
Statistically Sound Verification and Optimization of

Black-Box Systems

by

Yan Zhang

B.S., Shanghai Jiao Tong University, Shanghai, China, 2009

M.S., University of Colorado, Boulder, CO, U.S., 2012

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Electrical, Computer, and Energy Engineering

2014

This thesis entitled:
Statistically Sound Verification and Optimization of Black-Box Systems

written by Yan Zhang
has been approved for the Department of Electrical, Computer, and Energy Engineering

Sriram Sankaranarayanan

Fabio Somenzi

Date

The final copy of this thesis has been examined by the signatories, and we find that both the
content and the form meet acceptable presentation standards of scholarly work in the above

mentioned discipline.

iii

Zhang, Yan (Ph.D., Electrical Engineering)

Statistically Sound Verification and Optimization of Black-Box Systems

Thesis directed by Prof. Sriram Sankaranarayanan

This thesis discusses two important problems for the design of practical systems under

stochastic parameter variations: verification and optimization. Verification is concerned with the

safety of a system, i.e., whether a system satisfies its specifications. If not, optimization is applied

to tune the design parameters in the system so that the new design is safe. This thesis treats sys-

tems as black-boxes, assuming that the systems can be simulated efficiently but without detailed

knowledge of the internal workings. It presents a series of simulation-based techniques to solve the

problems of design verification and optimization. A notion called statistical soundness is introduced

in this thesis, which guarantees that the outcome of the proposed techniques are “statistically cer-

tified” in the sense that the probability of drawing a wrong conclusion is bounded. For the problem

of verification, this thesis develops a statistically sound model inference (SSMI) approach.

SSMI constructs statistically sound models to explain the relationship between the stochastic pa-

rameters and the responses of a system. To improve the scalability of SSMI, a sparse approximation

algorithm is also introduced. For the problem of optimization, this thesis presents a statistically

sound optimization technique, SSMI-opt. SSMI-opt aims to find values of the design parameters

for which the system satisfies the specifications. The proposed techniques can be applied to many

interesting areas, including analog/mixd-signal circuits, embedded systems, biological systems, and

medical devices. This thesis demonstrates the utility of this methodology on several interesting

benchmark examples.

Dedication

To my wife and my parents.

v

Acknowledgements

I would like to thank Prof. Sriram Sankaranarayanan and Prof. Fabio Somenzi. As a Ph.D.

student, the experience in the past five years is life-changing. Both of you have taught me what

it takes to become an researcher and provided valuable advices on my research. Without you,

it would be impossible to complete this thesis. Also, I would like to say sorry to Sriram for my

consistently poor pronunciation of his last name.

I would like to thank my committee members, Prof. Alireza Doostan, Prof. Dragan Maksi-

movic, and Prof. Chris Myers. Your comments and suggestions have broaden my knowledge and

made the thesis a better work.

I would like to thank my wife and my parents. You have provided enormous supports in

life and in spirit. I would like to thank all my colleagues, especially Zyad Hassan, Erwin Dunbar,

Arlen Cox, Saqib Sohail and Michael Dooley. You have made the lab a wonderful place to work,

to exchange ideas, and to chat for fun.

Finally, I would like to thank the US National Science Foundation (NSF) under the award

numbers SHF-1016994 and SHF-1320069. All opinions expressed are those of the author, and not

necessarily of the NSF.

Contents

Chapter

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Contributions of this Thesis . 3

1.3 Limitations of Symbolic Techniques . 4

1.4 Related Work . 7

1.4.1 Monte-Carlo Simulation . 7

1.4.2 Statistical Model Checking . 8

1.4.3 Uncertainty Quantification . 9

1.4.4 Other Simulation-Based Methods . 11

1.5 Organization of this Thesis . 11

2 Background 12

2.1 Sequential Hypothesis Testing . 12

2.1.1 Sequential Probability Ratio Test . 14

2.1.2 Sequential Bayesian Test . 18

2.2 Statistical Model Checking . 23

2.2.1 Bounded Linear Temporal Logic . 25

2.2.2 Bayesian Statistical Model Checking . 27

2.3 Regression . 29

vii

2.3.1 Ordinary Least Squares . 29

2.3.2 Regularization . 30

3 Statistical Soundness 33

3.1 Black-Box Systems and Specifications . 34

3.1.1 Black-Box Systems . 34

3.1.2 Design and Stochastic Parameters . 35

3.1.3 Response Specifications . 36

3.2 Statistical Soundness . 38

3.3 Statistically Sound Yield Computation . 42

3.4 Comparison with Statistical Model Checking . 48

4 Statistically Sound Model Inference 53

4.1 Overview . 54

4.1.1 Regression . 57

4.1.2 Generalization . 58

4.2 Ordinary Least Squares Regression . 59

4.2.1 A Resampling Heuristic . 60

4.2.2 Complexity . 62

4.3 Generalization . 63

4.3.1 Tolerance Interval . 63

4.3.2 Algorithms for the Derivation of Tolerance Intervals 64

4.3.3 Complexity . 70

4.4 Applications . 70

4.4.1 Motor Controller . 71

4.4.2 Low-Pass Filter . 73

4.4.3 Buck Converter . 76

4.5 Summary . 78

viii

5 A Sparse Approximation Method 80

5.1 Generalized Polynomial Chaos . 81

5.1.1 Orthogonal Polynomials . 82

5.1.2 Orthogonal Projection . 83

5.1.3 Generalized Polynomial Chaos . 85

5.2 A Low-Degree Approximation Algorithm . 86

5.2.1 Overview . 86

5.2.2 Choosing a Subset of Basis Functions via gPC 89

5.2.3 Computing Unknown Coefficients . 90

5.3 Discussion of the Algorithm . 91

5.4 Applications . 92

5.4.1 Randomly Generated Sparse Polynomials . 93

5.4.2 Ring Oscillator . 93

5.4.3 Digital-to-Analog Converter . 97

5.4.4 Low-Pass Filter . 100

5.5 Summary . 101

6 Statistically Sound Optimization 102

6.1 Overview . 103

6.2 Quantile Regression . 108

6.3 An Iterative Optimization Algorithm . 111

6.3.1 Generalization of Relational Models . 111

6.3.2 Optimization . 114

6.4 Applications . 115

6.4.1 Ring Oscillator . 116

6.4.2 Insulin Pump . 118

6.4.3 Aircraft Flight Control System . 119

ix

6.5 Summary . 121

7 Conclusion 123

7.1 Summary of this Thesis . 123

7.2 Future Work . 124

7.2.1 Statistically Sound Model Inference . 124

7.2.2 Sparse Approximation . 125

7.2.3 Statistically Sound Optimization . 125

7.3 Combining Statistical and Symbolic Techniques . 125

Bibliography 127

x

Tables

Table

2.1 Interpretation of Bayes factor. 20

4.1 Run length K for common values of θ0 and T . 68

4.2 Stochastic parameters in the motor plant. 72

4.3 Verification results of the motor controller. 73

4.4 Verification results of the low-pass filter. 75

4.5 Stochastic parameters of the transistor Sn in the buck converter. 77

4.6 Verification results of the buck converter. 78

5.1 Random variables and orthogonal polynomials. 85

5.2 Stochastic parameters of an NMOS transistor in the ring oscillator. 96

5.3 Verification results of the ring oscillator. 97

5.4 Stochastic parameters of an NMOS transistor in the DAC. 98

5.5 Verification results of the DAC. 99

5.6 Verification results of the low-pass filter. 100

6.1 Optimization results for the three-stage ring oscillator. 117

6.2 Optimization results for the insulin pump model. 120

6.3 Optimization results for the aircraft flight control model. 121

Figures

Figure

1.1 A three-stage ring oscillator verified by a symbolic technique. 6

2.1 Strengths of SPRT without and with indifference region. 17

2.2 Comparison between ridge regression and LASSO. 32

3.1 A two-mass-spring system and the closed-loop system with a controller. 41

3.2 Sound models versus statistically sound models. 44

3.3 Statistically sound model, response surface and specification. 45

4.1 A basic buck converter with two stochastic parameters. 55

4.2 A high-level flow of SSMI. 56

4.3 A comparison between the safe regions of the basic buck converter. 59

4.4 Snapshots of the interval I during generalization of the basic buck converter. 70

4.5 A motor with a PI controller and its response specifications. 71

4.6 Safe regions of the motor controller. 74

4.7 An analog low-pass filter. 74

4.8 A buck converter with realistic switches and control logic. 76

4.9 Safe region of the buck converter. 78

5.1 An interpretation of orthogonal projection. 84

5.2 Comparisons between the proposed sparse approximation approach and LASSO . . . 94

xii

5.3 A three-stage ring oscillator. 95

5.4 An eight-bit digital-to-analog converter. 97

6.1 A two-mass-spring system and the closed-loop system with a controller. 104

6.2 A high-level flow of SSMI-opt. 106

6.3 Histograms of the responses in the two-mass-spring system. 107

6.4 Comparison of penalty functions. 109

6.5 A three-stage ring oscillator. 116

6.6 Histograms of the responses in the ring oscillator. 117

6.7 A model of an insulin pump and histograms of its response. 118

6.8 An aircraft flight control model. 120

6.9 Histograms of the responses in the aircraft flight control model. 122

Chapter 1

Introduction

1.1 Background and Motivation

Model-based design (MBD) has become an increasingly popular approach for the design of

large systems with complicated dynamics. In the domain of analog/mixed-signal (AMS) circuits,

modeling languages such as Verilog-AMS are used to support the simulation-based design and

verification process. For embedded systems, modeling a system with Simulink/Stateflow has been

a standard step in the design flow. A system in MBD often involves two types of parameters:

design parameters and stochastic parameters. Design parameters are controllable, i.e., can

be assigned to certain values by designers. Examples of design parameters include the channel

width and length of a CMOS transistor in an analog circuit, the gains in a PID controller, and so

on. On the other hand, stochastic parameters are uncontrollable and arise from the randomness

in the process of manufacturing, the environment and many other aspects. The exact values of

stochastic parameters usually vary in different instances of a system. Hence, it is common to assume

that they follow certain statistical distributions.

The design of practical systems often involves the following theme. Based on previous knowl-

edge, the stochastic parameters are assumed to have fixed values, which are called the nominal

values. The design parameters are then tuned with respect to the nominal values of the stochastic

parameters so that the system can meet the desired performance requirements. Such a design is

known as the nominal design. However, a nominal design may suffer from stochastic parameter

variations, such as process variations or variations in the environment. Although the nominal de-

2

sign satisfies the performance requirements when the stochastic parameters are fixed to the nominal

values, there is no guarantee that an actual system with stochastic parameters that are different

than the nominal values also does so.

To design systems that are robust under stochastic parameter variations, verification and

optimization play important roles. Verification focuses on checking whether a system meets all

the performance requirements. For example, consider a ring oscillator (see Section 5.4 for an

example) which an analog circuit that produces a voltage oscillating at a fixed frequency. The

circuit contains design parameters such as the channel width and length of CMOS transistors, and

stochastic parameters such as the gate oxide thickness, doping concentrations, and so on. It is

desirable to show that the oscillation frequency is within a certain range for some given values of

design parameters under stochastic parameter variations. If the system fails to do so, a designer

must tune the design parameters so that the performance requirements are satisfied as much as

possible. This process is called design optimization. The two techniques presented in this thesis

aim to guarantee that a system satisfies the performance requirements not only for the nominal

values of the stochastic parameters, but also for a large proportion of the possible variations.

As systems become larger, it is often difficult to reason about their behaviors in a symbolic

way. Such a system is often regarded as a black-box, for which a designer can simulate it to

obtain values of the output with given input values, but do not need to know information about

its internal workings. In this thesis, the input of a system refers to the design and the stochastic

parameters and the output refers to the responses of the system, such as the oscillation frequency

in a ring oscillator. The relationship between the input and output is called the response surface.

For a black-box system, the response surface can rarely be written in a closed-form and is only

computable through simulation of the system. Hence, in most cases, simulation is the only effective

method to learn how the responses are affected by the design and the stochastic parameters. As a

consequence, it is important to develop simulation-based techniques for the analysis of black-box

systems.

A key problem of simulation-based techniques lies in their lack of coverage. Since these

3

techniques do not fully explore the stochastic parameter space, any conclusion drawn about the

behavior of the system is not guaranteed to be true. This thesis provides statistical guarantees

by introducing a notion called statistical soundness and developing a series of statistically sound

techniques. Informally, a statistically sound model is a model that with a large probability, it

over-approximates the behavior of a system. This thesis will show how to construct such models

and how to use them to aid the verification and optimization of black-box systems. The proposed

techniques can be applied to many interesting areas, including AMS circuits, embedded systems,

biological systems, and medical devices.

1.2 Contributions of this Thesis

The main contributions of this thesis are as follows:

• Chapter 4 introduces statistically sound model inference (SSMI), a technique for

modeling and verification of black-box systems. SSMI combines regression techniques and

statistical model checking (SMC) [43] to provide models that explain how the stochastic

parameters affects the responses of a system in a statistically sound manner. Such a model

statistically over-approximates the response surface of interest and is used to verify the

specification in regards to the response. The outcome of verification is a yield computed

with respect to the model, which is shown to form a lower bound of the true yield. The yield

shows not only whether the specification is satisfied, but also the the probability that it is

satisfied. In addition, the model can generate plots of safe parameter regions. Section 4.4

shows a couple of such plots in terms of interesting stochastic parameters. This work is

originally published in ICCAD 2013 [97].

• Chapter 5 presents a sparse approximation algorithm that aims to extend the ability of

SSMI to handle systems with many stochastic parameters. Compared to classic sparse ap-

proximation algorithms, such as least absolute shrinkage and selection operator (LASSO) [80]

and basis pursuit [18], the algorithm has two salient features. First, it combines general-

4

ized polynomial chaos (gPC) [90], an uncertain quantification technique, and LASSO, a

sparse approximation algorithm that is widely used in the area of compressed sensing. The

resulting algorithm is more efficient than LASSO alone. Second, the algorithm produces

polynomial approximations of degrees as low as possible. This method is useful in practice

since lower-degree polynomials are generally preferred over higher-degree ones. This work

is originally published in ASPDAC 2014 [99].

• Chapter 6 proposes a statistically sound design optimization technique, SSMI-opt. For a

black-box system, SSMI-opt aims to find values of the design parameters such that the

system robustly satisfies the specifications under the stochastic parameter variations. As

the name suggests, it borrows the idea of SSMI. Instead of constructing models in terms

of the stochastic parameters, SSMI-opt “marginalizes” the effects of the stochastic param-

eters and approximates the lower and the upper bound of a response as a function of the

design parameters. Such a model is obtained using quantile regression [50], a regression

technique that estimates a certain quantile of response variables, and a generalization pro-

cedure introduced in SSMI. This technique is used to find values of the design parameters

that lead to a statistically certified safe system. This work is published in ATVA 2014 [98].

1.3 Limitations of Symbolic Techniques

Those who are familiar with symbolic verification techniques may wonder why one should

consider statistical instead of symbolic techniques, given that the latter can provide formal guar-

antees on the verification results. This section provides an overview the state-of-the-art symbolic

techniques that are applied to continuous/hybrid systems. Also, it contains a brief introduction

to our previous work on symbolic verification, which demonstrates the poor scalability of many

symbolic techniques.

Given a system and a property of interest, the verification problem decides whether or not the

system satisfies the property. Model checking techniques are a general class of algorithms to solve

5

the verification problem. Various model checking algorithms use approaches such as exhaustive

search and symbolic exploration. Symbolic model checking techniques solve the model checking

problem via symbolically reasoning about the behavior of a system. Such a technique encodes the

states and the transition relation of a system into symbolic representations, such as BDDs [61]

or SAT formulas [12], and considers a large number of states at a single step. These techniques

have been widely used in the verification of digital circuits and achieved great successes. The

applications to continuous/hybrid systems dates back to the work of Kurshan and McMillan [52]

and Hedrich and Barke [37] on the verification of analog circuits. The main theme of symbolic

model checking involves performing reachability analysis [32, 57, 84, 82, 3, 92, 91], which explores

the reachable state-space of a system. In order to apply symbolic techniques to the verification of

a continuous/hybrid system, it requires detailed models which models the internal workings of the

system. However, obtaining such a model can be challenging in many practical cases. Little et al.

[56] introduce a technique which generates labeled hybrid Petri Net using simulation data to model

the behavior of a system. This work is extended by Batchu [6] and Kulkarni [51]. Tiwary et al. [82]

propose a piecewise interval approach to model the dynamics of non-linear analog devices, such as

CMOS transistors and diodes. Zhang et al. [96] further extend the idea of Tiwary et al. [82] and

consider the use of piecewise linear functions.

A key shortcoming of existing symbolic approaches lies in their scalability. Usually they can

only handle small systems with relatively simple dynamics. For example, for the verification of

transistor-level analog circuits, the capability of most existing symbolic techniques is restricted to

the order of ten transistors with simple device models, such as the Schichman-Hodges models. Our

previous work [96] illustrates an experimental study on the performance of a representative symbolic

technique, which provides evidence for the poor scalability of many symbolic techniques. The goal of

the experimental study is to analyze the performance of satisfiability-modulo-theory (SMT) solvers

to verify transistor-level analog circuits with conservative piecewise linear approximations of non-

linear circuit elements such as diodes and transistors. To obtain conservative approximations, the

characteristics of non-linear devices are piecewise linearized. The piecewise linear function is then

6

Mp1

Mn1

V1

Mp2

Mn2

V2

Mp3

Mn3

V3

(a)

abstraction

simulation

............

1.0

t0 t1 t5 t10

[0.9, 1.0] [0.7, 1.0] [0.4, 1.0]
V3

(b)

Figure 1.1: A three-stage ring oscillator (a) and the predicted reachable region of V3 by the approach
in [96] (b). The time step ∆t = ti − ti−1 is small enough to ignore integration error.

“generalized” into a relational model which encloses the original device model.

A bounded model checking approach is used to perform the verification [13]. Since an analog

circuit is a continuous system, time is discretized into fixed-step points at which the states of the

system is expressed using the piecewise linearized dynamics. A transition relation, which shows how

the state variables change from one state to another, is defined as the integration rules that relate

the current state variables to the variables at the next time point. To verify whether a property is

satisfied, the piecewise linear dynamics, together with the transition relation, are “unrolled” at a

sequence of time points. The unrolling is encoded as an SMT formula and solved by SMT solvers.

The above approach is used to verify the reachability of a ring oscillator, which is shown in

Figure 1.1a. The time step is chosen so that it is sufficiently small to ignore the integration error.

The result is shown in Figure 1.1b. It illustrates that the reachable region quickly becomes too

conservative to provide any meaningful reachability information. Our previous work [96] also shows

that using a more fine-grained piecewise linearized model provides little improvement on the result

but requires more solving time. This work demonstrates that although symbolic techniques can

provide formal guarantees, it is a challenging task to apply them to even small continuous systems.

7

1.4 Related Work

1.4.1 Monte-Carlo Simulation

Conventionally, the safety of a black-box system is verified by Monte-Carlo simulation. A

common theme involves random sampling of the stochastic parameters and simulating the system

accordingly. The yield is estimated by the proportion of data points that satisfy the specifications.

In the limiting case where the sample size is infinite, Monte-Carlo estimation is always accurate.

In practice, however, it is well-known that they suffer from a slow convergence rate of O

(
1√
N

)
,

where N is the sample size [71]. In other words, to improve the accuracy of an estimation by an

order of 10, it requires 100 times more simulations. For large systems, running so many simulations

can be prohibitively expensive.

To have a better convergence rate, quasi Monte-Carlo (QMC) methods are worth men-

tioning (see, e.g., Singhee and Rutenbar [76]). Essentially, these methods construct deterministic

sequences for points in the stochastic parameter space rather than doing random sampling. Such

a sequence is called a low discrepancy sequence (LDS) [78] and consists of points distributed

“uniformly” in the parameter space. It guarantees that the parameter space is evenly explored.

QMC methods have an empirical convergence rate of O

(
1

N

)
, which is better than the Monte-

Carlo methods. However, to achieve this rate, the number of stochastic parameters should not be

too large.

For many practical systems, an important problem is to detect rare events, i.e., events that

happen in a very low probability. A classic approach for this problem is importance sampling [31],

which is a modification of the standard Monte-Carlo methods. Importance sampling changes the

distribution with respect to which sampling is performed, and allows Monte-Carlo methods to avoid

those unimportant data points (i.e., points that are unlikely to result in rare events). Another

interesting approach is developed by Singhee and Rutenbar [77], which exploits ideas from extreme

value theory [62] and support-vector machine (SVM) classifiers. Unlike importance sampling,

this approach does not modify the underlying distribution, and thus can be used to gather statistics

8

of the rare events.

Compared to Monte-Carlo techniques, the proposed approaches in this thesis aim to derive

conservative yield estimations using less simulations. Chapter 3 and Chapter 4 show that by

introducing the notion of statistical soundness, one can effectively provide lower bound on the yield

of a system with less computational cost than conventional Monte-Carlo techniques.

1.4.2 Statistical Model Checking

As systems grow larger, symbolic techniques become out of reach. In recent years, researchers

have been seeking statistical solutions to verify complex systems. Such techniques often rely on

repeated simulations, enriched with statistical inference techniques, to provide statistical guarantees

on the behavior of the systems. The seminal work by Younes and Simmons [95] initiates the research

area called statistical model checking (SMC). In their work, the model checking of stochastic

systems is regarded as a hypothesis testing problem and solved using sequential probability ratio

test (SPRT) [83]. Later, Sen et al. [74] propose a p-value significance test for the verification of

black-box systems. Hérault et al. [39] introduce an approach that approximates the satisfaction

probability of some probabilistic properties. They use a single sampling plan, which fixed the sample

size upfront, and estimate the satisfaction probability by the proportion of the data points that

satisfies the property. Their technique is known as approximate model checking. Jha et al. [43]

introduce a Bayesian SMC framework based on the sequential Bayesian test [40, 47]. Compared

with SPRT, the sequential Bayesian test is both practically and theoretically more convenient

since it does not require indifference regions as SPRT does. Instead, it computes Bayes factors by

integrating over a given prior density. Bayesian SMC has also been applied to the verification of

analog circuits [85], medical devices [44], and embedded systems [100]. An introduction to SMC

can be found in Chapter 2.

A main drawback of SMC techniques is that they are designed to answer “likely yes/no”

questions. In many cases, it may be desirable to understand how the stochastic parameters affect

the responses in a system. This thesis provides techniques to solve this problem. The proposed

9

techniques (see Chapter 4 and Chapter 5) construct statistical models that explain the relationship

between stochastic parameters and responses. Their applications are not restricted to showing

whether a system satisfies the specifications. It is also possible to derive regions of the stochastic

parameter space that are safe with respect to the specifications.

SMC techniques have also been applied to the optimization of black-box systems. Jha et al.

[44] present the use of SMC to tune parameters for closed loop controller models in order to

satisfy a given set of temporal logic specifications. Their approach uses Monte-Carlo sampling

over the design parameter values, wherein the number of simulation runs required to resolve the

hypothesis testing problem is used as the fitness function for each design parameter. A similar

idea is introduced by Palaniappan et al. [68] to fit parameter values for biological models based on

experimental observations, as well as, model specifications. In their work, SMC is used to derive

a fitness function that seeks to measure the fraction of the specifications satisfied by a particular

choice of model parameters.

In contrast to the work by Jha et al. [44] and Palaniappan et al. [68], our approach (see

Chapter 6) on design optimization, SSMI-opt, is more straightforward. Our approach employs only

linear programs and is therefore computationally inexpensive. Moreover, SSMI-opt builds models

that characterize the behavior of a system, which can be reused in different design phases.

While this thesis considers the design parameters as controllable, a significant body of work

treats problems involving uncontrollable non-deterministic parameters along with stochastic pa-

rameters in the context of SMC. Recent papers by Henriques et al. [38] and Ellen et al. [28] use

reinforcement learning techniques to verify the correctness properties under the worst-case values

of the non-deterministic parameters.

1.4.3 Uncertainty Quantification

Uncertainty quantification (UQ) is an emerging area that studies how to characterize

uncertainties in a system and their effects on the responses of the system. Conventionally, Monte-

Carlo methods have been the main approach for UQ. In recent years, alternative approaches,

10

such as stochastic Galerkin schemes based on polynomial chaos expansion [23, 4, 60, 90, 79] and

stochastic collocation schemes [5, 67, 89, 72, 59], have been proposed. Stochastic Galerkin methods

transform a stochastic system into a deterministic system in which the stochastic parameters are

substituted by a finite polynomial chaos expansion. They are often used in an intrusive manner,

i.e., modify simulators so that the transformed deterministic system can be simulated directly

from the description of the original system. On the other hand, stochastic collocation methods

are non-intrusive. They rely on the legacy code of simulators and perform computations using

simulation data from sparse grids or other quadrature rules. Compared to Monte-Carlo methods,

these approaches are more effective in modeling and propagating uncertainties.

Challenges arise when the system has a high-dimensional stochastic parameter space. In

this case, both stochastic Galerkin and stochastic collocation methods become inefficient. Many

efforts have been spent to solve this problem. Li et al. [55] introduce an approach based on re-

duced rank regression. They use quadratic polynomials to model nonlinear response surfaces. A

similar idea is demonstrated by Feng and Li [30] to handle the problem of interconnect modeling

of integrated circuits. Singhee and Rutenbar [75] develop a nonlinear regression approach based on

latent variable regression and neural networks. Doostan and Iaccarino [25] propose to decompose a

high-dimensional response surface into a summation over products of univariate functions. Doostan

and Owhadi [26] introduce a non-intrusive sparse approximation method based on Legendre poly-

nomials and L1 minimization. Li [54] use matching pursuit to find the “best” projection of the

response surface onto an orthogonal polynomial basis.

Our work, especially the sparse approximation algorithm presented in Chapter 5, have

brought a lot of ideas from UQ. However, models from UQ techniques do not provide guaran-

tees that they lead to correct conclusions, e.g., on the safety of a system. This thesis combines the

strength of UQ techniques in model building with that of SMC techniques in providing statistical

guarantees, and develop the proposed approaches in this thesis.

11

1.4.4 Other Simulation-Based Methods

A few other interesting techniques originates from the hardware testing community. Yoon

et al. [93] propose a hierarchical model inference approach to derive statistical distributions of

circuit properties. Dang and Nahhal [22] use motion planning techniques for rapidly-exploring

random trees (RRTs) to verify specifications of analog circuits. Ahmadyan et al. [2] also use

RRTs to generate property-oriented test cases for analog circuits.

1.5 Organization of this Thesis

This thesis is organized as follows. The next chapter presents background knowledge that

is used extensively. It includes an introduction to sequential hypothesis testing, statistical model

checking and regression techniques. Chapter 3 develops the notion of statistical soundness. It

serves as the foundation of the work in this thesis. Chapter 4 introduces statistically sound model

inference and shows how it is applied to the verification of black-box systems. Chapter 5 discusses a

sparse approximation algorithm that combines generalized polynomial chaos and L1 minimization.

The algorithm is demonstrated in the context of SSMI. Chapter 6 presents a design optimization

technique for systems suffering from stochastic parameter variations. The final chapter summarizes

this thesis and points out some directions for future research.

Chapter 2

Background

This chapter introduces background knowledge that is used extensively throughout the thesis.

It is divided into three parts. First, it reviews statistical hypothesis testing techniques. Next,

this chapter discusses statistical model checking, which is based on sequential hypothesis testing.

Finally, it presents a short discussion on regression algorithms. The notations appearing in this

chapter are used consistently in the rest parts of the thesis. The presentation is not meant to be

exhaustive. Readers who are interested to learn more about the topics should refer to the references

mentioned in the text.

2.1 Sequential Hypothesis Testing

A hypothesis is a statement about an unknown population parameter. For instance, the

mean lifetime of rabbits are greater than 6 years, or the yield of a production line is no less than

90%. Usually, we have a pair of hypotheses, H1 versus H2. To learn whether a hypothesis is true,

one takes a set of observations from the population and uses a technique called hypothesis testing.

Hypothesis testing is a statistical decision procedure that decides [17]:

• For which observations the hypothesis H1 should be accepted to be true;

• For which observations the hypothesis H2 should be accepted to be true.

Examples of classical hypothesis testing techniques include the likelihood ratio test (LRT) and the

p-value significance test. Since a test is conducted with finite observations from the population,

13

it is unavoidable that the conclusion can sometimes be incorrect. The probability of accepting

H2 when H1 is true is known as the Type I error α. Similarly, the probability of accepting H1

when H2 is true is known as the Type II error β. The pair (α, β) indicates the strength of the

test. For any hypothesis testing technique, it is important to be able to bound the Type I/II error.

Conventionally, this is achieved by selecting a proper test statistic and then fixing a sample size N

based on the test (see Casella and Berger [17, Ch. 8] for details).

Sequential hypothesis testing, a.k.a. sequential analysis, is a form of hypothesis testing

where the sample size is not fixed in advance. Instead, it evaluates the observed data sequentially

until a decision can be made by satisfying some predefined stopping criterion. Compared with

the classical approaches, sequential hypothesis testing often reaches a conclusion at a much earlier

stage of the inference process, thus saving the effort of performing more experiments.

Like other hypothesis testing approaches, sequential hypothesis testing requires a pair of

hypotheses H1 and H2 concerned with some unknown population parameter θ. The form of a

hypothesis depends on specific applications. This thesis focuses on the following form: H1 : θ ≥ θ0

versus H2 : θ < θ0, where θ is the unknown probability that a system satisfies a specification,

and θ0 ∈ [0, 1] is a probability that θ is desired to exceed. Sequential hypothesis testing draws

observations in sequence and for each observation, it conducts one of the following actions:

• Accept H1 to be true;

• Accept H2 to be true;

• Draw another observation and continue testing without making any conclusion.

