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Abstract 

 Advances in computational power and molecular detection techniques allow investigators 

unparalleled insight into the metabolome, the collection of small-molecule metabolism products, 

called metabolites, found in organisms. Metabolomics, the study of such molecules, attempts to 

discern how various biological conditions such as disease or stress alters metabolite 

concentration in the body. Investigators can also leverage metabolomics to create biomarkers, 

tools used to monitor and diagnose biological conditions. Metabolomic biomarkers are often 

created using metabolites found in accessible biofluids, like blood or urine, and are usually 

developed to diagnose a disease. Insufficient sleep impacts over a third of Americans, and results 

in metabolic changes, making it a notable target for biomarker development. The current study 

uses a cohort of 16 human participants experiencing a protocol of sufficient and insufficient 

sleep to develop a biomarker using blood metabolite concentration data. Principal component 

analysis, partial least squares discriminant analysis, and area under the receiver operating 

characteristic curve analysis aided in the creation of a final biomarker score consisting of six 

metabolites, weighted by their contribution to overall performance. Biomarker performance was 

assessed by predictive accuracy at classifying samples into sufficient and insufficient sleep 

conditions, and area under the receiver operating characteristic curve analysis. These tests were 

performed in both the original dataset and an independent dataset consisting of 36 individuals 

experiencing a different protocol of insufficient sleep. Independent verification is essential for 

effective biomarker development to ensure the results are applicable to a wide range of 

individuals. 
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Introduction 

Discerning the underlying biological processes occurring in humans creates many 

challenges. How can a physician obtain an objective assessment of a patient’s health, or 

determine the accuracy of a self-reported health history? Are a patient’s symptoms induced by an 

underlying condition, or are they benign? Biomarkers are one tool capable of elucidating these 

questions. The National Institutes of Health defines a biomarker as a “structure, substance, or 

process that can be measured in the body” which can predict an “outcome or disease”1. Current 

techniques utilizing biomarkers include breathalyzer tests, which determine blood alcohol 

content by measuring ethanol oxidation from an individual’s breath, and salvia assays measuring 

melatonin concentration, which can assess circadian phase2. Using biomarkers, investigators can 

obtain critical evidence about an individual’s biological state, allowing them to analyze health 

problems escaping easy diagnoses, such as sleep difficulties.  

The Centers for Disease Control and Prevention report over a third of individuals in the 

United States obtain less than the recommended 7 hours of sleep per night3,4. Sleeping below this 

amount can contribute to a variety of negative outcomes, including an increased risk for diabetes, 

cancer, and anxiety, and decreased performance in various tasks, including driving and 

academics5–9. Roughly one-fourth of Americans suffer from a sleep disorder, including sleep 

apnea or insomnia, suggesting sleep disorders contribute to the insufficient sleep epidemic10. 

Studies suggest sleep disorders are also underdiagnosed in the populace, indicating a need for 

increased awareness and diagnostic technique availability11,12. However, current techniques for 

diagnosing sleep difficulties often require patients undergo expensive, time-consuming sleep 

evaluation visits at a sleep clinic, precluding those with limited funds or time from undergoing 

these procedures. Other, cheaper diagnostic techniques, such as sleep diaries or questionnaires, 
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can misrepresent the total amount of sleep an individual receives, potentially causing inaccurate 

diagnoses13,14. A biomarker sensitive to insufficient sleep may allow inexpensive, accurate 

determination of an individual’s sleep health, potentially mitigating these problems found with 

other diagnostic techniques. If a biomarker diagnoses an individual with insufficient sleep, their 

physician could then prescribe additional tests for sleep disorders, saving resources by 

preventing unneeded testing. 

 Metabolomics, the study of small-molecule metabolism products called metabolites, 

provides a powerful tool for biomarker creation15. Using these techniques allows investigators to 

analyze physiological changes, and use observed variation to develop a biomarker. Blood 

metabolites exhibit circadian rhythmicity in both human and animal models, making the blood an 

attractive target for insufficient sleep biomarker development16. A blood-based biomarker also 

provides straightforward sample collection; determining an individual’s sleep health could be 

accomplished as part of a routine blood draw during a physical. In mice, investigators used 

metabolomic techniques to develop a blood-based biomarker of sleep restriction, suggesting the 

feasibility of creating a similar marker in humans17. When compared to other commonly used 

biofluids in metabolomic development, blood theoretically reflects metabolism occurring in all 

tissues, while a biofluid like urine contains metabolites from a more limited subset of tissue18. 

Insufficient sleep impacts a range of metabolic pathways, including glucose metabolism19. Thus, 

the wide range of metabolites found within blood, and sensitivity of the fluid to circadian effects, 

makes it an ideal biofluid to test for the physiological effects of insufficient sleep20. 

