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A general technique for obtaining the frequency dependent scatter-
ing parameters of coplanar waveguide structures is discussed. The first step
of the analysis is an iterative solution for the charge distribution on the elec-
trodes. A calibrated optical sampling technique allows for direct verification
of the validity of the quasi-static charge distribution for structures in which
the dielectric layers are electrooptic. In cases where the quasi-static solution
is valid, it is shown that the full dynamics of the propagation problem can be
recovered from an equivalent nonuniform transmission line, the parameters of
which can be determined from the phase velocity and impedance distribution
defined by the static charge distribution. Additional measurements using an
HP8510 Network Analyzer verify the accuracy of the dynamical part of the

method on passive CPW circuits fabricated on GaAs.
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CHAPTER 1

INTRODUCTION

The goal of the presented work ir; this thesis is to develop a model-
ing tool for analysis of discontinuities in coplanar waveguide (CPW) circuits.
Currently, there is a lack of computer aided design (CAD) tools for CPW cir-
cuits, as compared with the tools available for analysis of microstrip circuits.
Furthermore, little information is available in the literature on discontinuity
models for CPW [1]. Even though there are an increasing number of charac-
terization techniques becoming available {2, 3, 4], most of these are based on
full-wave analysis which require large amounts of computer time and memory.
Therefore, further development of simple and accurate modeling tools for CPW
discontinuities is necessary.

In order to develop a time efficient algorithm we decided to start with
the quasi-static approximation. One quasi-static technique for analysis of mi-
crostrip circuits is presented in [5]. Quasi-static techniques are valid up to a
certain frequency, and this frequency limit depends on the type of the coplanar
structure and its geometry. For CPW, the characteristic impedance and effec-
tive dielectric constant depend on the ratio of the widths of the inner conductor
to the gaps and are almost independent of substrate thickness. Therefore, the
transverse dimensions of a CPW can be chosen to be very small compared to
the wavelength. The quasi-static analysis of CPW structures should be valid

even for very high frequencies (e.g. up to 60 GHz). Although airbridges need



to be included to eliminate the radiating slot mode, CPW offers several advan-
tages over conventional microstrip lines: shunt and series circuit elements can
be eésily integrated and the processing yield is improved, since no via holes are
required. These advantages make CPW well suited for monolithic microwave
integrated circuits (MMICs), even though their application to present has been
rather limited.

The most common experimental verification of the quasi-static or
full wave techniques is based on the use of a network analyzer. However, such
measurements can yield only terminal characteristics, giving S-parameters after
proper deembedding. Direct electrooptic sampling [6] can provide much more
detailed information than network analyzer measurements can alone. Recent
advances in electrooptic sampling calibration allow one to obtain accurate 2-D
potential distributions on planar microwave circuits [7].

The analysis technique presented in this paper was motivated by the
2-D electrooptic sampling measurements presented in [7]. Since our technique
uses the 2-D potential distribution to compute the 2-D charge distribution,
direct electrooptic probing seems to be an ideal tool to use as a verification
of our analysis. The two-dimensional (2-D) quasi-static charge distribution
on the discontinuous transmission line is then transformed into an equivalent
nonuniform transmission line. Since the quasi-static current distribution has
zero divergence. a unique local coordinate system on the center conductor can
be deﬁned‘from the current field lines and their normals [5]. This defines an or-
thogonal curvilinear coordinate system of the equivalent transmission line. The
transmission line parameters are expressed in terms of the static charge distri-

bution. Propagation along the equivalent transmission line, therefore, recovers



the full dynamics of the scattering problem from the static charge distribution.
This technique is faster than full-wave techniques, because the charge distri-
bution is calculated only once and the time needed to calculate S-parameters
for each frequency point is negligible compared to the time needed to calculate
the charge distribution. For sufficiently small line dimensions compared to the
wavelength, the accuracy of the quasi-static technique should rival that of the -
full-wave techniques.

In problems involving waveguiding structures, there are two natural
length scales: the wavelength of the propagating mode and the size of the
waveguide. The size of the waveguide and the discontinuity is generally much
smaller than the wavelength of the propagating mode. This leads to a situa-
tion in which the fields can be well described by a static field analysis, which
is proven by expanding the fields in multiple scale expansion. Our analysis
starts from an assumed or measured 2-D potential distribution on the center
conductor and the ground planes of the circuit. Using a static Green’s function,
the surface charge distribution is found from this potential. The corresponding
capacitance is then calculated by integrating the charge distribution over the
surface of the inner conductor. ‘For any guiding structure that can be consid-
ered as a transmission line, knowledge of either the capacitance or inductance

is sufficient for computing all line parameters.



