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Abstract 

Zymomonas Mobilis ZM4 is a well-known industrial gram-negative bacterium known 

for its high sugar uptake bioethanol production. With single-cell imaging and machine learning 

algorithms advancing rapidly, it will be much easier to understand the metabolic system of the 

bacterium. A pre-cursor to metabolic manipulation of the bacterium is to evaluate the cell 

growth of various populations by using an inducible CRISPR-interference (CRISPRi) toolset on 

fluorescent and metabolic targets to determine the construction of strains capable of 

manipulating cell metabolism to increase bioethanol production. To evaluate cell growth, we 

implemented single-cell time-lapse microscopy, which revealed population heterogeneity in 

knockdown rate. These observations led to using a cell segmentation program (CyAn) to 

analyze biomass and growth rates generated from metabolic manipulations. This program was 

coupled with the development of cell tracking software for Z. Mobilis using dilated 

Convolutional Neural Networks (dCNNs) to simplify the cell tracking pipeline and to open new 

avenues of tracking for the future. 
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Introduction 

Zymomonas mobilis is a Gram-negative non-model organism ethanologenic 

bacterium that can ferment sugars to produce ethanol with high efficiency. It is 

commonly found in sugary plant materials such as fruits and popular fruit drinks (4). Z. 

mobilis has been studied for use in industrial fermentation processes like bioethanol 

production and use in fuels (4). Despite its biofuel potential, there are still challenges in 

scaling up the use of Z. mobilis in industrial settings. 

The pathway that Z. mobilis utilizes for its high ethanol production is the Entner- 

Doudoroff pathway (E-D), which is a glycolytic pathway and leads to Z. mobilis’s ability 

to ferment sugars, which has high ethanol production as a result (4). The ZM4 AG4628 

Zymomonas mobilis strain will be used in all experiments (7). Ag4628 is a strain 

developed in the Guss lab that is used in conjunction with protocols the lab created for 

gene editing.  

The Eckert Lab utilizes CRISPRi to divert its metabolism towards the production 

of other compounds of interest using protocols previously used on Psuedomonis Putida 

(2), another Gram- negative bacterium that can degrade organic compounds. The novel 

aspect of this previous research was the exploration of single-cell level behavior of cell 

growth by using a CRISPR interference toolset, which is what the project seeks to do 

with Z. mobilis. The same CRISPR interference tool set was implemented from this 

previous study as both bacteria utilize the E-D pathway and have similar metabolic 

functions (2, 7). 

The project utilizes single-cell time-lapse microscopy to image Zymomonas 

cells as they grow in different media conditions and gene modifications with CRISPRi. 

CRISPRi is like CRISPR in that it utilizes a guide RNA (gRNA) to identify a gene 



sequence within the genome. The difference lies in the Cas9 protein that it uses, which is a 

mutant form of Cas9 (dCas9), whose endonuclease activity is removed by mutating the 

endonuclease domains and positions itself in the target region to stop transcription (2). 

To test that the gRNAs from the prior experiment work with the new bacteria, 

GFP (green fluorescent protein) will be added into the bacteria on a plasmid. The 

gRNAs will target the transcription of GFP so that the GFP protein will not express in 

daughter cells of the population. 

Another point of interest for Zymomonas’s metabolism is that it has an 

anaerobic function that allows it to fix dinitrogen (N2) and produce ethanol as well (8). 

This is an area of research that is newer; we will just be analyzing single time-lapse 

images from a prior experiment. 

Preliminary imaging shows population heterogeneity, which is where a 

population will showcase separate cell expression, such as cells that fluoresce and cells 

that do not. The heterogeneity within various populations requires further analysis to 

understand this bacterium’s ability to circumvent the CRISPR machinery that allows 

escapees to dominate the population and cell growth rate effects. To track these cells, 

the analysis toolbox CyAn will be employed, which was developed for cyanobacteria 

cell tracking by the Cameron Lab (5). CyAn utilizes different segmentation algorithms 

to track cells in the films taken through single-cell timelapse microscopy. The 

segmentation program will use the watershed algorithm (1), which treats the image as 

a topographic map, and each pixel is assigned a value that creates “watershed lines” 

based on programmed threshold intensity to define the boundaries of the cells within 

the image (3). 

