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Abslract

One of the best features of the standard UNIX' shell is the use of pipes to
compose programs. A C language derivative is used for more complex pro-
gram cornbinations involving looping or branching. This paper presents an

alternative shell language based on natural extensions of the pipe concept.

“"Structured data streams” are introduced as a means of expressing
potentially concurrent processing, and "labelled data streams’ serve to
route data to one of a pool of programs. These complex data streams are
hooked together with functional operators much as simple data streams are
hooked together with pipes. A generalized notion of "powers” provides for
repetition of programs and also for systems that take an arbitrary number of
input streams. This provides a uniform way of building complex tools from
simple ones, as advocated by Kernighan and Plauger [8]. A major advantage
of this new shell language is its program algebra, which facil,it.;ites systern

verification and analysis,

fUND{ is & Trademark of Bell Laboratories.






1. Introduction

In the UNIX C shell the notation p,lp, is used to indicate that the output
of program p; should be routed to the input of program pgz. The binary
operator "|", called a pipe, is one of the most useful features of UNIX. If we
think of programs as state transition functions, then the pipe operator
corresponds to functional compbsition; which is usually denoted by """ in

mathermatics,

Pipes are useful because they allow a system to be built out of simple
combinations of Subéyﬁtemsb as advocated in [B]. The UNIX pipe is in turn
made possible by the uniform treatment of files as strings of bytes, having no

internal structure of significance to the operating system.

More complicated program combinations are eflfected by executirxg a
sequence of C shell commands, or by writing a shell seript that combines
programs using a variant of the C programming language. Shell scripls
enable the systems programmer to create and destroy temporary files, to
handle multiple input and output files, to choose among alternative program
sequences, to apply a program to several files, and to repeat program

sequences.

Although highly useful, the pipe concept is not always well matched to
the C language. In some cases, mismatches are caused by unfortunate res-
trictions on the use of C language constructs in the shell. For instance, one
is not permitted to pipe output to a conditional combination of programs, as
in:

P, |if b then p, else py endif

Even with such restrictions removed, however, C is better suited for effecting
state transitions by combining assignment statements with control struc-

tures than it is for describing the interconnection of programs to form



systems.

This paper proposes an alternative to the C shell, called the # shell, The
I shell takes its cue from the pipe, and is based on a collection of program-
combining operators. The T shell operators combine smoothly with pipes,

thereby enabling simpler expression of systems.

The F shell is intended to foster structured systems programming by
providing a small, highly orthogonal set of powerful primitive program-
forming operations (pfo's) that suffice for most programming tasks. Of
course, all of these opf;mtions can readily be defined as extensions to any
sufficiently rich language such as ml [6] or Hope [2], just as all of the struc-
tured control constructs of von Neumann languages can be simulated with
conditional jumps. But the purpose of the I' shell's pfo's is to encourage Lhe
programmer to use a small set of well-understood programming constructs,
so the observation that they introduce no new expressive power is true but

irrelevant.

The F shell does have a definition mechanism providing the full power of
functional abstraction, but its casual use is discouraged; like the goto, it is a
powerful but arbitrary and potentially "harmful”" feature of the language. It
;s of course technically possible to supplant abstraction with additional pfo's,

but I do not yet see an intuitively appealing way to do it.

The benefit of writing programs with structured pfo's is that there are
simple rules for reasoning about them. In the case of the F shell, the rules
expreas algebraic relationships among pmgﬁramb The conce pt of an algebra
of pmgrams based on a limited set of pfo's first appeared in a rudimentary
form in ISWIM [10] and was further developed in connection with FP [1]. This

approach to reasoning about pmgrams is in sharp contrast to most program

|



logics, which express relationships among predicates, states, or modalities
which are intended to model the effects of the program's execution on some

abstract machine.

The "innovation” of the F shell language, if any, is its integration of the
concepts of structured functional programming and types. But the main
purpose of the F shell is not language innovation; instead, | wanted to explore
one way in which functional programming concepts could be embedded in an
operating system, which is fundamentally concerned with state transitions.
In this connection it should be noted that I am suggesting only that individual
transitions be constructed as pure functions of the state, not that the entire

system be described functionally.

