effects and 

compared with the results above. The magnitude of drilling and exploration 

elasticity estimates increase by about 0.10, or roughly one standard deviation, when 

yearly fixed effects are used instead of a polynomial time trend.   

                                                           
10

From shalereporter.com, staking the well and planning out the pad boundaries takes one to two months. Drilling 
and completion takes approximately one month. Then the well must be stimulated and extraction can begin. In 
ideal circumstances, the entire process, from drilling to market place, takes as little as 3 or 4 months. Obtaining 
leases, permits and conducting geologic surveys can add substantially more time to the process, however.  
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Table 7 presents the OLS estimates of drilling elasticities for comparison 

with the 3SLS.  

Table 7 Drilling and Exploration Activity OLS Parameter Estimates  

 OLS OLS OLS OLS OLS OLS 

 (1) (2) (3) (4) (5) (6) 

VARIABLES 

Ln(Price) 

Ln(Exp. Well) 

Henry Hub 

Price 

Ln(Dev. Well) 

Henry Hub 

Price 

Ln(Rot. Rig) 

Henry Hub 

Price 

Ln(Exp. Well) 

Wellhead 

Price 

Ln(Dev. Well) 

Wellhead 

Price 

Ln(Rot. Rig) 

Wellhead Price 

 1 month forward -0.27*** -0.14** 0.03 -0.24 -0.09 0.09** 

 (0.08) (0.05) (0.03) (0.11) (0.07) (0.04) 

 2 months forward -0.13 -0.01 0.11*** -0.13 0.01 0.15*** 

 (0.08) (0.05) (0.03) (0.11) (0.11) (0.04) 

 3 months forward 0.04 0.11*** 0.16*** 0.10 0.17*** 0.20*** 

 (0.09) (0.05) (0.03) (0.11) (0.06) (0.04) 

 4 months forward 0.15 0.21*** 0.20*** 0.27** 0.23*** 0.22*** 

 (0.09) (0.04) (0.03) (0.11) (0.06) (0.04) 

 5 months forward 0.33*** 0.30*** 0.22*** 0.37*** 0.33*** 0.27*** 

 (0.09) (0.04) (0.03) (0.12) (0.05) (0.04) 

6 months forward 0.31*** 0.32*** 0.23*** 0.45*** 0.36*** 0.28*** 

 (0.09) (0.04) (0.03) (0.11) (0.05) (0.04) 

 7 months forward 0.33*** 0.29*** 0.20*** 0.37*** 0.34*** 0.26*** 

 (0.09) (0.04) (0.03) (0.11) (0.05) (0.04) 

 8 months forward 0.24*** 0.21*** 0.14*** 0.35*** 0.27*** 0.21*** 

 (0.09) (0.05) (0.03) (0.11) (0.068) (0.04) 

 9 months forward 0.26*** 0.13** 0.09*** 0.45*** 0.22*** 0.16*** 

 (0.09) (0.05) (0.03) (0.11) (0.07) (0.04) 

 10 months 

forward 

0.24** 0.04 0.04 0.43*** 0.09 0.10*** 

 (0.10) (0.05) (0.03) (0.12) (0.07) (0.03) 

       

Avg. Cost/Foot Yes Yes Yes Yes Yes Yes 

Ln(Crude oil price) Yes Yes Yes Yes Yes Yes 

Observations (min) 84 84 84 84 84 84 

Time Trend I 3 3 3 3 3 3 

Each row presents the OLS estimate of elasticity of drilling and exploration equation results of a unique system of 

simultaneous equations t months following a price change.  The measure of price used is the U.S. average wellhead price of 

natural gas. Monthly data covers the time span from January 1, 2001 to December 31, 2010. Demand estimates not shown. 

Standard errors in parentheses*** p<0.01, ** p<0.05, * p<0.1 

 

The OLS model generates smaller but statistically significant estimates. The 

maximum elasticities for exploratory wells are 0.33 and 0.45, maximum elasticities 

for developmental wells are 0.32 and 0.36 and maximum elasticities for rotary rigs 

are 0.23 and 0.28.  These are reasonably similar to OLS estimates of aggregate 

drilling by Wilkinson (1983), Erickson and Spann (1971), and Al Shami (1995), who 

found drilling elasticities of 0.15, 0.35, and 0.48 respectively.   
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Single Equation IV Estimation 
While the simultaneous equations framework is ideal, a series of single 

equation instrumental variable regressions is also run to estimate elasticities. The 

single equation IVs are run with Newey-West standard errors to account for serial 

correlation. These can be compared with standard errors in the 3SLS, which do not 

use Newey-West standard errors, as a way to gauge the effect of autocorrelation.  In 

the single IV equation, instrumental variables for price include both weather shocks 

and weather-related storage shocks. As the reader should remember, weather-

related storage shocks are used to identify short-run demand in the simultaneous 

equations.  This may at first appear contradictory.  The overarching assumption is 

that weather-related storage shocks identify demand in the short-run when the 

number of existing wells and production are fixed.  Beyond the short-run, however, 

storage shocks can be used to identify supply side parameters as well.  With time to 

procure permits and allocate capital, producers can respond to weather-related 

storage shocks by increasing or postponing drilling activity.  

The addition of this instrument to the first stage in the drilling equation has 

intuitive appeal. It explicitly incorporates the signaling process proposed in the 

second mechanism of price-shock-to-expected-price transference; namely, producers 

observe storage shocks and expect them to cause changes in price that persist into 

the future.  Table 8 displays the single equation IV estimates. 
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Table 8  Drilling and Exploration Activity Single IV Equation Estimates 

 SINGLE EQ  

IV 

SINGLE EQ  

IV 

SINGLE EQ IV SINGLE EQ IV 

 (1) (2) (3) (4) 

VARIABLES 

Ln(Henry Hub Price) 

Ln(Explor. Well) 

Henry Hub Price 

Ln(Develop. Well) 

Henry Hub Price 

Ln(Explor. Well) 

Wellhead Price 

Ln(Develop. Well) 

Wellhead Price 

 1 month forward 0.03 -0.40* 0.46** -0.11 

 (0.28) (0.21) (0.21) (0.19) 

 2 months forward 0.017 -0.37* 0.36 -0.26 

 (0.26) (0.20) (0.19) (0.20) 

 3 months forward -0.17 -0.24 0.18 -0.38 

 (0.28) (0.19) (0.21) (0.22) 

 4 months forward -0.15 0.11 0.16 -0.24 

 (0.27) (0.14) (0.19) (0.19) 

 5 months forward 0.09 0.53*** 0.31 0.09 

 (0.26) (0.16) (0.19) (0.18) 

6 months forward 0.53** 0.82*** 0.65*** 0.45*** 

 (0.23) (0.22) (0.19) (0.16) 

 7 months forward 0.96*** 1.01*** 0.99*** 0.75*** 

 (0.32) (0.29) (0.23) (0.17) 

 8 months forward 1.33*** 0.96*** 1.25*** 0.86*** 

 (0.43) (0.28) (0.26) (0.18) 

 9 months forward 1.18*** 0.62*** 1.12*** 0.78*** 

 (0.41) (0.22) (0.23) (0.17) 

 10 months forward 0.81*** 0.09 0.95*** 0.43*** 

 (0.30) (0.16) (0.20) (0.17) 

     

Avg. Cost/Foot Yes Yes Yes Yes 

Ln(Crude oil price) Yes Yes Yes Yes 

Observations (min) 96 96 96 96 

Time Trend I Yearly f.e. Yearly f.e. Yearly f.e. Yearly f.e. 

 

Parameter estimates are generally not meaningfully different from those in 

the simultaneous equations model. Elasticities in columns (1) – (3) are larger in 

magnitude in the single equation IV regressions.  This could be because, outside of 

the simultaneous equation framework, unobserved shifts in demand now create 

positive bias in the estimates. This may provide evidence that the errors terms are 

correlated across equations. This adds some justification for the designation of 

estimates from the simultaneous equations model as the preferred estimates. The 

Newey-West standard errors, which account for serial correlation, are similar or 

slightly larger than previous standard errors.    
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Conclusion  
This paper demonstrates how weather variables and a simultaneous equation 

model can be used to address price endogeneity when estimating drilling and 

exploration elasticities in U.S. natural gas. This framework is employed to estimate 

several elasticities drilling and exploration activity over time.  The results 

illuminate important dynamic aspects of the drilling and exploration price response 

that characterized the natural gas industry from 2000 to 2010. Although numerous 

studies have quantified this relationship in the past, there are good reasons to re-

estimate these elasticities. First, the industry has undergone significant structural 

changes within just the last decade due to continued deregulation and the 

abundance of shale gas; the sensitivity of drilling to price may have changed.  

Second, the endogeneity of price has generally not been addressed by previous 

models. The results in this study demonstrate, however, that estimates from models 

which do not explicitly address the endogeneity of price are likely to suffer 

significant downward bias. As consequence, previous estimation methods likely 

underestimate elasticities of drilling, at least in recent years.  

Weather-related price shocks appear to drive increased drilling and 

exploration activity beginning three to five months after they occur.  Drilling 

activity continues to increase up to eight months after the price shock.  The models 

find the drilling elasticity for natural gas to be is close to, or exceeding 1.0 within 

seven months of a price shock. These estimates of drilling elasticity are higher than 

most in the literature, although, two other studies have estimated drilling elasticity 
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as high as 0.74 and 1.02. It is important to note, however, when comparing these 

estimates to others that this paper estimates drilling elasticity month over month 

whereas all others measure drilling elasticity year over year. 

A useful extension or addition to this paper would be to incorporate a model 

of gas discoveries.  The traditional approach of multiplying drilling elasticities by 

well success rate and discovery per successful well have had very poor predictive 

powers. One possibility may be to combine the current model with an engineering 

model of well discovery in place of an econometric one.  This could extend the 

estimation of drilling elasticities to calculate reserve elasticity. 
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Chapter 3 

THE EFFECT OF ENTRY ON AIRLINE PRICE DISPERSION 

Introduction 
This paper performs an event study to examine how legacy airline frequent 

flyer programs (FFP) combined with market power preserve an incumbents’ ability 

to price discriminate despite increasing competition. A flexible model is employed in 

order to determine whether the effects of entry on incumbent fare dispersion are 

heterogeneous depending on incumbent capacity share at the origin airport. There 

is evidence that dominant capacity share at the origin airport preserves airlines’ 

ability to price discriminate. The estimates demonstrate that a specific combination 

of incumbent, entrant, and market characteristics causes an incumbent’s price 

dispersion to increase with competition. Additionally, an attempt is made to 

determine whether the ability to preserve price discrimination is not solely related 

to market power, but also facilitated through the use of FFP. This hypothesis is 

explored by examining how a dominant airline’s ability to preserve price 
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discrimination varies between long-haul and short-haul routes and between routes 

with large and small consumer preference heterogeneity. 

The effect of competition on price dispersion has been the focus of several 

airline studies. A debate remains, however, whether competition increases or 

decreases price dispersion and whether the effect is monotonic. The “standard 

narrative” of price discrimination holds that as a firm loses market power, its 

ability to price discriminate diminishes and prices converge to marginal cost.  It is 

appealing to test the standard narrative empirically with airlines since price 

dispersion can be considered a proxy for price discrimination and is observable in 

public data.  Despite this appeal as low hanging research fruit, studies have 

confounded one another with contradictory findings regarding whether the standard 

narrative holds. Consequently, the argument has sustained interest for over a 

decade.  

The first model estimated in this paper assumes that the effect of competition 

is homogeneous and monotonic.  Entry of both a legacy (LGC) and a low cost carrier 

(LCC)  on the same route in one quarter is found to reduce incumbent price 

dispersion by 6%.  This is larger than the effect found for LGC entry alone which 

reduces price dispersion by 2%.  LCC entry is estimated to increase price dispersion 

by 1.5%.  

In the preferred specifications, effects of entry are allowed to vary by 

incumbent capacity share at the origin airport. Incumbents with less than 15% 



89 
 

 
 

capacity share at an airport are designated as “non-dominant” while those with 

greater than 25% are designated as “dominant”. In this specification both entry is 

estimated to reduce price dispersion of a non-dominant incumbent by nearly 10%.  

