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 Next generation sequencing technologies have allowed researchers to 

evaluate the unculturable members of the human microbiome with unprecedented 

precision and detail. Early studies of the human microbiome revealed the unique 

microbial fingerprint that we contain, as well as the fact that numerous disease 

states, including allergies, obesity, and gastrointestinal disorders, are associated 

with alterations in our human microbiome or a lack of exposure to critical microbes. 

This dissertation examines some common disease states and their microbial 

associations. 

 Recent studies have also demonstrated how important it is to assess how 

medical interventions, including pharmaceutical drugs and implanted medical 

devices, alter our innate microbiome. Any negative alterations in microbial 

community structure or composition might have series deleterious consequences for 

the patient. Therefore, in this dissertation I assess the impact that intravaginal 

rings, used to deliver localized doses of acyclovir in herpes simplex positive women, 

have on the vaginal microbiome. I demonstrate that intravaginal rings are safe 

from a microbial perspective as they do not alter or aggravate the vaginal microbial 

community. 
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 Furthermore, this dissertation discusses the importance of assessing our 

ancestral microbiome to determine how modern day society has changed our 

evolutionary microbiome, with possible harmful consequences. I discuss several 

mechanisms by which researchers are exploring how to replenish our natural 

defensive microbes. Along this line of research, I compare the microbial 

communities and functional profiles of the hunter-gatherer group Matses to 

individuals from the United States and those from the agrarian societies of Malawi 

and Venezuela. This work demonstrates how our ancestral microbiome was 

enriched in genes related to energy metabolism, and how altered our modern day 

microbial community structure is from our evolutionary past. 

 Finally, the importance of the interaction between intestinal metabolites and 

the microbiome is explored, focusing on how microbes can alter drug metabolism. I 

go on to evaluate the vast differences in the metabolite profile of potatoes that have 

been processed in different ways across a range of cultivar types. This work 

demonstrates that processing method is the dominant driver of metabolic profiles, 

but that cultivar and processing method interact non-linearly to produce 

unpredictable concentrations in the majority of potato-containing metabolites. I also 

show that common vitamins and antioxidants have unpredictable concentrations 

across processing methods and cultivars, highlighting that in the future this work 

might allow us manipulate our food metabolites to have maximum impact on the 

host. 
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Chapter I 

Introduction to the Human Microbiome 

 

In this section I provide an introduction the human microbiome and the field 

of microbial ecology. Rapidly developing sequencing methods and analytical 

techniques are enhancing our ability to understand the human microbiome, and, 

indeed, how we define the microbiome and its constituents. This section highlights 

recent research that expands our ability to understand the human microbiome on 

different spatial and temporal scales, including daily timeseries datasets spanning 

months. Furthermore, emerging concepts related to defining operational taxonomic 

units, diversity indices, core versus transient microbiomes, and the possibility of 

enterotypes are discussed. The following text is modified from my reviews of the 

subject [1, 2]. 

 

The Human Microbiome 

The human microbiota consists of the 10-100 trillion symbiotic microbial cells 

harbored by each person, primarily bacteria in the gut; the human microbiome 

consists of the genes these cells harbor[3]. Microbiome projects worldwide have been 

launched with the goal of understanding the roles that these symbionts play and 

their impacts on human health[4, 5]. Just as the question, “what is it to be 

human?”, has troubled humans from the beginning of recorded history, the 

question, “what is the human microbiome?” has troubled researchers since the term 
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was coined by Joshua Lederberg in 2001[6]. Specifying the definition of the human 

microbiome has been complicated by confusion about terminology: for example, 

“microbiota” (the microbial taxa associated with humans) and “microbiome” (the 

catalog of these microbes and their genes) are often used interchangeably. In 

addition, the term “metagenomics” originally referred to shotgun characterization of 

total DNA, although now it is increasingly being applied to studies of marker genes 

such as the 16S rRNA gene. More fundamentally, however, new findings are 

leading us to question the concepts that are central to establishing the definition of 

the human microbiome, such as the stability of an individual’s microbiome, the 

definition of the OTUs (Operational Taxonomic Units) that make up the microbiota, 

and whether a person has one microbiome or many. In this review, we cover 

progress towards defining the human microbiome in these different respects. 

Studies of the diversity of the human microbiome started with Antonie van 

Leewenhoek, who, as early as the 1680s, had compared his oral and fecal 

microbiota. He noted the striking differences in microbes between these two 

habitats and also between samples from individuals in states of health and disease 

in both of these sites[7, 8]. Thus, studies of the profound differences in microbes at 

different body sites, and between health and disease, are as old as microbiology 

itself. What is new today is not the ability to observe these obvious differences, but 

rather the ability to use powerful molecular techniques to gain insight into why 

these differences exist, and to understand how we can affect transformations from 

one state to another. 
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Culture-independent methods for characterizing the microbiota, together 

with a molecular phylogenetic approach to organizing life’s diversity, provided a 

fundamental breakthrough in allowing researchers to compare microbial 

communities across environments within a unified phylogenetic context (reviewed 

in [9]). Although host-associated microbes are presumably acquired from the 

environment, the composition of the mammalian microbiota, especially in the gut, is 

surprisingly different from free-living microbial communities[10]. In fact, an 

analysis of bacterial diversity from free-living communities in terrestrial, marine, 

and freshwater environments as well as communities associated with animals 

suggests that the vertebrate gut is an extreme environment[10]. In contrast, 

bacterial communities from environments typically considered extreme, such as 

acidic hot springs and hydrothermal vents, are similar to communities in many 

other environments[11]. This suggests that coevolution between vertebrates and 

their microbial consortia over hundreds of millions of years has selected for a 

specialized community of microbes that thrive in the gut’s warm, eutrophic, and 

stable environment[10]. In the human gut and across human-associated habitats, 

bacteria comprise the bulk of the biomass and diversity, though archaea, 

eukaryotes, and viruses are also present in smaller numbers and should not be 

neglected[12, 13].  

Interestingly, estimates of the human gene catalog and the diversity of the 

human genome pale in comparison to estimates of the diversity of the microbiome. 

For example, the Meta-HIT consortium reported a gene catalog of 3.3 million non-
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redundant genes in the human gut microbiome alone[5], as compared to the ~22,000 

genes present in the entire human genome[14]. Similarly, the diversity among the 

microbiome of individuals is immense compared to genomic variation: individual 

humans are about 99.9% identical to one another in terms of their host genome[15], 

but can be 80-90% different from one another in terms of the microbiome of their 

hand[16] or gut[17]. These findings suggest that employing the variation contained 

within the microbiome will be much more fruitful in personalized medicine, the use 

of an individual patient’s genetic data to inform healthcare decisions, than 

approaches that target the relatively constant host genome. 

 Many fundamental questions about the human microbiome were difficult or 

impossible to address until recently. Some questions, such as the perennially 

popular “how many species live in a given body site?”, are still hard to answer, due 

to problems with definitions of bacterial species and with the rate of sequencing 

error. Other questions, such as “how does the diversity within a person over time 

compare to the diversity between people?”, or “how does the diversity between sites 

on the same person’s body compare to the diversity between different people at the 

same site?”, or “is there a core set of microbial species that we all share?”, can now 

be answered conclusively. In the next section, we discuss some of the tools that have 

allowed these long-standing questions to be answered. 

 

Tools for Microbial Community Analysis 

The drastic reduction in sequencing costs experienced over the past few years 
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has made it possible to identify specific microbial taxa found within the human gut 

that are difficult or impossible to culture. Researchers are now able to generate 

millions of sequences per sample in order to assess differences in microbial 

communities between body sites and individuals. Our increased sequencing power 

has required the development of equally powerful computational tools to handle the 

burgeoning amount of sequence data produced by modern technologies[18].  There 

are several pipelines for analysis of microbial community data such as mothur[19], 

w.A.T.E.R.S[20], the RDP pyroseqeuncing tools[21],  and QIIME (pronounced 

“chime”)[22].  QIIME is a free, open-source platform for the analysis of high-

throughput sequencing data that enables users to import raw sequence data and 

readily produce measures of inter- and intra-sample diversity. Consistency in the 

identification of operational taxonomic units (OTUs) and establishing agreed-upon 

measures of diversity within and between samples are crucial for the comparison of 

results across studies, although the concept of OTU is increasingly problematic as 

sequence data accumulate and explicitly phylogenetic approaches gain in 

popularity. 

Beta diversity refers to the measurement of the degree of difference in 

community membership or structure between two samples. A recent review of 

taxon-based measurements of beta diversity found that some metrics, including 

Canberra and Gower distances, have increased power for discriminating clusters, 

while other metrics, such as chi-squared and Pearson correlation distances, are 

more appropriate for elucidating the effects of environmental gradients on 
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communities[23]. A robust method for comparing the differences between microbial 

communities is UniFrac, which measures the proportion of shared branch lengths 

on a phylogenetic tree between samples[24]. Highly similar microbial communities 

result in UniFrac scores near 0, while two completely independent communities 

that do not share any branch length (i.e. they have a different evolutionary history) 

would result in a UniFrac score of 1. Principal coordinates analysis (PCoA) can then 

visualize the Unifrac distances between samples in two-dimensional or three-

dimensional space, allowing for the clustering of similar communities or separation 

of distinct communities to be easily distinguished visually.  

UniFrac as a measure of beta diversity, coupled to PCoA, has the ability to 

distinguish differences between communities utilizing as little as 10 sequences per 

sample[25]. It is important to recognize that increased sequencing depth is not 

always necessary to recover biologically meaningful results when those results are 

obvious. Thus, by choosing diversity measurements that are appropriate for a study 

design, researchers utilizing modern sequencing methods are able to characterize 

differences between samples at relatively low sequence coverage. This enables 

researchers to assess fine-grained spatial and temporal patterns by characterizing 

hundreds to thousands of samples, such as timeseries across multiple patients or 

environments. The functionality of UniFrac, as well as a multitude of diversity 

measurements are available in QIIME and can be readily compared.  

In general, pipelines for analyzing 16S rRNA and shotgun metagenomic data 

have separate workflows. Some initial steps, such as demultiplexing (removing 
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barcodes from and separating pooled samples) and quality filtering, are common to 

both pipelines. However, for 16S rRNA data, sequences must be grouped into OTUs, 

chimeric sequences generated by incomplete template extension must be removed, 

and phylogenetic trees must be constructed. In contrast, in the metagenomic 

pipeline, sequences must be assigned to functions as well as to taxonomy (either as 

whole reads or after assembly). Once taxon or gene function tables are constructed, 

the pipelines begin to converge, at least conceptually: the interest is then in 1) the 

composition of each sample, 2) finding the taxa or functions that discriminate 

among groups of samples (e.g. according to clinical parameters), and 3) in asking 

whether the samples cluster according to any measured clinical states (or according 

to time). One exciting emerging direction is comparing metagenomic and 16S rRNA 

clustering directly using a technique called Procrustes analysis that allows the 

PCoA plots to be combined[26]. Another powerful tool is the use of machine learning 

and statistical techniques to build predictive models of taxa[27] or functions[28] 

that discriminate between groups of samples.  

A unique advantage of QIIME relative to other pipelines is its ability to 

exploit “sample metadata”, e.g. clinical information about subjects, to produce 

visualizations that make the main patterns in the data immediately apparent. Of 

particular interest, QIIME supports the MIMARKS (Minimum Information about a 

MARKer Sequence) standard[29] developed by the Genomic Standards 

Consortium[30], which is increasingly popular with other tools for microbial and 

community analysis such as MG-RAST[31], and has been adopted by the INSDC 
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(International Nucleotide Sequence Database Consortium, which includes 

GenBank, EBI, and DDBJ) as the standard for metadata.  

With these tools in hand, basic patterns of similarities and differences in the 

microbiota are now routine. The key challenge now is to extend analyses to include 

longitudinal studies and to understand the role of specific host and environmental 

factors in the development and maintenance of the microbiome. 

 

Dynamic Interactions Between Human Microbes and the Environment 

The gastrointestinal (GI) tract of a human infant provides a brand new 

environment for microbial colonization[32]. Indeed, the microbiota that an infant 

begins to acquire depends strongly on mode of delivery[33]. Twenty minutes after 

birth, the microbiota of vaginally delivered infants resembles the microbiota of their 

mother’s vagina, while infants delivered via Cesarean section harbor microbial 

communities typically found on human skin[34]. The acquisition of microbiota 

continues over the first few years of life, as an infant’s GI tract microbiome begins 

to resemble that of an adult as early as 1 year of life[35]. In one case-study following 

an infant’s microbiota over the first 2.5 years of life, phylogenetic diversity increases 

significantly and linearly with time[36]. Additionally, significant changes in gut 

microbiota composition were apparent at five time points; starting a diet of breast 

milk, development of fever at day 92, introduction of rice cereal at day 134, 

introduction of formula and table foods at day 161, and antibiotic treatment and 

adult diet at day 371[36]. Interestingly, each dietary change was accompanied by 
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changes in gut microbiota and the enrichment of corresponding genes. For example, 

as the infant began to receive a full adult diet, genes in the microbiome associated 

with vitamin biosynthesis and polysaccharide digestion became enriched[36].  

The interaction between the human microbiota and the environment is 

dynamic, with human microbes flowing freely onto the surfaces we interact with 

everyday. Fierer et al. showed that human fingertips can transfer signature 

communities of microbes onto keyboards and these communities strongly 

differentiate individuals [37]. PCoA plots showed that it was possible to determine 

which fingers were typing on which keys, and which individuals were using which 

keyboards: it was even possible to link a person’s hand to the computer mouse they 

use with up to 95% accuracy when compared to a database of other hands[37]. 

Overall, this study showed that microbial communities are constantly being 

transferred between surfaces, and that a dynamic interaction exists between 

environmental microbiota and different human body sites.  

 

Interpersonal Microbial Diversity 

Another interesting question that we are just beginning to answer is how 

stable the microbiome within an individual is over time. By defining what 

constitutes normal temporal variation in an individual over time, we will be better 

able to quantify and understand changes in microbial communities that result from 

dietary and pharmaceutical interventions. In the longest timeseries study to date, 

Caporaso et al. sampled two individual’s microbial communities in the gut, oral 
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cavity, and left and right palms over 396 time points spanning 15 months[38]. 

Communities at different body sites were readily distinguishable from one another 

using 3-D PCoA plots over a one year time span, even though the community 

structure within a given site was highly variable[38]. The level of diversity is also 

different between body sites, with the mouth and gut harboring the most diverse 

communities[39]. Taken together, these studies show that an individual’s 

microbiota represents a highly variable and compartmentalized ecosystem.  

Overall, it has yet to be conclusively proven that individuals, or even body 

sites, harbor a “core” set of specific bacterial taxa. For example, the Meta-HIT 

consortium defined a “core” set of lineages as those that were present in half of the 

subjects studied, although essentially no genes were present in all subjects 

studied[5]. Of course, it is important to recognize that sampling depth may be 

critical for distinguishing taxa that are absent from those that are merely very rare; 

the dynamic range of microbial abundance is also quite large, and even within the 

Meta-HIT “core” genes, 2000-fold ranges of abundance were not uncommon. Proving 

that a taxon is completely absent in the gut is not possible with these types of 

studies, so core calculations should always carry with them a caveat about 

sequencing depth. Another factor to consider when defining diversity and a core is 

that methodological artifacts can greatly increase the apparent numbers of OTUs in 

a sample (and hence reduce the apparent fraction that is shared). Both sequencing 

error[40, 41] and issues related to alignment, especially multiple sequence 

alignment[42-45], can inflate the number of OTUs immensely. It is important to 
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ensure that the same methodological procedures were used when performing 

estimates of the core in terms of the fraction of individuals the core must be 

represented in, the minimum abundance, and the procedure for deciding which 

sequences count as “the same”. Finally, there is a key question about whether 

variation around a core is structured so that humans harbor only a few general 

types of microbiota profiles in a given body site: this is well established for the 

vagina[46] but more controversial in the gut[47]. In general, extreme caution must 

be applied when performing clustering procedures, as many will break up 

continuous variation into clusters where none exist[23]. Robust model selection 

procedures that incorporate the possibility that only continuous variation, not 

discrete clusters, exist remain to be developed within the context of microbial 

community analysis. 

There is increasing evidence that individuals actually share a “core 

microbiome” rather than “core microbiota”. In a study of monozygotic and dizygotic 

twin pairs concordant for obesity or leanness, a subset of identifiable microbial 

genes, but not species, were shared between all individuals[17]. Remarkably, vastly 

different sets of microbial species yielded very similar functional KEGG pathways. 

However, deviations from this core microbiome were apparent in obese subjects, 

suggesting that it will be important to utilize metagenomic data in addition to 

determining microbial community composition with 16S marker gene studies when 

assessing differences between disease states. Understanding whether this principle 

holds true for other body sites will be fascinating; cross-biome metagenomic 
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comparisons have been exceedingly rare to date[48, 49]. 

 

The Gut Microbiome Plays an Important Role in Digestion and Nutrition 

The evidence is mounting for the inextricable link between a host’s 

microbiota, digestion, and metabolism. In an analysis of humans and 59 additional 

mammalian species, 16S rRNA sequences clustered together carnivores, omnivores, 

and herbivores in principal coordinate spacing, showing that community structures 

differ depending on diets[50]. Dietary changes in mice can also lead to significant 

changes in bacterial metabolism, especially small chain fatty acids and amino acids, 

in as little as one week[51], and can lead to large changes after only one day[52]. 

Importantly, the genetic diversity found within our gut microbiota allows us to 

digest compounds via metabolic pathways not explicitly coded for in the mammalian 

genome, greatly increasing our ability to extract energy from our diverse diets[53, 

54].  

Gut microbiota also seem to play an important role in obesity. Germ-free 

mice that receive a transplant of gut microbiota from conventional mice have an 

increase in adiposity without increasing food intake due to increased energy 

extraction from the diet and increased energy deposition into host adipocytes[55]. 

The two major microbial divisions, Firmicutes and Bacteriodetes, show different 

abundances depending on phenotype. Decreased Bacteriodetes and increased 

Firmicutes have been found in genetically obese mice (ob/ob) when compared to 

their lean counterparts[56], and the obesity phenotype can even be transferred to a 
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germ-free but genetically wild-type mouse by way of the microbiota, and the 

phenotype is due to energy balance: bomb calorimetry of the fecal pellets reveal that 

the ob/ob mice extract more energy from their diet, and leave less behind in the 

feces[53]. Fascinatingly, the same effects hold true for another mouse model, the 

TLR5 knockout mice, which also become obese in some mouse facilities (but develop 

colitis in others, presumably due to differences in the background microbiota). The 

TLR5 knockout mice also produce a transmissible obesity phenotype, but no 

difference in the efficiency of energy harvest is involved. Instead, the altered 

microbiota somehow makes the mice hungrier, and their microbe-induced obesity 

can be cured by restricting the amount of food in their cages to that consumed by 

wild-type mice, as well as by antibiotics[57]. The correlation between microbes and 

obesity is perhaps best illustrated through weight loss. As different groups of 

human subjects were placed on either a fat-restricted or carbohydrate-restricted 

diet, their abundance of Bacteriodetes increased as their body weight decreased, 

transitioning from the signature ‘obese’ microbial community to a ‘lean’ 

community[58]. Thus, the modulation of a patient’s microbiota might be a 

therapeutic option for promoting weight loss in obese patients or promoting weight 

gain in underweight children.  

Surprisingly, the microbes that we ingest with our food might be providing 

our individual microbiome with new genes to digest new foods. Hehemann et al. 

found that a new class of glycoside hydrolases used to digest porphyran, a 

polysaccharide common in red algae, was also found in human stool samples as a 
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gene in Bacteriodes plebeius.  A closer examination of the stool metadata revealed 

that the stool samples containing the porphyran-digesting gene were only present in 

Japanese individuals; the gene was not found in the gut microbiome of the 

individuals of the United States. Why would a marine gene be found in human gut? 

The authors concluded that the seaweed common to the Japanese, but not 

American, diet contained the microorganism which transferred the genes to gut 

microbiome[59]. Thus, microbes have the ability to greatly increase the number of 

metabolic tools of the human gut, allowing us to digest an array of substrates.  

 

Plasticity of the Human Gut 

Given the relative stability of the human gut microbiota, one key question is 

whether it is sufficiently plastic to allow well-defined interventions to improve 

health.  As described above, the gut microbiota is fairly stable over time once 

established, at least compared to the differences between individuals. However, a 

number of studies demonstrate that external forces can alter the community of 

microbes located in the GI tract and antibiotics are an important example.  

Antibiotics are mainly used to combat pathogenic bacterial species that 

reside within or have invaded a host, however the current generation of antibiotics 

are broad spectrum and target broad swaths of the normal microbiota as well. Thus, 

antibiotics significantly affect the host’s innate gut microbiota. Three to four days 

after treatment with the broad-spectrum antibiotic ciprofloxacin the gut microbiota 

experience a decrease in taxonomic richness, diversity, and evenness[60, 61]. The 
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large magnitude of changes in the gut microbiota demonstrated significant 

interpersonal variability. While the gut microbiota began to resemble it’s pre-

treatment state a week after treatment, differences between individuals were seen 

with regards to how closely the post-treatment community resembled the pre-

treatment community, and some taxa failed to return to the community[61, 62]. 

Indeed, the reestablishment of some species can be affected for up to four years 

following antibiotic treatment[63]. Yet the overall recovery of the gut microbiota 

following antibiotic treatments suggests that there are factors within the 

community, biotic or abiotic, than promote community resilience, although these 

have yet to be elucidated.  

Other antibiotics also tend to produce results that differ substantially between 

subjects[64, 65] and even body sites[66]. Because larger populations have not yet 

been studied, in part due to ethical issues with administration of antibiotics to 

healthy human subjects, the basis for these underlying differences has not yet been 

elucidated. Understanding the factors that determine the ability of a microbiota to 

resist and recover from perturbation, as well as understanding the factors that 

determine its current state, will be key to developing tools to assist in microbiome 

manipulation. For example, counter-intuitively, in rats the administration of 

antibiotics prior to cecal transplant actually reduces the chance that new microbes 

will establish[67].  

 One fascinating hint that the microbiota may be more plastic than imagined is 

the recent success of treatment of persistent Clostridum difficile infections via stool 
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transplant, which has been successful in a number of studies[68-74], and in general 

the depauperate gut community produced during the C. difficile infection is 

replaced by the donor community[69, 75]. The success of this technique is 

remarkable, especially considering how little is known about the best community to 

supply. For example, is it better to receive the fecal community of a close relative or 

of a cohabiting individual, or perhaps to bank one’s own stool before beginning 

antibiotic treatment so that it can be restored later? Is the same stool good for 

everyone, or do the vast differences in the microbiota imply that each person’s 

microbes are specifically adapted relative to those they might receive from a donor? 

As with blood types, are there “universal donors” and “universal recipients”? These 

and many other questions remain to be answered. 