The basic plan of this paper is as follows. §2 introduces structured and
labelled data streams, which are used to combine simple UNIX-style data
streams into "cables” for hooking up complex program combinations. §3
shows how ope;“ator polymorphism is used to retain uniformity of notation,
beginning with how "|" can be used to compose any two subsystems having
similar cable connections. §4 presents the F shell operatog"s, and §5
describes "definitions" and their rélationship to scripts. Examples of their
use are given in §6. A significant advantage of the F shell is its support for
formal reasoning about composite systems, as described in §7. §8 remarks
on the programming language origins of the F shell, its implementation
(including possibilities for parallelism), and directions for future research.
Sections marked with an asterisk can be skipped on a first reading v‘?ﬂ"thout,

loss of continuity.



2. Data Streams

As mentioned earlier, UNIX achieves simplicity of program composition
by having a simple and uniform view of files as byte strings. Fach program
has associated with it a "standard input” and a "standard output". The stan-
dard input of one program is connected to the standard output of another
using a pipe. Thus data are passed from one program to the next in a simple
data stream, pictured thus:

side view end view PePa
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(Note: here and henceforth we shall use « instead of | to denote composition,

read from left to right (i.e, in "diagrammatic order’), just like UNIX pipes.)

2.1. Structured Data Streams

A program that has multiple inputs or multiple outputs can be viewed as
having a single input stream and a single output stream, each of which is a
structured data stream having some number of components. Here is a pic-

ture of a structured data stream having three simple stream components:
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The wiggly line indicates the boundary of a structured data stream. A struc-
tured data strearmn can also have other structured data streams as com-

ponents, as shown below:
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2.2. Labelled Data Streams

It is sometimes convenient to be able to put a label on a data stream,
The label on a labelled data stream is used to carry conditional routing infor-

mation. In drawings, a streamn labelled I will be drawn with the label on top:

£

N

For simplicity, we shall assume in the sequel that labels are drawn from the
set of natural numbers, although in general we would be happy with any

enumeration type. The use of labelled streams will be further clarified in

§4.3.

2.3. *Data Stream Semantics

The I shell's data streams are defined by the domain equation

stream = simple._strgam

® stream®’

® stream®
where ® is the seporefed sum, ® is the Curtesion product, and d®’ is the
domain of arbitrary sums (products) of elements from d, depending on
whether O is @ or ® Thus the class of data streams is closed under the for-
mation of (Cartesian) products and (separated) sums. The exact nature of
the domain of streams shall not concern us but will, of course, depénd on

whether the solution is sought in terms of lattices, cpo's, or some other

appropriate construction.



3. Polymorphic Operators

Notice that in the above drawings a single operator symbol, viz. "o, has
been used to compose data ‘streams of arbitrarily complex structure. The
only requirement is that the structure of the streams being composed is the

Same,

One way to ensure that the structure of the streams being composed is
the same is Lo have only one kind of stream. The systems programiner can
then enjoy the flexibility of working in a unityped or "typeless’ command
language. Another way to ensure compatibility between "job steps" is to
specify the structure of the data streams in minute detail, using 'data
definition” statements. A third alternative is to use polymorphic typing and
type inference, thereby combining the security and added expressivity of a

typed system with the flexibility and convenience of a unityped system.

The use of a single operator symbol to denote a class of related opera-
tions is generally known as (parametric) polymorphism. Such operators are
parameterized on both the types and values of their arguments. Minimal
constraints on the structure (type) of the arguments to an operator can
almost always be inferred from the way the corresponding formal parame-

ters are used in the body of the operator’'s definition.

As an illustration, the first paragraph of this section can be restated for-
mally as follows. If p:t,>t; and pgfz->ts, then Piopol»ty So, if we let
Ti, Te, and Ty be type variables, then we can ascribe a polymorphic type to

the composition operator, viz.

