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Abstract— We have developed a novel control mechanism that
deploys a large number of inexpensive robots as a distributed
remote sensing array, called a Distributed Robotic Macrosen-
sor (DRM). A simple virtual spring mesh abstraction is used
to provide fully distributed control that is both flexible and
fault-tolerant. We describe and evaluate several algorithms for
virtual spring mesh–based control and present simulation results
demonstrating the efficacy of the spring mesh approach.

I. INTRODUCTION

Advances in integration, actuator design and power man-
agement have resulted in the availability of mass-produced,
inexpensive robotic components. It is now feasible to build
small, autonomous robots in large numbers at relatively low
cost. The resulting potential to deploy robotic sensors on a
large scale creates the opportunity to explore a new type of
remote sensing, which does not require a pre-deployed sensor
network infrastructure. We call such a remote sensing system
a Distributed Robotic Macrosensor (DRM). Hundreds, or even
thousands, of robots can potentially be deployed to cover and
explore an area, record data, and track targets of interest.
However, while it is now relatively simple to deploy large
numbers of robotic sensors, the coordination and control of
the activities of these robots presents a number of challenging
problems, including scalability, autonomy, coverage, flexibility
of deployment, fault-tolerance, and security.

In addition, there is a need for fully-distributed control
algorithms for DRMs. Centralized control mechanisms are
subject to compromise and do not scale adequately[1], [2],
[3]. In addition, existing distributed control mechanisms have
serious practical limitations, especially with respect to com-
plex environments and unknown initial distributions[4], [5],
[6].

We have developed a DRM control mechanism based upon a
virtual spring mesh. Each robot chooses its actions based only
upon local information and a simple physics model, defined in
such a way that robots tend to act in a manner that contributes
to a common goal. Thus, there is global cooperation without
any global control, which makes the system both fault-tolerant
and scalable. In our case, the macrosensor itself emerges as
a result of the large-scale interactions of individual, nearly
stateless components. The spring mesh has a number of
desirable properties, described in detail below and in [7]. In
this paper, we focus on the algorithms for the creation of

spring meshes, and the resulting mathematical and practical
properties of those meshes. We also describe some simple
extensions of spring mesh control that provide target tracking
ability.

II. RELATED WORK

There is a significant body of previous work dealing with
coordination of small teams of robots, e.g.[8], [9], [10], [11],
[12], [13]. Target tracking has also been addressed, primarily
in the context of point targets[14], [15], [16]. More recently,
there has been research into behavior-based and virtual-physics
based control of large teams of robots[17], [18], [19], [20], [6],
[21]. The work most closely related to our own is summarized
below.

A. Explicit Coordination

Explicitly coordinated exploration and mapping was exam-
ined in the “Cover Me!” [3] project, which defines a coverage
metric and then uses an incremental greedy algorithm to
deploy robots into locally optimal locations. This approach is
not designed to scale to large numbers of robots, as it makes
use of global information and only deploys one robot at a
time. Similar work by Simmons et al.[4] computes desired
deployment locations by attempting to minimize overlap in
information gain. Explicit loosely-coupled robot coordination
for arbitrary goals (not just exploration) is implemented in the
ALLIANCE system[1], [22], which uses behavior-based task
selection. RETSINA[2] operates a team of robots through a
shared plan, which is communicated and refined over time.
DINTA[23] takes a hybrid approach and uses a static sensor
network to assign tasks to a set of mobile robots. This
approach has many advantages, but requires a pre-deployed
infrastructure. None of the explicit coordination schemes is
designed to scale to very large groups of robots.

B. Target Tracking

Target tracking has been addressed within some of these
systems. Targets are tracked in ALLIANCE[14] through a
combination of local virtual forces and high-level behavior-
based selection. Jung and Sukhatme[15] also use a multi-
layered approach; their system computes a local solution for
tracking groups of targets within the same field of view,
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operating within a framework that distributes robots into
regions according to target density. A different approach has
been proposed by Gage[16], who suggests randomized search
strategies that use inexpensive systems designed to make
detection highly probable.

C. Behavior-based Control

Fully distributed control based upon simple local behaviors
has been used in several contexts. Brooks[17] has investigated
behavior-based control extensively; Werger[18] later described
the design principles of such systems. Balch and Hybinette[24]
suggested the use of “attachment sites” that mimic the geom-
etry of crystals; this is used to create formations with large
numbers of robots. A variety of projects have made use of
“swarm robotics,” e.g., [25] and [26], to carry out simple
tasks such as light tracking. Gage[19] investigated the use of
robot swarms to provide blanket, barrier, or sweep coverage
of an area. Several researches have used models based on
the interactions of ants within a colony[27], [26], [28]. These
approaches generally seek to define simple local behaviors that
lead to large-scale properties that are beneficial in a particular
application.