The process terminates as soon as either the first or the second action is taken, regardless how

much data have been collected. In practice, the number of observations is much less than that in

a hypothesis testing with predefined sample size.

Note that the names of the hypotheses are H1 and H2 instead of the conventional null

hypothesis H0 and alternative hypothesis H2. This may initially be confusing to those who are

familiar with hypothesis testing. We make this choice because for the problem that we are interested

14

in, it is more nature to think of accepting a “good” hypothesis rather than rejecting a “bad” one.

Therefore, we try to avoid the name “null hypothesis” and the associated symbol H0.

The following parts introduce two sequential hypothesis testing approaches: sequential proba-

bility ratio test (SPRT) developed by Wald [83] in Section 2.1.1, and Bayesian sequential hypothesis

testing formulated by Jeffreys [40, 41] in Section 2.1.2.

2.1.1 Sequential Probability Ratio Test

Consider a pair of hypotheses, H1 : θ ≥ θ0 versus H2 : θ < θ0. Let Z be a Bernoulli random

variable with a probability mass function (pmf)

fZ(z | θ) = θz(1− θ)1−z , z ∈ {0, 1} . (2.1)

Assume that the sequence of observations D = (z1, . . . , zm) are independent and identically dis-

tributed (i.i.d.). SPRT computes the probability ratio
p1m
p2m

where pim = Pr(D | Hi) is the proba-

bility of D when Hi is assumed to be true. It defines the following rule:

• Accept H1 to be true if
p1m
p2m

≥ A;

• Accept H2 to be true if
p1m
p2m

≤ B;

• Draw another observation and continue testing if B <
p1m
p2m

< A.

Example 2.1.1 (Tossing A Biased Coin). Suppose that we have a biased coin which prefers one

side over the other. It has an unknown probability θ of getting heads. To see whether θ ≥ 0.7, we

need to construct a pair of hypothesis H1 : θ ≥ 0.7 versus H2 : θ < 0.7. We define the outcome of

a toss experiment as a Bernoulli random variable Z,

Z = 1 , if the outcome is a head ,

Z = 0 , otherwise .

To decide which hypothesis should be accepted, we make a sequence of observationsD = (z1, . . . , zm)

and compute the probability ratio as discussed in the following. ‖

15

2.1.1.1 Computation of the Probability Ratio

A simple hypothesis, which involves only a single point in the parameter space, has the form

H : θ = θ0. For a pair of simple hypotheses H1 : θ = θ1 versus H2 : θ = θ2, SPRT computes the

probability ratio as follows.

p1m
p2m

=
Pr(D | θ = θ1)

Pr(D | θ = θ2)
=

m∏
i=1

Pr(zi | θ = θ1)

Pr(zi | θ = θ2)
, (2.2)

Now consider the pair of hypotheses, H1 : θ ≥ θ0 versus H2 : θ < θ0. Clearly, the formulation in

(2.2) does not work if θ1 = θ2 = θ0. Wald [83] proposed to relax the original hypotheses such that

they became

H1 : θ ≥ θ1 versus H2 : θ ≤ θ2 , (2.3)

where θ1 = θ0 + δ, θ2 = θ0 − δ and δ is a positive number. The interval (θ2, θ1) is called the

indifference region for that if θ ∈ (θ2, θ1), it makes no difference in which hypothesis is accepted.

We say that δ is the half-width of the indifference region. The probability ratio (2.3) of the

hypotheses is then computed by (2.2).

It may not be immediately clear that the ratio (2.2) formulates a test on the relaxed hy-

potheses (2.3), given that (2.3) concerns with a range of parameter values rather than single points.

However, notice that for a given probability p

Pr(zi | θ = p) = pzi(1− p)1−zi ,

since the observation zi ∈ {0, 1} is taken from the pmf (2.1). Therefore, the ratio

Pr(zi | θ = p1)

Pr(zi | θ = p2)
=
pzi1 (1− p1)1−zi
pzi2 (1− p2)1−zi

, p1 ∈ [θ1, 1] , p2 ∈ [0, θ2]

has a minimum value at p1 = θ1 and p2 = θ2 if zi = 1, and a maximum value if zi = 0. When SPRT

terminates, if H1 is true, the ratio (2.2) has the smallest value among p1 ∈ [θ1, 1] and p2 ∈ [0, θ2].

Similarly, if H2 is true, (2.2) has the largest value. Choosing any other values for p1 and p2 would

have lead to the same conclusion. Therefore, (2.2) is used to compute the probability ratio of the

relaxed hypotheses (2.3).

16

Example 2.1.2 (Tossing A Biased Coin - Computation). Continue with the example 2.1.1. Let

A = 100, B = 0.01 and δ = 0.05. Hence, θ1 = 0.75 and θ2 = 0.65. Suppose that we draw

observations in sequence and at some point, we have collected total of m = 40 observations without

leading to a conclusion. The probability ratio (2.2) becomes

p1m
p2m

=

(
0.75

0.65

)m1
(

0.25

0.35

)m2

, m1 +m2 = m,

where m1 and m2 are the number of times that we see heads and tails, respectively. The following

cases illustrate the rule of SPRT.

• If m1 = 38 and m2 = 2, the ratio
p1m
p2m

≈ 117 is greater than A. Thus we accept the relaxed

hypothesis H1 : θ ≥ 0.75;

• If m1 = 18 and m2 = 22, the ratio
p1m
p2m

≈ 0.008 is less than B. Thus we accept the relaxed

hypothesis H2 : θ < 0.65.

• If m1 = 30 and m2 = 10, the ratio
p1m
p2m

≈ 2.5. We need more observations to conclude.

Note that the conclusion is with respect to the relax hypotheses. Interested readers can verify that

the smaller δ is, the larger m is required to draw conclusions. ‖

2.1.1.2 Strength of SPRT

Figure 2.1a plots the probability of accepting H1 as a function of θ for an SPRT with an

ideal strength, i.e., the Type I and the Type II error are exactly α and β. To find a test with a

desired strength (α, β), one needs to establish the relationship between (α, β) and (A,B). Wald

[83] proved that to for fixed A and B, the strength (α, β) satisfies

β

1− α
≤ 1

A
and

α

1− β
≤ B . (2.4)

The inequalities (2.4) provides upper bounds on α and β once A and B are chosen. It is non-trivial

to determine the exact strength of a test. It can be shown that setting A =
1− α
β

and B =
α

1− β
yields a test that has a strength very close to (α, β). In practice, this actual strength is often better

than (α, β). As a consequence, the rule becomes

17

0 θ
0

Pr(accept H1)

θ0

β

1− α
1

1

(a)

0 θ
0

Pr(accept H1)

θ1θ2

β

1− α
1

1

(b)

Figure 2.1: Probability of accepting H1 : θ ≥ θ0 over H2 : θ < θ0 as a function of θ (left) and
probability of accepting H1 : θ ≥ θ1 over H2 : θ ≥ θ2 (right). (adapted from Younes [94].)

• Accept H1 to be true if
p1m
p2m

≥ 1− α
β

;

• Accept H2 to be true if
p1m
p2m

≤ α

1− β
;

• Draw another observation and continue testing if
α

1− β
<
p1m
p2m

<
1− α
β

.

We provide an intuitive explanation on the inequalities (2.4). Let Q1 and Q2 be the events

that H1 and H2 are accepted, respectively. Clearly,

Pri(Q1) + Pri(Q2) = 1 , i = 1, 2 , (2.5)

where Pri is the probability under the assumption that Hi is true. Notice that Pr1(Q2) = α and

Pr2(Q1) = β. For an arbitrary sequence of observations S∞ with infinite length, the probability

that one of the hypotheses is accepted at a finite length is 1. Let m denote the length. According

to the rule,

p1m ≥ Ap2m , if H1 shall be accepted ,

p1m ≤ Bp2m , if H2 shall be accepted .

(2.6)

18

Since S∞ is arbitrary,

p1m = Pr1(Q1) = 1− α , p2m = Pr2(Q1) = β , if H1 shall be accepted ,

p1m = Pr1(Q2) = α , p2m = Pr2(Q2) = 1− β , if H2 shall be accepted .

(2.7)

Combining (2.5), (2.6) and (2.7), we have shown the inequalities (2.4).

Remark 1. In general, the performance of a sequential analysis (including SPRT as well as other

sequential techniques) is characterized by the number of required observations, which degrades

when θ approaches θ0. Consider the two cases, θ = θ0 + ε and θ = θ0 − ε where ε is an arbitrarily

small positive number. For a sequential test with a desired strength (α, β) to distinguish them, it

has to accept H1 with a probability at least 1−α in the first case, and accept H1 with a probability

at most β in the second case. This is impractical unless β = 1 − α, which means that either the

Type I or the Type II error would be meaninglessly large. Consequently, a sequential test is usually

used in those cases that θ is assumed not too close to θ0. Figure 2.1b shows a realistic curve for

the probability of accepting H1 as a function of θ. As θ grows towards 1 and 0, the realistic Type

I and Type II error approach 0. ♦

Example 2.1.3 (Tossing A Biased Coin - Strength). Let us analyze the strength of the test in

Example 2.1.2. With A = 100 and B = 0.01, we have

β

1− α
≤ 0.01 and

α

1− β
≤ 0.01 .

Given that α, β ∈ [0, 1], the inequalities are relaxed: α ≤ 0.01 and β ≤ 0.01. Thus we have a

Type I error less than 1% and a Type II error less than 1%. ‖

2.1.2 Sequential Bayesian Test

As in Section 2.1.1, this section considers the hypotheses H1 : θ ≥ θ0 versus H2 : θ < θ0.

A Bernoulli random variable Z is defined the same as (2.1) and the sequence of observations

D = (z1, . . . , zm) are assumed i.i.d. A Bayesian test, which computes a Bayes factor B (not

confused with the parameter B in SPRT) rather than the probability ratio in SPRT, has a similar

rule as follows.

19

• Accept H1 to be true if B ≥ T ;

• Accept H2 to be true if B ≤ 1

T
;

• Draw another observation and continue testing if
1

T
< B < T ;

The parameter T is called the threshold of the Bayes factor.

2.1.2.1 Bayes’ Theorem and Bayes Factor

The theory of Bayesian test relies on Bayes’ theorem. It states that for two events P and Q,

Pr(P | Q) =
Pr(Q | P)Pr(P)

Pr(Q)
. (2.8)

In the Bayesian interpretation, P represents a hypothesis whose probability we are interested in

and Q represents the outcome of an experiment. Pr(P), the prior, is interpreted as the initial belief

in P . Pr(P | Q), the posterior, the belief in P after observing the outcome of Q. The quotient

Pr(Q | P)

Pr(Q)
, which transforms the prior to the posterior, shows the supports (positive or negative)

Q provided to P . If Q is in favor of P , the posterior shows that the belief in P is strengthened

taking Q into account. Otherwise, the belief is weakened.

In the simplest case, P is a simple hypothesis, i.e., the parameters are completely specified.

The prior and the posterior are the probability of P being true before and after considering Q,

respectively. In more complicated cases, however, P is a composite hypothesis and the parameters

may not be fixed values. To define the probability with respect to such a hypothesis, we are required

to provide a prior distribution on the free parameters, which reflects our initial belief in how

these parameters are distributed.

Let H1 : θ ≥ θ0 versus H2 : θ < θ0 be two competing hypotheses with a prior distribution

π(θ). It is natural to consider using Bayes’ theorem to check which hypothesis is more probable

given some observations D. Plugging H1 and H2 into (2.8), the posteriors are

Pr(H1 | D) =
Pr(D | H1)Pr(H1)

Pr(D)
, Pr(H2 | D) =

Pr(D | H2)Pr(H2)

Pr(D)
. (2.9)

20

Table 2.1: A scale of Bayes factor in supporting the hypothesis H1 (adapted from Jeffreys [41]).

B 1 to 3 3 to 10 10 to 30 30 to 100 > 100

Strength in
supporting H1

Barely worth
mentioning

Substantial Strong Very strong Decisive

In general, it is difficult to compute Pr(D). Thus we convert (2.9) into the odds ratio,

Pr(H1 | D)

Pr(H2 | D)
=

Pr(D | H1)

Pr(D | H2)

Pr(H1)

Pr(H2)
. (2.10)

The ratio
Pr(H1)

Pr(H2)
and

Pr(H1 | D)

Pr(H2 | D)
are known as the prior odds and the posterior odds.

Pr(D | H1)

Pr(D | H2)
,

which is a ratio between two likelihoods, is called Bayes factor.

Equation (2.10) describes a fundamental relationship in Bayesian test. It shows how the

observations change our initial belief on the two hypothesis. For example, initially, we believe that

both H1 and H2 have a 50% chance of being true. After making several observations in favor of

H1, such a belief is altered such that we may think H1 is much more likely to happen. In this

process, Bayes factor serves as a “transformation power’ that convinces us the truth of H1. Jeffreys

[41] introduced a scale of Bayes factor in supporting the hypothesis H1, as shown in Table 2.1. A

similar table can be derived for H2 by taking the inverse of B. In practice, we often choose T = 100

as the threshold in the Bayesian test. As shown later, it yields a good strength of the test.

2.1.2.2 Computation of Bayes Factor

Let π(θ) be the prior distribution of θ in the hypotheses H1 : θ ≥ θ0 over H2 : θ < θ0, and

D = (z1, . . . , zm) be the i.i.d. observations of the Bernoulli random variable Z defined in (2.1).

Recall that fZ(z | θ) = θz(1− θ)1−z is the pmf of Z. The Bayes factor is computed as follows.

B =
Pr(D | H1)

Pr(D | H2)
=

∫ 1

θ0

fZ(z1 | θ) · · · fZ(zm | θ) · π(θ)dθ∫ θ0

0
fZ(z1 | θ) · · · fZ(zm | θ) · π(θ)dθ

=

∫ 1

θ0

θm1(1− θ)m2 · π(θ)dθ∫ θ0

0
θm1(1− θ)m2 · π(θ)dθ

,

(2.11)

21

where m1 =
∑m

i=1 zi and m2 = m − m1 are the number of observations in favor of H1 and H2,

respectively. Unlike SPRT, the computation for Bayes factor is not straightforward since it involves

integration over the prior distribution of θ.

It is a deep question in Bayesian statistics how the prior distribution π(θ) should be chosen,

which has a great impact on the computation of Bayes factor (see Berger [7, 8, 9] for discussions).

In the case that little information is available regarding to the distribution of θ, a non-informative

prior π(θ) = 1 is often assumed. Since such a prior does not provide any implication on the prior

probability of the hypotheses, we additionally assume that Pr(H1) = Pr(H2) = 0.5. This is known

as the objective Bayesian analysis [9]. With a non-informative prior, (2.11) is simplified into

B =

∫ 1

θ0

θm1(1− θ)m2dθ∫ θ0

0
θm1(1− θ)m2dθ

. (2.12)

Remark 2. Sequential Bayesian test does not require an indifference region as SPRT does, and

thus the computation is possible for hypotheses H1 : θ ≥ θ0 versus H2 : θ < θ0. Consequently,

it is often more convenient to use in practice. As Remark 1 suggested, sequential Bayesian test,

same as SPRT, experiences a poor performance in the case that the true θ is close to θ0. On the

other hand, in those cases that θ is distant from θ0, sequential Bayesian test usually has a better

performance than SPRT. Jha [42] contains a detailed discussion on the performance of sequential

Bayesian test. ♦

Example 2.1.4 (Tossing A Biased Coin - A Bayesian Approach). We consider the pair of hy-

potheses H1 : θ ≥ 0.7 versus H2 : θ < 0.7 in Example 2.1.1 using sequential Bayesian test. As

in Example 2.1.2, at some point of the computation, we have collected 40 observations without

leading to a conclusion. Let T = 100 be the threshold of Bayes factor. Consider the following three

cases.

• If m1 = 38 and m2 = 2, the Bayes factor B ≈ 13261 is greater than T . Thus we accept the

hypothesis H1. In fact, B ≈ 146 ≥ T for m1 = 35 and m2 = 5, which means that we could

have accepted H1 using less observations;

22

• If m1 = 18 and m2 = 22, the Bayes factor B ≈ 0.0004 is less than
1

T
. Thus we accept the

hypothesis H2. In fact, B ≈ 0.009 ≤ 1

T
for m1 = 21 and m2 = 19, which means that we

could have accepted H2 using less observations;

• If m1 = 30 and m2 = 10, the Bayes factor B ≈ 2.6. As in SPRT, we need more observations

to conclude.

These cases illustrate that sequential Bayesian test has a superior performance over SPRT. ‖

Now let us compare (2.2) and (2.12). For the ease of reading, the two equations are repeated.

p1m
p2m

=
m∏
i=1

Pr(zi | θ = θ1)

Pr(zi | θ = θ2)
=
θm1
1 (1− θ1)m2

θm1
2 (1− θ2)m2

, B =

∫ 1

θ0

θm1(1− θ)m2dθ∫ θ0

0
θm1(1− θ)m2dθ

,

where the Bayes factor B is computed with respect to a non-informative prior. It is not hard to

see the similarities between the two equations.
p1m
p2m

is a ratio between fixed values of θ = θ1 and

θ = θ2, while B is between an integral from θ0 to 1 and that from 0 to θ0. In fact, SPRT can be

regarded as a sequential Bayesian test with a prior

π(θ) =



1
2 if θ = θ1 ,

1
2 if θ = θ2 ,

0 otherwise .

Apparently, B takes into account more information that
p1m
p2m

. This leads to an intuitive explanation

on why sequential Bayesian test has a superior performance over SPRT. We refer the interested

readers to Jeffreys [41] for a theoretical treatment.

2.1.2.3 Strength of Sequential Bayesian Test

Now we consider the Type I/II error of sequential Bayesian test. Conventionally, the notion of

Type I/II error probabilities, which is rooted in Neyman’s treatment of hypothesis testing [66], does

not apply to the theory of Bayesian test advocated by Jeffreys [40]. The connection is established

23

by Berger et al. [10]. They showed that in the objective Bayesian analysis, the Type I error α and

the Type II error β are bounded for fixed T ,

α ≤ 1

T + 1
and β ≤ 1

T + 1
. (2.13)

An intuitive proof is presented here (see [42] for details). The proof for Type II error is shown.

The proof for Type I error can be derived in a similar way. Consider (2.10) which is repeated below.

Pr(H1 | D)

Pr(H2 | D)
= B · Pr(H1)

Pr(H2)
.

Since we assume an objective Bayesian analysis,
Pr(H1)

Pr(H2)
= 1. Suppose that H1 is accepted. Thus

we have

Pr(H1 | D)

Pr(H2 | D)
≥ T .

Adding 1 on each side and rearranging, we have

Pr(H1 | D) + Pr(H2 | D)

Pr(H2 | D)
=

1

Pr(H2 | D)
≥ T + 1 .

Since β = Pr(H2 | D), we have proved that β ≤ 1

T + 1
.

Example 2.1.5 (Tossing A Biased Coin - Strength of Bayesian Test). Now let us consider the

strength of the test in Example 2.1.4. Since T = 100, according to (2.13) the Type I and the Type

II error are bounded such that

α ≤ 1

100 + 1
≤ 0.01 and β ≤ 1

100 + 1
≤ 0.01 .

This shows that sequential Bayesian test can achieve a similar strength as SPRT does but with a

better performance as shown in Example 2.1.4. ‖

2.2 Statistical Model Checking

Model checking concerns with the problem that for a model of a system, check whether a

given property is satisfied. It can be solved in different ways, such as exhaustive search, symbolic

exploration and automatic theorem proving. Statistical model checking (SMC) is a family of model

24

checking techniques based on statistical inference. Unlike symbolic model checking techniques, SMC

does not require explicit knowledge of systems under verification, such as the transition relation in

a discrete-state model and the differential equation in a continuous-state model. Instead, it relies

heavily on simulation to learn the behavior of the underlying systems. As a consequence, SMC

provides statistical rather than formal guarantees. Compared to symbolic techniques, SMC has the

following advantages:

• It is equation-free;

• It scales well with the dimension of problems;

• It is easy to implement.

Therefore, it can handle many problems that are far beyond the capability of symbolic techniques.

In recent years, SMC has been applied to the verification of AMS circuits [53, 19, 85, 97], embedded

systems [95, 74, 100], biological systems [43, 68, 65], medical devices [44] and many other areas.

The idea of SMC was first proposed by Younes and Simmons [95]. They formulate the model

checking of probabilistic systems as a hypothesis testing problem, and introduce a solution based

on sequential probability ratio test (SPRT) [83] (see Section 2.1.1). Later, Sen et al. [74] proposed

to use a standard p-value significance test for the verification of black-box systems. Jha et al. [43]

introduced a new SMC framework based on sequential Bayesian test [40, 47]. Compared to SPRT,

Bayesian test is more convenient in practice since it does not require one to define indifference

regions (see Section 2.1.2). Also, it is shown that Bayesian test usually has a better performance

than SPRT. Zuliani et al. [100] proposed a Bayesian estimation approach that computed an interval

estimate for the probability of satisfying bounded linear temporal logic (BLTL) properties.

This section presents an SMC technique based on sequential Bayesian test proposed by Jha

et al. [43]. This technique can be used to verify BLTL properties. In the next, the formalism of

BLTL is introduced first. Then we show how BLTL properties are model checked via Bayesian test.

25

2.2.1 Bounded Linear Temporal Logic

Linear temporal logic (LTL) is a formalism in which the statements are referring to paths

in a state transition system (possibly infinite) over time. It was first proposed by Kamp [46] and

later introduced to formal verification by Pnueli [69]. Examples of LTL properties include: some

assertion is eventually true, and assertion φ will be true until another ψ becomes true. A LTL

formula can reason about properties over paths with infinite length. In general,1 such paths

represent behaviors of a reactive system over infinite time. A bounded LTL (BLTL) formula is an

LTL formula that is restricted to a finite time horizon. For instance, some condition becomes true

in 10 seconds. The bounded time makes a BLTL property easier to verify in many cases.

2.2.1.1 Syntax of BLTL

This section skips the syntax definition of LTL since it is not relevant, and proceeds directly

to BLTL. A BLTL formula is built upon a set of propositions AP, the logical operator ¬ and ∧, and

the temporal operator X, U(T), where T represents discrete time steps. It is defined inductively as

follows.

• If p ∈ AP, then p is a BLTL formula;

• If φ and ψ are BLTL formulas, then ¬φ, φ ∧ ψ, Xφ and φU(T)ψ are all BLTL formulas.

The operator X is the next-state operator and U(T) is the bounded until operator. For

convenience, two more temporal operators, G(T) and F(T), are defined such that

• G(T)φ, φ being true globally up to time T , is equivalent to φU(T)false;

• F(T)φ, φ being true eventually up to time T , is equivalent to trueU(T)φ;

Note that the above definition is just one way of defining BLTL syntax. It is chosen because it

offers the most succinct syntax. One could use a different set of logical and temporal operators to

construct virtually the same definition.

1 Namely, we assume that the state transition system is non-zeno.

26

2.2.1.2 Semantics of BLTL

BLTL concerns only the bounded behavior of a system. A time-bounded path π(T) in a state

transition system is a sequence of states (s0, s1, . . . , sn) such that

• s0 is an initial state in the system;

• It is possible for the system to evolve from si to si+1, which takes time ti+1;

• The path is over a time horizon at most T , i.e.,

n∑
i=1

ti ≤ T .

For simplicity, this thesis assumes that the time steps ti are equal. Hence, the next state of a state

is naturally defined. A labeling function L : S → 2AP, where S is the state space of the system

and 2AP is the power set of the propositions, maps a state to a set of propositions that are true at

the state. We use π(T) |= φ to denote that a time-bounded path π(T) = (s0, s1, . . . , sn) satisfies a

BLTL formula φ. Formally, the relation |= is defined as follows.

• For p ∈ AP, π(T) |= p if s0 ∈ L(p);

• π(T) |= φ if and only if π(T) 6|= ¬φ;

• π(T) |= φ and π(T) |= ψ if and only if π(T) |= φ ∧ ψ;

• π(T) |= Xφ if and only if π
(T)
1 |= φ where π

(T)
i = (si, s2, . . . , sn);

• π(T) |= φU(T)ψ if and only if there exists 0 ≤ i ≤ n such that π
(T)
i |= ψ and for all 0 ≤ j < i,

the path πj
(T) |= φ with πj

(T)
= (s0, . . . , sj).

The semantics of the syntactic sugar G(T) and F(T) can be derived from U(T).

• π(T) |= G(T)φ if for all 0 ≤ i ≤ n, π
(T)
i |= φ;

• π(T) |= F(T)φ if there exists 0 ≤ i ≤ n, π
(T)
i |= φ.

Example 2.2.1 (BLTL Properties). Consider a continuous-state system M with a stochastic pa-

rameter x and an output y such that y = f(x, t). The behavior of the system is affected by x. Let

27

y(t) be the step response of the system. The trajectory is desired to have the following properties

under the variations of x:

• For t ∈ [0, 2], y(t) ≤ 1.5;

• For t ∈ [2, 5], y(t) ∈ [0.8, 1.2];

• For t ∈ [0, 5], y(t) eventually stays within [0.95, 1.05].

Assume that time is discretized with a step size of 1. To write the properties in BLTL, we first

define three propositions:

φ1 : y(t) ≤ 1.5 , φ2 : y(t) ∈ [0.8, 1.2] , φ3 : y(t) ∈ [0.95, 1.05] .

The BLTL formulas for the three properties are then written as

• G(2)φ1. φ1 is true in two time steps;

• G(3)XXφ2. XXφ2 is true in five time steps and thus φ2 is true for t ∈ [2, 5];

• F(5)φ3. In five time steps, φ3 is eventually true.

It is easy to check that the BLTL formulas are equivalent to the original properties. ‖

For a system M, we say that M |= φ if the BLTL formula φ is satisfied by every path of M

starting from an initial state.

2.2.2 Bayesian Statistical Model Checking

BLTL properties can be statistically verified by Bayesian SMC. Instead of showing whether a

BLTL property holds, Bayesian SMC concerns whether the probability that the property is satisfied

is greater than a certain probability. Formally, it aims to show that

Pr(M |= φ) ≥ θ0 , (2.14)

where M is an interested system, φ is a BLTL property and θ0 is a desired probability.

28

Notice that a trajectory of the system either satisfies or violates the BLTL property φ. We

define a Bernoulli random variable Z for the event that a trajectory satisfies φ, in which case Z = 1.

Hence, it has the following pmf:

fZ(z | θ) = θz(1− θ)1−z ,

where θ is the probability that an arbitrary trajectory satisfies φ. Obviously, θ = Pr(M |= φ).

Therefore, the problem of verifying (2.14) is reduced to verify that

θ ≥ θ0 .

Section 2.1.2 shows that this problem can be solved by sequential Bayesian test. To do that,

one needs to introduce the pair of hypotheses H1 : θ ≥ θ0 versus H2 : θ < θ0, and compute the

Bayes factor B according to (2.12) with the observations D = (z1, . . . , zm) drawn in sequence. Each

observation zi corresponds to a trajectory in the system obtained from simulation. Once B grows

beyond a predefined threshold T , we accept H1 and conclude that (2.14) is true. Similarly, if B is

below
1

T
, we accept H2 and conclude that (2.14) is false. The chance that the conclusion is wrong

is bounded by
1

T + 1
as shown by the inequalities (2.13).

Example 2.2.2 (Statistical Verification using Bayesian SMC). Let us continue with the system

M in Example 2.2.1 and its BLTL properties

G(2)φ1 , G(3)XXφ2 , F(5)φ3 .

The goal is to show whether

Pr
(
M |= G(2)φ1 ∧G(3)XXφ2 ∧ F(5)φ3

)
≥ 0.95 . (2.15)

To verify using Bayesian SMC, we need to sequentially sample the stochastic parameter x, which

is regarded as a random variable X. Suppose that the distribution of X is characterized by a pdf

fX(x). The sampling is then carried out with respect to fX(x). A Bernoulli random variable Z is

defined such that Z = 1 if a trajectory satisfies G(2)φ1 ∧G(3)XXφ2 ∧F(5)φ3 and Z = 0 otherwise.

The problem is reduced to verify whether θ ≥ 0.95 where θ is the probability of Z = 1.

29

Let the threshold of Bayes factor be 100. Suppose that we have collected 88 observations, all

of which satisfy the BLTL properties. The current Bayes factor is B ≈ 95. If the next observation

still satisfies the properties, then B grows beyond 100 and we can conclude that (2.15) is true.

Otherwise, we need to sample more to make a conclusion. ‖

2.3 Regression

In statistics, regression is a process for estimating the relationships among different vari-

ables. Usually, the variables are categorized into two non-overlapping sets: independent variables

and dependent variables. Regression takes a set of data, which consists of observations on the

independent and the dependent variables, and aims to derive a function that explains how the de-

pendent variables change when the independent variables vary. This section presents short reviews

of two commonly used regression techniques, ordinary least squares (OLS) and regularization.

2.3.1 Ordinary Least Squares

OLS is one of the most common regression techniques. It has a long history and was first

published by Legendre in 1805 and by Gauss in 1809. OLS estimates the unknown parameters in

a linear regression model by minimizing the sum of squared error between the observed dependent

variables in the dataset and the values predicted by the linear approximation.

Consider a set of n independent variables x = (x1, . . . , xn) and a single dependent variable

y. Suppose that we do not know the relationship between x and y and would like to estimate y

using a linear combination of the variables x. To do this, we establish a linear function (or more

precisely, an affine function)

ŷ = f̂(x) = β0 +
n∑
i=1

βixi ,

where β = (β0, β1, . . . , βn) are unknown coefficients. We need to solve for these coefficients such

that the estimate ŷ is as close to the true y as possible.

