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_ABSTRACT

The area of computer systems protection has been acclaimed as a very
important one, cnd there is a vast amount of literature on the subject
(including several books). However, implementations of protection mechanisms
tend to be ad-hoc and there is a lack of quantitative theoretical results
upon which one can base decisions and abstract the essence of protection.
This paper is the first to present a mathematically rigorous definition
(with proofs) of the degree of protection of a system. It is hoped that this
type of presentation will alert systems designers and implementors to
alternatives to and generalizations of current implementations and to some
of the trade-offs involved in these alternatives. Ultimately, it is hoped
that this presentation will contribute to a general Theory of Protection.

The investigation is directed toward an analysis and comparison of
access mechanisms defined by a family of boolean functions. Some definitions
are stated, and some theorems are proved which are valid for all access mech-
anisms within the family considered. Algorithms are presented for the optimal
assignment of access codes to subjects and objects for unstructured systems
and for several types of structured systems. It is proven that fog a very
general class of systems, the optimal assignment will still allow =(f-1) un-
authorized accesses to objects where n is the number of subjects 5?& ¥is
the largest integer not greater than the quantity n divided by the number of
access classes.

Key words. protection, access mechanisms, security, sharing, hierarchical
systems, privacy, access control, storage protection keys, passwords



1. INTRODUCTION

For any given degree of protection within a computer system, there is a cost
associated with that protection in terms of dollars to build and maintain the
system and in terms of possible loss of capability, [2, 19]. As an example,
consider a file system which does not support protection on a sub-file Tevel.
Thus a user will have access to all of a file or none of it. For large file
systems, the cost of an ideally secure system having access protection down to
the bit level [8] may not be cost effective. Thus users having a need to access
various portions of a file would all be given access to the entire file. This
is a case of placing many subjects (the users) into a single access class. This
could be quite bad if, for example, the access was write access to an employee
file, and a program to increase the weekly pay rates of one class of employees
inadvertently zeroed the pay rates of another class of employees. Another example
encountered by the author concerns co-ordinate verification data received from
radar by an air traffic control computer. It was frequently found that the least
significant k bits were not exact. Thus the system ignored these bits since they
could be re-created elsewhere in the system with reasonable accuracy if needed.
This Tumping together of many co-ordinate points is again an example of placing
many subjects (the co-ordinate points) into fewer access classes. This example
generalizes to arbitrary data transmission of identifiers or passwords such that
a bit could be Tost. If 1 bit (k bits in general) error detection is not employed,
then two passwords differing by 1 bit (k bits) or less are being placed into the
same access class. The final example concerns the assignment of numbers to automatic
answer back drums of remote terminals. The case where several terminals have the
same number means that user numbers validated for a particular terminal may not be
blocked from entering the system from the wrong terminal. These are all examples
of the principle put forth by Peters [16] stating that "security cannot be attained
in the absolute sense. Every security system seeks to attain a probability of

Joss which is commensurate with the value returned by the operation being secured".
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Thus conceeding that there are many computer applications (and non-computer
applications) where a perfectionist approach of absolute protection is untenable,
this paper attempts to quantify the notion of degree of protection of a system in
terms of numbers of unauthorized accesses due to access classes containing more
than one subject.

Terminology and definitions used throughout the paper are given in the next
section. Each access mechanism in the family under consideration will allow access
by a subject to an object contingent upon a calculation which is made upon the
"access codes" of the subject and object in question. This class of mechanisms
will be defined, illustrated, and its characteristics elucidated in section 2.
This family basically consists of boolean functions applied bit-wise to access
codes and summed. The sum is then compared to a threshold to determine if access
is to be granted. It is shown that particular cases within the family yield
mechanisms such as the very common password scheme which are used in some well-
known systems, [9,6] It is hoped that this type of presentation will alert
hardware designers and systems implementers to alternatives and possibilities of
generalizing current implementations and to some of the trade-offs involved in
doing so. Given that one of these access mechanisms has been selected, it is
then necessary to assign access codes to subjects and objects of the system. In
section 3, systems such that all subjects are isolated are studied. An assignment
algorithm is presented and a proof is given that this algorithm maximizes the
(absolute, relative, and minimum) degree of protection of the system. The
assumption of isolation implies that no authorized sharing of data or hierarchy
of processes exists within the system. 1In section 4, this assumption is relaxed
and some bounds are derived for systems containing arbitrary partial and/or
total hierarchies. Assignment algorithms are given for ring structures
and for binary tree structures. The conclusion is reached in the summary that

choice of both the access mechanism and the assignment algorithm may have
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significant bearing upon the efficiency and security of a system. Finally, some

possible directions of future research are indicated.



2. DEFINITIONS AND TERMINOLOGY

In this, and the following sections, we are not concerned with security in
its most general form. The scope of this field encompasses so many factors [15, 117,
so many of which remain unquantified [7, 18] that a narrower approach is warranted.
Thus, this paper simply considers a systems design problem whose solutions within
various subsystems have ramifications for the total security of the system. We
are not directly concerned with protection procedures and policies except that
within these procedures it may be deemed necessary to make validity checks before
allowing certain communications or accesses. Also, policies will dictate which
accesses are authorized. The following pages address fhemse]ves to the nature of
these checks in cases where an automated password type of mechanism is applicable.
Results presented are general in that they hold for a Targe class of systems and
access mechanisms. They could be called uninterpreted in the sense that we Teave
unspecified the semantics of the environment in which an access mechanism is
being used and assume this environment is free from external tampering. Questions
of overall system policies, certification of subsystems, changes of environment,
and the like, are semantic questions not investigated in this paper. This paper

defines and investigates a purely syntactic quantity called the degree of protection

of an (uninterpreted) system.

The pertinent elements of a system (A,B,q) for our characterization of security
are the following. Denote a finite set of active elements, called subjects [4]
by A = {Al,Az,'..,Au} and a finite set of passive elements, called objects, by
B =‘{BI,BZ,...,BV}. Certain subjects may be specified to have relationships, called
authorized accesses, to certain objects. It may occur that an element is both
active and passive, so in general, A(l B # Q and we will denote C = AU B. This
formalism can also be used to model a network of communicating processors by setting
A=B and interpreting access as communication between subjects. Associated with

each element Ci € C is an access code ¢ which is a binary n-digit number. We will
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call an access code a; for a subject Ai and bi for an object Bi‘ A set of subjects

all of which have the same access code will be defined as an access class. The k-th

binary digit of an access code Cy will be denoted Cipr An access mechanism is a

total boolean function of an ordered set of two access codes,}g(ai,bj), which takes
on a value of 1 if access from Ai to Bj is allowed and zero if access is not
allowed. Note that the first code a; must correspond to an active element, and

the second, ?j’ to a passive element. The following family of access mechanisms
will be studied in this paper.

n
z

(2.1) g=1 if f(aik’ bjk) >m

k=1

g=0 otherwise
where f is an arbitrary Boolean function of two binary digits,
n is the number of bits in an access code, and
m, called the access threshold, satisfies 0 <m < n.

