
Agent Objective Function Design in Distributed

Engineering Systems

by

Matthew J. Phillips

B.S., Harvey Mudd College, 2011

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Master of Science

Department of Electrical, Computer, and Energy Engineering

2015

This thesis entitled:
Agent Objective Function Design in Distributed Engineering Systems

written by Matthew J. Phillips
has been approved for the Department of Electrical, Computer, and Energy Engineering

Dr. Jason Marden

Dr. Berouz Touri

Dr. Eric Keller

Date

The final copy of this thesis has been examined by the signatories, and we find that both the
content and the form meet acceptable presentation standards of scholarly work in the above

mentioned discipline.

iii

Phillips, Matthew J. (M.S.)

Agent Objective Function Design in Distributed Engineering Systems

Thesis directed by Dr. Jason Marden

A distributed engineering system requires the design of agent objective functions to control

the system sub-entities. These agent functions can cause non-optimal and inefficient system dynam-

ics to occur, and the quality of the design can influence the degree of these undesirable responses.

The creation of these agent objective functions is investigated, and an existing method of bound-

ing the induced inefficiencies is expanded to encompass a wider range of games by considering a

budget condition. Following, a novel method of designing player objective functions via a convex

combination of existing functions is introduced and fully characterized. The significance of these

contributions are demonstrated in two theoretic models, and the shortcomings of the expansion are

discussed. A final contribution demonstrates that one agent objective function is optimal for some

models.

Dedication

“Adventure is Curiosity; the willingness to embrace uncertainty . . . wondering about
the possibility of doing just one thing differently than before.” –Bruce Kirkby

To you.

v

Acknowledgements

First and foremost, I would like to thank my advisor, Dr. Jason Marden. I am sincerely

appreciative of the time that he spent working with me, the feedback and insights he provided me,

and the patience that he gave me, all of which are paramount to where I am today.

Along with my advisor, I wish to thank those that served on my defense committee: Dr. Eric

Keller and Dr. Behrouz Touri. Dr. Keller was one of the first people I met when I visited CU for

graduate school, and he and others demonstrated the passion for research and bonhomie that led

me to selecting CU over others. Dr. Touri has provided me with excellent guidance and advice on

aspects unrelated to school, and I will always be appreciative of his mentorship.

I would also like to thank Dr. Shannon Stott. She has been an inspiration to me in my

pursuit to be the best that I can, and has positively influenced my own counseling of others.

Additionally, I thank Dr. Li Shang for initially bringing me on as a student, and for leading

me in my first year of graduate school. His ideas are ever rich, and his spirit is always contagious!

I also thank my lab mates! Holly, Philip, Andi, Yassmin, Raga, Yilan, Dalton, Vinod, Saeid,

and Tatiana, you were all monumental in commending my good research ideas, and suggesting

alternatives to my poor ones.

Lastly, I thank my family and friends (including those above). Each of you are so important

and valuable, and my searching and researching for happiness would be incomplete without you.

vi

Contents

Chapter

1 Introduction 1

1.1 Overview . 1

1.2 Motivation . 3

1.3 Thesis Outline . 3

1.4 Thesis Contributions . 4

2 Background 6

2.1 Outline . 6

2.2 Example . 6

2.3 Control Algorithms: The Complete Picture . 11

2.4 Cost Minimization Games . 12

2.5 Equilibria Concepts . 13

2.5.1 Pure Nash Equilibrium . 13

2.5.2 Mixed Nash Equilibrium . 14

2.5.3 Coarse Correlated Equilibria . 15

2.6 Player Cost Function Metrics . 16

2.6.1 Price of Anarchy . 16

2.6.2 Price of Stability . 16

2.7 Summary . 17

vii

3 Smooth Games, Potential Games, and the Budget 18

3.1 Outline . 18

3.2 Smooth Games . 19

3.2.1 Smooth Game Upper PoA Bound . 19

3.2.2 The Budget . 21

3.2.3 Smooth Game Upper PoA Bound . 22

3.3 Welfare Maximization Equivalence . 23

3.4 Potential Games . 25

3.4.1 Potential Game Upper PoS Bound . 26

3.5 Chapter Summary . 28

4 Reverse Carpooling 29

4.1 Outline . 29

4.2 Reverse Carpooling . 29

4.2.1 Game Definition . 30

4.2.2 Generic Agent Cost Function . 32

4.3 PoA Bound on the Generic Agent Cost Function . 33

4.4 Summary . 35

5 Convexly Combining Player Objective Functions 37

5.1 Outline . 37

5.2 Convex Combinations of Player Objective Functions in Smooth Games 38

5.3 Budget Bounds for Convexly Designed Player Cost Functions 40

5.4 Smooth Game PoA Upper Bound of a Convex Design 44

5.5 Summary . 47

6 A More Specific Resource Allocation Game 49

6.1 Outline . 49

viii

6.2 Generic Allocation Games . 50

6.3 Agent Cost Functions . 51

6.3.1 Fixed Cost Function . 52

6.3.2 Marginal Contribution Cost Function . 53

6.3.3 The z Cost Function . 53

6.3.4 The Shapley Cost Function . 53

6.4 Proving Smoothness for Generic Allocation Games 53

6.4.1 Smoothness Proof for the Fixed Player Cost Function 54

6.4.2 Smoothness Proof for the MC Player Cost Function 55

6.4.3 Smoothness Proof for the z Player Cost Function 55

6.4.4 Smoothness Proof for the Shapley Agent Cost Function 58

6.5 Proving Budget Bounds for Generic Allocation Games 59

6.5.1 Budget Proof for the Fixed Player Cost Function 59

6.5.2 Budget Proof for the MC Player Cost Function 60

6.5.3 Budget Proof for the z Player Cost Function 61

6.5.4 Budget Proof for the Shapley Agent Cost Function 64

6.6 Proving PoA Upper Bound for Generic Allocation Games 65

6.6.1 PoA Upper Bound for the Fixed Player Cost Function 65

6.6.2 PoA Upper Bound for the MC Player Cost Function 66

6.6.3 PoA Upper Bound for the z Player Cost Function 67

6.6.4 PoA Upper Bound for the Shapley Agent Cost Function 71

6.7 Proving PoA Lower Bound for Generic Allocation Games 72

6.8 Proving PoS Upper Bound for Generic Allocation Games 72

6.8.1 PoS Upper Bound for the Fixed, MC, and z Player Cost Functions 73

6.8.2 PoS Upper Bound for the Shapley Agent Cost Function 75

6.9 Proving PoS Lower Bound . 79

6.10 The Shapley Cost Function is Optimal . 82

ix

6.11 Welfare Generic Allocation Game Equivalent . 86

6.12 Summary . 86

7 Thesis Conclusion 88

7.1 Discussion . 88

7.2 Unanswered Questions . 89

Bibliography 90

Appendix

A Additional PoA Bounds 92

A.1 Repeated Play and No-Regret Sequences . 92

B PoS Bound for Potential Games: Original Theorem 94

C Additional Properties of Smooth Games 95

D General Remark 96

x

Tables

Table

5.1 Roadmap to Theorem 10 . 38

6.1 Agent cost functions discussed for the generic allocation game. 52

6.2 Smoothness parameters for an N -family generic allocation game, G = {{1, . . . , n} =

N ⊆ N , {Ai}i∈N , {Ji}i∈N , R, {Cr}r∈R}. 54

6.3 The budget conditions for an N -family generic allocation game, G = {{1, . . . , n} =

N ⊆ N , {Ai}i∈N , {Ji}i∈N , R, {Cr}r∈R}. 59

6.4 The upper bound on the PoA for anN -family generic allocation game, G = {{1, . . . , n} =

N ⊆ N , {Ai}i∈N , {Ji}i∈N , R, {Cr}r∈R}. 65

6.5 The upper bound on the PoS for a generic allocation game, G = {{1, . . . , n} =

N, {Ai}i∈N , {Ji}i∈N , R, {Cr}r∈R}. 73

xi

Figures

Figure

2.1 Example game illustrating the difficulties in designing player objective functions. . . 10

3.1 The resulting upper PoA bound that is implied through Eq. (3.1) for some (λ, µ)

pairs satisfying λ > 0 and µ < 1. 20

4.1 Illustration of reverse carpooling, as depicted in [12]. 30

5.1 An example scenario of the upper bound afforded by Theorem 7 showing the upper

bound on B(G∗; z) for when B(G) = 1 and B(G′) = 10. 42

6.1 Action profile a is when all players select the green resources. Action profile a∗ is

when all players select the shared blue resource. 56

6.2 Action profile a is when all players select the green resources. Action profile a∗ is

when all players select the shared blue resource. 57

6.3 The generic allocation game scenario that defines the budget, B(F)(G), proven in

Theorem 15, is when player 1 selects resource n + 1, while all other players select

their unique resource. 60

6.4 The generic allocation game scenario that defines the budget, B(MC)(G), proven in

Theorem 16, is when all players select the shared resource n+ 1. 61

xii

6.5 The generic allocation game scenario that defines the budget, B(z)(G), proven in

Theorem 17, is when a subset of players (of size n̂, where n̂ ≥ 1) selects the shared

resource, while all other players select their unique resource. 63

6.6 (a) A plot showing the size of n̂ that defines B(z)(G) for select values of z ∈ (0, 0.99)

and d ∈ (0, 1) for a 25 player game (note the consecutive steps); (b) top view of (a)

for d ∈ (0, 1) and z ∈ (0.8, 1). 63

6.7 (a) A plot of B(z)(G) for select z ∈ (0, 1) and d ∈ (0, 1) for a 25 player game that

implements the z cost function for the generic allocation game; (b) a plot of the

upper bound on B(z)(G) as afforded by Theorem 7, Eq. (5.11), for select z ∈ (0, 1)

and d ∈ (0, 1) for the same 25 player game. 64

6.8 This illustrates the generic allocation game that demonstrates the upper PoA bound

afforded by Theorem 19 is tight. The worst case equilibrium is when all agents

select the green resources; the action profile that minimizes the global cost is when

all agents select the shared blue resource. 66

6.9 This illustrates the generic allocation game that demonstrates the upper PoA bound

afforded by Theorem 20 is tight. The worst case equilibrium is when all agents select

the shared green resource; the action profile that minimizes the global cost is when

all agents select the shared blue resource. 66

6.10 This illustrates the generic allocation game that demonstrates the upper PoA bound

afforded by Theorem 21 is tight for z ∈ [0, 0.5]. The worst case equilibrium is when

all agents select the green resources; the action profile that minimizes the global

cost is when all agents select the shared blue resource. (Denoted as Game (a).) . . . 67

6.11 This illustrates the generic allocation game that demonstrates the upper PoA bound

afforded by Theorem 21 is tight for two player games for z ∈ [0.5, 1]. The worst case

equilibrium is when all agents select the shared green resource; the action profile

that minimizes the global cost is when all agents select the shared blue resource.

(Denoted as Game (c).) . 68

xiii

6.12 This illustrates the generic allocation game that demonstrates the largest PoA that

can be reached for a three player game for z ∈ (0.5, δ] for some δ < 0.5. The worst

case equilibrium is when two agents select the shared green resource 1, and the third

selects the non-shared resource 2; the action profile that minimizes the global cost

is when all agents select the shared blue resource. (Denoted as Game (b).) 69

6.13 (a) This illustrates the generic allocation game that demonstrates the largest PoA

that can be reached for a three player game for z ∈ [0, 1]; black represents the PoA

bound afforded by Theorem 21; red represents the actual PoA that can be achieved;

(b) this plots how the actual PoA is obtained for three players; thin black represents

the achievable PoA for z ∈ [0, 0.5] for Game (a) from Fig. 6.10, blue represents the

PoA realizable for z ∈ (0.5, δ] for Game (b) from Fig. 6.12, and green represents the

reachable PoA for z ∈ (δ, 1] from Game (c) in Fig. 6.11. 69

6.14 (a) This illustrates the generic allocation game that demonstrates the largest PoA

that can be reached for multiple agent set sizes in a game for z ∈ [0, 1]; black

represents the PoA bound afforded by Theorem 21; red represents the actual PoA

that can be achieved; (b) this plot clarifies how the PoA upper bound curve is created;

since the bound varies only with respect to the budget, this shows how the budget

is created from Theorem 21. 70

6.15 This illustrates the generic allocation game that demonstrates the upper PoA bound

afforded by Theorem 22 is tight. The worst case equilibrium is when all agents

select the green resources; the action profile that minimizes the global cost is when

all agents select the shared blue resource. 71

6.16 This illustrates the generic allocation game that demonstrates the upper PoS bound

afforded by Theorem 24 is tight. The only equilibrium is when all agents select the

green resources; the action profile that minimizes the global cost is when all agents

select the shared blue resource. 75

xiv

6.17 This illustrates the generic allocation game that demonstrates the upper PoS bound

afforded by Theorem 25 is tight. The only equilibrium is when all agents select the

green resources; the action profile that minimizes the global cost is when all agents

select the shared blue resource. 79

6.18 This illustrates the generic allocation game that forces a lower bound on the PoS, as

a function of the PoA. 80

6.19 A plot showing the PoA (bounds and realizable) and PoS (bounds and realizable)

for the z player cost function for the set of generic allocation games. Additionally

plotted is the lower PoS bound. The Shapley PoA and PoS is shown for reference at

the budget balanced location of z = 0.5. (d = 0.5, N = 3) 82

6.20 This illustrates the generic allocation game that forces a lower bound on the local

agent cost function. 83

6.21 This illustrates the generic allocation game that forces an upper bound on the local

agent cost function. 84

6.22 This illustrates the generic allocation game that forces an upper bound on the local

agent cost function. 85

Chapter 1

Introduction

1.1 Overview

It is often desired to optimize some form of a global objective in engineering systems. Many of

these systems are comprised of numerous sub-entities. Consider, for example, a search system that

is composed of a collection of multiple unmanned aerial vehicles (UAVs) searching over a wilderness

area for a lost hiker. Ideally, a control algorithm could be implemented with full information about

the search area, the location of each UAV, and the area that remains to be investigated. However,

factors such as communication limitations, computation constraints, search space size, system com-

plexity, etc., may limit the feasibility to implement a centrally designed control algorithm. Despite

these limitations, one way to realize the global objective of finding the hiker is to create individ-

ual control algorithms for each UAV so that, given the information available to them, the UAV

is controlled by this algorithm to perform in a manner that is globally desired. These individual

control algorithms are comprised of an agent objective function coupled with a learning algorithm.

Hence, the overall goal is to control these multi-agent systems by designing optimal agent objective

functions and optimal learning algorithms so that, even though each sub-entity is being controlled

independently, collectively they are able to accomplish the global objective. The agent objective

functions are designed with the knowledge that each agent has a set of available actions that they

may take (i.e. turn left/right, go straight). Then the individual UAV agents are programmed to

2

select the action that optimizes their agent function. Thus, two UAVs searching over the same

space might have respective agent objective functions that are optimized when the the UAVs are

instead searching for the hiker in separate locations (so as to cover more area). In recognizing this,

the UAVs would be controlled by their respective agent objective functions to separate.

Historically, these agent objective functions, also known as player objective functions, utility

functions, cost functions, or simply objective functions, have been approached from a social sciences

perspective, where research has focused largely on how to model individual players. However, when

thinking about distributed engineering systems, these objective functions are actually designed for

the agents that utilize them. And whereas social systems are inherently distributed, the underlying

structure of engineering systems requires them to become increasingly distributed as they grow in

complexity; that is, as some systems grow in size, the amount of total information may be too large

for efficient computations to be possible, or the total information available may be limited to each

sub-entity, or the space in which the sub-entities are operating might have inherent environmental

communication limitations among the entities.

It is the goal of the designer of a distributed engineering system to create these agent objective

functions so that the sub-entities operate in a way desired from a global perspective. Problems

arise when player objective functions force agents to make decisions in a way not optimal from the

global perspective. A designer can quantify and assess agent objective functions by comparing the

globally desired outcome to the global outcome that results from the induced dynamics of the agent

functions – in particular, the global outcomes for when every agent has locally optimized their own

objective function, and each agent cannot further improve their result by unilaterally modifying

their action. These “equilibria” are often the focus in player objective design, as there are many

dynamics that can reach them in engineering systems.

This thesis focuses on how to assess and quantify agent objective functions in distributed and

multi-agent systems, and discusses novel approaches in player objective function design. Although

3

we center on engineering systems, many of the results presented can also be applied to social

sciences settings.

1.2 Motivation

These engineering systems can be modeled as a game, where informally, a game is a set

of players, each with an available set of decisions or actions that they may select. These agents

make choices based on their individual objective functions which maps their decisions to a real

number. With their individual objective functions as the control, the agents make decisions that

will maximize or minimize their function (depending on the system design). In social science

settings, these individual objective functions may be unknown to an outsider, and therefore may

require modeling. Yet for engineering systems, these objective functions may be specified by a

designer. A centralized engineering system is one where the sub-entities are controlled from a

central location via a single control algorithm, and the optimal control is centrally solved. In

contrast, distributed systems are ones where the sub-entities are each controlled separately via

their own control algorithm. The UAV example system from Section 1.1 is one of many engineering

systems that can be viewed in a game theoretic setting where the player objective functions are

designed. Network routing provides another example, where it is often globally desired to minimize

power consumption or maximize transmission rates [12]. The quality of agent objective functions

is important as it directly influences the behavior that can result in a system [10, 12].

1.3 Thesis Outline

The structure of this thesis is as follows: in Chapter 2 we will provide thorough background

information on the thesis topic; we will introduce the model of interest, as well as the metrics that

will be used to assess designed agent objective functions. In Chapter 3, we will expand the bounds

of worst-case inefficiencies that may result in an engineering system for a wider class of games called

4

“smooth” games, and will present (existing) bounds on the best-case inefficiencies that may occur

in a certain game model called “potential games.” In Chapter 4, we focus on a specific type of

network game, called “reverse carpooling,” that has been thoroughly characterized in [12], and use

it to demonstrate the practicality of the contributions from Chapter 3. Following, in Chapter 5 we

discuss the novel method of creating new agent objective functions by convexly combining existing

ones, and bound the resulting inefficiencies from these new designs. In Chapter 6, we demonstrate

the utility of the results of the previous chapters on a model called a “resource allocation game.” In

this chapter, we also demonstrate some shortcomings of the previous contributions, and prove that

a specific agent objective function is optimal. We conclude with a discussion on the significance of

the thesis contributions and explore future research directions (Chapter 7).

1.4 Thesis Contributions

The major contributions from this thesis are the following:

• Existing worst-case system inefficiency bounds for a specific game, known as “smooth

games” from [20], is expanded to a wider set of games. The expansion is demonstrated to

parallel a similar bound that exists for the best-case system inefficiencies for games known

as “potential games.” This contribution extends upon prior work presented in [?], and

applies for all budget conditions and all equilibria types.

• A bound on the worst-case system inefficiencies for a “tunable” player objective function

for the reverse carpooling games in [12] is proven and is used to demonstrate the usefulness

of the previous contribution.

• A novel design method of convexly combining existing agent objective functions is intro-

duced, and bounds on the worst-case system inefficiencies of the resulting design are proven.

• A specific game model is introduced, and the significance of the previous contributions are

5

demonstrated in agent objective function designs for this game. The results are also used

to demonstrate limitations of the previous contributions. Additionally, an optimal agent

cost function is proven for these games.

• Additional insights on agent objective function design is provided throughout, and remain-

ing unanswered research questions are discussed.

This concludes the introductory chapter. In the next chapter we will present the background

information relevant to the rest of this thesis.