°f<7'1"*7'2)x(72“’73)”’(71"73)

The initial motivation for having polymorphic operators in the F shell is

to enable a single conceptual operation, e.g. composition, to be used to



combine programs having an arbitrary number of inputs and outputs without
having to specify their structure. But the real benefit of introducing
polymorphism 'is that it gives us the power to write generic systems, i.e. sys-
tems that take a number of subsystems as arguments and generate com-
plete systems according to some rule. This increase in expressive power
over Lhe C shell is a natural resull of introducing the programming language

notion of polymorphism into the operating systemns arena.

3.1. * Remarks on the semantics of F shell types

The F shell types correspond to Scott's category of restricted
equivalence relations on Pw [15], which is closed under both products and
coproducts, and type inference basically proceeds by unification of syntacti-
cal terms built from the type operators + X - as in ml [12]. Thus the word
"type" as used here is closer to Scott's "functionality”; ¥ shell types are not

retracts.

An important point to note is that the type operator + is a coproduct in
the category of types, whereas the domain operator @ is nof the coproduct in
the category of retracts. The connection between these operators will be

clarified at the end of the following section.

4. F Shell Operators

The F shell language comprises a collection of operators for combining

programs in various ways. These operators fall into four classes: composers,

under the F shell operations of a set of primitives.

Every primitive program is a function taking a (possibly labelled) struc-

tured data stream as input and producing a (possibly labelled) structured
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data stream as output. Primitive programs cannot create or modify files
(i.e., they have no side eflects). Nor can primitive programs read files (ie.

they have no free variables). Consequently, a primitive program is a pure

function of its inputs.

4.1. Composers

There are three primitive composers: composition, source, and sink.
Composition is the polymorphic extension of the UNIX pipe introduced in §2,
and is denoted by the infixed operator symbol ".". The F shell programs
form a category under composition (we assume that there exists a
polyrnorphic primitive program id that simply transmits any data stream
unchanged). The input stream type of an F shell program is its domain, and

the outpul stream type is its codomain,.

The notation p<f in the C shell indicates that program p takes its input
from the flle f. -In the F shell, the postfixed operator symbol "<" is called the
source operator. Its effect is Lo create a simple data stream from the file f.
Hence the C shell expression above is recast in the I shell as f<p (note the
interchange of f and p). The identifier f takes its meaning from a tree-
structured environment known as the s ystem direclory.

Sources supply files as inputs to F shell programs; sinks record the
results of F' shell programs, updating the system state. The sink operation is
denoled by Lhe prefixed operalor symbol ">". The effecl of >f is to record a
simple data stream in the file f Hence the expression f<>g in the F shell

copies the file f into the file g.

Notice that sources and sinks create and destroy only simple data
streams. Were this otherwise, UNIX would have to know something about the

internal structure of files.



4.2. Structurers

There are three stream structuring operators, or “structurers”, called
construction, product, and projection. Simple streams are created by the
source operator. Structured streams are created by the construction opera-
tor. letpy, - ,p, be ['shell programs having the same domain’. Then the

program

]

Pn
L-——-»JM/‘\/NW

creates a structured data stream with n components. The i component
stream is obtained by applying p; to the input stream (I=i=n). The input
stream and the components of the output stream may be simple, structured,
and/or labelled. Notice that a structured stream embracing the contents of
several files may be created by a construction of ﬁ;ources:

/dev/ mull<[f 1<, - fn<]. ' .

Interestingly, there is a crude version of the construction operator in
UNIX, called fee, that makes n copies of its standard input. This is analogous
to the I shell program [id,...,id] (the construction of n id's). Although tee is
intended for "pipe fitting", its output is actually sent to m named files,
because there are no operators in the C shell for building programs that act

on structured streams.

THore precisely, the constructed function has a polymorphic domain that unifies the
domains of all of the component programs. It is the polymorphic type § solving the system of
simultaneous type equations §=0; (Isikn).
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Programs that act on structured streams are built in the F shell using
the binary infixed operator symbol "®", called the product operator. Let pro-

grams p; have domains §; (I<i<n), Then the program

I P Tl P W, U
oy
®
®
B T S pn
Pl W e P O
th

transforms a structured stream whose 9*' component has type §; into a
structured stream whose i®* component has type «; by applying p; to the

corresponding component of the input stream (7<i<n).

