The Design of a Simulation System
for Persistent Object Storage Management

Jonathan Cook, Alexander Wolf, and Benjamin Zorn

Department of Computer Science
Campus Box 430
University of Colorado
Boulder, CO 80309-0430 USA

CU-CS-647-93 March 1993

&

University of Colorado at Boulder

Technical Report CU-CS-647-93
Department of Computer Science
Campus Box 430
University of Colorado

Boulder, Colorado 80309

Copyright © 1993 by
Jonathan Cook, Alexander Wolf, and Benjamin Zorn

Department of Computer Science
Campus Box 430
University of Colorado
Boulder, CO 80309-0430 USA

The Design of a Simulation System
for Persistent Object Storage Management

Jonathan Cook, Alexander Wolf, and Benjamin G. Zorn

Department of Computer Science
Campus Box 430
University of Colorado
Boulder, CO 80309-0430 USA

{jcook,alw,zorn}@cs.colorado.edu

March 1993

Abstract

Efficient storage management of objects is an important part of any persistent object system.
Storage management algorithms, such as those for clustering, caching, and garbage collection,
are often complex, since they must simultaneously satisfy a number of constraints, including
low CPU overhead, minimum space usage, and low latency. We have designed a simulation
system that can be used to evaluate a wide variety of such algorithms. The system is innovative
in that it uses trace-driven simulation as well as a loosely-coupled architecture that separates
out different aspects of storage management policy, machine hardware, and simulation con-
trol into separate modules. Examples of such modules are those for storage allocation, object
connectivity, physical characteristics, and cost modeling. The modules communicate using mes-
sage multicast (i.e., selective broadcast). This approach supports rapid prototyping and rapid
evaluation of alternative storage management algorithms.

1 Introduction

Efficient storage management of objects is an important part of any persistent object system.
Storage management algorithms, such as those for clustering, caching, and garbage collection,
are often complex, since they must simultaneously satisfy a number of constraints, including low
CPU overhead, minimum space usage, and low latency. It is important, therefore, to gain an
understanding of the performance characteristics of these algorithms before they are actually put

to use in real systems.

We have developed a new approach to evaluating algorithms for persistent object storage man-
agement. The approach is based on performing trace-driven simulations within a loosely-coupled
simulation system architecture.

Trace-driven simulation is a technique that has been successfully applied in the area of main-
memory storage management, primarily to study garbage collection and storage allocation algo-
rithms [15, 17, 19]. It works by processing a stream of prerecorded application events that represent
activities related to object manipulation (e.g., create, read, and write). The source for those events
could be either benchmarks or actual applications.

The loosely-coupled architecture separates out different aspects of storage management policy,
machine hardware, and simulation control into separate modules, such as those for storage alloca-
tion, object connectivity, physical characteristics, and cost modeling. The modules communicate
using message multicast (i.e., selective broadcast) mediated by a message dispatcher. The flexibil-
ity of a loosely-coupled architecture allows rapid prototyping and rapid evaluation of alternative
storage management algorithms under varying circumstances by supporting the easy replacement
of modules. Moreover, the set of modules involved in the simulation is not predefined and, thus, the
simulation system can be conveniently extended to account for unanticipated aspects of persistent
object storage management simulation.

Although the simulation system has not yet been implemented, we have performed a number
of paper simulations to exercise the architectural design. (We have simulated the simulator, if
you will.) This has primarily involved studies of the anticipated message traffic among sets of
modules implementing various algorithms. These studies have uncovered weaknesses in our original
conceptions of the roles of certain modules, but have also shown that the basic idea of using trace-
driven simulation and a loosely-coupled architecture is indeed sound.

In this paper, we present the design of our trace-driven, loosely-coupled simulation system. The
next section outlines the advantages of a trace-driven simulation approach and describes related
work. Section 3 presents the details of the simulation system architecture. Section 4 demonstrates
the utility of the system by showing how it can be used to simulate several diverse algorithms
for automatic storage reclamation, or garbage collection, of a persistent object store. While main-
memory garbage collection algorithms have been thoroughly investigated, similar algorithms for

persistent object systems are only starting to be proposed and evaluated. Section 5 details the kinds

of information we intend to collect with this system, including possible approaches to benchmarking.