Chapter 2

Background

2.1 Outline

In this chapter, we provide thorough background information pertinent to the contents of

this thesis. Following a motivating example that demonstrates the inherent difficulties in agent

objective function design, we formally define cost minimization games and introduce the types of

equilibria considered in this thesis.

2.2 Example

We consider the following motivating example to illustrate the hardships that designers face

when making agent objective functions:

The Model:

• Consider two robots, 1 and 2, hiding from an enemy. Each robot only has the ability to

see nearby robots, but cannot communicate with them.

• A set of locations R = {1, 2, . . . ,m},1 where each location, r, has an associated value,

βr ∈ [0, 1], representing the independent probability of being found by the enemy in that

1Each location can be thought of as a resource; this is why we use R to represent this set.

7

location.

• Each robot (or agent), 1 and 2, has a set of locations, A1 ⊆ R and A2 ⊆ R, respectively,

that they may hide in. They may hide in only one location (single selection).

∗ We define action profiles as a = {a1, a2} ∈ A, with a1 ∈ A1 and A = A1 ×A2.

∗ We require that
∑
r∈R

βr = 1.

• The global objective is to not be detected by the enemy; that is, to not have any of the

robots be detected by the enemy.1

To realize the global objective, a designer would seek to minimize the total probability of any agent

being found by the enemy. This can be formulated by attempting to minimize the summed values

of the selected resources. We can express this using a global cost function, C : A → R, where

C(a) =
∑

r∈∪i∈Nai

βr. (2.1)

Alternatively, we could express this as

C(a) =
∑
r∈R

βr · 1(|a|r). (2.2)

where |a|r represents the integer number of players choosing location r, and where the indicator is

defined as

1(|a|r) =


1 |a|r > 0

0 |a|r = 0.

(2.3)

We note that the global objective is not binary, but rather is a gradient across all joint action

profiles a ∈ A. We now consider what is known to a designer for this example:

1Motivation behind this example stems from the movie Star Wars IV: A New Hope, where in the opening scene,

the robots C3P0 and R2D2 attempt to hide from the evil Darth Vader.

8

The Known Information:

• The designer knows the assigned probabilities, βr, for all locations r ∈ R.

• The designer knows that there are only two robots.

• The designer knows that the robots cannot communicate with each other.

• The designer knows that each robot knows if the other robot is in a location that’s in it’s

own location set.

In a centralized system, it would be straightforward control agents to select locations that

jointly minimizes the global objective. However, additional constraints on the designer might make

a centralized control impossible. In this example, we consider two constraints to the designer:

The Constraints:

• The designer is unsure about the possible hiding locations that are available to each robot.

• The designer cannot communicate with the robots when they are in this unknown environ-

ment.

The Design:

Given these constraint, a designer is tasked with designing a control algorithm to control the

individual robots based on (1) the location probability values, and (2) the number of other robots

in a location that is available to that robot. For this example, we consider the agent objective

functions that are designed to be minimized, and denote this as J : A → R. Clearly a designer

wishes to make an objective function that encourages agents to select locations which will minimize

the global cost function.

9

The Assessment Metrics:

Ideally, the designer would like to ensure desirable guarantees on the outcome of robots’ decisions

for each agent objective function that they design. These metrics are as follows:1 We consider only

the joint actions where both robots have finished minimizing their own agent objective function,

and where neither robot can further decrease their function outcome by selecting an alternative

location from their location set.

• Metric #1: Price of Anarchy: Out of these joint actions, we look at the resulting value of

the action that maximizes the global cost function, C. We divide this value by the lowest

value of the global cost function that is achievable out of any action profile in the joint

action set, A. We call this ratio of the worst-case inefficiency that might result in this

distributed system the “Price of Anarchy.”

• Metric #2: Price of Stability: Out of these joint actions, we look at the resulting value

of the action that minimizes the global cost function, C. We divide this value by the

lowest value of the global cost function that is achievable out of any action profile in the

joint action set, A. We call this ratio of the best-case inefficiency that might result in this

distributed system the “Price of Stability.”

For this thesis, we consider Metric #1 to be of greater importance than Metric #2. Hence, a

designer would like to make agent objective functions than minimize the resulting price of anarchy

and price of stability.

Suppose the set of locations for available to each player, and the (normalized)2 probability

values are those shown in Fig. 2.1. That is, agent 1 has access to locations 1 and 2, while agent 2

has access to locations 1 and 3.

1These assessment metrics are more rigorously defined in Section 2.6.
2That is, normalized by

∑
r∈{∪i∈NAi}

pr.

10

...

β2 = 0.2

.

β3 = 0.4

.β1 = 0.4.

(Optimal)

.
Agent 1

.
Agent 2

.
Location 2

.

Location 3

.

Location 1

Figure 2.1: Example game illustrating the difficulties in designing
player objective functions.

Possible Agent Objective Functions:

From a global perspective, the global cost function is minimized with a value of β2 = 0.4 when

both players select location 1. Two possible agent cost functions that might be implemented for

both agents are the following:

• The fixed cost function: this agent cost function is a direct relationship to the location

value. That is, Ji(a) = βai for each player i ∈ {1, 2}. We remark in this design, each player

is controlled without regard to the action of the other player.

∗ Assessment: Given the agent cost function, player 2 is indifferent to either location,

as both locations have the same value of 0.4. On the other hand, agent 1 will select

location 2 since this is a cost of 0.2, and therefore their individual objective function

is minimized by selecting resource 2. We see that the resulting global cost for action

profiles a = (2, 1) and a′ = (2, 3) are the same: C(a) = C(a′) = 0.2+0.4 = 0.6. Hence,

the price of anarchy and price of stability are equal and have a value of 0.6/0.4 = 1.5.

• The equal share cost function: this agent cost function is a direct relationship to the

location value, divided equally among the number of players selecting that resource. That

is, Ji(a) =
∑

r∈∪i∈Nai

βr

|a|r , where |a|r is the number of players that select location r.

∗ Assessment: Given this agent cost function, there are two possible scenarios: If agent 1

selects location 2, and agent 2 selects location 3, then neither will be controlled to

deviate from their decision, as player 1 will have maximized their agent cost function,

11

and agent 2 is indifferent between the locations in its action set. Alternatively, if both

players select location 1, then neither will have incentive to deviate, as the alternative

location in their action sets would strictly increase their agent objective function. We

see that the resulting global cost for these two action profiles a = (2, 3) and a′ = (1, 1)

are C(a) = 0.2 + 0.4 = 0.6 and C(a′) = 0.4. Hence, the price of anarchy is valued as

0.6/0.4 = 1.5, and the price of stability has a value of 0.4/0.4 = 1.

Given these two possible agent cost functions implemented in the setup of Fig. 2.1, we see that the

equal share cost function is more optimal in this game as, although it affords an equally worst-case

inefficiency to that of the fixed function, it affords a more optimal best-case result that matches

the globally desired output. Regardless, neither player cost function could successfully guarantee

the globally desired output. This simple example demonstrates the non-trivial problem of player

objective function design, and it illustrates how designs can lead to non-optimal outcomes in a

distributed system. It is the aim of the designer to assess and limit the inefficiencies that may arise

from these designs.

2.3 Control Algorithms: The Complete Picture

We recall the remarks in 1.1 that a control algorithm is comprised of an agent objective

function and a learning algorithm. The agent objective functions form the basis for the underlying

interactions for players in a given system, and may be designed so that an individual is influenced

by the decisions of other agents. For functions that are designed to be minimized, these functions

are represented with Ji : A → R.

The learning algorithm defines how agents process the information that is available to them

in order to make a decision on the action that it will take (given this agent objective function).

Many learning designs are well studied and include Cournot adjustment process, fictitious play, log-

linear learning, and others. These designs consider a sequence of one-shot games over time steps

12

t = {1, 2, . . . }, and (possibly) relies on the information from previous games to dynamically adjust

their effect on the control algorithm. Hence, an agent’s objective function outcome for action ai

at time t may be be different that the outcome at time t+ 1. Therefore each players’ action ai(t)

in the action profile a(t) = (a1(t), a2(t), . . . , an(t)) is selected using a designed learning algorithm

structured as

ai(t) = Πi ({a(1), a(2), . . . , a(t)}; Ji(·)) . (2.4)

A final control algorithm can then be formulated, and additional assessments can be made on the

completed control design. With this fundamental picture in mind, the thesis contributions herein

focus solely on the design of the agent objective function.

2.4 Cost Minimization Games

Before we detail the metrics used to assess and compare player objective functions, we must

first formally define the model that much of this thesis is based upon: cost minimization games.1

Except when specifically noted, this thesis focuses on systems with global cost functions, and

explores agent objective functions that are designed to be minimized by each agent.

Definition 1 (Cost Minimization Games). A family of cost minimization games, G, consists of:

• a set of agents N = {1, . . . ,m}2

• a collection of action sets Ai = {A′
i, A

′′
i , . . . } for each agent i ∈ N where

∗ a collection of joint action sets is A = {A(1), A(2), . . . } where A = Πi∈NAi for any

joint action set.

1Parallel definitions exist for games in which the player objective is to maximize their control function, and where

the global objective is to maximize a global function.
2We sometimes refer to these agents as players or sub-entities in this thesis.

13

∗ an action profile is a = {a1, . . . , am} ∈ A

• a set of player cost functions, Ji : A → R,1 for all i ∈ N and A ∈ A.

• a global cost function, C : A → R for all A ∈ A

We denote a family of cost minimization games as G = {N , {Ai}i∈N , {Ji}i∈N , C}, and define a

specific cost minimization game as G = {N ⊆ N , {Ai ∈ Ai}i∈N , {Ji}i∈N , C} ∈ G2.

We represent the joint action a = (a1, . . . , an) ∈ A in the conventionally accepted manner as

a = (ai, a−i), where ai indicates the action selected by player i, and a−i denotes the joint action

selected all players other than player i.

2.5 Equilibria Concepts

Player cost functions are commonly assessed by looking at the types of equilibria that might

occur in a game, as there are often many ways in which these stationary equilibria can be reached

via the dynamics that result from the individual control algorithms of each agent. This section

defines the three most common types of equilibria concepts that are considered in this thesis.3

2.5.1 Pure Nash Equilibrium

The most notorious equilibria concept in Game Theory is the pure Nash equilibrium (or more

commonly referred to as a Nash equilibrium, or pNE) originally presented by Nobel laureate Dr.

John F. Nash4 in his 28 page Princeton University Ph.D. mathematics thesis [16].

1For games in which the agent objective function is designed to be minimized, we use the notation, Ji to represent

the resulting cost to agent i.
2We sometimes denote {Ai}i∈N using the joint action set A.
3Parallel equilibria concepts exist for players with utility functions in games with global welfare functions.
4June 13, 1928 – May 23, 2015

14

Definition 2 (Pure Nash Equilibrium). An action profile a = (ai, a−i) ∈ A is a pure Nash equilib-

rium action if, for all a′i ∈ Ai and for all players i ∈ N ,

Ji(ai, a−i) ≤ Ji(a
′
i, a−i). (2.5)

A pure Nash equilibrium represents an action profile where no player i ∈ N can decrease

their agent cost function via a unilateral deviation. Since no individual player can decrease their

cost by selecting an alternative action, therefore no player has any incentive to unilaterally deviate

from their selected action. Thus, an equilibrium is achieved.

2.5.2 Mixed Nash Equilibrium

Almost equally famous is the mixed Nash equilibrium (mNE), a slightly more generalized

equilibria concept that is based on the probability that other players select a given action. We

consider each of n players i ∈ N to have a probability of selecting an action, ai ∈ Ai, with

independent probability p
(ai)
i such that

∑
ai∈Ai

p
(ai)
i = 1. We define a strategy to be a probability

distribution for player i over their action set Ai to be σi = {p(a1)i , p
(a2)
i , . . . } ∈ ∆(Ai). We define

σ = σ1 × · · · × σn to be the joint probability distribution that is generated from these independent

probability distributions of each player, and use the notation σai
i to represent the probability that

agent i will play action ai. Then the expected outcome of the player cost function for the joint

strategy s = (σ1, . . . , σn), given the joint probability distribution σ is denoted as Es∼σ[Ji(a)], where

Es∼σ[Ji(s)] =
∑
a∈A

Ji(a) · σa1
1 σa2

2 · · · σan
n . (2.6)

Definition 3 (Mixed Nash Equilibrium). A set of independent probability distributions

s = (σ1, . . . , σn) is a mixed Nash equilibrium if the product of these distributions, σ = σ1×· · ·×σn,

satisfies

Es∼σ[Ji(s)] ≤ Es−i∼σ−i [Ji(s
′
i, s−i)] (2.7)

15

for all s′i ∈ ∆(Ai) and for all players i ∈ N , where s−i = {si, . . . , si−1, si+1, . . . , sn} represents the

strategy set of all players other than player i, and where σ−i = σ1 × · · ·σi−1 × σi+1 × · · · × σn.

The motivation behind the definition for a mixed Nash equilibrium stems from the notion

that the actions of other agents may be a probability distribution over their action sets.

2.5.3 Coarse Correlated Equilibria

A coarse correlated equilibrium (CCE) is the broadest equilibria concept that we are con-

cerned with in this thesis. We look at probability distribution σ over the joint action set.

Definition 4 (Coarse Correlated Equilibrium). A joint probability distribution σ is a coarse cor-

related equilibrium if

Ea∼σ[Ji(a)] ≤ Ea∼σ[Ji(a
′
i, a−i)] (2.8)

for all a′i ∈ Ai and for all players i ∈ N .

The common motivation for this equilibrium concept is to consider the scenario where each

player i ∈ N is given a choice to opt out and select any action, ai ∈ Ai, or to opt in and play the

action ai that is assigned to them when an action a ∈ A is drawn randomly according to the joint

probability distribution σ. The coarse correlated equilibria is therefore when no player i ∈ N has

a unilateral incentive to opt out, given that all other players opt in.

We remark that every pNE is also a mNE, and every mNE is also a CCE; the reverse is not

necessarily true. Additionally, while not all games may have a pure Nash equilibrium, all finite

games have at least one mNE [17], and therefore also have at least one CCE.

16

2.6 Player Cost Function Metrics

With the equilibria concepts defined, we now present the metrics that we will use to the assess

player objective functions. The primary and secondary quantification techniques are the Price of

Anarchy and the Price of Stability.1

2.6.1 Price of Anarchy

The Price of Anarchy (PoA) is the ratio of the worst-case equilibrium of a global objective

function to that of a global optimal outcome, and is a method of quantifying the effectiveness of a

system when considering the selfish behavior of agents [11, 20]. Although often considered in terms

of the pNE, it also extends to the other equilibria concepts as well.

Definition 5 (Price of Anarchy). Consider a family of games G = {N , {Ai}i∈N , {Ji}i∈N , C}. For

a game G ∈ G, let ε(G) be the set of equilibria, and let a∗ ∈ A be the action that minimizes the

global objective function. The Price of Anarchy, PoA(G), is

PoA(G) := max
a∈ε(G)

C(a)

C(a∗)
, (2.9)

and the Price of Anarchy for the family of games G ∈ G, PoA(G), is

PoA(G) := sup
G∈G

PoA(G). (2.10)

2.6.2 Price of Stability

The Price of Stability (PoS) is the ratio of the best-case equilibrium of a global objective

function to that of a global optimal outcome, and is a method of quantifying the best-case in-

efficiencies of a system when considering the selfish behavior of agents [20, 24]. Similarly to the

1Parallel metrics exist for games with global welfare functions.

17

PoA, while the PoS is often considered in terms of the pNE, it also extends to the other equilibria

concepts.

Definition 6 (Price of Stability). Consider a family of games G = {N , {Ai}i∈N , {Ji}i∈N , C}. For

a game G ∈ G, let ε(G) be the set of equilibria, and let a∗ ∈ A be the action that minimizes the

global objective function. The Price of Stability, PoS(G), is

PoS(G) := min
a∈ε(G)

C(a)

C(a∗)
, (2.11)

and the Price of Stability for the family of games G ∈ G, PoS(G), is

PoS := sup
G∈G

PoS(G). (2.12)

From these definitions, we remark that

1 ≤ PoS(G) ≤ PoA(G) (2.13)

for all G ∈ G, and

1 ≤ PoS(G) ≤ PoA(G) (2.14)

We are interested in designing player objective functions that primarily minimize the PoA(G), and

secondarily minimize the PoS(G).

2.7 Summary

In Chapter 2 we introduced a brief overview and motivation behind the thesis topic. Follow-

ing, we defined cost minimization games, and reviewed the three equilibria concepts pertinent to

this thesis. We then defined the Price of Anarchy and the Price of Stability, the two agent cost

function assessment metrics. The contents of this chapter are by no means complete, and readers

are encouraged to review [2, 7, 9, 18, 19, 21, 22, 23, 26] and related works for more information on

game theory and multi-agent systems.

Chapter 3

Smooth Games, Potential Games, and the Budget

3.1 Outline

Chapter 2 introduced methods to quantify agent objective functions. However, finding the

PoS and PoA may be non-trivial, as it requires a deep understanding of how the game structure

and agent objective functions coalesce. Thus, it may instead be desired (and easier) to find a bound

on the PoA and PoS for a family of games. It therefore becomes a question of whether methods

exist to easily bound the resulting PoS and PoA of a family of games. Incredibly, for many game

sets, the answer is yes. This chapter presents two such methods that correspond to two games

known as smooth games and potential games. The significance of smooth games is that, given

minor constraints, they imply an upper bound on the PoA for all equilibria types, many cases

in which this bound is tight.1 The significance of potential games is that they imply an upper

bound on the PoS for all equilibria types. In this chapter, we will expand upon smooth games to

(1) decrease the implied bounds, and (2) grant bounds for a family of games. A significant topic

in this chapter focuses on the budget, which is a rigorous way of coupling the summation of agent

objective function outcomes to the global objective function outcome for the set of joint actions.

We begin by introducing smooth games, and reviewing the upper PoA bounds. Following,

1By tight we mean that for a family of games, G, there exists a game G ∈ G where the upper bound is strictly

equal to PoA(G)

19

we define the budget. Then we combine the budget with smooth games to this to expand the PoA

bounds currently afforded for smooth games. We then present bounds for the PoS for potential

games that are similar to those bounds for smooth games. The relevance of the results from this

chapter will be illustrated using example games in Chapters 4 and 6.

3.2 Smooth Games

A smooth game is a cost minimization game that satisfies a defined constraint. The motiva-

tion for introducing smooth games is that they admit an upper bound on the PoA; this bound is

equivalent across all equilibria types discussed in Chapter 2 [20].1

Definition 7 (Smooth Games [20]). A smooth game is a cost minimization game,

G = {N, {Ai}i∈N , {Ji}i∈N , C} that satisfies the smoothness argument:

∑
i∈N

Ji(a
∗
i , a−i) ≤ λ · C(a∗) + µ · C(a) (3.1)

for all actions a, a∗ ∈ A. A smooth game, G, is said to be (λ, µ)-smooth with smoothness parame-

ters λ and µ.

3.2.1 Smooth Game Upper PoA Bound

We present the PoA upper bound for a (constrained)2 smooth game now:

Theorem 1 (Smooth Game Upper PoA Bound (Constrained) [20]). Let a cost minimization game,

G = {N,A, {Ji}i∈N , C}, be (λ, µ)-smooth, where
∑
i∈N

Ji(a) = C(a), and where λ > 0 and µ < 1.

1An additional property exist that expands the set of smoothness parameters of a smooth game. However, as the

contribution of this property to player objective function design is uncertain, it is provided in Appendix C for the

more curious readers.
2By constrained we mean a cost minimization game G = {N,A, {Ji}i∈N , C}, with the constraint that

∑
i∈N

Ji(a) =

C(a).