The effect of both entry is four times smaller on incumbents with 15-25% capacity 

share and ten times smaller on dominant incumbents.  These effects are small but 

heterogeneous and meaningfully different from each other.  

There is descriptive evidence that the smaller effect of entry on a dominant 

airline’s price dispersion may be due to that airline’s FFP. This was found by 

examining the effect of competition on dominant airlines prices across route types 

for which the effectiveness of FFP would be expected to vary systematically. 

Specifically, the hypothesis formulated from the descriptive evidence, was that FFP 

should more effectively protect a dominant incumbent’s price discrimination on 

long-haul rather than short-haul routes, and on routes with large consumer 

preference heterogeneity (high volumes of business and leisure travel) as compared 

to routes with low preference heterogeneity (predominantly leisure travel). The 

evidence which led to these hypotheses is provided in the body of the paper. 

Support for these hypotheses becomes weak, however, when they are 

examined more rigorously in a panel data time series regression with carrier-route, 

and carrier-quarter fixed effects.  Model results indicate that a dominant 

incumbent’s price dispersion is more effectively protected on long-haul than short-

haul routes as predicted but are estimated imprecisely.  On routes between big 

cities, where greater preference heterogeneity is assumed, price dispersion actually 
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decreases more with entry, except when the entrant is a low cost carrier. This 

occurs despite clear indications to the contrary in the descriptive statistics. 

Unexpectedly, this study finds that incumbent price dispersion is decreasing 

six to nine months before entry actually occurs. Incumbent price dispersion is found 

to decrease prior to entry regardless of entrant type, LGC or LCC. This 

corroborates, to some extent, findings in other recent works [Goolsbee and Syverson 

(2008); Daraban and Fournier (2009); Huschelrath and Muller (2011)] that 

incumbent’s average price decreases prior to entry in response to the threat of entry 

by Southwest. Dominant incumbents consistently begin pre-emptive fare reductions 

earlier than non-dominant incumbents. Since airlines with dominant status may 

have a larger vested interest in discouraging competition, this behavior could be 

interpreted as evidence of entry deterrence.   

Review of the Literature 
A seminal work on airlines by Borenstein and Rose (1994) and a study by 

Stavins (2001) both found that price dispersion increases with competition, 

contradicting the standard narrative of market power and price dispersion. They 

assert that FFP protect airlines from having to compete for high-value consumers.  

Instead, airlines compete by cutting prices to low-value consumers.  As competition 

increases, price dispersion increases because there is proportionally greater 

downward pressure on the low end of air carriers’ price distributions.   
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Alternatively, Gerardi and Shapiro (2009), find that price dispersion 

decreases with competition in a study using panel data. They show that the cross 

sectional empirical strategy used by Borenstein and Rose (1994) suffers from 

omitted variable bias that changes the signs of their coefficients.  Gerardi and 

Shapiro (2009) have the weight of theory to back their findings but there are several 

reasons why there may still be concerns with their results as well. First, their 

identification relies heavily on the use of enplaned passengers on a route as an 

instrument for competition. It will be discussed below why this instrument may not 

be appropriate and how it likely causes them to overestimate the negative impact of 

competition on price dispersion.   

Second, their empirical model imposes the assumption that the effects of 

competition are homogeneous and monotonic. Their model cannot determine if price 

dispersion increases with competition in some markets and decreases in others. 

Instead, it only identifies the dominant effect. This paper demonstrates why the 

assumption of homogeneous effects is unnecessarily strict and shows how a more 

flexible model illuminates a richer story.   

Goolsbee and Syverson (2008) demonstrate that airlines respond to the threat 

of competition as well as actual market entry. In light of these findings, Gerardi and 

Shapiro (2009) may focus too narrowly on incumbent price responses in the time 

period in which market entry occurs.  The model in this paper is expanded to 

observe how competition affects price dispersion up to three years before and a full 

year after entry in order to paint a more complete picture.   
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Another paper, Dai et al. (2010) estimates a more flexible model than Gerardi 

and Shapiro (2009) and finds a non-monotonic relationship between competitive 

intensity and airline price dispersion.  As in Gerardi and Shapiro (2009), they use 

enplaned passengers on a route to instrument for competition and examine solely 

the period in which entry occurs. Dai et al. (2010) find price dispersion increases 

with competition in concentrated markets while price dispersion decreases with 

competition in competitive markets. They attribute this phenomenon to two 

opposing effects, the competitive effect and the incentive compatibility constraint. 

These findings are consistent with what we would expect to see if the combination 

of loyalty programs and large market share insulate price discrimination from 

competition, as will be explained below.  This paper primarily tests the hypothesis 

that an airline’s origin airport capacity share rather than market concentration, 

however, may drive the heterogeneous effects.  In addition, focusing on airport 

capacity share has the added advantage of being able to test whether FFP are 

partially responsible for the heterogeneous effect of entry.  

Contribution 
This paper strives to improve upon and clarify the findings of the 

aforementioned studies. Works which concluded that the existence of FFP caused 

competition to increase price dispersion [Borenstein and Rose (1994) and Stavins 

(2001)] are based on estimates that have been shown to be biased. By using panel 

data and relaxing the assumption of homogeneous, monotonic effects, however, this 
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paper is able to identify which firm and market characteristics induce price 

dispersion to increase, decrease or remain unchanged with competition. 

A more difficult problem, encountered in all previous work on this topic, is 

the simultaneous determination of competition and incumbent price dispersion. 

Panel data cannot entirely untangle the endogeneity of airfares and market entry 

and the recent attempts to deal with this by instrumenting competition with 

enplaned passengers on a route [Gerardi and Shapiro (2009); Dai et al. (2010)] illicit 

some concerns. The main problem with using enplaned passengers on a route as an 

instrument is that this variable is likely embedded in the error term. This occurs 

because the assumption for using this instrument is that, changes in the number of 

enplaned passengers, are the result of idiosyncratic changes in demand for air 

travel.  In order for enplaned passengers to be a good instrument for competition 

idiosyncratic shifts in demand for air travel across routes must be orthogonal to 

observed prices. Also, it is necessary for these demand shifts to be observable by the 

airlines and influence their entry and exit behavior.  This could be the case if 

airports in growing cities or states experiencing increased demand for flights and 

the number of enplaned passengers from these airports increases on some routes 

more than others. Increased enplanements on these routes may then attract 

potential entrants and induce them to enter selectively into these markets. 

While plausible, there is still good reason to be concerned that enplaned 

passengers on a route does not satisfy the exclusion restriction necessary to make it 

an appropriate instrument. Several studies find incumbents’ average prices 
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decreasing on routes where Southwest threatens to enter several quarters before 

entry actually occurs [Goolsbee and Syverson (2008); Huschelrath and Muller 

(2011)].  In addition, this study find that incumbents’ price dispersions and 

premium fares are systematically decreasing more on routes that experience an 

entry than those that do not, two to four quarters before entry actually occurs. This 

trend is statistically significant in the case of both LCC and LGC entry.  This is a 

problem for the instrument because systematic pre-emptive fare reductions 

themselves cause an increase in enplanements.  In short, enplanements most likely 

increase on routes that ultimately experience entry because of incumbents’ pre-

emptive fare reductions, not due to an exogenous shift in demand.  As a 

consequence, using enplaned passengers on a route as an instrument for entry will 

result in biased estimates. 

The direction of the bias, at least, can be determined.  Since enplanements on 

a route are negatively correlated with price dispersion, via pre-emptive fare 

reductions, but positively correlated with entry, then inclusion of the instrument 

and the exclusion of entry in the regression will result in negatively biased 

estimates. This is consistent with results in Gerardi and Shapiro (2009), as well as 

this paper, which both find unrealistically large, negative effects of entry on price 

dispersion when this instrument is used. 

This work attempts to improve the identification strategy in the following 

ways. First, an event study model is constructed similar to Goolsbee and Syverson 

(2008). The specification includes a complete set of carrier-route and carrier-quarter 
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fixed effects.  This augments the slightly more parsimonious fixed effects models 

used by Gerardi and Shapiro (2009) and Dai et al. (2010) by controlling for carrier-

quarter specific trends rather than just quarterly trends. The model estimates the 

effect of entry on incumbent airfares and price dispersion three years before and one 

full year after the quarter in which entry occurs. This necessitates the inclusion of 

dummy variables for a total of seventeen quarters (four years and three months) 

around each entry event.  Additionally, the preferred specification includes 

enplaned passengers as an independent variable on the RHS.   

For comparison, this paper estimates the model proposed by Gerardi and 

Shapiro (2009) with enplaned passengers on a route as well as another instrumental 

variable; enplaned passengers at origin airport. The latter instrument may 

constitute an improvement over the former one since changes in the number of 

airport-wide enplanements are more likely to capture changes in overall demand 

from economic conditions and less likely to be driven by consumer responses to 

systematic, pre-emptive fare reductions. Estimates using enplaned passengers as an 

instrument are compared to those without instruments and to the event study with 

fixed effects.   

 A final note, examining the possibility of a non-monotonic relationship 

between competition and price dispersion based on carrier’s airport capacity share 

constitutes an important deviation from the study performed by Dai et al. (2010). 

By focusing on the initial level of market concentration and how it determines the 

effect of competition on price dispersion, Dai et al. (2010) end up averaging the 
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effect across airlines on a route regardless of carrier-specific airport capacity share. 

The direction and magnitudes of their estimates may be misleading if dominant and 

non-dominant carriers’ price dispersions respond differently to competition.  

Alternatively, their estimates may correctly estimate the effects of competition and 

the incentive compatibility constraint on price dispersion but lack the precision 

needed to clarify the role of a dominant carrier’s FFP. 

To see why, imagine a contrived example where two airlines operate on a 

route with starkly different capacity shares at the origin airport; United operates 

70% of flights and capacity from Denver international airport while American 

Airlines operates 10%.  Many carriers operate at DIA but assume only United and 

American offer flights from Denver to Chicago. Both respond to the entry of 

Southwest onto the Denver-Chicago route by cutting ticket prices.  United is the 

dominant carrier, for flights originating from Denver, and its FFP offers more value 

to consumers here than either of its competitors’ programs.  Since high-value 

consumers consider both quality and price, United maintains an advantage over 

competitors when pricing to these consumers and makes proportionally larger cuts 

to low-end tickets. This increases price dispersion, contrary to the standard 

narrative.  

Since American has low market share, its loyalty program does not have the 

same value advantage over Southwest as United. Consequently, it makes 

proportionally greater cuts to high-end tickets because price for these tickets is 

furthest above marginal cost.  Consistent with the standard narrative, American’s 
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price dispersion decreases.  To reiterate, the model used by Dai et al. (2010) 

averages these opposing effects on price dispersion.  The direction and magnitude of 

their estimates will then be determined by the relative strength and frequency of 

the heterogeneous effects experienced by United and American. 

The empirical difference between Dai et al (2010) and this study can be 

summarized by understanding the counterfactual in each.  In Dai et al. (2010), a 

carrier in an initially competitive market is the counterfactual for a carrier in an 

initially oligopolistic market, regardless of carrier origin airport capacity share.  

Their study compares the response of price dispersion to entry in concentrated 

markets to the response in highly competitive markets to discern the relative 

importance of competition and the incentive compatibility constraint.     

In this study, the counterfactual for a dominant airline on a given route is a 

non-dominant airline operating on the same route. Theoretically, this allows the 

comparison of price dispersion response to entry of dominant carriers with valuable 

FFP, to non-dominant carriers with relatively less valuable FFP on the same route. 

At the very least, this allows determination of whether airlines can use market 

dominance to prevent price convergence in the case of increasing competition.   

Data 
Airline ticket price data come from the DB1B database, a 10% random 

sample of all US domestic airfares. The dataset is a panel from 1993:Q1 to 2010:Q3. 

Each observation is an itinerary that, in addition to ticket price, includes the 
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operating airline, origin and destination airports, route distance, fare class, number 

of passengers, and whether the ticket was one-way or round-trip.  A route is defined 

as two endpoint cities rather than airports.  Denver to Midway and Denver to 

O’Hare are not, for example, considered different routes since it is assumed 

travelers will consider both Midway and O’Hare when flying to or from Chicago.  

