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- ABSTRACT

In this paper we prove results which allow us to
enumerate collections of objects of which nl are identical
to each other, another n, are identical to each other, but
different from the first o, another n, are identical to

each other, but different from any of the first n, + Doseees

1
These results are used to enumerate forests consisting of
n, isomorphic copies of some tree, n2 isomorphic copies of

a different tree,....



INTRODUCTION

In this paper, we are concerned with proving a formula for the
computation of what is wvariously called the pattern inventory (e.g., see
De Bruijn [2]) or the configuration counting series (e.g., see Harary [3]).
Rather than redeveloping a large number of definitions, we shall assume

the reader is already familiar with the terminology used by De Bruijn [2].

Polya, in a celebrated paper [4], proved a formula for computing
the pattern inventory for all functions, f, defined on a set, D, (where D
is acted on by a permutation group, G) and mapping into a set R (which is
called the store) for which the "store enumerator" in known. Polya's
result assumes that the weight of one of these functions is given by

Z::xv(f(d)) where w is the weight defined on the objects in the store.
deD
Polya's basic Theorem has been adapted and extended in many ways.

For example, Polya himself [4] describes a formula for computing the pattern
inventory for all 1-1 functions defined on a set D, (acted upon by a permu-
tation group, G), and mapping into R. De Bruijn [1] has proved a theorem
specifying a formula for computing the pattern inventory for all functions
from D into R where D is acted on by the permutation group, G, and R is

acted upon by the permutation group, H.

In this paper we present another "Polya like" result. We assume
that D is {1, 2, . . ., t}, and consider the class of all one to one
functions defined on D and mapping into a store R, for which the inventory,
or store enumerator, is known. We hypothesize a t~tuple (nl, Nyseeey T ),
and use it to define the weight of a function to be E:} n W(f(l)) (where
w 1is the weight defined on the objects in the store) =1 We stipulate
that G, the permutation group defined on {1, 2,...,t}, be isomorphic to

S, xS
¢ &

Xee XS, where cq = ]{r[nr=i}f and Sk is the symmetric group on k
letters., Baseg on these hypotheses, we prove a formula for computing
the pattern inventory for this class of functions. This pattern inventory

proves useful in solving an interesting class of enumeration problems,



As an example of the type of problem which can be solved
using this result, consider the following. Suppose R, the store, is
literally a retail store (or more precisely the collection of items

i
Zh¢4% be the store

inventory, defined such that c¢; is the number of items in the store

sold in a particular retail store). Let C(x) =

priced at i cents per unit. A one to one function from {1, 2,...,t}
into R would thus correspond to a shopper's selection of t distinct

items. Specifying the t-tuple (nl, N, yeeos nt) and using it to com=-

pute the weight of such a function, wezsee that this weight must cor-
respond to the cost of buying n, units of item 1, n, units of item 2,
««.. Hence the pattern inventory for this class of functions tells
us the number of ways in which the cost of buying n; units of one

item, n, units of a different item,..., n, units of a tth item,will

2
come to i cents, for all values of i,

1. In order to state our theorem and some subsequent results

precisely, we develop some notation and definitions of our own.

1.1 Definition: Let p(x) be a polynomial in x. The notation

si[p(x)] is defined by si[p(x)] = pJ(Xl), and is referred to as the

J
i
to polynomials in the variables S158,5855000 with rational coefficients

composition of s3 over p(x). Moreover, the composition is extended

by requiring it to be left distributive over addition and multiplication.

Thus

] iy j j i
s, b s s PGl = a s pG)] +b s, [pG)]s, [pG)]
1 2 3 1 2 3
3 i i i j i

1 2 2 3

=ap l(x ) +bp "(x Tp 3(X )

(a

1

In general we shall be interested in performing compositions over
counting polynomials. Hence we now carefully define what a counting

polynomial is.



1.2 Definition: A weight function, w:C - Z+, is a function mapping C,

+ P .
a class of objects, into Z , the positive integers, such that
i, = {ceClw(c) = 2z}

+ ‘ .
is finite, for all zeZ . If ceC, then we often refer to w(c) as the welght

of c.

1.3 Definition: A weighted class, K, is defined to be a class of

objects, C, together with a weight function on C.
Thus we see that a store is an example of a weighted class.

