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ABSTRACT

Extending some proof techniques from [2] and [3] we solve an open
problem from [1] and prove that every two equivalent DOL systems have a

regular true envelope.






0. INTRODUCTION

This paper pursues further fhe research started in [2] and [3].
Its aim is to demonstrate further the usefulness of elementary homomorphisms
and proof techniques around them for solving (using "systematic" proof
techniques) various problems concerning DOL systems. In particular we
solve an open problem from [1] and prove that every two equivalent DOL
systems have a true regular envelope.

We assume the reader to be familiar with the rudiments of automata

theory and the rudiments of the theory of DOL systems.



I. PRELIMINARIES

Throughout the paper we use standard language theoretic terminology.
Perhaps the following notation requires some explanation.
(i) If K is a finite set, then #K denotes its cardinality. For an integer
x , || x || denotes its absolute value.
(1) For a word o , |a| denotes its length and Sub(a) denotes the set of

all subwords of o. For a language K, SubK = (_J Sub(a).
aek

(ii1) HOM(Z,A) denotes the set of all homomorphisms from £* into A*. A
composition of homomorphisms hl""’hk is written hk...h]. For a homomor-
phism h, maxr(h) = max{ |al : (Ha)z[h(a) = a] }. For a set of homomorphisms
H, Sem(H) denotes the semigroup generated by H.
(iv) Let A = (Z,Q,S,qin,F) be a finite automaton. For q in Q and y in I¥,
trace(q,y) is the sequence of states encountered when starting at q and
following transitions forced by y. A sequence of states 4sGys- 50,59
where q; # a; for 1 <i# Jj <nis called a simple loop (in Q).

Next we introduce some terminology and notation which is useful when
dealing with homomorphisms.

Definition 1. Let h,g e HOM(Z,A).

*

1) A language K ¢ Z* is an identifying set for h,g if h(a) = g(a) for every

a in K. We say then that h equals g on K and write h ¢ 9- Similarly if

T = Wyslyse - is a sequence of words, we say that h equals g on 7 if h "« 9
T

where KT is the set of all words that occur in the sequence T, we write then

h = 9

*

2) A language K ¢ £* is the maximal identifying set for h,g, denoted as

MID(h,g), if K= { a e Z* : h(a) = g(a) }.

3) If Kis an identifying set for h,g and there exists a constant C such

that, for every prefix (respectively subword) o of K, we have



Il |h(a)] - |g(a)| || < C then we say that h,g are prefix balanced (respec-

tively subword balanced) on K. Since it follows directly from the definition
that h,g are prefix balanced on K if and only if h,g are subword balanced
on K, we will simply say that h,g are balanced on K.

4) The balanced family of h,g, denoted as BAL(h,g), is the family-consisting

of all these subsets of MID(h,g) on which h and g are balanced. For Z in
BAL(h,g), b(Z,h,g) denotes the minimal constant C such that

|| |h(a)] - Jg(a)| || < C for all subwords o of Z.

5) Let o in =* be such that h(a) is a prefix of g(a) or g(a) is a prefix
of h(a), in particular it can be that h(a) = g(a). Then the delay of h,g
on o, denoted as_gglh,g(a) is the word over A such that either
h(u)gglh,g(oc) = g(a) or Q(u)g,glh,g(oe) = h(a).

6) Let k be a nonnegative integer. The k-delayed identifying set for h,q,

denoted as MIDk(h,g), is defined by
MIDk(h,g) ={aezz*:h(a) = gla) and

(96) gy () I I(E)] = Ta(e)] [} =k 73

The following result follows directly from the definition.
Lemma 1. Let h,g be homomorphisms on * and let a,x,8 € £*. If
del

(a) = del, (a) then del, (uB) del, (aB)

—h,g h,g

It is easy to see that given h,g and k there exists a finite automaton
which accepts MIDk(h,g). One simply keeps an information about the "current
delay between h and g" in a state; since the length of such a delay cannot
exceed k a finite number of states suffices. We leave the formal proof of
this result to the reader.