Suppose that we have a set of N independent observations
{
x(i), y(i)

}
on the independent

30

and the dependent variables. Let X be an N × (n+ 1) matrix and y be an N vector,

X =


1 x

(1)
1 · · · x

(1)
n

...
...

. . .
...

1 x
(N)
1 · · · x

(N)
n

 , y =


y(1)

...

y(N)

 .

The goal of OLS is to find the coefficients β such that the sum of the squared errors between Xβ

and y is minimized, i.e.,

min
β
‖y −Xβ‖22 . (2.16)

The vector y − Xβ is known as the in-sample error. In most cases, β is used for prediction.

Hence, besides the in-sample error, it is also important that the computed β leads to small errors

for new observations, which is called the out-of-sample error.

It has been shown in many textbooks that the problem (2.16) has a closed form solution (see,

e.g., Kleinbaum et al. [48])

β =
(
XTX

)−1
XTy . (2.17)

The linear system Xβ = y has at most one solution if N ≥ n. Such a system is said to be

over-determined since there are more observations than the number of unknowns. In this case, the

solution (2.17) usually leads to small out-of-sample errors and forms a good estimation of the true

relationship between x and y. On the other hand, if N < n, the system Xβ = y is said to be

under-determined and has infinitely many solutions. In this case, (2.17) can lead to excellent fit

with very small in-sample errors for the observations in the dataset. But for new observations that

are not used for fitting, it may result in large out-of-sample errors. Such a phenomenon is known

as over-fitting and is the key problem that restricts the scalability of OLS. Hawkins [36] provides a

good introduction to the problem of over-fitting.

2.3.2 Regularization

For a normalized dataset, an over-fitted model is likely to have coefficients that range over

many magnitudes. For instance, we may have β1 = 1 and β2 = 1000 when x1 and x2 have similar

31

contribution to y. Such a model over-emphasizes the importance of certain independent variables

and thus leads to large out-of-sample errors. An easy solution is to collect more observations.

However, this is not always achievable due to many practical reasons, such as high cost of simulation,

limited access to the dataset, and so on.

Regularization is a common approach to avoid over-fitting when the number of observations

is smaller than that of the independent variables. It introduces additional constraints on the vector

β, preventing the coefficients from taking extreme values. A regularized least squares problem has

the following form:

min
β
‖y −Xβ‖22 + λ‖β‖ , (2.18)

where λ is a free parameter that needs to be tuned empirically (typically by cross validation, see

Golub et al. [35]). Intuitively, a large coefficient in β leads to a large ‖β‖ and thus is penalized.

Thus, the regularized term ‖β‖ forces the coefficients to behave “normally”.

Depending on which type of norm the regularization term ‖β‖ takes, (2.18) has different

names. The problem

min
β
‖y −Xβ‖22 + λ‖β‖22

is termed ridge regression [81], where the regularized term takes the L2 norm. Ridge regression

admits a closed form solution

β =
(
XTX + λ2I

)−1
XTy ,

where I is the identity matrix. On the other hand, if ‖β‖ takes the L1 norm, i.e.,

min
β
‖y −Xβ‖22 + λ‖β‖1 ,

it is called the LASSO problem, where LASSO stands for “least absolute shrinkage and selection

operator” [80]. Unlike ridge regression, LASSO does not have closed form solutions. Discussion

of solving LASSO problems is out of the scope of this thesis. Interested readers are referred to

Tibshirani [80] for the original LASSO paper, Efron et al. [27] for an algorithm based on least angle

regression (LAR).

32

β1

β2 β1 6= 0
β2 6= 0

(a) Solution of ridge regression.

β1

β2

β1 6= 0
β2 = 0

(b) Solution of LASSO.

Figure 2.2: Comparison between ridge regression (a) and LASSO (b).

Both ridge regression and LASSO can be used to solve under-determined regression problems.

But their outcomes are different. The solution produced by ridge regression is usually dense, i.e., all

the coefficients take non-zero values. On the contrast, LASSO tends to produce sparse solutions. To

understand this difference, let us take a look at Figure 2.2. In the two figures, the straight line shows

a infinite set of solutions for the coefficient vector β obtained from the under-determined linear

system Xβ = y. The circle in Figure 2.2a represents the regularization terms ‖β‖22. Similarly,

the diamond in Figure 2.2b represents ‖β‖1 (i.e., circle in L1 norm). The regularized problem

(2.18) has a solution when the circle/diamond becomes tangent to the line, as shown by the small

circle in both figures. The solution for ridge regression contains zero coefficients only if the line is

orthogonal to some axis. By contrast, LASSO tends to set some of the coefficients to 0. Because

of this, LASSO is often preferred in practice.

Chapter 3

Statistical Soundness

In symbolic (formal) verification, soundness is a widely used notion.1 The precise meaning

of soundness depends on the context in which it is used. This thesis refers to the soundness of a

model that abstracts some aspect of a system’s behavior. Informally, a model of a system is sound,

if any behavior of the system is also that of the model. On the other hand, if there are behaviors

of the system that the model misses, it is said to be unsound.

A notion called statistical soundness is introduced in this chapter, which is the basis of the rest

of this thesis. It is developed by Zhang et al. [97]. Statistical soundness is a probabilistic argument

that relaxes the soundness notion in symbolic verification. Intuitively, it says that a model is sound

for at least some fraction of its input values. Such a relaxation transforms soundness for all possible

inputs to the same notion for a fraction of them with a desired level of confidence, and enables us to

discuss many practical cases where it is impossible to prove soundness using limited computational

resources. In particular, statistical soundness is shown to be an important concept when one deals

with black-box systems, for which sound models may be hard to obtain.

This chapter is organized as follows. First, two important concepts, black-box systems and

response specifications, are defined. Next, statistical soundness is introduced. The following section

shows what kind of guarantee a statistically sound model can provide in terms of the yield of a

black-box system. Finally, the connections between statistical soundness and statistical model

checking (SMC) is discussed.

1 It originates from mathematical logic and refers to the fact that any formula that can be proved by the inference
rules in a logical system is valid with respect to the semantics of the rules.

34

3.1 Black-Box Systems and Specifications

3.1.1 Black-Box Systems

The notion of statistical soundness is developed to handle the verification and optimization

problem of black-box systems with respect to a set of specifications. First, we formally define

black-box systems.

Definition 3.1.1 (Black-Box System). A black-box system M is a tuple (u,x,φ, FX, r) that

• u = (u1, . . . , um) ∈ Rm is a set of real-valued design parameters;

• x = (x1, . . . , xn) ∈ Rn is a set of real-valued stochastic parameters;

• φ = (φ1, . . . , φk) ∈ Rk is a set of real-valued responses;

• FX : Rn → [0, 1] is a cumulative distribution function (cdf) of stochastic parameters x;

• r : Rm+n → Rk is a response surface that maps design parameters u and stochastic param-

eters x to the responses φ, φ = r(u,x).

Let U denote the domain of design parameters u, and X denote the domain of stochastic

parameters x (and thus the domain of the distribution FX). In a black-box system M, we assume

that design parameters u are controllable, i.e., we can directly change the values of u in M.

Usually, M has a nominal design point u0, which is the nominal values of the design parameters.

Stochastic parameters x, on the other hand, are considered as random variables X = (X1, . . . , Xn)

following the distribution FX(x). They are uncontrollable and there is no way to predict the

exact values of them. We further assume that the random variables are independent, each with a

cdf FXi(xi). Note that this assumption is for the connivence of discussion. In practice, dependent

random variables can be transformed using Rosenblatt transformation [70]. We denote x0 = X̄,

the mean of X, as the nominal point of the stochastic parameters. Note that unlike u0 which can

be implemented psychically, x0 merely represents an “ideal” situation and does not correspond to

any real implementation.

35

A response φ stands for a certain behavior of M. A behavior of a black-box system can

be characterized using a response as long as it can be measured as a real-valued quantity. For

instance, the settling time of an amplifier reflects how quick the system can react with the change

of its input. It is defined as the time from the application of a step input to the time that the

output stays within a certain band around the steady-state value. For any given trajectory, it is

possible to measure/compute the settling time. Hence, it is a valid response of the system. The

response surface r reflects the dependence of responses φ on design parameters u and stochastic

parameters x. r is not required to be in a closed-form. For instance, it can be a flow function

that is implicitly defined by a set of ODEs. However, r must be computable. Given fixed values

of u and x we should be able to evaluate r(u,x) through either numerical simulation or physical

measurement.

3.1.2 Design and Stochastic Parameters

In a black-box system, the design and stochastic parameters can be defined in different ways.

For example, in a CMOS transistor, the channel width can be regarded as a stochastic parameter

following some distribution. The mean of the distribution is usually the nominal value of the channel

width. Alternatively, it can be interpreted as two components, a design parameter that indicates

the nominal value and a stochastic parameter that represents the variations upon the nominal value.

The two types of definition provide distinct interpretations of the stochastic parameter variations,

and are used in different contexts. In this thesis, Chapter 4 and Chapter 5 follow the first type of

definition, and Chapter 6 uses the second type of definition.

The distribution of stochastic parameters can either be independent or dependent on the

values of design parameters. This thesis assumes that the variations are independent on the values

of design parameters. But it should be mentioned that the proposed techniques (in particular,

the statistically sound optimization technique in Chapter 6) can be extended in a straightforward

way to handle the other case. Also, without loss of generality, this thesis only concerns with time-

invariant stochastic parameters. For a stochastic parameter whose value varies with time, it can

36

be modeled as a discrete probabilistic model, or more sophistically, a stochastic process that is

parametrized by a few time-invariant parameters.

3.1.3 Response Specifications

In a black-box system M, the responses φ are desired to meet certain performance require-

ments. These requirements are known as response specifications.

Definition 3.1.2 (Response Specification). For a black-box system M with a response φ, a re-

sponse specification Sφ with respect to φ is an inequality

φ ∈ [a, b] , a, b ∈ R ∪ {+∞,−∞} .

A response specification constrains the allowed values of a response. We write M(u,x) |= Sφ

to indicate that the system M satisfies the response specification Sφ when the design and the

stochastic parameters take the particular values u and x, respectively. We write Mu |= Sφ if

M |= Sφ for fixed u and x ∈ X.

Usually, a black-box system is accompanied with a set of response specifications, each of which

restricts a particular behavior of the system. In the following, we occasionally refer response

specifications as specifications for short.

Both Definition 3.1.2 and the BLTL formalism introduced in Section 2.2.1 can be used to

assert the behaviors of a black-box system. One may be interested in the difference between them

in terms of the expressive power. Fainekos and Pappas [29] showed that any BLTL formula can

be expressed as response specifications and vice versa.2 A response can be instrumented as an

output of the system and thus a corresponding response specification can be written as a BLTL

formula. On the other hand, a BLTL formula can be converted to a robustness metric, which

is a real-valued measurement on how robust the formula is, and can be expressed as response

specifications. Although BLTL and response specifications have the same expressive power, there

2 In fact, their introduction is based on metric temporal logic (MTL), a stronger logic than BLTL.

37

are properties that are easier to express in BLTL, and similarly, properties that more natural in

response specifications. The following example shows properties in both categories.

Example 3.1.1 (Response Specification versus BLTL). A D flip-flop is a digital circuit used to

store state information. It has two inputs D and clk and two outputs Q and Q̄. When clk is in a

rising (or falling) edge, the value of D is recorded and the outputs becomes Q = D and Q̄ = ¬D.

Otherwise, the outputs stay unchanged regardless the input D. Let us assume that the flip-flop is

only sensitive to rising edges of clk. Consider the following properties:

(1) If D = 1, then Q = 1 after the next rising edge of clk;

(2) If Q = 1, it stays unchanged until the next rising edge after D = 0;

(3) If Q = 1, the voltage V (Q) should be at least 0.8VDD where VDD is the supply voltage;

(4) The propagation delay td is less than 10 ns;

(5) The power consumption w of the circuit should be less than 5 µW.

Property (1) can be expressed in BLTL as D → XQ if we assume that the time step is the clock

cycle. Similarly, property (2) can be written as Q → QU(T)Y¬D, where Y, the dual of X, is

the previous-state operator. These two properties cannot be easily cast as response specifications

in Definition 3.1.2. Property (3) can be expressed in both formalisms. In BLTL, it is written

as Q → (V (Q) ≥ 0.8VDD). On the contrast, a specification φ ≥ 0.8VDD is constructed where

φ = minV (Q)≥0.5VDD
V (Q). The last two properties are handled naturally by response specifications.

But it is a bit involved if we express them in BLTL. ‖

Although BLTL and response specifications have similar expressive power, in this thesis we

consider only response specifications. This is because many important properties in real systems

can be expressed in a more straightforward way as response specifications.

Example 3.1.2 (Response Specifications in a Black-Box System). Consider the properties of the

system in Example 2.2.1. For convenience, they are stated again. The step response y(t) of the

system is desired to satisfy the following properties:

38

• For t ∈ [0, 2], y(t) ≤ 1.5;

• For t ∈ [2, 5], y(t) ∈ [0.8, 1.2];

• For t ∈ [0, 5], y(t) eventually stays within [0.95, 1.05].

To write down specifications that fulfills these properties, we define the following responses:

φ1 = min
t∈[0,2]

(1.5− y(t)) , φ2 = max
t∈[2,5]

(y(t)− 0.8) , φ3 = min
t∈[2,5]

(1.2− y(t)) , φ4 = y(5) .

Then the properties can be expressed as

φ1 ≥ 0 , φ2 ≥ 0 , φ3 ≥ 0 , φ4 ∈ [0.95, 1.05] . ‖

3.2 Statistical Soundness

Consider the case that we want to learn how the design parameters u and the stochastic

parameters x in a black-box system M affect a response φ of the system.3 Since the response

surface r does not necessarily have a closed-form, it naturally leads to the solution that approximates

r using simpler functions. Such a technique is known as performance modeling and is discussed

in detail in Chapter 4. At this point, suppose that we have a function ĝ(u,x) that approximates

r(u,x). Let us think about this question: what kind of guarantee can ĝ provide in order to

reason about the real behavior of M? In other words, if ĝ satisfies a response specification,

what can we conclude about M with the response surface r?

It turns out that we cannot guarantee anything beyond a statement like “M perhaps also

satisfies the specification”. The problem with performance modeling is that essentially, an approx-

imation ĝ is merely a function that is close to the real response surface r in some metric. It does

not know whether for an individual set of parameter values, ĝ is below or above r. To overcome

this drawback, we introduce a series of notions as follows.

3 For simplicity, here we consider only one response of the system.

39

Definition 3.2.1 (Relational Model). A relational model is a Cartesian product D× I where D is

a set and I is the set of real-valued intervals,

I ≡ {[a, b] | a, b ∈ R} .

In our work, relational models are used to map parameter values to intervals. To emphasize

that a relational model f = D× I is treated as a model rather than a relation, we write f as

f : D→ I .

Definition 3.2.2 (Soundness). Consider a black-box system M = (u,x, φ, FX, r) and a relational

model g : U × X → I that maps design parameters u and stochastic parameters x to real-valued

intervals. We say that g is sound if

∀u ∈ U , x ∈ X . r(u,x) ∈ g(u,x) . (3.1)

Note that without loss of generality, we focus on systems with a single response. Intuitively,

a sound model g over-approximates r such that for each individual set of parameter values, the

value of the response φ is enclosed by an interval. It is not hard to see that for a black-box system,

we cannot guarantee the soundness of a relational model since (1) it is impossible to enumerate

the parameter values, and (2) the response surface does not have a closed-form. Hence instead of

soundness, we introduce a relaxed notion called statistical soundness.

Definition 3.2.3 (Statistical Soundness). Consider a black-box system M = (u,x, φ, FX, r) and

a relational model g : U × X → I that maps design parameters u and stochastic parameters x

to real-valued intervals. For a probability θ0 ∈ (0, 1), we say that g is θ0 statistically sound with

respect to a finite set of values {u1, . . . ,un} of the design parameters if

Pr
FX(x)

(r(u,x) ∈ g(u,x)) ≥ θ0 , u ∈ {u1, . . . ,un} . (3.2)

We write r(u,x) ≺{u1,...,un}
θ0

g(u,x) to indicate that g(u,x) is a θ0 statistically sound model

of r(u,x) at the design points {u1, . . . ,un}. When θ0 and {u1, . . . ,un} are clear from the context,

we simply write r(u,x) ≺ g(u,x) and say that g is a statistically sound model of r.

40

Compared to the soundness notion, we make two relaxations in order to define statistical

soundness. First, the universal quantifications over design parameter space U and stochastic pa-

rameter space X in (3.1) are substituted into an enumeration over a finite set and a probability

distribution, respectively. Second, the inclusion relation is no longer required to be definite, but

only needs to be true for a desired probability. With Definition 3.2.3, we are able to reason about

how the parameters of a black-box system affect its behavior in a manner that provide statistical

guarantees. Later, we discuss the guarantees obtained from statistical soundness.

A statistically sound model g is usually constructed from some approximation ĝ (either func-

tional or relational). In Chapter 4 we introduce a generalization technique that transforms ĝ, the

approximation into g, a statistically sound model. We regard g as a statistical over-approximation

of the response surface r under stochastic parameter variations such that the probability that r

is bounded by g at the given set of design parameter values is at least θ0. Obviously, the larger

θ0 is, the closer g is to a true over-approximation as in Definition 3.2.2 4 . When θ0 → 1, g is

guaranteed to over-approximate r almost everywhere. Formal reasoning with a statistically sound

model needs to account for the small probability of leading to a wrong conclusion, which depends

on the inference procedure used to achieve statistical soundness. Moreover, in the case that the

precise dynamics of the underlying system are not available, statistical soundness seems to be the

best guarantee that we can achieve.

Remark 3. The probability θ0 can sometimes be regarded as a proportion of the parameter space.

For example, consider a system with a single uniformly distributed parameter. Then the inequal-

ity (3.2) is equivalent to that r is bounded by g in at least θ0 proportion of the parameter space.

But the statement is valid if the parameter space is “uniformly weighted”. Consider another system

with a normally distributed parameter in which the center part of the parameter space is clearly

more important. In this case, the meaning of θ0 is no longer equivalent to a proportion of the

parameter space. ♦

4 Of course, we are not concerned with those over-approximations that are meaninglessly excessive.

41

m1 m2

k

x1 x2

u

(a) A two-mass-spring system.

Controller

Plant

-

y

ue
r

(b) Closed-loop control.

Figure 3.1: A two-mass-spring system and the closed-loop system with a controller.

Example 3.2.1 (Statistically Soundness in A Two-Mass-Spring System). A two-mass-spring sys-

tem [86] is shown in Figure 3.1a. It consists of two rigid bodies and a spring. The model is uncertain

in which m1 = 1.0 ± 20%, m2 = 1.0 ± 20% and k = 1.0 ± 20% with appropriate units. We apply

force u to m1 and measure y = x2, the position of m2. In Figure 3.1b a controller is used to track

y with r, the reference position. A lead compensator, which has two tunable parameters, the pole

location p ∈ [−1200,−800] and the zero location z ∈ [−1.2,−0.8], controls the plant. The nominal

values are p0 = −1000 and z0 = −1.

Suppose that we are interested in the overshoot ro of the step response y(t) as the percentage

of the steady-state value. The closed-loop system has 7 state variables. It is not trivial to find

a solution for ro. We show two statistically sound models5 that are introduced in Chapter 4 and

Chapter 6. Both of them are 95% statistically sound models at the nominal design point (p0, z0)

with respect to ro. The first model g1 defines the following relation at the nominal design point:

g1`(k,m1,m2) = 0.146− 0.026k + 0.021m1 + 0.021m2 ,

g1u(k,m1,m2) = 0.155− 0.026k + 0.021m1 + 0.021m2 ,

g1(k,m1,m2) = [g1`(k,m1,m2), g1u(k,m1,m2)] .

It maps the stochastic parameters (k,m1,m2) into an interval so that there is a high probability

that the true response ro lies in the interval. Note that the lower and the upper bound functions

are parallel. The other model g2 is defined in terms of the design parameters (p, z) but is only

5 The variables in these models are normalized with a domain [−1, 1].

42

statistically sound at the nominal design point (p0, z0):

g2`(p, z) = 0.121 + 0.006p+ 0.078z ,

g2u(p, z) = 0.198 + 0.017p− 0.086z ,

g2(p, z) = [g2`(p, z), g2u(p, z)] .

Notice that g2 does not include any stochastic parameter. It “marginalizes” the effects of the

stochastic parameters in the system and maps each design parameter values to an interval. The

interval g2(p0, z0) is a statistical over-approximation of the response ro. We show different applica-

tions of the two types of models in Chapter 4 and Chapter 6. ‖

3.3 Statistically Sound Yield Computation

Now suppose that g(u,x) is a θ0 statistically sound model of the response surface r(u,x) in

a black-box system M with respect to a set of design point (u1, . . . ,un), i.e.,

r(u,x) ≺(u1,...,un)
θ0

g(u,x) .

Definition 3.2.3 defines statistical soundness in a mathematics point of view. However, for system

designers, it is often useful to interpret the concept from an engineering perspective. An important

notion for designers is the yield of a system. Simply speaking, yield is the probability that a

specification is satisfied. To be precise, we define the notion as follows.

Definition 3.3.1 (Yield). Consider a black-box system M = (u,x, φ, FX, r) with fixed design

parameters. We denote such a system asMu and the response surface as ru(x). The yield YMu,Sφ

of Mu with respect to a response specification Sφ : φ ∈ [a, b] is defined as:

YMu,Sφ = Pr
FX(x)

(Mu |= Sφ) = Pr
FX(x)

(ru(x) ∈ [a, b]) . (3.3)

Recall that Mu |= Sφ if M satisfies Sφ for fixed u and every x ∈ X. The extension of

Definition 3.3.1 to multiple response specifications is natural. All we need is to substitute Sφ into

Sφ1 ∧ · · ·∧Sφn , where φ1, . . . , φn are the interested specifications and ∧ stands for the logical AND.

Obviously, the yield of multiple specifications cannot be greater than that of each individual.

43

Remark 4. In this thesis, yield is defined at fixed design parameters. Such a definition is well

justified in practice since for the designing of real systems, designers try to make their designs as

deterministic as possible. This means that they always choose a set values for the design parameters

rather than leaving them incompletely specified. On the other hand, Definition 3.3.1 can be easily

extended to handle a finite set of design points. But since those cases are unusual in real system

designs, we do not provide a formal definition for them. ♦

We write gu(x) to denote the statistically sound model g(u,x) of the response surface r(u,x)

in which the design parameters u are fixed. It is not hard to see that gu(x) implicitly defines a

region that satisfies a response specification Sφ : φ ∈ [a, b] in the stochastic parameter space. Let

such a region be R. Formally,

R ≡ {x | gu(x) ⊆ [a, b] , x ∈ X} . (3.4)

If gu(x) were a sound model of ru(x), i.e., satisfied Definition 3.2.2, the region R would be a true

under-approximation of the set of stochastic parameter values that satisfy Sφ,

R ⊆ {x | ru(x) ∈ [a, b]} .

In this case, the yield with respect to gu(x) would be lower than the true yield of Mu,

Pr
FX(x)

(gu(x) ⊆ [a, b]) ≤ Pr
FX(x)

(ru(x) ∈ [a, b]) .

It would be possible that for some x, gu(x) 6⊆ [a, b] and ru(x) ∈ [a, b]. But for any x, if gu(x) ⊆ [a, b],

we would have ru(x) ∈ [a, b]. In other words, we would only have false negatives if we used gu(x)

for yield computation. Such a case is shown in Figure 3.2a, where we have a consistent result at

x1 and a false positive at x2.

However, gu(x) is a statistical over-approximation of ru(x). Although we can guarantee that

ru(x) ∈ gu(x) for a large proportion of the stochastic parameter space, there may exists x such that

ru(x) 6∈ gu(x). This means that it is also possible to obtain a false positive result if we use gu(x)

for yield computation. Figure 3.2b shows the case for a statistically sound model. Apparently, we

have a false positive at x1 and a false negative at x2.

44

x

φ

−

−
[a, b]

−

−
[a, b]

x1 x2

(a)

x

φ

−

−
[a, b]

−

−
[a, b]

x1 x2

(b)

Figure 3.2: Response specifications in sound models (a) and in statistically sound models (b).

The following theorem shows a lower bound of the true yield in terms of the yield with respect

to a given θ0 statistically sound model gu(x).

Theorem 3.3.1 (Lower Bound of Yield). Consider a response surface r(u,x) in a black-box system

M and a model g(u,x) such that

r(u,x) ≺{u}θ0
g(u,x) .

Suppose that Sφ : φ ∈ [a, b] is a response specification. Let Yr be the yield of Mu and Yg be the

yield of Mu computed using g,

Yr = Pr
FX(x)

(ru(x) ∈ [a, b]) , Yg = Pr
FX(x)

(gu(x) ⊆ [a, b]) . (3.5)

The two yields Yr and Yg satisfy the following inequality:

Yr ≥ min(θ0 , Yg − (1− θ0)) . (3.6)

Proof. Suppose that we evaluate whether a point x is safe by checking whether gu(x) ⊆ [a, b].

Clearly, we may have both false negatives, in which cases gu(x) 6⊆ [a, b] and ru(x) ∈ [a, b], and false

positives, in which cases gu(x) ⊆ [a, b] and ru(x) 6∈ [a, b].

To understand when we have false negatives and false positives, and when we have consistent

conclusions from gu(x) and ru(x), let us divide the stochastic parameter space X into four regions:

45

−a

−b

ru(x)

−

−
gu(x) ⊆ [a, b]

−

−
gu(x) 6⊆ [a, b]

(a) Region R1

−a

−b

ru(x)
−

−
gu(x) 6⊆ [a, b]

(b) Region R2

−a

−b

ru(x)

−

−
gu(x) ⊆ [a, b]

−

−
gu(x) 6⊆ [a, b]

(c) Region R3

−a

−b

ru(x)

−

−

gu(x) ⊆ [a, b]

−

−

gu(x) 6⊆ [a, b]

(d) Region R4

Figure 3.3: Relationship among gu(x), ru(x) and the interval [a, b] in the four regions R1, R2, R3

and R4 in the proof of Theorem 3.3.1.

• R1 ≡ {x | ru(x) 6∈ [a, b] , ru(x) 6∈ gu(x)},

• R2 ≡ {x | ru(x) 6∈ [a, b] , ru(x) ∈ gu(x)},

• R3 ≡ {x | ru(x) ∈ [a, b] , ru(x) 6∈ gu(x)},

• R4 ≡ {x | ru(x) ∈ [a, b] , ru(x) ∈ gu(x)},

and investigate them one by one.

• For some x ∈ R1, if x is shown to be safe, i.e., gu(x) ⊆ [a, b], x is a false positive since

ru(x) 6∈ [a, b] in R1. Otherwise, both gu(x) and ru(x) conclude that x is unsafe.

• For some x ∈ R2, gu(x) ⊆ [a, b] is impossible since it leads to a contradiction with the

assumptions ru(x) 6∈ [a, b] and ru(x) ∈ gu(x). If gu(x) 6⊆ [a, b], x is indeed unsafe since

ru(x) 6∈ [a, b]. Therefore, we have neither false positives nor false negatives in R2.

• In R3, we cannot have false positives since ru(x) ∈ [a, b]. We have a consistent conclusion

that x is safe if gu(x) ⊆ [a, b], or a false negative if gu(x) 6⊆ [a, b].

• R4 is similar to R3. We do not have false positives. We can have a consistent conclusion

that x is safe, or a false negative.

The situation in each of the four regions is shown in Figure 3.3. To summarize, we may have false

positives in R1, false negatives in R3 and R4 and none of them in R2.

46

Let Y Ri
r and Y Ri

g be the proportion of the yields in Ri with respect to ru(x) and gu(x),

respectively,

Y Ri
r = Pr

FX(x)
(x ∈ Ri ∧ ru(x) ∈ [a, b]) ,

Y Ri
g = Pr

FX(x)
(x ∈ Ri ∧ gu(x) ⊆ [a, b]) .

Obviously, we have

Yr = Y R1
r + Y R2

r + Y R3
r + Y R4

r ,

Yg = Y R1
g + Y R2

g + Y R3
g + Y R4

g .

Since we may have false positives in R1, false negatives in R3 and R4 and none of them in R2, we

have the following relationship between Y Ri
r and Y Ri

g :

Y R1
r ≤ Y R1

g ,

Y R2
r = Y R2

g ,

Y R3
r ≥ Y R3

g ,

Y R4
r ≥ Y R4

g .

Hence,

Yr ≥ Y R2
g + Y R3

g + Y R4
g = Yg − Y R1

g . (3.7)

Since Y R1
g is only concerned with the points in R1, it cannot be greater than the probability of

x ∈ R1,

Y R1
g ≤ Pr

FX(x)
(ru(x) 6∈ [a, b] ∧ ru(x) 6∈ gu(x)) .

To proceed, we first restate (3.3) and (3.2) as follows.

Yr = Pr
FX(x)

(ru(x) ∈ [a, b]) ,

θ0 ≤ Pr
FX(x)

(ru(x) ∈ gu(x)) .