 

Conclusion and Prospectus 

 As in every year since the initial sequencing of DNA, this year has resulted in 

an unprecedented growth in the amount of sequence data collected at an 

unprecedentedly low cost.  Increasingly powerful tools used to extract meaningful 

patterns from this wealth of data have been developed or updated as well. Emerging 

technologies such as stool transplantation, 16S rRNA and whole-genome sequencing 

on the Illumina platform, the ability to transplant human microbial communities 

into mice with high efficiency even from frozen samples[52], and the creation of 

personalized culture collections[76] raises the prospect of a future in which 

therapies for individual humans are piloted in a battery of mice that are subjected 
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to different treatments, and where leave-one-out experiments that reveal the effects 

of the deletion of individual species[76] or individual genes from within a 

species[77] allow insight into mechanism. Although the tools we have available are 

still imperfect (for example, the limited read length of today’s high-throughput 

sequencing technologies limit the ability to detect bacterial species and strains, and 

analyses of viruses and eukaryotes are still very much an emerging frontier), the 

prospects for developing a mechanistic understanding of the factors that underlie 

the plasticity of the microbiome and then for manipulating the microbiome to 

improve health seem increasingly bright. 
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Chapter II 

Intravaginal Medicated Rings and the Microbiome 

 

 This published chapter explores how alterations in the microbiome must be 

assessed when evaluating the efficacy of a medical device. Specifically, this chapter 

examines if the presence of an intravaginal ring for the localized delivery of 

acyclovir in women with herpes simplex virus alters their vaginal microbiome [78]. 

 

Introduction 

In 2003, an estimated 536 million people worldwide aged 15-49 were living 

with herpes simplex virus type 2 (HSV-2) with an annual incidence of 23.6 million 

[79]. Globally, HSV-2 is the most frequent cause of genital ulcer disease [80] and is 

associated with a three-fold increased risk for HIV-1 acquisition in women [81]. 

These epidemiological findings suggest that interventions against HSV-2 may have 

a key role in HIV prevention worldwide [82]. Daily oral valacyclovir (VACV), the 5'-

L-valyl ester prodrug of the antiherpetic drug acyclovir (ACV), has been shown to 

prevent or delay genital recurrences by 85% [83] and to reduce the risk of 

transmission among HSV-2-discordant couples by 48% [80].  

Topical application of ACV to the vagina is safe and has provided some 

clinical benefit for the treatment of primary or recurrent lesions by shortening their 

duration [84, 85]. We hypothesize that sustained delivery of ACV to the vaginal 

tract can provide an alternative approach to oral suppressive therapy and may 
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protect against sexual HSV acquisition. Delivering ACV from intravaginal rings 

(IVRs) holds potential benefits of improved adherence and low systemic exposure 

while maintaining steady-state levels in the vaginal tract. We previously developed 

a pod-IVR technology [86] that can deliver multiple compounds independently in a 

controlled, sustained fashion with pseudo-zero order kinetics [87-89]. The safety and 

pharmacokinetics of pod-IVRs delivering ACV in combination with the nucleoside 

reverse transcriptase inhibitor (NRTI) tenofovir (TFV) were evaluated successfully 

in the rabbit and sheep models [88]. We designed human silicone IVRs to release 

ACV and evaluated safety, pharmacokinetic, and surrogate efficacy in women with 

recurrent genital HSV, referenced herein as “genital herpes positive” (GHP), who 

switched their daily oral VACV suppression to the ACV IVR for 7 and 14 days [90]. 

This first-in-human study demonstrated that an IVR could safely deliver ACV and 

achieve comparable local mucosal levels to oral therapy without systemic 

absorption. 

The vaginal microbial community has long been considered an important 

defense mechanism against infection [91-93]. Studies that sampled women across 

different ethnicities including Caucasian, African American, Hispanic, and Asian 

found that most vaginal communities could be defined by the presence of a 

dominating Lactobacillus species of L. iners, L. crispatus, L. gasseri, or L. jensenii 

[46, 94]. The other communities were not dominated by a Lactobacillus species, but 

still contained a dominant community of lactic-acid producing microbes [46]. The 

vaginal communities of Asian and Caucasian women were most often dominated by 
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lactic-acid producing Lactobacillus than Hispanic and African American women, 

possibly causing the lower vaginal pH levels found in Asian and Caucasian women. 

Bacterial vaginosis (BV) results in a significant community shift from healthy 

communities and negative health consequences [46]. Twenty nine percent of 

species-level OTUs were shared between healthy and BV-positive women, as BV-

positive communities were characterized by decreases in Lactobacillus and 

increases in Gardnerella, Atopobium, Megasphaera, Eggerthella, Aerococcus, 

Leptotrichia/Sneathia, Prevotella and Papillibacter [95]. 

In studies on IVRs delivering TFV in pig-tailed macaques, we used confocal 

laser scanning microscopy, fluorescence in situ hybridization, and scanning electron 

microscopy to investigate IVR colonization by polymicrobial biofilms [96]. Large 

areas of the ring surfaces were covered with monolayers of epithelial cells that 

supported two biofilm phenotypes, both with a broad diversity of associated 

bacterial cells. Similar results were obtained in our clinical evaluation of IVRs 

delivering ACV in GHP women [90]. By Day 7, epithelial cell clusters had developed 

on the IVR surface, with little or no visible associated microbial growth. At Day 14, 

large areas of the ring surface were covered with a mat of epithelial cells that 

harbored the development of polymicrobial biofilms with similar morphological 

features to the biofilm phenotypes in our macaque studies. 

Our limited understanding of how the vaginal microbiome responds to topical 

delivery of antiviral candidates is a critical gap in developing these strategies for 

clinical evaluation. Here we describe the first culture-independent assessment on 
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the bacterial colonization of IVRs in women and the concomitant effect on their 

vaginal microbiomes. 

 

Materials and Methods 

Participants and study design. The participant characteristics and study 

design (Figure 2.1, Table S2.1) have been described in detail elsewhere [90]. 

Briefly, 6 HIV-negative, GHP women who were willing to change their suppressive 

oral VACV to an ACV IVR were enrolled into a pharmacokinetic and safety study. 

In order to prevent ACV washout from the vaginal tract, IVR insertion occurred 

within 24 h of oral VACV dosing, which was discontinued during the study. The 

first three participants used an ACV IVR for 7 days and had cervicovaginal lavage 

(CVL) collected prior to IVR placement; 1 and 3 days post-insertion; and at Day 7 

when the IVR was removed. The final three participants used an ACV IVR for 14 

days, and the study visits were extended to include sampling at 10 after IVR 

insertion and at Day 14 when the IVR was removed. The study design resulted in 

the collection of 30 CVL samples: 6 at IVR placement; 6 on Day 1; 6 on Day 3; 3 on 

Day 7; 3 on Day 10; 6 at IVR removal. None of the women displayed symptoms 

suggestive of active vaginal or sexually transmitted infection (STI) during the 

study. 

Sample processing and microbial DNA isolation. ACV IVRs were removed 

aseptically on Day 7 or 14. The rings were cut into sections and portions of the 

segments without pods (i.e., unmedicated), were placed in 70% ethanol in water and 
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stored at 4°C. CVL samples were placed on ice and clarified by centrifugation at 700 

× g for 10 min at 4°C. The cell pellets together with a fraction of their supernatants 

(ca. 1 mL) were stored at -80°C. Microbial DNA was isolated from a total of 36 

samples (6 IVR and 30 CVL, see Figure 2.1) according to the following methods. 

Unmedicated IVR segments were cut into small pieces using a pre-sterilized scalpel 

and DNA was extracted from these samples using the PowerSoil® DNA Isolation 

Kit (MO BIO Laboratories, Inc., USA) according to manufacturer instructions. 

Frozen CVL samples were thawed on ice to afford a viscous fluid that was 

transferred into a microfuge tube and processed using the InstaGene Matrix (Bio-

Rad Laboratories, USA) kit with the following modifications to the manufacturer 

instructions: sample volume to matrix volume ratio was 4:1 and the 56°C incubation 

time was extended to 40 minutes. Genomic DNA was isolated using two different 

methods, as the CVL samples contained inhibitors of PCR amplification that 

required a modified DNA extraction procedure. 

Genomic microbial DNA isolated from the above samples was quantified 

using the Quant-iT™ PicoGreen® dsDNA Assay Kit (Life Technologies Corporation, 

USA) according to the manufacturer’s instructions. The isolation procedures yielded 

between 9.7 and 22.5 µg (CVL, mean 15.1 µg) and between 3.3 and 35.5 µg (IVR, 

mean 14.5 µg) of high quality, PCR inhibitor-free, whole genomic DNA per vaginal 

sample.
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Figure 2.1. Study timelines and CVL sample collection points (black arrows). 
Participants used an ACV IVR from Day 0 (24 h after last dose of oral VACV) to 
Day 7 (Group A, n = 3) and Day 14 (Group B, n = 3). CVL was collected for microbial 
DNA isolation on: Group A, Days 0 (pre-dose), 1, 3, and 7 (upon IVR removal); 
Group B, Days 0 (pre-dose), 1, 3, 7, 10, and 14 (upon IVR removal). 
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DNA amplification and sequencing of 16S rRNA genes. Amplification and 

sequencing of the V4 hypervariable region of the 16S rRNA gene was performed 

using the validated, region-specific bacterial/archaeal primers 515F and 806R 

according to previously described methods [97] optimized for the Illumina MiSeq 

platform. 5'-Barcoded amplicons were generated in duplicate using Premix Ex Taq 

(TaKaRa, Japan) and a MyCycler thermal cycler (Bio-Rad Laboratories, USA). The 

PCR conditions consisted of an initial denaturing step of 94°C for 2 min, followed by 

7 cycles of 94°C for 30 s, 48°C for 30 s, and 72°C for 1 min, 28 cycles of 94°C for 30 s, 

58°C for 30 s, and 72°C for 1 min, and a final elongation step of 72°C for 10 min. 

Replicate reactions were pooled and the amplicons were separated by 

electrophoresis in 1.0% agarose gels. The amplicons were purified using QIAquick 

Gel Extraction kit (Qiagen, USA) according to manufacturer’s instructions. The 

A260:A280 absorbance ratio was acquired with a SpectraMax® Plus Absorbance 

Microplate Reader (Molecular Devices, USA) and used as an indicator of DNA 

purity. Amplicon DNA was quantified using the Quant-iT™ PicoGreen® dsDNA 

Assay Kit (Life Technologies Corporation, USA). Amplicon aliquots (100 ng) from all 

36 samples were pooled and re-purified with the UltraClean® PCR Clean-Up Kit 

(MO BIO Laboratories, Inc., USA). The purified, pooled sample contained 8.8 µg of 

DNA with an A260:A280 ratio of 1.82 and was submitted for sequencing using the 

MiSeq platform (Illumina Cambridge Ltd., United Kingdom) at the Advanced 

Genomics Facility, University of Colorado, Boulder, USA. The sequence data will be 

submitted to the European Molecular Biology Laboratory European Bioinformatics 
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Institute at the time of publication. 

Microbial community analysis. The 16S rRNA sequences obtained from the 

MiSeq platform were processed through the open source software pipeline 

Quantitative Insights Into Microbial Ecology (QIIME) version 1.7.0 [98]. Sequences 

were filtered for quality using established guidelines [99].  Quality-filtered reads 

were then demultiplexed, yielding 3,989,623 sequences total with an average length 

of 151 bases per read, and an average coverage of 110,822 sequences per sample. 

Sequences were then binned into Operational Taxonomic Units (OTUs) based on 

97% identity using UCLUST [100] against the Greengenes reference database [101] 

May 2013 release. The representative sequences for each OTU were then compared 

against the Greengenes database for taxonomy assignment. Each sample’s 

sequences was rarefied to a depth of 28,000 sequences per sample to reduce the 

effect of sequencing depth, and used for downstream analysis. This level of 

rarefaction was chosen to minimize the number of samples dropped from 

downstream analysis but maximize the number of sequences allowed per sample. 

Following rarefaction, 1 sample (Subject60.CVL14.671842) was omitted from 

further analysis due to insufficient coverage, yielding 35 samples and 581 OTUs in 

980,000 sequences. 

A Poisson embedding algorithm was employed to determine a 95% confidence 

interval for finding a new OTU [102] and, consequently, to calculate the proportion 

of the overall community diversity captured by sequencing. The overall highest 

probability for discovering new OTUs in our samples was 1.295%, meaning that our 
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sequencing had revealed 98.705% of the overall community diversity (Table S2.2). 

The β diversity of samples was measured using the weighted UniFrac metric [103], 

and the dimensionality reduction technique of Principal Coordinates Analysis 

(PCoA) was used to visualize the community differences. The statistical cutoff of P = 

0.05 after False Discovery Rate (FDR) correction for multiple comparisons was used 

to define statistical significance when testing if taxa were significantly different 

between groups. 

 

Results 

Sample size considerations. Demonstration of safety is a central component in 

the development of topical microbicides for the prevention of sexual HIV 

transmission and typically has involved evaluating general toxicology and 

irritation/inflammation in one or more animal species [104] along with a 

rudimentary (culture-dependent) assessment of the vaginal microflora in macaques 

[105, 106]. The application of a culture-independent analysis to determining the 

effect of the microbicide IVR on the vaginal microbiota therefore was performed 

during early safety evaluation of this novel device, using six subjects in an 

exploratory clinical trial. Clinical trial failures with Nonoxynol-9 (N-9), Carraguard, 

C31G (Savvy), and cellulose sulfate (CS) underscore the urgent need for 

comprehensive, early microbicide efficacy and safety assessment prior to large, 

Phase II/III clinical trials [107]. This sample size was able to capture the nearly all 

of the beta diversity of the vaginal community found in the mid-vagina samples 
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obtained from the HMP (Figure S2.3) using the weighted UniFrac distance metric, 

as 20 samples at 1000 sequences per sample explained more than 99.5% of total 

beta diversity.  Given the novelty of this report, there are few relevant precedents 

that can be used to make group size comparisons with. Ravel et al. used 16S rRNA 

gene pyrosequencing to characterize the vaginal microbiota in samples from 35 

healthy women in a two-week study of twice-daily application of 1 of 3 vaginal gel 

formulations: placebo (10 subjects), 6% CS (13 subjects), and 4% N-9 (12 subjects) 

[108]. Despite the small cohort sizes, an inter-group comparison was possible and 

found that treatment with active microbicides shifted the microbiota toward a 

community type dominated by strict anaerobes and lacking significant numbers of 

Lactobacillus spp. These results support the cohort size used here for inter-group 

comparison, requiring less statistical power. 

Classification of vaginal microbiota. Ravel et al. have shown that the vaginal 

bacterial communities of 396 asymptomatic women could be broadly classified into 5 

major community state types (CSTs) [109]. Two of the women in the current study 

had vaginal microbiota dominated by Lactobacillus iners, one dominated by L. 

helveticus, and the remaining 3 woman had a more diverse vaginal community, 

consisting mainly of Lactobacillus, Proteobacteria, the Bacteroidetes genus 

Prevotella, and the Actinobacteria Gardnerella vaginalis in varying proportions 

(Figure S2.1 and Figure 2.2). The vaginal bacterial communities of these 5 

women are consistent with 2 of the 5 proposed major CSTs (Figure S2.1). One of 

the study participants, however, had a vaginal community that was dominated 
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(91% relative abundance) by Lactobacillus helveticus, a community structure that 

does not match with any of the CSTs. Furthermore, our analysis suggests that L. 

crispatus was not present in any of the samples although this species makes up a 

dominant member of one of the CSTs [109]. Larger cohorts of GHP women will be 

needed in future analyses to determine if these taxon differences are a consequence 

of GHP status, VACV suppressive therapy, or merely reflect the small sample size. 

The vaginal bacterial communities of the 6 study participants cluster primarily by 

individual (Figure 2.2), an expected result given the large interpersonal variation 

observed across body sites [110]. 
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Figure 2.2. Comparison of the vaginal bacterial communities among GHP 
women. Weighted UniFrac distances plotted in PCoA space of vaginal microbial 
communities from the 6 GHP study participants, each represented by a distinct 
primary color, reveals clustering by individual. The labeled purple spheres 
represent taxa, and the proximity of colored participant samples to the taxa spheres 
is indicative of increased membership of that taxon in a given community. The 
larger the grey taxon sphere, the greater that taxon’s overall abundance. Three 
patients had communities dominated by Lactobacillus iners , one patient was 
dominated by L. helveticus, and two other patients had communities with a shared 
proportion of Atopobium vaginae and Gardnerella vaginalis in addition to 
Lactobacillus.   
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Duration of GHP status is correlated with an altered vaginal microbiome. A 

longitudinal analysis was conducted to investigate associations between the 

abundance of bacterial taxa and the duration of GHP status (median: 4.0 years, 2-8 

year range) in the 6 study participants (Table S2.1)A significant correlation was 

found between the abundance of Pseudomonas spp. (correlation ~ 0.45, P ~ 0.05) 

and Gardnerella vaginalis (correlation ~ 0.68, P ~ 3.6×10-4) with the duration of 

GHP status in these samples. These results are in agreement with previous reports 

that identified an association between GHP women and an altered vaginal 

microbiota [111, 112]. We observed a significant difference in the α diversity in 

vaginal samples from women with duration of GHP status of 2 and 7 years (Figure 

2.3) (4.2× more OTUs, P <<0.001; phylogenetic diversity metric PD_whole_tree 2.2x 

higher, P << 0.001). The vaginal bacterial communities of healthy women commonly 

have a low α diversity and are dominated by a smaller number of Lactobacillus spp. 

[109]. The altered vaginal community structure of GHP women, shown here to be 

correlated with duration of GHP status, is known to be associated with increased 

incidence [111, 112] and recalcitrance [113] of bacterial vaginosis (BV), as well as an 

enhanced susceptibility to an overlapping spectrum of other bacterial STIs [111]. An 

correlation also was identified between the number of genital HSV recurrences per 

year and a group of 6 bacterial taxa, consisting of members of: family 

Veillonellaceae (1 OTU, P = 2.74×10-16), genus Dialister (1, P = 8.29×10-13), genus 

Prevotella (3 OTUs, P-values 8.81×10-12, 5.89×10-4, and 4.99×10-4), and genus 

Anaerococcus (1 OTU, P = 7.59×10-4). 
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Figure 2.3. Comparison of α-diversity in vaginal microbiota based on 
length of GHP status. Subject with recurrent GHP status of 7 years (blue trace) 
has significantly higher α diversity, as measured with the phylogenetic diversity 
metric PD_whole_tree, compared to a subject with GHP status of 2 years (red trace). 
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Microbial biofilms developing on the IVRs consist of communities reflective of those 

in the vaginal tract. At Days 7 and 14, the IVR surface was covered with microbial 

biofilms at different stages of development [90]. The structure of these sessile 

communities was found to be representative of the corresponding communities 

established on the hosts’ vaginal epithelium. A weighted UniFrac β diversity plot 

showed an overlap of vaginal (CVL) and IVR samples, and taxonomic comparison 

revealed that no taxa were significantly different between these data sets across all 

time points (Figure 2.4). Comparing the microbial communities developing on the 

IVRs (Day 7 or Day 14) with the corresponding vaginal microbiota in samples on the 

day of IVR removal did not identify any taxa that were different across all 

participants, suggesting that the IVR biofilms were not systematically enriched 

with any members of the vaginal microbiome. There were no significant taxonomic 

differences in the microbial communities between the IVR biofilms that were 

removed on Day 7 compared with those removed on Day 14, nor was the α diversity 

of the IVR samples different from the vaginal (CVL) samples (Figure S2.2).
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Figure 2.4. Temporal dynamics of the vaginal microbial communities. The 
β-diversity for CVL and IVR samples from the 6 subjects is plotted against time. 
Each colored tracing line, and correspondingly colored points, represents one subject 
who had the IVR removed either at Day 7 or Day 14 (see Fig. 1). The blue arrow 
points to CVL samples taken at the time of IVR insertion. The black arrows 
represent the CVL samples taken at the time of IVR removal (red arrows). The 
patient represented by the orange line and spheres did not have a CVL sample that 
met minimum 16S processing standards and was not included in the plot. 
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IVRs do not significantly alter the hosts’ vaginal communities over time. Comparing 

the vaginal (CVL) and IVR samples on Days 7 and 14 assessed the effect of IVR 

administration length on community composition. Vaginal samples from 

participants who received the IVR for 14 days contained significantly fewer 

members from the phyla Proteobacteria and Firmicutes and from the genera 

Bacillus and Sphingomonas compared to participants who received the IVR for 7 

days (relative abundance 3.58×10-05 versus 0, P = 9.91×10-07; relative abundance 

3.58×10-05 versus 0, P = 4.96×10-07). Additionally, there were some subject-specific 

differences in the abundance of select taxa when comparing the IVR biofilm 

microbiota to the corresponding vaginal community, but no taxa were significantly 

enriched in the IVR biofilms across all samples (Table 2.1). The observed 

differences in vaginal microbiota were reflective of the large interpersonal 

differences, not driven by IVR usage.   
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  Average relative abundance (%) 

Taxon P-Value Healthy women, 
HMP [117] 

GHP women, 
this study 
 

Lactobacillus 
helveticus 

9.01×10-13 0.2 13.0 

Gardnerella 
vaginalis 

2.89×10-9 2.1 12.0 

L. iners 2.00×10-6 18.9 48.6 
L. crispatus 1.19×10-5 0.1 0.0 
L. reuteri 6.56×10-3 0.7 0.0 
L. intestinalis  19.7×10-3 2.0 0.0 
Table 2.1. Summary of taxa differences between vaginal communities of 
healthy women from the HMP and women with a history of recurrent 
genital herpes. Each sample was rarefied to 2,000 sequences per sample. ANOVA 
was used to calculate if the relative abundance of any taxa were significantly 
different between the two groups. The P-values reported above are after FDR 
correction. 
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Studies on the dynamics of the human vaginal microbiota have shown that some 

communities can shift over short time periods while others remain relatively stable 

[114, 115]. In order to determine the effect of the IVR’s presence on the temporal 

dynamics of the vaginal communities, the β diversity in each participant’s IVR and 

vaginal samples was plotted over time (Figure 2.4). The CVL and IVR samples 

were connected by a solid line through PCoA space, with the first point representing 

the starting CVL microbial community prior to IVR administration, and the final 

point representing the IVR microbial community. Some of these microbial 

communities remained stable over the study period, while other changed markedly 

over time.  However, no taxa were significantly different in the vaginal samples 

collected prior to IVR administration compared with the corresponding samples 

collected when the IVR was removed, suggesting that the presence of the IVR is not 

selecting for any specific taxa across all subjects. These findings will need to be 

confirmed in future studies using larger cohorts to detect more subtle differences.  

 

Discussion 

Culture-based evaluation of IVR effects on the vaginal microbiota has played 

an important role in early clinical assessment of candidate products for 40 years. In 

1973, Henzl et al. evaluated early reservoir-IVRs delivering the hormonal 

contraceptive chlormadinone acetate in 12 women over 3 consecutive menstrual 

cycles [116]. The microbiologic examinations of the vaginal secretions consisted of 

direct smears stained with Gram's stain and a special stain for Trichomonas 
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vaginalis. In addition, the secretions were evaluated by cultivation on broad-

spectrum media for aerobic and anaerobic microbes and a selective media for 

mycoses, Trichomonas vaginalis, and Neiserria spp. In the early 1980s, Population 

Council reservoir-IVRs [118] delivering the contraceptive levonorgestrel (LNG) in 

combination with estradiol (E2) were studied for contraceptive effectiveness and 

acceptability in multicentered trials involving 1,103 ring users [119]. Increased 

vaginal discharge, potentially due to alteration of the vaginal microbiome, was 

identified as the most frequently voiced complaint by users [119, 120]. This 

possibility was disproven by Schwan and colleagues in a group of 17 subjects who 

used the Population Council LNG-E2 IVR for 6 months [121]. Culture-dependent 

methods were used to characterize the aerobic and anaerobic bacteria, yeast, and 

mycoplasma/ureaplasma in vaginal secretions collected from the cervix and 

posterior fornix before and after treatment with the IVR. No significant difference 

was observed between both groups and it was concluded that alterations in the 

vaginal bacterial ecology through IVR usage was not the cause of the increased 

discharge. 