An example is 1in order:

Example 1. Suppose a computer system has a memory protection mechanism consisting
of hardware keys and Tocks. Whenever a process attempts to access a
memory, an automatic check is made and access is granted if and only
if the process key matches the memory lock. Assuming 4 bit registers
for locks and keys, the diagram below (figure 1) shows a system of
three processes and three memories such that process Ai has exclusive

access to memory Bi’ i=1,2,3.

Figure 1. ~
a; -~ (1011 a, -3 [011] az— 1101
A A, Ag
b,— {1011 b, 310111 b, —31101
1 B 2 B 3 B
1 2 3
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This scheme of exact match, which is employed within the IBM 360/370 system [9]
and other systems for memory protection, is one particular instance of the formula
(2.1) obtained by choosing f(u,v) = (u=v) and m=n=4.

4

(2.2) g > 4

Jk =

1 if kE] I = b

il

'g 0 otherwise.

The exact match mechanism, which yields the equation of type (2.2), is also the
basis for password systems. The maximum number of subjects supported such that
each can have exclusive access to one or more objects is 16. A set of subjects
such that no sharing of objects or hierarchy of subjects is desired and with

AN B = @ will be called isolated subjects. Similarly, a set of access codes will

be called isolated codes with respect to a particular access mechanism if assign-

ment of all of these codes to subjects implied that there exists an assignment of
codes to objects such that each subject has exclusive access to one or more objects.

Denote the maximum number of isolated n bit access codes obtainable by a given

access mechanism f with threshold m by Sw(f), called the isolation level of the
mechanism. The access mechanism of example 1 has an isolation level of SjGEQ = 16.
Generalizing m = 4 in a system with four bit access codes to an exact match scheme
for an arbitrary n bit access code yields an isolation level equal to the number
of distinct n bit codes, Sg(ﬁa = 2", An access mechanism can also be chosen to

support the sharing of memory (or arbitrary resources) between two or more processes.

Suppose we choose f(u,v)=(u NOR v) and m = 1, yielding:

n
(2.3) g=1 if k§1 (a;, NOR bjk) > 1
g=20 otherwise.

Then resources with an access code of 0011 could be automatically shared by
processes A1 and Az of figure 1 while not allowing access by Az. Similarly,
any other sharing arrangement can be implemented. Hierarchies of processes can

also be implemented with this scheme; for example a supervisory process requiring
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access to all resources of figure 1 éou]d have a master key of 0000. This
mechanism, one form of which is employed within the RC 4000 system [6], allows
automatic sharing of objects and arbitrary hierarchies of subjects which was not
possible with the exact match mechanism. However, in example 1 the isolation level
of the system is reduced from 16 to 4; for arbitrary length access codes the
reduction is from 52(53=2n to S;(V)= n. This is tremendous, and a compromise
suggested by our generalization (2.1) which allows sharing and hierarchies is to
choose a NOR mechanism with m > 1. This allows a Tlarger number of isolated
access codes, namely S?(V)=(;) = the number of combinations of n items taken m
at a time, which is maximized at m = n/2. We note in passing that there are
also some access mechanisms within our family that would be rather poor design
choices. For example if function f is the less than (<) function and m = n, then
there is no isolation capability (i.e. Sﬁﬁf) = 1). The trivial functions
flu,v) = 0, =1, =u, and = v all have no isolation capability and will be disregarded
throughout this paper.

The systems of primary interest in this paper are ones in which the maximum
number of isolated subjects is greater than Sm for the access mechanism chosen
for the system. In this case one or more subjects may be assigned access codes

which allow access to objects to which the subjects should not have access. We

define this type of access as an unauthorized access. If the system is one

requiring sharing or hierarchies of subjects, then this fact may be used advantageously
to decrease or even eliminate unauthorized accesses. Thus if two subjects require
shared use of one or more objects and do not require isolated access to any objects,
then they could be placed in the same access class, i.e. assigned the same access

code. Any access ability, such as this, of a subject to an object which is not

an unauthorized access is termed an authorized access. Given a set of subjects, a

set of objects, their hierarchy constraints, and an access mechanism within our
family, our central problem is the determination of how best to assign access

codes to subjects and objects so that all required authorized accesses are allowed
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and a minimum number of unauthorized accesses are allowed. To this end, we

specify the following definitions:

1.

Let x,. and Yij be boolean variables such that Xi5 =1 (y:. = 1) implies

ij i ij
that Ai has authorized (unauthorized) access to Bj; Xij = O(Yij = 0)
otherwise. Xij‘/\ Yij = 0 necessarily for all i(1 <i < |A]) and for
all j(1 < j < |B]) where |Z| denotes the cardinality of the set Z.
Let xj(yj) be the number of A1 € A which have authorized (unauthorized)
access to Bj € B, i.e.

a) x, = T Xias b) y. = 5 Y.

3onent 3o e

Let x (y) be the average, over B, of the number of subjects which have

authorized (unauthorized) access to any particular Bj € B, i.e.

2 X XYy
a) 'S'("= B.EB , b) ol B.EB
|B| |B]

v oV
Let x (y) be the minimum, over B, of the number of subjects which have
authorized (unauthorized) access to any particular Bj € B, i.e.
¥ = min (x.),‘y'= min  (y.)

B.€B I B.£&B Y

J J
Let x (&) be the maximum, over B, of the number of subjects which have
authorized (unauthorized) access to any particular Bje; B, i.e.

a) x = max (x.), b) y = max (y:)

B, J B,EB Y
%éB Jé
The absolute degree of protection of a system is then
_ = -1
Sabs = (1 +y)

This definition yields a value of unity when the system allows no unauthorized

accesses, and less than unity otherwise. It is absolute in the sense that it does

not vary according to the size of the system, but only according to the average

number of unauthorized accesses.
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7. The relative degree of protection of a system is
Srel ~ lA%Kf"%"%JX
This definition yields a value of unity when the system allows no unauthorized
access, and a value of zero when the maximum possible number of unauthorized
accesses are allowed. This value is therefore relative to the size and
structure of the system being analyzed.

8. The minimum (maximum) degree of protection of a system, 3’(3) is

) 8= (1497
b) 8= (1 + )

Example 2. Consider a system of five isolated subjects (|A| = 5) and five objects
(IB] = 5) such that each subject A, requires exclusive access to
exactly one object Bi' Assume that the access mechanism is specified
by a NOR function with n = 4, m = 1. As previously stated the maximum
number of isolated subjects which can be supported such that each can
have exclusive access to one object is SA(V) = 4, Thus any assignment
of access codes to the five subjects and objects implies some unauthorized
access under the given mechanism. Figure 2 shows one possible assign-

ment of access codes. Is this the best possible?

Figure 2.

1011 0111 {101 1110 1100

A, A, Ay Ay A

hal PN
\\f/
o \
P ~afN

N/ / / £ /»‘J A
1011 0111 1101 1110 1100

B B, B3 By By

In figure 2, authorized accesses are denoted by solid directed lines, and unauthorized
accesses by dotted Tines. In terms of the previous definitions, the following

values are obtained for this system with the given access code assignment.