Theorem 1. MIDk(h,g) is a regular set for arbitrary homomorphisms h,g

and an arbitrary nonnegative integer k.



Finally let us recall from [1] the notion of a (regular) true
envelope for a pair of DOL systems,

Definition 2. Let GT = (Z,h],w) and G, = (Z,hz,w) be DOL systems.

A Tanguage K is a true envelope for G],G2 if

(1) L(G;) = K and L(G,) < K,
(11) K < MID(hy,h,).

K is called a regular true envelope for G],G2 if K is a regular language

and a true envelope for GI’GZ’



IT. BALANCED HOMOMORPHISMS

In this section we investigate several situations in which a pair
of homomorphisms is balanced on a language.

We start by providing necessary and sufficient conditions for
equality of two homomorphisms on a regular 1anguage]). First, we need
some auxilliary notation.

Let A = (Z,Q,S,qin,F) be a deterministic finite automaton and let
p e Q. Then
INIT(p) = { @ : 8(q;,,0) = p 1},

FIN(p) = { B : &(p,B) ¢ F },

Loop(p) = { v : &(p,y) = p and trace(p,y) is a simple loop I},

ZO(p) ={a: 6(q1n,u) = p and trace(p,y) contains no loop }.

for every k = 1
Zk(P) ={ a: 8q

move than k simple Toops }.

1.n,on) = p and trace(p,y) contains no loops except for no
Theorem 2. let A = (Z,Q,é,qin,F) be a deterministic finite state
automaton and let h,g be two homomorphisms on I*. Then h ZT(A) g if and only if

1. (Vp)Q(Vu)zo(p)[ h(a) = g(a) if and only if p ¢ F ]

2. There exists a function y, : Q> ©* such that,
0
for every q in Q,

either 2.1. ( (Va)zo(p)[ h(u)wzo(p) = g(a) ]) and

or  2.2. ( (Va)zo(p)[ g(a)wzo(p) = h(a) 1) and

( (¥y)

Loop(p)[ wzo(p)h(Y) = Q(Y)WZO(P) 1).



I. "If" part:
(i) First we will show that the condition 2° from the statement of the
Theorem remains valid when, for an arbitrary k = 0, we replace ZO by Zk

and moreover Y, = Y, .
e

We show it by induction on k.

k = 0. It is true by the assumptions of the Theorem.

Assume that the statement is true when replacing ZO by Zk (referred to as

the "k-modified statement 2") and let us replace Zy by Zyiq-

Let p ¢ Q.

(1.1) Assume that p satisfies the condition 2.1 of the k-modified statement 2.

Take o e Zk+1(p)\2k(p).

Then o = ayR where there exists a state r in Q such that a « Zj(r),

v e Loop(r) and aB e Zg(p) for some j,& < k.
(1.1.1) Assume that r satisfies the condition 2.1 of the modified statement 2.

Then h(&)wzo(r) = g(a) and h(&?)wzo(r) = g(ay)-

But &(r,B) = p and, because p = S(qin,&§é) = 6(q1n,&é), Lemma 1 implies
).

that h(&ié)wzo(p) = g(ay

(i.1.2) Assume that r satisfies the condition 2.2 of the modified statement 2.

i

Then (&) (r) = h(&) and (&) (r) = h(ED).

But 8(r,B) = p and, because p = é(qin,&ié) = S(qin’&é)’ Lemma 1 implies that

n(EB)Y, (P) = 9(675).

(1.1.3) Hence if p satisfies the condition 2.1 of the k-modified statement 2
then it also satisfies the condition 2.1 of the (k + 1)-modified statement 2.
(i.2) Similarly we prove that if p satisfies the condition 2.2 of the
k-modified statement 2 then it also satisfies the condition 2.2 of the

(k + 1)-modified statement 2.