To track a cell population with a disappearing fluorophore, another 

fluorophore must be included that remains constant. Therefore, mKATE2 will 



be implemented as it is a red fluorophore, so it can be easily identified when compared 

with GFP. It also had a significant difference in excitation and emission which creates 

images with high contrast.  

Implementation of machine learning through dCNNs (dilated Convolutional Neural 

Networks) has been explored as an alternative to the traditional segmentation 

mentioned. This is because the double fluorophore system has proven to be challenging 

to engineer within the cells. A dCNN has many components to it, but to start, a Neural 

Network is a program that uses algorithms to make connections between cases like that 

of a human brain; they can receive multiple inputs and generate an output that can get 

sent to other neurons (14). Neural networks are fully connected to their inputs. 

Therefore, a CNN is a Convolutional Neural Network; the difference is that this program 

uses convolutional layers that allow the inputs to be semi-connected, which creates 

something called a feature map (15). As the program runs through its different layers of 

filters, the feature map gets populated with information. Feature extraction is the 

convoluted part of this (13).  

 

 



Figure 1: A map of all the convolution layers that the DCNN developed for Z. mobilis. The input layer 
accepts an image that is then sent through the 2-D convolution layer to get a small amount of data to 
create a feature map. Batch normalization exists to compress the size of the feature map by decreasing 
connections between layers. Rectified Linear Unit (ReLU) and makes any value below zero as zero (a 
thresholding function). SoftMax is used to predict the class of the input image (sorts image as class ‘cell’ or 
class ‘background’). Pixel classification layer sorts every pixel into a category or label.  

 

 
Dilation is the inflation of the input. It does this expansion by inserting holes 

between its consecutive elements. This allows for pixels to be skipped in a way so that a 

larger area of the input is scanned. Hence, a dCNN uses multiple filters to convolute 

and, therefore, extract more features over a larger area via dilation. Since this entire 

process involves nearly no human input for the selection of features within the cells, it 

has been termed Automatic Segmentation (1). 

This research seeks to create a tracking and analysis software for  Zymomonas 

mobilis that can identify characteristics of cell populations that lead to better solutions in 

metabolic engineering.



Methods and Materials 
 

There are three separate sections for simplicity: the Microbiology methods for CRISPRi and 

Fluorescent Protein methods, live cell imaging, and how cell segmentation is done. 

Microbiology 
 

For the CRISPRi GFP knockdown, a strain from Adam Guss (Oak Ridge National 

Laborotories, 7), AG4826, was used. A dCas9, promoter, RBS (ribosome binding site), and 

gRNA insertion site developed by Jason Peters and optimized for Zymomonas, were cloned out 

of plasmid pJMP2480 and used as the cargo to be integrated into the Zymomonas genome. 

They were cloned from pJMP2480 plasmid with Spectinomycin antibiotic resistance (12). 

Competent cells were acquired from New England Biolabs. Once the CRISPR system was 

integrated into the Z. mobilis genome guide, two of the gRNAs targeting GFP from Fenster et al 

(2) were used. For the case of Z. mobilis, Vectors 2 and 4 were selected along with a non-

targeting vector. 

A strain of AG4826 expressing both GFP and mKATE2 was used. Plasmids containing 

the CRISPRi system and the two gRNAs plus a non-targeting control were transformed in, and 

10ml RMG overnight cultures were started from a single colony from each plate. They were 

diluted down to OD 0.05 the day of imaging. Once cell culture plates grew, 15 mL falcon tubes 

were prepared with 10mL RMG media, antibiotic- mKATE2 ChlorR 120mg/L, and for mKATE, 

1mM of IPTG was added to the test tube.



Microscopy 

Brightfield and fluorescent timelapse microscopy were performed using a Nikon TiE 

inverted wide-field microscopy with a near-infrared–based Perfect Focus System. A 100x oil 

immersion objective was used for all images acquired (1.45 numerical aperture). The NIS 

Elements AR software was used to control the microscope, and a Hamamatsu sCMOS camera 

was used to capture the images. For cells with mKATE2 protein, the RFP channel from the NIS 

Elements AR software was used (Ex: 555nm, Em: 595nm, Filter Range: 571-628nm). For cells 

with GFP protein, the GFP channel was used (Ex: 470nm, Em: 515nm, Filter Range: 503- 

542nm). The BF (bright field) channel functioned as a reference channel. Images that make up 

the movies are taken at 5-minute intervals over 6-12 hours. 