-11-

1. Xij = aij’] <i=<5,1<3j<05, (where 6ij is the Kronecker Delta meaning
Xij = 14if 1 = j, Xij = 0 otherwise).
Y35 = Yg5 = Y53 = Ypq = 1, all other yij = 0.
5
2 xj = 121 Xij = %L] =1, 1<j<5
5
Y; = 'iz'lyij;} y]—o
‘y2=0
Y3 = ¥53 = 1
Vg = Y54 =1
Y5 = Y35 * Vg5 = 2
5
3. X= % X, 5/5 = 1
j=1 J/5
. 5
y= I _1+1+2
Vs T s TR
4. ¥ =min (x;) = 1

Bst
5. x = max (x:) =1
B.eB
J
y = max (y.) =2
B.eB J
J
i —-1
7o Spey = T = A5
8. $=0+y =1
5= (1 + y)'] =]

This is not the best possible assignment of access codes to subjects and objects
for this example. By making a change of access code assignments to subject A5 and

8550 that ag = b5 = 1110, an optimal system is obtained in that it minimizes the
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. . . v
number of unauthorized accesses and maximizes 6re1’ and § as follows:

abs?
abs 5/7
Sre1 = 910
§ = 1/2.

Note that in this case, with this access mechanism, the optimal access code
assignment was obtained by always choosing codes which have a minimum number of
bits set to allow access (in this case a set bit means a zero bit). This will
be proved for all cases and all access mechanisms within our family by proof

la of the next section. Furthermore, an optimal assignment must distribute
subjects (and their objects) as evenly as possible throughout the available
access classes. In this example we obviously shouldn't put more than two
subjects in an access class. This notion of even distribution will be proved

in general by proof 1b of the next section.
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3. UNSTRUCTURED SYSTEMS CONSIDERATIONS
Theorem 1: Given a system (A,B,g) consisting of
(a) a set of isolated subjects,
(b) a set of objects such that |A| = |B|, and

(c) a monotonic access mechanism of the form:

A has access to Bj iff kgl f(aik’bjk) > m with Sﬂ(f) < |A].
Then an access code assignment satisfying xj =1 for all BjeB maximizes the
absolute and relative degrees of protection of the given system
iff |
(a) the assignment uses Sﬁ(f) isolated minimal access code pairs,
and
(b) the assignment distributes subjects as evenly as possible into
access classes.
The proof of these two conditions will be presented in two parts as Proof 1la

and Proof 1b. First some terminology needed within the proof must be explained.

A non-decreasing access mechanism is one such that u' > u and v' > v implies

flu',v') > fu,v).

A non-increasing access mechanism is one such that u' > u and v' > v implies

f(u',v') < f(u,v).

A monotonic access mechanism is one which is either non-decreasing or non-increasing.

Reference will be made to a bit of an access code being set. For a non-decreasing
mechanism this means the bit equals 1; for a non-increasing mechanism this means
the bit equals 0. In both cases reset means the opposite value from set. Define
the field length of an assignment as |F| where F = {k|] 1 < k < n and

Eai ,b'l ?f(a"lk,b'lk) > 0}.

Define the minimum field Tength for a system (A,B,g) to be the minimum of |F| over

all assignments which have Sm(f) isolated access codes. For the function/A, all
bits are needed to get the maximum number of isolated codes, so that minimum field

length = n; for the function V, only m bits are needed so the minimum field Tength
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= m. In general, the minimum field length depends upon the particular function
and therefore its study is relegated to an appendix. Appendix A shows that we

never need consider code words of Tength greater than the minimum field length,
so this assumption is made throughout the remainder of the paper unless another
assumption is explicitly stated. Define < and B; as the number of bits set in

the access codes a; and bi respectively. let = in denote the minimum wmin (“1)

where this minimum is taken over all access codes of all assignments which have

exactly S?(f) isolated codes. Let 8 denote the minimum number of bits which

min
must be set 1in bi for it to be accessed by a; assuming a; has in bits set.

Some characteristics of « n and B are next mentioned:

mi min
a. For the A function Brin = “min’ fOr the V function, Bminn= me- e
b. If a; has “in bits set and b1 has Bin bits set and A1 has access to B;, then

the function value must be the minimum possible which.still allows access,
S0
n
ki]f(aik’ bjp) = m
c. Since we are assuming a number of bits equal to the minimum field Tength,
for any a, having exactly = in bits s§t, there exists one and only one access

code having 8 . bits set such that ki]f(aik’ bjk) = m.

d. Similarly for any bi satisfying above constraints, there is a unique a;

determined by bi' Call an ai’bi satisfying these constraints a minimal code

air.

e. Isolated minimal access code pairs are defined as minimal code pairs such

that all a; are isolated.
It is possible to make assignments to Sg(f) isolated subjects and their
objects in such a way that there are no unauthorized accesses by only using

isolated minimal access code pairs. This implies the degree of protection is
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one (Gabs‘= S = 1). But when the number of isolated subjects is greater than

Sm (f), it is not obvious, in general, whether it is useful to introduce other

access codes containing more than « (or 8 set bits. The following proof

min min)

shows that assignments containing more than the minimal number of set bits are

always sub-optimal because 6ab and 6r 1 can always be increased.

S e

Proof la:

It will be shown that any assignment which maximizes the absolute and relative
degrees of protection of a system (of |A| > SE (f) isolated subjects) contains
only isolated minimal access code pairs by hypothesizing that some given assign-

ment is optimal and contains at Tleast one access code such that Bi > Brin: A

similar argument applies for the assumption «. > In each case, an

i 7 “min°
inconsistency is obtained yielding a proof by contradiction.

step 1: By assumption,E? an object, call it Boza Bo > B + 1 within the given

min
hypothetically optimal assignment. Name as Ao the subject which has authorized
access to B. Similarly name all A_i and Bi so that x;, =1, 1 <i<n.

step 2: By definition of Bmin’“g‘at least one bit (call it bit r) and in general
By = B
bits and call the altered access code bé . No new unauthorized accesses were

minbits of b0 which can be reset and still have access by a,- Reset these

introduced by this alteration because bits were only reset which cannot increase

f( bok) by the monotonicity of the access mechanism.

ik
step 3: If % % “min® reset the excess bits to form the unique minimal aé corres-
ponding to bé. Since'zf(aok, bék) >m it is guaranteed that no new bits need be

set to form the aé such that Zf(aék, ék) =m. Thus it can be asserted that

. s i i .
‘zf(aok, bik) 3_Zf(a0k, bik) V indices i. This means no new unauthorized accesses
occurred which implies Yi; not increased which implies y not increased.

step 4: Suppose E{aj 3 Zf(ajk, bok) > m but Zf(ajk, bok) < m. This decrease

in unauthorized accesses implies a decrease of yjo which implies a decrease of Yo
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which implies a decrease of y since step 3 allowed no offsetting increase of
unauthorized accesses. Since gébs and §}e1 are monotonic decreasing functions
of y, an increase in these functions is implied. Thus, by the hypothesis that
these functions were already maximized, this case cannot occur.