Section 6 summarizes our conclusions and plans for future work.

2 Background

There are three distinct approaches to evaluating an algorithm:
1. build and measure a prototype implementation;
2. construct and reason about an analytic model of the algorithm; or
3. perform a trace-driven simulation of the algorithm.

All of these approaches can be used to evaluate persistent object storage management algorithms,
but by far the most common choice has been prototyping. In this section, we discuss these three
approaches to the evaluation of persistent object storage management and consider related work in
the area of main-memory heap storage management.

Prototype implementations are often used to evaluate the performance of both main-memory [5,
11, 14] and persistent object storage management [6, 8]. While this approach provides the most
realistic performance estimates, it suffers in several ways. The most important drawback of proto-
type implementations is that they are time-consuming to implement. Many reports of prototype
implementations only present the performance of a single algorithm because the cost of fully im-
plementing and comparing multiple algorithms is prohibitive.

Prototypes have other drawbacks as well. Often they are implemented in the context of a com-
plex hardware/software system and have dependences on the architecture of that system. Such
dependences often impact prototype performance so that separation of algorithm and system ef-
fects on performance becomes difficult. Finally, measuring some aspects of the performance of
prototypes, for example the cache miss rate, can be difficult because hardware monitors may be
required. Furthermore, prototypes do not allow the full space of design parameters to be easily
explored. For example, whereas with a prototype the disk seek time is a fixed physical constant,
in a simulation, the system throughput can be evaluated as a function of seek time.

A much less costly approach to performance evaluation is the use of analytic models. Butler

investigates the performance of different persistent storage management algorithms using proba-

bilistic models of program reference and update behavior [2]. For a number of dynamic storage
allocation algorithms, she shows the expected I/O costs based on complex formulas. This approach
has also been taken in evaluating main-memory storage allocation [1, 7, 16]. The greatest weakness
of this approach is the degree to which simplifying assumptions about program behavior must be
made to keep the model tractable. Zorn and Grunwald show that even very complex analytic mod-
els of program allocation behavior often do not sufficiently model actual behavior for the purposes
of accurate performance evaluation [21]. As such, analytic models are best used to estimate and
compare worst-case performance of algorithms.

Trace-driven simulation fills the gap between prototyping and modeling. When driven by actual
traces, the allocation behavior used to perform the evaluation reflects actual programs. Further-
more, because the algorithm is implemented as part of a simulator, many system-dependent details
are avoided, greatly reducing the cost of implementation. This approach has been used very suc-
cessfully in evaluating different cache and virtual memory management systems [9, 13].

More recently, trace-driven simulation has been used to evaluate main-memory dynamic storage
management algorithms, including garbage collection. Zorn uses simulation to compare the cost of
different generational collection algorithms, arguing that mark-and-sweep algorithms in this context
often have cost that is comparable to copying algorithms [18, 19]. Ungar and Jackson use trace-
driven simulation to investigate alternative tenuring policies in a Smalltalk system [15]. Zorn [20]
and Wilson [17] both use simulation to investigate the cache performance of generational garbage
collection algorithms.

The system described in this paper uses trace-driven simulation to investigate the performance
of storage management in persistent object systems. Because this approach has proven successful
in other areas of performance evaluation, we are confident that applying it in this domain also will
yield significant results. Furthermore, the architecture we propose is flexible, facilitating rapid algo-
rithm prototyping and comparison, and innovative, incorporating new ideas in designing simulation

system architectures. In the next section, we describe that architecture.

3 Simulation System Architecture

The simulation architecture we propose is message based and loosely coupled. Figure 1 shows the

high-level structure of the simulation system. At the top of the figure, messages corresponding to

Other ...

Garbage /

Collector

Connections

Manager

Figure 1:

External Events

v

Message

Dispatcher

Storage
Allocator

\ Storage

Map

Performance
Evaluator

Cost
Estimator

v

Performance M easures

Simulation System Architecture.

external events enter the system and drive the simulation. These events might be generated either
by an actual database or by a benchmark program. At the bottom of the figure, results in the form
of performance measurements are produced. Central to the architecture is the message dispatcher,
which processes all messages generated by the simulation. Modules in the system communicate

only through sending messages via the message dispatcher. These messages correspond to:

e External events—persistent object operations performed by the application program.

e Internal events—object and data manipulations caused by the simulation of the persistent

object management algorithm.

o Informational messages—information that is passed between modules to conduct the simula-

tion.