D. Virtual Physics

Distributed control based on virtual physics (also called
“artificial physics” or “physicomimetics”) has also been inves-
tigated, although not in the manner described here. Howard,
Mataric and Sukhatme[20] model robots as like electric
charges in order to cause uniform deployment into an unknown
enclosed area. Spears and Gordon[6], [21], [29] use a more
sophisticated model analogous to the gravitational force, but
make the force repulsive at close range. Both of these models
use fully connected graphs, although the latter model cuts off
interactions beyond a maximum range. McLurkin[30] used a
partially-connected graph with a physics model similar to that
of compressed springs to produce uniform deployment within
a limited indoor environment.

III. SPRING MESH CONTROL

Virtual spring meshes are an extension of virtual physics-
based control. Virtual physics-based robot control is inspired
by natural phenomena and has been investigated primarily in
the context of swarm robotics[6], [21], [20]. The general idea
is that each robot is treated as a particle in a simulated physical
system, complete with virtual forces and rules of motion.
While the forces exist only in simulation, the robots act in
the real world as if the forces were real. The object is to
define virtual forces and rules of motion in such a way that
the local interactions between robots result in desirable global
behavior.

Previous attempts at virtual-physics based systems have
generally focused on potential fields of some kind, using force
fields analogous to gravity or the electromagnetic force. In
contrast, our virtual spring mesh model makes use only of
explicit connections between robots. More precisely, if robots
are represented as vertices in a graph and force is transmitted

through edges, the spring mesh is not a fully connected graph
(even locally). Instead, virtual springs are created to transmit
force only between self-selected adjacent pairs of robots.

As with real springs, each virtual spring in the mesh has
a natural length and a spring constant (that represents the
“stiffness” of the spring). These parameters can change over
time to suit varying environmental conditions, but are in
general the same for every spring at any given time. This
restriction is made primarily for convenience, and does not
represent a fundamental property of our approach.

We define a spring mesh M as an undirected graph of M
vertices, where the vertices represent robots and the edges
represent spring connections between robots. A spring mesh
may be static, in which the edge set and control constants are
fixed, or dynamic, where edge set or control “constants,” or
both, may vary over time.

The control law for each robot is

ẍ =
[

∑

i∈S

ks(li − l0)ûi

]

− kdẋ (1)

where ẍ is the robot’s acceleration, ẋ is the robot’s velocity,
S is the set of springs connected to this robot, li is the length
of the i’th spring, and ûi is the unit vector from this robot to
the robot on the other end of the i’th spring. Control constants
are the natural spring length (l0), the spring stiffness (ks), and
the damping coefficient (kd).

Any static spring mesh with positive kd will eventually
converge to a stationary state, where all robots have velocity
approaching zero. Intuitively, this is because the dynamics of
a virtual spring are analogous to those of a real spring, in
that virtual springs conserve energy. Since we ensure kd > 0,
there is always a damping effect acting against the motion of
each robot. This forces a reduction in kinetic energy. Kinetic
energy may be gained by converting potential energy stored
in springs, but since springs are conservative, the total energy
(potential + kinetic) in the mesh cannot increase. Since the
existence of kinetic energy (motion) results in a decrease in
total energy, and this energy cannot be replenished, kinetic
energy must eventually approach zero.

Formally, consider the following energy function:

V =
∑

r∈R

(
1

2
ẋT

r ẋr) +
∑

s∈S

1

2
ks(len(s) − l0)

2 (2)

where R is the set of all robots, S is the set of all springs,
and len(s) is the length of the spring s. While we omit the
derivation (which is nontrivial but fairly straightforward) for
brevity, we claim that the derivative of the energy function is
the following:

V̇ =
∑

r∈R

−kdẋ
T

r ẋr (3)

which is obtained by differentiating V and using Equation 1
to substitute in for ẍ. As intended by our choice of control
laws, all of the spring potential terms cancel out and leave
only the damping terms.

Notice that V̇ is negative definite with respect to ẋ, but
only negative semi-definite with respect to x. Thus, V is a
Lyapunov function for the velocities but not the positions of
the robots. It is possible for some potential energy to exist even
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in a static spring mesh in its stationary state, as discussed in
Section VII. In a dynamic mesh, it is of course possible to
add energy by creating a new spring or modifying control
constants.