20

Then for all equilibria types,

PoA(G) ≤ λ

1− µ
. (3.2)

We remark that there may exist a set of smoothness parameters, {(λ1, µ1), . . . , (λm, µm)},

that satisfy the smoothness argument for a given game. A notion called the robust PoA was

introduced to define the lowest bound on the PoA that could be proven using this set.

Definition 8 (Robust PoA (Constrained) [20]). For a (constrained) cost minimization game that

is (λ, µ)-smooth, the robust PoA is:

inf

{
λ

1− µ
: (λ, µ) such that the game is (λ, µ)− smooth and λ > 0 and µ < 1

}
. (3.3)

Fig. 3.1 plots the resulting upper PoA bound that is implied through Eq. (3.2) for some (λ, µ)

pairs satisfying λ > 0 and µ < 1.

Figure 3.1: The resulting upper PoA bound that is implied through
Eq. (3.1) for some (λ, µ) pairs satisfying λ > 0 and µ < 1.

21

3.2.2 The Budget

To upper bound the PoA for smooth games,1 we must first introduce the budget.

Definition 9 (Budget and Lower Budget). Consider a cost minimization game

G = {N,A, {Ji}i∈N , C}.

• The budget, B(G), is

B(G) := max
a∈A

 C(a)∑
i∈N

Ji(a)

 . (3.4)

For the family of games G ∈ G, the budget, B(G), is

B(G) := sup
G∈G

B(G). (3.5)

• The lower budget, B(G), is

B(G) := max
a∈A

 C(a)∑
i∈N

Ji(a)

 . (3.6)

For the family of games G ∈ G, the lower budget, B(G), is

B(G) := inf
G∈G

B(G). (3.7)

We say that the budget is in one of three states:2

(1) budget deficit when B(G) > 1;

(2) budget balanced when B(G) = 1;

(3) budget surplus when B(G) < 1.

1We omit the term constrained to mean that
∑

i∈N Ji(a) does not necessarily equal C(a).
2We remark that these budget conditions are strictly greater than zero, and strictly less than infinity.

22

3.2.3 Smooth Game Upper PoA Bound

The PoA upper bounds for smooth games are now expanded for a game with any budget

condition, and for all equilibria types.

Theorem 2 (Smooth Game PoA Upper Bound). Let a cost minimization game,

G = {N,A, {Ji}i∈N , C}, be (λ, µ)-smooth with budget B(G) satisfying λ > 0 and µB(G) < 1. Then

for all equilibria types,

PoA(G) ≤ λB(G)

1− µB(G)
. (3.8)

Proof. Assume a cost minimization game G = {N,A, {Ji}i∈N , C} that is (λ, µ)-smooth with budget

B(G), coarse correlated equilibrium σ, and where λ > 0 and µB(G) < 1. Consider any action

a = (ai, a−i) selected according to the joint probability distribution σ, and let a∗ = (a∗i , a
∗
−i) be the

action that minimizes C. Then by Eq. (3.1) we have:

Ea∼σ[C(a)] ≤ Ea∼σ

[
B(G)

(∑
i∈N

Ji(a)

)]
(3.9)

= B(G)

(∑
i∈N

Ea∼σ [Ji(a)]

)
(3.10)

≤ B(G)

(∑
i∈N

Ea∼σ [Ji(a
∗
i , a−i)]

)
(3.11)

= B(G) ·Ea∼σ

[∑
i∈N

Ji(a
∗
i , a−i)

]
(3.12)

≤ B(G) ·Ea∼σ [λC(a∗) + µC(a)] (3.13)

= λB(G) · C(a∗) + µB(G) ·Ea∼σ [C(a)] (3.14)

⇒ Ea∼σ[C(a)]

C(a∗)
≤ λB(G)

1− µB(G)
(3.15)

⇒ PoA(G) ≤ λB(G)

1− µB(G)
. (3.16)

23

Eq. (3.9) follows from the budget condition. The importance of Theorem 2 should not be

overlooked: incorporating the budget condition affords a bound on the PoA for smooth games for

all budget conditions, even in budget deficit scenarios, and tightens the PoA bound implied in

Section 3.2 for strictly budget relaxed scenarios. From a design perspective, this suggests that the

PoA bound for smooth games is less optimal when the budget is in deficit.

We similarly expand the definition for the robust PoA.1

Definition 10 (Robust PoA). The robust PoA for a cost minimization game, G, with budget B(G),

that is (λ, µ)-smooth is:

inf

{
λ

1− µ
: (λ, µ) such that the game is (λ, µ)− smooth and λ > 0 and µB(G) < 1

}
. (3.17)

3.3 Welfare Maximization Equivalence

We take a brief interlude on cost minimization games to present the equivalent theorems

for welfare maximization games. As the theorems in this section parallel those already presented,

we omit the proofs. We first present welfare maximization games, then we introduce welfare

maximization smooth games, define the budget conditions, and conclude with a theorem to bound

the PoA for this family of games. Following this section, we will focus entirely on cost minimization

game models.

Informally we define the family of welfare maximization games as the family of cost mini-

mization games G = {N , {Ai}i∈N , {Ji}i∈N , C} with two modifications:

• Instead of agent cost functions {Ji}i∈N that each agent aims to minimize, we have agent

utility functions, {Ui : A → R}i∈N that each agent aims to maximize.

1Additional theorems from [20] for repeated play and no-regret sequences are peripheral to the main contents of

this thesis topic; for completeness, the expansions for these theorems with the budget taken into account are provided

in Appendix A.

24

• Instead of a global cost function, C, that is desired to be minimized, we have a global

welfare function, W : A → R that is desired to be maximized.

Definition 11 (Smooth Games (Welfare Maximization) [20]). A (welfare maximization) smooth

game is a welfare maximization game, G = {N, {Ai}i∈N , {Ui}i∈N ,W} that satisfies the smoothness

argument:

∑
i∈N

Ui(a
∗
i , a−i) ≤ λ ·W (a∗)− µ ·W (a) (3.18)

for all actions a, a∗ ∈ A. A smooth game, G, is said to be (λ, µ)-smooth with smoothness parame-

ters λ and µ.

To upper bound the PoA for welfare maximization smooth games, we first introduce the

budget.

Definition 12 (Budget and Lower Budget (Welfare Maximization)). Consider a welfare maxi-

mization game G = {N,A, {Ji}i∈N , C}. The (lower) budget, BW (G), is

BW (G) := min
a∈A

 C(a)∑
i∈N

Ji(a)

 . (3.19)

For the family of games G ∈ G, the budget, BW (G), is

BW (G) := inf
G∈G

BW (G). (3.20)

For welfare maximization games, we consider the lower PoA bound, as we define the PoA to

be the welfare resulting from the worst-case equilibrium over the resulting welfare for the action that

maximizes this function. Hence, the resulting PoA will be no greater than one. The PoA lower

bounds for welfare maximization smooth games are now expanded for a game with any budget

condition, and for all equilibria types.

Theorem 3 (Smooth Game PoA Upper Bound). Let a welfare maximization game,

G = {N,A, {Ui}i∈N ,W}, be (λ, µ)-smooth with budget BW (G) satisfying λ > 0 and µBW (G) > −1.

25

Then for all equilibria types,

PoA(G) ≤ λBW (G)

1 + µBW (G)
. (3.21)

This concludes the section on welfare maximization games, and we now return to cost mini-

mizatoin games for the remainder of this thesis.

3.4 Potential Games

Potential games are games in which the change in every individual’s cost function can be

globally expressed by a potential function. These games are important in this thesis, as they are

useful in upper bounding the best-case game inefficiencies that might result in a system. We first

present the definition for an (exact) potential game, then we present the PoS upper bounds that

can be inferred by them.

Definition 13 (Exact Potential Game [12, 15]). An exact potential game is a cost minimization

game, G = {N,A, {Ji}i∈N , C}, with a global function, ϕ : A → R such that for every agent i ∈ N ,

every action a′i, a
′′
i ∈ Ai, and every action a−i ∈ A−i,

Ji(a
′
i, a−i)− Ji(a

′′
i , a−i) = ϕ(a′i, a−i)− ϕ(a′′i , a−i). (3.22)

For cost minimization games, the action(s) that minimize the potential function is also a pure

Nash equilibrium [12]. Thus, potential games have at least one pure Nash equilibrium. We also

remark that the pure Nash equilibrium action that defines the PoS, aNE , results in a potential at

least as low as any other action, a ∈ A, including the action that optimally minimizes the global

objective function, a∗. That is,

ϕ(aNE) ≤ ϕ(a∗) (3.23)

Using Eq. (3.23) to bound the Price of Stability is a well known technique referred as the potential

function method [21].

26

3.4.1 Potential Game Upper PoS Bound

We now aim to bound the resulting PoS. We first define upper and lower potential budgets

for the potential game, and use this the upper bound the PoS. It is remarkable how a budget is

used to bound both the PoA in Section 3.2.3 and the PoS in this section, and it draws attention to

a possible link between smooth and potential games.

Definition 14 (Potential Budget). Let a cost minimization game, G = {N,A, {Ji}i∈N , C}, be a

potential game with potential function ϕ.

• The upper potential budget, Bϕ(G), is defined as

Bϕ(G) := max
a∈A

[
C(a)

ϕi(a)

]
(3.24)

For the family of games G ∈ G, the upper potential budget, Bϕ(G), is defined as

Bϕ(G) := sup
G∈G

Bϕ(G) (3.25)

• The lower potential budget, Bϕ(G), is defined as

Bϕ(G) := min
a∈A

[
C(a)

ϕ(a)

]
(3.26)

For the family of games G ∈ G, the lower potential budget, Bϕ(G), is defined as

Bϕ(G) := inf
G∈G

Bϕ(G) (3.27)

Using Definition 14, we now introduce a bound on the PoS for potential games. The theorem is

not original, but is a more exact version of the theorem originally presented in [21] (see Appendix B

for original theorem).

Theorem 4 (Smoothness pNE PoS Bound1). 2 Let a cost minimization game

G = {N,A, {Ji}i∈N , C} be a potential game with potential function ϕ. Suppose the upper and lower

1See Appendix B for original theorem.
2We remind the reader that for a game G, PoS(G) ≥ 1.

27

potential budgets are Bϕ(G) and Bϕ(G), respectively, in the family of games, G. Then

PoS(G) ≤
Bϕ(G)

Bϕ(G)
≤

Bϕ(G)
Bϕ(G)

. (3.28)

Proof. Let a cost minimization game G = {N,A, {Ji}i∈N , C} be a potential game with potential

function ϕ, with upper potential budget Bϕ(G) and lower potential budget Bϕ(G). Let action

profile a = (ai, a−i) be the pure Nash equilibrium that minimizes the potential function (and is

therefore the action that defines PoS(G)), and let action profile a∗ = (a∗i , a
∗
−i) be the action that

minimizes C. Then

C(a) ≤ Bϕ(G) · ϕ(a) (3.29)

≤ Bϕ(G) · ϕ(a∗) (3.30)

≤ Bϕ(G) · C(a∗)

Bϕ(G)
(3.31)

⇒ C(a)

C(a∗)
≤

Bϕ(G)

Bϕ(G)
(3.32)

≤
Bϕ(G)
Bϕ(G)

. (3.33)

In regards to agent cost function design, Theorem 4 reveals how the price of stability of a

potential game is upper bounded more optimally1 when the upper and lower potential budgets have

minimal difference. Since the potential function is a direct result of the agent objective functions

of a game, a designer should consider this when creating these agent functions.

Additionally, re-framing Theorem 30 into a similar framework as that of the smooth game

PoA bound (Theorem 2) suggests a connection between smooth games and potential games, as the

role of a budget in each is similar.

1That is, the upper bound on the PoS is closer to 1.

28

3.5 Chapter Summary

In Chapter 3, we introduced smooth games. We then defined a budget for cost minimization

games, and used this budget to expand the implied bounds on the PoA for smooth games.

Although hypothesized, it remains an open question as to whether the budget always affects

the actual PoA for all smooth games (as the implied bound is not necessarily tight), as well as the

PoA for games that are not smooth.

One unanswered question is whether it would be useful in defining a player specific budget

for each player, rather than for the set of players. That is, considering a cost minimization game

G = {N,A, {Ji}i∈N , C}, a player budget, Bi(G), for each player i ∈ N could be defined as

Bi(G) = max
a∈A

C(a)

Ji(a)
, (3.34)

and would specify more precisely the role of budget for each player.

As noted in Section 3.4.1, Theorem 4 demonstrates how the PoS of a potential game will have

a more optimal upper bound when the upper and lower potential budgets have a smaller difference.

Designers that agent objective functions for cost minimization games that induce a potential func-

tion should keep this in mind. Additionally, the similar roles of the budget in Sections 3.2 and 3.4.1

suggests a connection between smooth games and potential games, and hints at a tradeoff between

the PoA and PoS upper bounds. Future research should investigate this postulation.

Chapter 4

Reverse Carpooling

4.1 Outline

Chapter 3 expanded the PoA bounds for smooth games to allow for any budget condition

(Theorem 2). This chapter will demonstrate the utility of those results by applying them to a specific

type of network coding resource allocation game known as reverse carpooling. After defining this

game, we introduce a generic agent function and bound the PoA. This specific game is used to

motivate the theory of Chapter 3 because it is already extensively studied in terms of the PoA and

PoS. We compare the results to functions designed in [12] and [?], and discuss the tightness of our

proof.

4.2 Reverse Carpooling

Research on network coding aims to maximize transmitted information, minimize power

consumption, and improve signal integrity [12]. A reverse carpooling game is one that aims to

reduce power consumption by transmitting two signals that are being transmitted in a network in

opposite directions at a given point with a single signal. The method, called reverse carpooling,

allows for any intermediate node to send the bitwise sum (XOR) of the two received signals, as the

recipients will then be able to decode their own message by subtracting away their own original

30

message. Fig. 4.1 illustrates this where two transmissions, a and b, are sent from nodes v1 and v3

via intermediate node v2. The intermediate node then broadcasts the XOR of these two messages

to the connected nodes, whereby each message can by deciphered. By doing this, the amount of

power required to send two separate signals in opposite directions on a network is equivalent to

sending a single signal in only one direction.

..v2.

a
⊕

b

. v3.v1 .

a

.

b

..v2.

a
⊕

b

. v3.v1 .

a

.

b

Figure 4.1: Illustration of reverse carpooling, as depicted in [12].

4.2.1 Game Definition

The reverse carpooling network is defined by the set of edges, E = {e1, . . . ek}, and the set of

vertices, V = {v1, . . . , vm}, The reverse carpooling game is defined by the following components:1

• a set of nodes V = {v1, . . . , vm},

• a set of edges E = {e1, . . . ek}, which connect two nodes to one another and is denoted

as el = (vk, vk+1). The set of nodes that are connected via a single vertex to node vi are

defined as the neighbors of vi, and denoted as N (vi)

• a finite set of agents N = {1, . . . , n}, where each agent is a source, si, and destination, ti,

pair, (si, ti) ∈ V 2

• action sets Ai for all agents i ∈ N , that is a set of transmission paths from si to ti that

agent i may take

∗ each action is a set of nodes; that is, action ai = {si, v2, . . . , v|ai|}, where |ai| is the

number of nodes in action ai, and vk+1 ∈ N (vk)

1We define this game from [12, ?].

31

– a unique detailed path for action path ai can be denoted in a reverse carpooling

game from a source node to a destination node as

I(ai) := {v1[∅, v2], v2[v1, v3], . . . , v|ai|−1[v|ai|−2, ti]}, (4.1)

where, for agent i ∈ N , |ai| represents the length of action path ai, and

vx[vx−1, vx+1] represents the path from node vx−1 to node vx+1 through inter-

mediate node vx; hence, a agent’s path is comprised of a set of nodes, with

directionality

∗ the joint action set A = Πi∈NAi represents the set of all transmission paths that can

be taken by all agents

– for any a ∈ A, we use |a|v[vx,vy] to represent the number of agents sending a

transmission from node vx to vy via node v, i.e.

|a|v[vx,vy] := |{i ∈ N : v[vx, vy] ∈ I(ai)}| (4.2)

• agent cost functions, Ji : A → R, that is a function of the number of agents that send

a transmission in the same direction as agent i at a given node, and the set of agents

T ⊆ N that send a transmission in the opposite direction as agent i at a given edge; that

is, Ji(a) =
∑

v[vx,vy]∈I(ai)
f(i, {a}v[vx,vy], {a}v[vx,vy]); we remark that this agent cost function

is designed to be oblivious to the network topology

• a system cost C : A → R which is the total number of unique transmissions sent in the

network; we elaborate on this cost now:

∗ the cost for transmission at a node v ∈ V for an action profile a ∈ A is

Cv(a) :=
∑

(vx,vy)∈N (v)2:x>y

max{|a|v[vx,vy], |a|v[vy ,vx]} (4.3)

32

∗ the system cost is defined as C(a) :=
∑
v∈V

Cv(a)

A reverse carpooling games is denoted as G = {N,A, {Ji}i∈N , C}1

We introduce alternative notation to facilitate agent cost function design. We represent the

number of nodes on player i’s path where the number of transmissions going in the same direction

as player i’s transmission is strictly greater than the number of transmissions going in the opposite

direction as N
(>)
i , and define it using the indicator function 1{·} as

N
(>)
i (a) =

∑
v[vx,vy]∈I(ai)

1{v[vx, vy] > v[vx, vy]}. (4.4)

Likewise we define N
(<)
i (a) and N

(=)
i (a) using similar definitions, where N

(=)
i (a) represents the

number of nodes with an equal number of transmissions going in either direction, and whereN
(<)
i (a)

is the number of nodes on player i’s path such that the number of transmissions going in the same

direction is strictly less than the number of transmissions going in the opposite direction.

Then the fraction that an individual player, i ∈ N , contributes to the system cost can be

denoted as Vi : A → R, where

Vi(a) := N
(>)
i (a) +

1

2
N

(=)
i (a), (4.5)

And the system cost, C, is [12]

C(a) =
∑
i∈N

Vi(a). (4.6)

4.2.2 Generic Agent Cost Function

Using the previous notation, we can broadly define an agent cost function as

J
(g)
i (a;α, β, γ) = αN

(>)
i (a) + βN

(=)
i (a) + γN

(<)
i (a), (4.7)

1A specific reverse carpooling game is denoted as G = {N,A, {Ji}i∈N , C, {E, V }}, with the game network defined

by the edge and node sets.

33

for any constants, α, β, and γ that are each non-negative real numbers. We call this the generic

agent cost function. We use the term generic to imply that a designer of this agent cost function

would need to specify the constants before implementing it in a reverse carpooling setting.

4.3 PoA Bound on the Generic Agent Cost Function

Using the results from Chapter 3, the PoA of a broadly defined agent cost function can be

bounded.