The dispatcher supports message multicast, that is, when a message is processed by the dispatcher,
some number of modules are sent the message. Each module that is interested in a particular kind
of message registers a message handler for that kind with the dispatcher.

Message handling in the architecture is completely synchronous. In particular, every message
handler informs the message dispatcher explicitly that it is done processing a particular message.
Furthermore, if the processing of one message generates additional messages, these sub-messages
must be entirely processed before the message that caused them to be generated is considered
completely handled. At the highest level, the message dispatcher will read an external event and
completely process it before reading the next external event. Note that these semantics do not
require that message processing be fully serialized. For example, if an external event message is
dispatched to several modules, they may all handle that message concurrently; they must, however,

all wait for each other to complete before the next external message can be processed.!

3.1 System Modules
In this section we briefly describe the roles of the modules illustrated in Figure 1.

Storage Allocator: This module is responsible for knowing what regions of disk/memory are free

(and conversely, allocated) and deciding how to allocate the available space when an object

1Of course, as with any system that supports concurrency and waiting, the potential for deadlock exists and,
therefore, module implementors must be careful to avoid circular dependencies.

creation request is received. With this organization, the storage allocator needs to know
nothing about how free storage is reclaimed, it must simply be informed when some region

of space is determined to be free by the garbage collector.

Garbage Collector: This module’s sole responsibility is to identify storage that can be safely
reclaimed and then inform the storage allocator about that storage. As the figure illustrates,
our simulation system allows multiple instances of either the storage allocator or garbage
collector algorithms to be simulated. Because these algorithms are encapsulated as loosely-

coupled modules, replacing one module with another is very easy.

Storage Mapper: This module implements the mapping from logical object identifiers to the
physical location of the object and vice versa. It is responsible for translating a logical object
operation, such as a read or a write, into the physical operations necessary to accomplish
that operation. The storage mapper also provides information about object contents to other
modules that require such information. Finally, it implements the buffer management policy

and can identify what objects currently reside in memory buffers.?

Connections Manager: This module maintains information about the logical connectivity of
all objects in the system. It is responsible for answering questions such as “what objects
does this object point to?” and “what objects point to this object?”. This module also
maintains information about the root objects in the system. Some collection algorithms, such
as generational collection, require an augmented root set, corresponding to the objects that
contain pointers into a specific part of the address space. In that case, it is the responsibility

of the garbage collector to maintain this information and not the connections manager.

Cost Estimator: This module augments physical operation events, such as disk reads and writes,
with cost estimates of the event. For example, this module may have a model of the physical

disk being used, including its seek time and latency.

Performance Evaluator: The input into this module is a stream of application and simulation

event messages augmented with the costs of physical operations associated with these events.

2 A better approach makes the buffer manager a separate module. We have eliminated this module from the figure
to simplify later examples.

Based on this stream, the performance evaluator is responsible for providing information
about the performance of a particular algorithm, such as the average number of disk reads
and writes per object reclaimed. The main purpose of this module is to accept large quantities

of raw data and reduce those data into performance metrics of interest.

Other...: Additional modules may also be necessary and can be easily accommodated in our
architecture. For example, some garbage collection algorithms may require input about wall-
clock time, such as an algorithm that performs a full collection once a day at 3:00am. A clock
module would be responsible for generating timing events that can be used by other modules

needing such information.

3.2 System Events and Event Classes

The messages flowing through the simulation system represent application program activity, internal
storage management activity, and communication among different parts of the simulation system.
These messages can be categorized into several classes. Table 1 identifies the message classes,
presents examples of messages in each class, and shows the forms that those messages take.

Messages that correspond to actions performed by an application or by a simulated storage
management system are called events and may result in costs recorded by the performance evalua-
tor. For example, an object creation by an application is an event, as is a garbage collector reading
an edge to carry it to the next object. Some events imply that certain information required for the
simulation is needed by a module from some other module. These events are distinguished by a
“yes” in the Inquiry column of Table 1.