IV. SIMULATING DRMS

We have developed a simulator in order to test the ba-
sic functionality of spring mesh algorithms. The simulator
interface allows a user to quickly configure the simulated
robots, change control algorithms and parameters, and alter the
environment. The simulator environment has simple dynamics:
robots may move in any direction at any speed up to a
configurable maximum, but are stopped if they attempt to
move through an obstacle. A robot may call into the simulator
to get its current position and the positions of all other robots
that are locally visible, optionally with some position error
added. Robots may communicate with adjacent visible robots
instantly.

We have also implemented a version of the simulator that
supports 3-D environments and more sophisticated hardware
and communication models. However, the additional com-
plexity of the 3-D simulator makes it more appropriate for
prototyping code for actual robots, and less convenient for
investigating differences in high-level algorithms.

V. CANDIDATE SPRING FORMATION METHODS

The properties of a spring mesh-based control system de-
pend greatly on the topology of the mesh, which in turn
is governed by the algorithm used by the robots to deter-
mine with which neighboring robots spring connections are
created and maintained. Here we describe several candidate
algorithms and the properties of the resulting meshes. We
restrict the discussion to fully distributed algorithms for which
no central control, global knowledge, or hierarchy among
robots is necessary. We also restrict the analysis to stateless
algorithms, for which robots need not maintain persistent
state information about the spring mesh. The relevant mesh
properties supporting these criteria include:

• Computational Complexity—Since mobile robots may
have limited computational resources, simpler computa-
tions are advantageous.

• Connectivity—In a connected mesh, there exists a path
between any arbitrary pair of robots for which every
segment is along a spring. A connected mesh ensures that
the robots will remain in one group. While describing
candidate algorithms, we consider only the case of an
unobstructed area of operation, where connections are not
broken by obstacles in the environment.

• Symmetry—In a symmetric algorithm, the decision made
at robot A concerning a connection to robot B is always
the same as the decision made at B concerning a connec-
tion to A. This is desirable, because for a spring mesh
to correctly implement the physics model, each pair of
robots must act in a consistent manner. Thus a spring
only exists if the robots at both endpoints agree. With an
asymmetric algorithm, potentially expensive communica-
tion may be required in order to reach agreement. This
is not required with a symmetric algorithm.

Fig. 2. An example initial configuration. The lower-left cluster contains 10
robots.

• Reference Frames—Some algorithms require that all
robots share a single reference frame, while others allow
each robot to perform computations in its own reference
frame. The latter is preferred, since aligning multiple
reference frames may be difficult, require extensive com-
munication, and introduce a potential source of error.

• Parameters—Algorithms that take no parameters are pre-
ferred over those that require parameters, since it is
desirable to minimize the difficulty of mesh configuration.
Here, the term “parameter” describes a setting related to
the spring formation algorithm, and the term “control
constant” describes a setting (such as spring stiffness)
required by all spring meshes.

• Stacking/Planarity—Some algorithms cause an effect we
refer to as “spring stacking,” where many springs running
nearly parallel to each other act similarly to a single,
ultra-stiff spring. As described below, overly stiff springs
can lead to an unstable mesh, so algorithms that avoid
stacking are preferred. Note that it is difficult for stacking
to occur in planar meshes, where no pair of springs
crosses, since planar meshes must have a low edge
density.

A variety of candidate spring-formation algorithms are
described below, together with examples of those algorithms
applied to the initial configuration of three clusters of robots
shown in Figure 2.

A. Full Connectivity

Perhaps the simplest algorithm forms a spring connection
with every other robot that can be detected. While this ap-
proach is computationally simple, it results in (M ∗(M−1))/2
springs when there are M detectable robots. Since the creation
of each spring requires some processing, the computational
complexity of a fully connected mesh is actually quite high.

A fully connected mesh is symmetric and connected, and
does not require a shared reference frame or any parame-
ters. However, the mesh is decidedly non-planar and exhibits
significant spring stacking. Stacking effectively increases the
spring stiffness as more robots (and thus more springs per
robot) are added. We have observed in simulation that fully
connected meshes can exhibit severe instability unless they are
heavily damped. Further complicating matters is the fact that
the required level of damping is dependent on the number of
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Fig. 1. DRM simulator

Fig. 3. Result from executing the Full Connectivity algorithm on the Figure
2 initial condition.

robots in the mesh, since the number of springs attached to
each robot increases with the total number or robots.