CHAPTER 2

THE QUASI-STATIC APPROXIMATION

The modeling of CPW discontinuities in this thesis is based on a
quasi-static analysis. This chapter presents a derivation of the conditions under
which the quasi-static analysis is accurate, as well as derivation of the analytic

algorithm that is implemented in the FORTRAN program.

2.1 A Multiple Scale Expansion

The field solution to the discontinuity scattering problem possesses
two scales. Near the discontinuity, the fields vary rapidly on a scale w, where
w is the largest transverse dimension of the connecting lines, and then vary
slowly with an O(A.ss) scale, where Aess is the effective wavelength on the
transmission line. The presence of multiple scales can be used to derive an
accurate approximations to the full wave problem [8]. To perform a multiple

scale expansion of Maxwell’s equations we introduce two scaled coordinates

r = FTlw (2.1)

™ = Tk (2.2)
where k = 27 /A.;;. Introducing an expansion parameter
a=kw (2.3)
we can expand the electric field as [§]

E(r) = EQO@ ") + aEV( 7") + FED (' 7") + ... (2.4)



A similar expansion is used for the magnetic field. The del-operator can be
written as
V=19 +av], (23
where the primed and double primed operators operate on 7/ and r” respec-
tively. Introducing the scaled coordinates and field expansions into Maxwell’s
equations and collecting orders of a, we obtain a multiple scale expansion of
the field equations. The zeroth order terms (a°) show that E(® and H(© satisfy
the static Maxwell equations in the coordinate r’.
By introducing a new curvilinear coordinate system defined by the
static field lines, and neglecting all longitudinal field components in this coor-
dinate system, the first order terms (a') show that E(® and H(® satisfy the

source free Maxwell equations in the coordinate r”. These equations can be

written as
) . |
%(h,E(°)) - z%h3h1H<O) (2.6)
d .
73(hzhﬂ")) = z‘%hshmf"), (2.7)

where h; are the metx‘ic coefficients of the curvilinear coordinate system u;.
The coordinate system is chosen such that E©) is tangential to dj and H© is
tangential to d@3. uj is the coordinate axis normal to the £(© and H(© field lines.
Equations (2.6) and (2.7) can be transformed to the standard transmission line
equations by defining a line voltage as the line integral of E(®) from the center
conductor to the ground plane, and a line current as the line integral of H(©

around the center conductor:
2
V(us) = / duy by E© (2.8)
1

I{ug) = g dush, HO, (2.9)
"1



The capacitance C and inductance L per unit length can be computed from

the static fields as well.

2.2 The Quasi-TEM Approximation

By neglecting the longitudinal field components, we have used the
same approximation as in the quasi-static approximation of transmission lines
with nonuniform dielectric constant. As suggested by our multiple scale ex-
pansion, and as has been shown for uniform transmission lines [9, 10], for low
enough frequencies of operation, the uz components of £ and H fields are small
enough to be neglected. A “low enough frequency” is defined as a frequency
that produces a wavelength large compared to the transverse dimensions of
the structure, i.e., a small @ parameter. We are considering a CPW struc-
ture, for which the inner conductor and the gap width do not exceed 200 um.
Since GaAs has a dielectric constant of about 13, and we are working with
impedances of about 502, frequencies up to approximately 40 GHz will not
violate the quasi-static approximation. For higher frequency operation, one
could decrease the inner conductor and gap width in order to minimize the
radiation loss.

The propagation constant and characteristic impedance of quasi-TEM

lines can be expressed as

B = w/IC (2.10)

L

Since the phase velocity of a quasi-TEM mode is always given by v, = ¢/, /€.77,
L and C are related by the expression LC = uo€géeesy, and therefore the knowl-

edge of one of them is sufficient to determine all line parameters.