Theorem 5 (Reverse Carpooling: Generic Player Cost Function PoA Bound). Let any reverse

carpooling game G = {N,A, {J (g)
i }i∈N , C} ∈ G implement player cost function

J
(g)
i (a;α, β, γ) = αN

(>)
i (a) + βN

(=)
i (a) + γN

(<)
i (a), (4.8)

for all i ∈ N , with constants, α, β, γ ∈ R+. Then the game is a (λ, µ)-smooth game with

λ = 2 ·max{α, β, γ} (4.9)

µ = 0. (4.10)

Furthermore, the game has a (upper) budget, B(G), bound above by

B(G;α, β, γ) ≤ 1

min{α, 2β}
, (4.11)

and has a PoA upper bounded by

1 ≤ PoA(G) ≤ 2 · max{α, β, γ}
min{α, 2β}

. (4.12)

Proof. Consider a reverse carpooling game G = {N,A, {J (g)
i }i∈N , C} ∈ G that implements player

cost function

J
(g)
i (a;α, β, γ) = αN

(>)
i (a) + βN

(=)
i (a) + γN

(<)
i (a), (4.13)

34

for all i ∈ N , and with constants, α, β, γ ∈ R+. The smoothness parameters for this player cost

function are derived for any actions a = (ai, a−i), a∗ = (a∗i , a
∗
−i) ∈ A as follows:

∑
i∈N

J
(g)
i (a∗i , a−i;α, β, γ) =

∑
i∈N

[
αN

(>)
i (a∗i , a−i) + βN

(=)
i (a∗i , a−i) + γN

(<)
i (a∗i , a−i)

]
(4.14)

≤
∑
i∈N

[max{α, β, γ} · |I(a∗i)|] (4.15)

= max{α, β, γ} ·
∑
i∈N

[
N

(>)
i (a∗i) +N

(=)
i (a∗i) +N

(<)
i (a∗i)

]
(4.16)

≤ max{α, β, γ} ·
∑
i∈N

[
2N

(>)
i (a∗i) +N

(=)
i (a∗i)

]
(4.17)

= 2 ·max{α, β, γ} ·
∑
i∈N

[
N

(>)
i (a∗i) +

1

2
N

(=)
i (a∗i)

]
(4.18)

= 2 ·max{α, β, γ} · C(a∗) (4.19)

Comparing this to Eq. (3.1), we have that the family of games is smooth with smooth parameters

λ = 2 ·max{α, β, γ} (4.20)

µ = 0. (4.21)

Note that |I(a∗i)| in Eq. (4.15) is the total number of nodes that are on player i’s path. Eq. (4.17)

follows since
∑
i∈N

N
(>)
i (a) ≥

∑
i∈N

N
(<)
i (a). By Theorem 2, the PoA is bound above by

PoA(G;α, β, γ) ≤ λB(G;α, β, γ)

1− µB(G;α, β, γ)
(4.22)

where the budget, B(G;α, β, γ), is defined as

B(G;α, β, γ) = max
a∈A

 C(a)∑
i∈N

Ji(a;α, β, γ)

 . (4.23)

Finding an upper bound on B(G;α, β, γ), we have:

B(G;α, β, γ) = max
a∈A

 C(a)∑
i∈N

Ji(a)

 (4.24)

= max
a∈A

 C(a)∑
i∈N

(
αN

(>)
i (a) + βN

(=)
i (a) + γN

(<)
i (a)

)
 (4.25)

35

≤ max
a∈A

 C(a)∑
i∈N

(
αN

(>)
i (a) + βN

(=)
i (a)

)
 (4.26)

≤ max
a∈A

 C(a)

min{α, 2β} ·
∑
i∈N

(
N

(>)
i (a) + 1

2N
(=)
i (a)

)
 (4.27)

= max
a∈A

(
C(a)

min{α, 2β} · C(a)

)
(4.28)

= max
a∈A

(
1

min{α, 2β}

)
(4.29)

=
1

min{α, 2β}
. (4.30)

Then from Eq. (4.22),

PoA(G;α, β, γ) ≤ 2 · max{α, β, γ}
min{α, 2β}

. (4.31)

Corollary 1. The upper bound on the price of anarchy from Theorem. 5 is minimized when

2β ≥ α ≥ max{β, γ} ≥ min{β, γ}. (4.32)

This result motivates the findings from Chapter 3, as it provides a generic player cost function

that can be “tuned” by a designer so that an upper bound on the PoA can be guaranteed.

We remark that the authors of [12] proved that the price of anarchy for the set of reverse

carpooling games which implement any player cost function as constrained by Section 4.2.1 was no

less than two [12].

4.4 Summary

In this chapter we reviewed reverse carpooling, and used it as a way to demonstrate how

Theorem 2 from Chapter 3 can be applied to a broadly defined agent cost function to substantially

decrease the set of optimal agent cost functions. This game, combined with the broadly defined

36

generic agent cost function, beautifully demonstrates the simplicity in affording worst-case efficiency

guarantees across a broad spectrum of agent functions. We remark that no effort was even spent

in determining the actual budget; rather the budget was only bounded.

We remark that this example does not demonstrate the utility of the potential PoS bound as

discussed in Section 3.4.1. The reason is that there does not exist an exact potential function for

the generic agent cost function.1

The next chapter will seek to design player cost functions by convexly combining multiple

player cost functions, and will prove bounds on the resulting PoA and PoS of their respective games.

1We do remark that the PoS for reverse carpooling games that utilizes an agent cost function defined in [?] called

the z cost function, can be found using the theorems introduced in Section 3.4.1. (Note that the z cost function in [?]

is a translation of the α cost function originally presented in [12].)

Chapter 5

Convexly Combining Player Objective Functions

5.1 Outline

This chapter delves into the novel method of designing new player cost functions by convexly

combining existing ones. In the following chapter, we will present an example game showing this

method has the potential to result in an improved player objective function.

This chapter seeks to bound the resulting PoA for games with a player objective function

defined from a convex combination. We focus on smooth games, and use the theorems presented in

Chapter 3. While we present the ideas in context of games with a global cost function, we remark

that parallel theorems exist for games with global welfare functions. With the goal of bounding the

PoA in a game with a convexly combined cost function, we work sequentially: first we show that

two smooth games with specific player objective functions can be convexly combined to produce

a smooth game; then we show bounds on the resulting budget; following we show that artifacts

from individual smooth games will continue existing in a convexly combined smooth game; lastly

we show PoA bounds on the resulting smooth game. Although we don’t make broad claims on the

tightness of the resulting bounds for all smooth games, we will show in Chapter 6 that for some

game types, the bounds in this Chapter are tight. Table 5.1 presents a tabulated organization of

the theorems in this chapter, and summarizes the results that precede the main objective of this

chapter; that is, Theorem 10 (and Corollary 2).

38

Table 5.1: Roadmap to Theorem 10

Theorem Significance

Theorem 6
This shows that the convex combination of two smooth cost minimization games
that are equal in all aspects except for their agent cost functions results in a
game, G∗, that is also smooth.

Theorem 7 B(G∗; z) ≤ B(G)B(G′)
(1−z)B(G′)+zB(G)

Theorem 8 B(G∗; z) ≥ B(G)B(G′)

(1−z)B(G′)+zB(G)

Theorem 9 λ(CC)B(G∗; z) > 0 and µ(CC)B(G∗; z) < 0

Theorem 10 PoA(G∗; z) ≤ λ(CC)(z)·B(G∗;z)
1−µ(CC)(z)·B(G∗;z)

Corollary 2

λ(CC)(z)·B(G∗;z)
1−µ(CC)(z)·B(G∗;z)

≥ λ(CC)(z)·B(G)B(G′)

((1−z)B(G′)+zB(G))−µ(CC)(z)·B(G)B(G′)
λ(CC)(z)·B(G∗;z)

1−µ(CC)(z)·B(G∗;z)
≤ λ(CC)(z)·B(G)B(G′)

((1−z)B(G′)+zB(G))−µ(CC)(z)·B(G)B(G′)

It is important to recognize that the results from this chapter can be applied to an arbitrary

number of player objective functions. For example, we can design a new player objective function

from three player objective functions by first convexly combining two of them, and then convexly

combining the result with the third; however, we focus on the foundational idea of combining two,

and leave it to a designer to utilize the tools as fitting to their circumstances.

5.2 Convex Combinations of Player Objective Functions in Smooth Games

We begin by showing that a convex combination of any two player cost functions of two

smooth games will result in a smooth game with convexly combined smoothness parameters.

Theorem 6. Let two smooth games be G = {N,A, {Ji}i∈N , C} and G′ = {N,A, {J ′
i}i∈N , C}, that

are identical aside from their player cost functions. Suppose each game, G and G′, is (λ, µ)-smooth

and (λ′, µ′)-smooth. Then a convex combination of the player cost functions, J
(CC)
i : A → R, where

J
(CC)
i (a; z) = (1− z) · Ji(a) + z · J ′

i(a) (5.1)

with z ∈ [0, 1], results in a
(
(1− z) · λ+ z · λ′, (1− z) · µ+ z · µ′)-smooth game, G∗.

Proof. Suppose there exist two smooth games, G = {N,A, {Ji}i∈N , C} andG′ = {N,A, {J ′
i}i∈N , C},

39

that are identical aside from their (possibly) unique player cost functions, and that are (λ, µ)-smooth

and (λ′, µ′)-smooth, respectively.

Consider a new player cost function for all i ∈ N , J
(CC)
i : A → R; z, that is a convex

combination of the two player cost functions from each game:

J
(CC)
i (a; z) = (1− z) · Ji(a) + z · J ′

i(a) (5.2)

for z ∈ [0, 1]. From the definition of a smooth game (Definition 7) we know that∑
i∈N

Ji(a
∗
i , a−i) ≤ λ · C(a∗) + µ · C(a) (5.3)

and ∑
i∈N

J ′
i(a

∗
i , a−i) ≤ λ′ · C(a∗) + µ′ · C(a) (5.4)

∀a, a∗ ∈ A. Then it is trivially true that

(1− z) ·
∑
i∈N

Ji(a
∗
i , a−i) ≤ (1− z) · λ · C(a∗) + (1− z) · µ · C(a) (5.5)

and

z ·
∑
i∈N

J ′
i(a

∗
i , a−i) ≤ z · λ′ · C(a∗) + z · µ′ · C(a) (5.6)

∀a, a∗ ∈ A. By combining Eqs. (5.2), (5.5), and (5.6), we have that∑
i∈N

J
(CC)
i (a∗i , a−i; z) = (1− z) ·

∑
i∈N

Ji(a
∗
i , a−i) + z ·

∑
i∈N

J ′
i(a

∗
i , a−i)

≤ (1− z) · λ · C(a∗) + (1− z) · µ · C(a) + z · λ′ · C(a∗) + z · µ′ · C(a)

(5.7)

⇒
∑
i∈N

J
(CC)
i (a∗i , a−i; z) ≤ (1− z) · λ · C(a∗) + (1− z) · µ · C(a) + z · λ′ · C(a∗) + z · µ′ · C(a)

(5.8)

⇒
∑
i∈N

J
(CC)
i (a∗i , a−i; z) ≤

(
(1− z) · λ+ z · λ′) · C(a∗) +

(
(1− z) · µ+ z · µ′) · C(a) (5.9)

By comparing Eq. (5.9) to Definition 7 and Eq. (3.1), we see that the resulting game is a(
(1− z) · λ+ z · λ′, (1− z) · µ+ z · µ′)-smooth game, G∗.

40

5.3 Budget Bounds for Convexly Designed Player Cost Functions

We now prove upper and lower bounds on the budget of a smooth game that results from a

convex combination of two player cost functions in associated smooth games.

Theorem 7. Consider two smooth games, G = {N,A, {Ji}i∈N , C} and G′ = {N,A, {J ′
i}i∈N , C},

that are identical aside from their player cost functions. Suppose each game, G and G′, is (λ, µ)-

smooth and (λ′, µ′)-smooth with budget conditions, B(G) and B(G′). Then a convex combination

of these two player cost functions, J
(CC)
i : A → R, where

J
(CC)
i (a; z) = (1− z) · Ji(a) + z · J ′

i(a) (5.10)

for z ∈ [0, 1], will produce a smooth game G∗ with budget, B(G∗; z), bounded above by

B(G∗; z) ≤ B(G)B(G′)

(1− z)B(G′) + zB(G)
. (5.11)

Proof. Suppose there exist two smooth games, G = {N,A, {Ji}i∈N , C} andG′ = {N,A, {J ′
i}i∈N , C},

that are identical aside from their (possibly) unique player cost functions, and that are (λ, µ)-

smooth and (λ′, µ′)-smooth, respectively. Suppose also that they have associated budget conditions,

B(G) and B(G′), respectively. Define a convex combination of these two player cost functions,

J
(CC)
i : A → R, as

J
(CC)
i (a; z) = (1− z) · Ji(a) + z · J ′

i(a), (5.12)

for z ∈ [0, 1], and denote the resulting smooth game as G∗. Then the budget that we desire to bound

above is B(G∗; z). Trivially the theorem holds with equality for z = 0 and z = 1. Henceforth, let

z ∈ (0, 1). Without loss of generality, let actions â and a′ be the actions that define B(G) and

B(G′). That is,

B(G) = max
a∈A

C(a)∑
i∈N

Ji(a)
=

C(â)∑
i∈N

Ji(â)
(5.13)

41

and

B(G′) = max
a∈A

C(a)∑
i∈N

Ji(a)
=

C(a′)∑
i∈N

Ji(a′)
. (5.14)

We now consider

B(G∗; z) = max
a∈A

C(a)∑
i∈N

Ji(a)
=

C(a(CC))∑
i∈N

Ji(a(CC))
(5.15)

where a(CC) may or may not be equal to â or a′. By definition, we see that

B(G) =
C(â)∑

i∈N
Ji(â)

≥ C(a(CC))∑
i∈N

Ji(a(CC))
(5.16)

and

B(G′) =
C(a′)∑

i∈N
J ′
i(a

′)
≥ C(a(CC))∑

i∈N
J ′
i(a

(CC))
(5.17)

That is to say, the action that defines the budget for each respective player cost function is not less

than the action that defines the budget for the convexly defined player cost function. Looking at

the inverses, we have that ∑
i∈N

Ji(â)

C(â)
≤

∑
i∈N

Ji(a
(CC))

C(a(CC))
(5.18)

and ∑
i∈N

J ′
i(a

′)

C(a′)
≤

∑
i∈N

J ′
i(a

(CC))

C(a(CC))
(5.19)

Then trivially, the inequality of a convex combination of Eqs. (5.18) and (5.19) holds. That is, for

z ∈ (0, 1),

(1− z)

∑
i∈N

Ji(â)

C(â)
+ z

∑
i∈N

J ′
i(a

′)

C(a′)
≤ (1− z)

∑
i∈N

Ji(a
(CC))

C(a(CC))
+ z

∑
i∈N

J ′
i(a

(CC))

C(a(CC))
(5.20)

=

(1− z)
∑
i∈N

Ji(a
(CC)) + z

∑
i∈N

J ′
i(a

(CC))

C(a(CC))
(5.21)

=
1

B(G∗; z)
(5.22)

⇒ (1− z)
1

B
+ z

1

B′ ≤
1

B(G∗; z)
(5.23)

⇒ B(G∗; z) ≤ B(G)B(G′)

(1− z)B(G′) + zB(G)
. (5.24)

42

The significance of Theorem 7 is that it bounds the resulting budget of a smooth game that

results from a convex combination of two player cost functions. In the next section, this theorem

will aid in bounding the PoA for this resulting smooth game. As an example illustrating this upper

bound on B(G∗; z) is shown in Fig. 5.1 for B(G) = 1 and B(G′) = 10.

Figure 5.1: An example scenario of the upper bound afforded by
Theorem 7 showing the upper bound on B(G∗; z) for when B(G) = 1
and B(G′) = 10.

A similar theorem to Theorem 7 defines a lower bound on B(G∗; z):

Theorem 8. Consider two smooth games, G = {N,A, {Ji}i∈N , C} and G′ = {N,A, {J ′
i}i∈N , C},

that are identical aside from their player cost functions. Suppose each game, G and G′, is (λ, µ)-

smooth and (λ′, µ′)-smooth and have associated lower budget conditions, B(G) and B(G′). Then a

convex combination of these two player cost functions, J
(CC)
i : A → R, where

J
(CC)
i (a; z) = (1− z) · Ji(a) + z · J ′

i(a), (5.25)

for z ∈ [0, 1], will produce a smooth game, G∗, with a lower budget, B(G∗; z), bounded below by

B(G∗; z) ≥ B(G)B(G′)

(1− z)B(G′) + zB(G)
. (5.26)

43

Proof. Suppose there exist two smooth games, G = {N,A, {Ji}i∈N , C} andG′ = {N,A, {J ′
i}i∈N , C},

that are identical aside from their (possibly) unique player cost functions, and that are (λ, µ)-smooth

and (λ′, µ′)-smooth, respectively. Suppose also that they have associated lower budget conditions,

B(G) and B(G′), respectively. Define a convex combination of these two player cost functions,

J
(CC)
i : A → R, as

J
(CC)
i (a; z) = (1− z) · Ji(a) + z · J ′

i(a), (5.27)

for z ∈ [0, 1]. Denote the budget of J
(CC)
i that we desire to bound below as B(G∗; z). Trivially

the theorem holds with equality for z = 0 and z = 1. Henceforth, let z ∈ (0, 1). Without loss of

generality, let actions â and a′ be the actions that define B(G) and B(G′). That is,

B(G) = min
a∈A

C(a)∑
i∈N

Ji(a)
=

C(â)∑
i∈N

Ji(â)
(5.28)

and

B(G′) = min
a∈A

C(a)∑
i∈N

Ji(a)
=

C(a′)∑
i∈N

Ji(a′)
. (5.29)

We now consider

B(G∗; z) = min
a∈A

C(a)∑
i∈N

Ji(a)
=

C(a(CC))∑
i∈N

Ji(a(CC))
(5.30)

where a(CC) may or may not be equal to â or a′. By definition, we see that

B(G) =
C(â)∑

i∈N
Ji(â)

≤ C(a(CC))∑
i∈N

Ji(a(CC))
(5.31)

and

B(G′) =
C(a′)∑

i∈N
J ′
i(a

′)
≤ C(a(CC))∑

i∈N
J ′
i(a

(CC))
(5.32)

That is to say, the action that defines the minimum budget for each respective player cost function

is not more than the action that defines the budget for the convex combination of the two. Looking

at the inverse, we have that ∑
i∈N

Ji(â)

C(â)
≥

∑
i∈N

Ji(a
(CC))

C(a(CC))
(5.33)

44

and ∑
i∈N

J ′
i(a

′)

C(a′)
≥

∑
i∈N

J ′
i(a

(CC))

C(a(CC))
(5.34)

Then trivially, the inequality of a convex combination of Eqs. (5.33) and (5.34) holds. That is, for

z ∈ (0, 1),

(1− z)

∑
i∈N

Ji(â)

C(â)
+ z

∑
i∈N

J ′
i(a

′)

C(a′)
≥ (1− z)

∑
i∈N

Ji(a
(CC))

C(a(CC))
+ z

∑
i∈N

J ′
i(a

(CC))

C(a(CC))
(5.35)

=

(1− z)
∑
i∈N

Ji(a
(CC)) + z

∑
i∈N

J ′
i(a

(CC))

C(a(CC))
(5.36)

=
1

B(G∗; z)
(5.37)

⇒ (1− z)
1

B(G)
+ z

1

B(G′)
≥ 1

B(G∗; z)
(5.38)

⇒ B(G∗; z) ≥ B(G)B(G′)

(1− z)B(G′) + zB(G)
. (5.39)

The importance of Theorem 8 is this: it limits the lowest upper bound provable for a smooth

game that results from a convexly designed player cost function.

5.4 Smooth Game PoA Upper Bound of a Convex Design

The following theorem will help in establishing a bound on the PoA for a game resulting from

a convexly designed player cost function; theorem 7 will be used to prove it.

Theorem 9. Consider two smooth games, G = {N,A, {Ji}i∈N , C} and G′ = {N,A, {J ′
i}i∈N , C},

that are identical aside from their player cost functions. Suppose each game, G and G′, is (λ, µ)-

smooth and (λ′, µ′)-smooth with budget conditions, B(G) and B(G′), such that λB(G) > 0 and

µB(G) < 1, and λ′B(G′) > 0 and µ′B(G′) < 1. Then a player cost function that is a convex

combination of that from each respective game will result in a (λ(CC), µ(CC))-smooth game, G∗,

with a budget, B(G∗; z), where λ(CC)B(G∗; z) > 0 and µ(CC)B(G∗; z) < 1.