While culture-based methods have continued to be used in clinical evaluation 

of IVRs [122], the recent introduction of high-throughput, culture-independent 

molecular methods [97] has made it possible to collect hundreds of thousands of 

sequences spanning hundreds of samples. The so-called democratization of 

sequencing [123] has continued to be fueled by ever decreasing sequencing costs, 

notably on several Illumina platforms [97]. The Illumina sequencing platform 
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returns on the order of 100 million sequencing reads per flowcell and therefore 

supports unprecedented sequencing depth [124] enabling the detection of very rare 

phylotypes [125]. Deep sequencing methods allow important parameters for 

describing microbial community composition to be determined, including the species 

richness within each sample (α diversity), and the diversity shared between 

multiple environments (β diversity) [126, 127]. We have used bar-coded Illumina 

sequence datasets generated from 16S rRNA gene fragments to study the response 

of the vaginal microbiomes of GHP women to pod-IVRs medicated with ACV. This 

rigorous analysis allowed the vaginal communities developing in microbial biofilms 

on the IVR surface to be compared for the first time to the corresponding vaginal 

microbiomes. Our results suggest that rigorous, molecular analysis of the effects of 

intravaginal devices on the corresponding microbial communities shows promise for 

integration with traditional approaches in the clinical evaluation of candidate 

products. 

 

Conclusion 

Despite the small sample size (n = 6), the study supports the preliminary 

safety of the ACV pod-IVR as there were no detectable changes in the vaginal 

microbiome in response to the devices. Although microbial biofilms were readily 

detected on the IVR surface, the composition of these sessile communities was 

similar to that of the corresponding vaginal microbiome. Notably, differences were 

observed in the vaginal microbial communities in these six GHP women compared 
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to healthy women participating in the HMP. Specifically, none of the GHP women 

had a L. crispatus dominant community and the GHP group tended to have 

increased numbers of G. vaginalis and L. iners. These findings are consistent with 

other studies suggesting a link between HSV-2 and BV [111, 112]. Prospective 

longitudinal studies using molecular analyses of the vaginal microbiome are needed 

to determine if HSV-2 triggers changes in the microbiome or, conversely, if changes 

in the microbiome promote HSV-2 reactivation. The observation that microbial α 

diversity was impacted by the duration of GHP status suggests that HSV-2 may 

promote changes in the microbiome.  
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Chapter III 

Replenishing our Defensive Microbes 

 

 This published chapter introduces the importance of assessing our ancestral 

microbiome, how modern day changes in lifestyle could be altering our microbiome 

and contributing to disease states, and methods for replenishing our defensive 

microbes [128].  

 

Introduction 

The relatively recent transition of human populations from hunter-gatherer 

and agricultural societies to industrialized societies has been concurrent with a rise 

in previously absent “Western” diseases, including obesity, asthma, and 

inflammatory bowel disease. The ‘hygiene hypothesis’ is one of many hypotheses 

proposed to explain this increase. This hypothesis suggests that industrial societies 

reduce our exposure to microbes with which we have coevolved, leading to improper 

immune function and to establishment of microbial communities that differ 

substantially from those of our ancestors [129].  

Although the roles of specific pathogens have received intense scrutiny, we 

have only recently begun to understand the importance of microbes that can 

positively influence human health. The rapidly decreasing costs of DNA sequencing 

now allowing analyses of the microbes that live in and on the human body on a scale 

and with a resolution that has not previously been attainable. Large consortia, such 
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as the NIH’s Human Microbiome Project [130] and the EU’s MetaHIT [131], 

together with many other human microbiome projects on different scales worldwide, 

have given us a first impression of the diversity of the human microbiome. These 

projects allow us understand the microbes that we harbor, how these microbes 

assemble into healthy communities, and the genes involved in specific microbial 

functions. In this review, we discuss the mechanisms by which our microbes train 

our immune system to recognize and overcome pathogens, how modern societal 

practices may derail our microbiomes from their ancestral tracks, and how 

replenishing our microbiota with beneficial microbes can improve human health. 

 

Microbes Provide Health Benefits and Protection Against Pathogens 

The modern infatuation with cleanliness stems in part from the misguided 

midcentury thinking that most microbes cause disease, and that the absence of 

microbes is therefore a key component of health. Over the last twenty years, the use 

of culture-independent methods that allow us to identify the members of human-

associated microbial communities that are difficult to grow in the laboratory, 

together with epidemiological studies and studies of germ-free mice, has started to 

change this thinking.  There is now compelling evidence that the opposite is true: 

rather than reducing microbial exposure, we should balance our symbiotic microbial 

communities to protect us from pathogens and disease states. The specific features 

of the microbial communities that provide protection varies considerably, and 

depends on what is being protected against. In some cases, such as [132], a single 
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microbial species can provide protection; in others, such as [133, 134], half a dozen 

specific members are required; and yet others, such as [135, 136], require the action 

of a much larger community in aggregate. Although specific roles played by some 

important microbes have been identified,  as outlined below, the full range of 

protective effects and their causative microbial agents remains unknown. In this 

review, we focus on bacteria, but it is important to recognize that viruses, 

eukaryotes, and even archaea are also important member of the human microbiota, 

and their effects on health are also important and increasingly studied [137, 138]. 

Additional discoveries about the interplay between the host GI tract, immune 

system, and environmental microbial communities continue to accumulate at a 

rapid pace [139]. Here we focus on two of the best-established ways in which 

microbes contribute to resistance against pathogens and pathogenesis. 

 

Microbes ‘Educate’ the Immune System Through Direct Interaction, Which 

is Required for Proper Immune System Response 

The reaction of the human immune system to both constitutive and transient 

members of our microbiota requires a delicate balancing act. The immune system 

must produce enough pro-inflammatory signals to recruit, differentiate, and cause 

the proliferation of effector cells to control populations and localization, but must 

also avoid inflammatory responses that would damage the host [140]. Because both 

beneficial and harmful microbes exist, our immune system must be ‘taught’ to 

identify and respond to each microbe correctly. This education of the immune 
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system requires direct contact with the microbiota (for example, by antigen-

presenting cells and toll-like receptor signaling), and alters key components of both 

the adaptive and innate response. In the adaptive immune system, studies in germ 

free (GF) mice show that colonization of the gut is critical to the induction of 

regulatory T cell (Treg) populations [141]. These induced regulatory T cells (iTregs) 

promote gut health by balancing the pro-inflammatory response with an anti-

inflammatory one. Additionally, when microbes pierce the mucosal or epithelial 

barrier, they respond by releasing anti-inflammatory cytokines that reduce the 

intensity of the Th2 skewed response [142]. In mouse colitis models, transfer of 

naive T cells and iTregs can both ameliorate symptoms and prevent development of 

symptoms in mice that are genetically predisposed to develop colitis 

[143].  Different microbes induce different iTregs, and the community of iTregs is 

therefore influenced by historical and ongoing microbial exposure [144]. For 

example, Bacteroides fragilis induces Tregs via secretion of polysaccharide A [145]. 

This induction can ameliorate colitis symptoms, but depends on induction of the 

correct iTregs. Similarly, certain species of Clostridium induce Tregs that prevent or 

reduce colitis in mouse models [146], although the specific mechanisms by which 

they trigger induction are not well understood. Prior exposure to Clostridium 

species can also be important for the induction of Tregs in the context of Helicobacter 

pylori infection, determining the severity of infection [147]. Because the iTreg 

population is exposure-dependent, the iTreg repertoire provides a mechanism by 

which past disruption of the gut ecosystem might cause later dysbiotic or 
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pathogenic events. Shifts in the microbial population away from the iTreg repertoire 

might decrease the anti-inflammatory capacity of the gut immune system, creating 

an aggressive response that can alter gut microbial community structure and/or 

cause host tissue damage. 

Acute infection has long been known to transiently change the states of many 

components of the immune system, not just iTregs, but we are only now beginning to 

realize how nonpathogenic members of our gut microbiota alter the state of the 

immune system over longer timescales (for example, by affecting antibody and 

defensin production). GF mice without diverse microbial communities cannot 

produce normal levels of antibodies upon inoculation with pathogens [148]. 

Similarly, antibody responses to viral infection in the lung mucosa depend on 

specific commensal microbes [149]. Although the mechanisms by which these 

microbes alter the state of the immune system are not yet well understood, 

commensal microbes appear to prime the immune system outside the context of 

infectious disease. Thus the diversity of the microbiome, and the past microbiome of 

an individual, might be critical components of health.  

 

Biodiversity of Microbial Communities Plays an Important Role in 

Preventing Disease and Infection 

Ecological studies on larger scales suggest more diverse communities are in 

general more robust to invasion or disruptive events [135]. Biodiversity can also 

limit the emergence and spread of disease, in part through changes to the 
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community structure that are not possible in less complex communities [150]. On 

the smaller scale of human-associated microbial communities, diversity may play a 

similar protective role. A diverse microbiome might provide protection by many 

different mechanisms. Some of the best-supported hypotheses about diversity-

protection relationships are that diverse communities might: use resources that 

would otherwise be available to a pathogen [17], produce short chain fatty acids 

such as butyrate or other molecules that inhibit growth of pathogens [151], or 

directly modulate the immune system effector population and/or cytokine milieu 

[152, 153].  However, support for all of these hypotheses is limited, and it is not yet 

even known in general whether the protective effect of biodiversity is a community-

level effect, or whether high levels of biodiversity simply increase the probability 

that a particular species that is protective against the condition of interest is 

included in the community. Three specific cases are intriguing. First, in the locust 

gut, pathogen invasion was limited by overall community diversity, and not by the 

presence of any specific member [135]. Second, transferring the microbiota between 

strains of mice (NIH to C3H/HeJ) eliminated the susceptibility of C3H/HeJ mice to 

Citrobacter rodentium infection [133]. However, in contrast, C. difficile infection 

susceptibility could be altered by introducing only a small subset of a resistant 

host’s community, suggesting that only a few specific members were involved in this 

case. These results are not necessarily contradictory -- some disease states or 

susceptibilities could stem from low biodiversity, others from the absence of a 

specific microbe. Further research could investigate whether antibiotics have 
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deleterious effects proportional to the extent to which they chronically reduce 

bacterial diversity in the gut. Hypertrophic environments might also reduce the 

benefit of the endogenous gut microbiota by preventing them from scavenging the 

majority of available resources, thus allowing a ‘weedy’ or pathogenic species to 

establish and expand itself and reducing overall diversity (as is seen in other 

hypertrophic environments on other scales) [17].  

 

Manipulation of the Microbiota is a Promising Method for Treating 

Disease 

Because the gut microbiota activate host immune defenses that are critical 

for protection against infection, microbiome manipulation is developing as an 

increasingly important treatment modality. For example, as noted above, NIH 

Swiss mice can resolve colonization with the murine pathogen C. rodentium, but the 

same infection in C3H/HeJ mice is lethal. However, transferring gut microbiota 

from NIH mice into C3H/HeJ mice delayed pathogen infection and mortality. These 

improvements were associated with increases in IL-22 in mice that received the 

NIH mouse microbiota transplant, suggesting that the microbiota is fine-tuning the 

host’s innate immune system to prevent infection [133]. More work is needed to 

understand what role the microbiome plays in human diseases, and especially how 

many other effects attributed to host genetics may actually stem from shared 

vertically transmitted microbial species or communities. 

The skin microbiome also plays a critical role in defense against pathogens. 
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The skin acts as the body’s first line of defense against incoming pathogens, and 

production of effector T cells is linked to signals produced by host-associated 

microbiota. For example, GF mice monocolonized on the skin with Staphylococcus 

epidermidis produced significantly more proinflammatory IL-17A in the skin, but 

not in the gut, than did uncolonized mice [154]. Effector T cell production and 

function in the skin was unaffected by antibiotics that substantially changed the 

gut microbiota, suggesting that these two reservoirs of microbes modulate host 

immunity independently. Staphylococcus epidermidis also reduced dermal infection 

by the parasite Leishmania major, primarily by augmenting IL-1 cell signaling to 

activate local effect cell responses [154]. These studies demonstrate how the 

microbial communities at different body sites can be protective, and additional 

studies of the nares, vagina, mouth, and other body habitats are likely to extend 

these results to other body sites. 

 

Modern Behaviors Reduce our Exposure to Possible Beneficial Microbes 

Studies of the gut microbiome of modern humans living in remote, traditional 

communities, and of ancient humans from fossil or subfossil specimens, are 

beginning to provide a foundation for understanding how modern, “Westernized” 

humans have altered their gut microbiome from ancestral states [139, 155-157].  

Humans in rural, remote Malawian and Venezuelan communities have differ 

markedly in their gut microbiota and microbiomes from humans living in the highly 

westernized US.  Some of these differences may have evolutionary roots. For 
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example, 1400-year-old human fecal material from a high-altitude rock shelter in El 

Zape, Mexico preserved a gut microbiome that resembled the microbiome of humans 

currently living in Malawi and Venezuela, and differed from the microbiome of 

individuals living in the US [157] (Figure 1). For example, the spirochaete 

Treponema berlinense was found both in ancient El Zape fecal material and in 

rural, traditional populations of Malawi and Venezuela, but not in the United 

States population. As studies expand to include more human populations living 

traditional lifestyles and/or additional sources of ancient samples, general patterns 

and associations may allow us to characterize the pre-antibiotic, ancestral state of 

the human gut. 
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Figure 3.1. 16S rRNA gene sequencing survey reveals major differences in 
community composition of ancient vs. present-day humans. Fecal samples 
were collected from four different sources; adults in present-day Malawi, adults in 
present-day Venezuela, adults in present-day United States, and a ~1400 year old 
deposit in an ancient rock shelter in El Zape, Mexico. Briefly, the 16S rRNA gene 
was sequenced, taxonomy was assigned against a reference database, and the 
communities were compared using the unweighted UniFrac phylogenetic distance 
metric. Microbial communities that are more dissimilar are located further apart in 
principal coordinate space, while similar communities are found clustered together 
[155, 157].  
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These studies may even provide a pool of possibly beneficial ancestral microbes that 

have been lost due to recent lifestyle changes and that could be resupplied to 

improve health. We describe how several aspects of westernized societies - 

antibiotics, Cesarean sections, and lack of exposure to livestock - may be significant 

drivers of microbial change. 

 

Antibiotics 

Many studies have shown that antibiotic use in humans drastically decreases 

gut microbial diversity [61, 62, 158]. Although antibiotics are immensely valuable 

for clearing life-threatening infections, their overuse in patients may lead to 

unintended consequences. As noted above, a diverse gut microbiota can be 

protective against disease, and increasing evidence suggests that the depletion of 

this diversity by antibiotics may increase susceptibility to later infections. For 

instance, mice dosed with the antibiotic ampicillin were much less resistant to 

colonization when dosed with 108 CFUs of vancomycin-resistant Enterococcus 

faecium (VRE) than controls that did not receive antibiotics. The gut communities of 

the antibiotic-treated mice were completely dominated by VRE. Remarkably, the 

gut microbial communities of humans receiving the same antibiotics were 

dominated (>97%) by the genus Enterococcus just 7-18 days prior to VRE infection 

in the bloodstream, demonstrating that antibiotic use might reduce the 

community’s ability to fight off invading microbes [159]. 

Repeated antibiotic use in humans may also increase the reservoir of 
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antibiotic-resistance genes available to pathogens. For example, the microbiota of 

two healthy human adults harbored 115 unique inserts encoding transferable 

antibiotic-resistance genes, nearly half of which were 100% identical to resistance 

genes found in known pathogenic isolates [160]. In pigs, antibiotic treatment greatly 

increased the diversity of antibiotic-resistance genes over an already high 

background of resistance, even for classes of antibiotics that were not administered 

to these specific animals [161]. Similarly, when six human subjects were treated 

with clarithromycin and metronidazole (commonly used for treatment of 

Helicobacter pylori infections), the antibiotics greatly reduced gut bacterial 

diversity, and the communities remained perturbed four years after treatment in 

some individuals. Repeated and extensive antibiotic usage in humans thus likely 

selects an increasingly potent reservoir of antibiotic-resistance genes. 

The impact of antibiotics, particularly during important developmental 

milestones, can be seen even when administered at subtherapuetic levels. In mice, 

subtherapeutic antibiotic treatment (STAT), commonly used to promote growth in 

domestic farm animals, led to increased adiposity and altered metabolic function 

[162, 163]. The combination treatment of penicillin and vancomycin, as well as 

treatment with chlortetracycline alone, significantly decreased the 

Bacteroidetes/Firmicutes ratio. This ratio has been previously associated with 

obesity and increased weight gain in wild-type mice [53], and in mice genetically 

predisposed to obesity [164]. The caloric output of fecal samples collected from 

STAT-treated mice decreased, consistent with the hypothesis that the gut 
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microbiota in STAT-treated mice extracts more energy from the diet than that in 

untreated mice [53]. The gene content of the microbiome was also affected: relative 

abundance of butyryl CoA transferase genes increased at 3 weeks, but recovered to 

baseline levels by 6 weeks. Relative abundance of formyltetrahydrofolate synthetase 

genes did not significantly differ at 3 weeks or 6 weeks, indicating that changes in 

gene levels are likely antibiotic-specific. STAT significantly upregulated genes 

involved in liver pathways associated with lipogenesis and triglyceride synthesis, 

perhaps leading to the observed increases in fat mass accumulation. This study is 

especially intriguing in the context of an epidemiological study of >11,000 children 

in the UK, which concluded that antibiotic use before 6 months of age was 

significantly associated with increased body mass between 10 and 38 months of age 

[165]. Thus, the developing microbiome of infants may be particularly susceptible to 

deleterious, long-lasting effects derived from antibiotic use. 

 

Cesarean Sections 

Maternal transmission has been shown to be a crucial factor in passing on 

protective microbes to offspring in many species. In Drosophila neotestacea, for 

example, the parasite Howardula aoronymphium causes near universal sterility in 

females and reduced mating success in males. In order to protect against this 

parasite, D. neotestacea transfer the bacterial endosymbiont Spiroplasma between 

mothers and eggs. In wild populations, females infected with Spiroplasma in 

addition to H. aoronymphium are more than ten times as fertile as H. 
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aoronymphium infected females that do not also harbor Spiroplasma [132]. In 

humans, the earliest exposure to foreign microbes for newborns has historically 

been from the vaginal microbial community during birth. This natural route of 

inoculation is bypassed in Cesarean sections, which are performed with increasing 

frequency worldwide despite evidence of significant deleterious effects [34, 166, 

167]. A study of 165 Finish newborns (141 delivered vaginally, 24 delivered by 

Caesarean section) showed that by 1 month of age the C-section delivered infants 

had significantly less Bifidobacteria than did their vaginally-delivered counterparts, 

and also had significantly reduced bacterial cell counts in their stool [167]. 

Similarly, Swedish children who developed allergies by age 5 were less colonized by 

several Lactobacillus species (L. rhamnosus, L. casei, L. paracasei) and 

Bifidobacterium at birth [168]. Thus, vaginal delivery may inoculate a newborn 

with Lactobacillus and Bifidobacterium species that confer protective benefits later 

in life. Studies of exogenous inoculation of newborns with these important microbes 

in cases where C-sections are medically indicated are therefore needed. 

 

Exposure to Animals and Livestock 

Another mechanism by which modern humans may have lost some of their 

ancestral microbes is the reduced exchange between individuals and their 

environment, particularly through reduced exposure to animals. Ancient and rural 

societies typically have larger extended families that live with one another in close 

proximity; they also tend to have more contact with farm animals including 
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livestock, and with wild animals (e.g. those hunted as food), than do populations in 

more industrialized settings. In constrast, family units in many ‘western’ countries 

consist of only parents and their offspring living in one residence. These smaller 

households and decreased exposure to animals (other than domestic pets) likely 

reduce microbial transmission, including possibly beneficial microbes. For example, 

individuals living within a household share a greater proportion of their skin 

microbiota than non co-housed individuals [169]. Furthermore, the presence of a dog 

in the family facilitated the spread of rare, low-abundance microbes, including the 

family Methylophilaceae (class Betaproteobacteria) derived from canine oral 

communities, and families from within the Actinobacteria and Acidobacteria, likely 

derived from soil. The likely route of transfer was oral-skin transmission from the 

dog to household members. Exposure to animals, especially during the post-natal 

period, is especially important. In a study of 1,187 infants, Havstad et al. [136] 

found that IgE levels, typically elevated in diseases with an allergic component, 

were significantly lower in children who were exposed to pets early in childhood. 

These findings are consistent with the hygiene hypothesis, which states that 

exposure to certain microbes, including microbes obtained by pet-human 

transmission, trains the immune system to recognize foreign microbes and avoid 

harmless allergens.  

 

Replenishing the Host’s Beneficial Microbiota 

Because deviations from a “normal” healthy microbiota are linked to many 
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human diseases, it is increasingly important to discover how to “reset” and 

“replenish” our gut microbiota with beneficial microbes (Figure 3.2). Different 

nutrients from the host’s diet probably help determine which niches are available 

for microbial utilization, and thus which microbes become established. Large-scale 

changes, including a steady increase in microbial diversity, are seen in an infants’ 

gut microbiome over the first few years of life, in part as a result of changes in their 

diet [158, 170]. The intrapersonal variation of the adult gut community is relatively 

stable over time compared to differences between individuals [38, 171], and a core 

functional profile of the microbiome is present even though the species that 

contribute the functions to this profile vary among individuals [17]. In mice, large 

changes in the gut communities result from dietary changes over the course of 1-4 

days, though the effects are easily reversible [172]. However, in humans the 

timescale appears to be much slower, and long-term diet as measured by food 

frequency questionnaires over the course of a year, but not short-term diet 

experimentally manipulated over 10 days in a laboratory setting, seems to have a 

major effect [173]. Dietary alterations may thus play a role in achieving stable, 

long-term microbiome manipulation, as has been discussed elsewhere in detail 

[174].



 

 

56 

   

 
Figure 3.2. Diverting our microbial communities back towards ancestral 
states. Modern behaviors such as Cesarean sections and antibiotics may have the 
ability to push our microbial communities away from their natural, ancestral 
trajectories. However, microbiome manipulation may allow us to push our microbial 
communities back on track by replenishing the microbes that were affected by the 
disturbances. In this way, the impact on our microbial communities through events 
such as antibiotic use can be repaired such that our microbial communities 
maintain their protective benefits. 
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One of the best experimental systems for identifying members of the 

microbiota that are causally responsible for change is the method of personalized 

culture collections transferred into gnotobiotic mice [134, 175]. An individual’s stool 

sample can be serially diluted, cultured from single progenitor cells without 

interference from other, faster-growing microbes, the individual strains can be 

characterized, and communities mirroring the original community can be 

reassembled. By reintroducing specific sets of taxa back into germ-free mice, the 

effect of the gut microbiota on host physiology can be determined directly, including 

the possibility of adding or removing specific members thought to be important. 