Under the quasi-static approximation, an effective dielectric constant
is given by €55 = C%, where C is the capacitance per unit length of the struc-
ture,‘and Co is the capacitance per unit length of the structure with air replac-

ing all dielectric materials. The propagation constant of the line can then be

written as
w
B = Z\/Ceffv : (2.12)
where ¢ is the speed of light in vacuum. The characteristic impedance of the

line can then be calculated from

B
wC(z)

Zrem(z) = (2.13)

In the previous discussion we assumed quasi-TEM propagation, but it
can be shown that the generalized transmission line theory holds for nonTEM

propagation as well [11, 12].

2.3 Static Charge Distribution

In the quasi-static approximation, the 2-D potential distribution V(r)

is related to the charge distribution 0’(1‘) by
V(r) = [ G(r,r')o(r')d*r 2.14

where G(r,r’) is the static Green’s function for the potential due to a charge
on the surface S of a semi-infinite dielectric with dielectric constant e;.

2.3.1 The Green’s Function‘ In order to derive the necessary
Green’s function, a point charge located in medium 1 was considered, h meters
away from a flat boundary of medium 2 and the approach given in [13] was
followed. Media 1 and 2 are characterized by relative permittivities 1 and ¢,

respectively. In medium 1, the electrostatic potential is due to the point charge
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Figure 2.1. (a) To an observer in medium 1, it would appear that there were
two charges and (b) to an observer in medium 2 it would appear that there
was only one charge located in a homogeneous medium characterized by e,.

¢ and its image ¢, which is located at the mirror-image point of the charge q.
The potential in medium 1 may be found as if there were two charges g and
¢’ located in a homogeneous medium characterized by permittivity of 1. The
potential in medium 2 is found as if there were a point charge ¢” located at
the position of the real charge ¢ and as if the whole space were homogeneous
and characterized by ¢,. This situation is shown in Figure 2.3.1. Values for ¢’
and ¢” can be found in terms of ¢ and e,.

Let us denote ®,(z,y, z) and ®,(z,y, z) as the potential functions in
media 1 and 2, respectively. According to the statements given above, the
following equations can be set up for ®,(z,y,z) and ®,(z,y, 2):

/

1 q q

®1(z,y,2) = + )
! 47760[\/1,2+(y_h)2+22 \/x'~’+(y+h)2+22]

(2.15)

"

1 q

O,(2,y.2) = _— 2.
2(2,9.3) 4mege, 12 4 (y — h)? + 22 ( 16)

We require that the following two conditions be satisfied:

®,(z,0,2) = &,(z,0,2) (2.17)

20, 8%,
—ay—|y=o =& ly=0. (2.18)



Applying (2.17) and (2.18) to (2.15) and (2.16), we obtain the equations for ¢’

and ¢"":
) J
‘= : 2.19
¢ =9 (2.19)
2¢
" __ s
=TT (2.20)
So, the Green’s function for medium 1 is given by:
1 1 1—e¢ 1
") = > . 2.21
G(r,r) 47reoIr—r’—-hey|+1+es|r—r'+hey|] (221)

In the case where the charges are distributed on the interface, the Green’s

function is given by:

, 1 1
= 2.22
G(r,r’) Treoes, x|’ (2.22)
where
1
€eff = -2-(1 + 6,). (223)

Equation 2.22 is the one that was used in the program.

A generalized coplanar waveguide discontinuity that we analyzed is
shown in Figure 2.2. The total area, S, can be reduced by noting that far away
from the discontinuity the charge distribution will remain essentially unper-
turbed by the presence of the discontinuity. The charge distribution in these

areas is assumed to be given by [14]:

N — 60(1 + fs)P 1
LK (/14 1/p) (2 = 1)(a” - p?)’

where 2t is the width of the inner conductor, u is the width of the gap and p

o(x (2.24)

is given by p = 1 4+ u/t. By dividing the area as shown in Figure 2.2, equation

(2.14) can be written

L w
~) — zl / ! ! ’ / .
V(z,z) [_Ld [.w dz'G(z,2',2,2")o(2',2") + Ve (2, 2), (2.25)
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Figure 2.2: A coplanar waveguide discontinuity.

where V.. is the potential in the discontinuity region due to the known charge

distribution far away from the discontinuity. Vert(z, 2) can be expressed as

Ve =i+ Vo + Va + 1, (2.26)

where

= /_: d:c'a(:zt')/_: dz'G(z',z, 7', z)

- /fdfcqxwzaauq, (2.27)

= /-Z d:c'a(:z:')/Loo dz'G(a’,z,2', z)

- /fdfGJx@zﬂauq, (2.28)