Figure 3 depicts the result of executing the Full Connectivity
algorithm, starting from the initial configuration shown in
Figure 2.

B. Nearby Neighbors

In the Nearby-Neighbors algorithm, a robot A will form a
spring with all robots within a given distance (D) of robot
A. The nearby-neighbor relation is symmetric and easy to

compute. If D is sufficiently large, then Nearby-Neighbors
reduces to Full Connectivity. If D is shorter than the natural
length of a spring, then the robots will disperse until the mesh
is completely disconnected.

Nearby-neighbor meshes are generally not connected or pla-
nar, and may exhibit stacking. These properties are controlled
by the parameter D. With high D, connectivity is likely but
spring stacking increases (and planarity is unlikely). With low
D, the opposite is true. Tuning D to get both connectivity and
low stacking has proven difficult in simulation. For example, if
the robots start in two distinct clusters, D must be very high
in order for the two clusters to connect. In that case, there
will be full connectivity (and thus significant spring stacking)
within the two clusters.

Figure 4 depicts the result of executing the Full Connectivity
algorithm, starting from the initial configuration shown in
Figure 2, for two values of D.

C. N-Nearest
Like Nearby-Neighbors, the N-Nearest algorithm is a sim-

ple restriction of Full Connectivity. In this case, each robot
connects to the N nearest robots, where N is a configurable
parameter. This is slightly more complex to compute than
Nearby Neighbors (O(MlogM), as opposed to O(M), for
M robots). Unlike Nearby Neighbors, N-Nearest is not sym-
metric, so communication between robots is required. This
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(a) D = 1.2 ∗ l0 (b) D = 1.6 ∗ l0

Fig. 4. Results from executing Nearby Neighbors algorithm on Figure 2 initial condition, with two different values for D.

asymmetry is evident in Fig. 5(c), where the robots in the right
cluster all have 5th–nearest through 8th–nearest neighbors in
the left cluster, but robots in the left cluster have all 8 nearest
neighbors in their own cluster.

Simulation suggests that with N < 5, the N-Nearest mesh is
relatively sparse and causes the robots to disperse. For N = 5
and N = 6, the mesh has little spring stacking and is generally
connected, although it is possible to get distinct clusters. With
N > 6, spring stacking increases, as seen (in a somewhat
extreme case) in 5(d). Unfortunately, N must become very
large in order to ensure that all clusters of robots connect
with each other, which results in more spring stacking and
potentially instability.

D. Attachment Sites

The Attachment Sites algorithm was first proposed by
Balch[24]. It works by modeling each robot as a K–sided
object, with one attachment site on each side. This attachment
site will form a spring connection with the nearest robot on
its side. Computation is roughly the same complexity as N-
Nearest—instead of sorting one list, it involves checking the
angle to each robot and then sorting K smaller lists.

A regular hexagonal mesh results in uniform spacing of the
robots, so the natural choice for K is 6 (K = 8 produces
a roughly square mesh). The K = 6 mesh is connected
and planar, and suffers no stacking, regardless of the initial
distribution of robots. However, there are some practical dis-
advantages to this approach. The algorithm is not symmetric,
so additional communication is required. Also, the robots must
share a common reference frame in order for the mesh to align
into a regular shape. Without a common directional reference,
the facing of the robots’ sides will likely not be consistent.

Figure 6 depicts the result of executing the Attachment
Sites algorithm, starting from the initial configuration shown
in Figure 2.

Fig. 7. Example of a Delaunay graph

E. Delaunay

The Delaunay graph is related to the more well-known
Voronoi diagram[31]. In a Voronoi diagram, a plane that con-
tains some number of point-like sites is divided into regions,
with each region centered on one site. The region boundaries
are drawn so that for a site A, every point inside site A’s
region is closer to site A than to any other site. In a Delaunay
graph, the sites are the vertices and an edge exists between any
two sites whose Voronoi regions share a boundary. Figure 7
depicts this relationship; the Voronoi boundaries are shown in
dotted lines and the edges of the Delaunay graph as solid lines.
McLurkin[30] suggested using Delaunay graphs in a control
application similar to spring meshes, although he apparently
did not implement this approach.

A minor drawback of the Delaunay graph is computational
complexity; a straightforward implementation runs on each
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(a) N = 3 (b) N = 5

(c) N = 8 (d) N = 10

Fig. 5. Results from executing N-Nearest algorithm on Figure 2 initial condition, with various values of N .