This technique will allow researchers to discover which taxa, or consortia of taxa, 

are required for preclinical efficacy in mice, and will guide clinical trials. 

Because antibiotics profoundly reduce gut microbial diversity, it seems 

reasonable that antibiotic pretreatment might assist establishment of a new 

microbial community. Counterintuitively, antibiotics may actually impede the 

establishment of new communities. For example, antibiotic pre-treatment impaired 

the establishment of many phylotypes in rats after cecal transplant.  Only 12 

phylotypes of the input community were readily established across all antibiotic-

pretreated rats, whereas 22 phylotypes were reproducibly established in the 

transplantation-only recipient rats (without antibiotics) [67].  The finding that cecal 

transplantation increased the overall diversity of non-antibiotic treated rats, and 

that this diversity was maintained beyond three months, shows that the gut may be 

more amenable to manipulation of the microbiota than previously thought. Another 
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example of microbiota remodeling comes from the observation that mice with 

reduced bacterial diversity after cefoperazone treatment recovered their full 

diversity when caged with normal mice, presumably assisted by coprophagy. Stool 

transplantations may thus help a gut community recover effectively even after 

antibiotic treatment [176]. These conflicting reports might be the result of 

individualized responses of community alterations following antibiotic treatment, as 

has been demonstrated in humans [61].  

Probiotics – live microbes that, when ingested, have health-promoting effects 

– have also been used to treat individuals with gastrointestinal diseases (see Table 

1 in [177]. However, public enthusiasm for probiotics has greatly outpaced the 

evidence of efficacy, and the hypothesis that probiotics affect the structure of the 

gut microbial community is not well supported by existing data. Consistent oral 

intake of the commonly-used probiotic strains Lactobacillus delbrueckii spp 

bulgaricus, Lactococcus lactis spp cremoris, Bifidobacterium animalis spp lactis, 

and Streptococcus thermophilus in humans did not significantly alter the gut 

microbiome in terms of community composition, structure, or gene content [178]. 

However, the probiotics did up-regulate bacterially encoded pathways involved in 

polysaccharide degradation in fecal and urinary samples [178]. Thus, probiotics 

might convey health benefits in some cases by modifying gene expression in the host 

and/or microbiota, rather than by changing the composition of the microbiota itself. 

Given the importance to infants of developing a healthy microbiota, it has been 

suggested that probiotics could place the infant’s microbiota back on track 
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developmentally when altered by antibiotics early in life (Figure 3.2). However, 

these first few years of life include crucially important developmental processes, as 

also demonstrated in mouse studies showing that early interaction with the 

microbiota can permanently affect brain development and behavior [179]. 

Therefore, there is substantial risk of unintended consequences and caution should 

be exercised [180]. Future research should seek to understand why and how our gut 

microbiome changes, understand the functional consequences of those changes, and 

develop new therapies to return our microbiome to a healthy state. 

 

Fecal Transplants 

The evidence that out gut microbiota is important for educating our immune 

system is compelling, and modern behaviors may limit our exposure to specific and 

important microbial “teachers”. Can we replenish our microbiota to compensate for 

this loss? The best case study for beneficial manipulation of the microbiota can be 

seen in the increasingly popular use of fecal microbiome transplantations for the 

treatment of recurrent Clostridium difficile infection. C. difficile infections, 

inflammatory bowel disease, and irritable bowel syndrome have all been associated 

with dysbiosis of the host’s gut microbiota, leading to recurrent inflammation, 

diarrhea and constipation, although the mechanism of pathogenesis remains 

unknown [181, 182]. C. difficile is the most common cause of diarrhea associated 

with the use of antibiotics; the antibiotics permit particular C. difficile strains to 

dominate the community and release toxins A and B, which promote diarrhea [183, 
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184]. Recurrences in diarrheal episodes are generally treated with antibiotics; 

however, up to 65% of patients receiving antibiotics suffer relapse [185]. 

In contrast to the general ineffectiveness of antibiotics for treatment of C. 

difficile infections, fecal transplantation is highly effective both in animal models 

and in humans. For example, Lawley et al. [134] infected mice with C. difficile, 

resulting in a chronic intestinal disease. When treated with vancomycin alone, the 

C. difficile returned within 5-7 days of antibiotic cessation. Conversely, when the 

infected mice received a fecal transplantation from a healthy donor, the C. difficile 

infection did not return even months after treatment in 23 of 25 mice. To test 

whether the whole community was required or whether a lower-diversity subset 

would be sufficient for recovery, the authors cultured a healthy microbiota fecal 

sample through several generations (or passages), to reduce the community to only 

its culturable members. C. difficile infected mice were successfully treated using 

communities that underwent Passage 1 and 2, which already were reduced in 

phylogenetic diversity, but not Passage 3, where the community was very low 

diversity and dominated by Enterococcus spp. and Enterobacteriaceae spp. These 

experiments showed that the full community diversity of a gut microbiota is not 

required for clearing persistent C. difficile infections, but that replenishing the gut 

with specific members of the microbiota drive the transition from a diseased to 

healthy state. Ultimately, the authors identified a minimal mixture of 6 

phylogenetically diverse taxa consisting of three novel species of Bacteroidetes sp. 

nov., Enterorhabdus sp nov., Anaerostipes sp. nov., and the previously identified 
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Lactobacillus reuteri, Enterococcus hirae, and Staphylococcus warneri, that could 

resolve C. difficile infections. This study underscores the current interest in the 

intersection between personalized medicine and microbial ecology for identifying 

communities that can modulate health status: simple communities with culturable 

members provide the advantage that they can be more easily packaged, 

characterized and dispensed, but the full diversity of the community may be 

required for some disorders.  

 

Conclusion 

The field of human microbial ecology is evolving, and has recently 

transitioned from demonstrating that specific microbial consortia are associated 

with disease states towards learning how to directly manipulate the human 

microbiome for therapeutic purposes. The use of whole fecal transplants and highly 

defined microbiota transplants for C. difficile infections has demonstrated that 

microbiome manipulations can achieve high efficacy in at least one case where 

traditional pharmaceuticals fail. Furthermore, they suggest that mouse models 

represent a highly tractable system for investigating microbiome manipulation that 

can then guide clinical applications in humans. In the future, antibiotics might be 

used to treat the most severe infections, but their long-term effects on the 

microbiota may be mitigated by reintroducing species from the same person in a 

state of health, from other people (and perhaps from populations living more 

traditional lifestyles), or from engineered microbial consortia. Replenishing our 
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defensive microbes will allow us to direct our microbiota back onto its evolutionary 

tracks, which may be especially important given that modern behaviors and 

practices likely create microbial detours not previously encountered in our 

evolutionary history. 

  



 

 

63 

   
Chapter 4 

Applied Microbiome Analysis of Hunter-Gatherers 

 

 This section includes my contributions to a microbiome study on a hunter-

gather society called the Matses who live in the Peruvian Amazonian jungle. 

Sample collection and preparation was conducted by members of Cecil Lewis’s lab 

at the University of Oklahoma. The figures and results included in this section are 

the direct result of the statistical and microbial analysis that I performed and wrote 

as a part of the final submitted manuscript.  

 

Introduction 

Even with the advent of cost-effective sequencing methods, a full 

characterization of the human gut microbiome across evolutionary history remains 

incomplete. People living in remote communities, especially hunter-gatherer 

societies, are the best modern-day sources to examine the diversity and structure of 

the gut microbiome of ancient humans. An understanding of our ancient human gut 

is important for assessing how modern day interventions and perturbations are 

possibly pushing our gut microbiomes off of their natural, evolutionary trajectories. 

This work represents the microbial community and functional gene profile 

characterization of the Matses, a group of hunter-gatherers living in the Peruvian 

Amazonian jungle, who are the best living source of humans living a lifestyle of our 

ancient ancestors.  
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Matses Harbor a Unique Gut Microbiome 

We compared the overall microbial community structures using unweighted 

UniFrac and principal coordinates analysis (Figure 4.1A). The non-western 

populations clustered distinctly in PCoA space compared to the US population, and 

within the non-western communities, the Matses were distinct (P = 0.001 and P = 

0.001, respectively, PERMANOVA). Matses individuals resembled each other to a 

greater degree than did individuals from the US or Venezuela, as UniFrac distances 

for the Matses were much smaller than the US or Venezuela (Figure 4.1A). The 

machine learning method of random Forests, utilizing microbial community 

signatures, was able to correctly identify a Matses individual from someone from 

the United States, Venezuela, or Malawi, with only 1.9% error. We were unable to 

find significant taxonomic differences in the Matses population between individuals 

affected or unaffected by parasites, suggesting that immune modulation by 

parasites does not detectably affect the microbial community in this setting.  

 

Matses Populations are Lower in Microbial Diversity Than Other 

Populations 

Previous reports have indicated that Western populations are lower in 

microbial diversity than non-Western populations. We therefore expected that the 

Matses would be especially diverse. Interestingly, this appears not to be the case: 

the Matses instead have different kinds of taxa, rather than more taxa,
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Figure 4.1. The Matses clearly separate from the US, Venezuela, and 
Malawi populations. A) This analysis shows principal coordinates analysis of 
unweighted UniFrac distances, taking into account the full phylogenetic tree. PC1, 
which explains the largest fraction of overall variance among the four populations, 
clearly separates out the Western communities (US) from the non-Western 
Communities (Peru-Matses, Venezuela, and Malawi). PC2, explaining the second 
largest portion of the variance, divides the Matses from Venezuela and Malawi in 
the non-Western portion of the PCoA plot. Venezuela and Malawi are separable 
along additional dimensions (data not shown). B) Bacterial alpha diversity across 
populations. A) Observed species B) Shannon diversity index. The Matses have the 
same alpha diversity as the US, while Matses have significantly lower alpha 
diversity then both their non-Western counterparts of Malawi and Venezuela. Bars 
indicate mean +- s.e.m. *P < 0.05, **P < 0.01 (nonparametric t-test with 1000 Monte 
Carlo comparisons, Bonferroni corrected). We show results of 16S rRNA V4 region 
data generated on the Illumina Hiseq 2000 platform.  

a. PCoA plot of 16S rRNA unweighted UniFrac distances

b. Bacterial 16S rRNA alpha diversity 

Malawi

Peru-Matses

USA

Venezuela

PC1 - 27%

PC2 - 7%

PC3 - 6%
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than other populations studied to date. To eliminate the possibility that any 

differences in diversity were due to the Matses harboring OTUs absent from the 

reference database (which is biased towards US samples), approximately 1 million 

sequences from each of the four communities were randomly subsampled from the 

total sequence pool and then clustered with an open-reference procedure that 

includes novel sequences in the analysis. Children below 3 years old were excluded 

to avoid the different infant microbiome as a confounding factor. Surprisingly, the 

Matses had significantly less diversity both in the number of different OTUs and 

the Shannon Diversity Index compared to the other rural populations (Figure 

4.2B), and, by the Shannon measure (which is influenced by the evenness of the 

distribution), are lower in diversity even than the US population.  

 

Functional Characterization of the Matses Microbiome 

Given that taxonomic differences have been correlated with functional 

differences in a range of populations [186, 187] we collected shotgun metagenomic 

data from the Matses to assess the functional capacity of this unique and isolated 

hunter-gatherer community versus the agrarian cultures of Venezuela and Malawi 

and the Western US. We combined our metagenomic data from 21 Matses 

individuals with reads obtained from Yatsunenko et al. (2012), representing 

shotgun reads from Malawi, Venezuela, and the US, and re-annotated the entire 

metagenomic dataset together for consistency in gene identification. The KEGG 

Orthology (KO) profiles of the four communities are distinct when assessed with 
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principal coordinates analysis (Figure 4.2, P = 0.001, PERMANOVA), mirroring 

the findings seen in the 16S rRNA data. Procrustes analysis, which tests fit in the 

spatial orientation of data from two different principal coordinates plots, showed 

good agreement between the taxonomic and the functional datasets on 52 matched 

samples (Figure 4.3A), suggesting that, as in other populations, taxonomy is a good 

guide to function. We then compared the relative differences between the functional 

KO profiles and the 16S taxonomic profiles between countries (Figure 4.3B, 

Figure 4.4). When the full compliment of KOs and taxa are considered, the Matses 

are significantly different from the US both functionally and taxonomically, but not 

different from the non-Western populations. 

To determine if the relative abundance of KOs involved in metabolism were 

significantly different between populations, we then filtered down the KOs to only 

those shared by every sample from all populations, and ran Kruskal-Wallis. It is 

clear that the Matses harbor increased metabolic capacity compared to the US and 

non-Western populations in these shared KOs, especially in nucleotide, amino acid, 

and energy metabolism. We discovered 84 of the 121 significantly different 

metabolism KOs between Matses and the US had higher relative abundance in the 

Matses community (Table S4.1). Similarly, Matses had a higher relative 

abundance in 78 out of 104 shared KOs associated with metabolism compared to the 

non-Western Malawi and Venezuela populations (Table S4.2). The Matses also 

display the increased glutamate synthase capacity seen in the non-Western of 

Venezuela and Malawi compared to the US 
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Figure 4.2. PCoA plots showing Hellinger distances between all four 
populations for KOs. Data derived from shotgun sequences that were filtered 
down to 50,000 counts/sample for adults (age > 3 years) only. Blue spheres 
represent Matses, purple spheres represent Venezuelans, red spheres represent 
Malawians, and green spheres represent individuals from the United States.  
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Figure 4.3. 16S and KO profile comparison. A) Between- and within-country 
differences assessed by unweighted UniFrac for 16S V4 rRNA data and Bray Curtis 
for shotgun metagenomic data.  Only individuals older than three were included  
(n=21). The diagonal represents the within community distance. Significant 
differences (p-values<0.05) are denoted by an asterisk. B) Procrustes analysis 
between the taxonomic and the functional datasets on 52 matched samples  
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Figure 4.4.  Pairwise comparison of Matses 16S unweighted UniFrac 
distances and shotgun gene content Hellinger distances.  Matses are 
compared to USA, Malawi, and Venezuela. Error bars display standard deviations. 
Individuals from USA are most different from those in Matses in both 16S profiles 
and functional gene content. Venezuela and Malawi individuals had 16S profiles 
and functional profiles that were equally distant from Matses.  We included data 
from 52 samples for which we had both 16S rRNA and shotgun metagenomic data. 
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Figure 4.5. Heatmap of KOs that are significantly enriched in Matses 
compared to US. Sidebar is colored according to L2 KEGG Orthology: Amino Acid 
Metabolism = Purple, Carbohydrate Metabolism = Blue, Energy Metabolism = Red, 
Enzyme Families = Black, Nucleotide Metabolism = Green. Dendrograms represent 
average Bray Curtis distances for samples and KOs. The samples perfectly divide 
into Matses (on the right of the heatmap) and US samples (on the left). 
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Figure 4.6. Rarefaction plots of KOs. Rarefaction plot (1,000 – 10,000 Kos per 
sample) of Chao1 and the number of observed Kos for each country.  
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(Figure 4.5) [187]. Considering the full KO data set, Matses did not have a 

significantly higher diversity of KOs according to the chao1 metric or by number of 

unique KOs (Figure 4.6). One possible explanation for this is that our shotgun 

metagenomic data was annotated against databases typically curated from Western 

samples, and therefore any KOs unique to the Matses are not likely to be uncovered 

until significant genome construction has been accomplished. It therefore seems 

that while the Matses may not have an increased number of unique KOs associated 

with metabolism, but a higher proportion of their microbiome is related to these 

functions. 

 

Conclusion 

Understanding microbial communities and their functions in populations 

living relatively ancestral lifestyles is essential for understanding the coevolution of 

humans as a species with our microbiomes. As seen in Chapter 3, understanding of 

our ancestral humans might provide insights into how current societal disturbances 

are altering the natural evolutionary trajectory of our microbiomes, and possibly 

contributing to disease states. This work demonstrates that a group of hunter-

gathers harbor a low-diversity gut microbiome, but without the resulting increases 

in obesity common in modern societies. Furthermore, this group of individuals has a 

microbiome that is enriched for metabolism genes, likely resulting from their need 

to pull maximum energy from their sparse and unpredictable food supplies.  
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Chapter V 

Microbiome-Metabolomics Interactions 

 

 This published chapter introduces the interactions that take place in the gut 

between the microbiome and the metabolome, including implications for host health 

[188].  

 

Introduction 

Rapid advances in sequencing technologies over the past decade have allowed 

researchers worldwide to assess how the intestinal microbiome affects human 

health[189]. Humans develop symbiotic relationships with microbes at a young 

age[33]. Factors such as the environment[128], proximity to other humans and 

animals[169], diet[173, 190], genetics[191], and temporal variation[38] affect the 

assemblage of microbes on our skin, in our mouths, and in our guts[130, 171]. Our 

microbiota has been compared to a previously unknown organ in terms of its effects; 

it has extensive metabolic capabilities, and carries ~150-fold more genes than the 

human genome. Microbes provide the host with a range of otherwise inaccessible 

metabolic capabilities[5].  

Unlike the human genome, the microbiome is relatively plastic. It can be 

rapidly altered through factors such as diet[190], drugs, probiotics, and microbially 

produced metabolites. Deliberate alterations in the microbiota and/or microbiome 

can therefore affect health. The intestinal microbiota is viewed increasingly as an 
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important target of pharmacologic agents—specific microbes have been shown to 

deactivate or activate specific xenobiotics, which can alter the effects of different 

therapeutic agents[192]. The systems-level effects of the entire microbial 

community on the whole metabolite repertoire are just beginning to be understood.  

Metabolomics and metabolite profiling analyses have been widely used to 

identify disease biomarkers. For example, quantification of triglycerides, glucose, 

and cholesterol in the blood can be used to determine the risk of heart disease. 

Similarly, the first microbiome studies sought to identify taxa that correlated with 

disease, physiological state, drug use, or dietary intake. However, not all exposures 

can alter the composition of the microbial community or its gene content; some can 

affect gene expression[178, 193].  

Humanized mice (created by transplanting human fecal microbiota into the 

mouse gut) have metabolomes distinct from those of conventionally raised 

mice[194]. This observation indicates that different gut microbes can produce 

changes in metabolites throughout their host. This shift in focus from determining 

“who is there” toward understanding “what are they doing” drives current studies of 

the human microbiota. Metabolomic studies will allow us to move from observing 

patterns to understanding mechanisms.  

Metabolomic analyses also help researchers to understand the effects of rare 

taxa, and taxa with genomic variations that affect function. Organisms are 

considered to be of the same species if they have greater than 97% identity in the 

16S rRNA gene. However, genomes from the same species can have large 
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differences in DNA sequences outside the 16S rRNA gene. Importantly, they often 

have different sets of gene clusters that regulate production of specialized 

metabolites (e.g. antibiotics, virulence factors, siderophores, etc.) and the 

composition of the microbial communities, as well as encode many antibiotic 

resistance genes[195]. Rasko et al. determined that among 17 Escherichia coli 

isolates, the average genome size of a single isolate was 5020 nucleotides (nt), 

although the pan-genome was ~13,000 nt[196]. Furthermore, rare taxa might have 

a large effect on the overall community metabolome if they have important 

metabolic activities, perhaps acting as keystone species.  

Although definitions of what constitutes a core microbiome in terms of 

membership is elusive, there does seem to be at least a core functional profile for 

the gut microbiota.[130] Identifying biologically important variations against this 

core remains a challenge. Metabolomic analyses provide a partial picture of 

metabolism rather than the potential for metabolism, and the expression of this 

core set of functions can change with alterations in available substrates, such as 

xenobiotics, even if the microbial species membership and abundance remain 

constant[193]. We review the intimate connections among animal hosts, their 

microbiota, and the metabolites produced by either one.  

Different microbial communities metabolize xenobiotic agents and dietary 

components in different ways to produce variable effects on many tissues in the 

host, including the brain[197] (Figure 5.1). 
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Figure 5.1: Interactions among host, microbiota, and metabolites. In this 
simplified model, the gut microbiota metabolize substrate inputs from the host 
including diet and xenobiotics into metabolites that can enter the host’s 
bloodstream and affect the host peripherally. For example, therapeutic drugs can be 
inactivated, reducing their efficacy. Alternatively, drugs may converted to 
derivatives with non-target and possibly toxic effects. Changes in these input 
substrates, therefore, change the reservoir of available microbial substrates and 
alter the metabolomic profile of the gut, yielding variable effects on the host. The 
new host phenotype can, in turn, have a feedback effect on the microbial 
community. 
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We discuss general metabolomic technologies and their implementation for 

study of human health, assess cases in which changes in gut microbiota alter host 

metabolic profiles, examine the ways in which gut microbiota process xenobiotics 

and nutritional inputs, and examine the analytical limitations of associating 

microbial abundances with metabolic profiles. 

 

Metabolomics in Assessment of Metabolic Status 

Metabolomic studies analyze complex systems, including the repertoire of 

small-molecule metabolites in the gut, using high-throughput analytical methods. 

Mass spectrometry and nuclear magnetic resonance spectroscopy allow robust and 

sensitive identification of metabolites produced by microbes and host cells, in 

samples such as feces, urine, and tissue (see comprehensive reviews in [198, 199]). 

These tools allow researchers to determine the effects that treatments or 

perturbations have on the host’s metabolic profile, by analyzing the presence and 

quantity of thousands of metabolites simultaneously. Although it is a challenge to 

assign spectral features, spectral networking platforms,[200, 201] aided by open-

source metabolome databases such as HMDB[202], METLIN[203], LIPIDS 

MAPS[204], MassBank[205], and NIST,[206] allow for faster identification and 

annotation of known and unknown metabolites[207]. By comparing pre- and post-

perturbation metabolomic profiles using multivariate statistics, metabolites that 

are significantly affected by experimental variables can be identified and placed 

into the larger context of how the host was affected overall. 
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Effects of the Microbiome on the Metabolome 

Metabolomic analyses allow for the metabolism of the gut microbiota to be 

directly compared with metabolic outcomes in the host. Wikoff et al.[208] directly 

tested the effect of gut microbiota on the host by comparing the plasma metabolomic 

profile, obtained via untargeted mass spectrometry, between germ-free and 

conventionally raised mice. They found that concentrations of more than 10% of all 

metabolites detected in the plasma differed by at least 50% between mice with and 

without gut microbes. Furthermore, many metabolites were detected only in serum 

from conventionally raised mice (not germ-free mice). For example, serum levels of 

tryptophan decreased 40% in serum from conventional mice compared to germ-free 

mice—likely due to the presence of bacteria that produce tryptophanases[208].  

Another detailed study evaluated the systemic effects of probiotics, prebiotics, 

and their combination (termed ‘synbiotics’) in initially germ-free mice colonized with 

a combination of microbes representing those found in a human infant (Bacteroides 

distasonis, Clostridium perfringens, Escherichia coli, Bifidobacterium breve, 

Bifidobacterium longum, Staphylococcus aureus, and Staphylococcus 

epidermidis)[209]. Dietary supplementation with the probiotic Lactobacillus 

rhamnosus NCC4007 and the prebiotic galactosyl-oligosaccharides significantly 

altered the relative proportions of the 7-member community, and led to systemic 

changes in the metabolic profiles of different tissues from the mice. For example, a 

prebiotic increased proportions of B breve, B longum, and B distasonis; decreased 
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proportions of E coli and C perfringens; and altered lipid metabolism by reducing 

plasma levels of glucose and hepatic levels of triglycerides. Probiotics also had 

systemic effects, lowering plasma levels of lipoprotein, hepatic levels of glutamine, 

and glycogen levels. Overall, prebiotics significantly altered the metabolome in the 

plasma, urine, feces, liver, pancreas, renal cortex, renal medulla, and adrenal 

glands; probiotics produced differences in all these compartments except the 

pancreas.  