Once collected, blood samples must be processed to quantify their metabolite 

concentration. In metabolomics research, two major strategies exist for this step: targeted and 

untargeted strategies. Researchers using targeted metabolomics select a specific cohort of 
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metabolites to analyze in a sample21. Such an approach requires a full understanding of the 

biological system in question, to ensure the chosen metabolites are biologically relevant, but 

grants a clear picture of changes in those specific metabolites. Conversely, an untargeted 

metabolomic approach attempts to quantify all detectable metabolites found in a given sample22. 

This approach is beneficial for discovery focused analyses, where the metabolites of interest are 

unknown, as it theoretically captures the detectable range of metabolite changes, which ideally 

comprises most of the variation. Untargeted metabolomics also detects novel metabolites, those 

molecules not yet categorized in a database, which can create further opportunities for 

investigation22. The unclear metabolic changes caused by insufficient sleep lends itself well to an 

untargeted metabolomics approach to biomarker development. 

Researchers use a variety of platforms to quantify metabolite concentration in a sample; 

mass spectrometry is one of the more common methods used for biomarker development. This 

technology ionizes the molecules found within a sample, separates them based on their mass-to-

charge ratios, and feeds them into a detector which records the relative intensity of each detected 

metabolite, reported as the height of the observed intensity peak with arbitrary units23. The mass 

spectrometer also records the retention time for each metabolite, which represents the amount of 

time a metabolite takes to pass through the detector24. These samples are often fractioned into 

lipid and aqueous phases prior to this procedure to maximize the identification of the different 

types of metabolites. Cross referencing the mass spectrometer output with several online 

metabolite databases, which catalog the peak heights and retention times of various metabolites, 

allows identification of many of the specific metabolites found in a sample25,26.  

A variety of software packages and tools exist to assist in processing and interpreting 

metabolomics data. One of these tools, a web server called MetaboAnalyst, contains a range of 



5 

 

statistical procedures commonly performed in metabolomics analysis27. Two major divisions 

exist in metabolomic statistics: exploratory and functional analysis. Exploratory analysis refers to 

a researcher’s investigation into the statistically relevant metabolites present in a given sample to 

find a relationship with a disease condition, while functional analysis refers to a researcher 

investigating known, biologically relevant metabolites to determine their physiological 

significance. Developing a sleep biomarker begins by employing exploratory metabolomics. 

Multivariate analysis, especially principal component analysis (PCA) and partial least squares 

discriminant analysis (PLS-DA), are two popular measures to explore metabolomic data28,29. 

PCA takes a set of multi-dimensional data, such as a table of metabolite concentrations, and 

reduces its structure to a set of principal components, each which attempts to describe as much 

variability found in the data as possible30. PLS-DA acts as a supervised version of PCA, meaning 

the algorithm knows which condition a given sample belongs to before performing its analysis31. 

Utilizing PCA and PLS-DA techniques allows investigators to determine the general data 

structure of their metabolomics data, providing opportunities to choose metabolites of interest or 

address any structural concerns caused by sample preparation. 

Structural data trends arising from sample preparation may require correction before 

proceeding with analysis. Processing the large amounts of data generated in metabolomics using 

mass spectroscopy can introduce variations in the data caused solely by external events, not by 

any biological relevance found in the data itself. For example, conditions such as atmospheric 

ozone levels, or performing mass spectrometry on different days, can introduce these 

changes32,33. These variations are called batch effects, where a batch refers to a set of samples 

measured together. Empirical Bayes methods, including the ComBat (Combating Batch Effects 

When Combining Batches of Gene Expression Data) method, are a common solution for 
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correcting batch effects. ComBat estimates the data’s previous distribution to correct it, and 

especially works well for correcting batch errors in data containing numerous, small batches, 

those with fewer than 25 samples34,35. Figure 1 shows an example of batch effects before and 

after ComBat batch correction, visualized using PCA. Attempting biomarker development on 

uncorrected batch data can result in investigators inappropriately assigning biomarkers based on 

technical errors instead of biological relevance, underlining the importance of batch 

correction36,37. 

 Missing data comprise another common occurrence while utilizing mass spectroscopy in 

metabolomics procedures. A missing value may be caused by biological reasons, such as the 

metabolite concentration in a specific sample laying below the detection threshold, or technical 

problems38. Studies suggest missing data in mass spectrometry experiments typically affects up 

to 20% of data, indicating the phenomenon is common39,40. Several methods exist to handle 

Figure 1. Batch Effect Correction in the Aqueous Phase. (A) Principal component analysis 

displays clear batch effects in the raw mass spectrometer data, where each batch reflects 

samples run concurrently. (B) Batch correction using the ComBat algorithm mitigates these 

effects. 

A B 
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missing data, including ignoring variables containing missing data and estimating missing data 

using imputation techniques41,42. Since most metabolomic data contains a notable fraction of 

missing data, the first strategy only applies to studies with small metabolite pools. Many other 

types of analysis, including PCA and PLS-DA, also require complete data sets and would be 

underpowered without the additional data provided by imputation43. However, imputation does 

not come without cost, as applying the method inappropriately can lead to incorrect results44. 

Bayesian Principal Component Analysis (BPCA) is an method incorporating aspects of PCA and 

Bayesian statistics to impute values based on prior knowledge about the data’s distribution45. 

