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ABSTRACT.

We give a rather elementary proof of the Biichi theorem (in a somewhat
extended version) that regular canonical systems generate regular languages

only.



INTRODUCTION.

Regular cancnical systems form a special case of canonical systems of Post

([P]) and were considered in depth for the first time by R. Buichi {[B]).

These systems play a basic role in the classical formal language theory
{(see, e.g., [S] and [G]) and it was demonstrated recently that they play a crucial
role in a unified theory of grammars and automata {(see [R]). The main result of
[B] says that regular canonical systems generate only (and all) regular
languages. The original proof of this result by Bichi is really involved (a clear
presentation of this proof is given in [S]) - a simpler proof relying on a couple of
results concerning push-down automata is given in [G] (actually a somewhat

more general theorem is proved in [G]).

We provide a simple proof of Biichi theorem (in the more general version of
Greibach). Our proof is simpler and more elementary than the proof in [G] in
that it gives a direct construction which for a given regular canonical system

yields a finite automaton defining the same language.



PRELIMINARIES.

We assume that the reader is familiar with the basic theory of regular
languages (see, e.g., [S]). Perhaps the following notational matters should be
pointed out:

- fof‘ sets A and B, A—B denotes the set theoretical difference of 4 and 5,

- A denotes the empty word,

- for a word x over an alphabet %, pref(z) = {y € 5" yz = z for some 2 € 2*;,
- for words z, ¥ such that ¥ is a prefix of z, y\z denotes the word z such that
yz =z,

- for languages K and L over an alphabet X, the right quotient of K by L,
denoted K/, is equal to {x € 5" there exists a y € L such that zy € Ki.

We recall now the definition of a regular canonical system (see, e.g., [B],
[G], [S]). Our formulation is the closest to this from [G], however we use the
right version of regular canonical systems, i.e., the rewriting takes place at the
right (rather than the left) end of a string - this does not make any difference as
far as the class of defined languages is concerned.

Definition. (1) A (right-)regular canonical system, abbreviated rc system,
is a quintuple G = (£, A, U, V, P), where X is a finite alphabet - the fofal alphabet
(of G), ACS is the terminal alphabet (of G), U C " is the aziom set (of G),
V<5 is the end set (of G)and P C £*x5" is a finite set of productions (of G).

(2) For G as above and z,y € we write z =y ifz=z'aand y ==z'f for
some z' €% and (a, B) € P (we say then that z directly derives y using {o,f)).
(8) The transitive and reflexive closure of ——E;> is denoted by %;‘»

(4) The language generated by G, denoted Ly (G), is defined by

*
L(G) = {x € A*: for someu € U andw € V,u *—g;»x'u; and



the languoge accepted by G denoted L {(5), is defined by

X
Lo(G) = $z € A": for somev € Vandu € U, xv *-;}ug, =



THE HAIN RESULT.

We will show that for an rc system both, its generated and its accepted
language are regular by proving this result for a special subclass of rc systems -
called elementary - and then reducing the general regularity problem to the
regularity problem for elementary rc systems.

Definition. A regular canonical system G = (Z, A, U, V, P) is called elemen-
tary, abbreviated erc system, if #U =1, V={Aland T = A. =

Remark. (1) Since for an erc system specifying £ and V is superficial, we

will specify an erc system in the form G = (A, uy,, P), where U = {uy,]. (2) Note

*
that for an erc system G as above we have Ly(G) ={x < INEETR =G;>x§ and
* »
L{G)={z cA x?umi =

In order to prove that L;(G) is regular for an arbitrary erc system G we
give a construction which (for a given erc system G) yields a transition system
accepting Lg(G). A transition system is like (the graph of) a finite automaton
except that transitions can be made on words, rather than on letters only,
including the empty word. A transition system will be specified in the form
A={(0, @, F, g4, 6), where 0 is its alphabet, @ its set of states, F' its set of final
states, g;, its initial state and § its control consisting of a finite number of tran-
sitions, each of the form (g, z, g'), where ¢, g' € @ andz € X" {in the graph of A
{q.z,q") corresponds to the directed arc from ¢ to g' labelled by z). L{A)

denotes the language accepted by A
Here is the above mentioned construction.
CONSTRUCTION.