This completes our inductive proof.
(i1) From (i) it clearly follows that, for every p in Q,

either ( (Vo) pypppyl h(a)wzo(p) = g(a) ]) and

() Lgop(p) ¥z, (P3(¥) = 0¥ (9) )

or ((VQ)INIT(p)[ Q(Q)wzo(p) h(a) ]) and

(0 gop(p)l 80117 () = g (1) 1)-

Loop(p

But this together with the condition 1 of the statement of the theorem

implies that (Vp)Q(Va)INIT(p)[ h(a) = g(a) if and only if p ¢ F ]
which in turns implies that h =T(A) g.

IT. "Only if" part:

Let us assume that h =T(A) g.

This clearly implies condition 1 of the statement of the theorem.

Let p e Q and Tet a ¢ Zo(p).

(i) Assume that z is such that h(a)z = g(a).

Let B « FIN(p). Then h(a)h(B) = g(a)g(B) = h(a)zg(B) and consequently
h(g) = cg(B).

(i.1) Let a e Zo(p) where o # a.

Then g(a)g(B) = h(a)h(B) = h(a)zg(B) and so h(a)z = g(a).

(i.2) Let vy e Loop(p).

Then h(a)h(y)h(B) = h(a)h(y)zg(B) and

g(a)g(y)g(B) = h(a)zg(y)g(s).

Since h(a)h(y)h(B) = g(a)g(v)g(B), we get h(v)c = zg(y).

(i.3) From (i.1) and (i.2) it follows that if we set ¢ = ¥y (p) then

0
condition 2.1 of the statement of the theorem holds.



(i) Similarly if we assume that ¢ is such that h(a) = g(a)z, we can show

that the condition 2.2 of the statement of the theorem holds if we set

= WZO(P)~

Corollary 1. Let h " 9 where K is a regular language. Then
K ¢ BAL(h,g).

Proof.

Let K = T(A) where A = (Z,Q,S,qin,F) is a deterministic finite

automaton and let C, = 2 « max { {wz (p)] : p e Q} where Y, is defined
' 0 0

as in the statement of Theorem 2. Let o ¢ Sub(K). Thus there exist a word
z in K such that z = Bay. Let p = S(qin’B) and r = S(qin,Ba). Then, see
(i1) from the proof of "if" part of Theorem 2,

| th(a)| - lg(a)] || < |¢ZO(D)! + Iwzo(r)l and so the Corollary holds.

The following result says essentially that the property of being
balanced carries over through closures of homomorphic diagrams; the result
that is needed very much for the proof of our main theorem.

Theorem 3. Let f1,g1,h],f2,gz,h2 be homomorphisms and let Z be a
language such that
(1) f] and f, are A-free,

(2) h1f1 = 9 and h2f2 = g,, and
(3) Z e ( B(f5,) 0 B(ggs0,) ).
Then f1(Z) = fZ(Z) e~B(h],h2).

Proof.

We start with the following observation.



(i) Let 91295 be homomorphisms, X e B(¢],¢2) and let b(X,¢],¢2) = n.

Let 8 ¢ X and let v = ¢](B) = ¢2(B). Let Q be an occurrence in B8 and let
Lk’LQ’Ri’Rj for k,2,i,j ¢ {1,2}, k # &, 1 # j, be occurrences in vy such
that

Lk is the leftmost occurrence in vy that is derived by 9

L, is the leftmost occurrence in y that is derived by 0 from Q,

2

Ri is the rightmost occurrence in y that is derived by 95 from Q, and

Rj is the rightmost occurrence in <y that is derived by ¢j from Q, where

2 is not positioned further to the Tleft than Lk’ and

Ri is not positioned further to the right than Rj'

Then the distance between Lk and Rj is not larger than m + 2n, where

m = max { maxr(¢;),maxr(s,) }.

Proof of (1i).

The situation is the best illustrated by the following picture:
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11

Thus we have a "triangle" rooted at Q and with the base spreading
from Lk to Rj' Since X ¢ B(¢],¢2) the distance between Lk and LQ and the
distance between Ri and Rj are both bounded by b(X,¢1,¢2). On the other
hand the distance between Ll and Ri is bounded by m. Consequently the
distance between Lk and Rj is bounded by m + 2n.

(ii) Let o e Z, w = f](a) = fz(u) and T = gl(a) = gz(u) = h1f](a) = hzfz(a).