Studies suggest BPCA performs better than other imputation methods, such as singular value 

decomposition imputation, based on the algorithm’s performance predicting a set of artificially 

removed missing values46,47. 

Once batch correction and imputation methods are performed on the data, the search for a 

biomarker can begin in earnest. Several methods exist to determine significant metabolites 

warranting further investigation. One of these methods, the receiver operator characteristic 

(ROC) curve, displays the probability of a classifier correctly classifying a randomly chosen 

sample into its proper condition48,49. In terms of testing a sleep biomarker, a high performing 

biomarker would accurately classify samples into either sufficient or insufficient sleep 

conditions. Such ROC analyses are considered the standard for clinical applications in other 

fields, and are gaining acceptance in the metabolomics biomarker literature15,50–52. An ROC 

curve is plotted comparing the true positive rate, also known as the sensitivity, against the false 

positive rate, known as the specificity, with values from 0.0 to 1.0. The metric is often reported 

as the area under the curve (AUC), with a perfect biomarker having an AUC of 1.0, and one 

which predicts no better than chance receiving a score of 0.5. Kleinbaum and Klein established 
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cut-offs for the discrimination achieved by an AUC as follows: 0.5-0.6 = failed, 0.6-0.7 = poor, 

0.7-0.8 = fair, 0.8-0.9 = good, and 0.9-1.0 = excellent53. Investigators can employ ROC analysis 

to not only choose metabolites of interest to incorporate into a biomarker, but also to test the 

performance of the final biomarker at discriminating sample assignments. 

 Bennett and Devarajan describe characteristics composing an ideal biomarker, including: 

high specificity for the disease condition, high sensitivity, easy accessibility in blood or urine, 

robust prognostic value for outcomes, and providing insight into a disease mechanism54. A 

biomarker composed of multiple metabolites typically fulfills more of these requirements, 

especially the sensitivity and specificity criteria, then do biomarkers composed of a single 

metabolite15. A multiple metabolite biomarker typically takes the form of a biomarker score, 

which weights metabolite concentrations by their contribution prediction performance, and sums 

them together to create a final score55,56. Such a score is often created using β-coefficients from 

binomial logistic regression analysis as the weighting factor57. External verification of any 

discovered biomarker in an independent dataset also comprises an essential factor in creating a 

robust biomarker, as a biomarker holding poor predictive value in a wide range of datasets holds 

little value in a clinical setting58. This study attempts to create a biomarker for insufficient sleep 

addressing each of the listed criteria for an ideal biomarker, and validate it in an independent 

dataset. 

Methods 

Participants 

 We studied sixteen participants (eight women) ages 22.4 ± 4.8 years, all with a self-

reported typical sleep schedule of 8.26 ± 0.69 hours. The University of Colorado Institutional 

Review Board, the Colorado Multiple Institutional Review Board, and the Colorado Clinical and 
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Translational Sciences Institute’s Scientific Advisory and Review Committee approved all 

protocols, and all participants gave informed written consent prior to study. Using a variety of 

health screening procedures, including a physical examination, clinical psychiatric interview, 

electrocardiogram, metabolic panel, toxicology screen, and polysomnographic sleep disorders 

assessment, we determined the participants free of medical and psychological disorders. 

Inclusion criteria for the study included: ages 18-35 years old, a habitual sleep schedule between 

7 and 9.25 hours of sleep per night, less than 500 mg/day caffeine use, non-smokers, a BMI 

between 18.5 and 24.9 kg/m2, and no drug dependence. Exclusion criteria included: medical and 

psychiatric conditions, shift work, pregnancy, lifetime BMI over 27.5 kg/m2, living below an 

altitude of 1,600 meters during the prior year, traveling more than one time zone 3 weeks before 

the study, or recent weight loss. We selected participants who typically performed low levels of 

physical activity to control for the low levels of activity experienced during study visits. 

Participants completed a urine toxicology test at the health screening appointment and prior to 

the study to confirm drug-free status.  

 

Study Protocol 

 Participants stopped caffeine consumption and maintained a consistent, 9-hour sleep 

schedule for one week prior to the study. Wrist actigraphy, daily call-ins of bed and wake times, 

and sleep diary completion ensured adherence to assigned sleep schedules. Three days prior to 

the study, participants received meals composed of 30% fat, 55% carbohydrates, and 15% 

protein, reflecting the average US diet. The Clinical Translational Nutrition Core prepared the 

meals using participants’ resting metabolic rate data, collected during the health screening, to 

ensure participants maintained their energy balance prior to undertaking the study. We 
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additionally proscribed exercise and beverages besides water to ensure energy balance. The in-

patient protocol began with a 3-day baseline assessment, consisting of 9-hour sleep opportunities 

scheduled at each participant’s habitual bedtime based on pre-study monitoring. The remainder 

of the study consisted of two, 5-day long sequences: a 9-hour condition followed by a sleep 

restriction condition, or the sleep restriction condition followed by the 9-hour condition. We 

assigned participants to one of the two conditions at random. The 9-hour condition gave 

participants of 9-hour sleep opportunities each night of that condition, while the sleep restriction 

condition gave them 5-hour sleep opportunities each night (Figure 2). During the bassline days, 

participants consumed the same energy balanced diet they received before the study. On study 

days, participants received meals containing 130-150% more calories than diets given during 

baseline days, of which they could eat as much as they wanted, and ad libitum snacks. During the 
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study, participants completed twice-daily stepping exercises to mimic the low levels of activity 

performed outside of the laboratory environment. 