: 7 a, ' : i
step 5: Suppose § JEP-zf(ajk, bok) > m but a # a,. By the uniqueness of

minimal code pairs, «, >

i > “min’ Attempt to reset any bit of aj which is set in

%

, and still retain access to bj. If this is possible, then doing so causes a
reduction of the number of illegal accesses to bé; thus reducing yjo' This
implies a reduction of y and a corresponding increase in Sabs and Sa Thus, by
hypothesis, this case cannot occur.

step 6: Reset bits of a; until obtaining aj Dl o= Choose bits in such

i “min*
a way that Zf(ajk’ bjk) > m. By step 5 above, none of these reset bits were set

in a. By the uniqueness of minimal code pairs, aj = a Thus it is possible

6.
to reset zero or more bits of bj to obtain bj = bé.

step 7: Repeat step 6 until all 3 %»Zf(ajbé) > m have been converted tq = a& = aé
and bj = bé. In all of these steps no new bits are set implying no new unauthorized
accesses implying no increase in y implying no decrease jn the degree of protection.

step 8: Reduce all remaining bi to b% such that B%‘= B by resetting bits. Again,

min
this causes no decrease in the degree of protection. If this step also causes no
increase in the degree of protection (as implied by our hypothesis), then the
following step will cause an increase.

step 9: Choose any a_, b, E%-yz > 0. Since |A]| > Sﬂ(f), at Teast one such pair
exists. Fabricate a new access code for BZ by setting all but one of the bits of
bZ which correspond to the bits set in bé. Also set bit r (defined in step 2) and

reset all other bits of bZ to form bé. Since bé has exactly B bits set,'? a

min
unique access code which forms a minimal code pair with bé. Assign this access
code to the subject AZ and call the code aé. Since aé is minimal (in terms of

bits set), and all bi are minimal, AZ can only access objects with bi = b;. If
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there were any code which could have been reduced to bé, it would have been handled
by the bit resetting of step 5, so no unauthorized accesses can be made by Az‘
Furthermore there are no subjects which have unauthorized access to BZ because
steps 4 and (5,6,7) respectively dispose of (a) cases of access to object B, under
code bé but not B0 under code bé and (b) cases of access to both B, and Bo' Thus
Y, is decreased by this step to y, = 0 implying an increase of Sabs and Srel.

This is a contradiction of the hypothesis, so an optimal assignment = the assign-
ment uses only minimal access code pairs.

Proof 1b:

This proof shows that an assignment is optimal iff it is an assignment of the
maximum number of minimal access code pairs which distributes subjects as evenly
as possible into these Sﬁ (f) access classes. The technique used is to formulate
the problem as a nonlinear optimization problem and solve it using partial
derivative calculations.

First it is noted that the problem can be viewed as one of placing subjects
into access classes in such a way as to minimize the number of unauthorized
accesses. Thus one obviously wants as many classes as possible. The number of
access classes Sﬂ(f) will be abbreviated to S. Denote the numger of subjects in
the k-th class by ﬁk. Our constraint equation is then |A| = kE] & The number
of unauthorized accesses within any class k is \Kk( Ek-]) because each object in
the class has “ﬁk-1 unauthorized accessors and one authorized accessor, and there
are K& objects (whose subjects are) in the class. Summing to get the total

number of unauthorized accesses yields h( K}... 5;) = 3 5”( Y.-1) as the objective
k=1 k< k
S

function to be minimized. This is equivalent to minimizing = ( 3k-1) =y, SO
k=1

|A]
this minimization maximizes Sabs and Grel‘
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S
Objective Function: h(X},gé ...,gg) = kzlgk(éL—T)

S
Constraint: |A| = = ¥

This function must have = 0 at any extremal point for i = 1,2,...,S.

°’l
ﬁi’

Thus we substitute and take partial derivatives:
S

= gl e ) = 181 - 1

=23 = 2 (hy(h, 1) + 2 2 Y (5-1), 1< i <5.
= (2h, -1)° 2+a (;}5(3’.-1))
3y, dy.
1
S .
=—2|AI+2§2~5k+2i
S
X

This implies ¥, = [A] - ) zggk = )J7s 37 2,3,...,8,

so our solution is ?} =‘§é = ... =¥ = 1/|Al.

This solution is unique and we need only argue that the extremal value of h at

our solution point is a minimum. ATl second partial derivatives take on a value

of Zéij’ azh =2, azh = 0(i#j). Thus, the Hessian matrix of second partial

ig’ 3&3%

derivatives is positive non zero only on the diagonal implying a positive value

for its determinant. This indicates the presence of a minimum at the solution
point.

If the quantities S and |A| are such that it is impossible to assign exactly
the same number of subjects to each access class (|A| doesn't evenly divide S),
then all classes should contain [S/|A|] subjects except for (remainder S/|A|)
classes which should contain [S/|A]] + 1 subjects. This is the case in which
the optimal solution of h is non-integer and we must seek integer solutions which

are a minimum distance from the optimal non-integer solution. We can justify
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that these solutions, as described above, are optimal by the following argument.
Any distribution of subjects among access classes can be obtained from one of
the almost even distributions which we claim to be optimal by a sequence of transforma-
tions. Each transformation moves a subject out of a class e containing‘gq
subjects into a class e, containing 5; subjects with 5} g‘g}. After the trans-
formation, e contains 5?-1 subjects and e, contains 5; + 1 subjects. The
fact that each transformation disperses a pair of classes implies that the net
effect of a transformation is to increase the number of unauthorized accesses.
The number of unauthorized accesses before a transformation is:
[4( “;] -1+ [(G+K) (G+k-1) 2§(zg+k-1)+k(k-1)where k > 0.
The number after the transformation is:
[O-1)(-2)1 + LG+ 04+ ] = 2 (1+k-1) + k(k-1) + 2(k#1).
Thus the number of unauthorized accesses increases by 2(k+1) during each

transformation verifying that the proposed integer solutions are optimal.

Theorem 2: Given a system (A,B,g) consisting of
(a) a set A of isolated subjects,
(b) a set B of objects such that |B] = |A] = u, and

(c) a monotonic access mechanism within the family under

consideration with _m
Sn(f) < |A].

Thén any minimﬁm unbiased assignment as detailed in the statement of theorem 1
maximizes the minimumﬂdegree of protection g. The quantity g gives a worst casé »
measure of the amount of protection of a systém. A user can be sure that he will
receive no worse treatment than that dictated by g (and possibly much better
treatment if g is much Targer than g. A well-designed system should maximize g,
but g can be quite high without indicating that the degree of protection, in
general, of the system is high, e.g. one object of many could have no unauthorized
accessors but all other objects may be indiscriminately accessed by any subject.

