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Abstract

An algorithm is used to obtain simple proofs of these two
known relations in the theory of matched graphs: A graph with
a unique 1-factor contains a matched bridge; an n-connected
graph with a T-factor has at Teast n totally covered vertices,
for n>2. The proof of the second result is extended to show
some totally covered vertex lies within a distance of 2 from at
least n-1 others, for nz3.
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Algorithmic Proofs of Two Relations Between

Connectivity and the 1-Factors of a Graph

by Harold N. Gabow

1. Introduction

This note is based on an observation of Edmonds that many results
about matched graphs can be simply derived by analyzing an algorithm
that finds a maximum matching [E]. Using a depth-first version of a
cardinality matching algorithm, we derive two known relations between
connectivity and 1-factors, giving a stronger version of one of them.

Specifically, we first show a graph with a unique 1-factor has a
matched bridge. This result gives the structure of graphs with a
unique 1-factor. It was proved by Kotzig, and then by Lovasz [L]. Our
proof is a simple application of the matching algorithm. Next we show
an n-connected graph has at least n totally covered vertices, if nx2.
This result is useful in analyzing the number of 1-factors of a graph.
It was conjectured by Zaks [Z], and proved by Lovasz [L], as a con-
sequence of a general theory of the structure of graphs with 1-factors.
Our proof gives a slightly stronger result: some totally covered
vertex is joined to n-1 other totally covered vertices by paths of

length 2, if n>3.

2. Definitions

This section gives some relevant definitions from graph theory.
For other standard terms, see [H].

A matching M on a graph is a coliection of edges, no two of which
are incident to the same vertex. If edge vw is in M, it is a matched
edge; vertices v and w are matched (to one another). M is a Y-factor
if every vertex is matched. Throughout this paper, we consider only

graphs that have a T-factor. An alternating path is a path whose edges




are alternately matched and unmatched. An alternating cycle C is an

alternating path (Vl’VZ"‘°’V2n’V1)’ where all vertices Vi 1<i< 2n,
are distinct. The set of edges mec’ is a 1-factor if M is. Figure 1
shows a 1-factor, {(1,2),(3,4),(5,6)}. Adding edge (1,6) to the graph
creates the alternating cycle (1,2,3,4,5,6,1).

A graph is n-connected if it is connected whenever n-1 or fewer
vertices are deleted. A bridge is an edge whose removal increases the
number of connected components.

Now we introduce some notation. Let P = (V]""’Vn) and Q =

(Vn+1""’vm) be paths, and suppose v,V is an edge. P and Q can be

n+1

n+1""’vm)' Reversing the order

of vertices in P gives path rev P = (vn,...,v]).

combined into path P-Q = (v1,...,vn,v

3. Depth-First Search of a Graph with a 1-Factor

This section describes a way to search a graph that has a 1-factor.
The method is a simple modification of an algorithm that computes a
maximum cardinality matching [G1].

The idea is to build a\1ong alternating path, such as (1,2,3,4,5,6)
in Figure 1. This is done by starting from a matched edge (edge (1,2)),
and repeatedly adding pairs of edges to the end of the path (first (2,3)
and (3,4) are added, then (4,5) and (5,6)). The process is complicated
by odd length cycles, such as B = (2,3,4,2). For example, if the path
(1,2,4,3) is constructed, it cannot be extended from 3. However, (2,3)
completes an alternating path from 1 to 4, and this path can be extended
(by edges (4,5) and (5,6), as in Figure 2). Cycle B is an example of
a blossom, defined below.

We introduce some terminology; the botanical flavor comes from

[E]. The subgraph built by a search is called the stem. It starts at

"MBC=MuC-MC.



the root vertex; the first edge is matched. An outer vertex in the
stem is joined to the root by an alternating path whose first and last
edges are matched. If vertex v is outer, P(v) denotes the associated
alternating path; if x is a vertex in P(v), then P(v,x) denotes the
portion of P(v) from v to x. A vertex in the stem that is not outer
is inner. In Figure 2, vertex 1 is the root; 2,3,4 and 6 are outer;
P(6) = (6,5,4,3,2,1).