1.4 Definition: Let K be a weighted class with w igs‘Weight function;

p(x), the counting polynomial for K,is defined by p(x) =;Zi aij, where
J:

aj = l{ceclw(c) =i}l .
1.5 Definition: Let K be the weighted class consisting of C, a store,
along with its weight function. Suppose t€Z+. We shall call f a t-function
into K if f is one~to-one and maps {1, 2,...,t} into C.
Our goal is to compute the pattern inventory for the E~functions into
K. We define the weight of f, a t~function into K, as follows. Let
(nl, nz,...,nt) be a finite sequence of positive integers. Then W(f), the

weight of f, is defined by W(f) =2' nyw(£(i)).
i=1
We now need one more definition.

1.6 Definition: Let K be a weighted class with weight function, w,
and let (nl, D,seees nt) be a t-tuple of non-negative integers. The c¢lass

of functions into K of type (nl, N, seee, n.) is defined to be a weighted

class whose objects are all the t-functions into K, and whose weight function

is given by

t
WE) = 2 nw{f@)).

i=1



2. We can now state our first enumeration theorem:

2,1 Theorem: Let K be a weighted class whose counting polynomial
is p(x). If we denote the function inventory for the class of functions

into K of type (nl, Dseess ng) by Q(n s Dyseees D ) then

Ay, nyeee, ) = Z I l 1B 8] 1)1 [pG)1.

all partitions, all blocks, E:ni
P, of {1,2,..,t} B, of P ieB

Proof: 1In this proof we shall talk about functions into K of type (nl,...,nt).
Technically, these are just t-functions; intuitively, they represent possible

ways of choosing an ordered sequence of t distinct objects from K, then repeat-
ing the i-th one n, times. In this proof we refer, unambiguously, to functions

into K of type (nl, nz,...nt) as functions of type (nl, N yeees nt).

2

The proof is by induction on t. Assume t = 1. We wish to determine Q(n),
the function inventory for functions, f, of type (n), where the store enumer-
ator for the store, C, is given by p(x). There is a clear one-~to-one corres-
pondence between the objects in C and all possible functions of type (n). For
if ceC, then we associate the function of type (n) for which f(1) = ¢. For

this function,

W(f) —2? ng w( £(i) ) = n w(e). Hence it is clear that Q(n) = p(xn).
i=1

According to the statement of the theorem,

Q@) = DD s [pG)]

I

1. s [p(0)]

i

p(x™)

Hence the assertion is true for t = 1.

Now assume the assertion is correct for t-1. We wish to verify it

for t.



We recall that if f is a function of type (nl, nz,...,nt), then it

must be one-to—-one. If this is so, then:

(2.1.1) Q(nl, D,yeee, n.) = S, 8y oS, [p(x)] -
172 t
Q( n , n seees n )
1,1 €2,1i voo%k,1
Cl,ia Cl C2,i€C2 ck’le Ck

all partitions, P=
{Cl,g..Cu,...,Ck} of
{1,2,...,t} which are
not the discrete par-
“titionm: {1},{2},..,{t}

Each term of the summation computes the weight of a different non one-
to-one function mapping {1,2,...,t} into the objects enumerated by p(x).
The snlsnzf..snt [p(x)] term computes the sum of the weights of all func-
tions from {1,2,...,t} into the objects enumerated by p(x). Thus, since
the summation includes all such non one-to-one functions, the expression
indeed represents the effects of all one-to-one functions from {1,...,t}
into C, and hence computes the sum of the weights of all functions of type
(nl,..,nt). Since no P of the summation in (2.1.1) is the discrete one,

k<t-1l. Hence by our inductive assumption, the assertion of the theorem

is true for the summands, and we can write:

(2.1.2) Q( E n o, E N e n ) =
/ “1,i - %2,1 i %k,i
€1,1°¢1 ¢y 1%

3

0 Bt -0y n, PG,
T i
: ! Cie B jsCi
all partitions, all blocks,
R={Bl"'°’Be} of B, of R
{cl,..,,ck}



Using (2.1.2) we can rewrite (2.1.1) as:

(2.1.3) Q(n n n,) =(s s s -
l’ 2,000, t o9
nl n2 nt
a
2 | , I 5
B|-1
-1 Bl -1)!s
CEORAIN(R- 5D 5 o |
I i3
all non- all par- all blocks, CieB jeCi
discrete titions, R= B, of R J
partitions, {B,..,Bg} of

P={Cl,'.,ck} {Cl,..,Ck}

of

{1,2,...,t}

We must now verify that the coefficients of all terms to the right of the

equal sign equal coefficients yielded by the assertion of the the%rem.

The theorem asserts that the coefficient of s, 8p, +..8 is II (~l)o(0)!