In order to record the results of I shell programs that act on and pro-
duce structured streams, there must be a way to select simple components
and sink them. This is done using one of the projectors 15 2™ 37¢ ...
which project a structured stream onto its first, second, third, ... component
stream. In other words, the i** projector transmits the i** component of a
structured stream and discards all other components (effectively sinking

them to /dev/null).

4.3. Seleclors

There are also three selectors: alternation, sum, and labellingT. These

operators allow conditional combinations of I’ shell programs.
Whereas construction creates structured streams, alternation destroys
labelled streams. Let py, -, pp be I shell prograrms having t,he"t “same"

domain (in the above sense). Then the program
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T~

o

produces an output stream obtained by applying program p; to the input
stream {with the label [ removed). Recall that we assumed that labels were
drawn from the set of natural numbers. Clearly, the "syntactic sugar" of

labels drawn from arbitrary enumeration types would be beneficial in prac-

tice, but would unnecessarily complicate the discussion here.

Sums of labelled streams are analogous to products of structured
streams. The former build programs that act on labelled streams, just as the
latter build programs that act on structured streams. Let programs p; have

domains d; {7=i<n). Then the program

by

2 63\ 9 N

Dn

transforms its input stream to its output stream by applying program o,

retaining the label on the output stream.
Whereas projectors destroy structured streams, labellers create

H
labelled streams. The labeller * places the label 1 on its input stream. In
general, we permit { to be any program that computes a label value from its
input. Bo for example if & is a program that produces either the label 1 or

the label 2, then the F shell program
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b
Piotedpa,palb

corresponds to the outlawed conditional C shell program
oy | il b lthen pp else pq endif

mentioned in the introduction.

4.4. Powers

Repetition in the F shell is expressed in terms of powers of the three

binary operators ., ® and ®. Let ¥ stand for any one of these three. Deﬁ‘ne
f<p™ =
(the everywhere undefined program),
f<p® = f<p, and
f<p® = f <pop® ! lor 'z£>2,
So, for example, p® = p® - - - ®p, where there are n occurrences of p on the
right.

.. . w .
Given the above, the iferate of 9, p® 7, is defined as follows.

while loops are used in the C shell for iteraled application of a command
sequence. The iterale of composition provides the analogous service in the F

shell. For example, the C shell program while b p end corresponds to the F

b

shell program (fdp,id»)* "

Other iterates arce used to build programs thal appiv a program to all
components of a structured stream, in the case of products, or that apply a
program to the dalta part of a labelled stream, preserving the label, in the

case of sums, For example, the C shell program fragment foreach file (%) p
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$file end could be rendered in the F shell as p® ",

4.5. * Remarks on the semantics of ¥ shell operators

The F shell algebra treats the structurers élﬂ‘d selectors as though they
were calegorial duals, and this demands some explanation. Although the
functor ® is the calegorial product in the calegory of relracts, the calegory
is not closed under the corresponding coproduct, which produces spaces
that look like separaled sums shorn of their boltor (and Lop) clerments. The
problem with separaled sums is that there are as many ways to choose a
function A to make the diagram below comimute as there are ways Lo choose

a value for | 4gs.

¢
+ / N\
g z
- LR -
Coalesced sums werk fine as long as we restrict ourselves Lo striet functions,
as in FP [1], but if f and g are allowed to be nonstrict then there is no func-
tion A that will make the diagram commute, because if fis strict but g is not,

then

Lo =f (10) = A{2(1a)) = ALaos)
=h{1(Lp)) =g (Ls) # L,

which is a contradiction.