Interestingly, another study that evaluated the effects of probiotics and 

prebiotics in adults found that neither significantly affected proportions of microbes 

in fecal samples, but RNA sequencing data showed altered expression of microbial 

genes that control carbohydrate metabolism[178]. It is possible that the relatively 

simpler communities that reside in infants are more susceptible to probiotic and 

prebiotic manipulation than the more diverse and complex communities found in 

adults. Prebiotics and probiotics might therefore have the largest effects when 

administered early in life. However, this hypothesis requires testing in animal 

models. 

The dietary components that escape digestion in the upper gastrointestinal 

tract provide most of the substrates for the intestinal microbiota. Fermentation of 

carbohydrates by the intestinal microbiota leads to the production of short-chain 

fatty acids (SCFA) such as butyrate, propionate, and acetate. Studies have shown 

that patients with inflammatory bowel diseases such as ulcerative colitis have fewer 

butyrate producing bacteria (e.g., Roseburia hominis and Faecalibacterium 
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prausnitzii) in their intestine, resulting in lower levels of butyrate[210, 211]. In 

addition to butyrate, propionate can potentiate de novo generation of T-regulatory 

cells in the peripheral immune system. Modulation of butyrate- and propionate-

producing microbes might therefore be used to treat inflammatory bowel diseases 

such as ulcerative colitis. However, the anti-inflammatory mechanisms of butyrate 

and other SCFA remain poorly defined.  

 

Predictive Microbial Metagenomes 

Metagenomic information can been used to determine how metabolism is 

affected by different disease states. Studies of obesity have shown that individuals 

with increased adiposity have lower microbial diversity than lean individuals [17, 

212]. The more-diverse microbiota of lean individuals contains significantly higher 

proportions of microbes correlated with anti-inflammatory responses, such as 

Faecalibacterium prausnitzii. The less-diverse microbiota of obese individuals 

contains higher proportions of Bacteroides sp. and Ruminococcus gnavus, each of 

which could have inflammatory effects[212]. Gene content analysis of these groups 

revealed the less-diverse microbiota appeared to produce lower levels of butyrate, 

have increased potential for production of hydrogen sulfide, and have reduced 

capability for management of oxidative stress. One poorly understood aspect of the 

microbiome, and its potential to produce a variety of metabolites, is whether 

microbial diversity itself has protective effects for the host, or whether low diversity 
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is a side effect of specific disorders (rather than a cause)[213]. This relationship can 

best be resolved in humans by prospective longitudinal studies. 

Although it would be ideal to obtain metabolomic and metagenomic data for 

every sample for which a 16S amplicon profile has been collected, these techniques 

are currently far more expensive than 16S amplicon profiling. Fully matched 

datasets are therefore prohibitively expensive and time consuming to produce. 

However, recent advances in software, including Phylogenetic Investigation of 

Communities by Reconstruction of Unobserved States (PICRUSt)[214], that exploit 

the strong association between phylogeny and function now allow researchers to 

estimate the metabolomic functional profile of a community using 16S amplicon 

sequences. Briefly, PICRUST takes a phylogenetic tree where the gene profile of a 

subset of nodes is known, and then uses ancestral-state reconstruction to estimate 

the functional gene content for other uncharacterized nodes. PICRUSt was able to 

make strong predictions (average Spearman r = 0.82) for inferred metagenomes 

from 16S marker genes, compared against fully sequenced metagenomes obtained 

from the Human Microbiome Project. 

Another powerful computational tool is Predicted Relative Metabolic 

Turnover (PRMT), which uses gene number to predict the relative consumption and 

production of metabolites in a system; it can be used for modeling and hypothesis 

generation[215]. Tools such as PICRUSt and PRMT could be cost-effective methods 

to determine whether additional resources should be used for more comprehensive 



 

 

83 

   
metabolic profiling and metagenomic sequencing. However, findings must be 

validated with matched datasets, to assess the limits of their performance.  

 

Metabolomic Profiles of Infants 

Changes to the microbiome and immune system during infancy may have 

lasting effects, such as in contributing to the development of allergies[178, 216, 217]. 

Distinct changes in the microbiota occur during the first 2 years of life, and 

correlate with changes in environment, diet—these can be tracked by studying 

changes in infants’ fecal metabolomes. A study that followed infants at risk for 

celiac disease showed that the metabolomes of infants less than 6 months old were 

dominated by sugars, including lactose and glucose. However, after 6 months, their 

metabolomes shifted, increasing concentrations of amino acids and SCFA. Principal 

coordinates analysis showed that the metabolome of infants at 2 years of age 

resembles more closely that of adults, due to increased levels of acetate and 

butyrate[218]. These findings are supported by 16S amplicon studies showing that 

the infant microbiota comes to resemble that of adults from the same community at 

2 years of age [157]. It is also apparent that the intestinal microbiota of infants is 

specifically adapted to metabolize the infant’s earliest nutrient source, breast milk. 

Specific Bifidobacterium species have genomes enriched in genes that regulate 

processing of human milk-derived oligosaccharides. These might have a competitive 

advantage that places them among the first colonizers of the human intestine[219].  
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Xenobiotic Metabolism  

In addition to diet-derived macronutrients, the microbes residing in the 

gastrointestinal tract may be exposed to a variety of xenobiotic compounds 

(antibiotics, other drugs, and diet-derived bioactive compounds). Because the gut 

microbiome encodes so many enzymes with different activities, it is not surprising 

that many of xenobiotic compounds are often metabolized by the gut microbiota. It 

has been at least 40 years since we began to appreciate the contribution of microbes 

to xenobiotic metabolism[220-222]. However, we are only beginning to uncover the 

mechanisms of this process. Adding to the complexity of these interactions, 

xenobiotics can also modulate the expression and activity of the gut 

microbiome[193]. Metabolites of microbial origin may interfere with host 

metabolism of xenobiotics, and diet-derived nutrients can regulate microbial 

metabolism of xenobiotics. 

One of the first studies to provide detailed evidence for the interaction 

between the gut microbiota and metabolism of xenobiotics came from Clayton et al. 

in 2009[223]. Their study leveraged a powerful metabolomic analysis pipeline to 

correlate the presence of the microbial metabolite, p-cresol, with a reduction in the 

ratio of sulfonated to glucuronidated acetaminophen. Increased p-cresol production 

reduces the capacity of the liver to properly metabolize this widely used analgesic 

drug, presumably because p-cresol competes with sulfotransferase [223]. 

Subsequent studies from this group showed that metabolites of microbial origin 

could modulate expression and activities of a range of host enzymes, including those 
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of major xenobiotic-metabolizing cytochrome enzymes[224]. These seminal 

observations are beginning to lay the foundation for a metagenomic approach to 

selection of therapy based on microbial and host metabolism. 

In addition to its interactions with metabolite production, the gut microbiota 

can also have a more-direct role in xenobiotic metabolism, by catalyzing a multitude 

of reactions that influence the fate of these compounds. Recent reviews have 

summarized the many processes by which microbes metabolize xenobiotics[192, 225, 

226]. Although these activities are largely catalogued, there are only a few for which 

the exact mechanisms are being characterized. For example, it has been known for 

decades that the cardiac drug digoxin can be inactivated by Eggerthella lenta, a 

common gut bacterium within the Actinobacteria[227]. Researchers have recently 

identified a cytochrome-encoding operon that is upregulated by digoxin and other 

cardiac glycosides and is unique to strains capable of inactivating digoxin. 

Inactivation of digoxin was blocked by increasing dietary protein intake by mice 

mono-associated with E lenta[228], likely due to the inhibitory effect of 

arginine[229].  

Wallace et al. studied how the microbiota can determine the effects of the 

colorectal cancer drug irinotecan. Enzymes produced by microbes have long been 

known to deconjugate an irinotecan metabolite in the gut, causing inflammation, 

diarrhea, and anorexia. After a successful screen for a small-molecule inhibitor of 

the microbial b-glucuronidase enzyme that mediates this deconjugation, Wallace et 

al. showed that the side effects of irinotecan could be greatly reduced by co-
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administration with this b glucuronidase inhibitor[230]. Interestingly, recent 

studies show that the presence of the microbiota increases the efficacy of 

chemotherapeutic drugs, indicating that the microbiota have previously 

unappreciated, but integral roles in mediating responses to these drugs [231, 232]. 

 

Computational Challenges to Discovering Correlations 

Identifying statistically meaningful patterns in metabolite contingency tables 

(tables recording the abundance of each metabolite count in each sample) is 

straightforward in theory but often conducted with mathematically unfounded 

techniques in practice. For instance, analysis of variance and Student t test 

methods are frequently used to identify significant differences in abundances of 

metabolites among sample groups without establishing that the underlying data 

meet the distribution requirements. Normality, equality of variance, and 

homogenous population characteristics are required for proper calculations of 

statistical significance (either P values or false discovery rates). Although non-

parametric tests can be substituted to deal with the non-normality of the data, 

these approaches still does not resolve 2 fundamental computational challenges: 

extraction of biologically significant results from the mass of statistically significant 

results and the fact that multivariate biological data are typically normalized to a 

sum—the simplex constraints this imposes violate the Euclidean-space models 

assumed by most test statistics.  
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The most widely applied method to reduce biologically irrelevant, but 

statistically significant, results is to remove features (taxa, KEGG Orthology 

groups, Enzyme Commission numbers, etc.) from the contingency table prior to 

testing on the basis of a metric that assigns expected biological relevance to a 

feature. This ‘metric’ is usually as simple as overall table abundance (e.g. remove 

feature i if i is less than 1% of all observations) or overall sample representation 

(e.g. remove feature i if i is in less than 20% of samples). This filtering approach is 

motivated by the intuition that more widely shared features will be more 

biologically important, and has the additional attraction of reducing the severity of 

multiple hypothesis test correction factors. Unfortunately, although widespread, 

this approach has not yet been systematically benchmarked or evaluated for 

sensitivity, specificity, or even false discovery control, particularly in fields 

combining microbiome and metabolomic datasets. 

A complementary approach to identifying differential representation of 

features among groups is to look for interactions among features via co-occurrence 

analysis (Figure 5.2). 
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Figure 5.2: Exploring the interactions between metabolomics and the 
microbiome. Both metabolomics and high-throughput sequencing produce a 
wealth of information. Visualizing the interactions between these highly 
multivariate datasets is important for elucidating relationships. In this example 
tripartite network, the large blue nodes represent samples, which are connected to 
red diamonds (metabolites) with red edges, and connected to black circles (OTUs) 
with black lines. The closer an OTU node or a metabolite node is to a sample node, 
the larger the relative abundance of that metabolite or that OTU in that sample. 
Therefore, OTUs and metabolites that are close together in the network tend to be 
found in the same samples (and this suggests, but does not conclusively prove, that 
the metabolite may be produced by that OTU). The tripartite network also 
demonstrates which metabolites and OTUs are shared by samples, and which 
metabolites and OTUs are unique to a given sample. As discussed in this review, 
methods are being developed to help separate out biologically important 
associations from amongst many statistically significant ones. Once identified, we 
can visualize how biologically important metabolites are controlled by the 
interaction between host and microbiome. 
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Traditional co-occurrence detection methods including Spearman or Pearson 

correlation between feature vectors are not reliable when the data are 

‘compositional’ (i.e. lie in a simplex rather than Euclidean space)[233, 234]. Because 

compositionality is a feature of much -omics data (16S amplicon surveys are 

inherently compositional because normalization for unequal sampling effort in any 

contingency table introduces compositionality), methods such as ‘SparCC’ and 

‘CoNet’ have been developed to capture true correlations. Although these methods 

are well-founded in mathematics, have been benchmarked and validated in only 

limited circumstances and their performance has not yet been characterized for 

metabolomic data in general.  

 

Conclusion 

The overall diversity and plasticity of the gut microbiota, in comparison to 

our human genomes, provides exciting new prospects for personalized medicine—

particularly for studies to determine the mechanisms by which microbes affect 

production of metabolites from drugs and diet. Although there is much work to be 

done, especially in terms of computational methods, the experimental frameworks 

of metabolomics and microbial community analysis that have emerged should allow 

for rapid host characterization followed by subsequent analyses of clinical 

potential.   
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Chapter VI 

Potato Metabolic Profile Variability 

 

 This chapter highlights work I lead in collaboration with Prof. Jairam 

Vanamala at Pennsylvania State University. As I described in Chapter V, 

knowledge of the metabolome is critical for interpreting changes in the microbiome 

and the eventual effect on the host. Therefore, we sought to provide a 

comprehensive picture of the diversity and range of the metabolite profile in a 

common food. Potatoes represent one of the most abundant and ubiquitous foods to 

western society; however, researchers do not have a full appreciation for the impact 

that various processing methods and cultivar strains might have on the overall 

metabolomics profile. This work assesses how the overall metabolite profile and the 

relative concentration of common vitamins, minerals, and glycoalkaloids are 

affected across 6 popular processing methods and 6 common potato cultivars.  

 

Introduction 

Cooking foods, especially starch-rich tubers, represents a uniquely human 

activity that allows us to extract more energy from our diet due to improved 

digestibility [235]. As such, the advent of cooking foods and the resulting 

improvement of energy utilization is hypothesized to have played a major role in 

human evolution [236]. Potatoes (Solanum tuberosum) represent a ubiquitous and 

important nutrient-dense component of many diets around the world. However, the 
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cultivars of potatoes consumed as well as the manner in which potatoes are 

processed vary greatly from region to region and are likely to influence potato 

nutritional content [237, 238]. We utilized untargeted metabolomics, targeted 

metabolomics, and specific assays to assess the changes in important vitamins, 

antioxidants and toxicants as a function of potato cultivar and processing method. 

Six different potato types were chosen, two white-, red-, and purple-fleshed 

cultivars; each was processed 6 different ways and prepared for metabolite analysis 

(Table 6.1, Appendix C).  

 

Metabolomic Profile Dominated by Processing Method 

Untargeted metabolomics using tandem mass spectrometry was performed 

on all the 36 treatment groups (six cultivars x six processing methods), yielding 

15,129 shared metabolites (see Appendix C). We calculated Bray-Curtis distances 

on the log transformed intensities and applied the dimensionality-reduction 

technique of Principal Coordinates Analysis (PCoA) to visualize the distances. The 

clustering in PCoA space utilizing all metabolites showed that processing method 

resulted in the most delineated separation, while clustering by potato cultivar was 

observed within each processing method (Figure 6.1a, b). PERMANOVA revealed 

that 80% of the variation in metabolites was the result of processing method, and 

9.3% the result of potato cultivar (Table S6.1). 
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Table 6.1. Overview of processing methods and potato cultivars. Six 
different potato cultivars and six different processing methods were selected. Each 
possible combination of potato cultivar by processing method (Atlantic-Raw, 
Atlantic-Baked, etc.) was performed (36 combinations) in triplicate (n = 108 samples 
total). Two different potato cultivars from purple-, red-, and white-fleshed potatoes 
were used.  
  

Overview of processing methods and potato cultivars!

Processing Method! Processing Method Descriptions!

Baked! Tubers wrapped in aluminum foil were baked at 204oC for one hour in a conventional 
oven. Tuber internal temperature reached ~ 95 ± 5oC.!

Chipped! Chip slices were cooked in oil at 185oC for 2 minutes.!
Fried! Tuber strips were cooked in oil at 190oC for 3.5 minutes.!

Microwaved! Tubers were cooked for 3.5 min in a 1100 watt microwave oven. Tuber internal 
temperature reached up to ~ 91 ± 4oC. !

Raw! Not cooked!
Steamed! Tubers were placed over boiling water in a steamer for 30 minutes. Tuber internal 

temperature reached up to ~ 84 ± 3oC.!

Potato Cultivars!

All Blue! Purple Majesty! All Red! Mountain Rose! Atlantic! Russet Burbank!

Purple-fleshed! Red-fleshed! White-fleshed!
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Similarly, across all metabolites ANOSIM revealed significant differences 

between processing methods and potato flesh-colors, but differences resulting from 

individual potato cultivars were not significant after correcting for multiple 

comparisons (Tables S6.2-S6.4). The large effect of processing method on 

metabolites prompted us to investigate the relative variability of metabolites within 

each potato cultivar (Tables S6.5, S6.6). Procrustes analysis (Figure 6.1c), where 

the orientation of points in PCoA space is scaled and rotated to minimize the 

distances between the different processing methods within each cultivar, revealed 

that all six potato cultivars underwent marked changes in metabolite profile as a 

result of cooking. However, the orientation of these changes differed with potato 

cultivar. No one potato cultivar had a processed metabolite profile that looked more 

similar to their uncooked, raw metabolite profile compared to other cultivars.  

 

Processing – Cultivar Interaction 

The variability in the overall metabolites caused by processing method and 

potato cultivar (Figure 6.1c) led us to believe that these two variables might 

interact non-linearly. An additive model of the two variables (processing method 

and potato cultivar) would result in the abundance of a given metabolite being 

affected by a change in the other variable. An interaction model would result in the 

abundance of a metabolite in one variable being dependent on the level in the other 

variable (see example interaction plots of the additive and interaction model in 

Figure S6.2). 
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Figure 6.1. Bray-Curtis distances visualized with principal coordinates 
analysis of 15,129 metabolites reveals the strong effect of processing 
method compared to potato cultivar on metabolite profile.  Each point on the 
graph represents the entire metabolic profile of a single replicate. There are 3 
replicates for each combination of potato cultivar by processing method. Points that 
are closer to each other in PCoA space have a more similar metabolic profile. b 
PCoA colored by processing method. The largest variation is explained along PC1 
and is driven by the chipped and fried processing of potatoes. PC2 mainly separates 
out chipped from fried. Raw potatoes cluster towards one end of PC3 compared to 
microwaved, steamed, and baked potatoes (also see Table S6.3). b PCoA colored by 
potato cultivar. No clear trends of clustering by potato cultivar are seen within each 
processing method (also see Tables S6.2, S6.4, S6.5). c Procrustes plot of averaged 
metabolites. Each node represents the 3-replicate average of a processed potato 
cultivar. The drawn ellipticals enclose all samples from a single potato type, while 
each colored node located within an elliptical represents a different processing 
method. The purple centroids of the connected clusters represent the raw potatoes, 
which are connected to the chipped, fried, microwaved, baked, and steamed 
processed potatoes of the same potato cultivar with a light blue line. The distance 
between the raw centroid and each processing method point was calculated for each 
potato cultivar, and revealed that no cultivar had processed samples that more 
closely resembled their raw counterparts than any other cultivar (Kruskal Wallis, p-
value > 0.05).   
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We therefore used the two-way ANOVA test to determine if the variables of 

potato cultivar and processing method demonstrate an interaction effect or if these 

variables were additive across all 15,129 metabolites. This analysis revealed that 

~73% of all the potato product metabolites had relative concentrations that were 

significantly altered by potato cultivar, processing method, and an interaction effect 

(Figure S6.1).  

Because the complete metabolite profile of potatoes differed depending on the 

interaction between potato cultivar and processing method, we tested for similar 

patterns in important antioxidants and vitamins common to potatoes. The relative 

levels of caffeic acid, chlorogenic acid, rutin, genistein, cyanidin, petunidin, 

caffeoylcholine and trigonelline were significantly affected by potato cultivar, 

processing method and interaction (Figure S6.2). However, folic acid (vitamin B9) 

was only affected by processing and interaction, and not potato cultivar. The 

common anthocyanidins, including cyanidin and petunidin, were significantly 

higher in the color-fleshed cultivars compared to the white-fleshed potatoes (Figure 

S6.2).  

 

Variability in Healthy and Unhealthy Compounds 

The potato is an important dietary source of vitamin C in the US and many 

parts of the world [237]. Indeed, potatoes are characterized by government agencies 

as an affordable source of the daily recommended intake of vitamin C[239, 240]. 

Therefore, we analyzed the vitamin C levels via high performance liquid 
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chromatography to provide absolute concentrations (see Appendix C, Methods). 

Like most metabolites, vitamin C levels were significantly altered by potato 

cultivar, processing method, and by interaction (two-way ANOVA, p < 0.05, FDR 

corrected). The levels of vitamin C were similar in the raw potatoes of each cultivar, 

yet the levels varied differentially based on both processing method and cultivar 

(Figure 6.2). For example, baked white-fleshed Atlantic potato retained twice the 

vitamin C levels of baked Purple Majesty potatoes. However, chipping and frying 

drastically reduced vitamin C across all potato cultivars. Our results indicated that 

no potato cultivar, and no processing method, systematically produced the highest 

relative concentrations of all beneficial metabolites. However, we wanted to 

establish which potato cultivars and processing method generally lead to the 

highest values for the vitamins and antioxidants listed above. Given that range of 

each metabolite concentration might be different, the concentrations were 

transformed into ranks (lower values having lower ranks) to allow direct 

comparison. We averaged together all ranks for a given potato flesh color across all 

vitamins and antioxidants. Both the purple-fleshed potatoes (Purple Majesty and 

All Blue) and the red-fleshed potatoes (All Red and Mountain Rose) had 

significantly higher average ranks of these beneficial metabolites than the white-

fleshed potatoes (Russet Burbank and Atlantic) across all processing methods 

(comparing average ranks between potatoes of different flesh colors, Student’s t-

test, unequal variance, p << 0.01, p << 0.01, respectively), while the purple- and 

red-fleshed potatoes were comparable (Figure 6.2b).  
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Figure 6.2. Effect of processing method on vitamin C, and average vitamin 
and antioxidant rank across flesh-colors and processing methods. a The 
plot indicates the average (n = 3 replicates) vitamin C content (mg/100 gram fresh 
weight; gfw) for each treatment group, with error bars representing ± standard 
deviation. b The average rank (lower values having lower ranks) across nine 
metabolites (caffeic acid, chlorogenic acid, rutin, genistein, cyanidin, caffeoylcholine, 
trigonelline, folic acid, and vitamin C) was calculated for each potato flesh-color. 
Over these metabolites, purple-fleshed potatoes and red-fleshed potatoes had a 
significantly higher average rank compared to white-fleshed potatoes. c Similarly, 
the average rank across these nine metabolites was calculated for each cooking 
method across all six potato cultivars. French fried potatoes resulted in the lowest 
average rank across these metabolites compared against all other processing 
methods. * indicates p-values < 0.05, ** indicates p-values << 0.05, Student’s t-test.  
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We further assessed which cooking method, irrespective of potato cultivar, 

yielded the highest overall vitamin and antioxidant rank. Similar to the results 

obtained from the two-way ANOVA tests, frying resulted in a significantly lower 

rank across these vitamins and antioxidants compared to all other processing 

methods (Figure 6.2c). Taking into account both potato cultivar and processing 

method across these select nine vitamins and antioxidants, a fried Russet Burbank 

potato resulted in the lowest rank while a steamed All Red resulted in the highest 

(Student's t-test, p = 0.0002). The general pattern was for purple- and red-fleshed 

potatoes to be the higher in vitamins and antioxidants than white-fleshed potatoes 

within each processing method. However, due to interaction, notable exceptions 

occurs, such as the Atlantic baked potato having twice the Vitamin C as a Purple 

Majesty baked potato seen above.  