Informational messages are used to communicate information among modules in response to
inquiries. For example, the connections manager responds to an edge read event by sending an
edge_data message, which contains the destination object ID of that edge; this response would
allow a garbage collector to traverse the reachable objects in a collection scheme such as mark-and-
sweep. Although informational messages are generally sent in response to inquiries, there can be
some informational messages that are independent in nature, such as a timer message from a clock
module.

The translation of events into costs is done through messages implementing a layered I/0O

abstraction. All events are considered abstract I/O messages that are translated by the storage

Message Class Message Types Inquiry Form
Event create object create_obj(size,#edges)
delete object del_obj(oid)
set root set_toot(oid)
unset root unset_root(oid)
get root yes get_root(prev_root_oid)
read edge yes rd_edge(oid,edge#)
write edge wr_edge(oid,edge#,to_oid)
read data rd_data(oid,offset,length)
write data wr_data(oid,offset,length)
delete edge del_edge(oid,edge#)
read header yes rd_hdr(oid,hdr_data)
write header rd/wr_hdr(oid,hdr_data)
object ID at address yes addr_obj(address)
Informational | root oid root_obj(oid)

object ID of address
edge destination
header data

obj_addr(address, oid)
edge_data(oid,edge#,to00id)
hdr_data(oid,data)

Abstract I/0

all events

Physical I/O | read address rd_addr(addr,length)
write address wr_addr(addr,length)
Costed I/0 augmented read aug.rd(addr,length,cost)
augmented write aug_wr(addr,length,cost)
Table 1: Message Classes and Example Messages.

map into one or more physical I/O messages. These are evaluated by the cost estimator, augmented
with associated costs based on the cost model being used, and then translated into costed (or
augmented) I/O messages. These latter messages are examined by the performance evaluator for

analysis.

3.3 Extending the Set of Modules and Events

The set of modules and events supported by the simulation system is easily extended. For instance,
a common style of persistent object system interaction is to read a group of connected objects
into main memory, operate on the group for a while (possibly removing and adding objects to the
group), and finally pass the group with changes back to the persistent object system to obtain
persistence.

For the set of external events illustrated and used in this paper, we assume that group operations
have been decomposed into operations on individual objects before the trace is generated. With
this assumption, however, we lose information about how related objects are being manipulated
together and, thus, limit our ability to study the effects of clustering algorithms on performance.

To accommodate such studies, we could consider adding events corresponding to operations on
groups of objects (e.g., read_group and write_group). We could also add a module to process group
events by decomposing them into a series of low-level events (e.g., object creations and edge writes).
This would amount to an internalization of the decomposition we previously assumed was carried
out before the trace is generated and essentially gives visibility of grouping to the simulation. To
complete this new organization, we could add a new event, place_obj near, that provides a hint to
the storage allocator about where a particular object should be reside.

With the new module and new events in place, we can investigate the performance of clustering
algorithms with only one change to the rest of the simulation system (the storage allocation module
would need to respond to the place objnear event message). This example illustrates both the

flexibility and modularity of our architecture.

10

4 Simulation Examples

In this section, we illustrate the behavior and structure of the simulation system using several
message sequences that are part of three diverse and seminal approaches to automatic storage
reclamation. The algorithms considered are a non-incremental mark-and-sweep collector [10], an
incremental copying collector [1], and briefly a reference counting collector [4]. The performance of
variants of these algorithms are also evaluated analytically by Butler [2].

To make the sequences presentable, for each algorithm we only show a message sequence for a
single, important operation in the algorithm. Before presenting the examples, we briefly describe
each algorithm and the key operation that is shown. The message sequences are shown on a
hypothetical instantiation of the simulation architecture, where there is just one garbage collector,
one storage allocator, and which includes a clock module.

While these examples illustrate a small part of each of several storage reclamation algorithms,
they are not in any way intended to prove that the simulation system we propose is fully defined and
tested. We intend these examples simply to suggest the style of computation in the system. The
examples both make the description of the architecture more concrete and illustrate its dynamic

behavior.