According to Fréchet inequalities, Pr(A ∧B) ≤ min (Pr(A),Pr(B)), we have

Y R1
g ≤ Pr

FX(x)
(ru(x) 6∈ [a, b] ∧ ru(x) 6∈ gu(x))

≤ min

(
Pr

FX(x)
(ru(x) 6∈ [a, b]) , Pr

FX(x)
(ru(x) 6∈ gu(x))

)
≤ min(1− Yr , 1− θ0)

(3.8)

47

Substitute (3.8) into (3.7), we have

Yr ≥ Yg −min(1− Yr , 1− θ0) =


Yg − (1− Yr) if Yr ≥ θ0 ,

Yg − (1− θ0) if Yr < θ0 .

Unifying these two cases, we have

Yr ≥ min(θ0 , Yg − (1− θ0)) .

Theorem 3.3.1 provides a lower bound on the yield with respect to ru(x) in terms of θ0

and the yield with respect to a statistically sound model gu(x). It is well known that Fréchet

inequalities are often quite pessimistic in practice. Empirical evidence shows that the bound can

often be relaxed into

Yr ≥ Yg . (3.9)

It is important to realize that the yields discussed above are not estimations of any kind, such

as Monte-Carlo sampling. They are the exact probabilities as in the equations (3.5). In practice,

it is prohibitive to compute Yr, if not impossible. On the other hand, it may also be difficult to

compute Yg exactly if gu(x) is not in a simple form. Computing the set of values that satisfies

inequality constraints is an interesting and challenging problem by itself, which is beyond the scope

of this thesis. In this, we use Monte-Carlo sampling to estimate Yg. The details are presented in

Chapter 4.

Remark 5. Theorem 3.3.1 and its proof assumes that g(u,x) is a statistically sound model of

r(u,x). Strictly speaking, we can never guarantee that with 100% confidence. This is because, as

we see in Chapter 4, statistical soundness is achieved through a generalization technique based on

sequential hypothesis testing. We have learned that any sequential hypothesis testing technique has

an associated Type I and Type II error. Thus, the theorem is only valid when we do not commit

either type of error. Fortunately, as shown in Chapter 2, the probabilities of these errors can be

bounded to a reasonably low level. In reality, our method is usually not concerned with those cases

that either type of error is committed. ♦

48

Example 3.3.1 (A Two-Mass-Spring System - Yield). We revisit the two-mass-spring system in

Example 3.2.1. Suppose that we have two specifications ro ≤ 15% and ro ≤ 20%. Let us compare

the true yield Yr and the yield Yg computed with respect to the model g1(x) in Example 3.2.1, a

95% statistically sound model of the overshoot ro. Both of the yields are estimated through 10000

Monte-Carlo simulations.

For the first specification ro ≤ 15%, Yr = 46.3% and Yg = 39.1%. For the second specification

ro ≤ 20%, Yr = 100% and Yg = 98.3%. Notice that in both cases Yr and Yg satisfy the empirical

bound in the inequality (3.9). ‖

3.4 Comparison with Statistical Model Checking

Statistical soundness is closely related to SMC. As we show in Chapter 4, statistical soundness

is achieved through a generalization technique based on SMC, or more precisely, sequential Bayesian

test. In this section, we discuss the similarity and difference between statistical soundness and SMC.

It is not hard to see that both techniques can be applied to check a probabilistic property of

the form

Pr(φ ∈ [a, b]) ≥ θ0 ,

where φ is a response in a black-box system M. Recall that SMC solves such a problem through

sequential hypothesis testing (see Section 2.2 for a short review). Essentially, it treats the prob-

ability Pr(φ ∈ [a, b]) as a population parameter θ in a properly defined population, and collects

simulation results to accept either H1 : θ ≥ θ0 or H2 : θ < θ0. On the contrast, using a technique

based on statistical soundness, we need to construct a statistically sound relational model g that

encloses the response surface of φ, and compute (or estimate) the probability Pr(g ⊆ [a, b]). As

stated in Theorem 3.3.1, Pr(g ⊆ [a, b]), together with θ0, provides a lower bound on θ. Thus, if

this lower bound is greater or equal to θ0, the property is satisfied. In practice, we often use the

empirical bound in (3.9) to check whether a property holds.

These two techniques have their own strengths and weaknesses. SMC can be implemented

49

easily and applied to any black-box system as long as the system is computable. However, it has

been shown that in SMC, the closer θ0 is to the population parameter θ, the more experiments we

are expected to perform in order to accept either hypothesis (see Younes [94] and Jha [42] for details,

and Remark 1 in Chapter 2 for an intuitive discussion). On the other hand, statistical soundness

based techniques do not suffer from this aspect. But their performance and usefulness depend

on the quality of the constructed relational models, which should be a carefully chosen statistical

over-approximation of the response surface. As a counterexample, consider a trivial statistically

sound model that maps any parameter values to the physical limits of the response. Such a model

is indeed statistically sound but is useless in practice. The following example demonstrates these

issues in both SMC and statistical soundness.

Example 3.4.1 (Statistical Soundness versus SMC). Let us continue with the two-mass-spring

system in Example 3.2.1 and Example 3.3.1. Consider the following property:

Pr(ro ≤ 15%) ≥ 0.45 ,

where ro is the overshoot of the step response y(t). As mentioned in Example 3.3.1, the yield of

the specification ro ≤ 15% is 46.3%. Therefore, the property should be satisfied.

First, we use Bayesian SMC to verify it. Recall that this involves updating the Bayes factor

for each new observation. The Bayes factor is computed as follows,

B =

∫ 1

θ0

θm1(1− θ)m2dθ∫ θ0

0
θm1(1− θ)m2dθ

,

where m1 is the number of observations for which ro ≤ 15% and m2 is the number that ro > 15%.

Assume that the threshold T of Bayes factor is 100. Several runs of Bayesian SMC show that it

typically needs more than 1000 simulations to conclude that the property holds.

Next, we handle the property with a technique, statistically sound model inference

(SSMI), that is introduced in Chapter 4. Using ordinary least squares, this technique fits a

polynomial ĝ to the response surface of ro. We then generalize ĝ into a statistically sound model

50

g. The property is verified by checking whether the yield computed with respect to g is greater

than 0.45. Apparently, the quality of the statistically sound model depends on the accuracy of the

polynomial. Compared to more than 1000 simulations in SMC, we use a total of 400 simulations to

construct the polynomial ĝ and transform it into the statistically sound model g. In Example 3.2.1,

we have already seen the statistically sound model based on a first-order polynomial, which is shown

below for convenience.

g`(k,m1,m2) = 0.146− 0.026k + 0.021m1 + 0.021m2 ,

gu(k,m1,m2) = 0.155− 0.026k + 0.021m1 + 0.021m2 ,

g(k,m1,m2) = [g`(k,m1,m2), gu(k,m1,m2)] .

From Example 3.3.1 we know that the yield with respect to g is only 39.1%. Thus, we fail to show

that the property is true. An immediate thought is that the accuracy of the first-order polynomials

g` and gu may not be enough. Hence, we try to construct a cubic polynomial. This leads to the

following statistically sound model:

g`(k,m1,m2) = 0.146− 0.022k + 0.003k2 − 0.004k3 + 0.017m1 − 0.003km1+

0.004k2m1 − 0.005m2
1 − 0.016km2

1 + 0.006m3
1 + 0.019m2−

0.001km2 − 0.001k2m2 − 0.008m1m2 − 0.018km1m2+

0.018m2
1m2 − 0.005m2

2 − 0.017km2
2 + 0.021m1m

2
2 + 0.005m3

2 ,

gu(k,m1,m2) = 0.154− 0.022k + 0.003k2 − 0.004k3 + 0.017m1 − 0.003km1+

0.004k2m1 − 0.005m2
1 − 0.016km2

1 + 0.006m3
1 + 0.019m2−

0.001km2 − 0.001k2m2 − 0.008m1m2 − 0.018km1m2+

0.018m2
1m2 − 0.005m2

2 − 0.017km2
2 + 0.021m1m

2
2 + 0.005m3

2 ,

g(k,m1,m2) = [g`(k,m1,m2), gu(k,m1,m2)] .

Using this model, the estimated yield is 45.1%. Thus we show that the property is true. ‖

A few observations from Example 3.4.1 should be mentioned. First, we confirm that SMC

does have a performance degradation when the hypothesized population parameter (θ0) is close to

51

the true population parameter (θ). Compared with SMC, SSMI requires much fewer simulations

in those cases. But it may fail to verify properties without a careful choice of relational models.

In the cases that θ0 is distant from θ, SMC usually needs fewer simulations than SSMI. This

is because SSMI, which constructs polynomial approximations and generalizes them, performs more

functionality than SMC, which provides a “likely yes/no” answer. This is in particular useful if we

need to tune design parameters in a black-box system to meet certain specifications. The following

example shows an application of SSMI that is presented in Chapter 6.

Example 3.4.2 (Optimization in A Two-Mass-Spring System). From Example 3.3.1, we know

that in the two-mass-spring system, the yield of the response specification ro ≤ 15% is only 46.3%

at the nominal design point. Recall that the system has two tunable design parameters, pole

location p = −1000 and zero location z = −1. Let us try and see if we can find a design point in

p ∈ [−1200,−800] and z ∈ [−1.2,−0.8], such that the specification has a better yield.

We do this by constructing a statistically sound model that is different than the one in

Example 3.4.1. The model, in terms of the design parameters p and z, is shown as follows.

g`(p, z) = 0.121 + 0.006p+ 0.078z ,

gu(p, z) = 0.198 + 0.017p− 0.086z ,

g(p, z) = [g`(p, z), gu(p, z)] .

It is 95% statistically sound with respect to the nominal design point. Next, we search for a new

design point that satisfy the specification with respect to the model g. The detailed approach,

which is introduced in Chapter 6, is skipped here. Intuitively, we pick up the point that is most

likely to satisfy the specification according to g, and try to verify in the concrete system that it is

indeed safe. In this example, a new design point p = −1200 and z = −0.928 is found, which leads

to a 100% yield of the specification ro ≤ 15%. ‖

In principle, it is possible to apply SMC to design parameter tuning (see, e.g., Palaniappan

et al. [68] and Jha et al. [44]). Such an approach often involves searching individual design pa-

rameter values and running SMC for each of them. It can, however, result in prohibitively large

52

number of simulations. Compared to those approaches, the technique that we introduce is more

straightforward and requires less computation.

A final comparison between SMC and statistical soundness is on the ability to verify a se-

quence of properties. SMC requires a new run of simulations whenever a new property comes. For

instance, for a specification φ ∈ [a, b], we may fail to verify that Pr(φ ∈ [a, b]) ≥ 90% and decide to

try with Pr(φ ∈ [a, b]) ≥ 80%. In this case, SMC needs to generate new simulation traces in order

to guarantee that the observations are truly random (see Clarke et al. [19]). On the contrast, SSMI

only involves evaluations of the constructed model. For large systems in which each individual

simulation takes a long time, SSMI can significantly reduce the computational cost.

Chapter 4

Statistically Sound Model Inference

As discussed in Chapter 3, the behavior of a black-box system can be modeled by a set of

real-valued responses. For example, in a ring oscillator, oscillation frequency, phase noise and power

consumption are all important responses that define how the circuit behaves. The correctness and

performance properties of a system are expressed as ranges over the responses. For a system to

work well, each response usually has an acceptable range. This is called a response specification

(see Definition 3.1.2). If the system satisfies all the specifications, we say that it is safe. In practice,

it can be difficult to design safe systems due to process variations, external perturbations and many

other factors. Hence, for an unsafe system, we are interested in its probability of being safe. This

is known as the yield of a system. Obviously, a safe system has a 100% yield.

Recall that there are two types of parameters which affect the behavior of a black-box system

M: design parameters u and stochastic parameters x. Design parameters, as the name suggests,

are controlled by designers. They are used to tune the system so that it operates as expected.

This chapter does not consider these types of parameters. A technique that deals with design

parameters is discussed in Chapter 6. On the other hand, stochastic parameters are considered

uncontrollable, arising primarily due to the randomness in the environment, the manufacturing

process, and a lack of understanding of the physics involved in system design. They are usually

assumed to follow certain distributions, such as a (truncated) normal distribution or an exponential

distribution. Variations of stochastic parameters can result in the responses of the system deviating

from the ideal behavior. In the worst case, they may lead to low yield and expensive failures.

54

This chapter introduces a simulation-based technique called statistically sound model

inference (SSMI). For a black-box system under stochastic parameter variations, SSMI constructs

a statistically sound model of each response in the system and computes the yield of a specification

with respect to the model. To achieve statistical soundness, it combines ordinary least squares

(OLS) regression and a generalization technique that is developed using statistical model checking

(SMC). The models produced by SSMI can be useful to designers. For instance, besides yield

estimation, they can also be used to learn the distribution of a response, plot safe regions of the

parameter space and identify the sensitivity of the response in the stochastic parameters. The

content of this chapter is originally published by [97].

We organize this chapter as follows. First, we present an overview of SSMI. The technical

details are introduced in Section 4.2 and Section 4.3. In particular, Section 4.2 discusses how to

apply OLS regression to construct a basis functional model, and Section 4.3 shows a generalization

technique that transforms the basis model into a statistically sound model. Finally, we demonstrate

the capability of SSMI with several applications.

4.1 Overview

Consider a black-box system M = (u,x, φ, FX, r) as in Definition 3.1.1. This chapter and

Chapter 5 assume that the design parameters u are fixed to the nominal values, and are only

concerned with the stochastic parameters x. Hence, we omit u in both M and r and simply write

M = (x, φ, FX, r) and r(x). With this assumption, the response surface r(x) depends only on

the stochastic parameters x. Before we proceed, let us introduce a running example that is used

throughout the discussion of SSMI.

Example 4.1.1 (A Basic Buck Converter). Figure 4.1 shows the circuit diagram of a buck con-

verter. A buck converter is a DC-DC converter that converts higher-level DC input voltages to

lower-level DC output voltages. It is an important analog circuit and is widely used in portable

electronic devices such as cellular phones and laptop computers. The circuit in Figure 4.1 repre-

sents a basic buck converter. The transistors Sp and Sn are regarded as ideal switches. The voltage

55

+
−Vg

Sp
L=2 µH

C=10 µF

Sn
+

−

V

vc

Figure 4.1: A basic buck converter in which L and C are considered as uniform random variables.

vc is a square wave. It controls the switches Sp and Sn so that only one of them is on at any

time. The switching between Sp and Sn results in the charging and discharging of the capacitor

C. Effectively, the inductor L and the capacitor C form a low-pass filter which filters out the high

frequency component of the signal. Thus, the output V is a small changing wave consisting of a

large DC component and some low frequency oscillations which are called voltage ripples.

An important performance metric for buck converters is the amplitude of the voltage ripple,

denoted as ∆v. Usually, a specification of the form ∆v ≤ v0 is required to ensure the functionality

of a buck converter. This example assumes that v0 = 30 mV. When we design this circuit, we

choose nominal value for the inductor L and the capacitor C to be L = 2 µH and C = 10 µF.

However, for a manufactured circuit, it is quite unlikely that L and C are exactly the nominal

values. Due to stochastic parameter variations, it is possible that the nominal design satisfies the

specification ∆v ≤ 30 mV whereas the implemented circuit has ∆v > 30 mV.

To analyze the correctness of the circuit in the presence of parameter variations, we treat L

and C as stochastic parameters, x = (L,C), with the following uniform distributions:

L ∼ U(1.8, 2.2)µH , C ∼ U(9, 11)µF . (4.1)

Since the system is simple, the response surface of the voltage ripple ∆v can be derived in terms

56

Black-box System

Simulator

Regression Generalization

Basis Functional
Model Statistically

Sound Models

Figure 4.2: A high-level flow of SSMI.

of L and C, assuming that the transistors act as ideal switches.

∆v = r(L,C) =
Vg − V
16LC

DT 2
s , (4.2)

where V is the DC component of the output voltage, D is the duty cycle and Ts is the time period

of the control voltage vc. Let V = 3 V, D = 0.25 and Ts = 2 µs. From (4.2), we can show that the

system meets the specification when

LC ≥ 18.75 µH µF ,

which is not always the case given the distributions of L and C in (4.1). Note that unless the system

is as simple as this buck converter, it is usually impossible to derive a closed-form representation

of the response surface. ‖

For a black-box system M = (x, φ, FX, r), SSMI aims to construct a θ0 statistically sound

relational model g(x) of the response surface r(x) such that

Pr
FX(x)

(r(x) ∈ g(x)) ≥ θ0 .

To achieve this, the key idea is to combine the strengths of regression and SMC. SSMI first builds

an accurate functional approximation ĝ(x) of the response surface r(x) and then generalizes ĝ(x)

into a statistically sound model g(x). Figure 4.2 shows a high-level flow of SSMI, which consists of

two steps: regression and generalization.

57

4.1.1 Regression

In this step, SSMI applies ordinary least squares (OLS) to a set of simulation data to compute

an approximation ĝ(x) of the response surface r(x). The model ĝ(x) is called the basis functional

model. Simulation data are collected by performing random sampling of the stochastic parameters

x following the joint distribution FX(x), and simulating the systemM for each of the sampled data

points. We denote the data for ith simulation as
(
x(i), φ(i)

)
.

For curve fitting, we use polynomials as target functions. Hence ĝ(x) has the following form:

ĝ(x1, . . . , xn) =
∑

d1+···+dn≤d
cd1,...,dn · x

d1
1 · · ·x

dn
n ,

where di ≥ 0, d is the degree of the polynomial and cd1,...,dn are the unknown coefficients. OLS

computes the coefficients such that the L2 error between ĝ(x) and r(x) is minimized with respect

to the simulation data,

min
cd1,...,dn

N∑
i=1

(
φ(i) − ĝ

(
x(i)
))2

.

Example 4.1.2 (A Basic Buck Converter - Regression). Let us continue with the buck converter

in Example 4.1.1. To reason about the behavior of the voltage ripple ∆v under stochastic param-

eter variations, we compute a basis functional model ĝ(L,C) using OLS regression. We choose a

quadratic polynomial as the target function. Using 20 simulations, we obtain the following function:

ĝ(L,C) = 28.1− 2.82L+ 0.31L2 − 2.82C + 0.28LC + 0.30C2 .

Note that L and C are normalized to [−1, 1] and the unit of ĝ(L,C) is mV. ‖

As we have learned, as a functional approximation of the response surface r(x), ĝ(x) provides

little guarantee on the behavior of the system M. A statistical soundness guarantee is achieved

through the next step, generalization.

58

4.1.2 Generalization

In this step, SSMI derives a tolerance interval I = [`, u] that generalizes the basis functional

model ĝ(x) into a θ0 statistically sound relational model g(x) defined as

g(x) ≡ [ĝ(x) + `, ĝ(x) + u] ,

Tolerance intervals are derived using Bayesian SMC. Let θ0 ∈ (0, 1) be a given probability.

SSMI formulates a pair of hypotheses

H1 : Pr
FX(x)

(r(x) ∈ [ĝ(x) + `, ĝ(x) + u]) ≥ θ0 ,

H2 : Pr
FX(x)

(r(x) ∈ [ĝ(x) + `, ĝ(x) + u]) < θ0 .

For an interval I = [`, u], it simulates the system with sequentially sampled data points and checks

whether H1 can be accepted. If H1 is accepted, it indicates that the model g(x) with the current

I is a θ0 statistically sound model of r(x). Otherwise, the interval I is updated and the test is

performed with the new interval.

Example 4.1.3 (A Basic Buck Converter - Generalization). Continued from Example 4.1.2, we

generalize the basis functional model ĝ(L,C). This takes 102 simulations, yields a tolerance interval

I = [−75, 73] µV with θ0 = 0.95 and T = 100. Hence, we have a 95% statistically sound model

g`(L,C) = 27.9− 2.82L+ 0.31L2 − 2.82C + 0.28LC + 0.30C2 ,

gu(L,C) = 28.2− 2.82L+ 0.31L2 − 2.82C + 0.28LC + 0.30C2 ,

g(L,C) = [g`(L,C) , gu(L,C)] .

Now we use the model g(L,C) to verify the specification ∆v ≤ 30 mV. The yield with respect

to g(L,C) is 77.3%, compared to the true yield 77.6% according to (4.1) and (4.2). A statistically

safe region in the parameter space is implicitly defined by the model g(L,C) and the specification.

In Figure 4.3, the shaded region is the safe parameter values predict by SSMI. On the contrast, the

solid line shows the analytic boundary

LC = 18.75 µH µF .

59

Figure 4.3: A comparison between the safe regions of the basic buck converter predicted by SSMI
and derived from Equation (4.2).

The region above the solid line is the true safe region. Note that we can barely observe the difference

between the two regions. ‖

The next section presents the technical details in OLS regression and generalization.

4.2 Ordinary Least Squares Regression

It is well known that any continuous function over a bounded domain can be approximated

“arbitrarily closely” by a polynomial. In practice, the degree of a polynomial is often fixed in

advance, leaving the coefficients unknown. Such a polynomial is called the target function. To find

a good approximation, we need to compute the coefficients so that the error between the target

function and the function to be approximated is minimized. The following part of this section shows

a simple scheme based on OLS regression. A more scalable approach is introduced in Chapter 5.

We define a degree vector d = (d1, . . . , dn) to be a vector of positive integers. The vector can

60

be compared with a degree d ≥ 0 such that

d ≤ d ⇔
n∑
i=1

di ≤ d .

With a degree vector d = (d1, . . . , dn), the product xd11 · · ·xdnn can be compactly written as xd.

Hence a polynomial ĝ(x) of degree d has the following form:

ĝ(x) =
∑
d≤d

cdxd .

Let c = (cd1 , cd2 , . . .) be the vector of unknown coefficients. Assume that the response surface r(x)

is a continuous function. With a random sample
(
x(i), φ(i)

)
of size N , the coefficients in the target

function are determined by solving

min
c

N∑
i=1

(
φ(i) − ĝ

(
x(i)
))2

.

4.2.1 A Resampling Heuristic

For OLS regression, there is a well-known lower bound on the sample size N in order to

avoid over-fitting. Let n be the number of stochastic parameters and d be the degree of the target

polynomial. The minimum sample size follows the inequality

N ≥
(
n+ d

d

)
=

(n+ d) !

n ! · d !
. (4.3)

In practice, such a lower bound is often not enough to obtain a good fit. This is especially a problem

when there are many stochastic parameters. In these cases, smaller sample sizes are more likely to

result in partial explorations of the parameter space, resulting in a polynomial approximation that

represents an artifact of the simulation data rather than the behavior of the system. On the other

hand, a large sample size incurs unnecessary overheads in both simulation and regression.

From a statistical point of view, OLS regression is a kind of point estimation [17]. The

classic approach to determine the sample size for a point estimation is to specify a desired tolerance

of error and compute a sample size that is large enough so that with a high statistical confidence, the

distance between the estimated point and the true point is smaller than the error. This approach is

61
Input: Black-box System M, Simulation Data D =

((
x(1), φ(1)

)
, . . . ,

(
x(N), φ(N)

))
,

Distance ε, Sampling Factor s, Number of Folds k
Output: Polynomial ĝ(x)

1 while true do
2 D1, . . . , Dk = split data into k folds such that Di ∩Dj = ∅ and

⋃
Di = D ;

3 for i← 1 to k do
4 ĝi(x) = apply OLS to the set of data

⋃
j 6=iDi ;

5 end
6 εij = compute Euclidean distance between the coefficients of ĝi(x) and those of ĝj(x) ;
7 if for any i, j, εij ≥ ε then
8 D′ = run s ·N random simulations ;
9 D = D ∪D′ ;

10 else

11 ĝ(x) = 1
k

∑k
i=1 ĝi(x) ;

12 break ;

13 end

14 end
Algorithm 1: A resampling heuristic to construct good polynomial approximations.

effective when there are only a few population parameters to estimate. However, for OLS regression,

there are often tens or hundreds of coefficients that need to be determined.

We introduce a heuristic called resampling. This heuristic determines whether a given set of

simulation data are large enough to produce a good approximation. If not, it runs more simulations

until a good approximation can be obtained. The heuristic is illustrated in Algorithm 1. Consider

a random sample of size N . the heuristic first partitions it into k folds (typically k ranges from

4 to 10) of N
k data points. Then it constructs k different sets, each with N · k−1k data points,

such that each fold is left out exactly once. Using each set of data, k polynomials ĝi, i = 1, . . . , k

are computed through OLS regression. Due to the randomized sampling, if the sample size N is

large enough, each set should contain data that are spread in the stochastic parameter space, thus

leading to k polynomials with similar coefficients. Hence, the sample size N is considered to be

large enough if the Euclidean distance between the coefficients of different polynomials are smaller

than a given distance ε, i.e.,

‖ci − cj‖ < ε , i 6= j , i, j = 1, . . . , k , (4.4)

If (4.4) is satisfied, we construct ĝ(x) by taking average of the k polynomials. On the other hand,

62

if (4.4) does not hold, we run another s · N random simulations and collect the data to form a

larger data set. The resampling heuristic provides a systematic way to determine the sample size

and reduces the bias of the resulting approximation.

Example 4.2.1 (A Basic Buck Converter - Resampling). With the discussion in this section, let us

reveal more details in Example 4.1.2. Recall that we use 20 simulations to build the basis functional

model ĝ(L,C), which is a quadratic polynomial. Given the number of stochastic parameters n = 2

and the polynomial degree d = 2, the minimum number of data points in order to avoid over-fitting

is 6. For resampling, we would like to use k = 5 folds. Hence the minimum number of data points

is 6 × 5
4 ≈ 8. We choose to use 10 data points initially. However, this data set does not yield

consistent polynomials for ε = 0.05. The coefficients in the following two polynomials

ĝ1(L,C) = 28.1− 2.81L+ 0.31L2 − 2.81C + 0.28LC + 0.27C2 ,

ĝ4(L,C) = 28.1− 2.83L+ 0.30L2 − 2.77C + 0.28LC + 0.30C2 ,

have a Euclidean distance of 0.055. Using a sampling factor s = 1, we run another 10 simulations.

With a total of 20 data points, we build the model ĝ(L,C) as shown in Example 4.1.2. ‖

Remark 6. In practice, the idea of resampling can be applied in more general cases. For example,

there are cases that we are limited to a given set of simulation data, either because the system

is not available or the simulation cost is too high. To improve the approximation accuracy with

a limited amount of data, we can follow the resampling procedure to compute k polynomials and

construct a single approximation by taking the average. ♦

4.2.2 Complexity

The computational complexity of the regression step is dominated by OLS. Assume that the

sample size N is large enough to avoid over-fitting (i.e., satisfies (4.3)). It can be shown that OLS

has a time complexity of O(N · |c|2) where |c| =
(
n+d
d

)
is the number of unknown coefficients in a

target polynomial of degree d [34]. Fixing the degree d, we have

|c| =
d∏
i=1

(n− i+ 1) .

63

The time complexity becomes O(N · n2d). On the other hand, OLS has a space complexity of

O(N · nd) wherein the matrices that represent the polynomial terms are fully dense. Apparently,

as the number of stochastic parameters grows, OLS quickly becomes inefficient in both time and

memory. As a solution, Chapter 5 shows a more sophisticated regression technique to handle the

cases of many stochastic parameters.

4.3 Generalization

4.3.1 Tolerance Interval

Recall that a polynomial approximation ĝ(x) of the response surface r(x) provides little

guarantee on the behavior of the system. This section introduces a generalization technique that

aims to derive a tolerance interval I that generalizes ĝ(x) into a statistically sound model g(x).

First, we formally define the meaning of a tolerance interval.

Definition 4.3.1 (Tolerance Interval). For a statistical population P, a real-valued interval I =

[a, b], a, b ∈ R is a (θ0, 1−α) tolerance interval if with a level 1−α of confidence, for any individual

p ∈ P,

Pr(p ∈ I) ≥ θ0 .

In SSMI, a (θ0, 1−α) tolerance interval I = [`, u] is associated with a basis functional model

ĝ(x) of the response surface r(x). The population, with respect to which the tolerance interval is

defined, is the difference between r(x) and ĝ(x) for any x ∈ X, i.e.,

P ≡ {r(x)− ĝ(x) | x ∈ X} . (4.5)

Thus, an individual in the population is the difference between r(x) and ĝ(x) for some x. The basis

functional model ĝ(x) and the tolerance interval I form a relational model g(x),

g(x) ≡ [ĝ(x) + `, ĝ(x) + u] . (4.6)

With the formulation in (4.5) and (4.6), we can show that g(x) is θ0 statistically sound model of

r(x) and such a guarantee is provided with a (1− α) confidence.

64

Theorem 4.3.1 (Statistical Soundness with Tolerance Interval). Consider a basis functional model

ĝ(x) of a response surface r(x) and a (θ0, 1 − α) tolerance interval I = [`, u] whose population is

defined by (4.5). With a (1− α) confidence, a relational model

g(x) ≡ [ĝ(x) + `, ĝ(x) + u]

is a θ0 statistically sound model of r(x).

Proof. By the definition of statistical soundness (Definition 3.2.3), g(x) is a θ0 statistically sound

model of r(x), or equivalently r(x) ≺θ0 g(x), if

Pr
FX(x)

(r(x) ∈ g(x)) ≥ θ0 .

Substituting the definition of g(x) in (4.6) into the above inequality, we need to show that

Pr
FX(x)

(r(x)− ĝ(x) ∈ I) ≥ θ0 . (4.7)

This is immediate by the definition of tolerance interval with a population defined in (4.5). Hence,

we have shown that g(x) is a θ0 statistically sound model of r(x).

Note that since I is a (θ0, 1− α) tolerance interval, we have (1− α) confidence that (4.7) is

true. Thus the level of confidence that r(x) ≺θ0 g(x) is also (1− α).