Despite the presence of many beneficial compounds, potatoes also contain 

some harmful compounds. The glycoalkaloids solanine and chaconine are known 

toxins, which may produce harmful effects in humans [241]. Similarly, acrylamide 

has been identified as potential carcinogen in potatoes that results from high heat 

cooking methods, particularly baking, frying, and chipping [242, 243]. We therefore 

assessed the range of concentrations and the interaction effect in potato cultivars 

and processing methods for these compounds (Figure 6.3). 
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Figure 6.3. Concentrations of glycoalkaloids (solanine and chaconine) and 
acrylamide across potato cultivars and processing methods.  The plot 
indicates the average  glycoalkaloids (mg/100 gram fresh weight) solanine (a), 
chaconine (b), and acrylamide (c) concentrations for n = 3 replicates, with error bars 
representing ± their standard deviations. Acrylamide was undetectable in raw, 
steamed, and microwaved potatoes. All three compounds were significantly affected 
by potato cultivar, processing method and interaction term at p-value << 0.01, two-
way ANOVA.  
  

All B
lue

All R
ed

Atla
ntic

Mountai
n Rose

Purp
le 

Maje
sty

Russ
et 

Burb
an

k
0

2

4

6

Potato Type

So
la

ni
ne

 (m
g/

10
0g

)

Baked
Chipped
Fried

Processing Method

Microwaved

Raw

Steamed

All B
lue

All R
ed

Atla
ntic

Mountai
n Rose

Purp
le 

Maje
sty

Russ
et 

Burb
an

k
0

4

8

12

Potato Type

Ch
ac

on
in

e 
(m

g/
10

0g
)

Baked
Chipped
Fried

Processing Method

Microwaved

Raw

Steamed

All B
lue

All R
ed

Atla
ntic

Mountai
n Rose

Purp
le 

Maje
sty

Russ
et 

Burb
an

k
0

2500

5000

7500

10000

Potato Type

Ac
ry

la
m

id
e 
µ

g/
kg

 

Baked
Chipped
Fried

Processing Method



 

 

100 

   
All three harmful compounds were significantly affected by potato cultivar, 

processing method, and interaction (two-way ANOVA, p << 0.01). Solanine and 

chaconine demonstrated very similar changes across cultivars and processing 

methods. Acrylamide was not detected in raw, steamed, or microwaved potatoes, 

which is consistent with previous results, and was highest in French fried potatoes, 

which aligns with increased acrylamide as a function of high heat and cooking time 

[242]. The potato cultivars of All Red and Purple Majesty, while generally higher in 

vitamins and antioxidants, were also higher in glycoalkaloids (however, below FDA 

approved safe limit of total glycoalkaloids 20 mg/100 gram fresh weight) when 

processed via baking. 

 

Discussion 

The findings of this work have broad implications for food science, public 

health and the average consumer. Firstly, most food science studies assess the 

change in nutrients across only one variable, either cultivar type or processing 

method, with the assumption that the two variables abide by the additive model. 

However, this work reveals that both variables must be evaluated experimentally to 

gain an understanding of the range of concentrations of important vitamins, 

antioxidants and toxicants, because of the strong interaction effect. We have 

previously shown that raw and baked potatoes of the Purple Majesty cultivar 

maintained their anti-proliferative and pro-apoptotic properties in both early and 

advanced human colon cancer cells, while chipping this same purple-fleshed potato 
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resulted in a significant decrease in these benefits [244]. This work tempers those 

findings by demonstrating that pro-apoptotic properties, while present in some raw 

and baked potatoes, cannot be assumed to extend to other cultivars due to 

interaction.  

These results further demonstrate that dietary recommendations and food 

questionnaires should include both the cultivar and processing method employed. 

For example, proponents of potatoes in school lunches cite that potatoes are an 

affordable and dense source of vitamin C[237], yet the most frequently served 

potato cultivars are white-fleshed and are usually fried. Our data indicate that 

these fried potatoes exhibit the lowest vitamin C and nutrient concentrations and 

the highest levels of acrylamide. Therefore, school lunches should utilize specific 

potato cultivars and processing methods if the goal is to provide targeted vitamin C 

levels. The Institute of Medicine has put forth Dietary Reference Intakes (DRIs) as 

a guideline for nutrient reference values for more than 40 nutrient substances, and 

these values are the basis for recommendations in public policies and programs, as 

well as from individual health care practitioners[1]. This study demonstrates the 

challenge in accurately providing specific food recommendations in the setting of 

varied cultivars and cooking methods. Further, the results of this study highlight 

the potential for misrepresentation of nutrient contents on Nutrition Facts labels on 

food products to consumers. Though the FDA provides guidance on labeling for food 

manufacturers, it does not specifically stipulate how nutrient contents should be 

determined, and the usage of average values from databases is allowed[245]. 
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However, as mass spectrometry techniques continue to decline dramatically in price 

and increase in throughput, actual measurements of the cooked food product may 

replace database values that may not be relevant.       

Additionally, our data demonstrate that the nutritional benefits of tubers to 

early humans were likely heavily dependent on both the type of tuber being 

consumed and the way in which it was processed. This interaction effect suggests 

that the nutritional consequences of incorporating cooked tubers into their diets 

may have been more complicated than currently assumed. Although the utilization 

of some varieties of tubers may have paved the way for large brains and expanded 

ranges [246, 247], the utilization of others may have reduced vitamin intake and 

increased toxin intake. Consequently, food selectivity was likely critical despite the 

apparent dietary flexibility cooking provides.  

The net effect of processing and cultivar on the host is not currently known. 

Cooking can not only alter the micronutrient and antioxidant compound levels, but 

may also have a differential effect on digestibility of plant foods, chances of escaping 

digestion in the upper gastrointestinal tract, and being metabolized by gut microbes 

[188, 248, 249]. Thus, the assessment of the effects of farm-to-fork operations on the 

net health benefit of foods to the host requires quantitative analytical techniques 

and the selection of appropriate in vivo models.  
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Chapter VII 

Conclusions 

 
 The rapid development of next-generation sequencing technologies over the 

past decade has allowed for the characterization of the bacteria that live in and on 

the human body at unprecedented levels. Early survey studies that harnessed this 

sequencing discovered the amazing diversity and uniqueness of every individual’s 

microbiome, and how the microbiome was associated with alterations in a number 

of disease states. However, researchers also discovered that the microbiome was a 

critical factor to be assessed for drug targets and medicinal interventions. 

 While the definition of a “healthy” microbiome in various body habitats has 

been a much-debated topic, there are several microbial community structures that 

have been associated with disease states. A well-characterized deleterious microbial 

community is involved in bacterial vaginosis, whereby a typically health vaginal 

community that is dominated by a single Lactobacillus member is instead 

characterized as having a far more heterogeneous microbial membership. This fact 

is important to consider, as any medical interventions that cause the vaginal 

community to adopt a more “disease-like” microbial community may likely result in 

complications. 

 Therefore, I assessed whether the use of intravaginal rings for localized 

delivery of acyclovir medication in women with recurrent herpes simplex virus was 

causing any significant alterations in the patient’s vaginal communities. By 

utilizing 16S rRNA sequencing, I was able to characterize their vaginal microbial 
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communities even though the majority of members are not culturable. The study 

design also included a time-series component, whereby repeated measurements 

were taken in the same individual over time. My time-series analysis demonstrated 

that the implantation of the intravaginal rings did not significantly alter each 

patient’s vaginal microbial community. No microbes were enriched or depleted as a 

result of the ring’s presence. Additionally, the biofilm that formed on the 

intravaginal rings was statistically identical to the patient’s overall vaginal 

microbial community, demonstrating the safety of the device. This study serves as 

an important reminder that medical interventions must not only demonstrate 

efficacy in their intended target and purpose, but also that the interventions must 

not alter the microbiome in harmful ways. 

 While the above situation describes how a defined intervention could alter 

the microbiome, it is much harder to assess how our current cultural lifestyles 

might be shifting our microbiome with respect to our ancestors. The analysis of the 

microbiome from individuals in traditional societies, especially hunter-gatherers, 

gives us an insight into our microbial past. We can evaluate the membership and 

functional capacity of our microbiome from a time when humans were hunting and 

gathering in groups, far before the invention of farming and the agrarian lifestyle. 

My analysis of the Matses hunter-gatherer peoples demonstrates that while they 

harbor a low-diversity gut community, their microbes are enriched for genes 

associated with metabolism and energy extraction from their diets, which likely 

confirmed an evolutionary survival benefit. Its interesting that they same low-
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diversity microbial community structure has been associated with obesity in 

modern day populations, but the Matses are not overweight.  

 This dissertation also summarizes many modern-day practices that seem to 

have altered our microbial communities away from their ancestral, evolutionary 

paths by reducing our exposure to beneficial microbes, including exposure to 

animals and livestock, the use of antibiotics, and the use of cesarean sections. Each 

of these practices have been linked with alterations in the gut microbiome that may 

be affecting our health, notably by reducing our exposure to microbes that train our 

immune system to recognize beneficial bacteria, and therefore contributing to 

conditions such as allergies. This overall series of events has been termed the 

“hygiene hypothesis”, where modern society’s obsession with “cleanliness” is 

actually harming us by reducing our exposure to beneficial microbes. However, 

researchers are developing new ways of introducing back into our microbiome 

helpful bacteria through mechanisms such as fecal transplants, probiotics, and 

prebiotics.  

 Another interesting facet of the microbiome that this dissertation explores is 

the interaction between the host microbiome and metabolomics. Humans consume a 

variety of compounds, including food and xenobiotics such as pharmaceutical drugs, 

which become substrates for our gut microbiota. Different members of the 

microbiota can utilize the available substrates in different ways, causing a variety 

of secondary metabolites to be formed, sometimes with unintended consequences. 

For instance, pharmaceutical drugs can be inactivated by the presence of certain 
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microbial members, who metabolize necessary functional groups. Additionally, 

microbes can produce harmful secondary metabolites from common drugs such as 

acetaminophen. While the need to integrate microbiome and metabolomics datasets 

is obvious, the computational challenges are still significant. However, 

computational and algorithmic tools are constantly improving, and the future of 

multi-omic data integration is promising. 

 After summarizing the need to consider both the microbiome and metabolome 

when assessing dietary interventions, I lead analysis on a collaboration that 

evaluated changes in the overall metabolite profile as well as changes in specific 

vitamins, minerals, and glycoalkaloids in potatoes across different process methods 

and cultivars. Remarkably, we demonstrated that processing method and cultivar 

interact to produce unpredictable concentrations in the relative abundances of the 

majority of metabolites. This means that knowledge of the relative concentration of 

a metabolite cannot be extrapolated from the knowledge of the metabolites 

concentration in that processing method and in that cultivar, because the 

interaction produces a non-linear combination of variables.  We also 

demonstrated that in general purple-fleshed potatoes harbor higher concentrations 

of healthy vitamins and antioxidants than their white-fleshed counterparts. We also 

showed that processing method was the strongest determinant of the overall 

metabolic profile, regardless of cultivar type. Taken together, these findings 

necessitate that food researchers cannot estimate a food’s concentration of 

important metabolites without directly testing the combination of processing 
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method and cultivar. It also suggests that these variables can be manipulated in the 

future to produce foods that maximize the relative concentrations of desirable 

compounds while minimizing the concentrations of harmful ones. Future work will 

include feeding these potato-containing diets to animal models to assess if the 

vastly different metabolite profiles can globally affect markers of host health. 

 Taken together, this dissertation demonstrates the power of both 

manipulating the human microbiome and the importance in assessing how the 

human microbiome is changing as a result of dietary inputs and medical 

interventions.  
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APPENDICES 

 
Appendix A. Supplemental Figures and Tables for Chapter II. 
 
Characteristic  
Ethnicity non-Hispanic (2), Hispanic (4) 
Age (years, mean ± SD) 37 ± 7.5, range 25.8-45.5 
Duration of HSV (years, mean ± SD) 4.6 ± 2.3, range 2-8 
Number of recurrences/year (mean ± SD) 5.3 ± 4.5, range 2-12 
Table S2.1. Summary of characteristics of subjects with recurrent GHP [90]. 
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Sample ID Lower Estimate (%) Upper Estimate (%) 
Subject35.CVL0 0.0069 0.0689 
Subject35.CVL1 0.0159 0.1587 
Subject35.CVL3 0.0093 0.0931 
Subject35.CVL7 0.0175 0.1752 
Subject35.IVR7 0.0054 0.0542 
Subject48.CVL0 0.0390 0.3904 
Subject48.CVL1 0.1186 1.1862 
Subject48.CVL3 0.0142 0.1419 
Subject48.CVL7 0.0531 0.5309 
Subject48.IVR7 0.1295 1.2950 
Subject60.CVL0 0.0087 0.0871 
Subject60.CVL1 0.0103 0.1031 
Subject60.CVL10 0.0048 0.0477 
Subject60.CVL3 0.0222 0.2219 
Subject60.CVL7 0.0109 0.1086 
Subject60.IVR14 0.0110 0.1098 
Subject70.CVL0 0.0247 0.2471 
Subject70.CVL1 0.0098 0.0982 
Subject70.CVL10 0.0044 0.0438 
Subject70.CVL14 0.0185 0.1852 
Subject70.CVL3 0.0128 0.1285 
Subject70.CVL7 0.0111 0.1114 
Subject70.IVR14 0.0062 0.0617 
Subject89.CVL0 0.0093 0.0926 
Subject89.CVL1 0.0049 0.0486 
Subject89.CVL10 0.0122 0.1224 
Subject89.CVL14 0.0141 0.1405 
Subject89.CVL3 0.0126 0.1262 
Subject89.CVL7 0.0225 0.2247 
Subject89.IVR14 0.0231 0.2310 
Subject90.CVL0 0.1036 1.0363 
Subject90.CVL1 0.0240 0.2405 
Subject90.CVL3 0.0517 0.5168 
Subject90.CVL7 0.0407 0.4068 
Subject90.IVR7 0.0385 0.3855 
   
Table S2.2. Conditional uncovered probabilities for each individual’s vaginal 
microbial community. 
  



 

 

139 

   

 
Figure S2.1. Taxonomic composition of the vaginal microbial communities of the 6 
GHP subjects. The CVL samples from the subjects were used to assess the relative 
taxonomic abundance of their vaginal bacterial communities. Only taxa that 
comprised at least 1% of the relative abundance of any sample were graphed. 
Vaginal communities were dominated by Lactobacillus iners, L. helveticus, and 
Atopobium vaginae and Gardnerella vaginalis. The colored bars represent taxa 
belonging to different phyla according to the following convention: light blue to dark 
blue, Firmicutes; light purple to dark purple, Actinobacteria; red, Proteobacteria; 
brown, Bacteroidetes; green, Tenericutes. 
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Figure S2.2. Comparison of α diversity in the vaginal microbial communities of 
GHP women (red trace, CVL samples; blue trace, IVR samples). The α diversity of 
the vaginal microbial communities in both groups were not significantly different 
using a phylogenetic α diversity metric. 
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Figure S2.3. UniFrac distances between CVL, IVR, and HMP samples. The effect 
of weighted and unweighted UniFrac beta diversity distances were calculated 
comparing the mid-vagina samples obtained by the HMP and the GHP cohorts. 
Weighted UniFrac, which takes into consideration OTU abundance, was able to 
capture more than 99.5% of total beta diversity between the groups using just 20 
samples from each group and 1000 sequences per sample.  Error bars represented 
the standard deviation from 100 iterations of calculating the UniFrac distances 
from a random subsampling of the data. 
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Appendix B. Supplemental Data associated with Chapter 4 

 
Taxonomy Peru_Matses_me

an 
Venezuela_me
an 

Malawi_me
an 

USA_mea
n FDR_P 

Metabolism  Amino Acid 
Metabolism 

 Alanine, aspartate and glutamate metabolism [K01755] 0.001822865 0.001198 0.0011 
0.001130

8 
2.57E-

05 

 Alanine, aspartate and glutamate metabolism [K01940] 0.001852258 0.001169 0.001 
0.001071

9 
0.00010

4 

 Amino acid related enzymes [K01866] 0.002099088 0.001412 0.0015 
0.001028

5 
3.72E-

05 

 Amino acid related enzymes [K01868] 0.003432308 0.001626 0.0022 0.001825 
2.52E-

05 

 Amino acid related enzymes [K01872] 0.003427271 0.002248 0.0024 
0.002060

1 
0.00036

4 

 Amino acid related enzymes [K01874] 0.003538653 0.002461 0.0028 
0.002042

7 
2.14E-

05 

 Amino acid related enzymes [K01875] 0.002983232 0.001236 0.0013 
0.001194

5 
1.14E-

05 

 Amino acid related enzymes [K01876] 0.003158454 0.00191 0.0026 
0.001936

4 
0.00021

9 

 Amino acid related enzymes [K01880] 0.002560839 0.001426 0.001 
0.001114

6 
6.54E-

06 

 Amino acid related enzymes [K01881] 0.002553046 0.001358 0.0018 
0.001450

5 
0.00041

4 

 Amino acid related enzymes [K01883] 0.002320909 0.001814 0.0014 0.001397 
0.00013

9 

 Amino acid related enzymes [K01885] 0.002243419 0.002005 0.0017 
0.001428

6 
0.00463

3 

 Amino acid related enzymes [K01886] 0.002037752 0.001264 0.0011 
0.001279

9 
0.00196

1 

 Amino acid related enzymes [K01887] 0.002182758 0.002018 0.0024 
0.001436

4 
0.00041

3 

 Amino acid related enzymes [K01889] 0.001737349 0.001225 0.0011 0.001076 
0.00125

7 

 Amino acid related enzymes [K01892] 0.001724262 0.001156 0.0014 
0.001304

5 
0.03820

4 

 Amino acid related enzymes [K01893] 0.002092989 0.000984 0.0009 
0.001294

7 
3.49E-

05 

 Amino acid related enzymes [K04567] 0.003048798 0.001747 0.0022 
0.002049

8 
0.00013

9 

 Arginine and proline metabolism [K00611] 0.001721845 0.000968 0.0014 
0.001047

1 
0.00174

9 

 Arginine and proline metabolism [K01270] 0.000927107 0.001292 0.0015 
0.001377

5 
0.02891

7 

 Cysteine and methionine metabolism [K00549] 0.000771389 0.001255 0.0014 
0.000405

3 0.0035 

 Cysteine and methionine metabolism [K01740] 0.003642238 0.001961 0.0021 
0.002473

8 
0.00017

8 

 Glycine, serine and threonine metabolism [K00133] 0.00137697 0.001224 0.0013 
0.000912

3 
0.05080

2 

 Glycine, serine and threonine metabolism [K01754] 0.001162309 0.000997 0.001 
0.000715

6 
0.04908

8 

 Histidine metabolism [K00599] 0.002582315 0.003791 0.0042 
0.003868

9 
0.00096

6 

 Histidine metabolism [K00817] 0.000697605 0.000809 0.0011 
0.001157

4 
0.02690

9 
 Phenylalanine, tyrosine and tryptophan biosynthesis 
[K00800] 0.000722554 0.001131 0.0013 

0.001048
2 

0.02873
6 

 Tryptophan metabolism [K01867] 0.001820338 0.001387 0.0014 
0.001077

1 
0.00299

6 

 Tyrosine metabolism [K00680] 0.001111452 0.001693 0.0022 0.001689 
0.01079

7 

 Valine, leucine and isoleucine biosynthesis [K00053] 0.001441954 0.000766 0.001 
0.001014

7 0.00229 

 Valine, leucine and isoleucine biosynthesis [K01687] 0.002394542 0.001437 0.0018 0.001716 
0.00264

9 

 Valine, leucine and isoleucine biosynthesis [K01869] 0.004662316 0.002797 0.0029 
0.002113

4 
4.35E-

06 

 Valine, leucine and isoleucine biosynthesis [K01870] 0.004556266 0.003 0.0032 
0.002862

3 
4.59E-

05 
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 Valine, leucine and isoleucine biosynthesis [K01873] 0.004825085 0.002408 0.0023 

0.002612
4 

2.14E-
05 

 Valine, leucine and isoleucine degradation [K00826] 0.001370469 0.001117 0.0012 0.000929 
0.01353

1 

 
Carbohydra

te 
Metabolism 

 Amino sugar and nucleotide sugar metabolism 
[K00820] 0.002298518 0.001858 0.0019 

0.001806
7 

0.04743
4 

 Amino sugar and nucleotide sugar metabolism 
[K01209] 0.001263383 0.002317 0.0027 

0.002513
4 

0.00091
1 

 Amino sugar and nucleotide sugar metabolism 
[K01443] 0.000480795 0.000645 0.0007 

0.001094
8 

0.00091
1 

 Butanoate metabolism [K01652] 0.00242262 0.001656 0.0025 
0.002311

5 
0.03379

2 

 C5-Branched dibasic acid metabolism [K01703] 0.001659658 0.001266 0.0015 
0.001030

3 
0.00449

7 

 Citrate cycle (TCA cycle) [K01647] 0.001641397 0.001211 0.0012 
0.001443

5 
0.01794

3 

 Citrate cycle (TCA cycle) [K01681] 0.002980743 0.001643 0.0019 
0.001564

5 
2.97E-

05 

 Fructose and mannose metabolism [K00100] 0.000817646 0.001522 0.0015 
0.002099

9 
2.52E-

05 

 Fructose and mannose metabolism [K02770] 0.001125868 0.000688 0.0007 
0.000928

2 
0.02541

8 

 Galactose metabolism [K01190] 0.004907241 0.008953 0.0073 
0.010180

3 
1.13E-

05 

 Glycolysis / Gluconeogenesis [K00001] 0.000933968 0.001415 0.001 
0.001317

8 
0.00333

6 

 Glycolysis / Gluconeogenesis [K00134] 0.002442728 0.00109 0.0013 
0.000958

9 
1.13E-

05 

 Glycolysis / Gluconeogenesis [K00845] 0.000964382 0.001333 0.0012 
0.001625

8 
0.03512

4 

 Glycolysis / Gluconeogenesis [K00850] 0.002651225 0.001935 0.0019 
0.002854

4 
0.01400

5 

 Glycolysis / Gluconeogenesis [K00927] 0.001868517 0.00117 0.0016 
0.001117

8 
0.00081

6 

 Glycolysis / Gluconeogenesis [K01610] 0.001925632 0.001333 0.0014 
0.001157

2 
0.00180

8 

 Glycolysis / Gluconeogenesis [K01624] 0.001868812 0.001292 0.0011 
0.001464

4 
0.01818

6 

 Glycolysis / Gluconeogenesis [K01810] 0.00182501 0.001292 0.0015 
0.001222

8 
0.02496

9 

 Glycolysis / Gluconeogenesis [K01834] 0.003259144 0.002905 0.0028 
0.002387

5 
0.00723

4 

 Glycolysis / Gluconeogenesis [K04072] 0.002566447 0.000753 0.001 
0.001104

5 
1.13E-

05 

 Glyoxylate and dicarboxylate metabolism [K01091] 0.000644695 0.001224 0.0012 
0.001382

6 
0.00041

3 

 Pentose and glucuronate interconversions [K00012] 0.001853229 0.001428 0.0017 
0.001125

9 
0.01304

7 

 Pentose and glucuronate interconversions [K00848] 0.000464059 0.001092 0.0006 
0.000898