4.1 Mark-and-Sweep Collection

In the classic mark-and-sweep algorithm, objects are traversed transitively starting from a root
set, and marked when they are reached. After all objects are marked, the entire address space
is swept and unmarked objects, known to be unreachable from the root set, are reclaimed. The
non-incremental version of this algorithm performs all marking and sweeping at the same time,
resulting in a potentially long pause for the application program. The key events we illustrate for
this algorithm are the following. In the mark phase, we show events corresponding to a single edge
traversal, mark-test, and mark-set. This operation sequence is the core of the mark phase and is
repeated for each reachable edge in the address space. In the sweep phase, we illustrate the message
sequence corresponding to the identification and reclamation of a single unmarked (free) object.
Figure 2 shows message sequences of this one step in the mark phase. Frame 1 shows the
garbage collector sending a rd_edge message to traverse an edge to the next reachable object. In

Frame 2, the connections manager responds with the ID of the object pointed to by the specified

11

Clock

Storage
Allocator

[

Clock

Message Message
Dispatcher Dispatcher
Garbage \ Storage Garbage 7 (’\: rd addr Storage
Collector rd_edge Map Collector - Map
edge_dat
Connections ’ Cost Connections . Cost
Manager Performance Estimator Manager Performance Estimator
Evaluator Evaluator
lock Storage Jock Storage
Cloc! Cloch
M e Allocator M Allocator
| —=XE__ 1 hdr_data essge
/ Dispatcher Dispatcher
Garbage Q Storage Garbage

Collector

Connections

Manager

Performance

Evaluator

Performance Evaluator’s Trace: |

Figure 2:

Estimator

12

Collector

Connections

Manager

Performance

Evaluator

rd_edge, aug_rd),
g g

(rd-hdr, aug.rd),
(wr_hdr, aug.-wr) |

One Step of Marking in Mark-and-Sweep.

. Cost
Estimator

Message From Module To Module(s)

rd_edge garbage collector connections manager,
storage manager,
performance evaluator

rd_addr storage manager cost estimator
aug rd cost estimator performance evaluator
edge_data connections manager | garbage collector
rd_hdr garbage collector storage manager,
performance evaluator
rd_addr storage manager cost estimator
aug rd | cost estimator performance evaluator
hdr_data | storage manager garbage collector
wr_hdr garbage collector storage manager,
performance evaluator
wr_addr storage manager cost estimator
aug_wr | cost estimator performance evaluator

Table 2: Mark Message Sequence.

edge, while at the same time the storage map generates a rd_addr (with a corresponding augmented
read from the cost estimator), which is the physical read caused by the garbage collector’s rd_edge.
Frame 3 shows the garbage collector reading the current mark of the object, resulting in another
rd_addr. Frame 4 shows the marking event—a wr_hdr from the garbage collector resulting in
an eventual augmented write from the cost estimator. The trace of messages recorded by the
performance evaluator (indicated at the bottom of the figure) shows the three I/Os in terms of
message pairs; the first message in the pair corresponds to the event that caused the I/0, while the
second corresponds to the event augmented with cost.

For this first example we also show a complete message-trace listing in Table 2. The causal
relationships are shown through the nesting (indentation) of the events—an event at a given level
of nesting was caused by the most recent event at one nesting level less. While the contents of a
previous informational message can have an influence on a succeeding message, we do not consider
that to be the causing event. For instance, in the mark example (Figure 2) the rd_hdr event is
at the same nesting level as the preceding edge_data event. Even though the rd_hdr needed the
information from the edge _data event to proceed, it was the garbage collector’s rd_edge event that

set up the examination of the object to which that edge pointed. The same is true for the later

13

Storage Storage
Clock Clock
M e Allocator M e Allocator
Dispatcher Dispatcher .
| —2= 1 obj_addr
Garbage \ Storage Garbage (\: rd o Storage
Collector addr_obj Map Collector - Map
\aug_rd
Connections ’ \ Cost Connections ’ \ . Cost
Manager Performance Estimator Manager Performance Estimator
Evaluator Evaluator
Jock Storage ook ' Storage
Cloc! Cloch
M e Allocator M e Allocator
| =] hdr_data = T
/ Dispatcher Di -

Garboge rd_hdr

Collector

Connections

Manager

NS
»

Performance
Evaluator

_‘
o
8
=3

Storage

Cost
Estimator

Connections

0
a

Manager

<

N

vgug_

Performance

Evaluator

wr_addr

- Storage
Map

Cost

Estimator

(addr_obj, aug rd),
(rd-hdr, aug.rd),
(del-obj, wr_hdr, aug_wr)]

Performance Evaluator’s Trace: |

Figure 3: One Sweep Step in Mark-and-Sweep.

wr_hdr event, which utilized the data from the hdr_data event, but which is at the same scope as
the other header processing (e.g., rd_hdr).