4.3.2 Algorithms for the Derivation of Tolerance Intervals

Given a black-box systemM = (x, φ, FX, r) and a basis functional model ĝ(x) of the response

surface r(x), we are interested in deriving a tolerance interval. To understand this, let us first

consider a simpler problem. Suppose that we have an interval I. For given θ0 and α, how do

we show whether I is a (θ0, 1 − α) tolerance interval with respect to ĝ(x) and r(x)? It is not

hard to see that this is equivalent to the problem of checking whether g(x), as defined in (4.6),

is a θ0 statistically sound model of r(x) with a confidence of (1 − α). From Chapter 3, we learn

that statistical soundness can be guaranteed by sequential hypothesis testing. Given an interval

65

I = [`, u], the problem is formulated as a pair of hypotheses,

H1 : Pr
FX(x)

(r(x) ∈ [ĝ(x) + `, ĝ(x) + u]) ≥ θ0 ,

H2 : Pr
FX(x)

(r(x) ∈ [ĝ(x) + `, ĝ(x) + u]) < θ0 .

This can be solved by sequential Bayesian test introduced in Section 2.1.2. Recall that we need to

repeatedly compute the Bayes factor

B =
Pr(D | H1)

Pr(D | H2)
,

where D = (z1, z2, . . .) is a collection of random variates of a Bernoulli random variable denoting

the outcome of the relation

r
(
x(i)
)
∈
[
ĝ
(
x(i)
)

+ ` , ĝ
(
x(i)
)

+ u
]

(4.8)

such that zi = 1 if (4.8) is true for the data point x(i) and zi = 0 otherwise. The relation in (4.8) is

called an inclusion test. If x(i) passes the inclusion test, it is said to be in favor of H1. Otherwise,

it is in favor of H2.

If the Bayes factor B grows larger than a pre-defined threshold T , we accept H1 and conclude

that g(x) ≡ [ĝ(x) + `, ĝ(x) + u] is a θ0 statistically sound model of r(x). The level of confidence is

indicated by the threshold T . As shown in Section 2.1.2.3, the Type I error α of sequential Bayesian

test is bounded by the following inequality:

α ≤ 1

T + 1
.

Hence, the level of confidence (1− α) that H1 is accepted correctly satisfies

1− α ≥ T

T + 1
.

The interval I = [`, u] is thus a

(
θ0,

T

T + 1

)
tolerance interval with respect to the basis functional

model ĝ(x) and the response surface r(x).

However, the goal is to derive a tolerance interval rather than checking whether a given

interval is a tolerance interval. To solve this problem, we introduce a generalization procedure

66
Input: Black-box System M, Basis Functional Model ĝ(x), Probability θ0, Threshold T
Output: Tolerance Interval I = [`, u]

1 I = [0, 0] ;
2 B = 0 ;
3 while B < T do

4 x(i) = draw a point following the distribution of the stochastic parameters ;

5 φ(i) = simulate M with x = x(i) ;

6 if φ(i) 6∈
[
ĝ
(
x(i)
)

+ `, ĝ
(
x(i)
)

+ u
]

then
7 B = 0 ;

8 ` = min
(
`, φ(i) − ĝ

(
x(i)
))

;

9 u = max
(
u, φ(i) − ĝ

(
x(i)
))

;

10 else

11 B = recompute Bayes factor taking
(
x(i), φ(i)

)
into account ;

12 end

13 end
Algorithm 2: A generalization procedure that derives tolerance intervals.

based on sequential Bayesian test in Algorithm 2. The algorithm starts with a zero interval I =

[`, u], ` = u = 0. It repeatedly performs the inclusion test φ(i) ∈
[
ĝ
(
x(i)
)

+ `, ĝ
(
x(i)
)

+ u
]

with

data points
(
x(i), φ(i)

)
drawn following the cdf FX(x) of the stochastic parameters. We say that

the inclusion test is a success if the point
(
x(i), φ(i)

)
passes it, and a failure otherwise. Upon each

success, the algorithm updates the Bayes factor and continues until a failure occurs. In this case, it

updates ` and u of the interval I to enclose the data point
(
x(i), φ(i)

)
that causes the failure. Also,

the Bayes factor B is reset to zero to indicate that we start with a new interval. The algorithm

terminates when the Bayes factor B grows larger than the threshold T .

Now let us take a deeper look at Algorithm 2. The algorithm sequentially draws random data

points until the Bayes factor B grows large enough. Suppose that the sequence D = (z1, z2, . . .)

indicates the outcome of each inclusion test, where zi = 1 refers to a success and zi = 0 a failure.

From the description of the algorithm, we know that only those data points that pass the inclusion

test contribute to the growth of the Bayes factor. The others are instead used to update the

interval I. Furthermore, for the algorithm to terminate, there must be enough consecutive successful

inclusion tests at the end of the sequence D. Let K be the number of consecutive observations

67
Input: Black-box System M, Basis Functional Model ĝ(x), Probability θ0, Threshold T
Output: Tolerance Interval I = [`, u]

1 K = − log(T + 1)

log θ0
− 1 ;

2 I = [0, 0] ;
3 count = 0 ;
4 while count < K do

5 x(i) = draw a point following the distribution of the stochastic parameters ;

6 φ(i) = simulate M with x = x(i) ;

7 if φ(i) 6∈
[
ĝ
(
x(i)
)

+ `, ĝ
(
x(i)
)

+ u
]

then
8 count = 0 ;

9 ` = min
(
`, φ(i) − ĝ

(
x(i)
))

;

10 u = max
(
u, φ(i) − ĝ

(
x(i)
))

;

11 else
12 count = count + 1 ;
13 end

14 end
Algorithm 3: A simplified generalization procedure.

that support H1 at the end of D. When the algorithm terminates, the Bayes factor is

B =

∫ 1

θ0

θm−1(1− θ)m2dθ∫ θ0

0
θm−1(1− θ)m2dθ

=

∫ 1

θ0

θKdθ∫ θ0

0
θKdθ

=
1− θK+1

0

θK+1
0

.

Since B ≥ T , we have

1− θK+1
0

θK+1
0

≥ T .

Let us rearrange the inequality into

1

θK+1
0

≥ T + 1 .

Taking logarithm on both sides of the inequality, we have

−(K + 1) · log θ0 ≥ log(T + 1) .

Since θ0 ∈ (0, 1), − log θ0 is positive. Hence,

K ≥ − log(T + 1)

log θ0
− 1 . (4.9)

We say that K = − log(T + 1)

log θ0
− 1 is the run length of the algorithm. The inequality (4.9)

provides a lower bound of K such that when we collect K consecutive observations that support

68

H1, we can terminate the algorithm and conclude that the resulting interval is a

(
θ0,

T

T + 1

)
tolerance interval. As a consequence, we do not need to compute the Bayes factor repeatedly.

With this inequality, we introduce a new generalization procedure, shown in Algorithm 3, that

simplifies Algorithm 2. As before, we start with a zero interval and repeatedly draw data points.

But instead of computing Bayes factors, we use a variable count to record the number of successes in

the inclusion test. Once we observe a run of K consecutive successes, we terminate the algorithm.

Theorem 4.3.2 (Equivalence of Two Generalization Algorithms). For a black-box systemM, the

tolerance intervals produced by Algorithm 2 and Algorithm 3 are the same, given that ĝ(x), θ0 and

T are the same for the two algorithms.

Proof. The equivalence is proved by the construction of Algorithm 3 discussed above.

Table 4.1 shows some values of the run length K for the given probability θ0 and threshold

T . Increasing θ0 and T yields a larger K, which in turn results in a statistically sound model with

better statistical guarantee and higher level of confidence. From (4.9), it can be easily shown that

the growth of K is more sensitive to the growth of θ0. In practice, we find that θ0 = 0.95 and

T = 100 provide a good trade-off between statistical guarantee and computational cost.

Table 4.1: Run length K for common values of θ0 and T .

T = 10 30 100 500 1000

θ0 = 0.9 22 32 43 59 65
0.95 46 66 89 121 134
0.99 238 341 459 618 687
0.999 2396 3432 4612 6213 6905

The following theorem is concerned with the termination of the generalization procedure.

Theorem 4.3.3 (Termination of Generalization). The generalization procedure shown in Algo-

rithm 2 and Algorithm 3 terminates with probability one.

Proof. Since the two algorithm are equivalent as shown by Theorem 4.3.2, we prove the termination

of Algorithm 3. For a black-box systemM = (x, φ, FX, r) and a basis functional model ĝ(x) of the

69

response surface r(x), let Ih = [`h, uh] be the minimum hypothetical tolerance interval such that

for all x ∈ X, and for any ` ≤ `h and u ≥ uh,

ĝ(x) + ` ≤ r(x) ≤ ĝ(x) + u .

Suppose that at the ith step of the loop of Algorithm 3, the interval is Ii = [`i, ui]. We construct

two sequences (p1, p2, . . .) and (q1, q2, . . .) such that

pi = `i − `h ,

qi = uh − ui .

Since `i are non-increasing and ui are non-decreasing, both (p1, p2, . . .) and (q1, q2, . . .) are non-

increasing. From the description of the algorithm, we can see that it terminates if and only if there

exists some i > 0 such that all the observations (zi+1, . . . , zi+K) equal to 1, where K is the run

length of the algorithm and zj is defined with respect to (4.8). Since when zj = 1, `j and uj are

the same as `j−1 and uj−1 respectively, it is equivalent to say that both the sequence (pi, . . . , pi+K)

and (qi, . . . , qi+K) are constant.

Without loss of generality, we assume that if the sequence (pi, . . . , pi+K) is constant for some

i, then (qi, . . . , qi+K) is also constant. Given that the sequence (p1, p2, . . .) is non-increasing, we

consider the following two cases:

• For some i, the sequence (pi, pi+1, . . .) remains constant forever. In this case, the algorithm

terminates at pi+K by construction;

• For some i, there exists j > i such that pi > pj . In this case, we assume that

pi − pj ≥ εfp ,

where εfp is the tolerance for floating point errors. In other words, if pi − pj < εfp , we

consider that pi = pj . With a non-increasing sequence, pi eventually becomes non-positive

for some i, i.e., `i ≤ `h. Once that happens, pi can no longer change since

ĝ(x) + `i ≤ ĝ(x) + `h ≤ r(x) .

70

Thus we conclude to the first case.

Hence, we have proved that the algorithm terminates with probability one.

Example 4.3.1 (A Basic Buck Converter - Generalization with Details). Example 4.1.3 shows that

generalization takes 102 simulations to find a tolerance interval I = [−75, 73] µV with θ0 = 0.95 and

T = 100. Figure 4.4 shows a trace of how the interval I changes during generalization. Initially,

we have a zero interval I = [0, 0]. After four failed inclusion tests, I is generalized into [−75, 73] µV

and stays unchanged until the algorithm terminates. ‖

[0, 0]

0

I =

i =

[−52, 0] µV

1

. . .

. . .

[−52, 67] µV

4

. . .

. . .

[−52, 73] µV

7

. . .

. . .

[−75, 73] µV

13

Figure 4.4: Snapshots of the interval I during generalization in Example 4.3.1 of the basic buck
converter.

4.3.3 Complexity

It is not hard to see that the space complexity of the algorithm is O(1) since it does not store

any data structure. On the other hand, the time complexity of generalization is O(N), where N

is the required number of simulations for the algorithm to terminate. N depends on many factors,

including the quality of the basis functional model ĝ(x), the probability θ0 and the threshold T

of the Bayesian test. With a model ĝ(x) that has reasonable accuracy, and proper choices of θ0

and T , we often observe that N = O(K), where K is the run length of the algorithm. Hence, the

empirical time complexity of the algorithm is O(K).

4.4 Applications

This section demonstrates SSMI on a few benchmark examples, including a motor controller,

a low-pass filter and a buck converter with realistic switches and control logic. The experiments

are run on a machine with an AMD Athlon II quad-core 2.8 GHz CPU and 4 G RAM. The imple-

mentation is done in Python 2.7.

71

Motor (plant)

PI Controller -

α0

Arm angle αControl v

(a)

t

α(t)

(b)

Figure 4.5: A motor with a PI controller (a) and its response specifications (b). The solid line is a
trajectory that satisfies the specifications and the red ones violate the specifications.

4.4.1 Motor Controller

Figure 4.5a shows a DC motor with an attached rigid arm controller by a PI controller. We

control the input voltage v of the motor which determines the angle α of the rigid arm. The goal

is to set α to a reference α0, thus holding the arm at a constant angle. The system has three state

variables, the angle of the arm α, the angular velocity ω and the armature current i. It is governed

by the following ODEs:
dα

dt
= ω ,

dω

dt
=

1

J
· (−bω +Ki+mgL sin(α)) ,

di

dt
=

1

L
· (−Kω −Ri+ V) .

There are 5 stochastic parameters in the system, which are listed in Table 4.2. Each parameter

is assumed to have 10% variation (uniformly) around the nominal value. It is desired that the step

response α(t) satisfies the following response specifications.

• Over t ∈ [0, 2], α(t) ≤ 1.5. The specification is φ1 ≥ 0 where

(1) φ1 = max(1.5− α(t)) , t ∈ [0, 2] ;

• Over t ∈ [2, T] where T is the total simulation time, α(t) ∈ [0.8, 1.2]. The specifications are

φ2 ≥ 0 and φ3 ≥ 0 where

(2) φ2 = min(α(t)− 0.8) , (3) φ3 = max(1.2− α(t)) , t ∈ [2, T] .

72

Table 4.2: Stochastic parameters in the motor plant.

Meaning Nominal Value Range

J Moment of Inertia 0.01 kg m2 [0.009, 0.011]kg m2

b Length of the arm 0.1 m [0.09, 0.11]m
K Motor torque constant 0.01 N m A−1 [0.009, 0.011]N m A−1

R Resistance 0.1 Ω [0.09, 0.11]Ω
L Inductance 0.5 H [0.45, 0.55]H

The system is designed in Matlab R© with Simulink R©. We treat the system as a black-box

system with stochastic parameters x = (J, b,K,R,L) and responses φ = (φ1, φ2, φ3). Table 4.3

shows the results of verifying the system with SSMI. The “Spec” column shows the index of the

specifications, where “all” refers to the conjunction of all the specifications. The second column

Yr shows the Monte-Carlo yield estimation of the original system using 1000 random simulations.

The results for SSMI are shown under the “SSMI” column. We illustrate with two cases, regression

with quadratic polynomials (d = 2) and with cubic polynomials (d = 3). For each case, SimR and

SimG are the number of simulations in regression and generalization. TR and TG are the time spent

in these steps. Yg refers to the Monte-Carlo yield estimation with respect to the corresponding

statistically sound models using 1000 random simulations. In both cases, generalization is done

with θ0 = 0.95 and T = 100.

Note that the column SimR represents the number of simulations after applying the resam-

pling heuristic. Although we show the number of simulations for each specification, we do not run

the simulations separately. For instance, for d = 2, we run a total of 150 simulations in regression.

Similarly, in generalization we run a total of 279 simulations.

Now let us compare the yields with respect to different models. Observe that the yields with

respect to statistically sound models (Yg under d = 2 and d = 3) are lower than that with respect

to the response surface. This confirms the empirical bound Yr ≥ Yg (see Section 3.3). On the other

hand, the yields of each specification, as well as their conjunction, for d = 3 are consistently closer

to the true yield than those for d = 2. It indicates that the cubic basis functional model is a better

approximation than the quadratic one.

73

Table 4.3: Verification results of the motor controller (θ0 = 0.95 and T = 100).

Spec Yr

SSMI
d = 2, |c| = 21 d = 3, |c| = 56

SimR TR SimG TG Yg SimR TR SimG TG Yg
1 93.1% 100

71 s
279

98 s
85.8% 150

103 s
288

101 s
88.3%

2 95.8% 150 128 70.9% 250 178 83.2%
3 95.5% 100 117 89.2% 150 149 94.3%
all 92.1% - - - - 69.5% - - - - 81.4%

To further illustrate the usage of statistically sound models, we show a plot of the safe regions

predicted by the cubic statistically sound models for each specification in Figure 4.6. The regions

are drawn in terms of the stochastic parameters b and J , with K, L and R fixed to their nominal

values. According to the statistically sound models of the response φ1, φ2 and φ3, specification (3)

is satisfied for all b and J , and of specification (1) and (2) are satisfied in the two shaded regions.

The intersection of these two regions represents the safe region for all the specifications. The dots

in the figure show some safe values of b and J from simulations. Notice that only one point is

slightly off the intersected region, indicating a good coverage (≥ 95% of the stochastic parameter

space) of the statistically sound models.

4.4.2 Low-Pass Filter

A low-pass filter aims to retain the low frequency components of its input signals and attenu-

ates the components whose frequencies are higher than the cutoff frequency of the filter. Figure 4.7

shows an analog low-pass filter which is built with analog devices. The principle of analyzing and

designing such a circuit can be found in many elementary analog circuit design books, such as

Millman and Halkias [63].

The circuit consists of an operational amplifier (opamp), three resistors R1, R2 and R3 and

a capacitor C1. The opamp is designed with 9 CMOS transistors M1, . . . ,M9 and a compensation

capacitor Cc. Due to process variations, the parameters in these devices in a real circuit are likely to

be different from those in a transistor-level design. We assume that each transistor has 4 stochastic

parameters, the gate-oxide thickness tox , the zero-biased threshold voltage vt, the channel width

74

Figure 4.6: Safe regions for specification (1) and (2) of the motor controller in terms of b and J .

−

+
R1

vin

C1

R3

R2

vout

Figure 4.7: An analog low-pass filter.

w and the channel length l. They are assumed to follow normal distributions. Also, the resistors

and capacitors in the circuit are considered to follow normal distributions. In total, we have 41

stochastic parameters.

Three important responses of this circuit are considered in this example. They are passband

75

Table 4.4: Verification results of the low-pass filter (d = 1, |c| = 42).

Spec Yr

SSMI

SimR TR
θ0 = 0.95, T = 100 θ0 = 0.95, T = 1000 θ0 = 0.99, T = 100
SimG TG Yg SimG TG Yg SimG TG Yg

1 100% 150
30 s

242
30 s

99.6% 379
45 s

99.5% 986
112 s

99.6%
2 99.7% 200 211 98.8% 382 98.8% 941 98.8%
3 85.6% 200 232 82.0% 301 81.8% 968 82.0%

all 85.4% - - - - 81.3% - - 81.2% - - 81.3%

frequency fp, cutoff frequency fc, and stopband frequency fs. Passband frequency fp is the fre-

quency at which the output signal is 1 dB below the input. Cutoff frequency fc is the frequency at

which the output signal is 3 dB below the input. Stopband frequency fs is the frequency at which

the output signal is 20 dB below the input. Given the variations of the stochastic parameters, it is

desired that the responses satisfy the following specifications:

(1) fp ≥ 7 KHz , (2) fc ≥ 14 KHz , (3) fs ≥ 0.15 MHz .

The circuit is designed and simulated in LTSpice R© [1], a freely available SPICE simulator.

Table 4.4 shows the verification results. The columns have similar meanings as in Table 4.3. In this

example, however, we compare the outcomes of using different θ0 and T in generalization. We fix

the degree of the basis functional model to 1, and run the experiments with the following settings

of generalization

• θ0 = 0.95 and T = 100, which corresponds to a run length K = 89;

• θ0 = 0.95 and T = 1000, which corresponds to a run length K = 134;

• θ0 = 0.99 and T = 100, which corresponds to a run length K = 459;

The three settings rely on the same basis functional models. Observe that the yields under the three

settings are almost the same, but the required number of simulations and time are quite different.

This indicates that although in theory, larger θ0 and T lead to a statistically sound model with a

better statistical guarantee and a higher confidence, in practice we do not need them to be very large

76

+
−Vg

Sp
L=2 µH

C=10 µF

Sn
+

−

V

. . .

. . . Q

Q̄

S̄

R̄

Figure 4.8: A buck converter with realistic switches and control logic.

in order to obtain a reasonably good model. Furthermore, in many cases including this example,

little can be benefited from larger θ0 and T but simulation cost can increase significantly.

4.4.3 Buck Converter

Figure 4.8 shows a buck converter with realistic switches and control logic. It has the same

functionality as the basic buck converter in Example 4.1.1. The switches in this circuit is imple-

mented by PMOS and NMOS transistors. Also, the control voltage for the switches are generated

through an SR NAND latch and two inverter chains. The output Q and Q̄ of the latch has opposite

parities. The inverter chain connected to Q has an odd number of stages, and the other one has

an even number of stages. Consequently, the voltages applied to the gate of Sp and Sn are at the

same logic level, i.e., either both digital 1 or both digital 0. This guarantees that the switches Sp

and Sn are not turned on at the same time.

Besides L and C in Example 4.1.1, we assume that the process parameters in the two tran-

sistors are also stochastic. Table 4.5 summaries the process parameters that we are concerned with

in the NMOS transistor Sn. The PMOS transistor Sp has the same parameters but with different

nominal values. We assume that each parameter, including L and C, follows a normal distribution

with the nominal value µ0 as the mean and 0.05µ0 as the standard deviation. In total, we have 24

77

Table 4.5: Stochastic parameters of the transistor Sn in the buck converter. Sp has the same
parameters but with different nominal values.

Meaning Nominal Value Distribution

w Channel width 1000 µm

N(µ0, 0.05µ0)

µ0 = nominal values

l Channel length 35 nm
epsrox Gate dielectric constant relative to vacuum 3.9
toxe Electrical gate equivalent oxide thickness 1.15 nm
toxp Physical gate equivalent oxide thickness 0.9 nm
xj S/D junction depth 10 nm

ndep Channel doping concentration 4.12× 1018 cm−3

ngate Poly Si gate doping concentration 1× 1023 cm−3

nsd Source/drain doping concentration 2× 1020 cm−3

rsh Source/drain sheet resistance 5 Ω/�
rshg Gate electrode sheet resistance 0.4 Ω/�

stochastic parameters.

Recall that the voltage ripple ∆v, the amplitude of the oscillation upon the DC output

voltage, is an important response in a buck converter (see Example 4.1.1). Besides ∆v, we are also

interested in the power consumption w of the circuit. Suppose that it is desired to verify that1

(1) ∆v ≤ 5 mV , (2) w ≤ 50 mW .

The circuit is designed and simulated in LTSpice R© [1], a freely available SPICE simulator. Table 4.6

shows the verification results. We present the case for d = 1 and d = 2, i.e., linear and quadratic

basis functional models. Observe that for specification (1), both d = 1 and d = 2 lead to 100%

yields with respect to the corresponding statistically sound models. For specification (2), however,

the yield in the d = 1 case is only 40.7%. Although still satisfying the inequality Yr ≥ Yg,

it under-estimates the true yield excessively. On the other hand, a quadratic basis functional

model approximates the response surface more accurately. The estimated yield with respect to the

resulting statistically sound models is boosted to 69.9%.

Figure 4.9 shows the safe region for specification (2) predicted by the quadratic statistically

sound model in terms of the channel width of Sp, wp and the channel width of Sn, wn. The other

1 Although the circuit in this example looks similar to the one in Example 4.1.1, it uses real devices and a different
input voltage Vg = 0.9 V. Hence, the specification about ∆v is also different.

78

Table 4.6: Verification results of the buck converter (θ0 = 0.95 and T = 100).

Spec Yr

SSMI
d = 1, |c| = 25 d = 2, |c| = 325

SimR TR SimG TG Yg SimR TR SimG TG Yg
1 100% 250

1.3 h
279

1.5 h
100% 800

5.5 h
213

1.3 h
100%

2 72.3% 250 192 40.7% 900 166 69.9%
all 72.3% - - - - 40.7% - - - - 69.9%

Figure 4.9: Safe region for specification (2) of the buck converter in terms of the channel width of
Sp and the channel width of Sn.

stochastic parameters are fixed to their nominal values. The dots represents some safe values of wp

and wn from simulations. Apparently, all these points fall in the safe region predicted by SSMI.

4.5 Summary

This chapter introduces SSMI, a statistical verification approach. SSMI combines ideas from

regression and statistical model checking, and introduces a response surface modeling approach that

provides statistical guarantees for black-box systems. It consists of two components, regression and

79

generalization. The regression technique used in this chapter is ordinary least squares, which is

simple but not powerful enough to deal with the cases for many stochastic parameters. The next

chapter presents a sparse regression algorithm that can handle hundreds of stochastic parameters.

Chapter 5

A Sparse Approximation Method

As seen in Chapter 4, ordinary least squares (OLS) is not capable to handle systems with

a large number of stochastic parameters, since it requires a number of simulations that grows

exponentially in the number of stochastic parameters and the degree of the target polynomial.

With enough data, OLS computes the coefficient of every term in the polynomial. However, not

all these terms are equally important. In many practical applications, most of them even have

coefficients close to 0, so that dropping them from the polynomial leads to little loss of accuracy.

Such a feature is known as sparsity. A regression algorithm that exploits the sparse structure of

the target function is a sparse approximation algorithm.

Sparse approximation is closely related to two important categories of techniques: compressed

sensing and uncertainty quantification. Compressed sensing originates from the area of signal

processing and aims to reconstruct signals accurately using a small number of random samples [58,

80, 18, 24, 16, 15, 20, 14]. Compressed sensing relies on techniques such as matching pursuit [58],

LASSO [80] and basis pursuit [18]. The key problem is to solve under-determined linear systems

Xβ = y where X is a N × n matrix with N < n. In other words, there are more unknowns than

equations. Such a problem usually has infinitely many solutions. Hence, extra constraints, such as

smoothness [81] or sparsity [80], are required in order to get an unique solution.

Uncertainty quantification is an emerging area that studies how to characterize uncertainties

in a system and their effects on the responses of the system. Conventionally, Monte-Carlo techniques

have been the main approach for uncertainty quantification. These methods do not suffer from the

81

curse of dimensionality, but it is well known that they have a slow rate of convergence [71]. In

recent years, alternative approaches, such as stochastic Galerkin schemes based on polynomial

chaos expansion [23, 4, 60, 90] and stochastic collocation schemes [5, 67, 89, 72, 59], have been

proposed. Compared to Monte-Carlo simulation, these approaches are more effective in modeling

and propagating uncertainties in a system. However, they suffer from the curse of dimensionality

such that their computational costs grow rapidly as the number of stochastic parameters in the

system increases.

There have been many interesting approaches for sparse approximation [55, 75, 26, 64, 54, 25].

This chapter presents a sparse approximation technique that combines generalized polynomial chaos

(gPC) [88] and LASSO [80] (see Section 2.3 for an introduction). This technique considers black-

box systems with stochastic parameters and discovers low-degree polynomial approximations of the

response surface as a function of the stochastic parameters. It includes a heuristic that discovers

relevant terms in the polynomial approximation, and a regression algorithm based on LASSO

to construct polynomial approximations. The heuristic efficiently discards basis functions that

contribute little to the response surface. Then the coefficients of the remaining basis functions are

computed under L1 regularization. The content of this chapter is originally published by Zhang

et al. [99].

This chapter is organized as follows. The following section presents a brief overview of gPC.

Section 5.2 introduces our sparse approximation approach. Finally, Section 5.4 shows several appli-

cations to demonstrate the capability of the proposed approach in the context of SSMI (introduced

in Chapter 4).

5.1 Generalized Polynomial Chaos

In its original form, polynomial chaos, introduced by Wiener [87], is a non-sampling-based

method to characterize uncertainties and their influence on system responses. It uses Hermite

polynomials, a family of orthogonal polynomials, to model stochastic processes with Gaussian ran-

dom variables. The theory of gPC is developed by Xiu and Karniadakis [90]. It generalizes the

82

theory of polynomial chaos to model stochastic processes with random variables in various contin-

uous and discrete distributions. Each distribution corresponds to a particular family of orthogonal

polynomials taken from the Wiener-Askey scheme (see Koekoek et al. [49] for an introduction to

the Askey-scheme). The following presents an elementary level review of gPC. Further details are

available from Xiu [88].

5.1.1 Orthogonal Polynomials

Let us first review the basics of orthogonal polynomials. Let Qn(x) be a general polynomial

Qn(x) = c0 + c1x+ · · ·+ cnx
n ,

where n is the degree of the polynomial and ci are the coefficients of the terms. We consider x

as a random variable with a probability density function (pdf) ω(x). A family of polynomials

{Qi(x), i ∈ N0}, where N0 is the set of non-negative integers, is orthogonal family of polynomials if

for some pdf ω(x) with a domain S,∫
S
Qn(x)Qm(x)ω(x)dx = γnδnm , m, n ∈ N0 ,

where γn is a normalization constant, δnm is the Kronecker delta function such that δnm = 0 if

n 6= m and δnm = 1 if n = m. Clearly,∫
S
Qn(x)Qn(x)ω(x)dx = γn , n ∈ N0 .

For a family of orthogonal polynomials with respect to a density function ω(x), we define an inner

product 〈, 〉ω(x) such that

〈Qn(x), Qm(x)〉ω(x) = γnδnm , m, n ∈ N0 .

We show two families of orthogonal polynomials that are commonly used in practice. The

first family is known as the Hermite polynomials {Hi(x), i ∈ N0}. These polynomials satisfy the

recurrence relation

Hn+1 = xHn(x)− nHn−1(x) , n ∈ N ,

83

where N is the set of positive integers and∫ +∞

−∞
Hn(x)Hm(x)ω(x)dx = n!δnm , ω(x) =

1√
2π
e−

x2

2 .

Hermite polynomials are orthogonal with respect to the density function ω(x). Note that ω(x) is

the pdf of a standard normal random variable. The first few Hermite polynomials are

H0(x) = 1 , H1(x) = x , H2(x) = x2 − 1 , H3(x) = x3 − 3x , . . .