A v pr——
This system would still have § = 1 although § and §, which are better indicators,
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would be quite Tow. Thus we do not insist upon maximation of 8, This quantity
is useful, however, in the dynamic assignment of access codes to new subjects
entering a system. An access class obtaining the minimum ; corresponding to
the maximum degree of protection 8 is an excellent candidate for adding the new
subject and its object. Also 5 = 1 is a reasonable requirement to impose within
an interpreted system so that a very precious object Bj will be sure to have
Yij = 0 for all undesirable i.
Proof 2:

The proof is by induction on n, the number of bits in an access code.
‘ BuﬁTdihg dpdn fhé pfledus pkoéf, we need 6hly éénsf&er éssignmehts héving somé

P o . >
a'l mmm or B'l 8

min’

Case 1: n=1

Since 1t is required that every subject have authorized access to one object,
either m = 0 or at Teast one bit which is the only bit must be set in each

access code Cy Our induction hypothesis is that & =<<%“i> where <2>denotes
m
S
n

the Targest integer less than z. More generally, if there are u subjects, and

k(<u) minimal code pairs then ; = <}€> . Since S} and S? are both eqUa1 to one,

<f%§>== Q;} = u-1. Thus, the induction hypothesis is true for n=1 because for
S

all possible values of m(m=0 or 1), all subjects have access to all objects, but
authorized access to only one. The number of unauthorized accessors to each
object is u-1, and the maximum, §, is therefore u-1.

Case 2: n>1

Assume the induction hypothesis is true for all n' < n and further suppose that
there is an assignment which is better, i.e. & *<ys= <§$§>: We simply show

that existence of y violates the induction hypothesis.
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Since any minimum unbiased assignment yields y = “25“4 » the assignment

Sy
~k
yielding y must not be minimal so there is some object B. with g, > 8 or some

subject with =5 > We assume the former; an analogous argument can be given

“min-
n
for the latter. Eliminate A, B; and all pairs A.,B. £ f(as,bs,) > m from the system
i* i R 3737 =1 jkTik
A * .
By properties of y , the number of subjects eliminated is < <<%ﬁi>. The number
S

of subjects remaining is > u (=~ ). Also, at least 8. + 1 bits were set in

R m n . . .
bi implies some number Tn > 1 of minimal patterns cannot be used by remaining

subjects and objects (assuming m # o). For this new system, the induction

hypothesis is applicable yielding

v\
U= {am
ok < <sn>>
v\ —
- Sm— m
n n
u

We show that this quantity is greater than or equal to <é§€> implying the
n

desired contradiction. Note that if the denominator Sﬂ - Tw equals zero, then
~k
the number of subjects having access to Bi is u (all subjects). Thus y = u-1l Z(f%§>=
S

implying the desired contradiction. If S? > Tﬁ, then we consider the following
three subcases for n > 1.

Sub-case 2.71: Suppose 52 divides u written Sglu.

ROYMED,
gon/ A\gow )7
n ne

Then

m
Sp - Tﬂ
_ m
= Sn -1
u+1
m
S
n -1
m m
Sp ~ T
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Sub-case 2.2: Suppose Sﬂ }u and

suppose @: - 1®+ @ '<§Tn’>>
n

Then the notation of<2) can be replaced by [z], meaning the largest integer less
than or equal to z. If I is a positive integer we can use the inequalities
I -[z]=1[I-[z]]>1II - z]

and [z] > z

E,., .

m gm

to obtain n. S n
m - m

S T? Sy - Tﬂ

m
n
mo_ -
S T H=<y,...>-
m Cemp — m m
(Sn B Tﬂ) n Sn on
Sub-case 2.3: Suppose Sm }u but

G064
"

m
n

Since ( Tm) [ (:: [;;[:>, we know (SI' - TM) } (:i- —~§j>

and furthermore u -{%i}

w

-1

m
Sn

m
B s n—wmn
<n o_ M M n
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4. HIERARCHICAL SYSTEMS CONSIDERATIONS

Some results are presented in this section for systems forming various types
of hierarchies. A hierarchical system imp]ies that a given subject must have
authorized access to all objects which are authorized accessible to subjects
below the given subject in the hierarchy. We will consider a ring structure,

a binary symmetric tree structure, and finally, an arbitrary partial ordering.

A ring structured system is a structure such that each subject is uniquely
represented by one of a number of concentric rings where any subject in an inner
ring has authorized access to all objects "belonging to" any subject constituting an
outer ring. However, outer ring subjects do not have authorized access to objects
authorized accessible to inner ring subjects. Define Rm(f) called the Tevel of
linear hierarchy of a mechanism, to be the maximum numbgr of code pairs using the
function f with n-bit codes and access threshold m such that all authorized accesses
for a ring structure are fulfilled and no unauthorized accesses are allowed. For
fF=A, Rm(f) =n-m+1, for f =V, Rm(f) =m+ 1. Appendix B documents Rm for
various fanctions. Without Toss of geana11ty, we restrict our attention tonsystems
such that one unique object belongs to each subject. The following theorem holds
for these systems.

Theorem 3: Given a ring structured system (A,B,g) consisting of
(a) a set A of isolated subjects,
(b) a set B of objects, |B| = |A] = u, and
(c) a monotonic access mechanism within the family under consideration
with Sm(f) < |A].
Then an access codg assignment satisfying all authorized accesses of the ring
structure maximizes the absolute and relative degrees of protection if
(a) the assignment uses Rm(f) minimal object codes for classes of

n
objects,
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m

(b) the assignment arranges R (f) class codes for subjects in a minimal
hierarchy, (defined in sgép 3 of algorithm 3 below) and,

(c) the assignment distributes subjects as evenly as possible into access
classes in such a way that all subjects in a class are at consecutive
levels within the hierarchy.

The major difference between this ring structure and the case of isolated
subjects is the added number of authorized accesses required due to the Tinear
ordering of subjects. Define the level of a subject Ai to be the number of subjects
Aj (including Ai) which have authorized access to Ai’ called ancestors of Ai' Then
A is a descendant of these subjects written A, 5-Aj‘ Note that using this termin-
ology, the first level is 1, and all subjects are ancestors and descendants of
themselves. 1In the case of A, 55Aj and A, # Aj, we write A, < Aj.

The following procedure describes an algorithm which produces a maximum number
of access codes and assigns subjects and their objects to access classes satisfying
the constraints of a ring structure.

Algorithm 3:
1. Choose the first access code 3, (with 1 = 1) by setting the minimum
number of bits in a; such that there exists a bi accessible to the chosen
a..