(a) K = 6 (b) K = 8

Fig. 6. Results from executing Attachment Sites algorithm on Figure 2 initial condition, with two different values for K.
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Fig. 8. Result from executing the Delaunay algorithm on Figure 2 initial
condition.

robot in O(M2) time, where M is the number of visible
neighbor robots (it is possible, but not straightforward, to
compute the graph in O(MlogM) time, as in [31]). However,
this algorithm is parameter–free and symmetric, it does not
require a common reference frame, and Delaunay graphs
are provably connected and planar. The resulting meshes are
highly stable, and a roughly uniform mesh forms regardless
of the initial distribution of robots.

One unique feature of the Delaunay graph is that edges
must exist along the convex hull of the mesh. This forces the
overall mesh into a convex shape. This constraint represents a
potential disadvantage for a DRM, particularly when tracking
targets that may not occupy a convex area.

Figure 8 depicts the result of executing the Delaunay
algorithm, starting from the initial configuration shown in
Figure 2.

F. Acute-Angle Test

We have developed a new algorithm that is based upon an
acute-angle test[7]. Under the Acute-Angle Test algorithm, a
given robot A will form a spring to a neighboring robot B if
and only if for all other neighbors C, the interior angle 6 ACB
is acute. This creates a mesh of acute triangles. Note that the
acute-angle test is equivalent to a test for the presence of any
robot C inside the circle with diameter AB, which is a more
efficient test to compute.

Figure 9 shows two examples of the acute-angle test. In
Figure 9(a), a spring forms between A and B, since all interior
angles 6 ACB are acute (with C1, C2, and C3 as robot C in
each of three tests). In Figure 9(b), the spring does not form
because the acute-angle test fails with robot C4. The circle
with diameter AB is also shown; it is equivalent to say that
the spring does not form because C4 is inside the circle.

Like the Delaunay algorithm, the acute-angle algorithm runs
in O(M2) time, but since there is less computation at each
step, in practice it runs about 10 times faster.

Figure 10 depicts the result of executing the Acute-Angle
Test algorithm, starting from the initial configuration shown
in Figure 2.

As we will describe below, the acute-angle test is symmetric
and results in a provably planar and connected graph, regard-
less of the initial distribution of robots. It is parameter–free,

Fig. 10. Result from executing the Acute Angle algorithm on Figure 2 initial
condition.

does not require a global reference frame, and does not put
any constraints on the global shape of the mesh. For these
reasons, the Acute-Angle Test algorithm appears to be the best
all-around candidate. Sections VI and VII further explore the
properties of the Acute-Angle Test algorithm.

VI. PROPERTIES OF ACUTE-ANGLE MESHES

This section presents proofs that characterize several of the
properties of the Acute-Angle Test algorithm. To simplify
the analysis, an unobstructed environment with unlimited
visibility and perfect knowledge of location has been assumed.
A discussion of real-world considerations follows in Section
VIII.

Definition 6.1: A ./ B is a relation on robots A and B.
A ./ B iff ∀ robots C distinct from A and B, the interior
angle 6 ACB is acute. A ./ B indicates that a spring exists
between A and B.

Definition 6.2: A¬B is defined as (not A ./ B).
Definition 6.3: dist(X, Y ) represents the distance between

robots X and Y .
Lemma 6.4: All robots have a spring connection to the

nearest neighboring robot.
Proof: Suppose ∃ at least 2 robots. Pick any robot A.

Then some robot B must be closest to A; that is, ∃ robot
B, B 6= A, such that ∀ robots C distinct from A and B,
dist(A, B) ≤ dist(A, C). We want to show A ./ B. Let
b represent interior angle 6 ABC and let c represent interior
angle 6 ACB. Since dist(A, B) ≤ dist(A, C), we know c ≤
b. Thus c must be acute, since c+b < 180 and c is the smaller
of the two. This is true for any choice of robot C, which is
exactly the condition that defines A ./ B.

Lemma 6.5: For robots A and B, if A¬B then ∃ robot C
distinct from A and B such that dist(A, C) < dist(A, B)
and dist(B, C) < dist(A, B). That is, if A and B are not
connected then some C is closer to A and to B than they are
to each other.

Proof: By definition, if A¬B then ∃ robot C distinct
from A and B such that the interior angle 6 ACB ≥ 90 (this
is the contrapositive of the definition). With this choice of C,
segment AB is the longest side of triangle ABC, since it is
opposite the largest angle. Thus, dist(A, C) < dist(A, B) and
dist(B, C) < dist(A, B).