45

Proof. Suppose there exist two smooth games, G = {N,A, {Ji}i∈N , C} andG′ = {N,A, {J ′
i}i∈N , C},

that are identical aside from their (possibly) unique player cost functions, and that are (λ, µ)-smooth

and (λ′, µ′)-smooth, respectively. Suppose also that they have associated budget conditions, B(G)

and B(G′), such that λB(G) > 0 and µB(G) < 1, and λ′B(G′) > 0 and µ′B(G′) < 1.

Consider the player cost function, J
(CC)
i : A → R, that is a convex combination of the two

player cost functions from each game; that is,

J
(CC)
i (a; z) = (1− z) · Ji(a) + z · J ′

i(a) (5.40)

for z ∈ [0, 1]. From Theorem 6, we have that a player cost function which is a convex combination

of that from each respective game will result in a (λ(CC), µ(CC))-smooth game, where

λ(CC)(z) = (1− z) · λ+ z · λ′ (5.41)

µ(CC)(z) = (1− z) · µ+ z · µ′. (5.42)

From remarks in Section 3.2.2, we note that a budget B(G∗; z) is strictly greater than zero for

all z ∈ [0, 1]. When looking at z = 0 and z = 1, we see that since λB(G) > 0 and λ′B(G′) > 0,

therefore λ > 0 and λ′ > 0. Hence, for z ∈ [0, 1], (1−z)·λ+z ·λ′ > 0. Therefore, λ(CC)B(G∗; z) > 0.

From Theorem 7, we have that

B(G∗; z) ≤ B(G)B(G′)

(1− z)B(G′) + zB(G)
. (5.43)

46

Finding an upper bound on µ(CC)B(G∗; z) we have:

µ(CC)B(G∗; z) ≤ µ(CC)

(
B(G)B(G′)

(1− z)B(G′) + zB(G)

)
(5.44)

=
(
(1− z) · µ+ z · µ′)(B(G)B(G′)

(1− z)B(G′) + zB(G)

)
(5.45)

=

(
(1− z) · µB(G)B(G′) + z · µ′B(G)B(G′)

(1− z)B(G′) + zB(G)

)
(5.46)

=

(
(µB) · (1− z)B(G′) + µ′ (B′) · zB(G)

(1− z)B(G′) + zB(G)

)
(5.47)

<

(
1 · (1− z)B(G′) + 1 · zB(G)

(1− z)B(G′) + zB(G)

)
(5.48)

=

(
(1− z)B(G′) + zB(G)

(1− z)B(G′) + zB(G)

)
(5.49)

= 1 (5.50)

⇒ µ(CC)B(G∗; z) < 1. (5.51)

Theorem 10. Consider two smooth games, G = {N,A, {Ji}i∈N , C} and G′ = {N,A, {J ′
i}i∈N , C},

that are identical aside from their player cost functions. Suppose each game, G and G′, is (λ, µ)-

smooth and (λ′, µ′)-smooth with budgets B(G) and B(G′), such that λB(G) > 0 and µB(G) < 1,

and λ′B(G′) > 0 and µ′B(G′) < 1. Then a player cost function that is a convex combination of that

from each respective game will result in a (λ(CC), µ(CC))-smooth game, G∗ with a budget, B(G∗; z),

where PoA(G∗; z) for all equilibria types is bound above by

PoA(G∗; z) ≤ λ(CC)(z) ·B(G∗; z)

1− µ(CC)(z) ·B(G∗; z)
(5.52)

for all z ∈ [0, 1], where

λ(CC)(z) = (1− z) · λ+ z · λ′ (5.53)

µ(CC)(z) = (1− z) · µ+ z · µ′. (5.54)

Proof. The proof follows by combining Theorems 2, 6, and 9.

47

Corollary 2. The right side of the inequality of Eq. (5.52) in Theorem 10 is lower bounded such

that

λ(CC)(z) ·B(G∗; z)

1− µ(CC)(z) ·B(G∗; z)
≥

λ(CC)(z) · B(G)B(G′)

(1−z)B(G′)+zB(G)

1− µ(CC)(z) · B(G)B(G′)

(1−z)B(G′)+zB(G)

(5.55)

=
λ(CC)(z) ·B(G)B(G′)

((1− z)B(G′) + zB(G))− µ(CC)(z) ·B(G)B(G′)
(5.56)

and upper bounded such that

λ(CC)(z) ·B(G∗; z)

1− µ(CC)(z) ·B(G∗; z)
≤

λ(CC)(z) · B(G)B(G′)
(1−z)B(G′)+zB(G)

1− µ(CC)(z) · B(G)B(G′)
(1−z)B(G′)+zB(G)

(5.57)

=
λ(CC)(z) ·B(G)B(G′)

((1− z)B(G′) + zB(G))− µ(CC)(z) ·B(G)B(G′)
(5.58)

for all z ∈ [0, 1], where

λ(CC)(z) = (1− z) · λ+ z · λ′ (5.59)

µ(CC)(z) = (1− z) · µ+ z · µ′. (5.60)

Proof. The proof for the lower bound presented in Eq. (5.56) follows by combining Theorem 8

with Theorem 10. The proof for the upper bound presented in Eq. (5.58) follows by combining

Theorem 7 with Theorem 10.

The significance of Theorem 10 and Corollary 2 is that the smooth game which results from

the convex combination of two player cost functions of two separate smooth games has a PoA that

is non-trivially bounded for all equilibria types.

5.5 Summary

In this chapter, we considered the method of designing player cost functions by convexly

combining existing functions for their respective smooth games, and showed an upper bound on

the PoA of the resulting game. We showed the following properties:

48

• the resulting game is also smooth, and has smoothness parameters that are a convex com-

bination of the smoothness parameters of each respective game (Theorem 6);

• the (upper) budget of the resulting game is bounded above by Eq. (5.11) (Theorem 7);

• the lower budget of the resulting game is bounded below by Eq. (5.26) (Theorem 8);

• if each respective (λ, µ)-smooth game with budget B satisfies λ > 0 and µB < 1, then

the (λ(CC), µ(CC))-smooth game with a budget B(G∗; z) will also satisfy λ(CC) > 0 and

µ(CC)BCC < 1 (Theorem 9);

• given the previous facts, the resulting smooth game will have a PoA that is upper bounded

by Eqs. (5.52) and (5.58) (Theorem 10 and Corollary 2), and that has a PoA bound that

is not less than Eq. (5.56) (Corollary 2).

The following chapter will look at a specific resource allocation game, and will heavily focus on

player cost functions that are designed using these convex combination tools presented in this

chapter, and using the PoA upper bounds devised in Chapter 3.1

1As mentioned in Section 5.1, similar proofs (omitted) exist for smooth games with global welfare functions and

player utility functions. The omissions are made to simplify the presented content, as the parallel theorems are proven

equally.

Chapter 6

A More Specific Resource Allocation Game

6.1 Outline

In this chapter, we introduce a specific type of cost minimization game called a resource

allocation game, and show how the results from Chapters 3 and 5 can aid in designing and assessing

agent cost functions for this game. Additionally, we demonstrate how a smoothness argument may

not always afford a tight PoA bound.

Resource allocation games are finite games where it is desired to allocate some set of resources

among a group of agents. The UAV example in Section 1.1 is an example of such a game, as the

UAV agents were selecting from a land space to search over to find a lost hiker.

We begin by introducing a specific resource allocation game, coined generic allocation games,

that will be the focus of this chapter. We follow by introducing four player cost functions used in

this chapter, and show that the game is smooth for all four. Then we upper bound the PoA implied

for these player cost functions, and show how smoothness does not always tightly upper bound the

PoA. We also look at the tight PoS upper bounds for these cost functions, and prove that one of the

functions is optimal. We end with concluding remarks and remaining research questions. Although

we focus on games with a global cost function and player cost functions, the results of this chapter

can easily be re-worked in terms of a global welfare function with only slight modifications to the

50

game structure (see Section 6.11).

6.2 Generic Allocation Games

We define the class of generic allocation games as follows:

Definition 15 (Generic Allocation Games). A class of generic allocation game has the following

components:

• a set of agents N = {1, . . . ,m}

• a set of resources R = {r1, . . . , rl}, each with assigned value βr ∈ (0, 1]

• a collection of action sets Ai where Ai = {A′
i, A

′′
i , . . . } for each agent i ∈ N 1

∗ a collection of joint action sets is A = {A(1), A(2), . . . } where A = Πi∈NAi for any

joint action set.

∗ an action profile is a = {a1, . . . , am} ∈ A ⊆ R

• a set of local2 agent cost functions, Ji : A → R, for all i ∈ N and for all A ∈ A defined as

Ji(a; d) =
∑
r∈ai

βr · f(i, |a|r; d) (6.1)

where

∗ the agent function is scalable; that is, the agent function does not change given the

set of agents in the system, and therefore for any N ⊆ N satisfies:

Ji(a; d,N) =
∑
r∈ai

βr · f(i, |a|r; d,N) =
∑
r∈ai

βr · f(i, |a|r; d,N ′) = Ji(a; d,N
′) (6.2)

1The existence of these subsets is implicit.
2By local we mean that the cost is dependent only on the resource value and the number of players selecting that

resource.

51

∗ constant d ∈ [0, 1),1

∗ |a|r denotes the number of players that selected resource r for their action, i.e.,

|a|r = I{i ∈ N : ai = r}, (6.3)

∗ f(i, |a|r; d) = 1 when |a|r = 1

• local2 cost functions, Cr : A → R, for all r ∈ R defined by

Cr(|a|r; d) = βr · |a|dr (6.4)

that are submodular3

• global cost function, C : A → R for all A ∈ A, which is the sum of the separate local cost

functions over all resources:

C(a; d) =
∑
r∈R

Cr(|a|r; d) (6.5)

The class of generic allocation games is denoted as G = {N , {Ai}i∈N , {Ji}i∈N , R, {Cr}r∈R}. An

N -family of generic allocation games (sometimes simply referred to as a ‘game’) is denoted as

G = {{1, . . . , n} = N ⊆ N , {Ai}i∈N , {Ji}i∈N , R, {Cr}r∈R}.4

6.3 Agent Cost Functions

We now discuss the agent cost functions of interest in this chapter. Table 6.1 summarizes

the four cost functions that will be discussed.
1(1) We note that the trivial case is when d = 1 for this family of games; (2) We assume the constant to be

implicitly assumed when referring to any game.
2By local we mean that the function depends only on the resource value and the number of players selecting it.
3By submodular we mean the local cost function satisfies Cr(|S|)+Cr(|T |) ≤ Cr(|S|∪|T |)+Cr(|S|∩|T |) ∀S, T ⊆ R.
4Although unused in this chapter, a generic allocation game can be denoted as Ĝ = {{1, . . . , n} = N ⊆ N , {Ai ∈

Ai}i∈N , {Ji}i∈N , R̂ ⊆ R, {Cr}r∈R̂} ∈ G

52

Table 6.1: Agent cost functions discussed for the generic allocation
game.

Name Function

Fixed J
(F)
i (a; d) =

∑
r∈ai

Cr(|(ai,∅)|r; d)

Marginal
Contribution

J
(MC)
i (a; d) =

∑
r∈ai

(Cr(|a|r; d)− Cr(|(∅, a−i)|r; d))

z J
(z)
i (ai, a−i; d, z) =

∑
r∈ai

[(1− z) · Cr(ai,∅) + z · (Cr(|a|r; d)− Cr(a\{i}))]

Shapley J
(S)
i (ai, a−i; d) =

∑
r∈ai

CR(|a|r;d)
|a|r

6.3.1 Fixed Cost Function

Let the fixed (F) agent cost function, J
(F)
i : A → R, be defined as

J
(F)
i (ai, a−i; d) =

∑
r∈ai

βr · f (F)(i, |a|r; d) (6.6)

=
∑
r∈ai

(Cr(|(ai,∅)|r; d)− Cr(|(∅)|; d))

=
∑
r∈ai

Cr(|(ai,∅)|r; d) (6.7)

for player i ∈ N , where Cr(|(ai,∅)|r; d) represents the local cost of resource r when only player i

selects r (i.e. Cr(|(ai,∅)|r; d) = βr), and where Cr(|(∅)|; d) is the local cost when no agent selects

resource r (i.e. Cr(|(∅)|; d) = 0). In words, this agent function charges players the cost of the

resource they select in a manner that is independent of the actions of the other players. Here we

note that

f (F)(i, k; d) = 1 (6.8)

for all k ∈ N .

53

6.3.2 Marginal Contribution Cost Function

Let the marginal contribution (MC) agent cost function, J
(MC)
i : A → R, be defined as

J
(MC)
i (ai, a−i; d) =

∑
r∈ai

(Cr(|a|r; d)− Cr(|(∅, a−i)|r; d)) (6.9)

for any agent i ∈ N , where Cr(|(∅, a−i)|r) local cost of resource r when player i does not select

resource r. This agent cost function is contingent on the actions of other players.

6.3.3 The z Cost Function

Let the z player cost function, J
(z)
i : A → R, be a convex combination of the fixed and the

MC cost functions. That is,

J
(z)
i (ai, a−i; d, z) = (1− z) · J (F)

i (ai, a−i; d, z) + z · J (MC)
i (ai, a−i; d, z)

=
∑
r∈ai

(
(1− z) · Cr(|(ai,∅)|r; d) + z · (Cr(|a|r; d)− Cr(|(∅, a−i)|r; d))

)
(6.10)

for z ∈ [0, 1]. This cost function will be used to motivate many results from Chapter 5.

6.3.4 The Shapley Cost Function

Let the Shapley (S) player cost function, J
(S)
i : A → R, be defined as

J
(S)
i (ai, a−i; d) =

∑
r∈ai

Cr(|a|r; d)
|a|r

(6.11)

for player i. That is, the local cost of each resource r is split equally among the players that select

that resource.

6.4 Proving Smoothness for Generic Allocation Games

We now prove that every generic allocation games that utilizes one of the player cost functions

presented in Section 6.3 (or any convex combination of these, by Theorem 6) are all smooth games

54

with identical smoothness parameters. We note that the proofs for each are similar. Table 6.2

summarizes the smoothness parameters proven in this section.

Table 6.2: Smoothness parameters for an N -family generic allocation
game, G = {{1, . . . , n} = N ⊆ N , {Ai}i∈N , {Ji}i∈N , R, {Cr}r∈R}.

Agent Cost Function Smoothness Parameters (λ, µ) Theorem

Fixed (n1−d, 0) Theorem 11

Marginal Contribution (n1−d, 0) Theorem 12

z (n1−d, 0) Theorem 13

Shapley (n1−d, 0) Theorem 14

6.4.1 Smoothness Proof for the Fixed Player Cost Function

Theorem 11. Let an N -family generic allocation game be

G = {{1, . . . , n} = N ⊆ N , {Ai}i∈N , {J (F)
i }i∈N , R, {Cr}r∈R}. Then game G is (n1−d, 0)-smooth.

Proof. Assume the N -family generic allocation game G. Consider any joint action profiles a =

(ai, a−i), a
∗ = (a∗i , a

∗
−i) ∈ A for any A ∈ A. A summation over each player for playing action a∗i

when all other players play their action in action profile a−i is∑
i∈N

J
(F)
i (a∗i , a−i; d) =

∑
i∈N

∑
r∈a∗i

[Cr(|(a∗i ,∅)|r; d)− Cr(|(∅)|r; d)] (6.12)

=
∑
i∈N

∑
r∈a∗i

Cr(|(a∗i ,∅)|r; d) (6.13)

=
∑
i∈N

∑
r∈a∗i

βr (6.14)

=
∑
r∈R

βr|a∗|r (6.15)

=
∑
r∈R

βr|a∗|dr · |a∗|1−d
r (6.16)

≤ n1−d ·
∑
r∈R

βr|a∗|dr (6.17)

= n1−d · C(a∗; d) (6.18)

Comparing this to Eq. (3.1), we see that the generic allocation game G is (n1−d, 0)-smooth.

55

6.4.2 Smoothness Proof for the MC Player Cost Function

Theorem 12. Let an N -family generic allocation game be

G = {{1, . . . , n} = N ⊆ N , {Ai}i∈N , {J (MC)
i }i∈N , R, {Cr}r∈R}. Then game G is (n1−d, 0)-smooth.

Proof. Assume the N -family generic allocation game G. Consider any joint action profiles a =

(ai, a−i), a
∗ = (a∗i , a

∗
−i) ∈ A for any A ∈ A. A summation over each player for playing action a∗i

when all other players play their action in action profile a−i is

∑
i∈N

J
(MC)
i (a∗i , a−i; d) =

∑
i∈N

∑
r∈a∗i

(Cr(|(a∗i , a−i)|r; d)− Cr(|(∅, a−i)|r; d)) (6.19)

=
∑
i∈N

∑
r∈a∗i

(
βr|(a∗i , a−i)|dr − βr(|(a∗i , a−i)|r − 1)d

)
(6.20)

=
∑
i∈N

∑
r∈a∗i

βr

(
|(a∗i , a−i)|dr − (|(a∗i , a−i)|r − 1)d

)
(6.21)

≤
∑
i∈N

∑
r∈a∗i

βr (6.22)

= n1−d · C(a∗; d) (6.23)

where Eq. (6.22) follows since |â|dr − (|â|r − 1)d ≤ 1 for d ∈ [0, 1] and for any â ∈ Πi∈NAi such

that |â|r ≥ 1. Eq. (6.23) follows using intermediate steps already presented in Eqs. (6.15 – 6.18).

Comparing this to Eq. (3.1), we see that the generic allocation game G is (n1−d, 0)-smooth.

6.4.3 Smoothness Proof for the z Player Cost Function

Theorem 13. Let an N -family generic allocation game be

G = {{1, . . . , n} = N ⊆ N , {Ai}i∈N , {J (z)
i }i∈N , R, {Cr}r∈R}. Then game G is (n1−d, 0)-smooth.

Proof. The proof follows by applying Theorem 6 from Chapter 5.

56

Before we show the game with the Shapley cost function is smooth, we will first prove that

the smoothness parameters defined in Theorem 12 are the lowest that can be afforded.

Corollary 3. Let an N family generic allocation game be

G = {{1, . . . , n} = N ⊆ N , {Ai}i∈N , {J (z)
i }i∈N , R, {Cr}r∈R}. Then the smoothness parameters

afforded by Theorem 13, are the minimum smoothness values provable.

Proof. Assume the N -family generic allocation game G. Suppose the action set available to every

agent i ∈ N is Ai = {i, n+ 1}. That is, every agent has access to two resources, one of which can

be selected by any player, and one that is selectable only by themselves. Define action a to be the

action profile where all agents select their unique resource, i. Define action a∗ to be the joint action

profile when all players select resource n+ 1.

• We begin by showing that the λ smoothness parameter must be at least n1−d. Suppose that

all resources {1, 2, . . . , n} have values ε where ε > 0 and ε → 0. Let the cost of resource

n+ 1 be one. Fig. 6.1 depicts this scenario.

..

β1 = ε

.

βn = ε

.βn+1 = 1.
Player 1

.
Player n

.

Resources
1 to n

.

Shared Resource
n+ 1

Figure 6.1: Action profile a is when all players select the green re-
sources. Action profile a∗ is when all players select the shared blue
resource.