The sfructure of the stem generalizes an alternating path, in the
following sense. The outer vertices can be partitioned into sets, called
blossoms, so if the vertices in each blossom are combined (contracted)
into a single vertex, the edges remaining in the steh form an alternating
path. In this path, if blossom B is incident to the matched edge bc,
where beB 1is outer and C£B is inner, then ¢ is matched to B; b is the
base of blossom B. In Figure 2, the blossoms are {2,3,4} and {6}; the
alternating path is formed by edges (1,2),(4,5),(5,6); vertex 1 is
matched to blossom {2,3,4}, whose base is 2.

The Tast blossom in the stem is called the bud. The stem is
enlarged by adding edges incident to the bud. In Figure 2, the bud
is 6.

Now we give the precise rules for a search. The search starts
by making a matched edge rs the stem. Vertex r is the root; s is the
bud; s is outer, with alternating path P(s) = (s,r).

The search continues by scanning unmatched edges incident to the
bud. Let v be a vertex in the bud, and let vw be an unmatched edge
that has not been scanned. Edge vw is scanned as follows:

1. If w is not in the stem, a grow step is done. Let vertex w

be matched to vertex z. Edges vw and wz are added to the



stem; z is the new bud; z 1is outer, with alternating path
P(z) = z-w-P(v).

2. If w is an outer vertex not in the bud, a blossom step is

done. Let Bi’ 1 <1< m, be the blossoms in the portion of
the stem from v to w; thus veBy, weB . Let c. be the inner
vertex matched to Bj- Then edge vw is added to the stem.

The bud is a new blossom B, containing vertices Ci»
1<1i<m1, and Bi’ 1 <1 <m. The base of B is the vertex

matched to Co Each new outer vertex Ci» 1 <1 <m1, has
alternating path P(ci) = rgy_P(v,ci)-P(w).

3. If vertex w is the bud or w is inner, no changes are made to

the stem.

In Figure 2, the stem is built by doing a grow, blossom, and grow
step. If edge (6,3) is added to the graph and is scanned from the bud
6, a blossom step is done. Vertex 5 is made outer, with path P(5) =
(5,6,3,4,2,1). The bud becomes {2,3,4,5,6}.

The following simple properties of the stem can be proved by
induction on the number of edges scanned. (For a more complete dis-
cussion, see [G1,E].) The stem consists of blossoms B. and inner
vertices Ci» for 1 <1 <n. For1<i<n, B, is joined to Cs by a

1

matched edge bici’ where b1 is the base of Bi' For 2 <1 < n, C; is

joined to B, ; by an unmatched edge cyd, ;. where dj_1eBs_q- If vertex
veBys v is outer and P(v) 1is an alternating path that starts and ends
with matched edges. Further, P(v) = P(v,bi)-ci-P(di_]), i.e., P(v)
goes from v to the base of Bi’ and then to the root. Note this implies
P(v) passes through blossoms B., for i  j = 1 (and also through bases

J
bj and inner vertices Cy i>3=>1).



4. Two Relations Between Connectivity and 1-Factors

This section proves two relations between connectivity and 1-factors,
by searching a matched graph. The first relation can be used to
characterize graphs with a unique 1-factor. It was first proved by
Kotzig and then Lovasz [L]. Figure 1 illustrates this relation.

Theorem 1: A graph with a unique 1-factor has a bridge that is matched.
Proof: We show that at the end of a search, the matched edge incident
to the bud is a bridge.(See Figure 2.)

Let B be the bud at the end of a search. Let vw be an unmatched
edge, where veB. Note weB: For since no grow step is possible, w is
in the stem. Since no blossom step is possible, w is not in a blossom
B' # B. Finally, w is not an inner vertex. For if it is, path
P(v,w)+v is an alternating cycle; this implies there are two 1-factors,
contrary to assumption. So the only possibility is weB.