Let G = (A, uy,, P) be an erc system.



Let Ap = (0, @, F, g4, 6) be the transition system such that
O =A Q=P UlunlUif, where f £ PU{Uin}, Qin = Uiy and 6 is defined as fol-

lows.

(1) For m) = (e;, B1), e = {0z, B2) € P and z € AY,

(m, z, mo) € 6 whenever z € pref (8;) and z\8, % O,
() For n = {(,f) € P and = € AY,

(m, x, f) € 6 whenever z € pref (8) and z\8 =Z=> A

k(s) For = {a,f) € Pand z € A",

(i, z, ™) € 6 whenever z € pref (uy,) and x \uy, :'—Z;s o.
(4) Forz € A",

(Ui, Z, f) € 6 whenever z € pref (U, ) and z \u,, ——Z? A

(5) 8 contains only transitions specified under (1) through {4) above. =

Remark. (1) Requiring that in (1) and (2) above = € A* rather than z € A*
is not necessary however it makes the proof of the next lemma easier {more
intuitive).

(2) The effectiveness of the above construction relies on the effectiveness of the

¥ *
=G-‘;> relation. However it can be proved that for each rc system the ———c—:; is

recursive and so the above construction is constructive. ®

We will prove now that for G and Ag as in the above construction the
language accepted by Ag equals the language generated by G. {In what follows a
derivation of a word z € A* in & is a sequence of words %g, ..., U, - called the
lrace of the derivation - such that n =0, ug = uy, and u, =z fogether with a
sequence of productions 7y, ..., ™, such that, for 1 <1 < n, u;_; directly derives

w; using m;; we say that m; is used in the i-th step of the derivation.)



Lemmma 1. Let G and A; be as in the above construction. Then
L{Ag) = Lg{(G).

Proof.

(1) L(Ag) € Ly(G).

Consider z € L(Ag) and a successful path 7, in Ag yielding the acceptance
of z.

(i) If 7, is of the form (the initial state is indicated by a short double arrow and

the final state by a double circle)

Figure 1.

*
then clearly uy, =z and so z € L;(G).

(ii) If T, is of the form
Figure 2.

wheren = 1,2 =2, " Z,Z,41, Ug = Uy, and u; = (o, B;) for 1 <1 <n, then by

the definition of Ag,

*
L4
Uy, = £,2, for some 2; € A” such that 2z, =(:;; o,
R % *
forl=i=sn-1 f; = %412+ for some 2z;,; € A" suchthat z;,, ? Cie1 »

*
E
and 8, = Zp412,4 for some 2, ,; € A" such that 2, ,, =G> A

Consequently in G we have

* ¥ *
Win = T)121 =2 10072 2101 = 21222 = 1%tz :?xlmaﬁz =

* *
*"—?‘«”61272 T Ip By ?xle' C Znpfn S X \Xp o TpZariZa ﬁ?ﬂfﬁ’a’Z' RSP

Thus & =z, ' Zpkpe € Lo(G).

(o



(R) Li(G) ¢ L{Ag).

consider x € Ly (G).

*
If z = A, then uy, = A and so, by the definition of Ag, (U, A, f) €6 and
consequently A € L{Ag).

If x = uy,, then, by the definition of Ag, (uy,, ¥y, f) € § and consequently
Uin € L(Ag).

So we may assume that = £ {u;,, A]. Let D, be a derivation of z in G with
the trace wg,w;, .., w,, where n>1, wy=uy and w, =z, and let, for
l=i=n, 7w =(w.p;) be the production used in the i-th step. Let, for
Osi<mn,w; =01 " Gm ., where g;; €A for 0<i<mn and 1=<j=m;. Also,
for 1<i<n,rem(w;) = |w;/B;| and rem (we) = 0.