We first calculate the left side of Eq. (3.1):

∑
i∈N

J
(z)
i (a∗i , a−i; d, z) =

∑
i∈N

βn+1 · ((1− z) + z) = n (6.24)

57

Then we calculate C(a∗; d):

C(a∗; d) =
∑
r∈R

βr · |a∗|dr (6.25)

= nd (6.26)

Lastly, we calculate C(a; d):

C(a; d) =
∑
r∈R

βr · |a|dr (6.27)

=
∑
i∈N

βi (6.28)

= n · ε → 0 (6.29)

Hence by smoothness,

∑
i∈N

J
(z)
i (a∗i , a−i; d, z) ≤ λC(a∗; d) + µC(a; d) (6.30)

⇒ n ≤ λ · nd (6.31)

⇒ λ ≥ n1−d (6.32)

• Similarly we show that the µ smoothness parameter must be at least zero. Consider the

same two action profiles, a and a∗. Suppose now that all resources {1, 2, . . . , n} have value

one, and let the value of resource n+ 1 be ε where ε > 0 and ε → 0. Fig. 6.2 depicts this

scenario.

..

β1 = 1

.

βn = 1

.βn+1 = ε.
Player 1

.
Player n

.

Resources
1 to n

.

Shared Resource
n+ 1

Figure 6.2: Action profile a is when all players select the green re-
sources. Action profile a∗ is when all players select the shared blue
resource.

58

We first calculate the left side of Eq. (3.1):

∑
i∈N

J
(z)
i (a∗i , a−i; d, z) =

∑
i∈N

βn+1 · ((1− z) + z) (6.33)

= 0 (6.34)

Calculating C(a∗; d) we have:

C(a∗; d) =
∑
r∈R

βn+1 · kdn+1 (6.35)

= n · ε → 0 (6.36)

Calculating C(a; d) we have:

C(a; d) =
∑
i∈N

βi = n (6.37)

Hence by smoothness,

∑
i∈N

J
(z)
i (a∗i , a−i; d, z) ≤ λC(a∗; d) + µC(a; d) (6.38)

⇒ 0 ≤ λ · 0 + µ · n (6.39)

⇒ µ ≥ 0 (6.40)

6.4.4 Smoothness Proof for the Shapley Agent Cost Function

Theorem 14. Let an N -family generic allocation game be

G = {{1, . . . , n} = N ⊆ N , {Ai}i∈N , {J (S)
i }i∈N , R, {Cr}r∈R}. Then game G is (n1−d, 0)-smooth.

Proof. Assume the N -family generic allocation game G. Consider any joint action profiles a =

(ai, a−i), a
∗ = (a∗i , a

∗
−i) ∈ A for any A ∈ A. A summation over each player for playing action a∗i

59

when all other players play their action in action profile a−i is

∑
i∈N

J
(S)
i (a∗i , a−i; d) =

∑
i∈N

∑
r∈a∗i

CR(|a|r; d)
|a|r

(6.41)

=
∑
i∈N

∑
r∈a∗i

βr|a|dr
|a|r

(6.42)

≤
∑
i∈N

∑
r∈a∗i

βr (6.43)

= n1−d · C(a∗; d) (6.44)

where Eq. (6.43) follows since |a|dr
|a|r ≤ 1 for d ∈ [0, 1) and |a|r ≥ 1, and where Eq. (6.44) follows

using intermediate steps already presented in Eqs. (6.15 – 6.18). Comparing this to Eq. (3.1), we

see that the generic allocation game G is (n1−d, 0)-smooth.

6.5 Proving Budget Bounds for Generic Allocation Games

We now prove the budget condition for generic allocation games that utilize each of the player

cost functions presented in Section 6.3. We note that the proofs for each are similar. Table 6.3

summarizes the budget bounds proven in this section.

Table 6.3: The budget conditions for an N -family generic allocation
game, G = {{1, . . . , n} = N ⊆ N , {Ai}i∈N , {Ji}i∈N , R, {Cr}r∈R}.

Agent Cost Function Budget (Upper Bound) Theorem

Fixed 1 Theorem 15

Marginal Contribution 1
n1−d·(nd−(n−1)d)

Theorem 16

z maxn̂:n̂≤n
1

n̂1−d(n̂d−(n̂−1)d)
Theorem 17

Shapley 1 Theorem 18

6.5.1 Budget Proof for the Fixed Player Cost Function

Theorem 15. Let an N -family generic allocation game be

G = {{1, . . . , n} = N ⊆ N , {Ai}i∈N , {J (F)
i }i∈N , R, {Cr}r∈R}. Then the budget is B(F)(G) = 1.

60

Proof. Assume the N -family generic allocation game G. The budget, B(F)(G), is defined as

B(F)(G) = max
a∈A

C(a; d)∑
i∈N

J
(F)
i (a; d)

(6.45)

= max
a∈A

C(a)∑
i∈N

∑
r∈ai

Cr(|(ai,∅)|r; d)
(6.46)

= max
a∈A

∑
r∈R

βr|a|dr∑
i∈N

∑
r∈ai

βr
(6.47)

= max
a∈A

∑
r∈R

βr|a|dr∑
r∈R

βr|a|r
(6.48)

≤ max
a∈A

∑
i∈N

∑
r∈ai

βr∑
i∈N

∑
r∈ai

βr
(6.49)

= 1 (6.50)

where it is strictly equal when all players select a unique resource. Hence, B(F)(G) = 1.

Fig. 6.3 illustrates the game scenario which defines the budget, B(F)(G), from Theorem 15.

..

β2 = ε

.

β3 = ε

.

βn = ε

.

βn+1 = 1

.

Playe
r 1

.

Player 2

. Player n

.

Resources
1 to n

.

Shared Resource
n+ 1

Figure 6.3: The generic allocation game scenario that defines the
budget, B(F)(G), proven in Theorem 15, is when player 1 selects
resource n+ 1, while all other players select their unique resource.

6.5.2 Budget Proof for the MC Player Cost Function

Theorem 16. Let an N -family generic allocation game be

G = {{1, . . . , n} = N ⊆ N , {Ai}i∈N , {J (MC)
i }i∈N , R, {Cr}r∈R}. Then the budget is

61

B(MC)(G) = 1
n1−d·(nd−(n−1)d)

.

Proof. Assume the N -family generic allocation game G. The budget, B(MC)(G), is defined as

B(MC)(G) = max
a∈A

C(a; d)∑
i∈N

J
(MC)
i (a; d)

(6.51)

= max
a∈A

C(a; d)∑
i∈N

∑
r∈ai

[Cr(|a|r; d)− Cr(|(∅, a−i)|r; d)]
(6.52)

= max
a∈A

∑
r∈R

βr|a|dr∑
i∈N

∑
r∈ai

[βr|a|dr − βr(|a|r − 1)d]
(6.53)

≤ nd

n · (nd − (n− 1)d)
(6.54)

=
1

n1−d · (nd − (n− 1)d)
(6.55)

where inequality Eq. (6.54) is strictly equal when all players select the same resource. We remark

that since 1
nd−(n−1)d

> n1−d, therefore B(MC)(G) > 1 for d ∈ [0, 1)1.

Fig. 6.4 illustrates the game scenario which defines the budget, B(MC)(G), from Theorem 16.

..

β1 = ε

.

βn = ε

.βn+1 = 1.
Player 1

.
Player n

.

Resources
1 to n

.

Shared Resource
n+ 1

Figure 6.4: The generic allocation game scenario that defines the
budget, B(MC)(G), proven in Theorem 16, is when all players select
the shared resource n+ 1.

6.5.3 Budget Proof for the z Player Cost Function

Theorem 17. Let an N -family generic allocation game be

G = {{1, . . . , n} = N ⊆ N , {Ai}i∈N , {J (z)
i }i∈N , R, {Cr}r∈R}.

1See Theorem 31 in Appendix D for proof.

62

Then the budget B(z)(G) = maxn̂:n̂≤n
1

n̂1−d(n̂d−(n̂−1)d)
, where integer n̂ ≥ 1.

Proof. Assume the N -family generic allocation game G. The budget, B(z)(G), is defined as

B(z)(G) = max
a∈A

C(a; d)∑
i∈N

J
(z)
i (a; d)

(6.56)

= max
a∈A

∑
r∈R

βr|a|dr∑
i∈N

∑
r∈ai

(
(1− z) · J (F)

i (ai, a−i; d) + z · J (MC)
i (ai, a−i; d)

) (6.57)

≤ max
n̂:n̂≤n

1

n̂1−d(n̂d − (n̂− 1)d)
(6.58)

An exhaustive search over the possible player set sizes reveals that Eq. (6.58) follows. Considering

game scenarios where agents might select individual resources of non-negligible value, it is clear

that this action would strictly decrease the budget bound. Considering all other game scenarios we

see that the budget is defined when some set of players selects the same resource, n + 1, and the

remaining players select a unique resource, each with negligible value (dependent on d and z). We

use the game scenario to motivate understanding for this proof shown in Fig. 6.5, which is a budget

that mimics the the convex nature of the z agent cost function design. That is, the model that

defines the budget is a transitioning model between the fixed cost function budget model (Fig. 6.3)

and the MC cost function budget model (Fig. 6.4).

6.5.3.1 Example

Consider an N -family generic allocation game

G = {{1, . . . , n} = N ⊆ N , {Ai}i∈N , {J (z)
i }i∈N , R, {Cr}r∈R}. A plot showing the number of players

that defines B(z)(G) for this 25 agent generic allocation game is shown in Figs. 6.6a and 6.6b.

Fig. 6.7a depicts B(z)(G) as a function of z and d for this same 25 player game. Lastly, Fig. 6.7b

depicts the upper bound on B(z)(G) as afforded by Theorem 7, Eq. (5.11), for a range of z and d

63

..

...

.

...

..

β2 = ε

.
βn̂ = ε

.

βn̂+1 = ε

.

βn = ε

.βn+1 = 1.

Play
er 1

. Player n̂.
Player n̂+ 1

.

Player n

.

Resources
1 to n

.

Shared Resource
n+ 1

Figure 6.5: The generic allocation game scenario that defines the
budget, B(z)(G), proven in Theorem 17, is when a subset of players
(of size n̂, where n̂ ≥ 1) selects the shared resource, while all other
players select their unique resource.

values. We remark that Theorem 7 presents a budget upper bound that adheres to Corollary 2.

We remark that B(z)(G; z ∈ [0, 0.5]) = 1.

Figure 6.6: (a) A plot showing the size of n̂ that defines B(z)(G)
for select values of z ∈ (0, 0.99) and d ∈ (0, 1) for a 25 player game
(note the consecutive steps); (b) top view of (a) for d ∈ (0, 1) and
z ∈ (0.8, 1).

64

Figure 6.7: (a) A plot of B(z)(G) for select z ∈ (0, 1) and d ∈ (0, 1) for
a 25 player game that implements the z cost function for the generic
allocation game; (b) a plot of the upper bound on B(z)(G) as afforded
by Theorem 7, Eq. (5.11), for select z ∈ (0, 1) and d ∈ (0, 1) for the
same 25 player game.

6.5.4 Budget Proof for the Shapley Agent Cost Function

Theorem 18. Let an N -family generic allocation game be

G = {{1, . . . , n} = N ⊆ N , {Ai}i∈N , {J (S)
i }i∈N , R, {Cr}r∈R}. Then the budget B(S)(G) = 1.

Proof. Assume the N -family generic allocation game G. The budget, B(S)(G), is defined as

B(S)(G) = max
a∈A

C(a; d)∑
i∈N

J
(S)
i (a; d)

(6.59)

= max
a∈A

∑
i∈N

∑
r∈ai

βr
|a|dr
|a|r∑

i∈N

∑
r∈ai

βr
|a|dr
|a|r

(6.60)

= 1 (6.61)

The Shapley agent cost function is budget balanced for all actions a ∈ Πi∈NAi.

65

6.6 Proving PoA Upper Bound for Generic Allocation Games

We now prove the upper bound on the PoA for generic allocation games that utilize each of

the player cost functions presented in Section 6.3. We note that the proofs for each are similar.

Table 6.4 summarizes the budget bounds proven in this section.

Table 6.4: The upper bound on the PoA for an N -family generic
allocation game,
G = {{1, . . . , n} = N ⊆ N , {Ai}i∈N , {Ji}i∈N , R, {Cr}r∈R}.

Agent Cost Function PoA(G) (Upper Bound) Theorem
Is the bound
always tight?

Fixed n1−d Theorem 19 Yes

Marginal Contribution 1
nd−(n−1)d

Theorem 20 Yes

z n1−d

minn̂:n̂≤n n̂1−d(n̂d−(n̂−1)d)
Theorem 21

z ∈ [0, 0.5]: Yes
z ∈ (0.5, 1): Sometimes

z = 1: Yes

Shapley n1−d Theorem 22 Yes

6.6.1 PoA Upper Bound for the Fixed Player Cost Function

Theorem 19. Let an N -family generic allocation game be

G = {{1, . . . , n} = N ⊆ N , {Ai}i∈N , {J (F)
i }i∈N , R, {Cr}r∈R}. Then 1 ≤ PoA(G) ≤= n1−d and is

tight.

Proof. The proof follows by combining Theorems 2, 11, and 15.

Consider a game where every player i ∈ N has access to only two resources from a set of

n+ 1 resources, where one is unique to their action set and where the other is mutually accessible

by all other agents; hence, {i, n+ 1} ∈ Ai for all i ∈ N . Fig. 6.8 illustrates this game with defined

resource values. Hence it is tight.

66

..

β1 = 1

.

βn = 1

.βn+1 = 1.

(Optimal)

.
Player 1

.
Player n

.

Resources
1 to n

.

Shared Resource
n+ 1

Figure 6.8: This illustrates the generic allocation game that demon-
strates the upper PoA bound afforded by Theorem 19 is tight. The
worst case equilibrium is when all agents select the green resources;
the action profile that minimizes the global cost is when all agents
select the shared blue resource.

6.6.2 PoA Upper Bound for the MC Player Cost Function

Theorem 20. Let an N -family generic allocation game be

G = {{1, . . . , n} = N ⊆ N , {Ai}i∈N , {J (MC)
i }i∈N , R, {Cr}r∈R}. Then 1 ≤ PoA(G) ≤ 1

nd−(n−1)d

and is tight.

Proof. The proof follows by combining Theorems 2, 12, and 16. We remark that this upper PoA

bound is at least as much as n1−d since 1
nd−(n−1)d

> n1−d (see Theorem 31 in Appendix D for proof).

Consider a game where every player i ∈ N has access to only two resources, where both are

mutually accessible by all other agents; hence, {1, n+1} ∈ Ai for all i ∈ N . Fig. 6.9 illustrates this

game with defined resource values. Hence it is tight.

.. β1 = 1.βn+1 = nd − (n− 1)d.

(Optimal)

.

Player 1

.

Player 2

.

Player n-1

.

Player n

.

Resource
1

.

Resource n+ 1

Figure 6.9: This illustrates the generic allocation game that demon-
strates the upper PoA bound afforded by Theorem 20 is tight. The
worst case equilibrium is when all agents select the shared green re-
source; the action profile that minimizes the global cost is when all
agents select the shared blue resource.

67

6.6.3 PoA Upper Bound for the z Player Cost Function

Theorem 21. Let an N -family generic allocation game be

G = {{1, . . . , n} = N ⊆ N , {Ai}i∈N , {J (z)
i }i∈N , R, {Cr}r∈R}. Then

1 ≤ PoA(G) ≤ n1−d

minn̂:n̂≤n n̂1−d(n̂d−(n̂−1)d)
, and is tight if n = 2. If n > 2, it is tight for z ∈ [0, 0.5].

Proof. The proof follows by combining Theorems 2, 13, and 17.

We first prove tightness for any player set size for z ∈ [0, 0.5].1 Consider a game where every

player i ∈ N has access to only two resources from a set of n+ 1 resources, where one is unique to

their action set and where the other is mutually accessible by all other agents; hence, {i, n+1} ∈ Ai

for all i ∈ N . Fig. 6.10 illustrates this game with defined resource values. Hence it is tight.

..

β1 = 1

.

βn = 1

.βn+1 = 1.

(Optimal)

.
Player 1

.
Player n

.

Resources
1 to n

.

Shared Resource
n+ 1

Figure 6.10: This illustrates the generic allocation game that demon-
strates the upper PoA bound afforded by Theorem 21 is tight for
z ∈ [0, 0.5]. The worst case equilibrium is when all agents select
the green resources; the action profile that minimizes the global
cost is when all agents select the shared blue resource. (Denoted as
Game (a).)

Now we consider when n = 2, for z ∈ (0.5, 1].2 Consider a game where every player i ∈ N

has access to only two resources, where both are mutually accessible by all other agents; hence,

{1, n+ 1} ∈ Ai for all i ∈ N . Fig. 6.11 illustrates this game with defined resource values. Hence it

is tight.

1We remark that for Theorem 17, n̂ = 1 maximizes the expression for B(z)(G) for this interval.
2We remark that for Theorem 17, n̂ = 2 maximizes the expression for B(z)(G) for this interval.

68

.. β1 = 1.βn+1 = nd − (n− 1)d.

(Optimal)

.

Player 1

.

Player 2

.

Player n-1

.

Player n

.

Resource
1

.

Resource n+ 1

Figure 6.11: This illustrates the generic allocation game that demon-
strates the upper PoA bound afforded by Theorem 21 is tight for two
player games for z ∈ [0.5, 1]. The worst case equilibrium is when
all agents select the shared green resource; the action profile that
minimizes the global cost is when all agents select the shared blue
resource. (Denoted as Game (c).)

We specifically do not claim tightness for the z agent cost function for z ∈ (0.5, 1]. Let’s now

discuss why this is: Consider the scenario where N is a set of three players. For z ∈ (0.5, 0.5 +

δ], where δ < 0.5 is dependent on the value for d, exhaustive modeling reveals that no game

construction will have a PoA equal to the upper bound proven in Theorem 21. We demonstrate

instead the game structures that grant the actual PoA.

In a three agent game, consider a game where each player i ∈ N has access to only two

resources from a set of n+1 resources, where one is unique to their action set and where the other

is mutually accessible by all other agents; hence, {i, n + 1} ∈ Ai for all i ∈ N . Already we have

shown that for z ∈ [0, 0.5], this results in a tight game. Now consider z ∈ (δ, 1]. The game presented

for the proof of Theorem 20 (Fig. 6.9) is the one that maximizes this PoA.

The final range is z ∈ (0.5, 0.5+δ) for some δ. Consider two players sharing two resources, and

the final player sharing one of those two resources, and having the sole access to a third resource.

Fig. 6.12 illustrates this game.

When we see the game structures that define the actual PoA for the generic allocation

game with the z cost function, a pattern emerges. Fig. 6.13a plots the PoA bounded above by

Theorem 21. Fig. 6.13b seeks to clarify Fig. 6.13a by plotting the actual PoA that is realizable for

each game. From the gap between the red and black curves in Fig. 6.13a, it’s clear that the upper

69

..

β1 = 1

. β2 = (1− z) + z · (2d − 1).

βn+1 = (1− z) + z · (2d − 1)

.
(Optimal)

.

Player 2

.

Player 1

.
Player 3.

Resources
1 and 2

.

Resource n+ 1

Figure 6.12: This illustrates the generic allocation game that demon-
strates the largest PoA that can be reached for a three player game
for z ∈ (0.5, δ] for some δ < 0.5. The worst case equilibrium is when
two agents select the shared green resource 1, and the third selects
the non-shared resource 2; the action profile that minimizes the global
cost is when all agents select the shared blue resource. (Denoted as
Game (b).)

bound provable via smoothness is not always tight. Additional examples arise when plotting this

for larger player sets. Using similar game constructions, Fig. 6.14a reveals how the tightness of the

PoA bound varies with respect to the number of agents in the game for z ∈ (0.5, 1). Fig. 6.14b

provides more insight into how the PoA upper bound is crafted.