Our problem is that we want both the aloebraic lidiness of having dual
operations and nonstrict functions. This dilemma is solved by ensuring that
the only way to construct an F shell program h:e®b -»c that makes the
diagram commute is Lo combine programs f: o »c and g:b ¢ with the case

tuple operator to form the program 4f.g%. Thus ® is the categorial dual of
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® in the category of I shell programs, and a single set of operators and a sin-
gle algebra can be used to construct and reason about both types and pro-

grams,

5. Definitions

In UNIX, any single command line can be given a name, called an alios.
A list of active aliases is maintained in the environment of each shell. Some
combinations of UNIX comimands require multiple lines, however, and in that
case they must be placed in a shell seript. Unfortunalely, the name space
control rules for aliases and scripts are nol uniform, which is sometimes

awkward.

By design, the operalors of the I shell are well integraled so that any I"
shell program can be composed as a single expression. Consequerntly, a sin-
gle mechanism for binding identifiers to T shell expressions sufflices for all

purposes. In il simplest form, an F shell definition
Del name = F shell expression

binds the name on the left-hand side to Lhe program denoted by the F shell

expression on the right-hand side.

As an example the program distl takes lwo streams and pairs the first
up with each component of the second. It can be defined as a combination of
the simpler programs null, which tests for equality to [] (the structured
strearn having no components), and append, which takes in the structured

{

Yy e and oulputs the stream jz oy, - - ollows,

stream

2nd gl

Pel distl = 1+ o

4[], [id®1%, (id®rest).disti cappend b
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Note that | ] is a left unit for append.

'

As in this exaraple, ' shell definitions may be recursive. Of course, pro-
srams defined in this way are likely Lo be relatively inefficient, but they can
always be recoded and added to the repertoire of primitive programs if their

frequency of usce juslifies Lhe efTort.

It is also possible Lo have parameterized definitions in the I shell, with
the syntax
Del {(purameter list)name = F shell expression

where the F'shell expression on the right-hand side may include instances of
the identiflers in the parameter list. Parameterized definitions are
eflectively "generic scripts’ - scenarios for program combination, For exam-
ple, prograrms to apply a binary operator to reduce a structured stream hav-
ing an arbitrary number of components to a single resull stream are most
conveniently wrillen using Lhe scenario /" ("inser(").

xradd

Def (f ,’M,)/ = T odul, ! ]vSt'mm(f ,?,L)/{}uf P
Some examples of ils use are:

Def v = (&,'1")/
Del ) = (+,0)/

Del Doall = (oid)/

The definition of "deall” makes sense because it i permilted to have
program streams as well as data streams in the I shell. If p is a defined pro-
gram, then p<is a program slream.source, carrying the denotation of p. In
ordinary UNIX shells, a distinction is made between executable and nonexe-
cutable files. In the I shell, however, there are no execulable files. The only

executable entities are programs, which are either primitive, defined, or F
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shell expressions. Moreover, the only operations over programs are the F
shell program combining operations o, [ |, ®, ete. It is crucial for the exten-
sionality of thé semantics of the F shell that none of Lhese operators gives
one the ability to manipulate the instension of a program. In other words,
there is no quotation mechanism in the F shell. Rather, everything is done

with higher-order functions.

Although parameterized definitions can be used to define arbitrary pro-
grams, they should be reserved for constructing new program forming opera-
tions such as /" in order to keep the number and complexity of the program
structuring mechanisms intellectually manageable. Another useful derived

pfo is a ("apply-to-all” or "map"):

Def (f )a = 77

The orthogonality of the I” shell operators, the uniformity of name space
control provided by definitions, the clear distinction between programs and
data, and the expressiveness afforded by the use of higher-order functions
and scenarios, all contribute in providing a congenial environmenl Lo support
the development of software in a hierarchical fashion, as advocated for

example by Kernighan and Plauger [8].
6. Fxamples

The examples in this section show how to define a number of common
utilities in the F shell.