-w L
13 = [- d:r’a(:z:’)/Ldz'G(x',:r,z',z)

-
= / dz'G% (z,2', 2)0(2"), (2.29)
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oo L
_ ’ ’ ' 1 ’
Vi = '/;Vd:ca(m)[_Lde(x,x,z,z)
= /W dz'GY (z,2', 2)o(z"), (2.30)

where o(z) is the charge distribution per unit length on the transmission lines
away from the discontinuity, and Gx and G¥ are the Greens functions relating
the charge distribution in the exterior region to the potential in the interior

region |z| < L and |z| < W. These functions are given by

1

ol L) — 2 — 212 |~1(2.
Gi(z,2', ) T In|(L+z)+/(L£2)2+(z—2)? |7}(231)
. L — L—2)2+ — 22
otz = — A+t (2.32)

dmeocess (L4 2)+/(L+2) + (2= 2)? |
In writing equations (2.27-2.30) we have assumed that the charge distribution
for | z |> L and | z |> W is given by equation (2.24). We can now rewrite

equation (2.25) as
L w
Vie(2,5) = / L&' [ da'G(e, 'z, 2ol ), (2.33)

where Vi,; = V — V.z; is the actual potential on the conductors minus the
potential due to the charges in the exterior region. The solution of the equa-
tion (2.33) provides the static charge distribution at the CPW discontinuity.

The capacitance per unit length is computed using

1
()= = z 2.
C(z) 7 /mner - | o(z,z2) | dz, (2.34)

where :z is the direction of propagation.

2.4 Numerical Technique
The numerical technique starts with a known value for the volt-

age distribution (either from theory or from optical sampling measurements).
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<

Then, V.z; is found from Equations (2.27-2.30) using numerical integration [15].
Romberg integration is used and two different algorithms are implemented de-
pending on whether the integral is proper or improper. The integral equation
(2.33) is reduced to a matrix equation by using point matching [16]. The moti-
vation for doing point matching is the fact that optical sampling measurements
give values for the potential at discrete points. Further, in the case where we
wish to find the charge distribution from the known voltage distribution on the

electrodes, we can always pick known voltages to exist at fixed points. We set

V'(r) = > vab(r — rn) (2.35)

and expand the charge distribution as

o(r) =Y onf(r —rn), (2.36)
where f(r) =rect(x/dz)rect(z/dz) and dr and dz define the cell size. The
resulting matrix equation takes the form

[V] = [Glle], (2.37)

where [o] is the unknown vector which contains the solution for the charge
density and [V'] is the vector which contains the voltages on the electrodes. [G]-

is the known Green’s function matrix with elements

G20 Ty Zny 2m )dxdz m#n
G'n.'m =
ey {£In(Z+/(£)2+1)+ (£ +/(£2+1)} m=n
(2.38)

Equation (2.38) for the case n = m is derived by solving the integral:
a d b d 1
z I =
./;a [-b \/132 + 22
b b
4b ln[% + ,/(%)2 + 1] + 4a ln[z + (5)2 + 1. (2.39)
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and by substituting dz = 2a, dz = 2b and multiplying by 1/(47eo€csys).
The unknown 2-D charge distribution can now be found by inverting
matrix [G]

[o] = [G]7'{[V]. (2.40)

The matrix inversion can easily be performed using LU decomposition. How-
ever, since we are dealing with a 2-D problem, the size of the matrix soon
becomes very large (a N x N grid results in a N? x N? matrix) and large
amounts of computer time and storage are needed. The problem at hand
seems very well suited for more efficient iteration techniques [15, 17]. The next
section gives a short overview of iterative methods that can be used for solving

the system of linear equations.

2.5 Iterative Methods for Solving a System of Linear Equations
2.5.1 The Jacobi Algorithm  Assume that we are solving the
system of linear equations given by Equation (2.37). The Jacobi algorithm

gives the solution using the following equations:

/. =i-1 _(k=1)~ N (k=1)~
0_1(1:) _ Vi— Zj’:] g, Gm - 2j=i+l g, Gm, (2.41)
Gi,i
where : = 1,2,3,.. and & > 1. If any G;; = 0, reordering equations should
be performed so that no G;; = 0. In order to speed up the convergence the

equations should be arranged so that G;; is as large as possible (e.g. using

pivoting). A possible stoping criterion is to iterate until:

Lot = ot |
T ]

<ég, (2.42)

where || o || is a vector norm.
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2.5.2 The Gauss-Seidel Algorithm Since, for i > 2, o{¥),

aék),..., aff)l, have already been computed and are supposed to be better ap-

proximation, we can use them in equation (2.41):
j=t—1 k-1 k
ok = Vi— Y53 UJ(' )Gi,j - Zj-v:,-_u aJ( )Gi,j
; Gii '

Now, we can store only one value for each o; instead of two. The Gauss-Seidel

(2.43)

algorithm is usually superior to the Jacobi algorithm, but nof always.