 

Blood Collection and Processing 

 We drew participants’ blood every 4 hours during the last 24 hours of each of the three 

conditions. The first sample of each day was a fasted sample, drawn before the participant ate. 

Samples were centrifuged and stored at -80 °C until analysis. These samples were then processed 

for mass spectroscopy. Proteins were precipitated with methanol and extracted using MTBE. 

Aqueous molecules were separated using hydrophilic interaction liquid chromatography, and 

lipid molecules were separated using C18. Each fraction was then analyzed using a QTOF mass 

spectrometer (Agilent). Initial metabolite identification was performed using the Metlin, Human 

Metabolome Database, Lipid Maps, and Kyoto Encyclopedia of Genes and Genomes 

databases25,26,59,60.  

 

Data Preparation 

 Lipid and aqueous mass spectrometer peak height analysis data files was filtered to 

remove metabolites with missing data in found in 50% or greater of samples. These data were 

entered into the MetaboAnalyst Statistical Analysis module (v3.5), where PCA and PLS-DA 

analysis confirmed the presence of batch errors in each file27. These data were then entered into 

the MetaboAnalyst Batch Effect Adjustment Utility (v3.5), and batch corrected via ComBat. 

Each file underwent BPCA imputation, and the lipid and aqueous files were combined into one 

master file. Duplicate metabolites found in both files were renamed to reflect their origin. The 9-

hour test condition was removed, and t-tests were performed comparing metabolites from male 
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and female participants. Significant metabolites found from this test were excluded from 

analysis. 

  

Data Analysis 

 Data from the baseline vs. 5-hour condition were entered into the MetaboAnalyst 

Biomarker Analysis Module (v4.0) and subjected to AUC analysis. The 25 metabolites with the 

greatest AUC scores were selected and entered into R (v3.4.3) for analysis. These data 

underwent binomial logistic regression using the “glm” function from the MASS package (v.7.3-

48) in R61,62. “Family” was set to “binomial” and “link” was set to “logit”, From this analysis, six 

significant metabolites were selected. A biomarker score was created for each sample using the 

following equation: 

𝛽𝑆 +∑𝛽𝐻

𝑛

𝑘=1

 

where βs is the sex β-coefficient, β is each metabolite’s β-coefficient, and H is the peak height 

value for the corresponding metabolite, representing the relative abundence. The binomial 

logistic regression function provided these β-coefficients. This composite score was then 

subjected to AUC analysis in the MetaboAnalyst Biomarker module (v.4.0). A 50% classifier 

holdout test was also performed using the same set of data, where half of the class labels were 

randomly deleted using the Random Integer Set Generator on Random.org63. These data were 

entered into the MetaboAnalyst Tester module (v4.0), and the biomarker score predicted the 

classification of samples with a missing label using both the PLS-DA and linear support vector 

machine algorithms. The biomarker was then tested in an independent dataset from a different 

protocol where participants were also subjected to insufficient sleep. 
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Independent Protocol Participants 

 We studied 36 participants (18 women) ages 25.5 ± 4.7 years. The Colorado Multiple 

Institutional Review Board and the Colorado Clinical Translational Science Institute’s Scientific 

Advisory and Review Committee approved all protocols, and all participants gave informed 

written consent prior to the study. We determined the participants free of medical and 

psychological disorders using a variety of health screening procedures, including a physical 

examination, clinical psychiatric interview, electrocardiogram, metabolic panel, toxicology 

screen, and polysomnographic sleep disorders assessment. Inclusion criteria for the study 

included: 18-40 years old, a BMI between 18.5 and 24.9 kg/m2, less than two days of exercise 

per week, a habitual sleep schedule between 7 and 9 hours, and living above 1,600 meters for 

three months prior to the study. Exclusion criteria included: medical and psychiatric conditions, 

clinically significant sleep disorders, drug use within one month of the study, uncorrected visual 

impairment, shift work during the prior year, blood donation in the prior 30 days, women with 

menstrual cycles lasting outside of the range from 25-32 days with more than 3 days variation in 

a given month, weight change of greater than 15 pounds 6 months prior to study, travel more 

than 1 time zone 3 weeks prior to the study, pregnancy, or nursing.  