While this table shows a strict ordering of the events, this is not enforced by the simulation
architecture, and there is some parallelism available in this trace. For example, processing of the first
rd_addr and the edge_data, which are both caused by the initial rd_edge, can occur simultaneously.

In the sweep phase of the mark-and-sweep collector, the garbage collector must scan through
the objects in storage and recover them if they are not marked (thus, they were unreachable from
the root(s) during the mark phase). It does this by asking the storage map which object exists
at a given address, processing that object, and proceeding sequentially through the storage space.

Figure 3 shows the message sequences of one step in the sweep phase, in which the object that

14

is processed is not marked, and thus is reclaimed. Frames 1 and 2 show the address inquiry by
the garbage collector, as well as the resulting physical read and object ID reply by the storage
map. Frame 3 is the reading of the object header to determine the mark and the object’s size (for
proceeding to the next object’s location).® Frame 4 shows the resulting deletion of the object and

the write cost associated with that deletion event.

4.2 Incremental Copying Collection

The incremental copying collector is similar to the one described by Baker [1]. This algorithm
implements the traditional semi-space copying collection algorithm (with spaces named FromSpace
and ToSpace), but objects are copied incrementally. While the details of the algorithm are beyond
the scope of this paper, we discuss one aspect of the algorithm here. The Baker collector is made
incremental by maintaining an invariant that whenever pointers are read from memory, the object
they point to must be located in ToSpace. This invariant is maintained by checking the value of
every pointer read and relocating the object and pointer if the object is in FromSpace. If the object
has already been copied, a “forwarding address” is left in the FromSpace copy of that object and
the pointer being read must simply be rewritten to point to the ToSpace location of the object.
The message sequence we illustrate is exactly the scenario described: following a pointer read, the
collector determines if the pointer points to FromSpace, identifies a forwarding address if one exists
(it does in this example), and relocates the value of the pointer just read.

Figure 4 shows message sequences during the processing of a pointer that points to the FromSpace
copy of an object. The sequence begins by the application reading the edge from one object
(Frame 1), resulting in the costed read and the edge data replies in Frame 2. The garbage collector
learns from the edge data that the object is in FromSpace and inquires into the status of that
object, as shown in Frame 3. The reply shows that it already has a forwarding address to its copy

in ToSpace, and thus the original edge that was read is updated in Frame 4.

31f the garbage collector had been implemented to cache this information during the mark phase, then it would
have been responsible for generating the I/O message for the cost estimator to evaluate.

15

rd_edge

Storage Storage
Clock Clock
M Allocator M e Allocator
Di her Dispatcher

rd_addr

7

Garbage \ Storage Garbage > Q Storage
Collector Map Collector (\ M

edgeAdata

aug_rd

Connections Cost Connections
Manager Performance Estimator Manager Performance
Evaluator Evaluator

I

Estimator

Cost

Storage Storage
Clock Clock
Allocator Allocator
Message Message
| ——
Dispatcher Dispatcher
hdr—y/ | oo | | e
Garbage Garbage
rd_hdr
Collector -

Collector
Connections
Manager

wr_edge

Connections
Manager

Performance Evaluator’s Trace: [(rd_edge, aug.rd),
(rd-hdr, aug.rd),
(wr_edge, aug_wr)]

Performance Performance

. Cost
Estimator

Estimator

Evaluator

Evaluator

Figure 4: Forwarding a Pointer in Incremental Copying Collection.

16

Storage Storage
Clock Clock

Allocator Allocator

Message

cher Di:
Garbage Storage Storage
N rd_har
Collector (\ Map Collector - Map

& wr_addr

/ \ aug_ wr

Connections ‘ Cost Connections \ Cost

Manager Performance Estimator Manager Performance Estimator
Evaluator Evaluator

3| 4

Storage Storage
Clock Clock wr hdr
Allocator — Allocator
e Message

hdr_data

S
£
Lg C

g |
E .