Slides preparation for the samples: plates were poured with 40mL RMG media, and 

0.40g of Agarose was added. The mixture was then microwaved for 2 minutes in an Erlenmeyer 

flask. After the plate was left to cool for 15 minutes, small cubes were cut out and flipped over to 

dry for 3 minutes. Upon drying 1L of sample was pipetted onto the RMG-Agar cube. Depending 

on the variance of samples, 3-4 spots of sample would be pipetted onto the cube. After drying for 

5- 8 minutes, the agar pad was flipped into a well plate. The slide top was sealed with parafilm 

to ensure the agar pad did not dry out over longer imaging stints. For cultures that contained 

mKATE2 1mM IPTG was added to the agar pad to induce the CRISPR system.  

Cell segmentation and dCNNs 

 

The CyAn package automates cyanobacteria identification in microscope images and uses the 

following functions: cell segmentation tool, cell data measurement, tracking individual cells and 

cell division, and image registration. The cell segmentation uses an adaptive threshold algorithm 

and various morphological filters that creates a challenge when segmenting with two fluorophores. 

Therefore, we are working on developing a cell segmentation software package based on using 

deep learning neural networks. The core of the software has been made, and tested on data 

presented within the paper, but needs to be tailored to function with larger data sets.   



The time-lapse movies acquired were in the .nd2 file format, so they first needed to be 

converted into TIFF files with image J. Bright Field images were separated from fluorescent 

channels to segment on as these were the largest amount of images that were simpler to acquire. 

Once these images are acquired, they are put through a pre-processing MATLAB program to cut 

up each individual from the movie into ‘patches’ of 128px * 128px. This is to create more images 

for the program to train on and just large enough to avoid bisecting cells (14). 

A program is then set up to scan through the images, eliminate blank images, and check 

edge conditions to avoid bisected cells (cells cut in half or only remnants). After this, manually, 

one must select what percentage of images will go towards the training data set and what 

percentage will be part of the validation data set. These are usually separate folders.  

How to use a trained network: There are many convolutional layers to work through the 

first though is always the input layer, which accepts an argument of inputSize (the 128px * 

128px patches) which uses 8-bit encoding. 

Next is creating two classes, “Cells” and “Background,” for later use. The most important 

arguments are then the ds, layers, and options arguments. The argument: ds is for the training 

and validation data, where the folders that contain this will be input. The layers argument is for 

the different CNN layers available and can be customized to suit various data sets. The options 

argument then asks for the type of training the data set should be taken through. This data set 

was made with the maxEpochs option. 

For traditional segmentation, the program developed in the Cameron lab, CyAn, was 

implemented. This program is what is used to generate lineage trees and growth plots. It is also 

used to generate the binary masks it creates by using thresholding algorithms (5). These binary 

masks serve as the ground truths (binary masks) the DCNN uses as its training set. 



Results and Discussion 
 

Dinitrogen Fixation 

Z. mobilis has presented as a bacterium of interest due to its potential use in the biofuels 

industry. To better understand the metabolic processes of the organism, both different growth 

conditions, CRISPRi vectors, fluorescence microscopy, and cell tracking were implemented to 

find which routes of metabolic manipulation may be most helpful and how cell tracking can be 

implemented to understand the observations that arose about Z. mobilis colonies from 

timelapse microscopy videos. 

Since the relatively recent finding of Z. mobilis's ability to fix dinitrogen as its sole source, 

there have been many studies made to understand better how this affects Z. mobilis's metabolic 

pathways. While there have been many studies proving that N2 can be fixed by the bacterium, 

which does not reduce ethanol production and could potentially improve it, imaging and studies 

of the physical characteristics of the cells have not been prevalent. 

The WT strain findings in Figures 3.1A and 3.1B show that nitrogen fixation occurs with 

the cells as cell growth is registered from individual cell lineages within the populations. Some 

cells do not grow or grow at a significantly slower rate throughout the 20 hours the cells were 

imaged. This is reflected in the cell divisions in figure 3.1A, where the first cell division appears 

after the 6-hour mark. This is of note, as Z. mobilis has shown in previous preliminary imaging 

sessions to take between 30-40 minutes to double. However, Figures 3A and 3B have some 

revelations; as can be seen, there are cells (orange arrows) that seem to have rapidly grown into 

colonies in 3B, but other cells that were not around those colonies appear to have grown larger, 

but no cell division has occurred. In a way, it is as if some cells (3B) are still in a form of 

anaphase. When the videos of these cells growing are played, individual cells can be observed 

doubling but having difficulty splitting. 