= lt = 1. We note that on the right of the equality snlsnz...s appears

n
t
only once, as the result of the discrete partition, and has coefficient 1.

So the equality holds for the s s, ...s, term.

i ) t
We now show that the equlaity also holds for the s term,
Dy+0ot, , +0¢
The assertion of the theorem is that the s term of the polynomial

n1+ﬂ2+. ° .+ﬂt }
Q(nl,nz,...,nt) arises only from the partition Clg(where C, = {l,2,...,t}).

Hence we are interested in the wvalue:

Qa +n +o.ny) = (DN (DS PG

1+...+nt

We must thus verify that the coefficient of the s [p(x)] term

111+n2+. .+nt
yielded by the summation on the right of the equal sign in (2.1.3) is

DE (-1

Clearly the only sources of s [p(x)] terms in (2.1.3)

» n1+n2+...+nt
result from the cases where R = {Bl}. Henee, any non-discrete partition
P = {cl,..., ck} of {1,2,...,t} followed by the partition R = {Bl} of the

{Cl, Chseres Ck} will yield an sﬂl+“2+---+nt term. Hence the sum of the



coefficients of these terms is:
t-1
D5 @-1)1

k=1 all ways of
dividing t
objects into
k non-void
subsets

We recognize that the number of ways of partitioning t objects into k

non~void subsets is given by Sz(t,k), the Stirling number of type 2., More-

over, (k=1)! = Sl(k,l), the Stirling number of type 1. Hence the coefficient
of Sn1$n2+-‘-nt [p(x)] yielded by the right side of (2.1.3) is now seen to be
t-1
k-1
- L DN s, s 6D
k=1

A famous combinatorial identity (see, for example, [5]):

t 0if t > 1
Y DX s 6,0 s 1) -
k=1 2’ 1 ’ 14if t = 1.

We began the proof by showing that the theorem is true for t=1. Hence

we need only consider the case where t > 1. In this case

t-1 ,
} Z -1kt 5, (£,1) 8, (k,1) = -{o - Ds, e, Sl(t,l)} -1 -1t
k=1

as required.

Let us now consider whether the equality in (2.1.3) holds for the

general term

8 s - '
(2.1.4) n \ 0 0 (with Gi disjoint
: : : 8, :§ g . E g. . v
i 1,1 251 f,i f .
gl,i SGl gz,i eG gf’i SGf L) Giz{l""’t})'
i=1



Clearly terms such as (2.1.4) can arise only from those terms of the
summation on the right side of (2.1.3) for which R =‘{B1, Bz,é.., Bf},

where each Bi = {Ail, Aiz"'°Ai } where the A; are such thatl} Ay = Gi'
z J j=1 3
The sum of the coefficients of all terms described above can be seen,

by reasoning amalogous to the above reasoning, to be

el le,l el
2.1.5) -} Z Z [(_l)kl—l 5,6, |k, (k1) .
k=l k=1 """ k=1

-kt SZ(IGfI,kf)Sl(kf,l;}

011, ey Lo sy ey b ool Cels de ]l e s, e .

Note that the f-fold summation in (2,1.5) takes into account all partitions,
including the discrete partition, of {l,...t} which are subsequently sub-
partitioned into {Bl’BZ""’Bf}‘ The additive term is included to exclude

the effect of the {Bl’Bz""B } partition of the discrete partition of {1,2,...t}.

We rewrite (2.1.5) as
c,| o]

- - k -
(2.1.6) 2: -k lsz(lcll,kl)sl(kl,l).... 2: (-1) £ lsz(fef!,kf)sl(kf,l)
k = k =1

=1 £
lG. |-1 | egl-

+(=1)'"1 SZ(IGll,[Gll)Sl([Gl[,l)...a("l) SZ(IGf],leI)Sl(Ifo,l)

. 1G1¥"l [Gfl~l

= ~s(le | 1. . .8(e ], D1 (e f-Dteei -1 (e -1
0 if i # j

where §(i,j) is the '"Kronecker Delta' defined by 8§(i,j) =

{1if 1 =3

We need only consider the case where fGi[>l for some 1<i<f, for if ]Gi]=l
\U,i” l<i<f, then {Gl’Gz”"’Gf} would represent the discrete partition of
{1,2,...,t},, and we would be considering the term s ceeS_ s for which the

equality in (2.1.3) was already verified. Hence, assaming tIGi[>l for some



f
i, l<i<f, then I 6([Gli,l) = 0, and the sum of the coefficients of all terms
such as described in (2.1.4) which arise from the summation on the right side

of (2.1.3) is seen to be

; ’Gll‘l
Y, 1) (e, -1t
i=1

This is seen to be the assertion made by the theorem. Hence (2.1.3) is veri-
fied to be an equality. The coefficient of each term in the righthand summa-
tion is equal to the coefficient yielded by applying the assertion of the

theorem. Hence the induction has been verified.