2.5.3 Relaxation Methods The static charge distribution will
often deviate only slightly from a charge distribution composed of 1-D distri-
butions given by equation (2.24). This distribution can be used as the initial
value for an iterative technique. In order to solve [V] = [G][o] with a given
initial approximation o(%); we used the Gauss-Seidel iterative algorithm with

over-relaxation (SOR) [17]
Vi- S35 0 G, — Tl oG,
Gi; 7

where the superscript denotes the iteration number and Q is a relaxation pa-

oM =1-2* Y+ 0

(2.44)

rameter. If [G] is strictly diagonally dominant, then for any choice of [¢(°)]
this algorithm gives a sequence [0(*)]$2; that converges to the unique solution
of [G][o] = [V] [17]. Over-relaxation parameter values close to 1.5 resulted in
rapid convergence for the particular problems considered here. The stopping

criterion that was used is given by equation (2.42), where the norm was:
| o ||= maz,cicn |0 ] (2.45)

Since we defined the charge distribution using rectangular functions
and defined the voltage across the gap to be unity, the capacitance per unit
length is simply

C(z) = Z o(z;,z2) (2.46)

inner cond.



and the TEM impedance follows from equation (2.13).
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CHAPTER 3
SCATTERING PARAMETERS

With the quasi-static analysis presented in the previous chapter, we
have reduced the problem of propagation in a nonuniform CPW structure to
a one dimensional problem of TEM propagation on a continuous nonuniform
transmission line. The transmission line equations are easily solved using a
number of different techniques. The transmission line network with cascaded
sections can be solved using the Riccati equations for S-parameters, or using

T-parameters.

3.1 The Riccati Equations

The Riccati equations for the reflection and transmission coeflicients
are given in [18, 19]. Here, we will use similar equations but for S-parameters.
The problem that we are analyzing is shown in Figure 3.1. The S-matrix for a

transmission line junction given in Figure 3.2 is given by [20]:

L | Z-2 AT

Zy+ 24
2214y Zy— 2y

[5]= (3.1)

From equation (3.1) the reflection (designated as p further in the text) and
transmission (designated as 7) S-parameters can be calculated at a point z =

Zp—1 as:

Zn - Z'n—l

= T 2 (3.2)
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z(0)] z(1) z(i) z(N)

R@i+1)

R@) .
TG) T@G+1)

Figure 3.1: General piecewise uniform transmission line.

Zy Z;
-  _——{

Figure 3.2: A transmission line junction.

_ 2 Zn-lZn
., = 7 1z (3.3)

where Z,, is the TEM impedance of the line section n. The global S-parameters
(511 and S, designated as r and t, respectively) can be found using the fol-

lowing expansion:

2 1204 2,2 1434 2.3 2 _j368A
Tn = pn + ann-l-lej + ann-{—lpneJ o - ann+1pneJ o + b (3'4)
2 j284
ToT +]e
Thn = pn-+ L (3.5)

1 + pnrn-HeﬂﬁA '

then using p?2 + r2 = 1 the Riccati equation for the reflection S-parameter can

be obtained:
_ Pn + rn+lej26A
B 1 + pn"'n-i'lejz'aA .

(3.6)

Tn
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Using similar derivation the Riccati equation for the transmission S-parameter

can be obtained:

t = Tntn-—lejﬂA
" I- ,071"~'rz-le‘7.2ﬁA -

(3.7)
In equations (3.6,3.7), B is given by equation (2.12) and A = z,—2,_;. Regions
0 and N + 1 are connected to matched loads, so that the initial values are
rn4+1 = 0 and tg = 1. The values for the resulting reflection and transmission

S-parameters determine the S;; and Sy, respectively. Similarly, starting the

propagation from the other port, S22 and S;; can be calculated.