The WT strain findings in Figures 3.1A and 3.1B show that nitrogen fixation occurs with 

the cells as cell growth is registered from individual cell lineages within the populations. Some 

cells do not grow or grow at a significantly slower rate throughout the 20 hours the cells were 

imaged. This is reflected in the cell divisions in figure 3.1A, where the first daughter cells appear 

to come about after the 6-hour mark. This is of note, as Z. mobilis has shown in previous 

preliminary imaging sessions to take between 30-40 minutes to double. However, Figures 3A 

and 3B have some revelations; as can be seen, there are cells (orange arrows) that seem to have 

rapidly grown into colonies in 3B, but other cells that were not around those colonies appear to 

have grown larger, but no cell division has occurred. In a way, it is as if some cells (3B) are still 

in a form of anaphase. When the videos of these cells growing are played, individual cells can 

be observed doubling but having difficulty splitting. 

 

 
Figure 2: Biomass generated from two AG4826 cells grown in a chamber of N2. A) Lineage of control cell 

culture. B) Lineage of a cell that has a GFP fluorescent marker. 



 
 
 

Figure 3: Still images of WT and cells with GFP incorporation grown in N2. A) First frame of WT cells in 

brightfield, B) Last frame of the timelapse movie in brightfield low growth is observed, C) First frame of BF 

(brightfield) and fluorescent channel time-lapse composited, D) Last frame of timelapse of with 

brightfield and fluorescent time-lapse composite. 

 
 

 
While there seems to be cell growth observed to prove that N2 fixation is happening, 

there are two separate cell growth characteristics within the cells. As Figure 2B shows, the GFP 

stain biomass grows substantially, but there is a slow step of cell growth that is happening for 

the cell to have this behavior. More film studies and data images must be acquired to 

understand better if cell heterogeneity exists for these two differently characterized cell 

populations and to understand the effects of dinitrogen fixation on cell growth and morphology. 

CRISPRi Knockdowns 

 
Cell tracking was used to observe CRISPRi knockdowns of GFP in real time using two 

gRNAs that had been shown in previous experiments to reduce fluorescence, plus a non-targeting 

control. Figures 4A and 4B serve as the control, and it is shown that nearly all of the 



cells within the Non-targeting population fluoresce to an extent. The fluorescence intensity 

fluctuation within the cells depends on the growth pattern and potential adaptation of cells to 

eliminate fluorescence. Figures 4C and 4D and 4E and 4F show two of the most promising GFP 

knockdown vectors. As can be seen throughout the imaging, the cell population seems to lose 

the intensity of the fluorescence, but there is still fluorescence present. More films need to be 

done so that the fluorescence decay time can be found to determine how many divisions it 

takes for fluorescence to be 'lost' or if there is an error with the CRISPRi system. 

 
 
 

 
Figure 4: Lineage tracking of cells with CRISPRi knockdown to determine vectors for future use. A) First 

frame of the composite image of brightfield and fluorescent channel for the control sample. B) Last frame 

of the composite image of brightfield and fluorescent channel for the control sample. C) Cells with a 

CRISPRi knockdown of GFP, first frame with cells that have vector 2. D) In Cells with a CRISPRi 

knockdown of GFP using Vector 2, there is population heterogeneity, with many cells showing decreased 

fluorescence. E) Cells with a CRISPRi knockdown of GFP, first frame with cells that have vector 4, F) Cells 

with a CRISPRi knockdown of GFP using Vector 4, there is population heterogeneity, with many cells 

showing a decrease in fluorescence. 



Of note, within the cell lineage pathways of these samples, it appears that the Vector 2 

population has the most cell divisions happening within cells compared to Vector 4 and the non- 

targeting population. This is despite these cells having the least number of colonies from start to 

end. It is of note that as the cell division time is increased (5A, 5B, 5C) within these samples, it 

takes a substantial amount of time for the cells to start proper division. This is potentially due 

to the incorporation of GFP and the CRISPR system. These long periods of division also lead to 

the question of population health, which will be discussed later. 

 

Figure 5: Comparison of biomass generated from cells engineered with CRISPRi knockdown vectors 

and a non-targeting cell population. A) It is observed that there is a high cell division rate within the cells 

that grow in the population treated with vector 2. B) It is observed that there is a low cell division rate 

within the cells that grow in the population treated with vector 4. C) The NT cells do not have a consistent 

growth plot but still have high cell division rates. 