 

Independent Protocol Procedure 

 Participants stopped caffeine and alcohol consumption one week prior to the study, 

during which they maintained a consistent 9-hour sleep schedule based on their habitual 

schedule, monitored by wrist actigraphy, time-stamped call-ins, and sleep diaries. Three days 

prior to the study, participants ate an outpatient diet created by Clinical Translational Research 

Center nutritionists based on their resting metabolic rate data collected during the medical 
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screening. Participants stopped exercising during these three days. The first three days of the 

inpatient study consisted of baseline assessment, where participants maintained their habitual 

sleep schedule and outpatient diet while living in a laboratory environment exposed to natural 

sunlight, via a window, and 200 lux room lighting. After the baseline assessment, participants 

completed one of three randomly assigned treatment conditions: control, sleep restriction, or 

weekend recovery (Figure 3). The control condition consisted of 10 additional days of habitual 

sleep time; the sleep restriction condition comprised 10 additional days of 5 hour sleep 

opportunities followed by 3 days of recovery sleep; and the weekend recovery condition 

consisted of an additional 5 days of 5 hour sleep opportunities, then 2 nights of ad libitum sleep 

opportunities in bed (to mimic typical weekend sleep habits), then 3 days of 5 hour sleep 

opportunities, then recovery sleep. Participants were given ad libitum access to food during each 

experimental condition.  
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Figure 3. Independent Dataset Study Protocol. Participants were randomly assigned to one of three treatment 
groups: a control condition consisting of 10-hour sleep opportunities (A), a sleep restriction condition consisting 
of 5-hour sleep opportunities (B), and a weekend recovery condition consisting of 5 days of 5-hour sleep 
opportunities, followed by two nights of ad libitum sleep, followed by an additional two nights of 5-hour sleep 
opportunities (C). We collected blood during study days 3, 5, and 11 after 1 and 13 hours awake, and during the 
sleep mid-point via a catheter. Blood draws are marked with a “B,” and sleep opportunities are marked in black.  
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Independent Protocol Blood Collection and Processing 

 We collected blood during days 3, 5, and 11 during each protocol, at three time points: 1 

hour awake, 13 hours awake, and at the sleep midpoint via in-arm catheter. The first sample each 

day was a fasted sample, drawn before the participant received breakfast. The sample 

preparations and mass spectrometry processing were identical to those described above in the 

“Blood Collection and Processing” section. 

 

Independent Protocol Data Preparation 

 Lipid and aqueous mass spectrometer peak height analysis data files were filtered to 

remove metabolites with missing data found in 50% or more samples. Batch correction and 

sample imputation were identical to those described above in the “Data Preparation” section. The 

baseline day samples from the sleep restriction condition and the weekend recovery condition 

were excluded from analysis, and the post weekend recovery samples were excluded from the 

weekend recovery condition. 

 

Independent Protocol Data Analysis 

 Equivalent metabolites for 4 of the 6 metabolites composing the biomarker were found in 

the independent protocol data based on generated annotations and mass and retention time 

differences. A biomarker score was created for each sample using the following equation: 

𝛽𝑆 +∑𝛽𝐻

𝑛

𝑘=1

 

where β is the β-coefficient for each metabolite from the “Data Analysis” section, and H is the 

corresponding peak height for that metabolite, representing the relative abundence. A receiver 

operating characteristic curve was created in the independent dataset between the control and 
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sleep restriction conditions, and an area under the curve score was created. Half of the class 

labels were then deleted at random based on numbers generated by the Random Integer Set 

Generator on Random.org. These data were entered into the MetaboAnalyst Tester module 

(v3.0), where the biomarker score was used to predict class assignments using both the PLS-DA 

and linear support vector machine algorithms. The accuracy of the prediction was calculated by 

comparing the predicted class assignments with the known class assignments. 

 

Results 

Biomarker Creation and Score 

 Six significant metabolites were obtained after performing binomial logistic regression on 

the 25 metabolites found using AUC in the baseline vs. 5-hour condition for the test dataset 

(Table 1). Sex was found to be a significant factor, with a β-coefficient of 2.52332 for males (0 

for females) and a p value of 0.001053.  

 

Biomarker Score AUC  

 The receiver operating characteristic curve created using the biomarker score had an area 

under the curve of 0.943 with a 95% confidence interval of 0.903-0.974 which qualifies as an 

“excellent” score (Figure 4). This area under the curve was higher than all individual metabolite 

Table 1. Biomarker Metabolites with Logistic Regression with Probability Score and β coefficient 

   
Metabolite Probability β Coefficient 

(AQ) PC(18:4(6Z,9Z,12Z,15Z)/20:4(8Z,11Z,14Z,17Z)) 0.000183*** -1.88333 

Flavonol 3-O-alpha-L-rhamnosyl-1-6-beta-D-glucoside Esi+5.2899995 0.040019* -0.95322 

PC(18:4(6Z,9Z,12Z,15Z)/18:1(11Z)) 0.015280* -1.02159 

Flavonol 3-O-alpha-L-rhamnosyl-1-6-beta-D-glucoside Esi+5.288002 0.034202* 0.80287 

3,7,24-Trihydroxy-5-cholestanoyl-CoA 0.000833*** -0.24284 

1239.4163@6.6779866 0.004924** -0.15440 
  *  p < 0.05, ** p < 0.01, *** p < 0.001   
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scores (Table 2). The optimal biomarker score cut-off, maximizing sensitivity and specificity, 

was -52 (Figure 5). 