3.2 Transfer Scattering Matrix Representation

If the complete S-matrix is needed, it is perhaps easiest to transform
the problem to a transmission line network with N cascaded sections. The
scattering matrix representation is not suitable for the analysis of cascaded
two-ports. An alternative approach is to convert from S-matrix to ABCD ma-
trix. Another way to analyze the cascaded networks is by using the transfer
scattering or T-parameter presentation. T-parameter presentation is prefer-
able to ABCD matrix presentation because of the following considerations.
The calculations required for transformation from S-parameters to T-matrixA
are slightly less complex than those required for S-matrix to ABCD matrix
transformation. Also, T-parameters are defined in terms of wave variables
normalized with respect to impedances at various ports exactly in the same
way as for S-parameters. This allows an easier interchange between the two
presentations. The definition of a T matrix and formulae for conversion to S-

parameters and vice verse can be found in the literature [20]. The transmission
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matrix T; of the :—th section can be written as

T; .

The total transmission matrix is then

[T] = H[T]i- (3.9)

Using the transformation relationship between S-parameters and T-parameters:

1 T12 T]1T22 - T12T21
5] = — , (3.10)

T22
1 T

the complete S-matrix for the CPW structure can be found. The reference
planes are kept at the end of the interior region (at +L), however, they can be

shifted by adding the proper phase factors.



CHAPTER 4
THEORETICAL RESULTS

4.1 Application to the Double Step-in-Impedance Discontinuity

The first test structure is a double step-in-impedance, between two
50 2 coplanar waveguides, shown in Figure 4.1. The double step was chosen to
have 50§} impedance matches at the two ports. Using the procedure outlined
in the previous sections, the charge distribution, capacitance per unit length,
impedance, reflection and transmission S-parameters along the z coordinate,
and the frequency dependent S-parameters for this structure were calculated.

The structure was gridded using rectangular cells with dz = w, /11
and dz = 2dz. This resulted in a total of 858 cells on the connecting lines, and
819 cells on the low impedance line. The theoretical static charge distribution
was obtained by assuming V = 1V on the center conductor and V = 0V
on the ground planes. Figure 4.2 shows the 2-D charge distribution. Charge
accumulation at the outer corners of the center conductor and charge depletion
at the inner corners are evident. It is this perturbed charge distribution close
to the junction that contributed to the discontinuity parasitics. The charge
distribution is perturbed over a finite length ciose to the junctions, resulting
in frequency dependent S-parameters.

Figure 4.3 shows the computed capacitance per unit length and impedance
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Figure 4.1. A CPW test structure, where g; = 86 um, w; = 120um, g, =
46 pm, wy = 200 pm and ! = 500 um were the dimensions for the fabricated
structure.

along the propagation direction. We can compare these results with the char-
acteristic impedance of the CPW line without the discontinuity, using a quasi-

static formula from [20]

30r  K(1/p)
Veers K(3/1 - 1/p?)

where p = 1+%§, g is the width of the gap, w is the width of the inner conductor,

C= (4.1)

and K is the complete elliptic integral of the first kind. For the dimensions
given in Figure 4.1 the charactefistic impedance of the semi-infinite connecting
lines is 50 Q, while for the middle low impedance section it is 36.6 Q. These are
the impedance values from Figure 4.3 far from the discontinuity and at z = 0.
The solutions of the Riccati equations are shown in Figure 4.4. The
magnitude and phases of r and t along the line are shown for a frequency of
f = 5GHz. The quasi-TEM mode sees a small reflection due to the charge
perturbation away from the first junction, and it then experiences a large re-
flection from the junction. A second large reflection m out of phase is seen

at the second junction, nearly cancelling the reflection from the first junction.
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Figure 4.3: Capacitance per unit length and impedance along the line.

While this behavior is expected and rather obvious for this particular disconti-
nuity, the solutions of the Riccati equations can provide useful insight for more
complicated geometries.