We will prove that z € L{Ag) by demonstrating a "parsing strategy” for z in
G which is 'realizable” (i.e., corresponds to a successful path) in Ag.

We write w, in the form w, = fo¢f; - t, where, for each 0=j <n, {; is
defined as follows:
foreach 1<k < m,,

a; belongs to £; if and only if rem (j) <k <rem(l) for eachj <l < m.,

Nowlet M = {7 €{0,...,n}:t; # A)and let (§;,Jj2. ..., j») be the ordering of

Jn

Msuchthat 0<j, <js < -+ <j.<m; hence w, :tjltja-- e

We consider separately two cases.
(i) j1=0
* X
Then wg = Un = £; Y, for some ¥, € A" such that y, =G> %, s

. *
wy, = by t; Yy, for some Yz € A* such that 85, = £;,yz and ye =G> jg s



* ®
wy, =ty t; - t; Yy, for some ¥, € A" such that §; = {; y, and y, ? A

This may be illustrated as follows:

Figure 3.
Consequently

Figure 4.

is a successful path in Ag.

Thus £5,2;, - £, = wWn =2 € L{Ag).

(i) 71> 0.

Then we notice that uy, :—-%} oy, and 50 (W, , A, 77;,) € 6.

Now proceeding analogously to (i) above {but 'restarting the derivation" from

wjl) we complete this transition to a successful path in Ag:

Figure 5.

Hence f; t;, -+ t; =w, =z € L(Ag).
Consequently Ly (G) € L(Ag).

The lemma follows from (1) and (). ®

Now the regularity of Ly {G) and L {G) is proved as follows.
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Theorem 1. If G is an erc system then both 74 (G) and L, (G) are regular.
Proof.

Let G = (A, uy,, P).

The regularity of [ (G) follows directly from Lemma 1.

To see that I,(G) is regular we notice that for the erc system
Girw = (A, Ui, {B.0) : (a.B) € P}) we have Lg(Giw) = Lo(G). Hence, again, the

regularity of L {G) follows from Lemma 1. ®

Now in order to extend our results to arbitrary rc systems we note the fol-
lowing - we discuss the generated languages, the situation for accepted
languages is analogous.

(1) It G=(Z, A U, V, P) is an rc system such that G' = (A, A, U, V, P) is ele-
mentary, then L, (G) = LQ(G‘);";A* and so, by Theorem 1, and the closure of reg-
ular languages under intersections, Lg{ ) is regular.

(2) It G=(Z, A U, V, P)is an rc system such that ¥ = {A} and U is regular then
we proceed as follows. Let H = (0, A, R, §) be a right-linear grammar (where @
is its total alphabet, A its terminal alphabet, R its set of productions and § its
axiom) such that L{H) = U; clearly we may assume that (0—A)\(Z-A) = 2.
Then let &' = (X!, A, {S}, V, P") be the rc system such that &' = Z{J(®-A) and
P'= PR. Obviously Ly(G) = Lg(G') and so, by (1) above, Ly(G) is regular.

(3) Finally if G = (X, A, U, V, P) is an rc system such that U and V are regular
then we consider the rc system G' = (Z, A, U, {A}, P). Clearly Ly(G) = Ly (G)/V
and so, by (2) above and because the family of regular languages is closed under
right derivatives, Ly (G) is regular.

Hence as a corollary of Theorem 1 (and simple closure properties of regular
languages) we get the following result which generalizes the original theorem of

Biichi from [B] (in the version as below the theorem was first proved in [G] and
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[XD).
Corollary 1. It G = (X, A, U, V, P) is an rc system such that I/ and V are

regular languages, then both Ly (G) and L (G) are regular. ®

Remark. (1) Clearly, given an rc system G, we could have given directly
the construction of a transition system Ag accepting Ly(G). However we felt
that going first through elementary rc systems and then reducing the problem
to the general case makes the whole idea (behind the main construction) more
transparent. (2) Note that Corollary 1 holds for arbitrary V (the class of regu-

lar languages is closed with respect to right quotients with arbitrary languages)

- the regularity of Vis needed to make this result effective. ®
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