Another important family of orthogonal polynomials is Legendre polynomials {Li(x), i ∈

N0}. They satisfy the recurrence relation

Ln+1(x) =
2n+ 1

n+ 1
xLn(x)− n

n+ 1
Ln−1(x) , n ∈ N

and ∫ 1

−1
Ln(x)Lm(x)dx =

2

2n+ 1
δnm .

Legendre polynomials are orthogonal with respect to the uniform density function on the interval

[−1, 1]. The first few Legendre polynomials are

L0(x) = 0 , L1(x) = x , L2(x) =
3

2
x2 − 1

2
, L3(x) =

5

2
x3 − 3

2
x , . . .

5.1.2 Orthogonal Projection

Let {Qi(x), i ∈ N0} be a family of orthogonal polynomials with respect to a density function

ω(x) with a domain S. According to the classic theorem by Weierstrass, any continuous function

f(x) over a bounded interval can be approximated with arbitrarily small error by polynomials.

Suppose that

f(x) = c0 +
+∞∑
i=1

ciQi(x) , x ∈ I ,

where I is some interval. This is known as an orthogonal projection of f(x) onto the vector space

of polynomials {Qi(x), i ∈ N0}. The polynomials Qi are the basis functions of the projection.

The coefficients ci are called the generalized Fourier coefficients. In practice, we usually truncate

84

Qn

Qm
f(x)

cn

cm

Figure 5.1: An interpretation of orthogonal projection.

the infinite sum up to some degree d and form the following approximation

f(x) ≈ c0 + c1Q1(x) + · · ·+ cdQd(x) .

Figure 5.1 shows an interpretation of orthogonal projection. Consider a function f(x) as a

vector in the vector space of the orthogonal polynomials {Qi(x), i ∈ N0}. The projection maps

f(x) onto the direction of Qi(x). The generalized Fourier coefficient, ci, represents the length of

the projection. Intuitively, the larger ci is, the more Qi(x) contributes to f(x).

Consider the inner product between f(x) and Qi(x) with respect to ω(x),

〈f(x), Qi(x)〉ω(x) =

∫
S
f(x)Qi(x)ω(x)dx

=

∫
S

(c0 + c1Q1(x) + c2Q2(x) · · ·)Qi(x)ω(x)dx .

By orthogonality of the basis functions Qi(x), we have

〈f(x), Qi(x)〉ω(x) = ci

∫
S
Qi(x)Qi(x)ω(x)dx = ciγi .

For a fixed density function ω(x), the normalization constants γi can be pre-computed. Hence, if

we can compute the inner product, the coefficients ci are simply

ci =
1

γi
〈f(x), Qi(x)〉ω(x) . (5.1)

85

Table 5.1: Correspondence between the distribution of a random variable and the family of orthog-
onal polynomials as its gPC basis [88].

Distribution Orthogonal Family Support

Continuous

Gaussian Hermite (−∞,∞)
Uniform Legendre [a, b]

Beta Jacobi [a, b]
Gamma Laguerre [0,∞)

Discrete

Poisson Charlier {0, 1, 2, . . . }
Binomial Krawtchouk {0, 1, . . . , N}

Negative binomial Meixner {0, 1, 2, . . . }
Hypergeometric Hahn {0, 1, . . . , N}

5.1.3 Generalized Polynomial Chaos

Let Z be a random variable with the distribution FZ(z). The gPC basis functions with

respect to Z are the orthogonal polynomials {Qi(z), i ∈ N0} satisfying

E [Qn(Z)Qm(Z)] =

∫
dom(Z)

Qn(z)Qm(z)dFZ(z) = γnδnm , m, n ∈ N0 . (5.2)

where E computes the expectation over the distribution FZ(z) and

γn = E
[
Q2
n(Z)

]
, n ∈ N0 (5.3)

are the normalization constants. From (5.2) and (5.3), we establish a correspondence between the

distribution of the random variable Z and the family of orthogonal polynomials as its gPC basis

functions. Table 5.1 shows the correspondence for some common distributions.

We have introduced the gPC basis functions for single random variable. Let us consider the

case for multiple random variables. Let Z = (Z1, Z2, . . . , Zk) be a random vector of k mutually

independent random variables with the joint distribution

FZ(z) = FZ1(z1)FZ2(z2) . . . FZk(zk) ,

where z = (z1, z2, . . . , zk) and FZi(zi) are the marginal distributions of the random variable Zi. Let

d = (d1, . . . , dk) be a vector of non-negative integers, and |d| =
∑k

i=1 di. The gPC basis function

of degree |d| with respect to Z is

Qd(z) = Qd1(z1) . . . Qdk(zk) ,

86

where Qdi(zi) is the gPC basis function of degree di for the random variable Zi. For dn =

(dn1, . . . , dnk) and dm = (dm1, . . . , dmk), the basis functions Qdn(z) and Qdm(z) satisfy

〈Qdn(z), Qdm(z)〉 = γdnδdn,dm ,

where

γdn = γdn1 . . . γdnk

and

δdn,dm =


1 dni = dmi , i = 1, . . . , k ,

0 otherwise .

Note that mutual independence of the the random variables Zi are necessary in the above formula-

tion. We refer the interested readers to Xiu and Karniadakis [90] for a treatment of non-independent

random variables.

5.2 A Low-Degree Approximation Algorithm

5.2.1 Overview

Consider a black-box systemM = (x, φ, FX, r) with n stochastic parameters x = (x1, . . . , xn)

following the distribution FX(x), a response φ with a response surface φ = r(x). Recall that with

a set of simulation data
{
x(i), φ(i)

}
, we need to find a polynomial ĝ(x) such that

min
c

N∑
i=1

∥∥∥φ(i) − ĝ (x(i)
)∥∥∥2

2
, (5.4)

where c is the vector of unknown coefficients and N is the size of the simulation data. The number

of unknown coefficients |c| in the polynomial grows exponentially in n, the number of stochastic

parameters and d, the degree of the polynomial. For large systems, it is computational prohibitive

to collect data from a large number of simulation runs since a single simulation may take hours

or even days. In these cases, OLS fails since it requires more data than the number of unknowns.

To solve this problem, this section introduces a sparse approximation approach that combines gPC

and LASSO (see Section 2.3), a L1 regularization technique.

87

Given a set of simulation data
{
x(i), φ(i)

}
with N data points, we construct an N ×n matrix

X and an N vector y such that

X =


x
(1)
1 · · · x

(1)
n

...
. . .

...

x
(N)
1 · · · x

(N)
n

 , y =


φ(1)

...

φ(N)

 . (5.5)

We assume that the target polynomial ĝd(x) of degree d has the following form:

ĝd(x) =
∑
|di|≤d

cdiQdi(x) ,

where cdi are the unknown coefficients and xdi stands for xdi11 · · ·xdinn . {Qdi(x)} is a set of gPC

basis functions with respect to the distribution FX(x). We write Sk to denote the set of basis

functions of degree k. An N × |Sk| matrix Xk is constructed from X and Sk,

Xk =


Qd1

(
x(1)

)
· · · Qd|Sk|

(
x(1)

)
...

. . .
...

Qd1

(
x(N)

)
· · · Qd|Sk|

(
x(N)

)

 , |di| = k , i = 1, . . . , |Sk| , (5.6)

where |di| is the sum of the vector di and |Sk| represents the cardinality of Sk. The coefficients of

the basis functions in Sk is denoted by a vector βk,

βk =


cd1

...

cd|Sk|

 , |di| = k , i = 1, . . . , |Sk| .

The problem in (5.4) can be written in the following matrix form:

min
(β0,...,βd)

∥∥∥∥∥y −
d∑

k=0

Xkβk

∥∥∥∥∥
2

2

, (5.7)

The proposed sparse approximation algorithm, shown in Algorithm 4, aims to find a polyno-

mial approximation of a degree as low as possible. Suppose that we have an N × n matrix X and

an N vector y as shown in (5.5), such that X represents the stochastic parameters y represents the

response φ. The algorithm works iteratively as follows. It discovers a polynomial approximation

88
Input: Matrices X, Vector y, Target Degree d, Distribution FX(x), Dropping Threshold η,

Termination Threshold ε
Output: Sparse Approximation ĝ(x)

1 res = y ;
2 S = ∅ ;
3 for k ← 1 to d do
4 Sk, Xk = construct gPC basis functions of degree k ;
5 S′k, X′k = choose the basis functions from Sk with a dropping threshold η ;
6 β′k = compute the unknown coefficients using X′k and res ;
7 S′′k = collect the basis functions with non-zero coefficients ;
8 S = S ∪ S′′k ;
9 res = res - X′kβ

′
k ;

10 if ‖res‖2 < ε then
11 break ;
12 end

13 end
14 βS = recompute the coefficients of the basis functions in S ;
15 ĝ(x) = construct a polynomial with βS and S ;

Algorithm 4: A sparse approximation algorithm.

of a certain degree k using the matrix Xk, which is constructed from X and Sk, the set of basis

functions of degree k, and the residual vector res, where res equals to y initially.

At the kth iteration, we choose a subset of the basis functions S′k that are considered “impor-

tant” to the approximation from Sk, and construct the corresponding matrix X′k (see Section 5.2.2

for details). Intuitively, we estimate the coefficients of the basis functions and prune those with

coefficients that are close to 0. Using the basis functions in S′k, we compute the unknown coeffi-

cients β′k (see Section 5.2.3 for details) and collect the corresponding basis functions with non-zero

coefficients into a set S. The residual vector res is updated such that the contribution from the

degree-k approximation to the response φ, represented by X ′kβ
′
k, are subtracted from res. The

iteration terminates if either the L2 norm of res becomes smaller than a pre-defined termination

threshold ε, or k reaches the given target degree d. Finally, we recompute the coefficients of the

basis functions in S and construct the approximation ĝ(x).

89

5.2.2 Choosing a Subset of Basis Functions via gPC

Consider a set of basis functions Sk of degree k. Since we assume that the response surface

r(x) permits a sparse approximation, it is desirable to choose a subset of basis functions from Sk

rather than using all of them. Given that the basis functions have the same degree, we regard those

with larger coefficients more important for that they contribute more to the response surface r(x)

compared to those with smaller coefficients.

From (5.1), we know that coefficients of the basis functions can be computed by orthogonal

projection, i.e.,

cdi =
1

γdi
〈r(x), Qdi(x)〉 .

However, it can be difficult, if not impossible, to compute cdi exactly because

• The response surface r(x) can be evaluated but does not have a closed form;

• The number of stochastic parameters x is usually large in practice.

As a possible solution, sparse grid quadrature methods work well when the dimension of x is

relatively small (see, e.g., Gerstner and Griebel [33]). But they cannot handle a large number of

stochastic parameters. Also, these methods rely on the ability to sample at certain points, which

is not always realizable in practice.

In our case, the coefficients are used to prune unimportant basis functions. Hence, they do

not have to be precise as long as they can reflect the relative importance of the basis functions.

Since the inner product 〈r(x), Qdi(x)〉 is essentially an expectation over FX(x),

〈r(x), Qdi(x)〉 =

∫
X
r(x)Qdi(x)dFX(x) = E [r(x)Qdi(x)] ,

where X is the domain of FX(x), we use Monte-Carlo simulation to compute an estimation of cdi ,

ĉdi =
1

γdiN

N∑
j=1

φ(j) ·Qdi

(
x(j)

)
, (5.8)

Due to the slow convergence of Monte-Carlo methods, ĉdi are usually not accurate estimates of cdi ,

which can sometimes be far away from cdi when N is small. To improve the accuracy of ĉdi such

90

that they can at least reflect the relative importance of the basis functions, we compute a k-fold

average instead of a single estimation. The computation is similar to the resampling heuristic in

Section 4.2.1. We divide the set of simulation data into k folds, each with N
k data. Then we evaluate

(5.8) k times such that for the ith evaluation, the ith fold of data are excluded. The k estimates

are averaged, producing a single estimate ĉdi .

Note that ĉdi can at best capture the trend of cdi . They should not be used as coefficients

of the polynomial approximation of the response surface, which usually leads to a poor quality.

However, the evaluation of (5.8) is efficient even with a large number of stochastic parameters.

Furthermore, it can be easily parallelized. Consequently, we build a filtering stage with the

estimates ĉdi such that basis functions, which have estimated coefficients ĉdi that are smaller than

a specified threshold η, are dropped from the set Sk. This leads to a subset S′k of the basis functions

of degree k.

5.2.3 Computing Unknown Coefficients

For the basis functions in S′k, we can construct an N × |S′k| matrix X′k as shown in (5.6). We

need to compute the coefficients β′k such that the error between res, which initially equals to y,

and X′kβ
′
k are minimized, i.e.,

min
β′
k

∥∥res−X′kβ
′
k

∥∥2
2
. (5.9)

Obviously, if N ≥ |S′k|, (5.9) is over-determined and can be solved by OLS without over-

fitting. If N < |S′k|, we use LASSO to solve (5.9). LASSO adds a regularization constraint on the

coefficients β′k and solves the following problem:

min
β′
k

∥∥res−X′kβ
′
k

∥∥2
2

+ λ
∥∥β′k∥∥1 . (5.10)

The extra term forces the coefficients cdi to behave “regularly” so that they cannot range over

many orders of magnitude. Furthermore, due to the nature of L1 norm, proper choices of λ result

in sparse solutions (see Section 2.3 for an introduction). In general, a larger λ leads to a sparser

solution. When λ approaches 0, LASSO reduces to OLS fitting. In practice, λ is often determined

91

by cross validation, i.e., choosing a series of values for λ and cross-validating each of them to find

the one with the smallest error.

The vector X′kβ
′
k represents the quantities of the response φ approximated by the basis

functions S′k of degree k. Once a solution of βk is found, the residual vector res is updated by

subtracting X′kβ
′
k so that the contributions from S′k are removed. The new residual vector serves

as the “response” values with respect to which the approximation of degree k + 1 is built.

The iteration in Algorithm 4 terminates if either the L2 norm of the residual vector res

becomes smaller than a pre-defined termination threshold ε, or k reaches the target degree d. In

the former case (and k < d), we have a polynomial approximation of a degree lower than the target

degree. We call this early termination. It is preferable since a low-degree approximation is always

considered better than a high-degree one when they have similar accuracy. At this point, we have

collected a set of basis functions S. Although coefficients are available for each basis function in S,

they are computed with respect to the residual vector at each iteration and may not be accurate

when the basis functions are combined. Hence, we recompute all the coefficients by solving the

following problem:

min
βS
‖y −XSβS‖

2
2 , (5.11)

where XS is an N × |S| matrix constructed according to (5.6) for the basis functions in S, and βS

are the unknown coefficients. As the problem in (5.9), (5.11) is solved by OLS if N ≥ |S|, or LASSO

otherwise. Finally, with βS =
(
cd1 , . . . , cd|S|

)
, we have the following polynomial approximation:

ĝ(x) =

|S|∑
i=1

cdiQdi(x) .

5.3 Discussion of the Algorithm

The proposed sparse approximation algorithm has two salient features:

• It combines gPC and LASSO in a way that the efficiency of the powerful L1 technique

LASSO is enhanced.

92

• Regardless to the target degree, it produces polynomial approximations with degrees that

are as low as possible;

The first feature is affected by the parameter η, which controls how “aggressive” the algorithm

is in dropping unimportant basis functions. If η approaches 0, then the filtering stage considers

almost every basis functions to be important. This is equivalent to performing LASSO alone.

On the other hand, a reasonable choice of η can prune many basis functions that indeed have

small coefficients, and thus result in a smaller problem that is solved subsequently by either OLS or

LASSO. For systems with a response surface that permits sparse representations, the result problem

can be much smaller than the original problem. In practice, η is often set to a small number times

the maximum coefficients of the basis functions of a certain degree, e.g., 0.01 · max(ĉd1 , ĉd2 , . . .),

where ĉdi are computed as in (5.8). Intuitively, for basis functions of the same degree, if the

coefficient is very small compared to others, the corresponding basis function does not have much

contribution to the response surface and thus can be dropped.

The second feature, which is affected by the parameter ε, is convenient for designer. Basically,

the target degree reflects how complex we believe a response surface is, and how complex model

we would like to tolerate. In general, simpler models are preferable since they provides cleaner

explanations on the relationship between stochastic parameters and responses. The value of ε

represents a trade-off between accuracy and model simplicity. By choosing a large ε, we may find

a model with a degree lower than the target degree. This is not achievable by applying LASSO

directly. The parameter ε is usually set according to the response vector y, e.g., 0.01 · ‖y‖2.

5.4 Applications

First, the proposed sparse approximation algorithm is demonstrated using a set of randomly

generated sparse polynomials. Then it is applied to three benchmark examples, including a three-

stage ring oscillator, an eight-bit digital-analog converter (DAC) and a low-pass filter. The exper-

iments are run on a machine with an AMD Athlon II quad-core 2.8 GHz CPU and 4 G RAM. The

93

implementation is done in Python 2.7.

5.4.1 Randomly Generated Sparse Polynomials

The first application is to compare the performance of the proposed sparse approximation

algorithm with LASSO, using a set of randomly generated sparse polynomials. These polynomials

have a fixed degree of k = 2 and contain stochastic parameters ranging from n = 20 to n = 100.

In particular, we choose n = 20, 50, 80, 100. At each n, we generate 50 random polynomials. Each

polynomial has a 20% sparsity level, which means that only 20% of the basis functions have non-zero

coefficients. The coefficients are also randomly generated.

We use three criteria, running time, number of remaining basis functions, and averaged

percentage error, to judge the performance of the two approaches. The average percentage error is

computed as the sum of the absolute error between the exact values and the approximated values,

divided by the number of data points. The results are shown as scatter plots in Figure 5.2. For

each criterion, the figures show the comparisons of the two approaches for the randomly generated

polynomials at each n.

First, in Figure 5.2a, observe that in most cases, our approach is faster than LASSO. Fig-

ure 5.2b shows that our approach usually produces approximations that have larger numbers of

basis functions than LASSO does. Finally, Figure 5.2c indicates that the approximations from the

two approaches have similar accuracy, with those from LASSO slightly more accurate. From these

figures, it can be seen that compared to LASSO, the proposed approach trades the size of the

approximations for a lower computational cost. In practice, the accuracy of approximations from

our approach is usually comparable with that from LASSO.

5.4.2 Ring Oscillator

Consider a three-stage ring oscillator shown in Figure 5.3. At the steady state, the circuit

outputs an oscillating signal with a fixed frequency f , which is determined by the propagation

delay of the NOT gate formed by a PMOS and an NMOS transistor. The oscillation frequency f is

94

(a) Running time (b) Number of basis functions

(c) Average percentage error

Figure 5.2: Comparisons between LASSO and the proposed approach in terms of time (a), number
of basis functions (b), and average percentage error (c), using a set of randomly generated polyno-
mials. The four figures in each group correspond to n = 20 (top left), n = 50 (top right), n = 80
(bottom left), and n = 100 (bottom right).

affected by the process parameters in each transistor. Table 5.2 shows the stochastic parameters in

the NMOS transistors. The PMOS transistors have the same parameters but with different nominal

values. In total, we have 66 stochastic parameters. We are interested to verify the following response

specification:

(1) 1.8 GHz ≤ f ≤ 2.2 GHz .

The circuit is designed and simulated in LTSpice R© [1]. We apply the proposed sparse approx-

95

Mp1

Mn1

Mp2

Mn2

Mp3

Mn3

Figure 5.3: A three-stage ring oscillator.

imation algorithm in the context of SSMI (see Chapter 4), i.e., use the algorithm in the regression

step of SSMI. The verification results are compared to SSMI with OLS and SSMI with LASSO.

Table 5.3 shows the results of the three approaches. To model the response surface of the oscillation

frequency f , we use quadratic polynomials as target functions, where the terms in the polynomial

are gPC basis functions constructed according to the distribution of the stochastic parameters. The

column “Spec” is the index of the specification. Yr shows the Monte-Carlo yield estimation from

1000 random simulations. Under the “Method” column, “Sparse” represents the proposed sparse

approximation algorithm, and “OLS” and “LASSO” represents ordinary least squares and LASSO,

respectively. SimR and SimG show the number of simulations used in regression and generalization

of SSMI. TR and TG show the time of the form A + B spent in the two steps, where A refers

to the simulation time and B is the computation time of SSMI. The columns |S| and d are the

number of basis functions in the final approximation (i.e., in the basis functional model introduced

in Section 4.1), and the degree of the approximation, respectively. Finally, Yg under “SSMI” shows

the Monte-Carlo yield estimation using 1000 random simulations with respect to statistically sound

models.

Observe that all the three methods lead to similar estimated yields. Since the generalization

procedures are identical for the three methods, it indicates that the three basis functional models

have similar accuracy with respect to the response surface. However, the column |S| shows that

96

Table 5.2: Stochastic parameters of an NMOS transistor in the ring oscillator. The PMOS tran-
sistors have the same parameters but with different nominal values.

Meaning Nominal Value Distribution

w Channel width 10 µm

N(µ0, 0.05µ0)

µ0 = nominal values

l Channel length 35 nm
epsrox Gate dielectric constant relative to vacuum 3.9
toxe Electrical gate equivalent oxide thickness 1.15 nm
toxp Physical gate equivalent oxide thickness 0.9 nm
xj S/D junction depth 10 nm

ndep Channel doping concentration 4.12× 1018 cm−3

ngate Poly Si gate doping concentration 1× 1023 cm−3

nsd Source/drain doping concentration 2× 1020 cm−3

rsh Source/drain sheet resistance 5 Ω/�
rshg Gate electrode sheet resistance 0.4 Ω/�

the three basis functional models consist of different numbers of basis functions. The numbers of

“Sparse” and “LASSO” are close to each other, but are significantly smaller than that of “OLS”.

Given that “OLS” takes into account all the basis functions of a degree up to 2, it shows that

the response surface of f admits a sparse approximation using only a small fraction of these basis

functions. As a consequence, the generalization time (i.e., the second time of TG) of “OLS” is much

larger than that of “Sparse” and “LASSO” since the evaluation time of a polynomial with more

than 2000 terms is much longer than that of a polynomial with less than 400 terms. The column

d indicates that all the three models have a degree of 2.

To construct the basis functional models, the three methods use 800, 3000 and 800 sim-

ulations, respectively. Given that the target function has
(
66+2
2

)
= 2278 terms, the problem is

under-determined for “Sparse” and “LASSO” and over-determined for “OLS”.1 Comparing the

regression time of “Sparse” and “LASSO”, we find that “Sparse” is more efficient. This is be-

cause “Sparse”, which combines gPC and LASSO, employs a filtering stage before formulating the

approximation into an L1 regularized minimization problem. This stage effectively removes those

basis functions that are deemed to be unimportant, leaving a smaller problem to the LASSO solver.

In this example, the filtering stage prunes 1042 out of 2211 basis functions of degree 2, resulting in

1 Due to the computational cost, we do not use the resampling heuristic introduced in Section 4.2.1 to determine
the sample size for “OLS”. Instead, we simply take a k-fold average with each fold leaving out exactly once.

97

Table 5.3: Verification results of the ring oscillator using the proposed sparse approximation algo-
rithm, OLS and LASSO (θ0 = 0.95 and T = 100), with quadratic polynomials as target functions.

Spec Yr
SSMI

Method SimR TR |S| d SimG TG Yg

1 67.6%
Sparse 800 11 min + 36 s 376

2
265 3 min + 4 s 58.1%

OLS 3000 0.6 h + 1.2 h 2278 301 4 min + 31 s 59.2%
LASSO 800 11 min + 58 s 354 336 5 min + 5 s 58.3%

MSB

M1

M2

80 K

40 K

vref

−

+

40 K

15 pF

vout

M3

M4

80 K

40 K

· · ·

· · ·

· · ·

· · ·

LSB

M15

M16

80 K

80 K

Figure 5.4: An eight-bit digital-to-analog converter.

a LASSO problem with only 1169 unknowns. By contrast, if we apply LASSO directly to compute

the coefficients of the degree-2 basis functions, we need to solve a problem with 2211 unknowns.

5.4.3 Digital-to-Analog Converter

Figure 5.4 shows an eight-bit digital-to-analog converter (DAC) [45]. The circuit consists of

an operational amplifier, which consists of 16 CMOS transistors and a compensation capacitor, and

8 conversion stages, three of which are shown and the rests are omitted for clarity. In total, the

circuit has 32 transistor, 16 resistors and 2 capacitors. This circuit aims to convert the eight-bit

digital inputs, denoted by the terminal MSB (most significant bit) through LSB (least significant

98

Table 5.4: Stochastic parameters of an NMOS transistor in the DAC. The PMOS transistors have
the same parameters but with different nominal values.

Meaning Nominal Value Distribution

w Channel width -

N(µ0, 0.05µ0)

µ0 = nominal values

l Channel length 2 µm
tox Gate oxide thickness 38.2 nm
xj S/D junction depth 0.2 µm

nsub Substrate doping concentration 6.8× 1015 cm−3

vto Zero-biased threshold voltage 0.77 V
rsh Source/drain sheet resistance 0.1 Ω/�

bit), into an analog signal vout . The output signal vout has a voltage that is in proportion to the

digital inputs as a binary number. For instance, given a supply voltage of 5 V, an input of 00000000

leads to an output of 0 V, and 10000000 leads to 2.5 V.

We are interested in two responses of this circuit, zero-code error ez and gain error eg. Zero-

code error ez is measured by the value of the output vout when the input signals are all 0. It shows

the basis offset of the circuit with respect to an ideal DAC, which has a 0 zero-code error. Gain

error eg indicates how well the slope of the transfer function in a DAC matches the slope of the

ideal transfer function. It is measured by the difference between the full-scale range and the actual

range as a percent of the full-scale range. In this example, we have a supply voltage of 5 V and

assume the following response specifications:

(1) ez ≤ 0.3 V , (2) eg ≤ 10% .

The stochastic parameters for the NMOS transistors are shown in Table 5.4. The PMOS transistors

have the same parameters but with different nominal values. We assume a total of 242 stochastic

parameters, 7 for each transistor, 1 for each resistor and 1 for each capacitor.

The circuit is designed and simulated in LTSpice R© [1], a freely available SPICE simulator.

The verification results are shown in Table 5.5. The columns have the same meaning as in Table 5.3.

We use quadratic polynomials as target functions for the three methods, the proposed approach,

OLS and LASSO. Since there are 242 stochastic parameters, the quadratic target function consists

of
(
242+2

2

)
= 29646 basis functions. Hence, we spend 38000 simulations in “OLS” with 5-fold

99

Table 5.5: Verification results of the DAC using the proposed sparse approximation algorithm, OLS
and LASSO (θ0 = 0.95 and T = 100), with quadratic polynomials as target functions.

Spec Yr
SSMI

Method SimR TR |S| d SimG TG Yg

1 94.0%
Sparse 1000 1.1 h + 3 s 234 1 101 7 min + 2 s 85.1%
OLS 38000 37 h + M/O 29646 2 - - -

LASSO 1000 1.1 h + 211 s 1103 2 175 12 min + 10 s 85.7%

2 99.5%
Sparse 1000 1.1 h + 5 s 227 1 159 9 min + 3 s 98.5%
OLS 38000 35 h + M/O 29646 2 - - -

LASSO 1000 1.1 h + 199 s 1007 2 231 15 min + 12 s 99.1%

average. Effectively, 30400 simulations are used for each OLS regression. As shown in the table,

the regression step for “OLS” runs out of memory (indicated by “M/O”). As a consequence, the

subsequent steps cannot be performed.

Now let us focus on comparisons between “Sparse” and “LASSO”. First, notice that for both

specifications, they generate basis functional models with similar accuracy, which is indicated by

the estimated yields (the Yg column under “SSMI”). However, the model from “Sparse” has much

fewer terms than the model from “LASSO”. In addition, the former has a degree of 1. It is because

“Sparse” encounters an early termination, resulting in a model with a degree lower than the degree

of the target function. It means that an affine function provides a reasonably good explanation

on the relationship between the stochastic parameters and the response. “Sparse” can detect this

and terminate without trying basis functions of degree 2. On the other hand, “LASSO” takes all

the basis functions into account and constructs a slightly more accurate model. But compared to

“Sparse”, the regression time (the second time under TR) increases from less than 10s to 200s, and

the generalization time (the second time under TG) are also longer. Hence, the overall benefit from

applying “LASSO” directly is minimal.

100

Table 5.6: Verification results of the low-pass filter with different η and ε of the proposed algorithm
and OLS (θ0 = 0.95 and T = 100), using quadratic polynomials as target functions.

Spec Yr
SSMI

Method SimR TR |S| d SimG TG Yg

1 99.7%
Sparse-1 300 42 s + 1 s 14 1 161 23 s + 1 s 97.2%
Sparse-2 300 42 s + 3 s 40 2 134 21 s + 2 s 99.1%

OLS 1200 3 min + 1 min 903 2 222 32 s + 6 s 98.9%

5.4.4 Low-Pass Filter

The last application is on the low-pass filter that is previously introduced in Section 4.4.2.

The circuit has 41 stochastic parameters. Let us consider the response specification

(1) fc ≥ 14 KHz ,

where fc is the cutoff frequency of the filter.

We consider the effects of the tuning parameters η and ε in the proposed algorithm. We use

quadratic polynomials as target functions, which has
(
41+2
2

)
= 903 unknown coefficients. Table 5.6

shows the comparison between two different settings of the proposed algorithm, with OLS as the

reference case. “Sparse-1” sets η to be 1% of the maximum gPC coefficients for all the basis

functions of a certain degree, computed as in (5.8), and ε to be 0.01 · ‖y‖2. “Sparse-2” sets η to

be 0.1% of the maximum gPC coefficients for all the basis functions of a certain degree, and ε to

be 0.001 · ‖y‖2. Clearly, the setting for “Sparse-2” is more conservative in dropping basis functions

and early termination.