B. SHUCKER AND J.K. BENNETT 9

(a) Satisfied acute-angle test (b) Unsatisfied acute-angle test

Fig. 9. Illustration of acute-angle test

Fig. 11. Illustration of Theorem 6.6.

Theorem 6.6: Any acute-angle spring mesh is planar.

Proof: By contradiction (see Figure 11): Suppose an in-
tersection exists. Specifically, suppose A ./ B and C ./ D for
distinct robots A, B, C, D and AB intersects CD. Consider
quadrilateral ACBD. Some angle in any quadrilateral must be
at least 90 deg. Without loss of generality, let 6 DAC ≥ 90.
Then by definition, C¬D since it fails the acute-angle test
with A. This contradicts C ./ D. Since any intersection leads
to a contradiction, the mesh must be planar.

Theorem 6.7: Any acute-angle spring mesh is connected.

Proof: Consider a spring mesh M partitioned into two
parts, M1 and M2, so that every robot is in either M1 or
M2 and there is at least one robot each in M1 and M2. It
is sufficient to show that there exists a spring between some

robot in M1 and some robot in M2 for any such partitioning.1

Pick robots A ∈ M1 and B ∈ M2 such that for any A′ ∈
M1, B′ ∈ M2, dist(A, B) ≤ dist(A′, B′). That is, pick the
robots A and B with the smallest distance between them. Now
we show A ./ B by contradiction.

Suppose A¬B. Then by Lemma 6.5, there is a robot C such
that dist(A, C) < dist(A, B) and dist(B, C) < dist(A, B).
Robot C must be in either M1 or M2. If C ∈ M1 then
dist(A, B) ≤ dist(C, B) because of how we selected A
and B (we are using C as A′ and B as B′). However, we
know dist(C, B) = dist(B, C) < dist(A, B), which is a
contradiction. If C ∈ M2 there is a similar contradiction, so
A ./ B.

This proof is valid when there are at least 3 robots. The
2–robot case is covered by Lemma 6.4. The 1–robot case is
meaningless.

VII. STABILITY

Even when the spring–formation algorithm takes no param-
eters, any spring mesh still requires three control constants.
These are the natural spring length (l0), the spring stiffness
(ks), and the damping coefficient (kd). The robots will deploy
to an average spacing very close to l0. The constants ks and
kd govern the stability of the mesh.

There are actually three distinct stability modes for a spring
mesh: full stability, “quasi-stability,” and instability. Each of
these is described below, as are the conditions under which
each mode occurs.

1This is true because if some group of robots M
′ ⊂ M is not connected

to the others, then one can set M1 = M
′ and M2 = M \ M

′. This
immediately leads to a contradiction, since there must be at least one spring
between M1 and M2.
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Fig. 13. Full stability boundary for simple 7-robot test case

A. Full Stability

We define a fully stable mesh as one in which the speed of
every robot is arbitrarily close to zero when the environment is
static. In other words, if there are no targets or new obstacles
with which to react, all of the robots will come to a complete
stop.

Full stability depends on the spring stiffness ks, and the
damping coefficient kd. The effect of varying these two factors
is shown in Figure 12. In this experiment, seven robots deploy
from a tight cluster into an open space, with no targets or
obstacles present. This situation was repeated 10,000 times,
with various combinations of ks and kd. The simulator output
the number of time steps until all robots came to a complete
stop. If the simulation ever reached 1,000 time steps, it
assumed that the robots would never stop moving and output
1,000.

As shown in Figure 12, there is a clear boundary beyond
which the mesh is not fully stable (the “wall” between values
as ks approaches 0.5. Figure 13 shows a top-down view of the
same data, so this boundary can be more easily seen. While
standard analytical techniques for predicting the location of
such boundaries do not directly apply (since the springs are
dynamic), these simulation results show that the boundary can
be determined.

Also notable in Figure 12 is the lip on the left side of the
figure; convergence time increases when spring stiffness is low
and the damping coefficient is high. This result is intuitive, as
the robots move more slowly, and thus take longer to reach
their final positions, under those conditions.

B. Quasi-stability

Some spring meshes that do not meet the definition of fully
stable are nevertheless stable in some sense. A “quasi-stable”
mesh is one in which, when the environment is static, no
springs are created or destroyed and the mean velocity of every
robot is near zero. Note that the mean speed of the robots may
be high even though the mean velocity is low; this is the case
when the robots move in tight circles or “wobble” back and
forth. By this definition, any fully stable mesh is also quasi-
stable.