 

 

 

 

Biomarker Score 50% Holdout Test 

 The biomarker score correctly predicted the class assignments of 91.4% of the holdout 

samples using the PLS-DA algorithm with 2 latent variables, and correctly predicted 86.4% of 

the holdout samples using the linear support vector machine algorithm.  

 

Table 2. Receiver Operator Characteristic Curve AUC for Biomarker and Individual Component Metabolites 

 
Metabolite AUC 95% Confidence Interval 

Biomarker Score 0.944 0.902-0.976 
(AQ) PC(18:4(6Z,9Z,12Z,15Z)/20:4(8Z,11Z,14Z,17Z)) 0.865 0.797-0.918 
Flavonol 3-O-alpha-L-rhamnosyl-1-6-beta-D-glucoside Esi+5.2899995 0.835 0.756-0.902 
PC(18:4(6Z,9Z,12Z,15Z)/18:1(11Z)) 0.828 0.756-0.891 
Flavonol 3-O-alpha-L-rhamnosyl-1-6-beta-D-glucoside Esi+5.288002 0.815 0.736-0.874 
3,7,24-Trihydroxy-5-cholestanoyl-CoA 0.748 0.663-0.826 
1239.4163@6.6779866 0.753 0.660-0.832 

Figure 4. Biomarker Score Receiver Operator 

Characteristic Curve. Creating a univariate ROC 

using the biomarker score in the baseline and 5-

hour condition yields an AUC of 0.944 with a 

95% confidence interval of 0.902 – 0.976, 

indicating “excellent” performance. The ideal 

cut-off, optimizing for sensitivity and specificity, 

is -52, which results in a sensitivity of 0.881 and 

a specificity of 0.904.  
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Independent Protocol Biomarker Creation and Score 

 Where possible, equivalent biomarker metabolites in the independent dataset to the ones 

composing were used to create the verification biomarker (Table 3). The metabolite 

PC(18:4(6Z,9Z,12Z,15Z)/20:4(8Z,11Z,14Z,17Z)) had an identical annotation in the independent 

dataset. Flavonol 3-O-alpha-L-rhamnosyl-1-6-beta-D-glucoside had an identical annotation but a 

slightly different retention time value. No identical annotation was found for the two verification 

metabolites PE(19:1(9Z)/20:4(5Z,8Z,11Z,14Z)) and 1239.4108@7.008028, but they exhibited 

low mass and retention time differences with their metabolite counterparts in the test biomarker 

(Table 3). No equivalent metabolite was found for 3,7,24-Trihydroxy-5-cholestanoyl-CoA.  

 

 

 

 

Figure 5. Biomarker Scores for the 

Baseline and 5-hour Conditions. Each 

created biomarker score clusters with 

other members of their condition. The 

average baseline biomarker score is -

49.05, and the average 5-hour 

biomarker score is -54.78. The optimal 

cut-off score, maximizing specificity 

and sensitivity, is -52, marked with the 

dashed line.  
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Independent Protocol Biomarker Score AUC 

 The biomarker score was tested in the control vs. weekend recovery conditions of the 

independent dataset. The area under the receiver operating characteristic curve using the 

biomarker verification score was 0.781 with a 95% confidence interval of 0.673-0.870, 

qualifying as a “fair” score (Figure 6). This area under the curve was higher than all component 

metabolite’s area under the curve values (Table 4). The optimal cut-off, maximizing both 

sensitivity and specificity, was -0.599 (Figure 7). 

 

 

Table 3. Equivalent Biomarker Metabolites in Independent Dataset with Mass and Retention Time Differences with Original 
Biomarker Metabolites 

Biomarker Metabolite Independent Dataset Equivalent ΔMass 
ΔRetention 

Time 

(AQ) PC(18:4(6Z,9Z,12Z,15Z)/20:4(8Z,11Z,14Z,17Z)) (AQ) PC(18:4(6Z,9Z,12Z,15Z)/20:4(8Z,11Z,14Z,17Z)) 0.0013 -0.0139868 

Flavonol 3-O-alpha-L-rhamnosyl-1-6-beta-D-glucoside Esi+5.2899995 Flavonol 3-O-alpha-L-rhamnosyl-1-6-beta-D-glucoside -0.001 0.184 

PC(18:4(6Z,9Z,12Z,15Z)/18:1(11Z)) PE(19:1(9Z)/20:4(5Z,8Z,11Z,14Z))* -0.0001 -0.0150114 

Flavonol 3-O-alpha-L-rhamnosyl-1-6-beta-D-glucoside Esi+5.288002 Flavonol 3-O-alpha-L-rhamnosyl-1-6-beta-D-glucoside -0.001 0.184 