Figure 6.13: (a) This illustrates the generic allocation game that
demonstrates the largest PoA that can be reached for a three player
game for z ∈ [0, 1]; black represents the PoA bound afforded by
Theorem 21; red represents the actual PoA that can be achieved;
(b) this plots how the actual PoA is obtained for three players; thin
black represents the achievable PoA for z ∈ [0, 0.5] for Game (a)
from Fig. 6.10, blue represents the PoA realizable for z ∈ (0.5, δ] for
Game (b) from Fig. 6.12, and green represents the reachable PoA
for z ∈ (δ, 1] from Game (c) in Fig. 6.11.

70

Figure 6.14: (a) This illustrates the generic allocation game that
demonstrates the largest PoA that can be reached for multiple agent
set sizes in a game for z ∈ [0, 1]; black represents the PoA bound
afforded by Theorem 21; red represents the actual PoA that can be
achieved; (b) this plot clarifies how the PoA upper bound curve is
created; since the bound varies only with respect to the budget, this
shows how the budget is created from Theorem 21.

This non-tightness results from the budget definition. Since the budget is defined over the

set of all actions, a ∈ A, it will include non-equilibria action profiles. If any of those action profiles

define the budget condition, then the resulting PoA bound implied by Theorem 2 will not be tight.

A straightforward solution would be to define the budget using only the set of CCE equilibria.

That is, for a game G, we could define a CCE budget, BCCE(G), as

BCCE(G) = max
σCCE∈Σ̂(G)

 C(a)∑
i∈N

Ea∼σ [Ji(a)]

 , (6.62)

where Σ̂(G) are the set of all joint probability distributions in game G. With little effort, it’s clear

that this budget would imply that the PoA for the set of all equilibria types is bounded above by

PoA ≤ λBCCE(G)

1− µBCCE(G)
, (6.63)

given the game is (λ, µ)-smooth with λ > 0 and µBCCE(G) < 1. However, while this solution

is correct, it would force a designer to find all the equilibria before calculating this new budget,

which could be an insurmountable problem in complex game settings. Therefore this game aids to

71

demonstrate that finding the robust smoothness parameters does not always result in a tight PoA

bound.

6.6.4 PoA Upper Bound for the Shapley Agent Cost Function

Theorem 22. Let an N -family generic allocation game be

G = {{1, . . . , n} = N ⊆ N , {Ai}i∈N , {J (S)
i }i∈N , R, {Cr}r∈R}. Then 1 ≤ PoA(G) ≤ n1−d and is

tight.

Proof. The proof follows by combining Theorems 2, 14, and 18.

Consider a game where every player i ∈ N has access to only two resources from a set of

n+ 1 resources, where one is unique to their action set and where the other is mutually accessible

by all other agents; hence, {i, n+1} ∈ Ai for all i ∈ N . Fig. 6.15 illustrates this game with defined

resource values. Hence it is tight.

..

β1 = 1

.

βn = 1

.βn+1 = 1.

(Optimal)

.
Player 1

.
Player n

.

Resources
1 to n

.

Shared Resource
n+ 1

Figure 6.15: This illustrates the generic allocation game that demon-
strates the upper PoA bound afforded by Theorem 22 is tight. The
worst case equilibrium is when all agents select the green resources;
the action profile that minimizes the global cost is when all agents
select the shared blue resource.

72

6.7 Proving PoA Lower Bound for Generic Allocation Games

Now we prove that the optimal player cost function gives a PoA no less than n1−d for the set

of all generic allocation games with an agent cost function as defined within Definition 15.1

Theorem 23. Consider any N -family generic allocation game,

G = {{1, . . . , n} = N ⊆ N , {Ai}i∈N , {Ji}i∈N , R, {Cr}r∈R}. For every local agent cost function as

defined within Definition 15 that is local and scalable, the PoA is at least n1−d.

Proof. Consider a game where every player i ∈ N has access to only two resources from a set of

n+1 resources, where one is unique to their action set and where the other is mutually accessible by

all other agents; hence, {i, n+ 1} ∈ Ai for all i ∈ N for some A ∈ A. Fig. 6.8 illustrates this game

with defined resource values. Fig. 6.8 illustrates this game with defined resource values. Suppose

initially that each player selects their unique resource i. Since the agent cost function is assumed

to be local, there is no reason any player would prefer to switch to resource n + 1. Thus a pure

Nash equilibrium is reached, and the PoA(G) = N
nd = n1−d. Hence, any local and scalable agent

cost function could result in a PoA for the N -family generic allocation game of at least n1−d.

Given Theorem 23, we remark that the fixed, MC, z (for z ∈ [0, 0.5]), and Shapley agent cost

functions afford the lowest PoA for all equilibria types.

6.8 Proving PoS Upper Bound for Generic Allocation Games

We now find the PoS upper bounds for generic allocation games that utilize each of the player

cost functions presented in Section 6.3. We note that the proofs for each are similar. Table 6.5

summarizes the budget bounds proven in this section.

1This proof closely follows that of Theorem 6.1 in [12].

73

Table 6.5: The upper bound on the PoS for a generic allocation game,
G = {{1, . . . , n} = N, {Ai}i∈N , {Ji}i∈N , R, {Cr}r∈R}.

Agent Cost Function PoS(G) (Upper Bound) Theorem
Is the bound
always tight?

Fixed n1−d Theorem 24 Yes

Marginal Contribution (1− z) · n1−d + z Theorem 24 Yes

z n1−d

minn̂:n̂≤n n̂1−d(n̂d−(n̂−1)d)
Theorem 24 Yes

Shapley H(1−d)
n

nd Theorem 25 Yes

6.8.1 PoS Upper Bound for the Fixed, MC, and z Player Cost Functions

Theorem 24. Let an N -family generic allocation game be

G = {{1, . . . , n} = N ⊆ N , {Ai}i∈N , {J (z)
i }i∈N , R, {Cr}r∈R}. Then 1 ≤ PoS(G) ≤ (1−z) ·n1−d+z

and is tight.

Proof. Assume the N -family generic allocation game G. We first find the potential function. Con-

sider any two actions a′i, a
′′
i ∈ Ai for any Ai ∈ Ai and i ∈ N , and any action a−i ∈ A−i for any

A−i ∈ A−i. The agent cost functions are

Ji(a
′
i, a−i) = (1− z) · Cr(|(a′i,∅)|; d) + z · (Cr(|(a′i, a−i)|; d)− Cr(|(∅, a−i|); d) (6.64)

Ji(a
′′
i , a−i) = (1− z) · Cr(|(a′′i ,∅)|; d) + z · (Cr(|(a′′i , a−i)|; d)− Cr(|(∅, a−i|); d) (6.65)

Therefore,

Ji(a
′
i, a−i; d)− Ji(a

′′
i , a−i; d) (6.66)

= (1− z) · Cr(|(a′i,∅)|; d) + z · (Cr(|(a′i, a−i)|; d)− Cr(|(∅, a−i)|; d) (6.67)

−
(
(1− z) · Cr(|(a′′i ,∅)|; d) + z · (Cr(|(a′′i , a−i)|; d)− Cr(|(∅, a−i)|; d)

)
(6.68)

= z · C(|(a′i, a−i)|; d) + (1− z)
∑
i∈N

∑
r∈ai

Cr(|(ai,∅)|r; d) (6.69)

−
(
z · C(|(a′′i , a−i)|; d) + (1− z)

∑
i∈N

∑
r∈ai

Cr(|(ai,∅)|r; d)
)

(6.70)

74

Hence it is a potential game with potential function, ϕ(a; d), given by

ϕ(a; d) = z · C(a; d) + (1− z)
∑
i∈N

∑
r∈ai

Cr(|(ai,∅)|r; d). (6.71)

and the game therefore has at least one pure Nash equilibrium. We use Theorem 4 to upper bound

the PoS(G).1

• Using Definition 14, we first find Bϕ(G):

Bϕ(G) = max
a∈A

C(a; d)

z · C(a; d) + (1− z)
∑
i∈N

∑
r∈ai

Cr(|(ai,∅)|r; d)
(6.72)

≤ max
a∈A

C(a; d)

z · C(a; d) + (1− z)
∑
r∈R

Cr(|a|r; d)
(6.73)

= max
a∈A

C(a; d)

z · C(a; d) + (1− z) · C(a; d)
(6.74)

= 1 (6.75)

• Then using Definition 14, we find Bϕ(G):

Bϕ(G) = min
a∈A

C(a; d)

z · C(a; d) + (1− z)
∑
i∈N

∑
r∈ai

Cr(|(ai,∅)|r; d)
(6.76)

≥ min
a∈A

C(a; d)

z · C(a; d) + (1− z) · n1−dC(a; d)
(6.77)

=
1

z + (1− z)n1−d
(6.78)

⇒ 1

Bϕ(G)
≤ z + (1− z) · n1−d (6.79)

Then by Theorem 4,

PoS(G) ≤
Bϕ(G)

Bϕ(G)
(6.80)

≤ (1− z) · n1−d + z. (6.81)

1A similar proof using Theorem 24 exists to upper bound the PoS for the α and z cost functions in reverse

carpooling from Chapter 4.

75

The tightness example follows: consider a game where every player i ∈ N has access to only

two resources from a set of n+ 1 resources, where one is unique to their action set and where the

other is mutually accessible by all other agents; hence, {i, n + 1} ∈ Ai for all i ∈ N . Fig. 6.16

illustrates this game with defined resource values. Given the resource values in Fig. 6.16, it’s clear

that the only equilibrium is when all players select their unique resource. Hence it is tight.

..

β1 = 1− ε

.

β2 = 1− z + z · (2d − 1)− ε

.

βn−1 = 1− z + z · ((n− 1)d − (n− 2)d)− ε

.

βn = 1− z + z · (nd − (n− 1)d)− ε

.βn+1 = 1.

(Optimal)

.

Play
er 1

.
Player 2

.
Player n-1

.

Player n

.

Resources 1 to n

.

Resource
n+ 1

Figure 6.16: This illustrates the generic allocation game that demon-
strates the upper PoS bound afforded by Theorem 24 is tight. The
only equilibrium is when all agents select the green resources; the
action profile that minimizes the global cost is when all agents select
the shared blue resource.

6.8.2 PoS Upper Bound for the Shapley Agent Cost Function

Theorem 25. Let an N -family generic allocation game be

G = {{1, . . . , n} = N ⊆ N , {Ai}i∈N , {J (S)
i }i∈N , R, {Cr}r∈R}. Then 1 ≤ PoS(G) ≤ H(1−d)

n

nd =∑
i∈N

id−1

nd and is tight.

Proof. Assume the N -family generic allocation game G. We first find the potential function. Con-

sider any two actions profiles a′ = (a′i, a−i), a
′′ = (a′′i , a−i) ∈ A for any A ∈ A and for any i ∈ N .

76

Then the agent cost functions are

Ji(a
′
i, a−i; d) =

Cr(|(a′i, a−i)|; d)
|(a′i, a−i)|r

(6.82)

Ji(a
′′
i , a−i; d) =

Cr(|(a′′i , a−i)|; d)
|(a′′i , a−i)|r

(6.83)

Therefore,

Ji(a
′
i, a−i; d)− Ji(a

′′
i , a−i; d) =

Cr(|(a′i, a−i)|; d)
|(a′i, a−i)|r

− Cr(|(a′′i , a−i|); d)
|(a′′i , a−i)|r

(6.84)

=
∑
r∈R

|a′|r∑
x=1

Cr(x; d)

x
−
∑
r∈R

|a′′|r∑
x=1

Cr(x; d)

x
(6.85)

Hence it is a potential game with potential function, ϕ(a; d), given by

ϕ(a; d) =
∑
r∈R

|a|r∑
x=1

Cr(x; d)

x
(6.86)

and the game therefore has at least one pure Nash equilibrium. We now continue the proof using a

similar method as in [1], although with some significant expansion on their work. Let action a∗ be

the action that minimizes the global cost function, and let action a be the pure Nash equilibrium

that minimizes the potential function. Then we know that

ϕ(a; d) ≤ ϕ(a∗; d). (6.87)

77

We first find an upper bound on ϕ(a∗):

ϕ(a∗; d) =
∑
r∈R

|a∗|r∑
x=1

Cr(x; d)

x
(6.88)

=
∑
r∈R

|a∗|r∑
x=1

βrx
d

x
(6.89)

=
∑
r∈R

βr · |a∗|dr

|a∗|r∑
x=1

xd

x

|a∗|dr
(6.90)

≤
∑
r∈R

βr · |a∗|dr

n∑
x=1

xd

x

nd
(6.91)

=
∑
r∈R

βr · |a∗|dr

n∑
x=1

1
x(1−d)

nd
(6.92)

=
∑
r∈R

βr · |a∗|dr
H(1−d)

n

nd
(6.93)

=
∑
r∈R

Cr(a
∗; d)

H(1−d)
n

nd
(6.94)

= C(a∗; d)
H(1−d)

n

nd
(6.95)

⇒ ϕ(a∗; d) ≤ C(a∗; d)
H(1−d)

n

nd
(6.96)

where Eq. (6.91) follows since

k∑
x=1

xd

x

kd
≤

m∑
x=1

xd

x

md for all k,m ≥ 1 and d ∈ [0, 1) such that k ≤ m, and

where H(1−d)
n is the hyperharmonic series1 defined as [14]:

H(1−d)
n =

n∑
x=1

H(1−d)
k =

n∑
x=1

1

k(1−d)
(6.97)

We remark that Eq. (6.97) is a strictly diverging series for d ∈ [0, 1).

1Also known as the p-series.

78

Now we find a lower bound on ϕ(a):

ϕ(a; d) =
∑
r∈R

|a|r∑
x=1

Cr(x; d)

x
(6.98)

=
∑
r∈R

|a|r∑
x=1

βrx
d

x
(6.99)

=
∑
r∈R

βr

|a|r∑
x=1

xd

x
(6.100)

≥
∑
r∈R

βr · |a|r (6.101)

= C(a; d) (6.102)

⇒ C(a; d) ≤ ϕ(a; d) (6.103)

where Eq. (6.101) follows since
m∑

x=1

xd

x ≥ md. Combining Eqs. (6.96), (6.87), and (6.103), we have

C(a; d) ≤ ϕ(a; d) ≤ ϕ(a∗; d) ≤ C(a∗; d)
H(1−d)

n

nd
(6.104)

⇒ C(a; d)

C(a∗; d)
≤ H(1−d)

n

nd
(6.105)

⇒ PoS(G) ≤ H(1−d)
n

nd
(6.106)

The tightness example follows: consider a game where every player i ∈ N has access to only

two resources from a set of n+ 1 resources, where one is unique to their action set and where the

other is mutually accessible by all other agents; hence, {i, n + 1} ∈ Ai for all i ∈ N . Fig. 6.17

illustrates this game with defined resource values. Given the resource values in Fig. 6.17, it’s clear

that the only equilibrium is when all players select their unique resource. It’s also clear that the

global minimizing action profile is when all players select the resource n+ 1. Hence it is tight.1

1We remark that nd − (n− 1)d ≤ nd−1 by Theorem 31.

79

..

β1 = 1− ε

.

β2 = 2d−1 − ε

.

βn−1 = (n− 1)d−1 − ε

.βn+1 = 1.

(Optimal)

.

Play
er 1

.
Player 2

.

Player n

.

Resources 1 to n

.

Resource
n+ 1

Figure 6.17: This illustrates the generic allocation game that demon-
strates the upper PoS bound afforded by Theorem 25 is tight. The
only equilibrium is when all agents select the green resources; the
action profile that minimizes the global cost is when all agents select
the shared blue resource.

6.9 Proving PoS Lower Bound

Here we show a lower bound on the PoS bound for the set of all player cost functions (the

proof follows similarly to Theorem 6.2 in [12]):

Theorem 26. Fix any local and scalable agent cost function as defined within Definition 15. Let

the PoA be γ for the N -family generic allocation game

G = {{1, . . . , n} = N ⊆ N , {Ai}i∈N , {Ji}i∈N , R, {Cr}r∈R} that implement this agent cost function.

Then the PoS is lower bounded by

PoS(G) ≥ 1 + γ · (n− 1)d

γ · nd
. (6.107)

Proof. Consider theN -family generic allocation gameG with two resources as illustrated in Fig. 6.18

and with any local agent cost function as defined within Definition 15. Consider the game illus-

trated in Fig. 6.18 for ε > 0 and → 0. By Theorem 23, we recognize that βn+1 ∈ (0, 1), and is

therefore a valid value for a resource with a value strictly less than the value of resource 1 (i.e.

β1 > βn+1).

We define three actions of interest:

• action â is when all agent i ∈ N select resource 1.

80

.. β1 = 1.βn+1 =
1−ε
γ

.

(Optimal)

.

Player 1

.

Player 2

.

Player n-1

.

Player n

.

Resource 1

.

Resource n+ 1

Figure 6.18: This illustrates the generic allocation game that forces
a lower bound on the PoS, as a function of the PoA.

• action a is when n− 1 agents select resource 1; the final agent selects resource n+ 1.

• action profile a∗ is when all agents select resource n+ 1.

Given this game, it’s obvious that the action which minimizes the global cost function is when all

players select action a∗.

The global cost for action â is

C(â; d) =
∑
r∈R

Cr(â; d) (6.108)

= nd (6.109)

The global cost for action a∗ is

C(a∗; d) = β2 · nd (6.110)

=
1− ε

γ
· nd (6.111)

(6.112)

Hence, the fraction C(â;d)
C(a∗;d) is

C(â; d)

C(a∗; d)
=

nd

1−ε
γ · nd

(6.113)

=
γ

1− ε
(6.114)

81

which is strictly greater than γ, the assumed PoA of the set of generic allocation games. Therefore

action â is strictly not an equilibrium. Hence, given the player cost function that is local and

scalable, at least one player has the incentive to deviate to resource n+ 1.

Now, without loss of generality, restrict all players’ action sets to only have the option to select

resource 1, except for a single player that still can select both resources. Now only actions â and a

remain in the joint action set A. We remark that action a is the unique Nash equilibrium, while

action â is the optimal action that minimizes the global cost function (so long as 1−ε
γ +(n−1)d ≥ nd,

which, by Theorem 31, is true for all d ∈ [0, 1)).

The global cost for action a is

C(a; d) = β2 + β1 · (n− 1)d (6.115)

=
1− ε

γ
+ (n− 1)d (6.116)

and the PoS, C(a;d)
C(â;d) is therefore

C(a; d)

C(â; d)
=

β2 + β1 · (n− 1)d

β1 · nd
(6.117)

=

1−ε
γ + (n− 1)d

nd
(6.118)

Theorem 27. Fix any local and scalable agent cost function as defined within Definition 15 for

the N -family generic allocation game G = {{1, . . . , n} = N ⊆ N , {Ai}i∈N , {Ji}i∈N , R, {Cr}r∈R},

and that affords PoA(G) ≤ n1−d. Then the PoS is lower bounded by

PoS(G) ≥ 1 + n1−d(n− 1)d

n
. (6.119)

Proof. The proof follows by combining Theorem 23 with Theorem 26.

Fig. 6.19 plots the PoA upper bound afforded by Theorem 21 for the 3-family of generic

allocation games using the z player cost function. It also plots the achievable PoA and PoS. Then

82

it shows the PoS lower bound given by Theorem 27. Lastly, it shows (at the budget balanced

location of z = 0.5) the tight PoA and PoS points for 3-family games that implement the Shapley

cost function.