The situation is the best illustrated by the following picture:
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where
k,2,r,s,1,j ¢ {1,2},
A is an arbitrary occurrence in w,
D,E are ancestors of A in o with respect to f1 and f2 where E is not to
the left of D,
F is the leftmost among all the occurrences in w that are derived from D
by either f] or fz,
G is the rightmost among all the occurrences in w that are derived from E
by either f1 or f2,
B is the Teftmost among all the occurrences in 7w that are derived from A
by either h] or h,,
C is the rightmost among all the occurrences in w that is derived from A
by either h] or h2’
H is the Teftmost among all the occurrences in 7 that is derived from D
by either gq or h2’
I is the rightmost among all the occurrences in 7 that is derived from E
by either gy or g,.
(iii1) The distance between D and E is not larger than u = 2+( 2-nf +»mf),
where ne = b(Z,f],fg) and Me = Mmax { mgﬁrﬂf]),mgﬁg(fz) }.

Proof of (ii).

Since f] and fz are propagating it suffices to show that the distance
between F and G is bounded by 2-( 2-nf + mf'). But this follows from
(1), because the distance between F and G is formed by merging two "triangles"
as in Fig. 1 with tops at D and E respectively whose bases overlap (at
least at point A).
(iv) To prove the theorem it suffices to show that the distance between B and

C is not Targer than a certain constant dependent on f],fz,g],gz,hj and h2 only.
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However the distance between B and C is not larger than the distance
between H and I. But (i) implies that the distance between H and I is not
larger than x-( 2-ng + mg ) where ng ='§(Z,g],gz),

me = max { maxr(g]),maxr(gz) } and x is the distance between D and E. Then

from (iii) it follows that the distance between D and E is not larger than
v = u°(’2~ng + mg ) and consequently the distance between B and C is

not larger than v. Since A was chosen to be an arbitrary occurrence in w
it means that h],h2 are balanced on f1(Z) = fz(Z) and as a matter of fact

b(f1(Z),h1,h2D < 2-(,2-nf +ome )+ ( 2°ng + Mg ).
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ITI. REGULAR TRUE ENVELOPES FOR EQUIVALENT DOL SYSTEMS

In this section we prove the main result of this paper: every two
equivalent DOL systems have a regular true envelope. We start by examining
the situation for the case of elementary DOL systems.

The following result was proved in [3].

Theorem 4. If h,g are elementary homomorphisms then MID(h],hZ) is

a regular language.

As a direct corollary we get the following result.

Corollary 2. Every two equivalent elementary DOL systems have a
regular true envelope.

However in general MID(h,g) is not a regular language as is shown
by the following example.

Example 1. Let Z = { a,b } and let h,g ¢ HOM(Z,Z) be defined by
h(a) = a,h(b) = aa,g(a) = aa,g(b) = a. Then obviously

MID(h,g) = { o ¢ z* : #a(u) = #b(u) } which is not a regular language.

Consequently to prove that every two equivalent DOL systems have a
regular true envelope we will simplify not elementary DOL systems and
reduce the problem to elementary DOL systems. To do it we need the following
result which, for the restricted case of simplifiable homomorphisms,
generalizes Lemma 8 from [3].

Theorem 5. Let hT’hZ e HOM(Z,%) where at Teast one of h1,h2 is
simplifiable. There exists a sequence 11,...,1k of elements from {1,2}
and homomorphisms f,p1,p2 such that h1h1.]...h1.k = p1f,h1h1.1...hik = p2f
and homomorphisms p1,p2,h]p],h2p2,fp1,fp2 are elementary. Moreover if
h],h2 are effectively given then i],...,ik, f,p],p2 can be effectively

constructed.
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Proof.
1) Assume that, e.g., h1 is not elementary. Then h] = g1f for some
fe HOM(Z,F),g1 e HOM(T',Z) where T is an alphabet such that #I' < #I.