In order to minimize differences in ticket cost and quality the tickets used 

include only coach fares for direct flights.  Following convention in the literature 

round trip ticket prices are divided in half so that the data is constituted of only 

one-way ticket prices for direct flights [Borenstein Rose (1994); Goolsbee and 

Syverson (2008); Gerardi and Shapiro (2009)].  An example of a single observation 

would be a one-way United Airlines flight from Denver to Chicago the 1st Quarter of 

2010. As previously stated, a one-way, United flight from Chicago to Denver is 

considered to be a different observation. This is necessary because an airline’s 

airport capacity share is only a determinant of its FFP value for flyers originating 

in that city (i.e. United should be able charge higher markups on flights departing 

Denver to Chicago than the reverse since it is the single dominant carrier in Denver 

but shares dominance with American Airlines in Chicago). For visualization there is 

a distribution of United Airline’s ticket prices from LAX (Las Angeles) to O’Hare 

(Chicago) in the 1st quarter of 1995 titled, Histogram 1 in the Tables and Figures 

section. 

Dependent variables are average fare, fare percentiles, and the Gini 

coefficient, a measure of price dispersion. The expected difference between two 
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randomly selected fares on a carrier-route is equal to two times the Gini coefficient 

multiplied by the airline’s average price on that route.  For example, if United’s Gini 

coefficient on the Denver to Chicago route is 0.33 and the average ticket price is 

$400, then 2*0.33*$400 = $264, is the expected difference between two randomly 

selected United, coach-class fares on this route.  There are 109,734 carrier-route 

observations in the entire panel. 

The 80th percentile is treated as the representative premium fare for business 

travelers and the 20th percentile as the representative discount fare or base fare for 

leisure travelers. While changes in the Gini coefficient measure whether price 

dispersion is increasing or decreasing, price percentiles can demonstrate whether 

the cause is due to changes in the premium fares, discount fares or both. 

Finally, collapsed carrier-route-quarter DB1B data is merged with carrier-

segment data from the T-100 database which allows the calculation of airline 

capacity shares (and dominance) at airports. The T-100 database provides quarterly 

enplanements, total capacity offering in terms of seats and the number of airplanes 

flown by each carrier. Fortunately, the T-100 database is quite extensive. The 

merge is successful for 90% of the carrier-route observations. For robustness, it is 

verified that regression coefficients do not change depending on whether market 

share is measured in terms of enplanements, seat capacity, or number of flights.   
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Intuition for the Heterogeneous Effects of Entry on Price Dispersion  
The Role of FFP 

An airline with dominant airport capacity share offers more frequent flights 

and flights to a larger number of destinations from that airport.  The larger menu of 

options on which customers can earn points, redeem rewards and enjoy perk 

benefits increases the value of a dominant carrier’s FFP and elite status relative to 

non-dominant airlines. In an airport with no single dominant airline, high-value 

consumers may be evenly distributed among carrier FFPs or subscribe to multiple 

programs simultaneously. Conversely, airports with a single dominant carrier likely 

have a large proportion of high-value consumers enrolled in their own loyalty 

program. In this instance, increasing competition could result in a dominant airline 

reducing base fares disproportionately more than premium fares and potentially, 

increasing its price dispersion. If non-dominant airline’s price dispersion still 

decreases with entry, models assuming monotonicity would still find that the 

standard narrative holds, since non-dominant carriers constitute the majority of the 

observations. This is what is found in Gerardi and Shapiro (2009) 

If the combination of market power and frequent flyer programs is an 

important factor in preserving price discrimination then, as previously stated, the 

insular effect of airport dominance may be more exaggerated on routes with greater 

preference heterogeneity. Namely, on routes that service large numbers of both 

business and leisure travelers as compared to predominantly leisure travelers. This 

is because an FFP only actually entices business traveling, elite status members to 

pay significant premiums on fares.  Since elite status memberships are constituted 



101 
 

 
 

primarily of business travelers, FFP should be most effective on routes with high 

levels of business traffic. A smaller decrease in the 80th price percentile may be 

observed for a dominant carrier on routes between two large cities than for that 

same dominant carrier on other routes.  Percentage decreases in a dominant 

carrier’s 20th fare percentile should not be different across routes, however.  

Essentially, if FFP matter, then a dominant airline’s reduction in price dispersion 

with entry should be smaller on routes between two large cities than on other 

routes. 

Similarly, the insular effect of a dominant airlines’ FFP should be more 

pronounced on long-haul routes than short-haul routes. This is partially because, 

benefits offered to elite status members including seat upgrades, members-only 

airport lounges and free alcohol are more appealing on longer flights. Additionally, 

a member’s opportunity cost of switching airlines, in the number of miles accrued, is 

greater on long flights.  The cost of switching is especially large for elite status 

members, who accrue bonus miles,11 and who are likely to purchase tickets with an 

airline-specific rewards credit card that earns an additional two miles per dollar 

spent. The airline-specific rewards credit cards are extra valuable since they allow 

all reward miles, whether earned by flying or spending, to accrue to the same 

mileage account.  The end result is that, when faced with increasing competition, it 

should be easier for dominant airlines to continue charging high premiums to elite 

                                                           
11

 Up to 2 miles for each mile actually flown 
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status members on long-haul routes (where the switching costs are highest) than 

short-haul routes. 

In summary, this paper will examine the different responses of price 

dispersion to entry for dominant and non-dominant incumbents to determine the 

importance of market power in preserving price discrimination.  To assess the 

importance of FFP, however, a dominant airline’s response to entry is examined 

across route types.  The analysis on dominant airlines looks to see whether price 

dispersion is reduced less on long-haul and high business traffic routes than on 

short-haul and leisure routes. By focusing solely on dominant carriers it is 

theoretically possible to differentiate the importance of FFP and airport dominance 

on fare response to entry. 

Descriptive Statistics 
In order to motivate analysis a series of industry snapshots are presented.  

Figure 1 shows incumbents’ predicted Gini coefficients before and after an entry 

occurs. The graph on the left is for non-dominant airlines while the right is for those 

which are dominant. Dominance is determined by an airline’s capacity share at a 

route’s origin airport. Dominant airlines are those which are responsible for more 

than 25% of the total capacity in terms of seat offerings from the origin airport. 

Each of the curves below represents the predicted Gini coefficient of incumbents’ 

airfare from a fit plot using a fractional polynomial function. The solid blue lines 

predict the Gini coefficients of carrier-route observations which experience an entry 

within four quarters [t0 – 4 to t0 + 4]. Figure 1 does not distinguish entry by type of 
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entrant. t0, or t = 0, implies an entry of any sort. The dotted maroon lines predict 

Gini coefficients for the same carrier-route between twelve and five quarters before 

entry [t0 – 12 to t0 – 5]. These estimates are overlaid to illuminate pre-existing 

trends. 

It is clear from the figure that there is a general downward trend in the Gini 

coefficient. The predicted trends for Gini coefficients from quarters t0 – 12 through 

t0 – 5 are relatively similar for both dominant and non-dominant carriers.  

Figure 1 

   

In the periods more immediately preceding entry, the predicted Gini coefficient 

drops drastically relative to periods further away.  This is true regardless of origin 

airport capacity share, although the dip is much larger for non-dominant carriers. It 
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is surprising to note that the Gini coefficients begin to rise again after entry.  This 

may occur for two reasons.  First, a large proportion of market entry in the airline 

industry is sustained for a short time; several quarters or less. The entry variable 

used here does not distinguish between entrants that stayed on the route and those 

that exited shortly thereafter. Second, the trends may be revealing that airlines 

react sharply to the threat (or announcement) of entry but revert to previous pricing 

regimes (at least in terms of overall dispersion) after entry has occurred.  These 

trends are consistent even when entry is split into different types.  See Figure 1 

continued in the Tables and Figures section, which shows the effect on the Gini 

coefficient of LCC entry, LGC entry and both entry.  

Figure 2 examines the correlation between entry and the Gini coefficient for 

six buckets of capacity share at the origin airport. This figure confirms the likely 

existence of heterogeneous effects of entry on price dispersion. The decrease in the 

predicted Gini coefficient with entry is largest for carriers with the smallest 

capacity shares at the origin airport, those with less than 5%.  The decrease in the 

predicted Gini coefficient associated with entry becomes gradually smaller as 

capacity share at the origin airport increases. The smallest decrease occurs among 

incumbents responsible for more than 70% of an origin airport’s capacity share. 
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Figure 2 

 

Examining predicted curves it is difficult to infer exactly how far in advance 

of entry an incumbent’s Gini coefficient is actually decreasing.  It is clearer when 

the predicted Gini coefficient is examined in just the four quarters preceding entry.  

This is displayed in figure 3. Here, it is possible to make out more precisely that an 

incumbent’s Gini begins decreasing somewhere between two and three quarters 

before entry. 

While illuminating, price dispersion snapshots tell only part of the story.  If a 

dominant carrier’s FFP, and not just airport dominance, are preserving its ability to 

price discriminate then one would expect to see other patterns as well.   If dominant 

carriers disproportionately reduce premium fares less than base fares in response to 

entry, relative to non-dominant ones, it could be that FFP help dominant carriers  
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Figure 3 

 

Figure 4 
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continue to charge premiums to high-end customers. Figure 4 explores whether 

there is descriptive evidence of this.  The correlation between entry and 80th and 

20th fare percentiles is shown. Entry in this instance is entry of both an LGC and an 

LCC in the same quarter.  Again, predicted Gini twelve to five quarters before entry 

is overlaid with maroon dotted lines to illuminate pre-existing trends. The 80th and 

20th fare percentiles of dominant carriers change very little change from quarters [t 

-12, t -5] to quarters [t – 4, t + 4]. In particular, the 80th percentile does not appear 

to drop with entry.  By contrast, the 80th fare percentile fornon-dominant carrier’s 

appears to drop $25-30 in quarters preceding entry (starting at about t0 – 3). Also, 

the 20th fare percentile appears to be increasing for non-dominant carriers in the 

quarters preceding entry and decreasing afterwards, relative to preexisting trends.  

Decreases in the 80th fare percentile and increases in the 20th fare percentile result 

in a contraction of price dispersion for non-dominant carriers relative to dominant 

ones.  The trends are similar, although less pronounced when the entrant is either a 

legacy or a low cost carrier alone.  

 Next, the relationship between price dispersion and dominant carrier route 

type is examined. A previously stated hypothesis, is that FFP may cause dominant 

carriers to experience smaller decreases in price dispersion on long-haul routes and 

routes between major cities; in fact, figures 5 and 6 show that this may be the case.  

Again, entry is defined as entry of both an LGC and an LCC in the same quarter. 

The pre-entry Gini coefficient is smaller for short-haul routes than long-haul routes, 

which we would expect.  Airlines use bigger planes for longer flights which allows 
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them to allocate seats to a larger number of fare classes and price discriminate 

more effectively.   

Figure 5 

  

Even though pre-entry price dispersion is larger on long-haul routes, however, the 

contraction in fares with entry is greatest on short-haul flights.  The predicted Gini 

coefficient decreases by roughly 0.05 for long-haul flights but clearly decreases by 

more than 0.05 for short-haul flights.  This is consistent with the notion that 

dominant carriers’ FFPs are more effective at preserving price discrimination on 

long-haul routes. This is expected since an elite member’s airline switching cost, in 

terms of miles accrued, is greater on long flights.   



109 
 

 
 

  Another hypothesis was that, routes between big cities serve high volumes of 

business travelers, including the majority of elite status members, and a dominant 

carrier’s FFP should therefore cause premium fares to decrease disproportionately 

less than base fares in response to entry.  Again, figure 6 presents descriptive 

evidence that this occurs. The heterogeneity is more pronounced than in the 

comparison of long-haul and short-haul routes. Entry is defined as entry of both an 

LGC and an LCC in the same quarter.  Dominant carriers’ price dispersion actually 

increases with entry on routes between two big cities while on all other routes 

predicted Gini decreases. 

Figure 6 

 

This is consistent with the possibility that FFP insulate premium fares from the 

effect of competition for dominant carriers on routes between big cities. Dominant 
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carriers on these routes may respond to entry predominantly by reducing prices of 

low-end fares.  This trend is the same when entry is defined as only an LGC or only 

an LCC.   

Empirical Model 
The descriptive trends clearly demonstrate the possibility of heterogeneous 

and even non-monotonic effects of competition on price dispersion. They indicate 

that the magnitude and direction of the effect of entry may be dependent on 

incumbents’ origin airport market share and route type. A rigorous analysis is now 

conducted to determine whether these trends are rooted in causal mechanisms.  