In the experiments described in the previous section, every
mesh was at least quasi-stable for all the tested combinations

of ks and kd. In the large regions where the meshes were
not fully stable, they were always quasi-stable. In general, the
robots in a quasi-stable mesh travel in tight circles around
a fixed point, much like one would expect with oscillating
springs in two dimensions.

While quasi-stable meshes may not be optimal (particularly
because real robots will consume more power than necessary),
a DRM can still function effectively in a quasi-stable state.
Also, quasi-stable states are easy to detect. We are currently
investigating the possibility of automatically adapting control
constants to move a spring mesh from a quasi-stable to a fully
stable state, without the need for direct intervention.

1) Instability: It is possible for a spring mesh to be in
an unstable state, i.e., any state that is not quasi-stable. This
occurs when the robots are allowed to move large distances
(relative to the length of a spring) in a single time step. That
effect is not unexpected, and can be avoided by using a shorter
time step or limiting the speed of the robots. The exact values
that ensure some form of stability will vary according to the
physical limitations of the robots comprising the DRM.

Most of the spring formation algorithms, including Acute-
Angle Test, may exhibit instability when the spring mesh is
under compression (that is, when obstacles contain the mesh
in a small area). Under such circumstances, it is possible for
some robots to reach equilibrium near a point where their
spring connections change. This results in unstable behavior.
However, we have overcome this limitation by adding “free”
springs between robots separated by less than l0; this minor
change to the spring formation algorithm eliminates the un-
stable cases with little other effect.

VIII. PRACTICAL CONSIDERATIONS

A number of real-world considerations arise in the design
of DRMs intended to be deployed. This section describes
practical considerations relating to the limitations of real
hardware, uncertainty in location estimation, and other effects.
Unless otherwise noted, the specific results in this section are
based on a simulation of seven robots running the Acute-
Angle Test algorithm and deploying from a tight cluster, with
l0 = 100, ks = 0.1, and kd = 0.3. However, the specific
results presented demonstrate the broader issues involved.

A. Location Uncertainty

Real robots have physical extent and control uncertainty be-
cause of mechanical and electrical differences. Thus, location
measurements are always likely to be uncertain. In order to
examine the robustness of the spring-mesh control scheme in
the presence of such uncertainty, we have introduced a simple
uncertainty model in the simulator. Each robot has a fixed bias
plus some random noise in the determination of its position.
The fixed bias is an added term that is always in the same
direction and of the same magnitude; it is different for each
robot, but does not change over time. The noise changes every
time step and is zero-mean. In addition, each robot has a fixed
bias and some noise added to its measurement of its neighbors’
positions.
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Fig. 12. Convergence time for simple 7-robot test case

Since the Acute-Angle Test algorithm is reference-frame
independent, it is not necessary for a robot to know its own
position in order to execute the algorithm correctly. Thus,
uncertainty in measuring a robot’s own position is irrelevant
to the control system. Simulation has verified this fact; no
amount of uncertainty in self-locating had any effect.

Figures 14(a) and 14(b) show simulation results for the
maximum location error as a function of the neighbor-
measurement noise and bias levels. For these experiments,
the noise and bias levels are expressed as a percentage of
the natural spring length (l0) corresponding to the largest
allowed measurement error. The actual errors are distributed
randomly inside this limit. For the bias experiment, each robot
is assigned a bias randomly, but that bias stays fixed for the
entire length of the experiment. The maximum error shown
in these figures is expressed as a percentage of l0, and is the
worst–case error; specifically, it refers to the largest error in
position for any robot at any time during the experiment. Since
we employ spring-like dynamics, it is not surprising that the
position error is linear with respect to location uncertainty.

Qualitatively, the random noise in the measurement of a
neighbor’s location creates a small amount of “wobble,” but

averages out to zero net effect. Bias potentially has more
far-reaching consequences. Suppose two robots, A and B,
are connected by a spring and separated by exactly l0. If
A (incorrectly) measures that B is too close, it will correct
by moving away from B. If B simultaneously makes the
opposite error and measures that A is too far away, it will
move towards A. Note that in this case, both robots are moving
in the same direction, so the distance between them does not
change. If both robots consistently make the same erroneous
measurements, they can continue moving indefinitely. When
this effect is extended to a large mesh, significant measurement
bias can cause an overall translation or rotation of the mesh.