Thus we have now established a formula for the computation of the
function inventory for the class of functions into K of type (nl, Dyseees nt).

we seek a formula for the pattern inventory.

The pattern inventory is an enumeration of the equivalence classes
of the functions enumerated by the function inventory. Hence a pattern inven-
tory is always relative to a particular equivalence relation on the functions.
It is usual for the equivalence relation to be induced by a permutation group

on the elements of the domain, D, in the following way.

Let G be a permutation group acting on the elements of D. Let
fl’ f2 be two functions defined on D. We say that f1 is equivalent to f2
provided that 3geG such that £,(g(d) = fz(d) %/ deD.

Hence in our case it would seem that we could allow G to be any
permutation group on t symbols, and compute the pattern inventory for the
induced equivalence classes of functions. A problem arises, however, due
to our choice of weight for the functions of type (nl, Dy seees nt) into K.
If we allow G to be any group of t-permutations, then it is conceivable that
equivalent functions might have different weights. It is difficult to see

what meaning the pattern inventory might have under such circumstances.

For this reason, we shall take G to be Scl XSCZX““XSCtS the pro-
duct of the symmetric groups on Cis CpaeeesCy elements, where the c; are

defined by
c; = [{r[n =1}].



Thus two functions cannot be equivalent unless their weights are
equivalent. We shall now compute the pattern inventory of the(nl, Doy eeesy nt)
functions into K relative to the permutation group SC XSC XSCt. We suggest
what these patterns intuitively represent by the following definition.

2.2 Definition: A collection of K of type £n1, Dyyeees nt)

is an equivalence class of functions into K of type (nl, Dyseees nt), where
the equivalence relation on the functions is induced by the permutation

group Sclksczx...xsct acting on {1,2,...,t}.

2.3 Theorem: Let N(nj, D)seeees nt) be the counting polynomial for

the collections of K of type (n;, N,ye.., nt). The N(nl, Dyseens n.) =
1
crlcylenncy!

anl,nz,...,nt) where c; = [{rlnr=i}[ .

Proof: The proof easily follows from the observation that each equi-

valence class must consist of exactly cl!cz!...ct! functions.,

=

3. A fairly immediate and straightforward application of 2.3 is the
following:

A tree 1is commonly defined to be a connected graph containing no cir-
cuits. The term forest is often used to denote a collection of trees. We
now define a forest of type (nl,nz,...,nt)-~of more simply a (nl,nz,nt)—forest—-
to be a forest consisting of n, isomorphic copies of some tree, n, isomorphic

copies of a different tree,..., and n, isomorphic copies of still another tree.

The application of this theorem to the problem of enumerating (nl,...,nt)-
forests is clear. We take C to be the collection of all trees, and w to be
the function which assigns to each tree the number of points it contains;

p(x) is taken to be the corresponding counting polynomial for trees,
This counting polynomial for trees is known to be given by
t(x) = x+ x% + x3 + 2x" +3x5 +6x6 + ..., .

According to 2.3, the counting polynomial for (nl,nz,...,nt)wforests

is given by N(nl,nz,...,nt).

-10~



Hence, as an illustration, let us enumerate (1,1,2)-forests,

R (D221 e + (DI (<1001

N(LL,1,2) = 577G

i

{eED ) + 2= F e+ {EDIO0) 18 )2 (x))

% Qt(x") - 26(x3)t(x) = t2(x2) + t(x2)t2(x))

We compute: t(x) = x + x% + x5 + 2x% + 3x5 + 6x6 +....
t(x2) = x2 + x*+ x6 + ....
£ (x3)
£(x")
t(xe(x) = x* + x5 + x6 + 3x7 + 4x8 + 7%+ . ...
t2(x2) = x* + 2x5 + 3x8 + ....
t(x2)e2(x) = x* + 2x° + 4x5 + 8x7 + 15x8 + 30x% + ....

x3 + x5 + cece
S

]

]

Hence: N(1,1,2) %'(2x7 + 6x% + 16x2 + ....)

L]

x7 + 3x8 + 8x2 + ....

-11-.



As a check, we show the eight (1,1,2)-forests on nine points:

~12—
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