6.1. Copy

We have already seen the program to copy a file, but here it is as a

defined command.
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Def (source target)cp = source <>target

More interesting programming examples require primitive operations on

simple streams. The I shell includes at least Lhe following.

maitch: pattern - (simple_stream -
simple_stream @ simple_stream)

concal simple_stream ® simple_stream -
simple_stream

split. pattern - (simple_stream -
simple._stream ® simple_stream)

replace:patiern ® simple_stream -
(simplgstmam - simple_stream)

The primitive domain of patlerns is essentially that of SNOBOL4 [7], and the
pattern notation used in these examples is based on thal of SNOBOL.
6.2. Expand and Print

The following shell script prints a list of files, first expanding tabs to

blanks. The default is to expand tabs to 3 blanks.

i#f (31 =~ -[0-9]) then

set tab = §1 .
shift

else
set tab = '-3’

endif

foreach file (§*)
expand $tab $file | pr
end

The F shell expression corresponding to this script has an almost identical

converted into a similarly structured composition of expressions.

1506 ('~ ('0.9")any Jmatchslabal ) A
0 o did, ['-3id] ¥ o

distlo(exzpand.pr)u
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Noles:
The primitive function label is used to convert any function whose range
is a sum type inLo the corresponding predicate. 'siring’ denotes a
source constant, L.e. it creales a simple stream consisting of the charac-

ters in string.

6.3. Breaking a simple stream into lines
Filtering is a useful concept in program design, and is used in many

UNIX utilities. Filter programs are those thal read a portion of their input,
perform a local transformation on it, and pass the resultl lo the output
stream. In the F shell, this paradigm is adopled in a somewhat modified
form, the difference being that the output stream iz a structured stream
whose components are the transformed fragments of the input stream. As
an example, the following program uses filtering to break a simple streamn
into individual lines.
Def lines = [id,(('<CR >"Ybreak )split o

(( ({('<CR>"notany )break )split «2™)Rid) o

Jilter N
The filter program takes a simple stream and a command and applies the
command to the stream until the stream is empty. The result of filtering is a
structured stream whose components are the resulls of the successive appli-
cations of the command Lo Lthe input strea.

ot pot

Bef filter = ¢

<[], [apply.2™ [

[15t01%F (2™¥®id )ofilter |oappend
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eof tests for equality to the empty stream ¢ < (g is shorthand for sdev. /null),
The filtered stream can easily be reassembled into a simple stream using the

concal-all program below,
Def concat_oll = (concat <)/

Where / is the "insert” operator defined in §5.

6.4. Quicksort

In this section we develop a sorting utility, based on quicksort. The
input to the sort program is assumed to be a structured stream whose com-
ponents are the records to be sorted. A data file can be broken up into
records using a variant of the lines program. The sorting problem then
breaks down neatly into two phases. The first phase arranges the records in
order in a nested structured stream, and the second phase removes the

superfluous structure.
Def sort = aw&nge of latten

The flatien program simply extracts the elements from a nested structure
without altering their order of appearance, and is generaﬂy\ useful for
"traversing" tree-structured data.

wsimple
Del flatten = ( 1 o4 id, flatten »)n

The arrange program is an instance of the classic divide-and-conquor para-
digm.

[#companents '1e=
Defl arrange = T o

4 id,

partition.(arrange QidQarrange )
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The partition program splits its input into three substreams consisting of
those records whose keys are less than, equal to, or greater than a given
pivot record. ' It does this by first pairing each record up with t;he pivot, then
comparing the keys of each _péir, and finally splitting the records up into the
three "bins" according to the results of the comparison.
Def partition =

pivol_pair « compare_oll « split_up
pivot_pair is easily written using distl.
Def pivot_pair = [1% id] . distl

compore.oll extracts the keys from each pair and compares them, and then
selects the actual data record to pass on along with its appropriate label

{key®key Yorompare
Def compare_oll = ( ?

o (an )Qﬁ)a

split.up first creates the three bins and then cycles through the records,
placing each in the appropriate hin.