Observe that the setting for “Sparse-1” leads to an early termination of the algorithm, yielding

a degree-1 approximation with 14 basis functions. On the other hand, “Sparse-2” constructs a

degree-2 approximation employing 40 basis functions. This demonstrates the effects of η and ε.

The model from “Sparse-2” is more accurate (indicated by the Yg column under “SSMI”) than

that from “Sparse-1”. However, in practice, we generally prefer the latter since it has reasonable

accuracy and more importantly, provides a cleaner explanation on the relationship between the

stochastic parameters and the response.

101

5.5 Summary

This chapter introduces a sparse approximation algorithm that combined gPC and LASSO.

The algorithm has two salient features. First, it improves the efficiency of LASSO. Second, it

can produce polynomial approximations of degrees lower than the target degree. This chapter

also presents several applications of the algorithm in the context of SSMI. Compared to OLS and

LASSO, the algorithm shows good performance in both accuracy and computational cost.

Chapter 6

Statistically Sound Optimization

Chapter 4 and Chapter 5 discuss the problem of modeling the effects of stochastic parameter

variations and statistically verifying response specifications. For a system that fails to satisfy all the

specifications, the design has to be optimized so that in the new design, the stochastic parameter

variations can be tolerated. Such optimization can happen at two different levels:

• Changing the values of design parameters in the system;

• Redesigning the architecture or the topology of the system.

For designers, the first type of optimization is preferable since it is less expensive than redesigning

the whole system. However, there are cases in which no matter how we change the design parameter

values, the specifications cannot be satisfied. In those cases, we have to resort the second type of

optimization.

This chapter focuses on the first type of optimization. We address the problem of exploring

values of design parameters of a black-box system that are “robust” with respect to stochastic

parameter variations. For instance, a control system designer often faces the problem of selecting

gain values in the controller so that resulting design is correct for the stochastic variations in the

plant. Similarly, the problem of designing “robust” analog circuits that can function correctly

under stochastic process variations is also well known. Thus, a common theme involves a black-box

system whose output responses depend on a few design parameters that are controllable, and many

uncontrollable stochastic parameters with known probability distributions. We seek to adjust the

103

design parameters so that the system satisfies the specifications with a given probability bound.

We present a simulation-based approach, SSMI-opt, that combines quantile regression [50]

and SSMI introduced in Chapter 4. SSMI-opt aims to verify whether a black-box system is safe,

i.e. satisfies all the specifications, at the nominal design point (i.e., the nominal values of design

parameters), and if not, search for a new design point at which the system is safe. Compared with

SSMI, SSMI-opt uses a different scheme for the verification, which enables the optimization towards

the design parameters. SSMI-opt iterates the search for a safe design point using three steps:

(1) Using quantile regression, construct a relational model that models the response in terms of

the design parameters. The effects of stochastic parameter variations are “marginalized”;

(2) Search for a new design point such that it satisfies all the specifications with respect to the

relational model;

(3) Using SSMI, verify whether in the actual design, the new design point satisfies all the

specifications. If not, continue from step (2).

This chapter is organized as follows. The following section presents an overview of SSMI-opt.

Section 6.2 reviews quantile regression and shows how it is applied to our problem. Section 6.3

introduces an algorithm which generalizes the model from quantile regression into a statistically

sound model at a certain design point. The resulting model is used to verify whether the design

point is safe and if not, find a safe design point. Finally, SSMI-opt is demonstrated with several

benchmark examples.

6.1 Overview

Consider a black-box systemM = (u,x, φ, FX, r) with design parameters u ∈ U and stochas-

tic parameters x ∈ X, where U and X are the domains of the parameters.1 Assume that the design

parameters are controllable, i.e., we can assign arbitrary values to them, and the stochastic pa-

1 Notice that unlike in the previous two chapters, in this chapter, we bring back the design parameters in the
tuple of black-box systems.

104

m1 m2

k

x1 x2

u

(a) A two-mass-spring system.

Controller

Plant

-

y

ue
r

(b) Closed-loop control.

Figure 6.1: A two-mass-spring system and the closed-loop system with a controller.

rameters, which follow the joint distribution FX(x), are uncontrollable. The response φ is defined

by the response surface r(u,x) which has an unknown analytic form. We assume that r(u,x) is

computable. A response specification of a black-box system has the form φ ∈ [a, b], which shows

acceptable values of φ.

Given a black-box system, we aim to find a design point that satisfies all the specifications.

The problem is solved as follows. First, we statistically verify whether the system is safe with its

nominal design parameters u0 and variational stochastic parameters. Formally, it checks whether

Pr
FX(x)

(r(u0,x) ∈ [a, b]) ≥ θ0 (6.1)

is true, where θ0 is a specified probability. If not, we search for a new design point unew ∈ U that

satisfies (6.1). Note that although SSMI can also verify (6.1) as shown in Chapter 4, it is not able

to search for new design points if the system at the nominal point is unsafe.

In the following, we introduce a running example that illustrates SSMI-opt. The example is

first shown in Section 3.2. For the convenience of reading, it is presented anew.

Example 6.1.1 (A Two-Mass-Spring System). A two-mass-spring system [86] is shown in Fig-

ure 6.1a. It consists of two rigid bodies and a spring. The model is uncertain in which m1 =

1.0 ± 20%, m2 = 1.0 ± 20% and k = 1.0 ± 20% with appropriate units. We apply force u to m1

and measure y = x2, the position of m2. In Figure 6.1b, a controller is used to track y with r, the

reference position.

105

A lead compensator controls the plant, which has two tunable parameters, the pole location

p ∈ [−1200,−800] and the zero location z ∈ [−1.2,−0.8]. The design parameters p and z have the

following nominal values: p0 = −1000 and z0 = −1. The goal is to design the controller so that

the step response y(t) of the closed-loop system satisfies

• The settling time ts is less than 2.5 s,

(1) ts ≤ 2.5 s ;

• The overshoot of the step response, ro, as a percentage of the steady state value, is less

than 15%,

(2) ro ≤ 15% . ‖

The key idea of SSMI-opt is to construct an empirical model that is statistically sound with

respect to certain design points for the response surface r(u,x). Such a model is constructed by

quantile regression (detailed in Section 6.2) and the generalization technique from SSMI (detailed

in Section 6.3). It provides statistical soundness guarantee at the design points of interest.

Now let us first recall the meaning of statistical soundness (defined in Chapter 3, Defini-

tion 3.2.3). For a black-box system M, a θ0 statistically sound model g(u,x) of the response

surface r(u,x) satisfies

Pr
FX(x)

(r(u,x) ∈ g(u,x)) ≥ θ0 , u ∈ {u1, . . . ,un} ,

where {u1, . . . ,un} is a set of design points with respect to which the model g(u,x) is statistically

sound. In this chapter, the model g(u,x) is derived from a relational model ĝ(u), which is only in

terms of the design parameters u. In the following, we write g(u) instead of g(u,x) to emphasize

that the model is independent of the stochastic parameters x.

Figure 6.2 shows a high-level flow of SSMI-opt. First, using quantile regression, we compute

a relational model

ĝ(u) = [ĝ`(u), ĝu(u)] ,

106

Black-box System

Simulator

Quantile
Regression

Generalization Optimization
New Design

Point

Figure 6.2: A high-level flow of SSMI-opt.

where ĝ`(u) and ĝu(u) are affine functions. The model ĝ(u) approximates the response surface

r(u,x) with u ∈ U and x ∈ X. The simulation data used in quantile regression consist of a random

sample on the design and the stochastic parameters and the values of the response. Note that ĝ is

not guaranteed to be statistically sound.

Next, we check whether the nominal design point u0 satisfies the specifications under stochas-

tic parameter variations. This is achieved by applying the generalization procedure of SSMI, which

derives a relational model g(u) from ĝ(u) that is statistically sound at u0. Intuitively, the pro-

cedure fixes the design parameters to u0 and samples the stochastic parameters sequentially. A

tolerance interval [`, u] is computed so that a long enough sequence of the observed responses fall

in the interval

[ĝ`(u0) + ` , ĝu(u0) + u] . (6.2)

The interval (6.2) is statistically sound with respect to the possible response values at u0. Hence,

g(u) ≡ [ĝ`(u) + `, ĝu(u) + u]

is statistically sound at u0. For a response specification φ ∈ [a, b], if (6.2) is contained in [a, b], we

conclude that with a high probability (which depends on θ0), the system is safe at u0. Otherwise,

we search for a new design point that yields a safe system.

The search is performed with respect to the relational model g(u). We aim to find a de-

sign point unew ∈ U that has the largest margin from violating the specifications. Since g(u) is

statistically sound only at u0, the point unew is not guaranteed to satisfy the specifications in the

actual system. Hence, to claim that unew is a safe design point, we apply generalization again to

107

(a) ts at u0 (left) and unew (right). (b) ro at u0 (left) and unew (right).

Figure 6.3: Histogram of the settling time ts (left, in seconds) and the overshoot percentage ro
(right, as percentage) in the two-mass-spring system.

transform g(u) into a statistically sound model at unew, and check whether the specifications hold.

The procedure continues until either we show that the system is statistically safe at some unew, or

no new point can be found. In the later case, it is still possible that there exists design points that

satisfy the specifications since the search is done with respect to a statistical over-approximation

of the response surface. In SSMI-opt, we simply report that we cannot find a safe design point for

u ∈ U and x ∈ X.

Example 6.1.2 (An Optimized Two-Mass-Spring System). Let us continue with Example 6.1.1.

We simulate the system with randomly sampled design parameters p ∈ [−1200,−800] and z ∈

[−1.2,−0.8], and stochastic parameters m1 ∈ [0.8, 1.2], m2 ∈ [0.8, 1.2] and k ∈ [0.8, 1.2]. Using

SSMI-opt, we show that the nominal design point u0 = (p0, z0), where p0 = −1000 and z0 = −1,

is unsafe. In addition, we find a safe design point unew = (pnew , znew), where pnew = −1200

and znew = −0.928. Figure 6.3 shows the histograms of the settling time ts and the overshoot

percentage ro at u0 and unew. Apparently, the system violates the specification ro ≤ 15% at u0.

After optimization, the histograms confirm that both specifications are satisfied. ‖

The following sections present the technical details of quantile regression, generalization, and

optimization in the context of SSMI-opt.

108

6.2 Quantile Regression

This section briefly reviews quantile regression and shows how to compute lower and upper

bound functions using quantile regression. First, we recall the meaning of quantile. For a real-

valued random variable X with a distribution FX(x) = Pr(X ≤ x), the τth quantile of X is defined

as

QX(τ) = inf{x : FX(x) ≥ τ} .

Informally, it is the smallest x such that Pr(X ≥ x) is at most 1− τ .

Consider a black-box system M = (u,x, φ, FX, r) with design parameters u, stochastic pa-

rameters x and a response φ = r(u,x). We write r(u) to denote the marginalized response surface,

which is a relational model such that for all u ∈ U and x ∈ X,

r(u) = [min (r(u,x)) ,max (r(u,x))] .

For a fixed u, r(u) can be regarded as a random variable. A τth quantile function gτ (u) = QX(τ),

where X = r(u), maps the design parameters onto the τth quantile of the marginalized response

surface r(u). In SSMI-opt, the goal of quantile regression is to approximate the quantile function

gτ (u) with an affine function of the form

ĝτ (u; c) = c0 +
m∑
i=1

ciui ,

where c = (c0, c1, . . . , cm) are unknown coefficients and ui is the ith design parameter. The coeffi-

cients c are computed by minimizing the residual between gτ (u) and ĝτ (u),

min
c
‖gτ (u)− ĝτ (u; c)‖ . (6.3)

Since gτ (u) is often not available, (6.3) is merely conceptually useful. We show a general

approach to solve for ĝτ (u; c). For a given set of simulation data
{
u(i),x(i), φ(i)

}
with N data

points, quantile regression relies on the following penalty function,

ρτ (e) =
N∑
i=1
ei≥0

τei +
N∑
i=1
ei≤0

(τ − 1)ei , (6.4)

109

e

ρ

Figure 6.4: An example of (6.4) with τ > 0.5 (solid) and a L1 penalty function (dashed), a special
case of (6.4) with τ = 0.5.

where ei = φ(i)− ĝτ
(
u(i)
)

are the residuals between the response and the approximation, evaluated

at
(
u(i),x(i)

)
. Here u(i) and x(i) refers to the ith observations of the design and the stochastic

parameters, respectively. For a fixed τ (except for 0.5), (6.4) incurs an asymmetric penalty on the

positive and the negative side of the residual e. For τ > 0.5 (τ < 0.5), a positive (negative) residual

incurs more penalty and thus is minimized. The penalty function (6.4) leads to the following

optimization problem.

min
c
ρτ (r(u,x)− ĝτ (u; c)) . (6.5)

Since (6.4) is piecewise linear, it has a unique minimum. Figure 6.4 shows a comparison between

(6.4) and the L1 penalty function, i.e., τ = 0.5.

The problem (6.5) is solved as a linear program [50]. The penalty function (6.4) is encoded

by adding auxiliary variables s = (s1, . . . , sN) and t = (t1, . . . , tN). The auxiliary variables s

and t correspond to the cases that the response φ is greater and less than the approximation ĝτ ,

respectively. With s and t, we write (6.5) as

min
c

N∑
i=1

τsi +
N∑
i=1

(1− τ)ti

subject to

φ(i) − ĝτ
(
u(i); c

)
= si − ti, i = 1, 2, . . . , N ,

s ≥ 0 , t ≥ 0 .

(6.6)

110

The first constraint forces s and t to be complementary. To minimize the objective function, at most

one of si and ti should be non-zero. The last two constraints ensures s and t to be non-negative.2

Example 6.2.1 (A Two-Mass-Spring System - Quantile Regression). Let us continue from Ex-

ample 6.1.2 and elaborate the process of quantile regression. With a set of simulation data, we

compute a lower bound function ĝ`(u) of the settling time ts and the overshoot percentage ro using

τ = 0.01, and an upper bound function ĝu(u) using τ = 0.99. For ts, we have

ĝ`(p
′, z′) = 1.157 + 0.040p′ + 0.707z′ ,

ĝu(p′, z′) = 2.220 + 0.001p′ − 0.051z′ .

(6.7)

For ro, we have

ĝ`(p
′, z′) = 0.129− 0.006p′ + 0.078z′ ,

ĝu(p′, z′) = 0.198− 0.017p′ + 0.086z′ .

(6.8)

Note that in these functions, p′ and z′ are the parameters p and z normalized to the interval [−1, 1].

Hence the nominal design point u0 corresponds to p′ = 0 and z′ = 0. ‖

It is important to understand that the formulation in (6.6) only solves for τ ∈ (0, 1). For

τ = 0 and τ = 1, (6.6) fails to find the maximum lower bound and the minimum upper bound.

This is because in the two cases, (6.4) penalizes only one side of the residuals and thus allows

the approximation to behave arbitrarily on the opposite side. Such a solution is meaningless in

practice. For instance, for τ = 0, the lower bound function of ts in Example 6.2.1 can be either

0 + 0p+ 0z or −100 + 0p+ 0z, with the same objective value of 0.

To obtain a meaningful lower (upper) bound approximation from quantile regression, we set

τ close to 0 (1). Note that ĝτ (u) is not necessarily close to the true lower (upper) bound. In

the case that there are outliers in the simulation data, ĝτ (u) can be distant from the true bound.

On the contrast, ĝτ (u) tends to leave out the outliers and only concerns with the normal data.

Such a property is often desirable when dealing with data from practical settings. In the following,

we write ĝ`(u) and ĝu(u) to indicate the estimated lower and the upper bound, respectively. By

default, we assume that ĝ`(u) is computed with τ = 0.01 and ĝu(u) with τ = 0.99.

2 Notice the sign change in the second sum of the objective function in (6.4) and (6.6).

111

6.3 An Iterative Optimization Algorithm

As mentioned in Section 6.1, ĝ`(u) and ĝu(u) form a relational model ĝ(u) ≡ [ĝ`(u), ĝu(u)].

Clearly, ĝ(u) is not necessarily statistically sound and thus does not provide guarantees on the

behavior of the actual system. This section shows how to apply the generalization technique from

SSMI to transform the relational model ĝ(u) into a statistically sound model g(u) with respect to

some design point. The resulting model g(u) is used to check whether the design point is safe and

if not, search for a new point that satisfies the specifications.

6.3.1 Generalization of Relational Models

Recall that statistical soundness is defined with respect to a finite set of design points

{u1, . . . ,un}. Since our goal is to learn whether the specifications hold at the nominal design point

u0 and if not, find a new point unew that satisfies them, we are only concerned with statistical

soundness at u0 and some unew.

For some fixed design point, ĝ(u) becomes an interval. We aim to derive a tolerance interval

[`, u] such that

Pr
FX(x)

(r(u,x) ∈ [ĝ`(u) + `, ĝu(u) + u]) ≥ θ0 . (6.9)

The interval [ĝ`(u) + `, ĝu(u) + u] is a statistically sound bound for the response φ at the fixed

design point u under the stochastic parameter variations. The problem (6.9) can be solved by the

generalization procedure introduced in Section 4.3. Recall that for generalization to work, we need

to specify a probability θ0 and a threshold T for the sequential Bayesian test. The parameter θ0

represents the coverage of the statistically sound model with respect to distribution of the stochastic

parameters, and T specifies the confidence level of drawing a correct conclusion based on a finite

set of observations. The two parameters are used to compute a run length K,

K = − log(T + 1)

log θ0
− 1 (6.10)

112
Input: Black-box System M, Relational Model ĝ(u) = [ĝ`(u), ĝu(u)], Design Point u,

Probability θ0, Threshold T
Output: Statistically Sound Model g(u) at u

1 K = − log(T + 1)

log θ0
− 1 ;

2 `, u, count = 0 ;
3 while count < K do

4 x(i) = draw a point following the distribution of the stochastic parameters ;

5 φ(i) = Simulate M with x = x(i) ;

6 if φ(i) 6∈ [ĝ`(u) + `, ĝu(u) + u] then
7 count = 0 ;
8 ` = min(φ− ĝ`(u), `) ;
9 u = max(φ− ĝu(u), u) ;

10 else
11 count = count + 1 ;
12 end

13 end
14 g(u) = [ĝ`(u) + `, ĝu(u) + u] ;

Algorithm 5: An generalization algorithm that provides statistical soundness at fixed u.

such that once we collect K consecutive observations that satisfy

φ(i) ∈ [ĝ`(u) + `, ĝu(u) + u] , (6.11)

we terminate the generalization procedure and report [`, u] as the tolerance interval.

Algorithm 5 shows the algorithm that generalizes the relational model ĝ(u) into a statistically

sound model g(u) at some given design point u. The inputs of the algorithm are the black-box

system M, the relational model ĝ(u) = [ĝ`(u), ĝu(u)], a fixed design point u, a probability θ0, and

a threshold T . The algorithm first computes a run length K according to (6.10) (see Section 4.3

for details), and initialize the interval [`, u] and a count variable to 0. The count variable records

the number of consecutive supportive observations. Next, we sample the stochastic parameters and

simulate the system. If (6.11) holds for some φ(i), count is incremented by 1. Otherwise, it is reset

to 0 and the interval [`, u] is updated so that (6.11) becomes valid. The algorithm terminates if

count reaches K. In this case, the model

g(u) = [ĝ`(u) + `, ĝu(u) + u] (6.12)

is θ0 statistically sound at the design point u.

113

Notice that Algorithm 5 is similar to Algorithm 3 in Section 4.3. The only difference between

the two algorithms lies in that the tolerance interval in Algorithm 3 is computed with respect to

the basis functional model, a function of the stochastic parameters, whereas the tolerance interval

in Algorithm 5 is with respect to a relational model ĝ(u) that models the possible values of the

response in terms of the design parameters. As we see in the following, the use of the relational

model ĝ(u) enables the optimization of the system.

Theorem 6.3.1. Algorithm 5 terminates with probability one.

Proof. The proof of this theorem is almost identical to the proof of Theorem 4.3.3 in Section 4.3

and is left to interested readers.

Algorithm 5 yields a θ0 statistically sound model g(u) at a given design point u. We claim

that for the design point u, we have a high level of confidence that the response φ has a probability

of at least θ0 falling in the interval indicated by (6.12). Section 2.1.2.3 and Section 4.3 show that

the level of confidence is at least 1− 1

T + 1
. Hence with large θ0 and T , the interval (6.12) is close to

a true over-approximation of the possible values of the response φ under the stochastic parameter

variations. Hence, to verify whether specifications φ ∈ [a, b] hold at the design point u, we simply

check whether (6.12) is contained in [a, b]. If yes, we conclude that with a confidence level of at

least 1− 1

T + 1
, the system is safe with a probability of at least θ0 at u. Otherwise, we continue to

search for a new design point.

Example 6.3.1 (A Two-Mass-Spring System - Generalization). Continued from Example 6.2.1, we

show how the relational models (6.7) for ts and (6.8) for ro are generalized. At the nominal design

point u0, (6.7) becomes an interval [1.157, 2.220] and (6.8) becomes [0.129, 0.198]. With θ0 = 0.95

and T = 100, the interval for ts is shown to be a statistically sound bound for ts and the interval

for ro is generalized into [0.121, 0.198]. Hence, the statistically sound model for ts at u0 is

ĝ`(p
′, z′) = 1.157 + 0.040p′ + 0.707z′ ,

ĝu(p′, z′) = 2.220 + 0.001p′ − 0.051z′ ,

(6.13)

114
Input: Statistically Sound Model g0(u) at the nominal design point u0, Response

Specification φ ∈ [a, b]
Output: New Design Point unew

1 i = 0 ;
2 while true do
3 i = i+ 1 ;
4 ui = pick up a candidate design point that satisfies φ ∈ [a, b] according to gi−1(u) ;
5 if ui is not available then
6 Report that a new design point cannot be found ;
7 break ;

8 end
9 gi(u) = generalize gi−1(u) into a statistically sound model at ui ;

10 if ui satisfies φ ∈ [a, b] according to gi(u) then
11 unew = ui ;
12 break ;

13 end

14 end

Algorithm 6: An iterative algorithm that finds a safe design point.

which is the same as the relational model (6.7), and that for ro is

ĝ`(p
′, z′) = 0.121− 0.006p′ + 0.078z′ ,

ĝu(p′, z′) = 0.198− 0.017p′ + 0.086z′ .

(6.14)

Therefore, at the nominal design point u0, ts satisfies the response specification ts ≤ 2.5 s and ro

violates the specification ro ≤ 15%. ‖

6.3.2 Optimization

Suppose that for the black-box systemM, the nominal design point u0 is not safe, i.e., does

not satisfy all the specifications. We denote the model in (6.12) as g0(u), indicating that it is

statistically sound at u0. To find a new design point, we introduce an iterative procedure shown

in Algorithm 6. At the ith iteration, we try to find a candidate ui that is safe with respect

to gi−1(u). We may fail if either the specifications are too stringent or our approximation is too

excessive. In these cases, we stop and report that for u ∈ U and x ∈ X, we cannot find a design

point that satisfies all the specifications.

Assume that ui is found. Since gi−1(u) is not guaranteed to be statistically sound at ui, we

115

apply Algorithm 5 to transform gi−1(u) into a statistically sound model at ui, denoted as gi(u).

The new model gi(u) is used to check whether ui is a safe design point. If yes, we report unew = ui

and conclude that with a high probability, the system M with the design parameter values unew

satisfies the specifications. Otherwise, we try to find another design point using the new model

gi(u).

Given that the model gi(u) consists of affine functions as the lower and the upper bound,

gi(u) = [ĝi`(u) + `, ĝiu(u) + u] ,

it is easy to pick up a candidate point that satisfies the specifications. However, an arbitrary choice

can easily lead to a failed attempt in verification. As a consequence, more iterations and thus more

simulations would be required. Therefore, the candidate should be the one that is most likely to

satisfy the specifications. For a specification φ ∈ [a, b], the solution is to search for the point that

has the largest margin from violating the specification using the following linear program:

max
ui∈U

(b− ĝiu(ui)− u) + (ĝi`(ui) + `− a)

subject to

a ≤ ĝi`(ui) + ` ≤ ĝiu(ui) + u ≤ b .

(6.15)

Obviously, if (6.15) is infeasible, then we cannot find any candidate design point. It is also imme-

diate to extend the linear program (6.15) to handle multiple specifications.

6.4 Applications

We present three applications: (1) a ring oscillator circuit modeled at the transistor-level, (2)

an insulin pump that controls the blood glucose level of diabetic patients, and (3) an aircraft flight

control model. All models have stochastic parameter variations. We use SSMI-opt to search for

safe design points of these systems. The experiments are performed on a AMD Athlon II quad-core

2.8 GHz CPU with 4 G RAM. SSMI-opt is implemented in Python-2.7.

116

Mp1

Mn1

Mp2

Mn2

Mp3

Mn3

Figure 6.5: A three-stage ring oscillator.

6.4.1 Ring Oscillator

Figure 6.5 shows a three-stage ring oscillator. It is designed to oscillate at a frequency

f = 2.1 GHz with a power consumption w = 5 mW. However, a real circuit suffers from process

variations, such as the doping concentration and oxide layer thickness, resulting in deviation from

the ideal performance. For this circuit, the response specifications are

(1) f ∈ [2.0, 2.2]GHz , (2) w ≤ 5.5 mW .

We choose 12 design parameters. They are the channel widths and lengths of each transistor.

Also, 54 stochastic parameters are considered, arising from process variations in the transistor

parameters. The goal is to verify whether the two specifications can be satisfied under the nominal

design point and if not, choose new values for the width and length of each transistor. For the

original design, the channel width of each NMOS transistor, Wn, is 10 µm and that of each PMOS

transistor, Wp, is 20 µm. The channel lengths of NMOS and PMOS transistors, Ln and Lp, are

35 nm. These values are chosen based on manually tuning.

For a ring oscillator, the transistors of the same type usually have the same channel width and

length. In order to avoid choosing meaningless design point, we add this as an additional constraints

in the search of a candiate point (i.e., in (6.15)). We use LTSpice R© [1], a freely available SPICE

simulator, to simulate the circuit. The results are shown in Table 6.1. The column Yr shows the

117

Table 6.1: Optimization results for the three-stage ring oscillator (θ = 0.95 and T = 100). The
unit of Io and Inew for specification (1) is GHz, and that for specification (2) is mW.

Spec
Yr SSMI-opt

u0 unew I0 SimR TR Iters SimG TG TO Inew
1 95.8% 98.9% [2.05, 2.23]

500 307 s 1
309

233 s 1 s
[2.04, 2.19]

2 60.1% 100% [5.18, 5.85] 332 [4.75, 5.41]
all 60.0% 98.9% -

(a) f at u0 (left) and unew (right). (b) w at u0 (left) and unew (right).

Figure 6.6: Histograms of f (left, GHz) and w (right, mW) at in the ring oscillator.

yields of each specification at u0 and unew estimated through 1000 Monte-Carlo simulations. SimR

and SimG are the number of simulations used in quantile regression and generalization, respectively.

SimG represents the total number of simulations for all the iterations. TR, TG and TO are the time

spent in quantile regression, generalization, and optimization. TR and TG include the time for

simulation. “Iters” shows the number of iterations used to find the new design point. Finally, I0

and Inew are the statistically sound bound for the responses at u0 and unew.

The circuit at the nominal widths and lengths has a poor performance in the power con-

sumption w, which has a yield of only 60.1%. The upper bound of I0 violates the specification

(2) excessively. The new design point found by our approach is Wn = 9 µm, Wp = 16 µm and

Ln = Lp = 35 nm. This design point yields performance bounds that satisfies both specifications,

which is confirmed by the Monte-Carlo yield estimation. The yield is boosted from 60% to almost

100%. Figure 6.6 shows the histograms of the two responses, f and w, at u0 and unew. Obviously,

we have a significant performance improvement.

118

Diabetes
Patient

Meal-bolus
Pump

Correction
Pump

Basal-level
Pump

Meal Data

Meal Bolus

Glucose
Level

Correction
Bolus

Basal Level

(a) A model of an insulin pump. (b) gmin at u0 (left) and unew (right).

Figure 6.7: A model of an insulin pump (left) and the histograms of min(g(t)), the minimum glucose
level during simulation (right).

6.4.2 Insulin Pump

We study a previously published model of an insulin pump used by type-1 diabetic pa-

tients [73, 21]. Our model incorporates a physiological model of the human insulin-glucose response

from Dalla Man et al. [21], models of sensor errors and a typical pump usage by type-1 diabetic

patients [73]. A type-1 diabetic patient uses their insulin pump with at least three “design pa-

rameters” that include (a) the basal rate (basal) that represents the rate at which background

insulin is delivered, (b) the insulin-to-carbohydrates ratio (icRatio) that controls how much bolus

insulin is to be administered to the patient for each gram of carbohydrate to be consumed, and (c)

a correction factor (cor) to correct blood glucose levels that are higher than normal. Clinically,

these values are tuned manually by a physician upon close observation of the patient’s blood glucose

levels, meal and sleep patterns over time. Our study attempts to automate this choice assuming

that personalized models are available for patients.

The stochastic parameters include the time of the meal, the amount of carbohydrates in each

meal, sensor noise and the discrepancies between the planned and actual meals [73]. Overall, the

model has 3 design parameters and 10 stochastic parameters. We used virtual patient parameters

published for 30 patients by Dalla Man et al. [21]. Our study here focuses on a single model patient.

The total simulation time is 1400 min.