1

2. Choose b, as the pattern with the minimum number of set bits such that

1
f(aqk,b]k) > m.

i M=

k=1

3. [Increment i by one and set the access code a; to a; ;. Then set one more
bit (chosen arbitrarily) in a; guaranteeing the necessary condition that

n
k;fhﬂc%k)imfm"3=]’2"”1'L

At each stage, the algorithm sets the minimum number of bits to form a
ring hierarchy, so class codes for subjects are said to be arranged in a

minimal hierarchy.
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4. Choose b as one of the codes such that z f(a. ik k) =m and
k=1

z f(aJk, k) <mfor j=1,2 ..., i - 1. This can always be done since
k=1

a bit is set in a which was not set in any previous aj. bi is called a

minimal ring object code.
m
5. If i is less than R (f), then return to 3.
n

6. Order the subjects so that Ay < A, < ... <A, where u = |A|. Reset i toT.
7. Assuming the number of code pairs generated by 1 through 5 above is less

m m
than the number of subjects and divides it (R < u and R |u), we select

m n n
the u/R subjects at the highest level and assign them the access code a; -
n
Their objects are assigned b]. Increment i to 2.
m
8. Similarly we select the u/R subjects and objects at the highest Tevel
n

which have not been previously selected and assign them all the codes
a; and bi'
9. Increment i by one and repeat step 8 until all classes are filled with
u/R subjects.
10. If R does not divide u, then modify steps 6 and 7 by filling all classes
with [u/R] subjects except for (remainder u/R) classes which must be
filled with [u/R] + 1 Subjects. These can be chosen arbitrarily.
This algorithm assigns a set of consecutive subjects to each class, and thus fulfills
all requirements of necessary authorized accesses. The proof that this algorithm
maximizes the degree of protection is similar to the proof of theorem 1 given in
the previous section. Thus the idea of the proof is only sketched informally.
Given any assignment, it is possible to permute this into an assignment satisfying

fhe conditions of theorem 3 by first altering the number of bits set in every subject

code to form a minimal hierarchy. Then alter bits of objects to form minimal ring

object codes. After these alterations S3bs and Sre] of the system are not decreased and
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may be increased. If Ai < Aj < Ak and Ai’ Ak are assigned to one class, but Aj
is assigned to another, then this is a violation of statute (c) of the theorem
and the resulting assignment is non-optimal. Since Aj must have authorized access

to Bi’ and since bi = bk because Ai and Ak are in the same class, we see that Aj

has unauthorized access to Bk' This and all unauthorized accesses between different

classes can be eliminated by making sure that all subjects in a class are at
consecutive levels. Finally an argument identical to that of proof 1b can be
used to establish that all classes should be of the same size, or as near to
this as possible. Although not stated here as a theorem, algorithm 3 also maximizes

W
the minimum degree of protection & of a ring structured system.

Define a tree N to be a finite set of elements called nodes such that there
is a single distinguished node called the root of the tree, and the other nodes
are partitioned in k > 0 disjoint sets N], N2, cees Nk and each of these sets is
in a turn a tree [12]. The trees N], NZ’ cees Nk are called subtrees of the root.
The level of a node with respect to a tree N is one if the node is the root;
otherwise it is one more than the level of the node with respect to the subtree
Ni of N which contains the node. Each root is called an ancestor of the nodes in
its subtrees and of itself, and conversely, each of the latter nodes is a des-
cendant of the root. A tree structured system is one such that each subject is
represented uniquely by one node of a tree. Every object in the system is associ-
ated with exactly one subject, and every subject is associated with exactly one
object. In this case, the object is said to "belong to" its associated subject.
Every subject of a tree structured system must have authorized access to all of
its descendants' objects, but to no other nodes. Thus an object Bi'is}authorized
accessible only to ancestors of the subject Ai to which it belongs, i.e. to those
Aj such that A < Aj. In the following discourse concerning completely balanced
binary tree structures we label the nodes so that the root is Nt Nodes o1 and

Noos connected to Ny and called the direct descendants of nyp» are the roots of the

two subtrees emanating from Ny Nodes N3 and ns, are descendants of " and are
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the direct descendants of Nops Nag and gy are the direct descendants of Noos etc.
Any node nij either has no descendants or its two direct descendants are labelled

n1+],2j_] and Nip1225° Notice that the Tevel of a node as previously defined is

its first index, 1(ni ) =1, and all leaves (i.e. terminal nodes of the tree having

J
no descendants) are at the same (maximal) level. The height of a tree is the maximum

level of any node in the tree, h(N) = Max 1(n.
nijGN 1
of binary hierarchy of a mechanism, to be the maximum number of code pairs using the

j). Define Qw(f), called the Tlevel

function f with parameters m and n such that all authorized accesses for a symmetric
binary tree are fulfilled and no unauthorized accesses are allowed. If the number
of code pairs is not exactly the number needed for a totally symmetric tree, we
consider a binary tree with some Teaves missing as equivalent. The determination
of Qg(f) and of an optimal access code assignment algorithm are nontrivial problems
which seem to be quite dependent upon the function f as well as upon m and n. Thus
we present a theorem which only gives an optimal algorithm for partitioning a tree
into two access classes and then indicate that iteration of this procedure could

be a basis for an assignment algorithm. After proving this theorem, a lower bound
on the number of unauthorized accesses allowed by the optimal assignment is derived.
This bound not only applies to trees, but to any partial ordering of subjects.
Example 4: Figure 4 shows a tree having four Tevels which is split in an optimal
fashion into four subsets because the split minimizes the number of unauthorized

accesses over all 4-way splits. Assume f =A , n=4, m=1, so Qg = 4, Each

subject code
object code

node is represented by a box containing




-29-

Figure 4:
1700 N 00711
1000 —~ 0070
e / o
/ -
7000 / 0700 / 0070 0001
7000 0700 | 0010 / 0001
/ \ | / \ | /
7000 7000 | = [0700 0100 / 0070 0010 | / 0001 0001
7000 T000 | [ [0700 0100 | 0070 0070 j 0001 0001

Theorem 4: Given any symmetric binary tree structured system, a partition of the
objects of the tree into 2 classes maximizes the absolute and relative
degree of protection of the system

iff
the partition bifurcates the tree in such a way that each subtree is
wholly contained in a distinct class.

Proof 4.

The proof of theorem 4 proves that given Qﬁ > 2, and given any symmetric binary
tree, the only optimal assignment of objects into two access classes is accomplished

by putting the objects of the left (or right) subtree into one class and all remaining
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objects into the other class. In both subtrees, the access codes assigned to

each class should be minimal and the corresponding subject codes should be chosen

to form minimal code pairs. The object corresponding to the root of the tree is
assigned to one of the two minimal codes, but the subject corresponding to the root
must access all objects so it's code is not minimal. It must have a bit set to
match each set bit of subjects in both subtrees which implies access to all objects
as required by the trée hierarchy definition. For the access mechanism /A, with
n=2,m=1, the above means the Teft subtree might have code 01, the right subtree
10 and the root subject 11.

The terminology of one node n; having access to another n%j will be used

J
for brevity meaning that the subject corresponding to ”ij has access to the object
corresponding to n%j. Define XZ(nij) and yZ(nij) to be the number of nodes in Z
having authorized and unauthorized access respectively to node nij' In partitioning
a symmetric binary tree as described above, refer to the larger subset by U and the
smaller by W. The proof technique employed is to consider any other partitioning
into subsets U, W' and show that it allows more unauthorized accesses than the U, W
partition. Within any partition minimal access codes will always be assumed (except
for the root subject) because setting other bits of a code can never decrease the

number of unauthorized accesses and may increase it.

il

Case 1: [U'] = |U| and |W'] = |W|

For any node within any subset of a partition, the number of unauthorized accessors
to that node can be calculated as the total number of nodes in the subset minus the
number of ancestors in the subset because ancestors have authorized access. For
some partitions, this may be a lower bound because if a descendant of node nij is in
a different subset of the partition and if other nodes which are not descendants of
n;; are also in that subset then nij has access tc those other objects since they
have the same access cede as the descendant of nij' In partitions by our algorithm,

this phenomenon never occurs. For subsets U and W, the number of unauthorized accesses
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d.
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can be expressed by

(4.1) 5 (Jul - 1)+ = (Ju] - (i-1)).
nij’U nijéw
This is true since the number of unauthorized accessors to nijeu is equal to all

members of U except the ancestors of nij‘ There are exactly i ancestors of nij in

u. If nij is in W, the same argument holds, but there are i - 1 ancestors in W.