First, a linear model assuming monotonicity, similar to ones used in previous 

studies, [Borenstein and Rose (1994); Gerardi and Shapiro (2009)] is employed to 

estimate the effect of entry on price dispersion; the assumption of monotonicity does 

not permit the model to estimate an effect that varies by market share or route 

type. 

Yijkt = Φi,t+rENTRANTj,t+r + Xj(k)t + αij + δit + ɳijt                          (1) 

Yijkt is the Gini coefficient of price dispersion, for carrier i on route j, from 

origin airport k, in quarter t.  The dependent variable is restricted to legacy airlines. 

ENTRANTj,t+r is a series of dummy variables for quarters t0 ± r before, after and 

including entry at t0. These dummy variables are mutually exclusive and cannot be 

interpreted additively as will be explained below. αij is a complete set of carrier-

route fixed effects while δit is a complete set of carrier-quarter fixed effects.  Xj(k)t 

are additional route or (airport-specific) controls that vary over time including the 
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number of enplaned passengers at an airport and the number of competitors on a 

route in quarter t0 – 1.  ɳijt is assumed to be an i.i.d normally distributed error term.   

The total number of passengers at origin airport k each quarter is included to 

capture idiosyncratic variation in airport-specific demand over time. At least two 

studies on airline price dispersion have identified enplaned passengers on a route as 

a measure of demand and used it as an instrument for the number of competitors or 

market concentration [Gerardi and Shapiro (2009); Dai et al. (2010)]. In contrast, 

the assertion of this paper is that market demand is likely an important 

determinant of price dispersion in its own right and belongs in the primary 

regression. To facilitate comparison with previous work, however, this initial model 

is also estimated using enplaned passengers as an instrument for competition. Xj(k)t 

includes the lagged number of airlines on a route in order to control for the initial 

intensity of competition preceding entry.  

A second model uses several dummy variables to differentiate between the 

effects of entry by low cost carriers (LCC), legacy carriers (LGC) or both. It is the 

following: 

Yijkt = Φt+rLCC_ENTj,t+r + Ψt+rLGC_ENTj,t+r + λt+rBoth_ENTj,t+r + Xj(k)t + αij + δit + ɳijkt       (2)                                                                                                                         

 

Yijkt is the Gini coefficient of fare dispersion.  The fixed effects and additional 

controls are the same as in equation (1).  LCC_ENTj,t+r, LGC_ENTj,t+r, and 

Both_ENTj,t+r are each series of dummy variables for quarters t0 ± r before and after 
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entry and inclusive of quarter t0 when entry occurs. This specification creates three 

sets of mutually exclusive dummy variables.  Again, the coefficients on these 

dummies are not interpreted additively.  The coefficients on entry dummies give an 

airline’s level of price dispersion at time t0 ± r relative to its price dispersion in 

periods more than t0 ± r quarters before or after any form of entry (LCC, LGC, or 

both). Since all quarters outside the window t0 ± r are excluded from the regression, 

they are simply referred to as the excluded period.  The following is an illustrative 

example of LCC entry on the price dispersion,  

Giniijk,t = …   (-0.0008)LCC_ENTj,t + (-0.0318)LCC_ENTj,t+1 

The results would be interpreted as follows:  In the quarter of entry, t0, carrier i’s 

Gini is 0.0008 less than in the excluded period. One quarter after entry, carrier i’s 

Gini is 0.0318 less than in the excluded period.  The estimated effect of LCC entry, 

from t0 to t0 + 1, is the difference in coefficients on ENTt and ENTt+1.  In this case, 

LCC entry reduces incumbent Gini by (-0.0318) – (-0.0008) = -0.031 from quarter t0 

to t0 + 1, although -0.0318 can still be interpreted as the total effect of entry. 

Assuming average fare of $300, this means that after entry, the average difference 

between two randomly selected fares on this route is $18.60 (0.031*2*$300=$18.60) 

less than it was before entry. Additionally, if the average Gini coefficient is 0.22, 

then this represents a 14% reduction in price dispersion.  

In the preferred specifications, the assumption of a homogeneous, monotonic 

effect of entry on price dispersion is relaxed and the effect of entry is estimated 

separately for dominant and non-dominant airlines.  A more flexible model is 
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created by interacting entry with dummy variables for buckets of origin airport 

capacity share. Dummy variables for capacity share are created for incumbents 

with less than 15% share, with 15-50% share, 50-75% share and with greater than 

75% share. Incumbents with less than 15% share are considered to have non-

dominant status. Time dummies are still included for each quarter three years 

before, and one year after entry, t0 – 12 to t0 +4. The model, therefore, compares 

incumbent fares in the quarter of entry and each of sixteen quarters surrounding 

entry to the excluded period. This extensive set of dummies exists for each entrant 

type, LGC, LCC and both. This results in 51 individual dummy variables which are 

then interacted with dummy variables for four categories of origin airport capacity 

share. The regression thus includes a total of 204 dummy variables for entry on the 

right hand side (17 quarters x 3 entrant types x 4 capacity share categories = 204).   

Yijkt = ΦD,t+r(LCC_ENTj,t+r *      
       

) + ΨD,t+r(LGC_ENTj,t+r *       
       

)  + 

λD,t+r(Both_ENTj,t+r *       
       

) + Xj(k)t + αij + δit + ɳijkt                                          (3)                                                                                                       

Yijkt is still the Gini coefficient of fare dispersion. Equation (3) includes the 

same fixed effects and controls as equations (1) and (2).       
       

 are the set of dummy 

variables indicating an incumbents capacity share at the origin airport. For 

example,       
  equals 1 when incumbent i has less than 15% capacity share at 

airport k in quarter t and 0 otherwise,       
  equals 1 when incumbent i has between 

15 – 50% capacity share and       
  equals 1 when incumbent i has between 50 – 75% 

capacity share etc. This specification allows the estimated effects of entry to be 

heterogeneous by origin airport capacity share.  Evidence of heterogeneous effects 
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exists if the coefficients on entry dummies interacted with different capacity share 

buckets are different from each other and also statistically different from zero. The 

effects of entry are non-monotonic if some coefficients are negative and others are 

positive. 

In order to understand what is causing price dispersion to change, 80th and 

20th fare percentiles are used as dependent variables in subsequent estimations of 

the regression equation. In these regressions, a slightly altered version of equation 

(3) is re-estimated. Now incumbents with less than 15% airport capacity share are 

considered non-dominant and incumbents with greater than 25% share are 

dominant; essentially, only two dummies for origin capacity share are used instead 

of four. 

Yijkt = ΦD,t+r(LCC_ENTj,t+r *      
   

) + ΨD,t+r(LGC_ENTj,t+r *       
   

)  + λD,t+r(Both_ENTj,t+r 

*       
    

) + Xj(k)t + αij + δit + ɳijkt              (4) 

 

Yijkt is now the natural log of the 80th or 20th fare percentile.  Equation (4) includes 

the same fixed effects and controls as equations (1), (2) and (3).       
  equals 1 when 

incumbent I has less than 15% capacity share at airport k in quarter t and 0 

otherwise,       
  equals 1 when incumbent i has greater than 25 capacity share. 
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Primary Results  
Heterogeneous Effects of Entry by Origin Capacity Share  

Column (1) of Table 1 presents the estimates of specification (1) using the 

Gini coefficient of airfares on carrier-routes that face an entrant of undefined type.  

The model is inflexible and assumes that the effect of entry is homogeneous and 

monotonic. Additionally, it looks only at the effect of entry in the quarter it occurs, 

as in Gerardi and Shapiro (2009). There is a negative and statistically significant 

effect of entry on price dispersion.  Entry is predicted to decrease the Gini coefficient 

by 0.007, or 3.3% of average price dispersion. This estimate is not meaningfully 

different from the un-instrumented estimates of entry in a similar model found by 

Gerardi and Shapiro (2009).   

In column (2), enplaned passengers are used as instruments for entry on a 

route. As in Gerardi and Shapiro (2009), this substantially increases the estimated 

coefficients on entry to -0.267, or 127% of average price dispersion. This estimate is 

nonsensically large but still smaller in magnitude than the estimates found by 

Gerardi and Shapiro (2009) using the same instruments. When the model employs 

year-quarter fixed effects instead of carrier-quarter fixed effects the estimates 

become even larger and are no longer substantially different from those found by 

Gerardi and Shapiro (2009). To restate, the assertion of this paper is that this 

instrument does not satisfy the exclusion restriction and should result in an 

overestimate of the magnitude of the effect of entry.  
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Table 1    Incumbent Responses To Entry 

 (1) (2) (3) (4) 

VARIABLES Gini 

 

Gini 

w/ G & S 

Instrument 

Gini 

w/ new 

Instrument 

Gini 

     

Entry -0.006*** -0.267*** -0.24***  

t0 (only) (0.0007) (0.0822) (0.029)  

     

Entry    -0.0007 

t0 – 3    (0.0005) 

Entry    -0.001** 

t0 – 2    (0.0004) 

Entry    -0.002*** 

t0 – 1    (0.0005) 

Entry    0.0002 

t0    (0.0006) 

Entry    -0.001** 

t0 + 1    (0.0005) 

Entry    -0.001*** 

t0 + 2    (0.0005) 

     

Ln Enplaned passengers 0.012***   0.006*** 

Origin airport (0.001)   (0.001) 

Number of competitors 0.0002 0.0559*** 0.049*** -0.002*** 

 (0.0004) (0.0175) (0.006) (0.0004) 

     

Observations 81,819 81,819 81,819 63,017 

R-squared 0.132   0.264 

Number of carrier-routes 3,601 3,601 3,601 1,561 

Notes.  The dependent variable in columns (1) (2) (3) and (4) is the Gini coefficient of fare dispersion for legacy airlines: 

American, Continental, Delta, Northwest, United and US Airways. All regressions include carrier-route and carrier-year-

quarter fixed effects. The sample includes non-stop flights on 90% of the domestic routes served by these airlines. Entry is an 

indicator variable equal to one if entry of any kind occurred on route j in quarter t0 and zero otherwise. The coefficients on 

Entry are interpreted as the effect of entry in quarter t0±r compared to the excluded periods, quarters greater and less than 

t0±r. Robust standard errors are in parentheses and are clustered by carrier-route *** p<0.01, ** p<0.05, * p<0.1. 

  

In column (3) enplaned passengers at the origin airport is used to instrument 

for entry; this which was proposed as a possibly superior instrument.  The 

estimated coefficients are smaller in magnitude but still unreasonably large and 

similar to those in column (2).   

Column (4) presents the results of specification (1) when it is modeled as a 

short event study.  Entry dummies are expanded to include five quarters around 

entry. The effects of entry are examined beginning three quarters before entry, t0 – 

3 through two quarters after entry, t0 + 2. In this specification, the coefficients on 
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Entryt-2 and Entryt-1 are negative and statistically significant. This indicates that 

for incumbents facing an entrant in t0, price dispersion is lower and statistically 

significant in quarters t0 – 2 and t0 – 1 than in the quarters excluded from the event 

study. The coefficient on Entryt-3 is negative but not statistically different from price 

dispersion in the excluded quarters.  This seems to imply that price dispersion 

starts decreasing somewhere between two and three quarters prior to entry, 

corresponding to trends observed in the descriptive figures. Also, it is consistent 

with anecdotes that airlines typically announce entry on a route approximately six 

months in advance. In the quarter entry occurs, price dispersion actually increasing 

slightly relative to quarter t0 – 1; price dispersion is again decreasing in the 

quarters after entry.  The largest estimate of the effect of entry on the Gini 

coefficient is -0.002, nearly 1% of average initial price dispersion. 

Table 2 presents the estimates from specification (2). Here, entry is broken 

into three categories, entry by an LGC (legacy carrier), an LCC (low cost carrier), 

and both in the same quarter.  This model is an event study and includes dummies 

including and surrounding entry from t0 – 3 to t0 + 2.  The model remains inflexible, 

however, and the estimates on entry are still required to be homogeneous and 

monotonic. The dependent variable in column (1) is Gini coefficient while columns 

(2) and (3) are natural logs of the 80th and 20th fare percentiles. 