2) Let © be an alphabet such that

(1) (31]""’1k){-l’2}+(3f)HOM(Z,@)(Hg)HOM(@aZ)[ hi.i"‘hik = gf ]

and

(1) (Wdyseendy) DA (@) yones ) (T yomeo, )l 5 --+hy = 8F 1)

1,2} Jq g

then (#A > #2) 1.
Take f,g satisfying (i) and set Py = h]g,p2 = hzg.

Let Ty T h]h. ...h. and T, = h

T Tk
Then T = h]gf = p]f and Ty

...h. , where 1],...,1k satisfies (i).
1T Tk

hzgf = pzf.

ohy

il

From the assumptions about © it follows that both Py andf’p2 are elementary
(because PysPy € HOM(©,%)). Moreover, because © is "minimal" in the sense
of (i) and (ii), for every element T from §gmﬂ{h],h2}), ™y and tp, must
be elementary, and so our choice of 1],...,ik,p1,p2 and f satisfies the
first part of the statement of the lemma.

The second part of this result is proved as follows. Let us generate
systematically all sequences 11,...,1k from {1,2}+. For each of them let
us find whether or not there exists p],pz,f satisfying conditions of the
lemma. If we succeed we are done; if not we move to the next sequence.

The first part of this proof guarantees that we will eventually succeed.

Now we can prove the main result of this paper.
Theorem 6. Every two equivalent DOL systems have a regular true

envelope.
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Proof.
Let G] = (Z,h],w),G2 = (Z,hz,w) be two equivalent DOL systems with

K= L(8)) = L(G,), E(Gy) = wiT {1 and E(6,) = 8 W8,

By Corollary 1 it suffices to demonstrate that K ¢ BAL(h1,h2),

because then K ¢ MIDb(K,h],hZ)(h1’h2)'

(i) 1If G] and 62 are elementary then the theorem is implied by Corollary 2.
(ii) Let at least one of G,,G, be simplifiable. Let i],...,ik,f,p],p2

satisfy the statement of Theorem 5. Let 9y = h]hi "'hi and 9, = hzhi "‘hi
1 k 1 k
- (i) :
i3 (Z,g].,wj ). It is easy to see
that E(G]) = £(G,) if and only if, for every 0 < j < k+1, E(G] ) = E(G2 j)'

and let for 1 < i <2, 0 < j<k+1, G

(A formal proof of this fact is provided in [3]). Thus is suffices to show

that, for every 0 < j < k+1, Mj = L(G] j) = L(G

implies that we have the following situation:

ZQJ) € BAL(h],hz). Theorem 5
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Since L(G] J.) = L(G2 j)’ the "inside" elementary DOL systems
- (1) - (2) :
H],j (A,fp],f(mj )) and HZ,j (A,fpz,f(wj )), are equivalent (where A

is an alphabet through which 91 and g, are simplified into f,p1 and f,p2
respectively).

Let Zj = L(H, .) = L(Hz,j) and T, = E(H, .) = E(Hz,j)‘

]gj \] -"\]
Since Py =0, P and h]p1 =Tj thz{by”Coro11ary'2 we have that

Zj e ( BAL(p],pz) n BAL(hlp],thz) )7 But then Theorem 3 implies that
(note that Py.P, are elementary and so A-free)

p](Zj) = Pp(Z;) < BAL(hyshy).  However My differs from py(Z;) = p,(Z;) by a

j)
finite set of words only and so Mj € BAL(h1,h2).

This completes the proof of the theorem.
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IV. DISCUSSION

In this paper we have further investigated simplifications of
homomorphisms studied already in [2] and [3]. We have further illustrated
the usefulness of the elementary homomorphisms and some proof technigues
concerning them by solving an open problem from [1]: we show that every
two equivalent DOL systems have a true regular envelope. As indicated
already in [1] this provides an alternative (to this in [1] and also to

this in [2]) proof that the DOL sequence equivalence problem is decidable.
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FOOTNOTES

1) It is rather clear from [1] that some form of Theorem 2 and also
Corollary 1 were known to the authors of [1]. However we are still convinced

that the formal proof of Theorem 1 is needed here to keep this paper precise

enough.
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