8 
0.00059

9 

 Pentose phosphate pathway [K00615] 0.003235503 0.002301 0.0022 
0.002755

2 
0.00681

7 

 Pentose phosphate pathway [K00948] 0.001514156 0.001424 0.0014 0.000984 0.02239 

 Pyruvate metabolism [K00027] 0.001203082 0.000498 0.0009 
0.000708

8 
0.00723

4 

 Pyruvate metabolism [K00656] 0.00348238 0.002181 0.0024 
0.002823

1 
0.00388

3 

 Pyruvate metabolism [K00925] 0.001678319 0.001332 0.0012 
0.000951

4 
0.00371

4 

 Pyruvate metabolism [K01006] 0.005620081 0.002594 0.0021 
0.002161

5 
4.35E-

06 

 Pyruvate metabolism [K01571] 0.001706196 0.000981 0.0015 
0.001601

2 
0.03142

4 

 Starch and sucrose metabolism [K00688] 0.004041879 0.003014 0.0028 
0.003815

8 
0.00185

6 

 Starch and sucrose metabolism [K00700] 0.003146848 0.00218 0.003 
0.002216

8 
0.00264

9 

 Starch and sucrose metabolism [K00702] 0.001292308 0.000847 0.0019 
0.000726

5 
0.00723

4 

 Starch and sucrose metabolism [K05349] 0.003107641 0.004024 0.005 
0.006179

5 
3.41E-

05 

 Energy 
Metabolism 

 Carbon fixation pathways in prokaryotes [K01938] 0.002267101 0.001209 0.0018 
0.001568

7 
0.00041

3 

 Carbon fixation pathways in prokaryotes [K03737] 0.00588303 0.00304 0.0033 
0.003047

7 
2.39E-

05 

 Methane metabolism [K00532] 0.000540847 0.000983 0.001 
0.000852

5 
0.00309

9 

 Methane metabolism [K00600] 0.001767361 0.001129 0.001 
0.000965

3 
9.56E-

05 
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 Methane metabolism [K00831] 0.001455574 0.000996 0.0011 

0.000781
4 

0.00027
1 

 Nitrogen metabolism [K00262] 0.002265971 0.001305 0.0012 
0.001329

7 
0.00010

7 

 Nitrogen metabolism [K00265] 0.00364129 0.002622 0.0027 
0.002404

6 
0.00149

1 

 Nitrogen metabolism [K00266] 0.003893481 0.003458 0.003 
0.002613

4 
0.00084

8 

 Nitrogen metabolism [K01915] 0.004801747 0.003364 0.0039 
0.003466

1 
4.89E-

05 

 Nitrogen metabolism [K01953] 0.002085745 0.001294 0.0012 
0.001796

1 
0.01392

1 

 Oxidative phosphorylation [K01507] 0.001924618 0.0014 0.0011 
0.001782

8 
0.03349

9 

 Oxidative phosphorylation [K02111] 0.002238571 0.002006 0.0012 
0.001886

7 
0.02531

4 

 Oxidative phosphorylation [K02112] 0.002519486 0.001397 0.0015 
0.001363

8 
4.40E-

05 

 Oxidative phosphorylation [K02117] 0.001649233 0.000684 0.0006 0.00128 
0.01050

3 

 Sulfur metabolism [K01738] 0.001750195 0.001252 0.0015 
0.001100

2 
0.00059

9 

 Enzyme 
Families 

 Peptidases [K01358] 0.001178156 0.000794 0.0011 
0.000858

1 
0.03349

9 

 Peptidases [K03797] 0.001204376 0.002644 0.0024 
0.001740

3 
0.00356

7 

 Peptidases [K03798] 0.004866308 0.002582 0.0035 
0.002872

1 
1.99E-

05 

 Protein kinases [K07636] 0.000710611 0.001102 0.0013 
0.001692

2 
0.00016

4 

 Protein kinases [K07646] 0.000991022 0.00085 0.0007 0.001452 
0.01810

2 

 Protein kinases [K07718] 0.000675262 0.000767 0.0009 
0.001614

7 
0.00611

3 

 Glycan 
Biosynthesi

s and 
Metabolism 

 Glycosyltransferases [K00785] 0.000427519 0.000725 0.0005 
0.000641

4 
0.03574

4 

 Glycosyltransferases [K05366] 0.001840779 0.002717 0.003 
0.002020

9 
0.00799

5 

 Other glycan degradation [K01206] 0.000924277 0.00152 0.0011 
0.002224

5 
0.00031

3 

 Peptidoglycan biosynthesis [K01000] 0.001027559 0.001157 0.0013 
0.000866

8 0.05141 

 Peptidoglycan biosynthesis [K05515] 0.001077006 0.001724 0.0016 
0.001523

7 
0.00723

4 

 Lipid 
Metabolism 

 Fatty acid biosynthesis [K00059] 0.001166887 0.001332 0.0014 
0.001692

5 
0.01751

7 

 Fatty acid biosynthesis [K00648] 0.000614814 0.00078 0.0007 0.000922 
0.03944

3 

 Fatty acid metabolism [K01897] 0.001384383 0.00261 0.0024 
0.002043

6 
0.00309

9 

 Glycerolipid metabolism [K00864] 0.001514497 0.001089 0.0007 
0.001020

1 
0.01794

3 

 Glycerophospholipid metabolism [K00995] 0.000457825 0.000444 0.0006 
0.000763

1 
0.04876

5 

 Metabolism 
of Cofactors 

and 
Vitamins 

 Nicotinate and nicotinamide metabolism [K00763] 0.001669607 0.001059 0.0006 
0.001002

9 
0.00408

2 

 Porphyrin and chlorophyll metabolism [K02495] 0.001216552 0.00129 0.0017 0.001638 
0.03775

2 

 Vitamin B6 metabolism [K00868] 0.000475519 0.00078 0.0007 
0.000554

3 
0.02414

5 
 Metabolism 

of Other 
Amino 
Acids 

 D-Alanine metabolism [K01775] 0.000890937 0.001573 0.0011 
0.001209

6 
0.00890

6 

 Selenocompound metabolism [K11717] 0.000686169 0.001052 0.0008 
0.000530

8 
0.03871

6 
 Metabolism 

of 
Terpenoids 

and 
Polyketides  Polyketide sugar unit biosynthesis [K00973] 0.001352799 0.000834 0.0013 

0.000917
2 

0.00932
7 

 Nucleotide 
Metabolism 

 Purine metabolism [K00088] 0.002379928 0.001371 0.0017 
0.001568

5 
0.00041

3 

 Purine metabolism [K00525] 0.00083023 0.001373 0.0004 
0.001462

6 
0.00166

4 

 Purine metabolism [K00527] 0.00535455 0.003037 0.0027 
0.002990

6 
1.32E-

05 

 Purine metabolism [K00962] 0.003455857 0.001978 0.0024 
0.001851

2 
2.52E-

05 

 Purine metabolism [K01756] 0.00206292 0.00121 0.0012 
0.001276

6 
0.00194

1 
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 Purine metabolism [K01923] 0.001101497 0.000659 0.0012 

0.000742
7 

0.00751
7 

 Purine metabolism [K01933] 0.001413931 0.001077 0.001 
0.001060

3 
0.04207

5 

 Purine metabolism [K01939] 0.002074794 0.001333 0.0015 
0.001317

4 
0.01003

2 

 Purine metabolism [K01951] 0.00256111 0.001601 0.0016 
0.001737

5 
0.00299

3 

 Purine metabolism [K01952] 0.004622783 0.00338 0.0034 
0.003049

5 
0.00096

7 

 Purine metabolism [K02337] 0.004120104 0.003228 0.0034 
0.003220

4 
0.00388

3 

 Purine metabolism [K03040] 0.001516134 0.001022 0.0014 
0.000828

3 
0.00174

9 

 Purine metabolism [K03043] 0.006942539 0.003939 0.0044 
0.003132

2 
3.76E-

06 

 Purine metabolism [K03046] 0.006577827 0.00429 0.0044 
0.003769

1 
1.56E-

05 

 Purine metabolism [K03763] 0.003313575 0.001896 0.0019 
0.002058

1 
0.00154

9 

 Pyrimidine metabolism [K00609] 0.001382088 0.00101 0.001 
0.000873

7 
0.01156

9 

 Pyrimidine metabolism [K00876] 0.001204989 0.001858 0.0017 
0.001251

7 
0.01810

2 

 Pyrimidine metabolism [K00945] 0.000806694 0.001547 0.0016 
0.001696

4 
3.72E-

05 

 Pyrimidine metabolism [K01937] 0.002846673 0.001654 0.0019 
0.001270

3 
2.39E-

05 

 Pyrimidine metabolism [K01955] 0.00589094 0.003753 0.0036 0.004014 
2.20E-

05 

 Pyrimidine metabolism [K01956] 0.001293208 0.001361 0.0007 
0.000964

7 
0.01823

6 

Environment
al 

Information 
Processing 

 Membrane 
Transport 

 Bacterial secretion system [K03205] 0.005594136 0.002848 0.0029 0.005342 
0.00422

5 

 Secretion system [K02238] 0.000493764 0.000793 0.0009 
0.001320

5 0.00013 

 Transporters [K01990] 0.002425131 0.002704 0.003 
0.003326

7 
0.00930

3 

 Transporters [K01992] 0.000770799 0.001494 0.0018 0.00264 
5.47E-

06 

 Transporters [K02003] 0.004752995 0.003525 0.0036 
0.005423

6 
0.00409

3 

 Transporters [K02004] 0.005157821 0.007024 0.0061 
0.011048

2 
3.76E-

06 

 Transporters [K02013] 0.000529301 0.001255 0.0008 
0.001305

4 
3.24E-

05 

 Transporters [K02015] 0.000999915 0.001698 0.0013 
0.001735

5 
0.00640

1 

 Transporters [K02016] 0.000891387 0.001132 0.0011 
0.001540

1 
0.01550

4 

 Transporters [K02025] 0.002657483 0.002283 0.0032 
0.003877

9 
0.05021

6 

 Transporters [K02026] 0.002159505 0.002122 0.0028 
0.003812

6 
0.01161

2 

 Transporters [K02028] 0.002167612 0.001467 0.0016 
0.001121

9 
0.00150

2 

 Transporters [K02036] 0.001148428 0.000579 0.0006 
0.000763

6 
0.04335

3 

 Transporters [K06147] 0.014153341 0.010862 0.0121 
0.012123

4 
0.02434

8 

 Transporters [K10112] 0.001165354 0.000551 0.0005 
0.000708

6 
0.00866

8 
 Signal 

Transductio
n  Two-component system [K03406] 0.000629617 0.000877 0.0019 

0.001354
6 

0.02470
8 

Genetic 
Information 
Processing 

 Folding, 
Sorting and 
Degradatio

n 

 Chaperones and folding catalysts [K03544] 0.001924265 0.001158 0.0018 
0.001472

8 
0.00259

8 

 Chaperones and folding catalysts [K03671] 0.000469941 0.000847 0.0009 0.000588 
0.05211

5 

 Chaperones and folding catalysts [K03695] 0.004092958 0.002461 0.0029 
0.002170

3 
1.13E-

05 

 Chaperones and folding catalysts [K04043] 0.00476685 0.002151 0.0019 
0.001810

6 
3.76E-

06 

 Chaperones and folding catalysts [K04077] 0.002542328 0.001426 0.0018 
0.001403

3 
4.59E-

05 

 Chaperones and folding catalysts [K04079] 0.001984128 0.001629 0.0013 
0.001366

3 
0.01550

4 

 Protein export [K03070] 0.004662654 0.002972 0.0034 
0.002650

6 
3.72E-

05 
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 Protein export [K03106] 0.001984818 0.001561 0.0011 

0.001023
7 

3.72E-
05 

 Protein export [K12257] 0.001338677 0.002152 0.0016 
0.001672

3 
0.05080

2 

 RNA degradation [K03654] 0.001897301 0.003043 0.0029 
0.002551

3 
0.00751

7 

 RNA degradation [K12574] 0.001502561 0.000818 0.0012 
0.000934

7 
0.00356

7 

 Replication 
and Repair 

 Base excision repair [K01142] 0.001167465 0.000618 0.0006 
0.000507

2 
0.00017

7 

 Chromosome [K03495] 0.002994535 0.002124 0.002 
0.001943

7 
0.00198

1 

 Chromosome [K03529] 0.002195347 0.001571 0.0015 
0.001531

1 0.03899 

 DNA repair and recombination proteins [K02346] 0.000661711 0.000552 0.0011 0.0011 
0.00309

9 

 DNA repair and recombination proteins [K03546] 0.000776651 0.001065 0.0011 
0.001251

4 
0.04633

7 

 DNA repair and recombination proteins [K03631] 0.000897841 0.001268 0.0014 
0.001279

7 
0.03152

8 

 DNA replication [K03111] 0.000554124 0.000998 0.001 
0.000867

6 
0.00611

3 

 DNA replication proteins [K02315] 0.001014987 0.000927 0.0009 
0.001800

3 
0.00929

5 

 DNA replication proteins [K02469] 0.00545321 0.003814 0.0035 0.003862 
0.00014

1 

 DNA replication proteins [K02470] 0.005390871 0.003565 0.0035 
0.003100

7 
2.14E-

05 

 DNA replication proteins [K03168] 0.002657847 0.002085 0.0028 0.00167 
0.00017

7 

 DNA replication proteins [K03169] 0.004947981 0.003472 0.0043 
0.005706

7 
0.01978

5 

 DNA replication proteins [K03530] 0.00037924 0.000673 0.0006 
0.000642

7 
0.00465

8 

 Homologous recombination [K03551] 0.001622305 0.00125 0.0014 
0.000880

6 
0.00027

1 

 Homologous recombination [K03553] 0.002072258 0.000969 0.0008 
0.001036

4 
4.52E-

05 

 Homologous recombination [K03581] 0.001148466 0.001894 0.0017 
0.001688

8 
0.01185

7 

 Homologous recombination [K03655] 0.003619475 0.005127 0.0055 
0.003296

4 
0.00149

1 

 Mismatch repair [K03555] 0.002993101 0.002794 0.0028 
0.002224

1 
0.01706

3 

 Nucleotide excision repair [K03701] 0.006580007 0.004386 0.0038 
0.003745

4 
2.14E-

05 

 Nucleotide excision repair [K03702] 0.003414319 0.001976 0.0021 
0.001839

9 
1.56E-

05 

 Nucleotide excision repair [K03723] 0.003995095 0.003347 0.0034 
0.003006

3 0.01887 

 
Transcriptio

n 

 Transcription factors [K02529] 0.001735638 0.003109 0.0033 0.003392 
1.99E-

05 

 Transcription factors [K03497] 0.002567805 0.001805 0.0023 
0.003227

9 
0.00254

5 

 Transcription factors [K03711] 0.000438479 0.000526 0.0006 
0.000791

2 
0.00913

7 

 Transcription machinery [K02600] 0.001318567 0.001481 0.0012 
0.000983

5 0.01049 

 Transcription machinery [K03086] 0.002118284 0.002017 0.0019 
0.001192

5 
0.00178

8 

 Transcription machinery [K03088] 0.001906689 0.003311 0.0033 
0.004912

6 
2.52E-

05 

 Translation 

 Ribosome [K02886] 0.001784963 0.001075 0.0011 
0.000833

8 
0.00033

4 

 Ribosome [K02950] 0.000955603 0.000417 0.0007 
0.000506

8 
0.00041

3 

 Ribosome [K02982] 0.00129874 0.000984 0.0008 
0.000740

4 
0.00296

4 

 Ribosome Biogenesis [K03595] 0.000969515 0.000566 0.0006 
0.000781

3 
0.02348

8 

 Ribosome Biogenesis [K03977] 0.001821278 0.001533 0.0016 0.001218 
0.03965

5 

 Ribosome Biogenesis [K03979] 0.001774409 0.001102 0.0014 
0.001163

9 
0.00115

3 

 Ribosome Biogenesis [K06969] 0.001766256 0.00117 0.0013 0.001256 
0.03775

2 

 Translation factors [K02355] 0.00644639 0.004278 0.0043 
0.004033

3 
2.14E-

05 

 Translation factors [K02356] 0.000967717 0.000644 0.0008 
0.000516

9 
0.00504

2 
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 Translation factors [K02358] 0.00318607 0.001599 0.0017 

0.001030
4 

5.47E-
06 

 Translation factors [K02519] 0.003302323 0.003067 0.003 
0.002079

2 
0.00185

6 

 Translation factors [K02835] 0.001608878 0.001089 0.0011 
0.000905

1 
0.00756

5 

 Translation factors [K02836] 0.001952555 0.001184 0.0015 0.000976 
7.11E-

05 

 Translation factors [K02837] 0.001600108 0.001264 0.0009 
0.001256

6 
0.02873

6 

Table S4.1. Matses gut microbiota are enriched for metabolic functions 
compared to Venezuela, Malawi, and USA. We filtered KOs to only those 
shared by every sample from all populations. We ran Kruskal-Wallis to determine if 
there were significant differences in the abundance of KOs between countries. KOs 
with an FDR corrected p-value < 0.05 are reported along with the mean abundance 
of the KO in each country. KOs for which the Matses population in Peru was 
enriched compared to other countries are highlighted in blue. 
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Taxonomy Peru_Matses_mean Non-

Western_mean FDR_P 

Metabolism 

 Amino Acid 
Metabolism 

 Alanine, aspartate and glutamate metabolism [K01755] 0.00182287 0.001181023 0.000262 

 Alanine, aspartate and glutamate metabolism [K01940] 0.00185226 0.00112172 0.000651 

 Amino acid related enzymes [K01866] 0.00209909 0.001448794 0.005323 

 Amino acid related enzymes [K01868] 0.00343231 0.001783154 0.000367 

 Amino acid related enzymes [K01872] 0.00342727 0.002302587 0.002048 

 Amino acid related enzymes [K01874] 0.00353865 0.002561027 0.002681 

 Amino acid related enzymes [K01875] 0.00298323 0.001247634 0.000215 

 Amino acid related enzymes [K01876] 0.00315845 0.002118734 0.003989 

 Amino acid related enzymes [K01880] 0.00256084 0.001316839 0.000215 

 Amino acid related enzymes [K01881] 0.00255305 0.001476896 0.003285 

 Amino acid related enzymes [K01883] 0.00232091 0.001706595 0.009838 

 Amino acid related enzymes [K01886] 0.00203775 0.001228585 0.003106 

 Amino acid related enzymes [K01889] 0.00173735 0.001199268 0.010484 

 Amino acid related enzymes [K01892] 0.00172426 0.0012171 0.021364 

 Amino acid related enzymes [K01893] 0.00209299 0.000970954 0.000215 

 Amino acid related enzymes [K04567] 0.0030488 0.001868614 0.000262 

 Arginine and proline metabolism [K00611] 0.00172185 0.001102801 0.007761 

 Arginine and proline metabolism [K01270] 0.00092711 0.001343203 0.02494 

 Cysteine and methionine metabolism [K01740] 0.00364224 0.001995103 0.000292 

 Glycine, serine and threonine metabolism [K06001] 0.00095623 0.000479868 0.029056 

 Histidine metabolism [K00599] 0.00258232 0.003921378 0.006508 

 Histidine metabolism [K00765] 0.0004507 0.000642679 0.031112 

 Phenylalanine, tyrosine and tryptophan biosynthesis [K00800] 0.00072255 0.001190068 0.023271 

 Tyrosine metabolism [K00680] 0.00111145 0.001842384 0.021364 

 Valine, leucine and isoleucine biosynthesis [K00053] 0.00144195 0.000825652 0.00256 

 Valine, leucine and isoleucine biosynthesis [K01687] 0.00239454 0.001533355 0.003106 

 Valine, leucine and isoleucine biosynthesis [K01869] 0.00466232 0.002829793 0.000282 

 Valine, leucine and isoleucine biosynthesis [K01870] 0.00455627 0.003061187 0.000262 

 Valine, leucine and isoleucine biosynthesis [K01873] 0.00482509 0.002388326 0.000262 

 Carbohydrate 
Metabolism 

 Amino sugar and nucleotide sugar metabolism [K00820] 0.00229852 0.001863184 0.02713 

 Amino sugar and nucleotide sugar metabolism [K01209] 0.00126338 0.0024319 0.007228 

 Butanoate metabolism [K01652] 0.00242262 0.001890789 0.03589 



 

 

149 

   
 Citrate cycle (TCA cycle) [K01647] 0.0016414 0.001198934 0.003989 

 Citrate cycle (TCA cycle) [K01681] 0.00298074 0.001710268 0.000367 

 Fructose and mannose metabolism [K00100] 0.00081765 0.001508637 0.002681 

 Fructose and mannose metabolism [K00847] 0.00096281 0.001391826 0.041595 

 Fructose and mannose metabolism [K01818] 0.00110025 0.000576577 0.031112 

 Fructose and mannose metabolism [K02770] 0.00112587 0.00068194 0.00434 

 Galactose metabolism [K01190] 0.00490724 0.008475879 0.000599 

 Glycolysis / Gluconeogenesis [K00001] 0.00093397 0.001288661 0.02494 

 Glycolysis / Gluconeogenesis [K00134] 0.00244273 0.001162466 0.000277 

 Glycolysis / Gluconeogenesis [K00850] 0.00265123 0.001925357 0.02713 

 Glycolysis / Gluconeogenesis [K00927] 0.00186852 0.001284356 0.010484 

 Glycolysis / Gluconeogenesis [K01610] 0.00192563 0.001363339 0.008428 

 Glycolysis / Gluconeogenesis [K01624] 0.00186881 0.00122896 0.005922 

 Glycolysis / Gluconeogenesis [K04072] 0.00256645 0.000823129 0.000203 

 Glyoxylate and dicarboxylate metabolism [K01091] 0.0006447 0.001218732 0.003989 

 Pentose and glucuronate interconversions [K00848] 0.00046406 0.00096132 0.002681 

 Pentose phosphate pathway [K00615] 0.0032355 0.002267194 0.001762 

 Pyruvate metabolism [K00027] 0.00120308 0.00061342 0.011595 

 Pyruvate metabolism [K00048] 0.00099158 0.000614083 0.009151 

 Pyruvate metabolism [K00656] 0.00348238 0.002254883 0.000974 

 Pyruvate metabolism [K01006] 0.00562008 0.002446809 0.000203 

 Pyruvate metabolism [K01571] 0.0017062 0.001131928 0.016313 

 Starch and sucrose metabolism [K00688] 0.00404188 0.002945595 0.001194 

 Starch and sucrose metabolism [K00700] 0.00314685 0.00241836 0.02494 

 Starch and sucrose metabolism [K05349] 0.00310764 0.004310105 0.013649 

 Energy Metabolism 

 Carbon fixation pathways in prokaryotes [K01938] 0.0022671 0.001379527 0.00128 

 Carbon fixation pathways in prokaryotes [K03737] 0.00588303 0.003127188 0.000262 

 Methane metabolism [K00532] 0.00054085 0.000987731 0.003285 

 Methane metabolism [K00600] 0.00176736 0.001083688 0.001066 

 Methane metabolism [K00831] 0.00145557 0.001035986 0.013649 

 Nitrogen metabolism [K00262] 0.00226597 0.001286656 0.000277 

 Nitrogen metabolism [K00265] 0.00364129 0.002637779 0.015056 

 Nitrogen metabolism [K01915] 0.00480175 0.003515175 0.001898 

 Nitrogen metabolism [K01953] 0.00208575 0.001258976 0.002993 
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 Oxidative phosphorylation [K01507] 0.00192462 0.001325915 0.010484 