(Recall any nede is an ancestor of itself). For the partition consisting of sets

U' and W', a lower bound on the number of unauthorized accesses is

(4.2) 3 (U= gd) ] = ng).
ijeu! ijen’
Next we will show that the expression (4.1) is always less than the expression

(4.2). That is, simplifying, we get

).

2 2 . . (2 112 '
[U|“ + [W|° - 61 - a(1—1) < |UTS o+ W - 6§U.(n..) - a§w.(n13

1J

Since U] = |U'| and |W]| = |W'] we only need show
L)+ . L)+ Exg(n, ).
aXU(n1J) axw(n13) g an (n13) a¥W‘(n1J)

h-1 : . .
2 nodes‘QxU,(nij) <j= XU(nij)’ h = height of original tree.

Justification is that a node at Tevel i has i ancestors but if N is not in the
subset, the best possible is i - 1 ancestors.

Summing over all nodes in U' yields

ﬁxu(nij) E'E)I(U'(n'ij) + IU |‘

h'1—T nodes in W' B'XW,(nij) < i, but n11€w so for nodes in W, x

< 1.

Summing over all nodes in W' and W respectively yields

) - W

wa(nij) > wa'(niJ

W

. Combining b, and d-above yields

EXU(nij) + ﬁxw(nij) > S%U'(nij) + ﬁ%W'(nij) £ (U] - W)

IXppelns o) + An. .
> Pungg) B ngg)
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f. Suppose n11é; U'. Since the structure of U' differs from that of U, we must have
nodes of both left and right subtrees in U' and all of their ancestors also. (Other-
wise U' is suboptimal.) Suppose the Teft subtree contains r nodes in U'. These
nodes have Xu‘(nij) =4 > Xw(nij) =i -1,

g. This inequity is balanced by r nodes of the right subtreej}rwj €U - U' (which
must exist since [U| = [U'|). These nodes have x; =i >1 -1>x". So

h. Furthermore, all nodes of W' must have Xy < i - 2 since the top nodes Ny, Nyys
and n,, are in U'. Thus

@XW(“ij) > afw.(nij)

i. Combining g. and h. yields

% L)+ .. ) . X (N
Umﬂmj) amﬂm3)>umpmu)+-ﬁw(m3)
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Case 2: |U'| > |U] and |[W']| < |W]
In this case, use is made of the observation that yu(nij) for nij €U is the
same as yw(nik) for iy € W. This is true because

U] - Xu(nij) = Ul =di= (Ul -1)-@-1)=|uW - Xw(nik)' The only

requirement is that ns and L be at the same level. Thus we will refer to

J
y(nij) as the number of unauthorized accessors irrespective of whether nij e U

or nij & V.

a" |U|| > ‘UI£§>yUt(nij) = !U|[ - XU'(nij) i_lU'l - 1> lU[ -i= Y(nij)b'nijéZUf.

b. Since |U']| = |U| + k for some integer k > O, yU‘(nij) Z.Y(”ij) + k. Thus
2 oyalng) > = y(n..) + kju'l.
r YU 1" — ! 1]
nijéu nijéU
c. |U'| = |U] + k implies |W'| = |W| - k. So niy € W' may have k less unauthorized

accessors than if it were in W or U, but no less than this, yw,(nij) z‘y(nij)

for all nij in W'. Thus

;) - kv

L ywl(nij) > 1 y(nij

nijEW nijGW

d. Combining b. and c. yields

oo '
Squ'(nij) + ﬁ.yW’(nij) Z.El y(nij) + kYU l kiw !

W'
e. Since k(|U'| - [W']) > 0 and U'UW' = UUW, we get

S.yu'(“ij) + Z.yW'(nij) > Syu(”ij) + Zyw(“ij)'

W W
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Notice that in splitting the subtrees in figure 4, the Teft subtree again
fits the criterion of theorem 4, but the right subtree has a chain of two nodes in
place of the root. The proof 4. also holds in the general case of the root consist-
ing of a ring structure (i.e. a chain of nodes) if the chain is not too Tong. Thus
the algorithm for partitioning a tree into an arbitrary number of subsets might
consist of repeated applications of theorem 4 plus a method of assigning codes to
access classes. One question which arises in this more general case is whether to
put all nodes of the chain into a single subset when splitting. It appears that
all nodes should be Tumped together as the root and put into one class to avoid
having a descendant of one of the root nodes nij in a different set from ”ij’ but
in the same class as other nodes which are not descendants of Ny This causes
unauthorized accesses across subset boundaries and eventually implies a non-optimal
algorithm.

The algorithm presented is, in general, non-optimal and could be improved by
(among other things) checking at each step that the longest chain has not gotten so
long that separating it from its lowest node and tree is not more efficient than
breaking a tree into its subtrees.

In these last paragraphs, a lower bound will be derived for the number of
unauthorized accesses for an arbitrary hierarchy. For this derivation, we can
drop the restrictions of a monotonic access mechanism and of being restricted to
setting bits within a given field length. In its most general form, we mean a
hierarchy to be any partial order. Thus, the structure given in figure 5a is a

hierarchy.

figure ba:
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Different access mechanisms can do quite well on different specialized types of -
hierarchies. Thus f = V, n=m=3 fits the hierarchy of figure 5b very well although

3
S3(V) = 3.

. 111
figure 5b: 000
110 101 011
001 010 100
l/ \/< /
T00 < 070 T001
011 101 110
000 |
1111

Each box | a, | represents the codes of a subject and its object associated with

theynode.

Theorem 5: Given n nodes arranged as an arbitrary hierarchy and d possible
code words. Then if n > d, there must be at Teast %(Kil) unauthorized accesses
in the system, where } = [ﬁ] .

Proof 5:

For each code word, we can form an access class. At best, an access class
containing X; nodes may have no unauthorized accessors from outside of the class,
and a minimum number of unauthorized accessors from within the class. This mini-
mum is obtained if the nodes in the class form a ring structure so one (the

highest level) object has no unauthorized accessors, because all accesses are

authorized, another (the second highest) has one unauthorized accessor, etc.,
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until the Towest level node which has K} - 1 unauthorized accessors. The total

number of unauthorized accesses within the class is the sum of these

Y- |
(4.3) 12 j =§(5;' - 1)
j=0 2

Summing over all classes gives the constraint
) ‘
(4.4) b3 2;; =n
i=1
Minimizing the sum of expressions of type 4.3 is equivalent to omitting the

denominators and minimizing g (Y - 1) which was previously shown to have
a solution of X} =n/d,i=1,2...,d. Define §= {n/d) where <%> means

the Targest integer not greater than z. Then the total number of accesses in

any hierarchical system is bounded from below by

d (%(—%—l) =5 (- 1.
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5. FINAL CONSIDERATIONS

In conclusion, we have defined access mechanisms as functions which are

evaluated to determine if subjects have access to objects. A family of mechanisms
which includes a number of well-known systems was pinpointed for investigation.
The utility of various mechanisms must, of course, depend upon the assignment of

access codes to subjects and objects. The particular semantics of the system (i.e.

which subjects are authorized to access which objects) must determine how these
codes are assigned. Cases considered in this paper include isolated subjects,

ring and tree structures, and arbitrary hierarchies. The situation of more subjects
than access classes was considered and some algorithms were presented which assign

access codes to maximize the degree of protection in this situation.