Again, incumbent price dispersion is decreasing and statistically significant 

in quarters t0 – 2 and t0 – 1 whether the entrant is LGC or both.  Carrier-route Gini 

coefficient decreases by as much as 0.013 when both entry occurs.  This constitutes 
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a 6% decrease in price dispersion. Similar to the before, price dispersion increases in 

t0 relative to t0 – 1; price dispersion is still lower in t0 than in the excluded periods.  

Price dispersion decreases further in quarters t0 + 1 and t0 + 2. The point estimates 

of low cost carrier entry on price dispersion are positive but small and statistically 

insignificant. Still, this result provides some evidence that the effect of entry on 

price dispersion may be non-monotonic depending on entrant type. 

Table 2 further shows that incumbents decrease in price dispersion in 

quarters t0 – 2, t0 – 1, and t0 + 1, t0 + 2 is driven predominantly by decreases in the 

80th fare percentile. Although both the 80th and the 20th fare percentiles are 

decreasing with all types of entry, decreases in the 80th percentile are generally 

larger in percent and absolute terms. The 80th percentile decreases by as much as 

4% in the quarters preceding entry of both carrier types.  

 

Table 2  Incumbent Responses To Entry By Entrant Type 

 (1) (2) (3) 

VARIABLES Gini Ln(p80) Ln(p20) 

    

LGC entry -0.001** -0.006* 0.001 

  t0 – 3 (0.0005) (0.003) (0.002) 

LGC entry -0.003*** -0.012*** -0.007** 

  t0 – 2 (0.0005) (0.003) (0.003) 

LGC entry -0.004*** -0.02*** -0.014*** 

  t0 – 1 (0.0006) (0.003) (0.003) 

LGC entry -0.002*** -0.006 0.003 

  t0 (0.0007) (0.005) (0.004) 

LGC entry -0.003*** -0.01** -0.009** 

  t0 + 1 (0.0006) (0.004) (0.003) 

LGC entry -0.003*** -0.005 -0.01*** 

  t0 + 2 (0.0005) (0.004) (0.003) 

    

LCC entry 0.002* 0.0001 -0.002 

  t0 – 3 (0.0009) (0.004) (0.003) 

LCC entry 0.0006 -0.008 -0.01** 
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  t0 – 2 (0.0001) (0.005) (0.003) 

LCC entry 0.001 -0.013** -0.014** 

  t0 – 1 (0.001) (0.005) (0.005) 

LCC entry 0.003** -0.017** -0.009** 

  t0 (0.001) (0.007) (0.005) 

LCC entry 0.002* -0.028*** -0.02*** 

  t0 + 1 (0.0009) (0.006) (0.005) 

LCC entry 0.0005 -0.027*** -0.02*** 

  t0 + 2 (0.0009) (0.006) (0.005) 

    

Both entry -0.008*** 0.015 0.02*** 

  t0 – 3 (0.001) (0.009) (0.006) 

Both entry -0.008*** -0.012 0.007 

  t0 – 2 (0.001) (0.007) (0.005) 

Both entry -0.013*** -0.04*** -0.018** 

  t0 – 1 (0.001) (0.007) (0.008) 

Both entry -0.003* -0.018 0.004 

  t0 (0.001) (0.012) (0.009) 

Both entry -0.012*** -0.025** -0.012 

  t0 + 1 (0.001) (0.01) (0.008) 

Both entry -0.009*** -0.024** -0.026*** 

  t0 + 2 (0.001) (0.01) (0.008) 

    

Number of competitors -0.001*** -0.038*** -0.024*** 

 (0.0004) (0.003) (0.002) 

Ln Enplaned passengers 0.006*** -0.025** -0.037*** 

At Origin Airport (0.001) (0.01) (0.009) 

    

Observations 67,585 67,595 67,595 

R-squared 0.200 0.176 0.129 

Number of carrier-routes 2,064 2,067 2,067 

Notes.  The dependent variable in column (1) is the Gini coefficient of fare dispersion, (2) is the 80th fare 

(continued) percentile, and (3) is the 20th fare percentile for legacy airlines: American, Continental, Delta, 

Northwest, United and US Airways. All regressions include carrier-route and carrier-year-quarter fixed effects. 

The sample includes non-stop flights on 90% of the domestic routes served by these airlines. Entry is an 

indicator variable equal to one if entry of any kind occurred on route j in quarter t0 and zero otherwise. The 

coefficients on Entry are interpreted as the effect of entry in quarter t0±r compared to the excluded periods, 

quarters greater and less than t0±r. Robust standard errors are in parentheses and are clustered by carrier-

route Robust standard errors in parentheses *** p<0.01, ** p<0.05,  * p<0.1 

 

 Table 3 presents estimates from the preferred model, specification (3). 

Now, modeled as a flexible long range event study.   Entry dummies are included 

for all seventeen quarters (four years) around and including each occurrence of 

entry. Abbreviated results from t-10 to t + 4 are displayed. The effects of entry are 

now permitted to vary by incumbent capacity share at the origin airport.  Again, the 

effects of LGC entry and both entry are generally negative and often statistically 
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significant.  The only types of entry that lead to meaningful and statistically 

significant decreases in price dispersion are LGC entry and both entry [shaded for 

emphasis].  Additionally, however, it is only non-dominant airlines with less than 

15% capacity share or 15-25% capacity share that show statistically significant 

decreases in price dispersion. Altogether, non-dominant airlines constitute over 60% 

of the panel observations.  The effects of entry are larger on the set of incumbents 

with less than 15% capacity share than those with 15-25% share.  Both entry 

decreases Gini by as much as 0.022, 10% of average price dispersion for airlines 

with less than 15% capacity share and by as much as 0.006, about 2.5% of average 

price dispersion for those with 15-25% share.  LGC entry decreases Gini by as much 

as 0.005 for those with less than 15% share and 0.003 for those with 15-25% share.   

  



121 
 

 
 

Table 3   INCUMBENT RESPONSES TO ENTRY BY ENTRANT TYPE 

 (1) (2) (3) (4) 

VARIABLES 

Origin Capacity Share 

Gini 

< 0.15 

Gini 

0.15 – 0.25 

Gini 

0.25 – 0.75 

Gini 

> 0.75 

     

LGC entry -0.001 -0.002* 0.0001 -0.002 

  t0 – 10 (0.001) (0.001) (0.001) (0.002) 

LGC entry -0.002* -0.001 0.0005 -0.002 

  t0 – 9 (0.001) (0.001) (0.001) (0.002) 

LGC entry -0.002* -0.001 -0.0002 -0.002 

  t0 – 8 (0.001) (0.001) (0.001) (0.001) 

LGC entry -0.001 -0.0006 -0.001 0.0004 

  t0 – 7 (0.001) (0.001) (0.001) (0.002) 

LGC entry -0.002* -0.003** -0.002** -0.001 

  t0 – 6 (0.001) (0.001) (0.001) (0.002) 

LGC entry -0.002* -0.003*** -0.003*** -0.001 

  t0 – 5 (0.001) (0.001) (0.001) (0.002) 

LGC entry -0.002* -0.003*** -0.003*** -0.002 

  t0 – 4 (0.001) (0.001) (0.001) (0.002) 

LGC entry -0.0008 -0.001 -0.001* 0.002 

  t0 – 3 (0.001) (0.0009) (0.0007) (0.001) 

LGC entry -0.003*** -0.002 -0.001** 0.003* 

  t0 – 2 (0.001) (0.001) (0.0008) (0.001) 

LGC entry -0.005*** -0.002* -0.002** 0.002 

  t0 – 1 (0.001) (0.001) (0.0008) (0.001) 

LGC entry -0.003** -0.003** 0.002* 0.0006 

  t0 (0.001) (0.001) (0.001) (0.002) 

LGC entry -0.005*** -0.002* -0.001 0.001 

  t0 + 1 (0.001) (0.001) (0.0008) (0.001) 

LGC entry -0.003*** -0.0006 -0.0009 0.0005 

  t0 + 2 (0.001) (0.001) (0.0008) (0.001) 

LGC entry -0.0006 -0.002 -0.003*** 0.0006 

  t0 + 3 (0.001) (0.001) (0.001) (0.002) 

LGC entry -0.0008 -0.0006 -0.003*** -0.0005 

  t0 + 4 (0.001) (0.001) (0.001) (0.002) 

     

LCC entry 0.004** -0.0006 0.003** 0.003 

  t0 – 10 (0.001) (0.001) (0.001) (0.005) 

LCC entry 0.004*** -0.0007 0.004** -0.0008 

  t0 – 9 (0.001) (0.002) (0.001) (0.005) 

LCC entry 0.003* 0.001 0.0002 0.002 

  t0 – 8 (0.001) (0.002) (0.001) (0.005) 

LCC entry 0.003** 0.0007 -0.0009 0.004 

  t0 – 7 (0.001) (0.002) (0.001) (0.004) 

LCC entry 0.004*** 0.001 -0.002 0.007 

  t0 – 6 (0.001) (0.002) (0.001) (0.005) 

LCC entry 0.004** 0.0005 -0.0008 0.006 

  t0 – 5 (0.001) (0.002) (0.001) (0.005) 

LCC entry 0.001 0.001 0.0003 0.013* 

  t0 – 4 (0.001) (0.002) (0.001) (0.007) 

LCC entry -0.0003 0.002 0.002 0.0004 

  t0 – 3 (0.001) (0.001) (0.001) (0.003) 
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LCC entry 0.0003 0.002 0.001 0.001 

  t0 – 2 (0.001) (0.001) (0.001) (0.003) 

LCC entry -0.002 0.002 0.0001 0.001 

  t0 – 1 (0.001) (0.001) (0.001) (0.003) 

LCC entry 0.001 0.005** 0.002 0.001 

  t0 (0.001) (0.002) (0.001) (0.004) 

LCC entry -0.002 0.003* 0.001 0.001 

  t0 + 1 (0.001) (0.001) (0.001) (0.003) 

LCC entry -0.001 0.003* 0.001 -0.005* 

  t0 + 2 (0.001) (0.001) (0.001) (0.003) 

LCC entry -0.0001 0.003* -0.001 0.007* 

  t0 + 3 (0.001) (0.002) (0.001) (0.003) 

LCC entry -0.0001 0.003* 0.001 0.004 

  t0 + 4 (0.001) (0.001) (0.001) (0.003) 

     

Both entry -0.002 0.001 -0.0009 0.000653 

  t0 – 10 (0.002) (0.002) (0.002) (0.00721) 

Both entry -0.002 0.002 -0.001 0.0105 

  t0 – 9 (0.002) (0.003) (0.002) (0.00739) 

Both entry -0.002 0.001 0.0003 0.00169 

  t0 – 8 (0.002) (0.003) (0.002) (0.00837) 

Both entry -0.002 -0.0005 0.0004 -0.00531 

  t0 – 7 (0.002) (0.003) (0.002) (0.00725) 

Both entry -0.001 0.001 0.004* -0.00594 

  t0 – 6 (0.002) (0.003) (0.002) (0.00658) 

Both entry -0.0004 0.0003 0.004* -0.0162** 

  t0 – 5 (0.002) (0.003) (0.002) (0.00688) 

Both entry 0.0003 -0.001 -0.0004 -0.0129** 

  t0 – 4 (0.002) (0.002) (0.002) (0.00595) 

Both entry -0.011*** -0.005** 0.002 -0.005 

  t0 – 3 (0.002) (0.002) (0.001) (0.005) 

Both entry -0.012*** -0.003 0.003 -0.0004 

  t0 – 2 (0.002) (0.002) (0.001) (0.005) 

Both entry -0.02*** -0.006** -0.002 -0.005 

  t0 – 1 (0.003) (0.002) (0.001) (0.005) 

Both entry -0.006** 0.001 0.005** -0.006 

  t0 (0.002) (0.002) (0.002) (0.004) 

Both entry -0.022*** -0.004* -0.002 -0.001 

  t0 + 1 (0.003) (0.002) (0.001) (0.004) 

Both entry -0.016*** -0.001 -0.002 -0.005 

  t0 + 2 (0.003) (0.002) (0.001) (0.005) 

Both entry -0.003* -0.004 -0.004* -0.005 

  t0 + 3 (0.002) (0.002) (0.002) (0.005) 

Both entry -0.002 -0.004 -0.003 -0.008 

  t0 + 4 (0.002) (0.003) (0.002) (0.005) 

     

     

Number of competitors -0.001* -0.002** -0.004*** 0.0002 

  t0 – 1 (0.0006) (0.0008) (0.0008) (0.001) 

Ln Enplaned passengers 0.006 0.009** 0.021*** 0.023*** 

Origin airport (0.004) (0.003) (0.006) (0.008) 

     

Observations 32,443 5,279 21,260 3,143 
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R-squared 0.197 0.221 0.292 0.340 

Number of carrier-routes 1,281 344 799 269 

Notes.  The dependent variable in columns (1)-(4) is the Gini coefficient of fare dispersion for legacy airlines: 

American, Continental, Delta, Northwest, United and US Airways. Observations are divided into columns based 

on incumbents capacity share (in terms of seat offerings) at the origin airport. All regressions include carrier-

route and carrier-year-quarter fixed effects. The sample includes non-stop flights on 90% of the domestic routes 

served by these airlines. Entry is an indicator variable equal to one if entry of any kind occurred on route j in 

quarter t0 and zero otherwise. The coefficients on Entry are interpreted as the effect of entry in quarter t0±r 

compared to the excluded periods, quarters greater and less than t0±r. Robust standard errors are in 

parentheses and are clustered by carrier-route Robust standard errors in parentheses *** p<0.01, ** p<0.05,  * 

p<0.1 

 

Estimates of LGC and LCC entry on incumbents with greater than 75% 

capacity share at the origin airport are positive but mostly not statistically 

significant. In fact, nearly all the estimates of LCC entry on airlines with greater 

than 25% capacity share are positive, although, few are statistically significant.  