Def split_up = [id, [ []. []. [] ]

18 sl

T o 42 [1%trest, route_first [p)°” ‘

Finally, route_first deposits a record in the correct bin by passing it through

a "decision matrix".
Def route_first = (15¢Rid)o
[ €id,[].[]»® 15
4 []id,[] » @ 2ré-

4 [].[]id » ® 3" ]o (append )a
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7. System Verification

F shell expressions obey certain algebraic laws. For exarple, the com-
position of two products is semantically equivalent to the product of the

composition of the components; i.e.,

(P®  8Pp)o(g®  ®Yn) =

(P1091)®  *  R(PnoGn)
A list of ’su.ch laws is given as an appendix. These laws, in conjunction with
laws relating the primitive programs and the fixed point induction rule, are

used to reason about I shell programs.

One possible use of the laws is in system optimization. Each law states
an equivalence of program schemes. Further schematic equivalences can be
derived as theorems, possibly with conditions restricting the instances of the
schemes to which an equivalence theorem applies. The equivalences can be
used as rewrite rules by giving a preferential weighting to one of the terms,
and the rewriting rules used to transform programs for improved perfor-
mance. (Note: although the prograrnmer can access only the denotation of a
program, the command interpreter will certainly perform differently with

various expressions of the same function.)

As an example, consider the following ¥ shell program to compute Stir-
ling numbers.

(=01 ‘Qid o= Joar
Def Stirling = T a

q'1,
[(pred®pred ). Stirling,
[(pred®id).Stirling , 2" Jo x]o +
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This program is straightforward, given the definition of Stirling numbers,
but its time complexity is (2‘) where n and k are the two arguments. The first

step toward a faster algorithm is to recognize that the Stirling program is an

instance of the following scheme,

Deff =t ayg, oS [Geef kJeiJoh »

A simple inductive proof in the F shell algebra (see [18,9] establishes that
whenever j, and j; commute and A is strict on its first argument a semanti-
cally equivalent program can be produced by making the appropriate substi-

tutions into the scheme below.,

Def f’ = [id,[]]ow::lst

where
Def w = lsfropo
4 [1%%ag ],
2 onun
Too 1% (R Dew], idP o
[1%ek, 2ra1% (j ®rest)ow ]o
[ [[1%,83™a15 o, 24 Joh, .
3 .rest Joappend
P

When the appropriate substitutions are made, the resulting "optimized" pro-

gram to compute Stirling numbers has a time complexity of only O(n + k).

Another use for the algebra is in verifying properties of systemns, For
example, an equational specification for an abstract data type can be con-
strued as a system of simultaneous equations in n program unknﬁwns. A col-
lection of ¥ shell programs purporting to implement the operations of the

abstract type can be verified simply by checking the proposed solution
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algebraically.

For example, the I' shell specification of the operations on a stack
includes the following equation.

stuck.smpty .
T o 4 'error', id »

i

[top pop ] - push
A simple algebraic manipulation shows that this equation is satisfied by the

six functions shown below.

Def create =[]
Def stack_empty = [id,create o=

Def stack error = [id,'error' Jo=

[stack_smpty stack_srror oor
Def top = + a

q 'error, 1% b

{stack_empty stack_srror Joor
Def pop = T o

q 'error', rest »

2™ ostack_srror

Def push = 1 o 4 2™, append »

Often the enabling conditions for transformations can be similarly
expressed. For example, the transformation shown above for Ehe Stirling
numbers program requires that two equations hold, viz.

Jieje = joody

[Lr]sh=1

In the case of the Stirling program, the proofs are easy, since + is a primitive
function which we know to be strict on both of its arguments, and we can

readily establish that
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(pred®pred).(predRid) = (pred.pred)®(pred.id)
= (predopred)®(idopred)
= (predRid).(predlpred)

The benefit of the algebra is that it provides a relatively simple way to
reason about those aspects of a systern that depend only on the functionality
of its components. [ must point out, however, that there is a limitation to
these algebraic program analysis and verification methods. Specifically,
there is no way to distinguish among differing intensions of a given function
within the algebra. Thus excluded from algebraic analysis are those aspects

of a program that depend on its implementation.

8. Bemarks

The basic functional style of the F shell was inspired by Backus's FP sys-
tems [1]. The primary motivation for using the functional style in the F shell
is its support Tor algebraic reasoning about systems, using the terms of the
language directly. The laws of these program algebras are essentially like the

"characteristic equivalences” of Landin's ISWIM [ 10].