Figure 6.19: A plot showing the PoA (bounds and realizable) and
PoS (bounds and realizable) for the z player cost function for the
set of generic allocation games. Additionally plotted is the lower
PoS bound. The Shapley PoA and PoS is shown for reference at the
budget balanced location of z = 0.5. (d = 0.5, N = 3)

The plots raise an obvious question: is there a local and scalable agent cost function that

grants the optimal PoA, while also granting the optimal PoS suggested by the lower bound of

Theorem 27. The answer is no, as will be proven now.

6.10 The Shapley Cost Function is Optimal

Here we prove the optimal agent cost function that is both local and scalable, and that

primarily affords the lowest PoA for an N -family of games, and secondarily affords the lowest PoS,

is the Shapley cost function.

Theorem 28. Fix any local and scalable agent cost function for any N -family generic allocation

game G = {{1, . . . , n} = N ⊆ N , {Ai}i∈N , {Ji}i∈N , R, {Cr}r∈R}. The agent cost function that

83

primarily grants the lowest PoA, and secondarily grants the lowest PoS, is the Shapley cost function.

Proof. Assume an N -family generic allocation game

G = {{1, . . . , n} = N ⊆ N , {Ai}i∈N , {Ji}i∈N , R, {Cr}r∈R}, and recall a local and scalable agent

cost function is of the form

Ji(a; d) =
∑
r∈ai

βr · f(i, |a|r; d) (6.120)

with f(i, 1; d) = 1. Assume J∗
i (a) =

∑
r∈ai

βr ·f∗(i, |a|r; d) is the local and scalable player cost function

exists that is optimal.

• Step 1: Given that the Shapley cost function is local and scalable, and has a PoA(G) of

n1−d, then the optimal cost function must afford a PoA(G) no greater than n1−d.

Consider initially the case when n = 2. We seek to define f∗(i, 2; d). Assume initially that

f∗(i, 2; d) ≤ 1 for the game depicted in Fig. 6.20.

.. β1 = 1.βn+1 = f(i, 2; d).

(Optimal)

.
Player 1

.

Player 2

.

Resource 1

.

Resource n+ 1

Figure 6.20: This illustrates the generic allocation game that forces
a lower bound on the local agent cost function.

Call action profile a = (β1, β1) and action profile a∗ = (βn+1, βn+1). Clearly resource n+1

is optimal when both players select it, while resource 1 is an equilibrium that defines the

PoA for game G. That is, for player 1,

J∗
i (a1, a2; d) = β1 · f(i, 2; d) ≤ βn+1 · f∗(i, 1; d) = J∗

i ((a
∗
1, a2); d) (6.121)

⇒ J∗
i ((a1, a2); d) ≤ J∗

i ((a
∗
1, a2); d), (6.122)

and likewise for player 2. Hence, it is an equilibrium.

84

By assumption, this optimal agent cost function has a PoA no greater than n1−d. Therefore

PoA(G) =
β1 · 2d

βn+1 · 22
≤ 21−d (6.123)

⇒ 1

f(i, 2; d)
≤ 21−d (6.124)

⇒ f(i, 2; d) ≥ 2d−1 (6.125)

• Step 2: Now suppose f∗(i, 2; d) > 1. We will show that this is not allowed in a proof by

contradiction. Consider the game depicted in Fig. 6.21.

...

β1 =
1

f∗(i,2;d)

.

β2 =
1

f∗(i,2;d)

.βn+1 = 1.

(Optimal)

.
Player 1

.
Player 2

.

Resources
1 and 2

.

Shared Resource
n+ 1

Figure 6.21: This illustrates the generic allocation game that forces
an upper bound on the local agent cost function.

Call action profile a = (β1, β2) and action profile a∗ = (βn+1, βn+1). Clearly resource n+1

is optimal when both players select it, while resource 1 is an equilibrium that defines the

PoA for this game G. That is, for player 1,

J∗
i (a1, a2; d) = β1 · f(i, 2; d) ≤ βn+1 · f∗(i, 1; d) = J∗

i ((a
∗
1, a2); d) (6.126)

⇒ J∗
i ((a1, a2); d) ≤ J∗

i ((a
∗
1, a2); d), (6.127)

and likewise for player 2. Hence, it is an equilibrium. Calculating this equilibrium we have:

PoA(G) =
β1 + β2
βn+1 · 22

(6.128)

=

1
f∗(i,2;d) +

1
f∗(i,2;d)

2d
(6.129)

= 21−d · 1

f∗(i, 2; d)
(6.130)

But 1
f∗(i,2;d) > 1, which leads to a contradiction. Now we know that f∗(i, 2; d) ∈ [2d−1, 1].

85

• Step 3: Consider now the PoS. Given that the Shapley cost function is local and scalable,

and affords the lowest allowable PoA for a local and scalable cost function by Theorem 23,

therefore the optimal cost function must afford a PoS(G) no greater than H(1−d)
n

nd (given

Theorem 25). In continuing the case of n = 2, this bound is:

H(1−d)
n

nd
=

2d

2 + 1d

1

2d
(6.131)

=
2d−1 + 1

2d
(6.132)

Suppose the game is the one depicted in Fig. 6.22.

...

β1 = f∗(i, 2; d)− ε

.

β2 = 1− ε

.βn+1 = 1.

(Optimal)

.
Player 1

.
Player 2

.

Resources
1 and 2

.

Shared Resource
n+ 1

Figure 6.22: This illustrates the generic allocation game that forces
an upper bound on the local agent cost function.

From Eqs. (6.125) and (6.135), we see that this is a valid game since all resource values are

in (0, 1]. Call action profile a = (β1, β2) and action profile a∗ = (βn+1, βn+1). Action a is

the unique Nash equilibrium in this game: Consider when both players select the shared

resource. Given the resource values, player 1 will desire to switch to resource 1 to decrease

their cost function. Following, the remaining player will also desire to switch to resource 2.

However, the optimal decision is when both agents select resource n+1 since 2d ≤ β1+β2.

Hence, the PoS is

PoS(G) =
f(i, 1; d) + f∗(i, 2; d)− 2 · ε

2d
≤ H(1−d)

n

nd
(6.133)

⇒ 1 + f∗(i, 2; d)− 2 · ε
2d

≤ 2d−1 + 1

2d
(6.134)

⇒ f∗(i, 2; d) ≤ 2d−1 + 2 · ε (6.135)

where the right side can be made arbitrarily close to 2d−1. Combining Eqs. (6.125)

and (6.135) we see that, for n = 2, the optimal agent cost function that is local and

86

scalable is

f∗(i, 2; d) = 2d−1. (6.136)

• Step 5: Now we have defined f∗(i, 1; d) = 1 and f∗(i, 2; d) = 2d−1.

We then repeat this same process for n = 3, 4, . . . , and the result is f∗(i, k; d) = kd−1 for all

k ∈ N . This is equivalent to the Shapley cost function.

6.11 Welfare Generic Allocation Game Equivalent

As mentioned in Section 6.1, an equivalent generic resource allocation game exists for cost

minimization games with a global welfare function, and parallel results of this chapter can be

concocted equivalently. We informally define this game now.

A class of (welfare) generic allocation games is a class of (cost) generic allocation games,

G = {N , {Ai}i∈N , {J (z)
i }i∈N , R, {Cr}r∈R}, with the following modifications:

• the constant d ≥ 1

• each agent is assigned an agent utility function that is designed to be maximized

• the global objective is to maximize the local welfare functions.

6.12 Summary

In Chapter 6 we looked at N -family generic allocation games, and demonstrated how player

cost functions can be designed from two separate functions to create an improvement on overall

equilibria bounds that might be achieved.1 We discussed multiple player cost functions, and per-

1In particular, the z cost function retained the same PoA on the interval z ∈ [0, 0.5], and strictly decreased the

PoS on that same interval.

87

fectly bounded these player cost functions. We also demonstrated how the combined smoothness

argument and budget condition does not necessarily tightly bound the resulting PoA for all budget

conditions, even when the smoothness parameters are optimal.

The analysis on the Shapley cost function in this chapter demonstrated that (1) the Shapley

cost function is the optimal local welfare function, and (2) the z cost function is not always an

optimal player cost function that affords the lowest inefficiency bounds across multiple types of

resource allocation games when compared to the Shapley cost function, when considering the set of

all local and scalable agent cost functions. While the focus in this chapter is on a single resource,

the results can be expanded to a multiple resource allocation settings with little effort.

In Section 6.9, we considered the possibility of an inherent tradeoff between the PoA and

the PoS. The results from this chapter suggest this may be unlikely for a local and scalable cost

function.

Chapter 7

Thesis Conclusion

7.1 Discussion

This thesis delved into the question of how to design player cost functions in distributed

systems that have a global cost function, and how these agent functions are influenced by the

budget. We provided metrics to assess player objective functions, and we expanded on existing

methods used to quantify these functions.

Following, we discussed player objective function design in terms of convexly combining

multiple player objective functions. We demonstrated how the expanded methods could aid in

quantifying these new designs. We use two games to demonstrate the significance of these expan-

sions. In the second example game, we presented shortcomings in the contributions, and discussed

where those shortcomings came from. Although the example games were both resource allocation

games, the results from Chapters 3 and 5 apply to any cost minimization game.

The significance of this thesis is unquestionable.

• The smoothness PoA bounds presented in Theorem 2 of Chapter 3 provide a method of

bounding the worst-case inefficiencies across a broad class of games that may otherwise be

inherently difficult to quantify.

89

• The reverse carpooling example from Chapter 4 soundly demonstrates how a broadly de-

fined agent objective function can be defined and then “tuned” to have a PoA specified by

a designer when implementing the previous contribution.

• The design of player cost functions using a convex combination of existing functions provides

a novel and useful approach to agent function design in order to bound the PoA and PoS

of the resulting design (Chapter 5).

• The theorems from Chapter 6 prove an optimal local and scalable agent cost function for

a broad class of allocation games. This result may have a broad impact on design on agent

objective functions that fall within this model.

• Lastly, all of these results equally apply to global welfare maximization settings.

7.2 Unanswered Questions

Open questions remain. Firstly, we question the role of the budget in games that are not

smooth. Secondly, we question the role of the potential budget in broader types of potential games.

In Section 6.9 we considered the possibility of an inherent tradeoff between the PoA and the PoS.

Furthermore, it seems there may be a link between smooth an potential games, as their similarities

are striking. Finding such a connection might link the PoS and PoA upper bounds. For distributed

engineering systems, it also remains an open question how sharing information about action sets

with local agents might influence the resulting PoA and PoS for resource games. Lastly, Continued

research should focus on gaining insight finding better methods to bound the price of stability, as

many agent function designs do not compel a potential function.

Bibliography

[1] E. Anshelevich, A. Dasgupta, J. Kleinberg, E. Tardos, Tom Wexler, and Tim Roughgar-
den. The price of stability for network design with fair cost allocation. 45th Annual IEEE
Symposium on Foundations of Computer Science, 2004.

[2] P. G. Balaji and D. Srinivasan. An introduction to multi-agent systems. Studies in
Computational Intelligence, 310:1–27, 2010.

[3] Chandra Chekuri, Julia Chuzhoy, Liane Lewin-Eytan, Joseph Naor, and Ariel Orda. Non-
cooperative multicast and facility location games. IEEE Journal on Selected Areas in
Communications, 25(6):1193–1206, 2007.

[4] Ho-Lin Chen, Tim Roughgarden, and Gregory Valiant. Designing Network Protocols for Good
Equilibria. SIAM Journal on Computing, 39(5):1799–1832, 2010.

[5] Constantinos Daskalakis, Paul W. Goldberg, and Christos H. Papadimitriou. The complexity
of computing a Nash equilibrium. Communications of the ACM, 52(2):89, 2009.

[6] Shahar Dobzinski, Aranyak Mehta, Tim Roughgarden, and Mukund Sundararajan. Is shapley
cost sharing optimal? Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), 4997 LNCS:327–336, 2008.

[7] Simon Gächter. Behavioral Game Theory. In Blackwell Handbook of Judgment and Decision
Making, pages 485–503. Blackwell Publishing Ltd, 2008.

[8] Itzhak Gilboa and Eitan Zemel. Nash and correlated equilibria: Some complexity considera-
tions, 1989.

[9] MO Jackson. A Brief Introduction to the Basics of Game Theory. Social Science Research
Network, pages 1–21, 2011.

[10] R Johari and J Tsitsiklis. A game theoretic view of efficiency loss in resource allocation.
Advances in Control, Communication Networks, and Transportation Systems, pages 203–223,
2005.

[11] Elias Koutsoupias and Christos Papadimitriou. Worst-case equilibria. Computer Science
Review, 3(2):65–69, 2009.

91

[12] Jason R. Marden and Michelle Effros. The price of selfishness in network coding. Information
Theory, IEEE Transactions on, 58(4):2349–2361, 2012.

[13] Jason R. Marden, Shalom D. Ruben, and Lucy Y. Pao. A model-free approach to wind farm
control using game theoretic methods. IEEE Transactions on Control Systems Technology,
21(4):1207–1214, 2013.

[14] István Mezo and Ayhan Dil. Hyperharmonic series involving Hurwitz zeta function. Journal
of Number Theory, 130(2):360–369, 2010.

[15] Dov Monderer and Lloyd S. Shapley. Potential Games. Games and Economic Behavior,
14(1):124–143, 1996.

[16] John F Nash. Non coperative games.pdf. PhD thesis, Princeton University, 1950.

[17] John F Nash. Non-Cooperative Games. Annals of Mathematics, 54:286–295, 1951.

[18] Simon Parsons and Michael Wooldridge. Game theory and decision theory in multi-agent
systems, 2002.

[19] Parag C. Pendharkar. Game theoretical applications for multi-agent systems. Expert Systems
with Applications, 39(1):273–279, 2012.

[20] Tim Roughgarden. Intrinsic robustness of the price of anarchy. Proceedings of the 41st annual
ACM symposium on . . . , 55(7):116, 2009.

[21] Tim Roughgarden. Algorithmic game theory, volume 53. 2010.

[22] Tim Roughgarden and Éva Tardos. Introduction to the inefficiency of equilibria. Algorithmic
Game Theory, pages 443–458, 2007.

[23] Larry Samuelson. Evolution and Game Theory, 2002.

[24] Andreas S Schulz and Nicolás E Stier-Moses. On the performance of user equilibria in traffic
networks. Proceedings of the fourteenth annual ACMSIAM symposium on Discrete algorithms,
(Wardrop 1952):86–87, 2003.

[25] Yassmin Shalaby. Minimizing Price of Anarchy in Resource Allocation Games. PhD thesis,
2014.

[26] Theodore L Turocy and Bernhard Von Stengel. Game Theory. Encyclopedia of Information
Systems, pages 403 – 420, 2003.

Appendix A

Additional PoA Bounds

A.1 Repeated Play and No-Regret Sequences

Consider a cost minimization game G. Taking into account the budget condition, the ex-

tension theorem applies to certain outcome sequences generated by repeated play as well (see

discussion on learning algorithms in Section 2.3). Using the illustrated point in [20], consider a

sequence (a1, a2, . . . aT) of outcomes of a (λ, µ)-smooth game with minimum cost action a∗ of the

game. For each i and t define

δi(a
t) = fi(a

t)− fi(a
∗
i , a

t
−i) (A.1)

as the hypothetical improvement of player i’s cost at time t, had they used strategy a∗i instead of

ati. We can produce a similar derivation as is done in [20], taking into the budget condition, as

follows:

C(at) ≤ B(G) ·
k∑

i=1

Ji(a
t) (A.2)

= B(G)

k∑
i=1

(
Ji(a

∗
i , a

t
−i) + δi(a

t)
)

(A.3)

≤ λB(G) · C(s∗) + µB(G) · C(at) +B(G)

k∑
i=1

δi(a
t) (A.4)

⇒ C(at) ≤ λB(G)

1− µB(G)
C(a∗) +

B(G)

1− µB(G)

k∑
i=1

δi(a
t) (A.5)

93

for each t.

For action sequences where each player experiences vanishing average (external) regret, the

cost over time is asymptotically competitive with that of every time-invariant strategy:

1

T

T∑
t=1

Ji(a
t
i) ≤

1

T

[
min

T∑
t=1

Ji(a
′
i, a

t
−i)

]
+ o(1) (A.6)

Theorem 29. For every general cost minimization game G that is smooth with robust PoA ρ(G)

that incorporates the budget condition B(G), every outcome sequence a1, . . . , aT that satisfies

Eq. (A.6) for every player, and every outcome a∗ of G,

1

T

T∑
t=1

C(at) ≤
[

λB(G)

1− µB(G)
+ o(1)

]
· C(a∗) (A.7)

as T → ∞.

A similar theorem (omitted) for global finite games with a global welfare function exists and

is left as an exercise for the reader.

Appendix B

PoS Bound for Potential Games: Original Theorem

This theorem (referred to from Section 3.4.1) was originally presented in [21].

Theorem 30. Let a cost minimization game G = {N,A, {Ji}i∈N , C} be a potential game with

potential function ϕ, and suppose that for any action a ∈ A,

c1 · C(a) ≤ ϕ(a) ≤ c2 · C(a) (B.1)

for some constants c1, c2 > 0. Then the Price of Stability for this game is at most c2/c1.

Appendix C

Additional Properties of Smooth Games

This appendix section provides an additional property on smooth games that was suggested

from Section 3.2. Here we address the following question: if a cost minimization game is (λ, µ)-

smooth, are there any additional pairs of smoothness parameters that ensure the game is smooth?

While we recognize that other smoothness parameters may loosen the PoA bounds implied from

Theorem 2, we still provide this as a tool that might be utilized when designing player cost functions.

Proposition 1. Let a cost minimization game, G = {N,A, {Ji}i∈N , C}, be (λ, µ)-smooth with

C(a) ≥ 0 for all a ∈ A. Then the game, G, is also (λ+ δ, µ+ ε)-smooth for δ, ε ≥ 0.

Proof. Let a cost minimization game, G = {N,A, {Ji}i∈N , C}, be (λ, µ)-smooth with C(a) ≥ 0 for

all a ∈ A. By the definition of a smooth game (Definition 7) we have:

∑
i∈N

Ji(a
∗
i , a−i) ≤ λ · C(a∗) + µ · C(a) (C.1)

≤ λ · C(a∗) + δ · C(a∗) + µ · C(a) + ε · C(a) (C.2)

= (λ+ δ) · C(a∗) + (µ+ ε) · C(a) (C.3)

for all a, a∗ ∈ A. Comparing Eq. (C.3) to Eq. (3.1), we see that the game is also

(λ+ δ, µ+ ε)-smooth.

Appendix D

General Remark

We add a theorem here to help understand the results of Theorem 16.

Theorem 31. For integer N ≥ 1,

1

nd − (n− 1)d
= n1−d (D.1)

for d = 1, and

1

nd − (n− 1)d
> n1−d (D.2)

for d ∈ [0, 1).

Proof. Let n be an integer greater than or equal to one. Let d = 1. Then

1

nd − (n− 1)d
=

1

n− (n− 1)
(D.3)

= 1 (D.4)

= n1−1 (D.5)

= n1−d (D.6)

This proves the first part of the theorem. Henceforth, let d ∈ [0, 1). For N = 1 it is a trivial

solution. Henceforth, let n be an integer greater than one. For d = 1− ε for ε → 0+, we see that

n1−d

nd − (n− 1)d
→ 1+ (D.7)

97

A derivative of n1−d

nd−(n−1)d
with respect to d shows that n1−d

nd−(n−1)d
has a negative slope on the interval

d ∈ [0, 1). Hence, since n1−d

nd−(n−1)d
is continuous on this same interval, the second half of the theorem

also holds.