This offers weak evidence that the effect of entry may be non-monotonic, in this 

instance depending on origin capacity share.  There is again, weak evidence that 

the effect of entry may also be non-monotonic depending on entrant type. 

Table 4 presents results from specification (4), estimating a long range event 

study as in Table 3. To ease cognitive burden, results are again somewhat 

abbreviated.  Here, non-dominant incumbents are those with less than 15% capacity 

share and dominant incumbents as those with greater than 25% capacity share.  

The dependent variables are the natural log of incumbent 80th and 20th fare 

percentiles. Regressing fare percentiles is meant to add insight as to why price 

dispersion in Table 3 is decreasing.  Both 80th and 20th fare percentiles are 

decreasing one to three quarters before entry occurs.  Although the percentage 

decreases for the 80th and 20th percentiles are similar, the absolute decrease in fare 

price is greater for the 80th percentile. Proportionally larger decreases in the 80th 
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fare percentiles appear to be driving the contraction in fare dispersion observed in 

Table 3. 

There is no obvious story as to why, in Table 3, price dispersion decreases in 

quarters prior to entry but then increases slightly from t0 – 1 to t0  before continuing 

to decrease in quarters t0 + 1 and t0 + 2. In some cases, it may be explained by the 

fact that fares in the 20th percentile are decreasing more than fares in the 80th 

percentile from quarter t0 – 1 to t0.  This could be the case if incumbents decrease 

the price of premium fares on the announcement of a competitor’s planned entry in 

attempt to deter entry or generate consumer loyalty but wait to decrease low-end 

fares until after entry has occurred. Another possibility, is simply that neither the 

80th nor the 20th percentiles is estimated precisely in the quarter entry occurs. In 

this case, imprecise estimates may be the main reason for the apparent increase in 

price dispersion from t0 – 1 to t0.12 

There is evidence in Table 4 that the effect of the entry on fares is greater for 

non-dominant than dominant incumbents.  LGC entry decreases 80th and 20th fare 

percentiles for both dominant and non-dominant incumbents, but the magnitude of 

the estimates is larger for non-dominant carriers. The effects on 20th percentile are 

substantially different for dominant and non-dominant incumbents. Effects of entry 

                                                           
12 Estimates in quarter t0 may be imprecise because they combine the incumbents’ response to the “threat of 

entry” or announced entry and the incumbents’ response to the actual entry. Since entry is not likely to occur on 

the first day of the quarter some of the fare observations for a carrier-route within quarter t0 correspond to the 

period before entry and others to the period after entry. This could be problematic for estimating incumbent fare 

dispersion in quarter t0 if, for example, incumbents pre-emptively reduce high-end fares to deter entry and only 

reduce low-end fares once entry has occurred. 
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on the 80th percentile are only meaningfully different in the quarters after entry.  

LGC entry decreases the 80th percentile of a non-dominant incumbent by up to 3% 

and the 20th percentile by as much as 2%. 

Although incumbent price dispersion is not impacted in a significant way by 

LCC entrants, there are negative, statistically significantly impacts on fare 

percentiles.  80th and 20th fare percentiles are decreasing for both dominant and 

non-dominant incumbents.  Again, estimates of LCC entry are larger for non-

dominant carriers and meaningfully different from estimates on dominant13 

carriers. Non-dominant incumbents experience an over 4% decrease in the 80th 

percentile and as much as a 3% decrease in the 20th percentile.  By comparison, 

dominant incumbents’ largest decrease is 2.6% for the 80th percentile and 1.4% for 

the 20th percentile.  While all incumbents reduce fares prior to LCC entry, it occurs 

that dominant carriers begin decreasing low end fares two quarters earlier than 

non-dominant carriers.  This implies that dominant airlines are more aggressive 

than non-dominant ones in their attempts to deter LCC entry. 

Unsurprisingly, reductions in fare percentiles are greatest when both entry 

occurs.  The effect is larger for non-dominant carriers although, only occasionally is 

the difference from the effect for dominant carriers meaningful. Non-dominant 

carriers’ decrease 80th percentile up to 5.5% and the 20th percentile by as much as 

4.7%. Dominant carriers’ experience a decrease in both the 80th and 20th percentiles 
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by as much as 3%.  Again, it appears that dominant incumbents preemptively 

reduce their low end fares earlier than non-dominant incumbents.  

Table 4   Incumbent Responses To Entry By Entrant Type 

 (1) (2) (3) (4) 

VARIABLES 

Origin Capacity Share 

Ln(p80) 

< 0.15 

Ln(p20) 

< 0.15 

Ln(p80) 

> 0.25 

Ln(p20) 

> 0.25 

     

LGC entry -0.002 0.0006 -0.005 0.003 

  t0 – 3 (0.005) (0.004) (0.004) (0.003) 

LGC entry -0.019** -0.015** -0.014*** -0.004 

  t0 – 2 (0.01) (0.007) (0.004) (0.003) 

LGC entry -0.01 -0.021** -0.018*** -0.01** 

  t0 – 1 (0.01) (0.008) (0.005) (0.004) 

LGC entry -0.007 -0.008 -0.007 -0.01* 

  t0 (0.006) (0.008) (0.005) (0.005) 

LGC entry -0.029*** -0.021*** -0.007 -0.005 

  t0 + 1 (0.009) (0.007) (0.005) (0.004) 

LGC entry -0.004 -0.012* -0.01** -0.009** 

  t0 + 2 (0.005) (0.007) (0.004) (0.003) 

     

LCC entry 0.011 0.005 -0.003 -0.009* 

  t0 – 3 (0.008) (0.006) (0.006) (0.005) 

LCC entry -0.013 -0.012 -0.01 -0.014** 

  t0 – 2 (0.01) (0.01) (0.007) (0.005) 

LCC entry -0.03** -0.028*** -0.02*** -0.014** 

  t0 – 1 (0.01) (0.01) (0.007) (0.005) 

LCC entry -0.02 -0.022** -0.009 0.003 

  t0 (0.01) (0.01) (0.009) (0.006) 

LCC entry -0.044*** -0.032*** -0.026*** -0.013** 

  t0 + 1 (0.01) (0.01) (0.008) (0.005) 

LCC entry -0.024* -0.014 -0.024*** -0.013** 

  t0 + 2 (0.01) (0.009) (0.008) (0.006) 

     

Both entry 0.026* 0.027** 0.0005 0.002 

  t0 – 3 (0.01) (0.01) (0.008) (0.006) 

Both entry -0.012 -0.016 -0.01 -0.013* 

  t0 – 2 (0.01) (0.01) (0.009) (0.006) 

Both entry -0.051*** -0.047*** -0.03*** -0.017** 

  t0 – 1 (0.01) (0.01) (0.01) (0.007) 

Both entry -0.015 -0.014*** -0.014*** -0.017 

  t0 (0.02) (0.01) (0.01) (0.01) 

Both entry -0.055** -0.038** -0.023* -0.003 

  t0 + 1 (0.02) (0.01) (0.01) (0.01) 

Both entry -0.039** -0.028** -0.021 -0.029*** 

  t0 + 2 (0.01) (0.01) (0.01) (0.009) 

     

Number of competitors -0.035*** -0.025*** -0.0399*** -0.0182*** 

  t0 – 1 (.004) (0.003) (0.00472) (0.00319) 

Ln Enplaned passengers -0.083*** -0.086*** -0.00376 -0.0341 
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Origin airport (0.02) (0.01) (0.0209) (0.0211) 

     

Observations 32,443 32,443 23,196 23,196 

R-squared 0.172 0.122 0.217 0.177 

Number of carrier-routes 1,281 1,281 968 968 

Notes.  The dependent variable in columns (1) and (3) are the natural log of the 80th fare percentile for non-

dominant and dominant incumbents respectively.  The dependent variable in columns (2) and (4) are the 

natural log of the 20th fare percentile for non-dominant and dominant incumbents respectively. All incumbents 

are legacy airlines: American, Continental, Delta, Northwest, United and US Airways. Non-dominant 

incumbents are those with less than 15% capacity share (in terms of seat offerings) at the origin airport. 

Dominant incumbents are those with greater than 25% capacity share at the origin airport. All regressions 

include carrier-route and carrier-year-quarter fixed effects. The sample includes non-stop flights on 90% of the 

domestic routes served by these airlines. Entry is an indicator variable equal to one if entry of any kind occurred 

on route j in quarter t0 and zero otherwise. The coefficients on Entry are interpreted as the effect of entry in 

quarter t0±r compared to the excluded periods, quarters greater and less than t0±r. Robust standard errors are 

in parentheses and are clustered by carrier-route Robust standard errors in parentheses *** p<0.01, ** p<0.05,  

* p<0.1 

 

Secondary Results 
The Role of FFP in the Heterogeneous Effects of Entry  

While the primary results illustrate a more complete picture of the effect of 

entry on price dispersion, a secondary objective of this analysis is to differentiate 

the role of FFP from capacity share in the heterogeneous effect of entry. Purely 

descriptive work provided clear, albeit circumstantial, evidence that FFP may be an 

important factor in the ability of dominant airlines to preserve price dispersion in 

the face of increasing competition.   

In order to determine whether these preliminary findings on FFP hold up to 

more rigorous examination equation (4) is re-estimated on only dominant 

incumbents.  All observations of incumbents with less than 25% capacity share at 

the origin airport are dropped from the regression. Now, instead of comparing 

dominant and non-dominant airlines the model examines how the effect of entry on 

price dispersion varies across route types.  As in the descriptive analysis, long-haul 

routes are compared to short-haul routes, and routes between two big cities are 
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compared to routes with at least one endpoint that is not a big city.  To restate the 

hypothesis, if FFP secure loyalty among elite status members then dominant 

incumbent’s price dispersion should decrease more on short-haul routes and on 

routes not between two big cities. 

Table 5 presents the estimates of equation (4) for Gini of dominant airlines 

on long-haul flights (greater than 1000 miles) and short-haul flights (less than 500 

miles).  It is immediately clear that there is small if any difference between the two.  

None of the estimates is statistically significant and the evidence that FFP are 

increasing incumbents’ ability to price discriminate is very weak.  Table 5 is 

included in the Tables and Figures section. 