 

 
Figure 6 shows the behavior of the relationship between the CRISPR system and the 

population's growth rate. Figure 6C shows an exponential increase in the amount of cells and 



cell divisions compared to 6A and 6B, which show a near halving of cell divisions and 

population size throughout the video recording. More movies must be made using wild-type Z. 

mobilis cells without engineering to set up a baseline. There also needs to be implemented a 

software solution where fluorescence is tracked over time to observe fluorescence dilution 

better. 

 

 
Figure 6: 'Tracks' are the IDs for every new cell, and their growth rate is the size of the major axis length 

of each cell. This is the measurement of the length of the largest cell axis in relation to the cell ID as cell 

division occurs. A) This is the curve-fitted plot for cells with the vector 2 CRISPRi mechanism, which 

shows a relatively steady axis growth rate. B) The curve fitted plot for cells with vector 4 CRISPRi 

mechanism that shows an increase in growth rate (axis size) for the cells. C) This is the control sample 

that does not have a CRISPRi mechanism implemented for GFP knockdown. The growth rate is steady 

and shows that there are more cell divisions and more cells in general within the population.



Double Fluorophore Approach 

To track fluorescence over time, with disappearing GFP, in a cell population, a separate 

fluorophore that remains constant must be implemented to ensure properly transformed cells 

are tracked. mKATE2 was the most promising second fluorophore to grow within the AG4826 

strain used and was then studied to understand its effects on the bacterium better. IPTG was 

added induce protein expression. Imaging was done to ensure that this was effective for the 

overall fluorescence of the culture. 

 

 
Figure 7: Figures A-D are cells with an inserted fluorescent protein mKATE2 plasmid grown on an agar 

pad with the inducer IPTG during the time-lapse imaging. Figures E-H are cells with a mKATE2 

fluorescent protein plasmid grown without IPTG in the agar. Figures A, B, E, and F are composite images 

of the RFP fluorescent channel and the Bright Field channel to compare how well the protein's 

fluorescence relative to the population of cells imaged. Figures C, D, G, and H are brightfield still images 

at the same time points as the composite images to demonstrate the population heterogeneity. 

 

 
From visual analysis alone, it can be concluded that IPTG does affect mKATE2 protein 

expression. In Figures 7B and 7F, while not all the cells are induced with IPTG fluorescence, 



those that are not induced have less overall fluorescence within the population, which proves 

that IPTG does improve the overall protein expression. 

 

 
Figure 8: Comparison lineage maps for one cell from each cell population to better represent the effects of 

IPTG influence on the cell populations. A) A lineage map for one cell within the cell population treated 

with IPTG demonstrating many cell divisions. B) The lineage tacking for a cell within the population not 

treated with IPTG shows fewer cell divisions and general biomass in comparison. 

 

 
From the lineage maps of cells (Figure 8A), it can be observed that IPTG can have a role 

in cell division as well since more divisions occurred for the induced population, but this is an 

inconclusive result. This is not the main scope of the experiment, but rather an observation of 

note that came up within the experiment.  



 
 
 

 

Figure 9: A comparison of growth rate (major axis length of cells) and Tracks (cells and cell divisions) 

that shows there are more cells divided in B that are untreated than that of A. 

 

 
Furthermore, the conversation of population health needs to be addressed (Figure 9A) 

would suggest that the induced population health was lower than that of the untreated due to 

the higher amount of cell divisions and larger cell growth rate. Further data must be gathered to 

understand better if the cells that grow within the untreated population (9B) manage to 

circumvent the mKATE2 folding and why there is such heterogeneity in such a population (7F). 

The same can be said for the induced population; while there is better overall fluorescence, 

most of the population still does not correctly fluoresce. 



Two Fluorescent Proteins, One Cell 

While it is possible to include two fluorescent proteins within the Z. mobilis bacterium, 

this is no easy feat, and the results show that the cells do not grow as well with the integration of 

two fluorophores. 

 

 
Figure 10: Figures A and B are composites of the GFP fluorescent channel, RFP fluorescent channel, and 

BF channel to show how well the population fluoresces over time with both fluorescent proteins. Figures C 

and D are still images of the Bright field channel at the same time points as figures A and B to compare 

how much of the cell population fluoresces. There is much heterogeneity in the population as most cells 

fluoresce at least one fluorophore type, half incorporated both, while some do not fluoresce at all. 