This shows the only edge joining B to a vertex not in B is the
matched edge incident to B. This is the desired matched bridge. [:]

The next relation is used to analyze the number of 1-factors in
a graph [G2,7]. It was conjectured by Zaks [Z], and proved by Lovasz [L].

Call a vertex totally covered if every edge incident to it is in some

1-factor. In Figure 3, vertices 1 and 5 are the only totally covered

vertices.

Theorem 2: For n > 2, an n-connected graph with a 1-factor has at least
n totally covered vertices.

Proof: Suppose an n-connected graph with a 1-factor has m < n totally

covered vertices. We derive a contradiction by showing how to search

the graph so a grow or blossom step can always be done, i.e., the search

never ends. To do this, we define a set F of outer vertices that always



give grow or blossom steps. Specifically, let v be an outer vertex
with path P(v) = (v,v],...); let x be the first inner vertex in P(v)

after v]%(x # v]). Then

F = {v]v is outer and P(v,x) contains an edge that is not
in any 1-factor}.

F has this useful property:

(*) If veF is in the bud and edge vw is unmatched, then w is not inner.
To show this, suppose on the contrary that w is inner. Then path
P(v,w).v is an alternating cycle, whence every edge in it belongs to

a 1-factor. In particular every edge in P(v,x) is in a 1-factor, a
contradiction.

Now we give three rules showing how to choose edges to scan in

the search. We then show edges can always be chosen according to the
rules, so the search never ends.

Initially, the stem consists of the matched edge rs, where the

root r is a totally covered vertex (if m > 0). Edges for scanning
are chosen as follows:

1. Suppose the bud is a non-totally covered vertex v. Scan an
edge vw that is not in any 1-factor. This gives a grow or
blossom step.

2. Suppose the bud is a totally covered vertex v. If possible,
scan an edge vw that gives a blossom step. Otherwise, scan an
edge vw that gives a grow step such that the new outer vertex
is not totally covered.

3. Suppose the bud is a blossom B, containing more than one
vertex. Let b be the base. Scan an edge vw that gives a grow

or blossom step, where veBAF-b.



To analyze rules 1-3, we first study the outer vertices not in F.
Define N = 0-F, where 0 is the set of all outer vertices. When a
vertex becomes outer, it enters set N or F. In a later blossom step,
it may move from N to F; however once in F, it remains there.

When the search begins, rs is the stem, and N = {s}. Thereafter,
vertices enter N only in rule 2. For suppose z is a new outer vertex.
In rule 1, path P(z) contains edge vw; this guarantees zeF. In rule 3,
P(z) contains the edge in P(v) that is not any 1-factor; again, zeF.

Note further that in one execution of rule 2, at most one vertex
enters N. For suppose edge vw gives a blossom step, and let z be a
new outer vertex. Path P(z) contains rev P(v,z). Vertex veF (since v
is totally covered, it becomes outer in a grow step of rule 1 or rule
3). Thus if z is not matched to v, P(z) contains the edge in P(v)
that is not in any 1-factor, and zeF. So only the vertex matched to
v can enter N.

Now we show the choices described in rules 1-3 can always be made.

1. In rule 1, v is incident to some edge vw that is not in any

1-factor, by assumption. Vertex w is not inner (as in the
proof of (*)). Thus vw gives a grow or blossom step.

2. In rule 2, suppose no edge vw gives a blossom step. Then

each edge vw gives a grow step, since w is not inner. To
see this, note veFus, since v is totally covered. If vefF,
(*) shows w is not inner; otherwise, v = s, so w is obviously
not inner.

fhe degree of V is at’1east n, so there are at least n-1
possible grow steps. There are at most m-1 < n-1 totally

covered vertices that can be made outer in a grow step. (The



totally covered vertex r cannot be made outer.) So at least
one grow step makes a non-totally covered vertex outer.