There is some evidence that LCC entry causes price dispersion to increase on 

long-haul routes and to decrease slightly on short-haul routes.  Incumbent Gini on 

long-haul routes increases by as much as 0.004 while it decreases by as much as 

0.002 on short-haul routes.  Although imprecisely estimated, these coefficients are 

meaningfully different from each other.  This is consistent, if not convincing, with 

the hypothesis that FFP help dominant airlines to price discriminate more 

effectively on long-haul routes. Additionally, both entry causes Gini to increase 

slightly, by 0.001 or less, on long-haul routes but causes it to decrease by as much 

0.006 on short-haul routes. Again, although neither of these estimates is very large, 

they are meaningfully different from each other. This is, again, consistent with the 

hypothesis that FFP help dominant airlines to price discriminate more effectively 

on long-haul routes. 
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Table 6 presents the estimates of equation (4) for the Gini of dominant 

airlines comparing routes between two large cities and all other routes.  Again, few 

of the estimates are statistically significant. There is some evidence that LCC entry 

causes price dispersion to increase more on routes between big cities. This could be 

interpreted as weak evidence that FFP are helping dominant airlines price 

discriminate when LCC entry occurs. LGC entry and both entry are found to 

decrease price dispersion more on routes between two big cities.  This contradicts 

the hypothesis that FFP help dominant airlines to price discriminate more 

effectively on routes between big cities.  Also, it contradicts the early descriptive 

findings.  This is surprising given the strength of the descriptive indications that 

dominant carriers preserve price dispersion very well on big city routes. Table 6 is 

included in the Tables and Figures section.  

Additional Specifications 
In an attempt to offer insight and additional clarity to the primary results in 

this paper some additional analyses are performed.  A common critique of event 

studies and fixed effects models, like the one employed here, is that they fail to 

appropriately address the endogeneity of key independent variables. In this paper, 

there is legitimate concern that the event study framework with carrier-route fixed 

effects and carrier-quarter fixed effects does not sufficiently address the 

endogeneity of route entry and airfares. An airline almost certainly selects which 

routes to enter based partially on incumbents’ airfares, and any number of demand 

factors related to both the fares currently charged by incumbent airlines, and the 
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fares an entrant can expect to charge after entry.  This creates potential selection 

bias whereby, the parameter estimates of entry on price dispersion and fare 

percentiles, are likely to be biased. 

The estimates are likely biased towards zero if airlines choose to enter routes 

with unobserved demand characteristics that are positively correlated with price or 

inelastic consumer behavior. This is because unobserved demand characteristics, 

which are positively correlated with both price and entry, are then included in the 

error term.  The selection of new routes by airlines where demand factors make 

fares relatively insensitive to competition, result in parameter estimates that 

underestimate the true effect of entry on price dispersion or price percentiles.  

Two alternate specifications are estimated in an attempt to minimize the 

concern of selection bias. First, a control function is estimated; this specification is 

equivalent to a multivariate regression. In a control function, a host of variables 

correlated with route-specific demand and cost of entry are added to the regression.  

The assumption is that, after controlling for all factors that explain demand and 

cost, remaining variation in entry is exogenous.  The limitation of this approach is, 

of course, the difficulty involved in being able to identify and observe all factors 

associated with demand and the cost of entry on a route. Potential variables of 

interest in the current data set include the percent of tickets bought online, the 

number of passengers at the origin airport, the number of passengers at the 

destination airport, average load factor, the percent of tickets which are round trip, 

the number of  direct flights from the origin airport, and a dummy variable for 2001, 
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which accounts for the disruption to demand caused by terrorist attacks. The 

number of enplaned passengers at the origin airport, which was used in this paper’s 

preferred specifications as an independent variable, is still included.  

Additional variables associated with demand that do not change over time 

but are likely to be correlated with either demand or cost of entry are whether an 

airport is slot controlled, and whether it is a popular leisure destination such as 

Florida, Las Vegas or Hawaii. Also, the route distance is likely to be correlated with 

demand. The relationship is likely increasing with distance and non-linear since, for 

short distances, viable substitutes such as car, bus or train are more likely to exist. 

Long distances have fewer substitutes so demand for flights is higher but 

consumers’ also have a disutility for long travel time; at some distance demand for 

flights likely decreases. Unfortunately, since distance, distance squared and these 

other route variables do not change over time, they cannot be included in a model 

with carrier-route fixed effects. On the other hand, they could be included in a 

control function that does not include route fixed effects.  

An event study with carrier-route fixed effects, carrier-quarter fixed effects, 

LCC and LGC entry, and the complete set of controls is estimated.  As before, the 

event study estimation equation includes the full set of time dummy variables; 

starting three years before entry and ending a full year after entry. Abbreviated 

results are shown in Table 7 below. 
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Table 7  Control Function Parameter Estimates 

 
VARIABLES Ln(Gini) Ln(p80) Ln(p20) Ln(mean) 

     

LGC entry -0.013*** -0.013*** 0.002 -0.007** 

 (0.002) (0.004) (0.003) (0.003) 

LCC entry -0.0058 -0.008 -0.017*** -0.019*** 

 (0.004) (0.007) (0.005) (0.005) 

percent_online 0.021*** 0.16 0.117*** -0.05*** 

 (0.003) (0.006) (0.004) (0.005) 

Ln(Pssngrs on the route) -0.015*** -0.09*** -0.07*** -0.08*** 

 (0.003) (0.006) (0.004) (0.004) 

Ln(Pssngrs at origin airport) -0.042*** -0.067*** -0.05*** -0.017* 

 (0.007) (0.01) (0.01) (0.01) 

Ln(Pssngrs at destination airport) -0.0012 -0.009*** -0.005*** -0.007*** 

 (0.0015) (0.0027) (0.001) (0.002) 

Ln(Load factor) -0.066*** -0.34*** -0.17*** -0.13*** 

 (0.008) (0.01) (0.01) (0.01) 

Percent round trip -0.011 -0.039* 0.14*** 0.21*** 

 (0.01) (0.02) (0.017) (0.017) 

Dummy_2001 0.087*** 0.05*** -0.02*** 0.05*** 

 (0.003) (0.006) (0.004) (0.005) 

Ln(Num. of direct flights  -0.25*** -0.16*** 0.023** -0.22*** 

from origin airport) (0.008) (0.016) (0.01) (0.01) 

     

Observations 15,809 15,809 15,809 15,786 

Number of routes 553 553 553 550 

F(58, 15,198) 20.61 40.96 30.16 52.4 

Prob > F 0.00 0.00 0.00 0.00 

Dependent variables are the natural log of the Gini coefficient of price dispersion, the 80th price 

percentile, the 20th price percentile and mean price (in 2010 dollars). LGC entry is a dummy for the 

entry of a legacy carrier, LCC entry is a dummy for the entry of a low cost carrier 

The control function predicts a 1.3% decrease in price dispersion for LGC 

entry and a roughly 0.5% decrease in price dispersion for LCC entry.  Only the 

effect of LGC entry is statistically significant.  The contraction in price dispersion 

seems to be driven by a large, statistically significant decrease in the 80th price 

percentile associated with LCC entry.  LCC entry has a slightly larger and 

statistically significant effect on average price.  The effect is economically small, 

however, reducing average price only about 2%. The control variables are nearly all 

statistically significant, although the signs are not always intuitive.  The control 
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function is run for carriers falling into different buckets of origin airport capacity 

share; those with less than 25%, 25-50%, and greater than 50%.  The estimated 

effects of entry are virtually identical.  

In a second attempt to deal with the endogeneity of entry and price, a 2SLS is 

run with several instruments for entry. The instruments used are dummy variables 

for whether an airline currently operates at both endpoint airports, distance and 

distance squared. The assumption is that it is much less costly for an airline to 

begin offering flights on a new route when it already operates at both endpoints.  

The increased likelihood of Southwest to enter on routes where it operated in both 

airports is demonstrated in detail in Goolsbee and Syverson (2008).   

In order for the operation of an airline at both endpoints to be a valid 

instrument for entry it must satisfy the exclusion restriction. When an airline 

chooses whether to enter a route between airports where it already operates or a 

similar route where it does not, the presence of the airline at both airports or not 

must capture a fundamental difference in the fixed cost of entry.  It must also be 

orthogonal to the variable costs associated with flying the route. This is because, 

after entry occurs, demand, variable cost, competition and other fundamental 

market conditions all play a role in determining fares.  Alternatively, fixed costs 

play an important role in the decision whether or not to enter a route but do not 

affect pricing decisions after entry.  
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When an airline’s decision to enter a route also entails beginning operations 

at a new airport it likely requires the drafting of new contracts with municipal 

governments that run the airports and other agencies providing necessary services 

such as security, fueling, baggage handling etc.  Also, it may require airlines to hire 

employees at the new location.  Conversely, entering a route between airports 

where an airline already operates is more likely to require a reallocation of labor 

and capital.  In this way, operating at both airports captures the difference in 

airport set up costs.  This instrument could fail to pass the exclusion restriction if, 

for example, operating at both airports captures economies of scale that reduce the 

operating costs of a flight itself. Operating at both endpoints would thus affect fares 

through both its effect on entry and its effect on cost. If this is the case then 

instrumenting for entry with an airline’s presence at both endpoint airports will 

produce biased estimates. 

This specification still includes the complete set of control variables, carrier-

route fixed effects, carrier-quarter fixed effects and the event study time dummies 

around entry. Instruments of whether an airline exists at both endpoint airports of 

a route, in a given quarter, are constructed for each airline included in the sample. 

The first stage is displayed in Table 8 below. 

The instruments are mostly individually statistically significant with 

intuitive signs.  Legacy carriers in both endpoints are positively correlated with 

LGC entry and negatively correlated LCC entry. Low cost carriers in both endpoints 

are positively correlated with LCC entry and negatively correlated with LGC entry. 



135 
 

 
 

Unfortunately, it should also be noted that F-statistics are below 10 which is 

sometimes used as an indicator of a potential weak instrument problem.  

Table 8  FIRST STAGE REGRESSION 

 (1) (2) 

VARIABLES LGC entry LCC entry 

   

Distance 0.09   -0.02 

(1000m) (0.3) (0.1) 

Distance^2 -5.67e-05 -4.19e-06 

(1000m) (1.69e-07) (9.86e-08) 

UA in both  0.076*** -0.018**    

 (0.01) (0.009) 

AA in both 0.08***        -0.0019 

 (0.02) (0.01) 

CO in both 0.083***    -0.023*** 

 (0.01) (0.008)    

DL in both 0.014     -0.005    

 (0.02) (0.01) 

NW in both -0.081***    0.072*** 

 (0.01) (0.009) 

US in both 0.09***    -0.014** 

 (0.013) (0.007) 

HA in both 0.04*    -0.019 

 (0.02) (0.01) 

AS in both 0.048***  -0.018*** 

 (0.01) (0.007) 

SW in both  -0.028*    -0.0018    

 (0.01) (0.009) 

JB in both -0.02 -0.0013 

 (0.03) (0.01) 

FR in both -0.02* 0.02*** 

 (0.01) (0.006) 
   

Observations 15,786 15,786 

Number of routes 550 550 

F(129, 47574)  11.68 9.55 

Prob > F = 0.00 0.00 
   

LGC: UA = United, AA = American, CO = Continental, DL = Delta, NW = Northwest, US = US 

Airways, HA = Hawaiian Airways, AS = Alaskan Airways. LCC: SW = Southwest, JB = Jet Blue and FR = 

Frontier 
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Abbreviated second stage results are shown here in Table 9. 