 

 
In these still images of the double fluorophore system from Figure 10B, one can see that 

while there are yellow/ orange cells (mKATE2 and GFP fluorescence), most only fluoresce with 

one fluorophore. From Figures 10A and 10C, it can observed that the population is nearly all 

fluorescent. However, by the end, it is apparent that (10B v 10D) many cells still circumvent 

the fluorophore system or do not incorporate both fluorophores. 



 
 
 

Figure 11: A lineage tree of a cell that contains fluoresces GFP and mKATE2. There are many cell 

divisions, indicating that once both proteins are incorporated, the cells can grow and go on to create many 

daughter cells, which indicates a relatively healthy population. 

 
 

 

 
Figure 12: A graph of cells dividing and the growth rate of these cells. There is a large amount of tracks 

indicating population health. 



Some solutions can implemented to improve this system, but considering a CRISPR 

system will need to be added later, it has proven a path that may need alternative fixes via 

software. 

Cell Tracking with dCNNs 

A way to circumvent using a double fluorophore system within cell tracking, which is the 

project's overall goal, is by using machine learning, specifically dCNNs (de-convolutional Neural 

Networks). Since these networks can be trained on thousands of captured films, such as only to 

recognize fluorescence, this makes it a more favorable method. Due to the ability of a dCNN to 

increase the depth of special features, it can identify and track, which allows for the tracking of 

cells using just fluorescence or other markers. 

Traditional segmentation is still used to a certain extent, as the CyAn algorithm still 

generates the ground truth (binary mask) for training the system to use and train the dCNN 

system developed for Z. mobilis. Unfortunately, this system requires much more development as 

it has been trained on only around 1,500 images. 

In the methods, it was described that a certain amount of data (movies) cleaning needs 

to happen before any form of network training can begin. However, the results are so far 

promising. Figure 13 shows that there is promise in using this method as it can provide more of 

a computational challenge. However, it would allow the focus to shift from fluorescent protein 

incorporation to CRISPR engineering, as that is the primary goal. 



 
 

Figure 13: This shows how well the trained dCNN can properly classify the cell and background of an 

image. As can be seen, it can be accurate most of the time, but there are still things that could be 

improved, such as 13.35 % of backgrounds getting classified as cells instead. 

 

 
While Figure 3.13 is impressive in values more data needs to be acquired, cleaned, and 

collected to train the network to avoid overtraining. Overtraining is an occurrence that is best 

described as when someone memorizes a story but does not actually learn how to read, so if the 

pages of a story were presented out of the memorized order, the network (person) would not 

know to adapt as it had not learned to identify specific cell types, but the pages. In the same way, 

the network, if there is too small of a data pool, will not learn to identify only cells but small 

quirks/artifacts in the images of the data training set. 

 
 

Conclusion 

The findings suggest that there is promise in studying manipulations of Z. mobilis's 

metabolism using single-cell segmentation. By studying cell division and growth rates of 



populations, there may be answers about cell growth and behavior concerning the incorporation 

of plasmids (GFP, mKATE2, GFP CRISPRi knockdown) on population health and cell division. 

The study of cell division under the condition of dinitrogen fixation is also fascinating as the 

cells can fix N2, but there appear to be two types of cells growing or two types of reactions from 

the cells. This is an experiment worth repeating to understand how these cells behave. 

Upon looking at the results, there may be more effective methods to understand the 

CRISPRi GFP knockdown system than a two-fluorophore system. Testing to determine whether a 

CRISPRi vector system would allow the cell population to develop with two fluorophores is of 

interest to make sure the method does/ does not hold promise. At the time of writing, this system 

appears to be the wrong path to head down, given how challenging it is to get consistent 

expressions of fluorophores within the cells. Specifically, mKATE2 would need to stay at a 

consistent signal while GFP is depleted, but since not all the cells even express mKATE2, it would 

be a challenge to pursue a tracking system using this method. 

Cell tracking by using dCNNs is a viable path that would simplify some of the 

microbiology aspects of the project and allow the focus to be on understanding what these 

various cellular and environmental manipulations do to the cells. Further, a more robust 

fluorescence measurement method and population tracking would be interesting to develop. 

Developing more advanced lineage maps and diagrams would provide answers and give a 

deeper understanding of cellular metabolism. 
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