 Oxidative phosphorylation [K02111] 0.00223857 0.001776885 0.03589 

 Oxidative phosphorylation [K02112] 0.00251949 0.0014185 0.000282 

 Oxidative phosphorylation [K02117] 0.00164923 0.00066083 0.003106 

 Sulfur metabolism [K00640] 0.00070878 0.001027874 0.021364 

 Sulfur metabolism [K01738] 0.0017502 0.001324658 0.016313 

 Enzyme Families 

 Peptidases [K01358] 0.00117816 0.000883014 0.038909 

 Peptidases [K03797] 0.00120438 0.002569555 0.00128 

 Peptidases [K03798] 0.00486631 0.002846636 0.000552 

 Protein kinases [K07636] 0.00071061 0.001161365 0.02494 

 Glycan Biosynthesis 
and Metabolism 

 Glycosyltransferases [K00785] 0.00042752 0.000651927 0.05262 

 Glycosyltransferases [K05366] 0.00184078 0.002811254 0.003285 

 Other glycan degradation [K01206] 0.00092428 0.00139213 0.048674 

 Peptidoglycan biosynthesis [K05515] 0.00107701 0.001691013 0.006508 

 Lipid Metabolism 
 Fatty acid metabolism [K01897] 0.00138438 0.002556185 0.001762 

 Glycerolipid metabolism [K00864] 0.0015145 0.000967855 0.017814 

 Metabolism of 
Cofactors and 

Vitamins 

 Biotin metabolism [K03524] 0.00074082 0.001016574 0.03354 

 Nicotinate and nicotinamide metabolism [K00763] 0.00166961 0.000938068 0.005323 

 Thiamine metabolism [K04487] 0.00188839 0.001437596 0.048674 

 Vitamin B6 metabolism [K00868] 0.00047552 0.000768325 0.012471 

 Metabolism of Other 
Amino Acids  D-Alanine metabolism [K01775] 0.00089094 0.001449506 0.007761 

 Metabolism of 
Terpenoids and 

Polyketides 
 Polyketide sugar unit biosynthesis [K00973] 0.0013528 0.00096776 0.03589 

 Nucleotide 
Metabolism 

 Purine metabolism [K00088] 0.00237993 0.001466943 0.00128 

 Purine metabolism [K00527] 0.00535455 0.002931853 0.000227 

 Purine metabolism [K00602] 0.00151518 0.001124554 0.05262 

 Purine metabolism [K00962] 0.00345586 0.00210977 0.001066 

 Purine metabolism [K01756] 0.00206292 0.001219477 0.003989 

 Purine metabolism [K01933] 0.00141393 0.001065581 0.017814 

 Purine metabolism [K01939] 0.00207479 0.001373952 0.009838 

 Purine metabolism [K01951] 0.00256111 0.001600577 0.003106 

 Purine metabolism [K01952] 0.00462278 0.003389246 0.003285 

 Purine metabolism [K02337] 0.0041201 0.003273085 0.009838 

 Purine metabolism [K03043] 0.00694254 0.004077235 0.000213 
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 Purine metabolism [K03046] 0.00657783 0.004324846 0.000915 

 Purine metabolism [K03763] 0.00331358 0.001907313 0.001898 

 Pyrimidine metabolism [K00609] 0.00138209 0.00100821 0.041595 

 Pyrimidine metabolism [K00876] 0.00120499 0.00180484 0.009151 

 Pyrimidine metabolism [K00945] 0.00080669 0.001563761 0.000292 

 Pyrimidine metabolism [K01937] 0.00284667 0.001726203 0.000974 

 Pyrimidine metabolism [K01955] 0.00589094 0.003706788 0.000215 

Environmental 
Information 
Processing 

 Membrane Transport 

 Bacterial secretion system [K03205] 0.00559414 0.002855123 0.001898 

 Secretion system [K02238] 0.00049376 0.000816528 0.009151 

 Transporters [K01992] 0.0007708 0.001583756 0.000729 

 Transporters [K01995] 0.00085972 0.000488071 0.041595 

 Transporters [K02003] 0.004753 0.00356 0.010484 

 Transporters [K02004] 0.00515782 0.006765727 0.002681 

 Transporters [K02013] 0.0005293 0.00111622 0.000915 

 Transporters [K02015] 0.00099992 0.001585785 0.008428 

 Transporters [K02028] 0.00216761 0.001515506 0.045025 

 Transporters [K02032] 0.00193471 0.001468723 0.029056 

 Transporters [K02036] 0.00114843 0.00057659 0.009838 

 Transporters [K06147] 0.01415334 0.011221717 0.012471 

 Transporters [K10112] 0.00116535 0.000546761 0.001762 

 Signal Transduction  Two-component system [K03406] 0.00062962 0.001180852 0.031112 

Genetic Information 
Processing 

 Folding, Sorting and 
Degradation 

 Chaperones and folding catalysts [K03544] 0.00192427 0.00135357 0.010484 

 Chaperones and folding catalysts [K03671] 0.00046994 0.000862848 0.012471 

 Chaperones and folding catalysts [K03695] 0.00409296 0.002580962 0.000292 

 Chaperones and folding catalysts [K04043] 0.00476685 0.002071802 0.000203 

 Chaperones and folding catalysts [K04077] 0.00254233 0.001526878 0.000974 

 Chaperones and folding catalysts [K04079] 0.00198413 0.001546267 0.041595 

 Protein export [K03070] 0.00466265 0.003089494 0.001434 

 Protein export [K03106] 0.00198482 0.001439827 0.008428 

 Protein export [K12257] 0.00133868 0.002007311 0.029056 

 RNA degradation [K03654] 0.0018973 0.002998105 0.002048 

 RNA degradation [K12574] 0.00150256 0.000936687 0.012471 

 Replication and 
Repair 

 Base excision repair [K01142] 0.00116747 0.000623263 0.003285 

 Chromosome [K03495] 0.00299454 0.002081906 0.003106 
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 Chromosome [K03529] 0.00219535 0.001550933 0.03354 

 DNA repair and recombination proteins [K03631] 0.00089784 0.001306848 0.029056 

 DNA replication [K03111] 0.00055412 0.00101059 0.005323 

 DNA replication proteins [K02469] 0.00545321 0.003711676 0.000651 

 DNA replication proteins [K02470] 0.00539087 0.003558727 0.000282 

 DNA replication proteins [K03169] 0.00494798 0.003713382 0.03354 

 DNA replication proteins [K03530] 0.00037924 0.000652653 0.007761 

 Homologous recombination [K03553] 0.00207226 0.000922351 0.000262 

 Homologous recombination [K03581] 0.00114847 0.001830464 0.002681 

 Homologous recombination [K03655] 0.00361948 0.005241007 0.00256 

 Nucleotide excision repair [K03701] 0.00658001 0.004222094 0.000599 

 Nucleotide excision repair [K03702] 0.00341432 0.002023284 0.000262 

 Transcription 

 Transcription factors [K02529] 0.00173564 0.003167504 0.000215 

 Transcription factors [K03497] 0.00256781 0.001950244 0.038909 

 Transcription machinery [K03088] 0.00190669 0.003296141 0.00434 

 Translation 

 Ribosome [K02886] 0.00178496 0.0010839 0.023271 

 Ribosome [K02950] 0.0009556 0.000498859 0.002048 

 Ribosome [K02967] 0.00115981 0.000816373 0.03589 

 Ribosome [K02982] 0.00129874 0.000940986 0.045025 

 Ribosome Biogenesis [K03595] 0.00096952 0.000585866 0.003106 

 Ribosome Biogenesis [K03979] 0.00177441 0.001188236 0.00434 

 Ribosome Biogenesis [K06969] 0.00176626 0.001209224 0.016313 

 Translation factors [K02355] 0.00644639 0.004281995 0.000262 

 Translation factors [K02358] 0.00318607 0.001629769 0.000262 

 Translation factors [K02835] 0.00160888 0.00109218 0.031112 

 Translation factors [K02836] 0.00195256 0.001285814 0.007761 

Table S4.2. Matses gut microbiota are enriched for metabolic functions 
compared to Venezuela and Malawi. We filtered KOs to only those shared by 
every sample from all populations. We ran Kruskal-Wallis to determine if there 
were significant differences in the abundance of KOs between countries. KOs with 
an FDR corrected p-value < 0.05 are reported along with the mean abundance of the 
KO in each country. KOs for which the Matses population in Peru was enriched 
compared to other countries are highlighted in blue.  
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Appendix B – Supplemental Methods and Data for Chapter VI 
 
Methods 

Methanol was supplied by EMD chemicals (Philadelphia, MA). Monobasic 

ammonium phosphate was procured from Avantor Performance Materials 

(Phillipsburg, NJ). Carrez I and II solutions, acetonitrile, acetone and chloroform 

were purchased from Fisher Scientific (Fenton, MO). α –solanine and α-chaconine 

standards were obtained from Indofine (NJ, USA). Acrylamide,  chlorogenic acid, 

caffeic acid, trigonelline and ascorbic acid (vitamin C) standards were obtained from 

Sigma-Aldrich (St.Louis, MO). Cyanidin and petunidin-3-glucoside were procured 

from Indofine (Hillsborough, NJ). Dithiothreitol, metaphosphoric acid, sodium 

formate and formic acid were purchased from VWR International (Radnor, PA). 

 

Potato cultivar and processing methods. Potatoes of six commercial cultivars 

(Atlantic & Russet Burbank, white-fleshed; All Red & Mountain Rose, red-fleshed; 

All Blue & Purple Majesty, purple-fleshed) were grown at the San Luis Valley 

Research Center, Colorado State University, Center, CO, USA.  Potatoes of each 

cultivar were then processed via six different methods (baked, chipped, fried, 

microwaved, raw and steamed).  All potatoes were washed before processing. Raw 

samples from each cultivar were diced (with skin) into pieces weighing 7 ±1g and 

stored at -20oC until analysis. Medium sized potatoes (6 to 7 oz) each wrapped in 

food-grade aluminum foil and pierced approximately 1.5 cm deep at 3 cm intervals 

were baked for 1 hour in a conventional oven preheated to 204oC (400oF), then 
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allowed to cool for 30 minutes. After cooling, potatoes were diced (with skin) and 

stored at -20oC until analysis. Chip slices were made using a Ditto Dean Food Prep 

industrial slicer (TR23) with a C-2 blade, and fry strips were cut with a C10 and FS-

10 blade.  Raw chips and fries were washed under running warm water for 

approximately 1 minute to remove any water-soluble sugars present on the surface 

and placed in strainer trays to remove excess water.  Chips and fries were fried in a 

5-liter capacity fryer (APW Wyott EF-30-208-2) with Bakers & Chefs Clear Frying 

Oil (Sam Club, Bentonville, AR). Chips were fried at 185oC for 2 minutes. Fried 

potatoes were French fried at 190oC for 3.5 minutes. After frying, potatoes were 

placed on paper towels to absorb any excess oil, allowed to cool for 10-15 minutes, 

and stored at -20oC until analysis. For microwaving, medium sized potatoes were 

pierced twice with a fork on each side, then cooked at the outer edge of a 1,100 watt 

microwave oven for 3.5 min. Potatoes were flipped over after 1.5 minutes. For 

steaming, a sieved double-boiler was filled halfway with water.  After water reached 

boiling, the temperature was reduced to medium. A steamer with potatoes was 

placed in the bottom pan, covered with a lid and cooked for 30 minutes. After 

cooling, potatoes were diced (with skin) and stored at -20oC until analysis. 

 

Moisture Content Analysis. Moisture content of potato samples was analyzed using 

a laboratory scale infrared moisture content analyzer (OHAUS MB 45).  Baked, 

microwaved, steamed, and raw samples were analyzed with a step profile from 

200oC to 105oC.  Chip and fry samples were analyzed with a fast profile at 95oC and 
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110oC, respectively, due to low moisture content and to avoid charring. Three 

randomized samples were analyzed for each treatment group. 

 

Preparation of Extracts for Metabolomics Analysis. Potato samples were extracted 

for metabolomics analysis according to published protocols [244] with minor 

modifications.  Samples were homogenized with acidified methanol (80%, with 0.1% 

v/v formic acid).  Homogenates were poured into chloroform resistant tubes and 

vortexed every 15 minutes for 1 hour.  Chloroform was added to the tubes to 

separate the lipids, and the tubes were vortexed every 10 minutes for 30 

minutes.  The tubes were centrifuged at 3220 g for 10 minutes and stored overnight 

at 4oC. Millipore water (5 mL) was carefully added to the top layer of chip samples 

before overnight storage at 4oC to aid separation.  Methanolic phase was collected 

and stored at -20oC for further analysis.   

 

Untargeted Analysis using UPLC-Q-TOF-MS. Injections (1 uL) were performed on a 

Waters Acquity UPLC system.  Separation was performed using a Waters Acquity 

UPLC T3 column (1.8 µM, 1.0 x 100 mm), using a gradient from solvent A 

(water,  0.1% formic acid) to solvent B (Acetonitrile,  0.1% formic acid).  Injections 

were made in 100% A, which was held for one minute; a 12 minute linear gradient 

to 95% B was applied, and held at 95% B for 3 minutes, returned to starting 

conditions over 0.05 minutes, and allowed to re-equilibrate for 3.95 minutes. Flow 

rate was constant at 200 µL/min for the duration of the run.  The column was held 
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at 50°C, samples were held at 5°C. Column eluent was infused into a Waters Xevo 

G2 Q-TOF  MS fitted with an electrospray source. Data was collected in positive ion 

mode, scanning from 50-1200 at a rate of 0.2 seconds per scan, alternating between 

MS and MSE mode.  Collision energy was set to 6 V for MS mode, and ramped from 

15-30 V for MSE mode. Calibration was performed prior to sample analysis via 

infusion of sodium formate solution, with mass accuracy within 1 ppm. The 

capillary voltage was held at 2200 V, the source temp at 150°C, and the desolvation 

temperature at 350°C at a nitrogen desolvation gas flow rate of 800 L/hr. 

Metabolites were identified via spectral matching with MassBank [205] and Metlin 

[203] databases and/or targeted metabolomics using pooled samples and standards. 

 

Processing and analysis of metabolites. Intensities were transformed using a log 

(x+1) conversion to account for zeros. Bray Curtis distances were calculated on 

BIOM tables[250] of metabolites and visualized using principal coordinates analysis 

in QIIME [251] and Emperor[252]. ANOSIM and PERMANOVA were performed 

using PRIMER v6 (Clarke, KR, Gorley, RN, 2006. PRIMER v6: User 

Manual/Tutorial) on the distance matrices (Bray-Curtis distances) for the 

untargeted metabolites and for the identified vitamins and minerals; p-values were 

corrected using False Discovery Rate. Two-way ANOVA was performed on the full 

table of unidentified metabolites and on targeted metabolites in R. For the 

untargeted metabolomics, the log transformed intensities were converted to ranks 

across all 108 samples to account for uneven and non-normal distributions and due 
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to the fact that there is not a non-parametric equivalent of a two-way ANOVA. The 

two-way ANOVA was calculated on a per-metabolite basis. The resulting p-values 

were then corrected for multiple comparisons using False Discovery rate across all 

unidentified metabolites.  

 

Determination of Vitamin C Content (HPLC-PDA). Extractions and analysis were 

performed according to published protocols[253] with modifications. Briefly, 

extraction solution comprising metaphosphoric acid (5% w/v) and dithiothreitol 

(DTT; 1% w/v) was added to potato samples and chilled at 4°C for 15 minutes. 

Chilled samples were homogenized at high speed in 5-10 second intervals to prevent 

heating and centrifuged for 15 minutes at 4°C and 1771 g.  Supernatants were 

collected, filtered through 0.45 um nylon syringe filters into amber glass tubes, and 

stored at 4°C.  Residues were re-extracted according to the above protocol without 

homogenization, and supernatants were stored in separate vials. Vitamin C 

analysis was performed on an HPLC (Shimadzu Prominence UFLC) with a 

refrigerated autosampler (4°C), column heater (30°C), and photodiode array 

detector (PDA). HPLC separation was achieved through a Zorbax SB-Aq column 

(Agilent, 3.5 um, 2.1 x 150 mm) using isocratic elution with 1% acetonitrile (ACN) / 

20 mmol sodium phosphate buffer (pH 2). The flow rate was set at 0.2 mL/min, and 

the injected volume was 1 uL. The detector was set at 254 nm.  

 

Determination of Acrylamide Content (HPLC-PDA). Extractions and analysis were 
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performed according to our established protocol (Ref) with minor modifications. 

Potato samples were extracted with methanol and centrifuged for 15 minutes at 

10°C and 4000 g. Supernatants were treated with 50 uL each of Carrez I and Carrez 

II solutions and then centrifuged for 10 minutes at 10°C and 4000 g. Supernatant 

was transferred to glass test tubes and dried in a centrivap. Samples were 

immediately re-dissolved in 1 mL of ultra-pure water by vortex mixing for 2 

minutes, filtered through 0.45 um nylon syringe filters, and stored at -20°C. 

Acrylamide analysis was performed on an HPLC (Agilent 1100) with a refrigerated 

autosampler (10°C), column heater (30°C), and photodiode array detector. HPLC 

separation was achieved through a Synergi 4u Hydro-RP 80A (Phenomenex, 5 um, 

250 x 4.6 mm) using isocratic elution with 98% ultra-pure water (pH 6.5) and 2% 

acetonitrile.  The flow rate was set at 2 mL/min, and the injected volume was 20 uL. 

The detector was set at 195 nm.  

 

Determination of Glycoalkaloid Content (HPLC-PDA). Extractions and analysis 

were performed according to the established protocol (Ref) with minor 

modifications. Potato samples were extracted with acetone and centrifuged for 15 

minutes at 4°C and 4000 g. Supernatants were transferred to chloroform resistant 

tubes.  Residues were re-extracted with 5 mL aqueous acetone (30:70 acetone:water 

(v/v)) and centrifuged for 15 minutes at 4°C and 4000 g.  Chloroform was added to 

the pooled supernatants (2:1 chloroform to extract), and stored overnight at 4°C. 

The top aqueous portion was filtered through 0.45 um nylon syringe filters, and 
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stored at -20°C.  Glycoalkaloid (α –solanine and α-chaconine) analysis was 

performed on an HPLC (Agilent 1100) with a refrigerated autosampler (10°C), 

column heater (30°C), and photodiode array detector.  HPLC separation was 

achieved through a Luna 5u C18(2) 100A column (Phenomenex, 5 um, 150 x 4.6 

mm) using isocratic elution with acetonitrile and 0.05 M monobasic ammonium 

phosphate (35:65 v/v).  The flow rate was set at 1 mL/ min, and the injected volume 

was 20 uL. The detector was set at 210 nm.  
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Figure S6.1. The effect of processing method, potato cultivar and interaction on the 
relative concentrations of potato metabolites. a, Example interaction plot where the 
relative concentration of a metabolite is only affected by processing method. b, 
Example interaction plot where the relative concentration of a metabolite is only 
affected by potato cultivar. c, Example interaction plot where the relative 
concentration of a metabolite is affected by potato cultivar and processing method, 
but with no interaction effect. In this case, the concentration of the metabolite 
abides by the additive model of the two variables. d, Example interaction plot where 
the relative concentration of a metabolite is affected by processing method, potato 
type, and an interaction effect. e, Each metabolite’s relative abundance was 
converted to a rank abundance across all 108 samples to account for non-normal 
distribution. Two-way ANOVA was performed, testing for the effect of potato 
cultivar, processing method, and interaction. The Venn diagram contains the 
number of metabolites that were significantly different (p < 0.05 after False 
Discovery correction) due to the combination of these factors. Only 1 metabolite 
fragment was unaffected by potato cultivar and processing method. No metabolites 
were affected only by the interaction between potato cultivar and processing 
method. The majority of metabolites, 11,107 out of 15,129, were significantly 
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affected by potato cultivar, processing method, and the interaction between the two. 
Processing method affected more metabolites than potato cultivar, irrespective of 
interaction.
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Figure S6.2. Interaction plots for targeted vitamins and antioxidants. The relative 
intensities for each identified metabolite were log transformed, and the average and 
standard deviation for replicates (n=3) of each treatment group are reported.  
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Table S6.1. Results of two-way PERMANOVA testing the significance of the 
effects of potato cultivars, processing method and interaction effect, and 
explained variance. The nine identified metabolites are caffeic acid, chlorogenic 
acid, folic acid, petunidin, rutin, genistein, cyanidin, caffeoylcholine, and 
trigonelline.  
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Table S6.2. Results of an analysis of similarity (ANOSIM) test comparing 
differences in metabolite profiles between potato cultivars. Bray-Curtis 
distances were calculated between all pairs of samples based on abundance of 
metabolites. Not accounting for processing methods, potato cultivars were compared 
using 999 permutations.  The results of the global (All) and pairwise tests are 
shown. The 9 identified metabolites are caffeic acid, chlorogenic acid, folic acid, 
petunidin, rutin, genistein, cyanidin, caffeoylcholine, and trigonelline. 
  



 

 

165 

   

 
Table S6.3. Results of an analysis of similarity (ANOSIM) test comparing 
differences in metabolite profiles between processing methods. Bray-Curtis 
distances were calculated between all pairs of samples based on abundances of 
metabolites. Not accounting for potato cultivar, processing methods were compared 
using 999 permutations.  The results of the global (All) and pairwise tests are 
shown. The 9 identified metabolites are caffeic acid, chlorogenic acid, folic acid, 
petunidin, rutin, genistein, cyanidin, caffeoylcholine, and trigonelline.  
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Table S6.4. Results of an analysis of similarity (ANOSIM) test comparing 
differences in metabolite profiles between groups of potato flesh colors. 
Bray-Curtis distances were calculated between all pairs of samples based on 
abundances of metabolites. Differences between color types were compared using 
999 permutations.  The results of the global (All) and pairwise tests are shown. The 
9 identified metabolites are caffeic acid, chlorogenic acid, folic acid, petunidin, rutin, 
genistein, cyanidin, caffeoylcholine, and trigonelline.  
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Table S6.5. Results of an analysis of similarity (ANOSIM) test comparing 
differences in metabolite profiles between potato cultivars within 
processing methods. Bray Curtis distances were calculated between all pairs of 
samples based on abundances of metabolites. Accounting for processing methods, 
potato cultivars were compared using 999 permutations.  The results of the global 
(All) and pairwise tests are shown. The 9 identified metabolites are caffeic acid, 
chlorogenic acid, folic acid, petunidin, rutin, genistein, cyanidin, caffeoylcholine, and 
trigonelline.  
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Table S6.6. Results of an analysis of similarity (ANOSIM) test comparing 
differences in metabolite profiles between processing methods within 
potato cultivars. Bray Curtis distances were calculated between all pairs of 
samples based on abundances of metabolites. Accounting for potato cultivar, 
processing methods were compared using 999 permutations.  The results of the 
global (All) and pairwise tests are shown. The 9 identified metabolites are caffeic 
acid, chlorogenic acid, folic acid, petunidin, rutin, genistein, cyanidin, 
caffeoylcholine, and trigonelline.  