3,7,24-Trihydroxy-5-cholestanoyl-CoA - - - 

1239.4163@6.6779866  1239.4108@7.008028* -0.0055 0.3300414 

*Not exact match    

Table 4. Receiver Operator Characteristic Curve AUC Values and Confidence Intervals for Verification Biomarker 
and Individual Component Metabolites 

 
Metabolite AUC 95% Confidence Interval 

Biomarker Score 0.781 0.686-0.865 
Flavonol 3-O-alpha-L-rhamnosyl-1-6-beta-D-glucoside 0.694 0.581-0.784 
PC(18:4(6Z,9Z,12Z,15Z)/20:4(8Z,11Z,14Z,17Z)) 0.617 0.510-0.713 
1239.4108@7.008028 0.589 0.491-0.682 
(AQ) PC(18:4(6Z,9Z,12Z,15Z)/20:4(8Z,11Z,14Z,17Z)) 0.505 0.456-0.629 
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Independent Protocol Biomarker Score 50% Holdout Test 

 The verification biomarker score correctly predicted the class assignments of 64.7% of 

the holdout samples with the PLS-DA algorithm with 2 latent variables and the Linear Support 

Vector Machine algorithm. 

 

 

 

Figure 6. Verification Biomarker Receiver 

Operating Characteristic Curve. Creating a 

univariate ROC curve using the verification 

biomarker score in the control and weekend 

recovery sleep conditions in the independent 

dataset yields an area under the curve of 

0.781 with a 95% confidence interval of 

0.636-0.802. The optimal cut-off, maximizing 

both sensitivity and specificity, is -0.599, 

resulting in a sensitivity of 0.8 and a 

specificity of 0.7. 

 

 

 

 

Figure 7. Biomarker Scores for the Control and 

Weekend Recovery Conditions in the 

Independent Dataset. The average control 

biomarker score is -1.22, and the average sleep 

restriction biomarker score is -0.38. The optimal 

cut-off score, maximizing specificity and 

sensitivity, is -0.599, marked with the dashed line.  
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Discussion 

The creation of a serum biomarker which holds a high predictive accuracy in classifying 

unknown samples based on sleep condition supports the feasibility of the future use of such a 

tool to diagnose sleep status. Using several significant metabolites to build a biomarker score 

provides greater discrimination between sufficient and insufficient sleep conditions then 

individual metabolites can, suggesting this method is optimal for developing a robust biomarker. 

Creating a biomarker score using β-coefficients weights each metabolite based on its 

contribution to the score. This suggests metabolites with a greater magnitude β-coefficient, such 

as PC(18:4(6Z,9Z,12Z,15Z)/20:4(8Z,11Z,14Z,17Z)) with its β-coefficient of -1.88333, 

potentially has more physiological relevance to sleep then 1239.4163@6.6779866 with its β-

coefficient of -0.15440.  

A dearth of identified metabolites remains a problem in metabolomics; the vast quantity 

of metabolites present in the human body precludes easy identification and classification, and 

increased mass spectrometer power continues to uncover novel metabolites. As such, a minority 

of metabolites hold entries in databases such as the Kyoto Encyclopedia of Genes and Genomes 

or Human Metabolome Database, meaning most metabolites detected by the mass spectrometer 

remain unannotated, such as 1239.4163@6.6779866, or partially annotated, such as 

PC(18:4(6Z,9Z,12Z,15Z)/18:1(11Z)). Identifying these uncharacterized metabolites is critical to 

develop a greater understanding of the biochemical effects of insufficient sleep. To accomplish 

this identification, researchers can perform targeted analysis of the metabolites using techniques 

such as tandem mass spectrometry to elucidate its structure64. Characterizing unknown 

metabolites is an essential step before further clinical development, as it can reveal insights into 
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the disease mechanism, and allow investigators to develop targeted assays for metabolites of 

interest. 

Examining the metabolites contained in the biomarker opens some interesting hypothesis 

for future testing. According to the Kyoto Encyclopedia of Genes and Genomes, 3,7,24-

Trihydroxy-5-cholestanoyl-CoA is involved in the primary bile acid biosynthesis pathway60. 

Ferrell and Chiang describe how short term circadian disruption impairs bile synthesis pathways 

in mice, especially when their subjects consumed with a western diet equivalent composed of 

42% fat, 42.7% carbohydrate, and 15.2% protein65. Their western diet contains 12% more fat, 

12.3% less carbohydrates, and 0.2% less protein then the diet received by participants in our 

study. However, if human biosynthesis pathways respond similarly to those found in mice, and 

the exact macronutrient composition of the diet is not a confounding factor, perhaps bile 

synthesis metabolites are a strong canidate for insufficient sleep biomarker development. 

Metabolite databases contain little information on the remainder of the metabolites, preventing 

further functional investigation.  