3. In rule 3, first note BnF-b # ¢. For examining rule 2, it is
easy to see that if zeBnN-b, then the vertex matched to z is
in BAF-b.

Now we show

(1) |BNNub| < m.
First note |N| ¢ m, for rule 2 shows each vertex entering N cor-
reéponds uniquely to some totally covered vertex. Now consider
vertex s; seN. If s#B, then |[BNAN| < m, so (1) follows. Other-
wise if seB, then s = b, and again (1) holds.

Now consider the graph G - (BNNub). Since G is n-connected,
this graph is connected, by (1). Thus some vertex veBnF-b is
joined by an edge vw to a vertex wgB. Vertex w is not inner, by
(*). Thus vw gives a grow or blossom step.

Thus an edge can always be chosen acéo}ding to rules 1-3, and the

search never stops. This is the desired contradiction. | [:]

In Figure 3, n=2 and a distance of 4 separates the two totally
covered vertices; this distance can be made arbitrarily large by adding
more "vertical" edges. We show the opposite holds when nz3: a small
region of the graph contains n totally covered vertices. Define A(v)
as the set of all vertices adjacent to v; Az(v) is the set of all

vertices joined to v by paths of Tength 2. (Note.vEAZ(v).)

Corollary 1: For n>3, an n-connected graph with a T-factor has a
totally covered vertex t, where Az(t) contains at Teast n totally

covered vertices.



Proof: Let r be a totally covered vertex adjacent to a non-totally
covered vertex s. (If no such r exists, all vertices are totally
covered, and the Corollary holds.) Choose a 1-factor so rs is matched.
Search the graph, starting with r as the root and rs as the first edge
of the stem; choose edges according to rules 1-3 of Theorem 2. We
prove the Coro11aryrby examining the bud at the end of the search; below
we consider the possibilities for the bud corresponding to rules 1-3.

1. The bud is not a non-totally covered vertex, as shown in
Theorem 2.

2. Suppose the bud is a totally covered vertex v. No grow or
blossom step can be done according to the restrictions of
rule 2, since the search has ended. Thus every unmatched edge
vw gives a grow step where the new outer vertex is totally.
covered. At least n-1 such grow steps are possible. So the
Corollary holds with t=v.

3. Suppose the bud is a blossom B; let b be the base vertex, and
let ¢ be the vertex matched to b. We first show beN. For
suppose the contrary, beF. This implies b#s. Thus c#r, so
¢ is not the only inner vertex. Since G-c is connected, there
is an edge vw joining B to some inner vertex w, w#c; Path
P(v,w)ev is an alternating cycle, so every edge in it is in
some 1-factor. But P(v,w) contains the edge of P(b) that is
not in any 1-factor. This contradiction proves beN.

Now we show b=s. For suppose b#s. Thus b becomes outer
in a grow step. In this step, the bud is a totally covered
vertex x, since beN. Clearly x#s, since s is not totally

covered; thus xeF. Let y be the vertex matched to x. Graph
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G-c,y is connected. Thus some edge vw joins B to an inner
vertex w, w#c,y. The path P(v,w)-v is an alternating cycle
containing the edge of P(x) that is not in any 1-factor.
This gives a contradiction, as above. Thus b=s.
So when the search ends, the root r is matched to the
bud B. Since G is n-connected, it is easy to see there are
n vertices zeB that are joined to r by an edge. Clearly zeN.
For the Corollary, it suffices to show each z is matched to a
totally covered vertex. Examining rule 2 we see this is the
case if z becomes outer in a blossom step. So it suffices to
show z does not become outer in a grow step (of rule 2).
Suppose z becomes outer when the bud is a totally
covered vertex v, edge vw is scanned, and a grow step is
done. Vertex veF. So P(v) contains an edge that is not in a
1-factor. P(z) contains the same edge, whence zeF. This

contradicts zeN. [:]
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Figure 1: A graph with a 1-factor.

Figure 2: A stem.
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Figure 3: A graph with two totally covered vertices.