Note that in this case, the robot’s position errors are still
small relative to each other, even though the errors can result
in significant global motion. This kind of effect is intrinsic to
a control scheme that makes use of neighbor–relative location
information only. Since it is not necessary to control the
robots to any particular location relative to the environment,
the overall mesh may in fact move; however, such movement
will in general not degrade the performance of the DRM.
The actual global position and motion of the mesh will
be determined by other means, such as tracking targets or
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Fig. 14. Maximum error as a function of noise and bias levels

obstacles in the environment. Since any target information
reported by individual robots will be normalized with respect
to this position and motion, bias-induced translation is not a
control concern.

B. Scalability

Virtual spring mesh-based control is inherently scalable. The
complexity of the algorithm running on each robot increases
with the number of locally visible robots and targets (that is,
the number of neighboring robots and targets that are currently
in sight), but significantly, complexity is independent of the
total number of robots. In fact, robots are not explicitly aware
of the existence of any other robot that is not locally visible.
For this reason, there is no particular limit on the number of
robots that may be members of a single macrosensor. Addi-
tionally, the total area covered by the macrosensor increases
linearly with the number of member robots, which makes the
macrosensor highly extensible.

There is no fundamental communication overhead associ-
ated with spring mesh control. Since the acute-angle spring-
formation algorithm and force computations are symmetric, it
is not necessary for robots to communicate with each other in
order to form springs and execute the virtual physics model.

C. Fault Tolerance

A significant advantage of the virtual spring mesh approach
is that fault tolerance and attack resistance are inherent prop-
erties of the macrosensor. Since there is no hierarchy or
centralized control, there are no single points of failure or
obvious points of attack. Additionally, individual robots are
nearly stateless, so recovery from robot failures is simple and
rapid. Fault tolerance is discussed in more detail in [7].

D. Other Practical Considerations

Even with damping, springs can oscillate indefinitely with
continually decreasing amplitude. Rather than let the robots
reproduce this behavior, we introduce a minimum speed vmin.
Any speed below vmin is considered to be zero, and the robot
stops moving.

Finally, there is inevitably a constraint on the maximum
speed of real robots. Fortunately, clamping a robot’s speed to

some maximum value can only remove energy from the virtual
physical system; the robots deploy more slowly, but enforcing
a top speed does not result in instability.

IX. TARGET TRACKING

Spring-mesh DRMs are capable of tracking targets of both
a discrete and a diffuse nature. Discrete targets include people,
vehicles, and other targets that have a well-defined position.
Diffuse targets include chemical plumes, radiation, fires, and
other targets that can be represented as an intensity map.

Discrete targets can be easily addressed within the spring
mesh framework by adding an attractive force that draws
robots toward these targets. The spring formation algorithm
is used to determine which robot will track the target. Since
intercepting the targets is likely to be appropriate in many
applications, the current implementation of the point target
force is designed to match the robot’s velocity with a vector
that will intercept the target.

Diffuse target tracking is somewhat more complex, as these
targets do not have a well-defined location. Here, in addition
to identifying the location of the target, it is desirable to
know both the extent of the target substance and its density
gradient. It also may be desirable to increase the density of
sensor coverage in the vicinity of a diffuse target. For example,
when tracking a chemical plume, one may want to precisely
map the plume extent in areas of significant concentration,
while sacrificing detailed information about areas of lower
concentration or about areas outside the plume. The spring
mesh model is well suited to adaptive robot deployment
density, since each robot can control its own spring parameters.
Robots that detect the desired diffuse target simply shorten
their springs, thus drawing in their neighbors to areas of higher
concentration. Target tracking is described in more detail in
[32].

X. CONCLUSION

We have developed a control mechanism for distributed
robotic macrosensors using a virtual spring mesh. Using
simulation, we have implemented and evaluated a number of
algorithms for spring mesh formation. We have introduced a
novel algorithm based upon an acute-angle test, which has
several advantages over other candidate algorithms.



B. SHUCKER AND J.K. BENNETT 13

Using simulation, we have verified the basic functionality
of virtual spring mesh control, and we have analyzed the
impact of various control parameters. The virtual spring mesh
approach was demonstrated to satisfy our goals of distributed,
fault tolerant control in a DRM. We are currently construct-
ing a distributed robotic macrosensor prototype in hardware,
which we will use to further evaluate virtual spring mesh-based
control of DRMs.
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