The biomarker scores created in this thesis were all optimized for high sensitivity and 

specificity. However, future clinical applications may benefit from optimizing one over the 

other. Specificity refers to this biomarker’s ability to correctly discriminate people who are 

sleeping enough, and sensitivity refers to this biomarker’s ability to correctly discriminate people 

who are not sleeping enough66. In the case of insufficient sleep, a clinician may want a biomarker 

with higher specificity then sensitivity. Incorrectly diagnosing an individual as not sleeping 

enough has less of a negative impact then incorrectly diagnosing an individual as sleeping 

enough; the individual in the first case might be given strategies and tools to try and sleep more, 

which has fewer negative health risks than not catching someone who experiences chronic levels 
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of insufficient sleep67. Such exact tuning of a biomarker depends on further verification of the 

biomarker’s performance. 

Much work remains before a biomarker for insufficient sleep will make its way into the 

clinic. The study protocol used in this process was not designed for biomarker analysis, and as 

such introduce confounds which could potentially diminish the strength of the biomarker. For 

example, during the 5-hour experimental condition, males ate 68% more calories and women ate 

19% more calories than their weight maintenance level; these differences in consumption may 

have influenced the metabolome, and thus altered the biomarker68. Gorden et al. describe a 

method to address similar confounds which change based on sex, which I implemented, but the 

influence of the confound cannot be ignored69. A biomarker which discriminates sleep status 

based on overeating may function correctly, but it is not sensitive to the underlying physiological 

changes of insufficient sleep, and thus may not perform optimally in catching those who 

experience insufficient sleep but do not overeat. To investigate overeating’s effect on the 

biomarker, I separated the fasting and fed samples for the original and independent datasets and 

performed receiver operator characteristic curve and sample holdout tests on each. A two-tailed 

paired t-test performed on various fasted and fed AUC values for both datasets suggests the 

differences between the groups are not statistically significant, with a p value of 0.2933. These 

data indicate this biomarker holds some resistance to fasting or fed status, but future experiments 

should control food intake. 

External biomarker verification is an important step in clinical development. This thesis 

tested the biomarker in an independent dataset using a population also experiencing insufficient 

sleep conditions. Those participants were randomly assigned into one of three conditions: a 

control condition, a weekend recovery condition, or a sleep restriction condition, and blood was 
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taken during three days of the experiment. The control and weekend recovery conditions were 

used as the two sample groups to test the biomarker in, and the baseline blood sample data was 

removed from the weekend recovery condition, as the participants received sufficient sleep 

during that time point. Structural data issues in the sleep restriction condition necessitated using 

the weekend recovery condition for analysis. While neither the receiver operator characteristic 

curve value of 0.781, classified as “fair,” nor the holdout verification score of 64.7% correct, are 

as high as their corresponding scores in the original dataset, some concessions were made while 

translating the score to the new dataset. The mass spectrometer did not detect all metabolites 

used in the original biomarker in the independent dataset, meaning the converted biomarker 

contains less data, potentially giving it less predictive value. Additionally, two of the metabolites 

chosen in the verification biomarker, PE(19:1(9Z)/20:4(5Z,8Z,11Z,14Z)) and 

1239.4108@7.008028, closely matched the mass and retention time of their corresponding 

metabolites, PC(18:4(6Z,9Z,12Z,15Z)/18:1(11Z)) and 1239.4163@6.6779866 respectively, but 

not their annotation. A reasonable chance exists that these chosen metabolites are not analogous 

to their original metabolites, and thus hold weaker predictive value, further harming the 

biomarker’s performance. Taking these limitations into account, the AUC and verification 

percentage are stronger then they first appear. Future investigations should ensure the same 

metabolites are found in both the test and independent dataset, to ensure an accurate assessment 

of the model’s performance. 

Future clinical development would also require verification in an external population 

living outside laboratory conditions. The controlled laboratory environment is important to 

reduce biological noise and develop a biomarker sensitive to a specific condition. However, a 

biomarker which only works in laboratory conditions holds no value for clinical use, where 
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individuals experience a range of environments, sleep schedules, and dietary habits prior to 

entering the clinic, all of which influence the metabolome70–73. Thus, testing the biomarker in a 

free-living human population is a vital step in bringing a potential biomarker to the clinic. Assay 

development forms another step towards preparing a biomarker for a clinical use. The present 

biomarker uses arbitrary peak height and biomarker score values to discriminate conditions. In 

the future, we would need to develop a targeted assay specific for the biomarker metabolites. 

This process could allow us to establish metabolite concentration thresholds in the blood 

corresponding to different levels of insufficient sleep. To this end, the relative upregulation or 

downregulation of the metabolites of interest should be investigated, to allow the creation of an 

effective assay.  

This thesis describes a method to create a biomarker sensitive to insufficient sleep using 

metabolomic techniques. An ongoing study in our laboratory is designed for biomarker creation 

and analysis, granting both another dataset to verify this biomarker in and opportunity to develop 

another biomarker building off the methods described here. That study controls for food intake 

over the course of the entire study, ideally preventing any potential confounds with a 

participant’s fed or fasted state. Future advances in mass spectrometry technologies will further 

expand the range of detectable metabolites, increasing the probability of detecting metabolites of 

interest for future studies.  
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