Table 9  2SLS Parameter Estimates 

 

VARIABLES 

Ln(Gini) Ln(p80) Ln(p20) Ln(mean) 

     

LGC entry -0.18*** -0.04 -0.059 -0.10** 

 (0.03) (0.06) (0.048) (0.05) 

LCC entry -0.26** -0.68*** -0.59*** -0.68*** 

 (0.11) (0.20) (0.15) (0.16) 

Ln(percent_online) 0.023*** 0.17*** 0.12*** 0.14*** 

 (0.004) (0.008) (0.006) (0.007) 

Ln(Pssngrs on the route) -0.015*** -0.09*** -0.069*** -0.078*** 

 (0.003) (0.007) (0.0057) (0.006) 

Ln(Pssngrs at origin airport) -0.04*** -0.06*** -0.051*** -0.073*** 

 (0.01) (0.018) (0.01) (0.015) 

Ln(Pssngrs at dest. airport) -0.0019 -0.0097*** -0.005** -0.008*** 

 (0.001) (0.003) (0.002) (0.002) 

Ln(Load factor) -0.04*** -0.30*** -0.14*** -0.22*** 

 (0.01) (0.02) (0.017) (0.018) 

Dummy_2001 0.07*** 0.05*** -0.024*** 0.04*** 

 (0.004) (0.008) (0.006) (0.007) 

     

Observations 15,786 15,786 15,786 15,786 

Number of routes 550 550 550 550 

Wald Chi^2(116) 9.41e+05 7.11e+06 1.95e+07 9.31e+06 

Prob > chi^2 0.00 0.00 0.00 0.00 

Dependent variables are the natural log of the Gini coefficient of price dispersion, the 80th price 

percentile, the 20th price percentile and mean price (in 2010 dollars). LGC entry is a dummy for the 

entry of a legacy carrier, LCC entry is a dummy for the entry of a low cost carrier 

The change in the effect of entry is dramatic. LGC entry decreases price 

dispersion by 18% and LCC entry decreases price dispersion by 26% and both are 

statistically significant. LCC entry is associated with large, statistically significant 

decreases in both the 80th and 20th price percentiles. LGC is associated with a 10%, 

statistically significant decrease in average price while LCC is associated with a 

68% statistically significant decrease in average price.  These findings are not 

dissimilar from a number of studies that find large and significant price decreases 

associated with the entry of Southwest. In particular a number of studies find the 

negative effect of Southwest’s entry on average price to be greater than 50% of 
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average price [Windle and Dresner (1995); Vowles (2000); Windle and Dresner 

(1998)]. As a final check this regression is rerun excluding distance from the first 

stage. In particular, there is concern that since distance flown is correlated with 

variable costs it should not be used as an instrument for entry.  The 2nd stage 

results are presented in Table 11 in the Tables and Figures section. 

Similar to the other model specifications, the 2SLS regression is run for 

carriers falling into different buckets of origin airport capacity share; those with 

less than 25%, 25-50%, greater than 50% and greater than 75%.  No significant 

differences in the effect of entry are found by airline’s origin airport capacity share 

except in the extreme cases where an airline has greater than 75% share. These 

results, shown in Table 10 below, find a positive but statistically insignificant 

relationship between entry and price dispersion.  It appears to be driven by the fact 

that the 20th price percentile is decreasing more than the 80th price percentile with 

entry, although again, the estimates are not statistically significant. 

Table 10    2SLS for Incumbent Airlines with > 75% Capacity Share at the Origin Airport  

 

VARIABLES 

Ln(Gini) Ln(p80) Ln(p20) Ln(mean) 

     

LGC entry 0.08 -0.0013 -0.12 -0.039 

 (0.06) (0.09) (0.086) (0.063) 

LCC entry 0.23 -0.07 -0.119 -0.125 

 (0.14) (0.22) (0.20) (0.14) 

Ln(percent_online) -0.022 -0.14 -0.32** -0.12 

 (0.11) (0.17) (0.15) (0.11) 

     

Observations 936 936 936 936 

Number of routes 133 133 133 133 

Wald Chi^2(116) 9.41e+05 1.48e+06 1.20e+06 2.94e+06 
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Conclusions 
This paper has examined the effect of competition on airline fare dispersion 

in a way that reconciles and expands upon previous studies.  Acknowledging, as 

others have, the problems with cross-sectional analysis and the endogeneity of fares 

and entry the models have predominantly relied on panel data, extensive fixed 

effects and a flexible, event study modeling framework in order to glean new 

insight. Also, it has attempted to use a control function and instrumental variables 

in additional specifications in order to better control for the endogeneity of entry.  

The primary results indicate that the effects of entry on price dispersion are 

indeed heterogeneous.  Increased incumbent market power is associated with 

greater degrees of insulation from competition.  A non-dominant incumbent’s fare 

dispersion decreases as much as ten times more than that of a dominant incumbent. 

There is weak evidence that the superiority of a dominant incumbent’s FFP is at 

least partially responsible for this result.  Imprecise point estimates also indicate 

that fare dispersion may be increasing when incumbents have very large market 

power (airport capacity share greater than 50%) or when the entrant is a low cost 

carrier. 

The additional specifications find less evidence of a heterogeneous effect. 

Increased capacity share at the origin airport does not appear to be correlated with 

the magnitude of the estimates of the coefficients on entry in either the control 

function or 2SLS. There is some evidence that price dispersion increases with entry 

for incumbents with greater than 70% capacity share in the 2SLS model, although 
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the estimates are not statistically significant.  Findings in the control function are 

not meaningfully different from the primary results.  The effect of entry in the 2SLS 

regression is much larger in magnitude than the primary estimates and statistically 

significant.  The 2SLS indicate that bias due to the endogeneity of entry is probably 

large.   

In line with a previous study by Goolsbee and Syverson (2008) there is also 

consistent evidence that airlines take preemptive action when competitors 

announce their intent to enter a route.  Suggestive evidence favors the explanation 

that these actions are taken to deter entry although it is far from conclusive. 

Finally, this paper argues that recent attempts to measure the effect of entry 

on fare dispersion using instrumental variables correlated with demand have 

significantly overestimated the negative impact of competition.  It is further argued 

that these studies have relied on rigid assumptions and only focused, too narrowly, 

on the period of entry.  The aspiration of this paper was reconcile some of the 

contradictory findings with a more flexible model and to expand upon the existing 

understandings with the use of a different approach. 

One surprising result of this study was the apparent importance of the entry 

of a legacy and a low cost carrier occurring within close proximity to each other.  

The impact of both entry appears to have a more significant impact on price 

dispersion even, than simultaneous entry of multiple LGCs or multiple LCCs.  

While the incidence of routes experiencing both entry is small, it is not insignificant. 
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Approximately 6% of carrier-route observations in the panel experienced both entry. 

The magnitude of the effect of both entry could be due to selection, the types of 

routes both LGC and LCC enter, or perhaps an inability of incumbents to respond 

optimally to the simultaneous entry of different carrier types.  This could be an 

interesting topic for future empirical research. 
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Additional Tables and Figures 
Histogram 1 

 

Histogram of United airfares between Los Angeles (LAX) and Chicago O’Hare (ORD) in the first quarter of 

1995. 

Figure 1 continued 1 
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Figure 1 continued 2 

 

Figure 1 continued 3 
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Table 5          DOMINANT INCUMBENT RESPONSES BY ROUTE Distance 

 (1) (2) 

VARIABLES 

Route distance (miles) 

Gini 

> 1000 

Gini 

< 500 

   

LGC entry 0.001 0.0005 

  t0 - 2 (0.001) (0.001) 

LGC entry -0.0006 0.001 

  t0 - 1 (0.001) (0.001) 

LGC entry 0.0003 -0.0003 

  t0 (0.001) (0.001) 

LGC entry -0.003* 0.001 

  t0 + 1 (0.001) (0.001) 

LGC entry 0.001 0.001 

  t0 + 2 (0.001) (0.001) 

   

LCC entry 0.003 0.001 

  t0 - 2 (0.002) (0.002) 

LCC entry 0.0001 0.001 

  t0 - 1 (0.002) (0.002) 

LCC entry 0.002 0.001 

  t0 (0.002) (0.002) 

LCC entry 0.003 -0.001 

  t0 + 1 (0.002) (0.002) 

LCC entry 0.004* -0.002 

  t0 + 2 (0.002) (0.002) 

   

Both entry 0.006 -0.0003 

  t0 - 2 (0.004) (0.002) 

Both entry 0.005 -0.001 

  t0 - 1 (0.004) (0.002) 

Both entry 0.001 -0.004 

  t0 (0.003) (0.003) 

Both entry -0.001 -0.005 

  t0 + 1 (0.004) (0.003) 

Both entry 0.0003 -0.006 

  t0 + 2 (0.004) (0.003) 

   

Observations 6,413 11,559 

R-squared 0.406 0.290 

Number of carrier-routes 333 574 

Notes.  The dependent variable in columns (1) and (2) is the Gini coefficient of fare dispersion for legacy airlines: 

American, Continental, Delta, Northwest, United and US Airways. Only observations of dominant incumbents 

are included in the regression. Dominant incumbents are defined as those with greater than 25% capacity share 

at the origin airport. The columns are divided into long-haul and short-haul routes. All routes between 500 and 

1000 miles are excluded. Both regressions include carrier-route and carrier-year-quarter fixed effects. The 

sample includes non-stop flights on 90% of the domestic routes served by these airlines. Entry is an indicator 

variable equal to one if entry of any kind occurred on route j in quarter t0 and zero otherwise. The coefficients on 

Entry are interpreted as the effect of entry in quarter t0±r compared to the excluded periods, quarters greater 

and less than t0±r. Robust standard errors are in parentheses and are clustered by carrier-route *** p<0.01, ** 

p<0.05,  * p<0.1 
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Table 6  DOMINANT INCUMBENT RESPONSES BY ROUTE Type 

 (1) (2) 

VARIABLES 

Route type 

Gini 

Btw big cities 

Gini 

All other 

   

LGC entry -0.002 0.001 

  t0 - 2 (0.002) (0.0008) 

LGC entry -0.002 0.001 

  t0 - 1 (0.002) (0.0008) 

LGC entry 0.001 0.0001 

  t0 (0.002) (0.0008) 

LGC entry -0.004* 0.001 

  t0 + 1 (0.002) (0.0008) 

LGC entry -0.004* 0.001 

  t0 + 2 (0.002) (0.0008) 

   

LCC entry 0.0003 0.003** 

  t0 - 2 (0.002) (0.001) 

LCC entry 0.002 0.003* 

  t0 - 1 (0.002) (0.001) 

LCC entry 0.006* 0.002 

  t0 (0.003) (0.001) 

LCC entry 0.001 0.002 

  t0 + 1 (0.003) (0.001) 

LCC entry 0.0001 0.002 

  t0 + 2 (0.002) (0.001) 

   

Both entry -0.004 0.005** 

  t0 - 2 (0.003) (0.002) 

Both entry -0.002 0.005** 

  t0 - 1 (0.003) (0.002) 

Both entry -0.004 -0.0003 

  t0 (0.004) (0.002) 

Both entry -0.006 0.0005 

  t0 + 1 (0.003) (0.002) 

Both entry -0.007* 0.001 

  t0 + 2 (0.003) (0.002) 

   

Observations 1,760 25,765 

R-squared 0.642 0.275 

Number of carrier-routes 78 1,133 

Notes.  The dependent variable in columns (1) and (2) is the Gini coefficient of fare dispersion for legacy airlines: 

American, Continental, Delta, Northwest, United and US Airways. Only observations of dominant incumbents 

are included in the regression. Dominant incumbents are defined as those with greater than 25% capacity share 

at the origin airport. The columns are divided into big city and all other routes. Big city routes are routes 

between any of the 10 largest cities by enplaned passengers at  the city airport(s). In no particular order these 

are Houston, Miami, Denver, Washington DC, San Francisco, Los Angeles, Dallas, New York, Atlanta and 

Chicago. Both regressions include carrier-route and carrier-year-quarter fixed effects. The sample includes non-

stop flights on 90% of the domestic routes served by these airlines. Entry is an indicator variable equal to one if 

entry of any kind occurred on route j in quarter t0 and zero otherwise. The coefficients on Entry are interpreted 

as the effect of entry in quarter t0±r compared to the excluded periods, quarters greater and less than t0±r. 

Robust standard errors are in parentheses and are clustered by carrier-route *** p<0.01, ** p<0.05,  * p<0.1 
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Table 11  2nd Stage of 2SLS Estimation Excluding Distance from the First stage 

 

VARIABLES 

Ln(Gini) Ln(p80) Ln(p20) Ln(mean) 

     

LGC entry -0.20*** -0.09 -0.03 -0.09** 

 (0.04) (0.06) (0.057) (0.04) 

LCC entry -0.32*** -0.54*** -0.41*** -0.59*** 

 (0.10) (0.16) (0.14) (0.11) 

     

Observations 16,439 16,450 16,450 15,786 

Number of routes 592 592 592 550 

Wald Chi^2(116) 8.1e+05 8.5e+06 7.66e+07 9.31e+06 

Prob > chi^2 0.00 0.00 0.00 0.00 

Dependent variables are the natural log of the Gini coefficient of price dispersion, the 80th price 

percentile, the 20th price percentile and mean price (in 2010 dollars). LGC entry is a dummy for the 

entry of a legacy carrier, LCC entry is a dummy for the entry of a low cost carrier 
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