A number of refinements and extensions of the concepts presented are possible
directions of future research. This study has been concerned with static assign-
ment algorithms. An extension to this is an environment in which the population
of subjects and objects is dynamically changing. A subject could upon entering
the system specify the degree of security that he demands and is willing to pay
for. Another refinement is to distinguish between subjects, each having a reli-
ability factor attached to it (undebugged modules = Tow reliability, "proved"
modules = high reliability), and re-define the degree of security to take this
factor into account. The general access mechanism defined in this paper suggests
that there are design alternatives that should be studied before implementation.
Consideration of dynamic assignment algorithms leads to the possibility of new
hardware mechanisms allowing dynamic alteration of the access threshold m. An
intriguing open problem is to discover an optimal general assignment algorithm for
tree structured systems. Finally, many other functions than the family of access

mechanisms investigated in this study could be examined (e.g. kg]f(aik’bjk) =m).
Indeed, it is not necessary that all bits be weighted equally; A. Ehrenfeucht

n
has suggested [3] that the family of weighted functions, =

y ]ka(aik’bjk) might
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be useful and amenable to mathematical analysis. In the field of computer security
and protection, there is a preponderance of qualitative results and a dearth of
quantitative results. Thus it is hoped that the spirit and content of this paper

will contribute to and encourage further development of a "Theory of Protection".
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APPENDIX A

In this appendix, it is shown that the values of Sﬂ(f) and Rﬁ(f) used in
the paper really are the maximum number of object codes allowing no unauthorized
accesses in a system of isolated subjects and of ring structured subjects
respectively. Furthermore, it is shown that no more than n(f) bits need be
considered (n(f) = field Tength). The exposition is restricted to consideration
of functions AND(A) and OR(V). Justifications for the other monotonic boolean
functions can be derived from these two functions. Appendix B gives a table of
values of SQ and RQ for a1l monotonic boolean functions. Thus it is not difficult
to assign codes to subjects if |A| is less than these maxima. The more difficult
task of assigning codes if |A| is greater than the maximum is the subject of the
main body of this paper.

For the function A, Sm describes the number of access code pairs (ai’bi)
such that kg](aikfﬁbik) > m but kg](aik/\bjk) <m for all i and all j # i. By
choosing exactly m bits to set to one in constructing a; and then constructing

b. = a

; i Z(aikA bik) > m is obtained. Another (aj, bj) can be constructed by

choosing a different but possibly overlapping set of m bits. The number of ways

of choosing m bits out of n is the number of combinations (3). Notice that no a;

can access any bj if i # j. Finally we argue that increasing any code Cs to more
than m set bits can never help our cause because of the monotonicity of our function.
In using all combinations of m bits as codes, every bit position is set in some
code, so the minimum field length is n.

For the function V, it is sufficient to have k < m bits set in a,, and m-k
(non-overlapping) bits set in b; so that Z(aik v bik) > m. Due to the monotonicity
of the function, it is again useless to have more than a total of m bits set, i.e.
=+ B. # m. The number of ways of choosing k bits out of m,»(gj, is the total

i
number of codes for the given k. This total is maximized when k is as close an integer

value as possible to m/2, so S?(V) = <1?:j> . In this case it is possible to assign all
4



codes so that only m bits are used and the remaining n-m bits are not set in any of
the codes a; or bi' This assertion is stated and proved as a theorem.
Theorem A: Given a system (A,B,g) consisting of

(a) a set A of isolated subjects

(b) a set B of objects such that |B| = [A]

(c) a monotonic access function of the form
kggaik\/bjk) > m where SQ(V) = | Al
Then there exists an access code assignment F which yields a degree of security
(absolute and relative) of one, and which has |F| = m as the minimum field Tength.
The theorem implies that there is an assignment which uses (i.e. sets in all subjects
and objects) no more than m bits. Degree of security one implies a totally secure
system: Sabs = Sl = 1m%9 y = 0 = no unauthorized accesses. As stated above, it
is possible to obtain (i?j) = SE(V) isolated code pairs. From this, the proof shows
that bits outside of the %1e1d can be moved inside, one-by-one, without decreasing
the degree of security.

Proof A:

The discussion before Theorem A established that there exists an assignment
such that all codes form isolated minimal code pairs and the number of isolated
pairs is sﬁ(V). If this assignment has a fie]i Tength of m then we're finished.

If not, then pick m of the largest sums e = Lzlaik from k = 1,2,...n as the bits
constituting the field. If possible pick an object which has a bit set outside of
the field, reset all bits outside of the field and set bits inside of the field
which can be done by the existence and uniqueness of code pairs. If bit 2 outside
the field was reset, then this caused e%-d new unauthorized accesses, and setting
bit j inside the field deducts ej—d unauthorized accesses where d = I (aij/%aiz)‘

i=1

By choice of field we know e, > e so the net change in unauthorized accesses is

J %
(eg—d)-(ej-d) < 0. This implies that the move hasn't degraded the system protection,

and repetition of the above step puts all bi within the field. Now moving the



subjects inside of the field is easy because a move will not cause any new
unauthorized accesses. Repetitions of these steps yields all access codes with
bits set only within the field.

g.e.d.

The value of Rg(f) is defined as the maximum number of access code pairs
(ai’bi) which can be constructed in such a manner that each a; can access bj if
and only if j < i. These codes can be constructed by assigning to a; any code
which has a minimum number of bits set to still allow construction of a bi which
is accessible. Thus f = A implies ay has m bits set to one; f = V implies 2
has zero bits set to one. Further subject codes are derived by setting one bit
at a time as described in algorithm 3. For f = A , the maximum number of bits
possibly set is n, implying a total number of codes of Rﬂ(A) = p-m+l. For f =V,
the maximum number is m because creating other subjects with more than m bits set
would cause unauthorized accesses. This implies the total number of subject codes

is Rrr?(V) =m+ 1.



APPENDIX B

Table of values of S? and Rg for all monotonic functions
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Notice that the functions pairs (A ,V) and (V, /) have identical values. This

can be expected by duality of boolean functions. Similar eXpectations hold for
the pairs (a, a) and (b, b), so the functions a and b were omitted from the table.
The function = is not a monotonic function. As far as the author could ascertain,
no closed formula is known for SE(E) although it forms a distance function and an

upper bound on it is given by the Hamming bound [1].
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