Figure 4.5 shows the computed magnitudes and phases of S;; and
Sa1 as a function of frequency. For comparison we have included S;; and Sy,
calculated with PMESH, a full wave program developed at the University of
Colorado at Boulder [21]. In PMESH, the electrode gaps are gridded instead
of the electrodes. We used two cells per cross-section on the input gap and
one cell per cross-section on the interior gap. The total number of cells was 42
in the interior part and 136 on the connecting lines. The comparison is quite
good for frequencies below 30 GHz. The cause of the large deviations at higher
frequencies is not understood at this point. Due to the large number of cells
used 1n our quasi-static analysis, the total computation time for this case was
quite long. However, by examining Figure 4.2 (slow variation of ¢ away from
the immediate neighborhood of the junctions) that the number of cells could
be drastically reduced without significantly affecting the S-parameter results.

Use of symmetry could further reduce the number of cells.
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In both the quasi-static and full-wave algorithms, most of the compu-
tation time is used for inverting the Greens function matrix. For the full-wave
techﬂique, a matrix inversion is needed for every frequency point. For the quasi-
static approach only one matrix inversion is needed, and the time needed to
calculate the S-parameters for each additional frequency is negligible. There-
fore, with approximately the same number of cells for the two approaches, the
time needed to compute S-parameters for a wide frequency range (e.g. ffom
0 to 40 GHz) using quasi-static approach should be comparable to the time
needed to compute one frequency point using the full-wave program. Also, the

time domain response (using FFT) can be obtained easily.

4.2 Other Test Structures

Other test structures we have analyzed include: a CPW structure
with several sections of the same impedance (50 on GaAs) but different
geometry, Figure 4.6 and a CPW bend (562 on GaAs), Figure 4.7. For
each of these structures, the charge distributions, capacitance per unit length,
impedance, reflection and transmission S-parameters along the propagation co-
ordinate and S-parameters were found. Examples of these results were shown
in Figures 4.8 and Figure 4.9. Figure 4.8 shows the capacitance per unit length
and impedance as a function of the propagation coordinate for the test struc-
ture shown in Figure 4.6. We can compare these results with the characteristic
impedance of the CPW line without discontinuities using Equation (4.1). The
values for the impedance, from Figure 4.8 away from the discontinuity are
about 502 for the connecting lines and about 45 for the inner part, which
is less than 50 because the length of the inner part is comparable with the

effective wavelength. Figure 4.9 shows the calculated S-parameters for the test
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Figure 4.8. The capacitance per unit length and impedance as a function of
the propagating coordinate for the test structure shown in Figure 4.6.
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CHAPTER 5
EXPERIMENTAL VERIFICATION

5.1 Electrooptic Sampling Measurements
Direct electrooptic sampling measurements of circuits on GaAs sub-
strates can provide a relative 2-D potential distribution given by

-

Veos(z,2) = const - /E(x,y,z) - dl, (5.1)

where dl is tangential to the path of the probe beam. For the configuration
shown in Figure 5.1, the resulting potential distribution is proportional to the
potential difference between the two surfaces. For sufficiently thick substrates,
one could assume the bottom surface is an equipotential. For such a case, the
line integral in the Equation (5.1) should give the relative spatial (in z and z)
variation of the potential distribution on the top surface [22]. The measured
potential distribution is therefore identical to within a constant factor, which
will be assumed to be zero, to the transmission line voltage defined in the.
quasi-TEM analysis. These measurements can be used to either directly verify
the accuracy of the static potential distributions used in the analysis, or as
input to the algorithm and subsequently used to compute transmission line
parameters and S-parameters.

Hence, electrooptic sampling measurements of the local quasi-static
field distributions combined with the program developed in this paper provides
technique for calculating the S-parameters. To explore the feasibility of this

technique we have taken electrooptic sampling measurements on the structure
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Figure 5.1. Optical sampling shown in a transverse cross section of a CPW
line.

analysed in the previous section.

The test structure from Figure 4.1 was fabricated on a 400 pm thick
GaAs substrate. The circuit was tested using a wafer probe station built for
electrooptic probing [7]. Figure 5.2 (a) shows the measured 2-D potential dis-
tribution For comparison, Figure 5.2 (b) shows the static potential distribution
computed from the charge distribution shown in Figure 4.2. Aside from some
local anomalies in the measured result, that can be attributed to surface defects
on the wafer, and fewer grid points in the theoretical data, the comparison is
quite good.

To check whether we can accurately determine the charge distribution
from the measured potential distribution, and therefore compute the equivalent
transmission line parameters from the measurements, we first analyzed the 1-D
cross section problem. Figure 5.3 shows the measured and computed voltage
distribution in one cross-section. The comparison is good, except at the points

close to the edges of the center conductor. The large spikes are most likely due
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Figure 5.2: Measured (a) and computed (b) 2-D voltage distribution.