There are many important correctness properties. Ideally, the human blood glucose level

119

should be between 70 mg/dl and 180 mg/dl. A level lower than 70 mg/dl is called hypoglycemia,

and a level higher than 180 mg/dl is called hyperglycemia. In practice, hypoglycemia is usually

much more critical than hyperglycemia since it can cause seizures, unconsciousness and even death.

Therefore, our goal is to control the blood glucose level higher than 70 mg/dl at all time time and

reduce the time that the patient stays in hyperglycemia as much as possible.

The above description yields the following specifications. The blood glucose level g(t) should

be between 70 mg/dl and 240 mg/dl over t ∈ [0, T] where T is the total simulation time.

(1) min(g(t)) ≥ 70 mg/dl , (2) max(g(t)) ≤ 240 mg/dl ;

The maximum period ph for hyperglycemia is at most 240 min, and the total time in hyperglycemia

is at most 20% of the total simulation time.

(3) ph ≤ 240 min , (4) rh ≤ 20% .

Table 6.2 shows the results of applying our approach to the data for model that pertains to

a single patient, whose insulin pump is tuned to a nominal design point basal = 0.3, icRatio = 0.06

and cor = 0.06. Observe that the pump works well except that it has a 3.8% chance of dangerous

hypoglycemia. SSMI-opt lowers this chance to 0.4%, a significant lowering of a risk. Another

observation comes from the number of iterations. Unlike the other examples, our approach takes 3

iterations to find a new design point. It indicates that the system has a relatively small margin from

violating the specifications, as shown by Inew. The new design point basal = 0.225, icRatio = 0.080

and cor = 0.049. Histograms of min(g(t)) at u0 and unew are shown in Figure 6.7b.

6.4.3 Aircraft Flight Control System

Figure 6.8 shows a model of the flight control system in an aircraft. This model is available

in Matlab R© R2014a Robust Control Toolbox
TM

. The aircraft is modeled as a 6th-order state-space

system. The state variables include the velocity on x, y and z-body axis (u, v, w), the pitch rate q,

the roll rate p and the yaw rate r. These variables together with three responses, the flight-path

120

Table 6.2: Optimization results for the insulin pump model (θ = 0.95 and T = 100). The units of
I0 and Inew for specification (1) and (2) are mg/dl, and that for specification (3) is min.

Spec
Yr SSMI-opt

u0 unew I0 SimR TR Iters SimG TG TO Inew
1 96.2% 99.6% [68.12, 95.28]

500 624s 3

567

701s 4s

[70.0, 102.1]
2 100% 100% [186.6, 219.3] 549 [189.2, 227.0]
3 100% 100% [41.44, 209.8] 423 [48.6, 213.3]
4 100% 100% [6.0%, 18.8%] 420 [6.2%, 20.0%]
all 96.2% 99.6% -

Aircraft Model -
Deflection Generator+

State Feedback

Integral Action

Wind Gust g

(u,w, q, v, p, r)

(µ, α, β)

(µ0, α0, β0)

Figure 6.8: An aircraft flight control model.

bank angle µ, the angle of attack α and the sideslip angle β, are available to the controller. The

controller, which consists of a state feedback control and an integral control, is designed to generate

the deflections of the elevators, the ailerons and the rudder so that a good tracking performance is

maintained on the responses with respect to the reference µ0, α0 and β0.

The controller has two gain matrices, Kx and Ki, that maps the controller inputs to deflec-

tions. Kx is a 3×6 state-feedback matrix, and Ki is a 3×3 matrix for integrating the three tracking

errors. In all, we have 27 design parameters. The stochastic parameters arise from uncertainties in

the state matrix and the input matrices3 along with the stochastic wind disturbance. In all, we

have 73 stochastic parameters. The following specifications concern the step response of µ(t), α(t)

3 Originally, this system concerns with fault-tolerant control of an aircraft. It discusses how to find design
parameters so that the aircraft can maintain its performance when there are actuator failures. We consider modeling
uncertainties rather than actuator failures.

121

Table 6.3: Optimization results for the aircraft flight control model (θ = 0.95 and T = 100).

Spec
Yr SSMI-opt

u0 unew I0 SimR TR Iters SimG TG TO Inew
1 100% 100% [1.40, 6.47]s

500 307s 1

326

341s 2s

[1.98, 6.42]s
2 76.7% 99.9% [5.00, 7.79]s 332 [5.86, 7.48]s
3 100% 100% [3.82, 6.23]s 479 [3.80, 6.34]s
4 100% 100% [3.8%, 9.5%] 399 [0, 11.7%]
5 82.5% 99.5% [0, 26%] 402 [0, 19.5%]
6 100% 100% [5.3%, 9.4%] 507 [7.7%, 12.7%]
all 74.1% 99.5% -

and β(t). First, the settling time of each trajectory should be smaller than 7.5 s.

(1) tµ ≤ 7.5 s , (2) tα ≤ 7.5 s , (3) tβ ≤ 7.5 s ;

Also, the overshoot should be less than 20% of the steady state value.

(4) rµ ≤ 20% , (5) rα ≤ 20% , (6) rβ ≤ 20% .

Table 6.3 presents the results of applying our approach. Observe that the specification (2)

and (5) are not satisfies at u0, confirmed by both the Monte-Carlo simulations and the performance

bounds I0. We use 500 simulations in quantile regression and 507 in generalization, and find a new

design point in one iteration. The new point leads to better performance on tα and rα and thus a

boost of the overall yield from 74.1% to 99.5%. Figure 6.9 shows the histograms of tα and rα at u0

and unew, which clearly shows the performance improvement.

Now let us compare I0 with Inew. Note that except for tα and rα in specification (2) and (5),

all the other responses have larger performance bounds at unew but still satisfy the specifications.

It indicates that the proposed approach trades off the performance of the other responses so that

(2) and (5) can be satisfied.

6.5 Summary

This chapter introduces SSMI-opt, a design parameter optimization technique for black-box

systems under stochastic parameter variations. SSMI-opt combines quantile regression and the

generalization technique of SSMI. Given a black-box system, a relational model is first computed

122

(a) tα at u0 (left) and unew (right). (b) rα at u0 (left) and unew (right).

Figure 6.9: Histograms of tα (left, in seconds) and rα (right, as percentage) in the aircraft flight
control model.

via quantile regression to approximate the marginalized response surface. Then the relational model

is generalized into a statistically sound model at the nominal design point, which is used to verify

the specifications. If the nominal point is shown to be unsafe, we search for a new design point.

Several benchmark examples are also presented to demonstrate the capability of SSMI-opt.

Chapter 7

Conclusion

7.1 Summary of this Thesis

As the complexity of practical systems grows, conventional analysis approaches, including

Monte-Carlo simulation and symbolic reasoning, gradually become inefficient. Recognizing this,

this thesis proposes a set of techniques that can be applied to the statistical reasoning of these

systems. These techniques target on the verification and optimization problems of black-box sys-

tems, for which only a computable function explaining the input-output relation is retained and

the knowledge of the internal workings is not required. This final chapter summaries the proposed

techniques and point out a few future directions.

Chapter 4 introduces a statistical verification technique, statistically sound model inference

(SSMI). The idea of SSMI is to build basis functional models between the stochastic parameters in a

black-box system and the responses of the system, and generalize these models to achieve statistical

soundness. The statistically sound models are shown to over-approximates the response surface in a

large proportion of the stochastic parameter space. From a verification point of view, these models

can be used to under-approximate, in a statistical sense, the safe regions of the stochastic parameter

space, i.e., stochastic parameter values that satisfy the specifications of the system. Also, the yields

computed with respect to these models serve as the lower bound of the true yields.

Chapter 5 presents a sparse approximation algorithm that aims to extend the ability of

SSMI to handle systems with many stochastic parameters. The algorithm combines generalized

polynomial chaos (gPC) and LASSO into a stepwise procedure. At each step, gPC forms a filtering

124

stage, which removes some unimportant basis functions, and benefiting from this stage, LASSO

solves a smaller problem. The algorithm is also featured with early termination. It terminates as

soon as the polynomial approximation has enough accuracy. This often lead to an approximation

of a degree lower than the target degree.

Chapter 6 discusses a statistically sound optimization technique, SSMI-opt. It is applied to

tune the design parameters in a black-box system when the system violates the specifications in

the face of stochastic parameter variations. SSMI-opt relies on quantile regression and a modified

generalization procedure of SSMI. It constructs statistically sound relational models in terms of

the design parameters, which “marginalize” the effects of the stochastic parameters. An iterative

optimization algorithm is developed to find candidate design points from these models and verify

that these points are indeed safe in the actual system. The outcome of SSMI-opt is a new design

point, or a conclusion that such a point may not be available due to stringent specifications.

7.2 Future Work

7.2.1 Statistically Sound Model Inference

A challenge arises in the generalization procedure of SSMI. Recall that generalization trans-

forms a basis functional model into a statistically sound relational model through the derivation of

a tolerance interval. The derivation is “strict” in the sense that all the observed data points are

covered by the generalized model. This behavior is not always desirable. Consider the case that

the simulation data contain outliers. The current generalization procedure is not able to “skip”

those observations and can result in an excessively large tolerance interval. Hence, one future di-

rection is to develop a more flexible generalization technique that filters out the outliers without

sacrificing the provided statistical guarantee. It is also interesting to explore relational models with

asymmetric lower and upper functionals.

125

7.2.2 Sparse Approximation

In this thesis, the proposed sparse approximation algorithm relies on two tunable parameters,

η which controls how “aggressive” the algorithm is in dropping unimportant basis functions, and

ε which affects the termination of the algorithm. Currently, these parameters need to be tuned

manually. A bad choice can lead to approximations with poor accuracy. In the future, it is worthy

investigating approaches to automatically determine η and ε.

7.2.3 Statistically Sound Optimization

SSMI-opt uses affine functions to construct the relational models. The primary reason for

this is that affine functions lead to linear constraints in the iterative optimization algorithm, which

can be easily solved by linear programming. A valuable topic for future research is to employ

higher-degree polynomials into the relational models and as a consequence, how to solve for the

optimization problem induced by the non-affine constraints.

7.3 Combining Statistical and Symbolic Techniques

In the final part of this thesis, let us consider again the strengths and weaknesses of sym-

bolic and statistical techniques. Although existing symbolic techniques have many drawbacks,

including the requirement for detailed system models and the poor scalability when dealing with

continuous/hybrid systems, the dominant advantage over any other techniques is that they provide

formally guaranteed conclusions. Hence, it is unlikely that symbolic techniques will be useless in

the verification and optimization of large systems. The key is, however, to find situations that

are suitable for these techniques. On the other hand, statistical techniques are fast but less

accurate. It should be realized that even a conclusion from some statistical technique is shown to

be true with a probability of 99.9%, it still has a chance to be wrong. Such a chance could be

detrimental in certain situations.

At this point, it is worth taking some time to think about what the future direction of

126

verification and optimization will be. A question would be: is it possible to combine symbolic and

statistical techniques? With such a combination, it is desirable to have a technique that is fast,

scalable and can provide formal guarantees at least to some extent. A possible strategy may involve

using statistical techniques to construct abstract models and then applying symbolic techniques to

reason the abstracted behaviors. Alternatively, one may also run statistical techniques when the

behavior of a system is “regular”, and switch to symbolic reasoning when it becomes “questionable”.

There are many interesting approaches to be explored. It is hoped that the techniques discussed

in this thesis can open a new paradigm for statistical verification and optimization, and contribute

to the future research in this area.

Bibliography

[1] LTSpice: A high performance SPICE simulator, schematic capture and waveform viewer.
URL http://www.linear.com/designtools/software/.

[2] Seyed Nematollah Ahmadyan, Jayanand Asok Kumar, and Shobha Vasudevan. Goal-oriented
stimulus generation for analog circuits. In DAC, pages 1018–1023, 2012.

[3] Matthias Althoff, Soner Yaldiz, Akshay Rajhans, Xin Li, Bruce H. Krogh, and Larry T. Pi-
leggi. Formal verification of phase-locked loops using reachability analysis and continuization.
In ICCAD, pages 659–666, 2011.

[4] Ivo Babuska, Raúl Tempone, and Georgios E Zouraris. Galerkin finite element approximations
of stochastic elliptic partial differential equations. SIAM Journal on Numerical Analysis, 42
(2):800–825, 2004.

[5] Ivo Babuška, Fabio Nobile, and Raul Tempone. A stochastic collocation method for elliptic
partial differential equations with random input data. SIAM review, 52(2):317–355, 2010.

[6] Satish Batchu. Automatic Extraction of Behavioral Models from Simulations of
Analog/Mixed-Signal (AMS) Circuits. PhD thesis, University of Utah, Salt Lake City, Utah,
2011.

[7] James O. Berger. Statistical decision theory and Bayesian analysis. Springer series in statis-
tics. Springer, New York, NY, 2nd edition, 1985.

[8] James O. Berger. Could fisher, jeffreys and neyman have agreed on testing? Statistical
Science, 18(1):1–32, 2003.

[9] James O. Berger. The case for objective bayesian analysis. Bayesian Analysis, 1(3):385–402,
2006.

[10] James O Berger, Lawrence D Brown, and Robert L Wolpert. A unified conditional frequentist
and bayesian test for fixed and sequential simple hypothesis testing. The Annals of Statistics,
pages 1787–1807, 1994.

[11] F. De Bernardinis, M. I. Jordan, and A. Sangiovanni-Vincentelli. Support vector machines
for analog circuit performance representation. In DAC, pages 964–969, 2003.

[12] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. Symbolic model
checking without BDDs. Springer, 1999.

128

[13] Armin Biere, Alessandro Cimatti, Edmund M Clarke, Ofer Strichman, and Yunshan Zhu.
Bounded model checking. Advances in Computers, 58:117–148, 2003.

[14] Alfred M Bruckstein, David L Donoho, and Michael Elad. From sparse solutions of systems
of equations to sparse modeling of signals and images. SIAM review, 51(1):34–81, 2009.

[15] Emmanuel Candes and Justin Romberg. Sparsity and incoherence in compressive sampling.
Inverse problems, 23(3):969, 2007.

[16] Emmanuel Candes, Justin Romberg, and Terence Tao. Robust uncertainty principles: Exact
signal reconstruction from highly incomplete frequency information. Information Theory,
IEEE Transactions on, 52(2):489–509, 2006.

[17] George Casella and Roger L. Berger. Statistical Inference. Cengage Learning, 2nd edition,
2001.

[18] Scott Shaobing Chen, David L Donoho, and Michael A Saunders. Atomic decomposition by
basis pursuit. SIAM journal on scientific computing, 20(1):33–61, 1998.

[19] Edmund Clarke, Alexandre Donzé, and Axel Legay. On simulation-based probabilistic model
checking of mixed-analog circuits. Formal Methods in System Design, 36(2):97–113, 2010.

[20] Albert Cohen, Wolfgang Dahmen, and Ronald DeVore. Compressed sensing and best -term
approximation. Journal of the American mathematical society, 22(1):211–231, 2009.

[21] C. Dalla Man, R.A. Rizza, and C. Cobelli. Meal simulation model of the glucose-insulin
system. Biomedical Engineering, IEEE Transactions on, 54(10):1740–1749, 2007.

[22] Thao Dang and Tarik Nahhal. Coverage-guided test generation for continuous and hybrid
systems. Formal Methods in System Design, 34(2):183–213, 2009.

[23] Manas K Deb, Ivo M Babuška, and J Tinsley Oden. Solution of stochastic partial differential
equations using galerkin finite element techniques. Computer Methods in Applied Mechanics
and Engineering, 190(48):6359–6372, 2001.

[24] David L Donoho. Compressed sensing. Information Theory, IEEE Transactions on, 52(4):
1289–1306, 2006.

[25] Alireza Doostan and Gianluca Iaccarino. A least-squares approximation of partial differential
equations with high-dimensional random inputs. J. Comput. Phys., 228(12):4332–4345, 2009.

[26] Alireza Doostan and Houman Owhadi. A non-adapted sparse approximation of pdes with
stochastic inputs. Journal of Computational Physics, 230(8):3015–3034, 2011.

[27] Bradley Efron, Trevor Hastie, Iain Johnstone, Robert Tibshirani, et al. Least angle regression.
The Annals of statistics, 32(2):407–499, 2004.

[28] Christian Ellen, Sebastian Gerwinn, and Martin Fränzle. Statistical model checking for
stochastic hybrid systems involving nondeterminism over continuous domains. Journal of
Software Tools for Technology Transfer, 2014. To Appear in Special issue on Statistical
Model Checking.

129

[29] Georgios E Fainekos and George J Pappas. Robustness of temporal logic specifications for
continuous-time signals. Theoretical Computer Science, 410(42):4262–4291, 2009.

[30] Zhuo Feng and Peng Li. Performance-oriented statistical parameter reduction of parameter-
ized systems via reduced rank regression. In ICCAD, pages 868–875, 2006.

[31] G.S. Fishman. A First Course In Monte Carlo. Duxbury advanced series. Duxbury, Thomson
Brooks/Cole, 2006.

[32] Goran Frehse, Bruce H. Krogh, and Rob A. Rutenbar. Verifying analog oscillator circuits
using forward/backward abstraction refinement. In DATE, pages 257–262, 2006.

[33] Thomas Gerstner and Michael Griebel. Numerical integration using sparse grids. Numerical
algorithms, 18(3-4):209–232, 1998.

[34] Gene H Golub and Charles F Van Loan. Matrix computations, volume 3. JHU Press, 2012.

[35] Gene H Golub, Michael Heath, and Grace Wahba. Generalized cross-validation as a method
for choosing a good ridge parameter. Technometrics, 21(2):215–223, 1979.

[36] Douglas M Hawkins. The problem of overfitting. Journal of chemical information and
computer sciences, 44(1):1–12, 2004.

[37] Lars Hedrich and Erich Barke. A formal approach to nonlinear analog circuit verification. In
ICCAD, pages 123–127, 1995.

[38] D. Henriques, J. Martins, P. Zuliani, A. Platzer, and E.M. Clarke. Statistical model checking
for markov decision processes. In QEST’12, 2012.

[39] Thomas Hérault, Richard Lassaigne, Frédéric Magniette, and Sylvain Peyronnet. Ap-
proximate probabilistic model checking. In Verification, Model Checking, and Abstract
Interpretation, pages 73–84, 2004.

[40] Harold Jeffreys. Some tests of significance, treated by the theory of probability. Proc.
Cambridge Philosophy Society, (31):203–222, 1935.

[41] Harold Jeffreys. Theory of Probability. Oxford Univ. Press, Oxford, 3rd edition, 1961.

[42] Sumit Kumar Jha. Model Validation and Discovery for Complex Stochastic Systems. PhD
thesis, Computer Science Department, Carnegie Mellon University, Pittsburgh, Pennsylvania,
2010.

[43] Sumit Kumar Jha, Edmund M. Clarke, Christopher James Langmead, Axel Legay, André
Platzer, and Paolo Zuliani. A Bayesian approach to model checking biological systems. In
CMSB, pages 218–234, 2009.

[44] Sumit Kumar Jha, Raj Gautam Dutta, Christopher J Langmead, Susmit Jha, and Emily
Sassano. Synthesis of insulin pump controllers from safety specifications using bayesian model
validation. International journal of bioinformatics research and applications, 8(3):263–285,
2012.

130

[45] Bozena Kaminska, Karim Arabi, I Bell, P Goteti, JL Huertas, B Kim, A Rueda, and M Soma.
Analog and mixed-signal benchmark circuits-first release. In Proceedings of International Test
Conference, pages 183–190, 1997.

[46] Hans W Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, UCLA, Los
Angeles, CA, USA, 1968.

[47] Robert E. Kass and Adrian E. Raftery. Bayes factors. J. Amer. Stat. Assoc., 90(430):774–795,
1995.

[48] David Kleinbaum, Lawrence Kupper, Azhar Nizam, and Eli Rosenberg. Applied regression
analysis and other multivariable methods. Cengage Learning, 2013.

[49] Roelof Koekoek, Tom H Koornwinder, Peter A Lesky, and René F Swarttouw.
Hypergeometric orthogonal polynomials and their q-analogues. Springer, 2010.

[50] Roger Koenker. Quantile regression. Number 38. Cambridge university press, 2005.

[51] Dhanashree Kulkarni. Improved model generation and property specification for
analog/mixed-signal circuits. PhD thesis, University of Utah, Salt Lake City, Utah, 2013.

[52] Robert P. Kurshan and Kenneth L. McMillan. Analysis of digital circuits through symbolic
reduction. IEEE Trans. on CAD of Integrated Circuits and Systems, 10(11):1356–1371, 1991.

[53] Constantino M Lagoa, Fabrizio Dabbene, and Roberto Tempo. Hard bounds on the prob-
ability of performance with application to circuit analysis. Circuits and Systems, IEEE
Transactions on, 55(10):3178–3187, 2008.

[54] Xin Li. Finding deterministic solution from underdetermined equation: large-scale perfor-
mance variability modeling of analog/RF circuits. IEEE Trans. CAD, 29(11):1661–1668,
2010.

[55] Xin Li, Jiayong Le, Lawrence T Pileggi, and Andrzej Strojwas. Projection-based performance
modeling for inter/intra-die variations. In Proceedings of the 2005 IEEE/ACM International
conference on Computer-aided design, pages 721–727, 2005.

[56] Scott Little, David Walter, Kevin Jones, and Chris Myers. Analog/mixed-signal circuit
verification using models generated from simulation traces. In Automated Technology for
Verification and Analysis, pages 114–128. 2007.

[57] Scott Little, David Walter, Chris J. Myers, Robert A. Thacker, Satish Batchu, and Tomohiro
Yoneda. Verification of analog/mixed-signal circuits using labeled hybrid Petri nets. IEEE
Trans. on CAD of Integrated Circuits and Systems, 30(4):617–630, 2011.

[58] Stéphane G Mallat and Zhifeng Zhang. Matching pursuits with time-frequency dictionaries.
Signal Processing, IEEE Transactions on, 41(12):3397–3415, 1993.

[59] Lionel Mathelin and M Yousuff Hussaini. A stochastic collocation algorithm for uncertainty
analysis. Citeseer, 2003.

[60] Hermann G Matthies and Andreas Keese. Galerkin methods for linear and nonlinear ellip-
tic stochastic partial differential equations. Computer Methods in Applied Mechanics and
Engineering, 194(12):1295–1331, 2005.

131

[61] Kenneth L McMillan. Symbolic model checking. Springer, 1993.

[62] AJ MCNEIL. Estimating the tails of loss severity distributions using extreme value theory.
ASTIN Bulletin, 27(1):117–138, 1997.

[63] Jacob Millman and Christos Constantine Halkias. Integrated Electronics. McGraw-Hill elec-
trical and electronic engineering series. Tata McGraw-Hill Publishing Company, 1972.

[64] Alex Mitev, Michael Marefat, Dongsheng Ma, and Janet Meiling Wang. Principle Hessian
direction-based parameter reduction for interconnect networks with process variation. IEEE
Trans. VLSI Systems, 18(9):1337–1347, 2010.

[65] Chris J Myers, Nathan Barker, Kevin Jones, Hiroyuki Kuwahara, Curtis Madsen, and
Nam-Phuong D Nguyen. ibiosim: a tool for the analysis and design of genetic circuits.
Bioinformatics, 25(21):2848–2849, 2009.

[66] J. Neyman and E. S. Pearson. On the problem of the most efficient tests of statistical
hypotheses. Royal Society of London Philosophical Transactions Series A, 231:289–337, 1933.

[67] Fabio Nobile, Raúl Tempone, and Clayton G Webster. A sparse grid stochastic collocation
method for partial differential equations with random input data. SIAM Journal on Numerical
Analysis, 46(5):2309–2345, 2008.

[68] SucheendraK. Palaniappan, BenjaminM. Gyori, Bing Liu, David Hsu, and P.S. Thiagarajan.
Statistical model checking based calibration and analysis of bio-pathway models. In CMSB,
pages 120–134, 2013.

[69] Amir Pnueli. The temporal logic of programs. In Foundations of Computer Science, 18th
Annual Symposium on, pages 46–57, 1977.

[70] Murray Rosenblatt. Remarks on a multivariate transformation. The annals of mathematical
statistics, pages 470–472, 1952.

[71] Reuven Y Rubinstein and Dirk P Kroese. Simulation and the Monte Carlo method, volume
707. John Wiley & Sons, 2011.

[72] Sethuraman Sankaran and Alison L Marsden. A stochastic collocation method for uncer-
tainty quantification and propagation in cardiovascular simulations. Journal of biomechanical
engineering, 133(3):031001, 2011.

[73] S. Sankaranarayanan, C. Miller, R. Raghunathan, H. Ravanbakhsh, and G. Fainekos. A
model-based approach to synthesizing insulin infusion pump usage parameters for diabetic
patients. In Communication, Control, and Computing (Allerton), 2012 50th Annual Allerton
Conference on, pages 1610–1617, 2012.

[74] Koushik Sen, Mahesh Viswanathan, and Gul Agha. Statistical model checking of black-box
probabilistic systems. In CAV, pages 202–215, 2004.

[75] Amith Singhee and Rob A. Rutenbar. Beyond low-order statistical response surfaces: latent
variable regression for efficient, highly nonlinear fitting. In DAC, pages 256–261, 2007.

132

[76] Amith Singhee and Rob A Rutenbar. From finance to flip flops: A study of fast quasi-monte
carlo methods from computational finance applied to statistical circuit analysis. In ISQED,
pages 685–692, 2007.

[77] Amith Singhee and Rob A Rutenbar. Statistical blockade: a novel method for very fast monte
carlo simulation of rare circuit events, and its application. In DATE, pages 235–251, 2008.

[78] Ilya M Sobol. On the distribution of points in a cube and the approximate evaluation of
integrals. USSR Computational Mathematics and Mathematical Physics, 7(4):86–112, 1967.

[79] Kai Strunz and Qianli Su. Stochastic formulation of spice-type electronic circuit simulation
with polynomial chaos. ACM Trans. Model. Comput. Simul., 18(4), 2008.

[80] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society. Series B (Methodological), pages 267–288, 1996.

[81] Andrey Nikolayevich Tikhonov. Numerical methods for the solution of ill-posed problems,
volume 328. Springer, 1995.

[82] Saurabh K. Tiwary, Anubhav Gupta, Joel R. Phillips, Claudio Pinello, and Radu Zlatanovici.
First steps towards SAT-based formal analog verification. In ICCAD, pages 1–8, 2009.

[83] A. Wald. Sequential tests of statistical hypotheses. The Annals of Mathematical Statistics,
16(2):117–186, 1945.

[84] David Walter, Scott Little, Chris J. Myers, Nicholas Seegmiller, and Tomohiro Yoneda. Ver-
ification of analog/mixed-signal circuits using symbolic methods. IEEE Trans. on CAD of
Integrated Circuits and Systems, 27(12):2223–2235, 2008.

[85] Ying-Chih Wang, Anvesh Komuravelli, Paolo Zuliani, and Edmund M. Clarke. Analog circuit
verification by statistical model checking. In ASP-DAC, pages 1–6, 2011.

[86] Bong Wie and Dennis S. Bernstein. A benchmark problem for robust control design. In
American Control Conference, pages 961–962, May 1990.

[87] Norbert Wiener. The homogeneous chaos. American Journal of Mathematics, 60(4):897–936,
1938.

[88] Dongbin Xiu. Numerical methods for stochastic computations: a spectral method approach.
Princeton University Press, 2010.

[89] Dongbin Xiu and Jan S Hesthaven. High-order collocation methods for differential equations
with random inputs. SIAM Journal on Scientific Computing, 27(3):1118–1139, 2005.

[90] Dongbin Xiu and George Em Karniadakis. The wiener–askey polynomial chaos for stochastic
differential equations. SIAM Journal on Scientific Computing, 24(2):619–644, 2002.

[91] Chao Yan and Mark Greenstreet. Oscillator verication with probability one. In FMCAD,
pages 165–172, 2012.

[92] Leyi Yin, Yue Deng, and Peng Li. Verifying dynamic properties of nonlinear mixed-signal
circuits via efficient SMT-based techniques. In ICCAD, pages 436–442, 2012.

133

[93] Heebyung Yoon, P Variyam, A Chatterjee, and N Nagi. Hierarchical statistical inference
model for specification based testing of analog circuits. In VLSI Test Symposium, pages
145–150, 1998.

[94] H̊akan L. S. Younes. Verification and Planning for Stochastic Processes with Asynchronous
Events. PhD thesis, Computer Science Department, Carnegie Mellon University, Pittsburgh,
Pennsylvania, 2005.

[95] H̊akan L. S. Younes and Reid G. Simmons. Probabilistic verification of discrete event systems
using acceptance sampling. In CAV, pages 223–235, 2002.

[96] Yan Zhang, Sriram Sankaranarayanan, and Fabio Somenzi. Piecewise linear modeling of
nonlinear devices for formal verication of analog circuits. In FMCAD, pages 196–203, 2012.

[97] Yan Zhang, Sriram Sankaranarayanan, Fabio Somenzi, Xin Chen, and Erika Ábraham. From
statistical model checking to statistical model inference: Characterizing the effect of process
variations in analog circuits. In ICCAD, 2013.

[98] Yan Zhang, Sriram Sankaranarayanan, and Fabio Somenzi. Statistically sound verification
and optimization for complex systems. In ATVA, 2014. To Appear.

[99] Yan Zhang, Sriram Sankaranarayanan, Fabio Somenzi, Xin Chen, and Erika Ábraham. Sparse
statistical model inference for analog circuits under process variations. In ASP-DAC, pages
449–454, 2014.

[100] Paolo Zuliani, André Platzer, and Edmund M. Clarke. Bayesian statistical model checking
with application to Simulink/Stateflow verification. In HSCC, pages 243–252, 2010.