The idea of extending the UNIX command language to ir;clude other
functionals is similar to Raocult and Sethi's work on metalanguages for com-
piler generation [14] They added certain permutators {3] to express
delayed applicatioﬁs, thereby enabling a "direct” style of expression for con-
tinuation semantics,

The I shell notation itself is based on Lhe algebraic melalanguage SSL
[16]. SSL shares much of its underlying semantic theory and inspiration with
Mosses' Abstract Semantic Algebras [13]; in particular, both originate in the

work of the ADJ group on algebraic semantics (see, e.g., [5,17]). The type
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gystem of the F shell language, including polymorphic operators and
scenarios (generic abstract types), is based on the work of Milner [12] as

clarified and generalized by MacQueen and Sethi [11].

A prototype implementation of a pared down version of the F shell has
been written by Beverly Rollins in Franz Lisp [4]. Large parts of the F shell
language can also be translated into C shell scripts, including all of the itera-
tors. Structured data streams are implemented by aggregates of simple files
having the same root name. Components are given numbered filename
extensions, and labels are also coded in filename extensions. Data streams
are passed through the temporary file system. The components of an output
stream are given the final extension .o, and composition simply renames all
.0 files to have final extensions of .i, which is where the next program looks
for its inputs, Files that are the targets of sinks have all permissions
stripped between their creation and the end of the current program, to
enforce the side-effect freedom of the F shell. A serious limitation to this

method of implementation is the maximum length of a filename under UNIX.

Some aspects of the F shell language, such as recursion, sce;narios, and
type checking, are more difficult to implement in the C shell, which has nei-
ther higher-order functions nor an adequate quotation mechanism which
could be used to simulate higher-order functions in the manner of LISP. A
complete prototype, implementing the full command language described in
this report, along with automation of the I shell algebra, is being developed
in Edinburgh LCF [6]. Future plans include development of a cmmpiete F

shell system for a personal workstation.

One final point about implementation is that much of the processing of

structured data streams can be done in parallel. In particular, the com-
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ponent programs of a product can all be run as independent processes. A
planned local network in the Computer Science Department at CU Boulder
will enable us’to conduct experiments with distributed processing of F shell
programs and optimizations ciealing with processor/communications/speed

tradeofls,

The F shell language as it stands suffers from the notational curse known
as functio illegibilis. FEncoding the operator symbols in a limited character
set such as ASCI only makes matters worse. The problem is that the
language operators describe the flow of data, which is better presented using
graphs than strings of characters. A system for the display, editing. and
transformation of F shell programs using color graphics is well underway.
The drawings in this paper are crude approximations of the display format

being developed.

Other future research directions include data type representation
optimizations, verification and analysis tools, and the use of the F shell for
the specification, rapid prototyping and incremental development of large

software systems.
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Appendix: Laws of ¥ Shell Algebra




1) £ olgeh) = (f og)oh
M If - faloi® = fi(1<ien)
) f1® - '®:fn = [180.f,, - - ".Rmnfn]

k
V) tedgy - \ga? = gy
1 n
VNI® ®fn =4df 0% Jroth
muall . 2
VI) append. * = appendo?
VII) appends[ 1% rest] = id
sl
VIII) * odid,[1%, rest Jcappend? = id
p »

D() ?Odfl, oo ,Tafk, o ,fn} =

D k

Todfy Sk e ?

XN (18 Bfn)elg® - Rgn) =
(f1og)® S pogn)

XD (f1® - Bfn)(g@ Bgn) =
(f1o9 0@ D(fregn)

XID) 4f 129, FnogP =4dfy, - fnbeg

XII) if is a permutation of {1, + n]
(M®g)odf1 -+ fab =
49wty - Fof nn)¥

XIV)idef = foid = f

XV) folgr - gnl=[fegr  fognl

XVD) [f1eg1 0 Frognl =
i Fale(9® - @gy)
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