33

1.5
- ——— Measured
- s+oes Theory

= -

§ 1.0 :-

R

b -

&g 05¢F

- -

e :

g -

3 : b

nol‘ -0.0 [ L\I

—0.5, 100 200 300 400 500

X (um)

Figure 5.3. Comparison of voltage distributions, in a transverse cross section,
from measurements and theory.

to optical diffraction effects at the edges. The slightly negative values on the
ground plane can be attributed to the finite substrate thickness [22]. By first
eliminating the spikes in the measured potential, we computed the 2-D charge
distribution from the measured data. Figure 5.4 shows the comparison of the
charge distributions, for one cross-section, calculated from the measured and
assumed potentials. The small ripples in the measured result are due to fluc-
tuations in the measured conductor potentials. Howeﬂrer, it is the total charge
on the center conductor that determines the local impedance. Therefore, the
accuracy of the “measured” impedance should be sufficient to obtain accurate

S-parameter results.
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5.2 Network Analyzer Measurements

Additional measurements were performed on the fabricated structure
from gFigure 4.1, using the HP8510 network analyzer and the NIST Deembed
software [23]. Figure 5.5 shows comparison between theoretical and measured
S-parameters. Results for S;; from measurment and theory differ at most 3dB
up to 40 GHz. For S3; note that the scale goes from 0dB to -0.4dB and the
results show some disagreement that is due to the noise in measured result.
Figure 5.6 shows results for:

(a) effective dielectric constant versus frequency. The measured result-
is about 7, which verifies the assumption that e.;; = 32¢1, since €¢; = 13 for
GaAs;

(b) attenuation versus frequency, which is less than 1dB/cm, except
for a spike at 32 GHz, probably due to coupling between TRL standards on
the wafer; and

(c) characteristic impedance of a straight line versus frequency, which
is about 52 for frequencies between 1 and 40 GHz. Deembed program uses
different definition for the impedance than it was used in this thesis. Therefore,
their characteristic impedance increases as the effective dielectric constant is

increased, while if one uses our definition it would be opposite.
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Figure 5.5. S-parameters for test structure from Figure 4.1 comparison between
theoretical (solid line) and network analyzer (dashed line) measurements.
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CHAPTER 6
CONCLUSION AND FUTURE DIRECTIONS

In this work, we presented a quasi-static technique for analyzing two-
dimensional discontinuities in two-port CPW circuits. However, there is no
fundamental limitation on the number of ports. For multiport circuits the
static part is the same as described, but the dynamic part will involve using a
set of coupled matrix Riccati equations [24].

The examples discussed in this thesis assumed planar 2-D circuits. In
CPW circuits, airbridges need to be included in order to suppress the radiative
slot mode. These airbridges are 3-D structures and in order to model them the
Green’s function from equation (2.21) need to be used and the method has to
be applied in 3-D.

In conclusion, we have presented a new technique for obtaining the
frequency dependent scattering parameters of waveguide discontinuities. Using
a quasi-static field analysis, the discontinuity is transformed into an equivalent
nonuniform transmission line. The transmission line parameters are computed
from the static charge distribution. The scattering parameters are found by
analyzing the propagation along this line. The approximation used, neglecting
the longitudinal field components on the equivalent transmission line, is the
same as used for the quasi-TEM analysis of uniform inhomogeneous transmis-
sion lines. The error in the transverse field on the equivalent transmission line

are of second order in the expansion coefficient (« = kw). The longitudinal
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field components, proportional to the first order in «, are neglected. The tech-
nique is substantially faster than full-wave techniques and for sufficiently small
line aimcnsions compared to the wavelength, the accuracy should rival that of
full-wave techniques.

Several application of this technique have been presented. First, the
technique is applied to a double step-in-impedance discontinuity, computing
the S-parameters up to 40 GHz. Results are compared with the results from
network analyzer measurements and from a full-wave analysis of the same
structure. By combining the technique with the direct electrooptic sampling
technique, it is shown that one can obtain local S-parameters from measure-
ment of the local 2-D potential distribution. While we have only considered
passive structures here, it is our hope that the technique can be extended to
include active devices. This would then provide a technique for finding the

parasitic reactances due to the device electrode geometry.
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