Garbage ‘

Collector

b Storage

Map

Collector (\
N

Connections Connections
Performance Performance
Manager Manager
Evaluator Evaluator

Performance Evaluator’s Trace: [(del_edge, aug wr),
(rd-hdr, aug.rd),
(del-obj, wr_hdr, aug_wr)]

‘ ‘ Cost

Estimator

Estimator

Figure 5: Collecting an Unreachable Object.

4.3 Reference Counting

The reference counting collector is another classic algorithm. Each object maintains a count of
the number of objects that currently point to it and every time one of those pointers is created or
deleted, the reference count is adjusted accordingly. When the reference count reaches zero, the
object is reclaimed. This algorithm does not correctly reclaim circular structures, but can be used
in conjunction with other collection techniques (such as mark-and-sweep) to reclaim all objects.
Figure 5 shows an application deleting an edge, resulting in the garbage collector recovering
an object. To simplify this example, the object is a leaf object, so that cascading reference count

changes are avoided. There are three physical I/Os that result from this trace: a write to remove

17

the edge, a read of the object’s header to get the current reference count, and a write for the storage

allocator to recover the object.

5 Simulation Architecture: Input and Output

In this section, we discuss how the proposed simulation architecture will be used, including how the
traces of external events will be generated and what kinds of performance evaluations are possible.

The input to the simulation architecture is an external event trace, representing a sequence
of operations on application objects. This trace can either be collected from actual persistent
object system executions and fed into the simulator, or the trace can be generated by a synthetic
benchmark program that is intended to generate a simulated application load.

Our initial intention is to drive the simulation system with synthetic benchmarks based on the
engineering database benchmark described by Cattell [3]. While this benchmark is a starting point,
it is not completely appropriate for the measurement and evaluation of persistent object storage
management. In particular, Catell’s benchmark generates a database and then performs lookups,
traversals, and inserts. This benchmark models a system in which the database is monotonically
growing in size. To test the performance of storage reclamation algorithms, however, we must
investigate a database in which objects are both created and deleted. Thus, we must augment
the Cattell benchmark with a series of random reconnections, which will result in some database
objects becoming unreachable.

After prototyping our simulation system with synthetic input data, we intend to gather external-
event (i.e., application) traces from existing persistent object storage systems. Based on our expe-
rience with the synthetic data, we will have a clear understanding of what information the actual
trace should contain. A collection of such traces could be used widely for detailed comparisons of
implementation techniques.

The output of our simulation system depends on the information that is provided to the per-
formance evaluation module. This module may “listen in” on most system messages, seeing every
external event and the corresponding internal events annotated with a predicted cost. With these
data, many metrics can be collected. We mention a few of the most important metrics to illustrate

what is possible.

18

The throughput of a system is one significant metric. We are able to measure throughput in
simple terms, as a number of I/O operations performed, or in more complex terms, if the cost
module provides estimates of the cost of particular disk operations. We are also able to determine
what program or algorithm events are responsible for what part of the cost. For example, we
can determine what fraction of the total overhead is due to the collection module or the storage
allocation module.

Another important metric is the memory/disk utilization and related fragmentation. This
information is provided to the performance module by the storage map module via informational
messages. When garbage collection is used in an interactive application, system response time
is always a significant metric. Our system also allows us to measure the distribution of delays
experienced by application users that are caused by storage management operations.

One of the benefits of using trace-driven simulation for performance evaluation is that time-
dependent information about system performance is available. For example, while an analytic
model, such as Butler’s, can provide information about average or worst-case measures (i.e., collec-
tion overhead or interactive response), trace-driven simulation allows us to plot the time-varying
behavior of these metrics. For example, it is very useful to know that the interactive response of a

particular algorithm continually degrades as the program executes.

6 Summary and Future Work

We believe that trace-driven simulation will be an important tool in designing, evaluating, and
comparing alternative persistent object storage management algorithms. In this paper, we present
the design of an innovative simulation system for evaluating these algorithms. In particular, our
system is trace-driven and its architecture is loosely coupled, allowing easy substitution of the
simulation modules for rapid development and simulation of alternative algorithms using different
performance metrics. Our architecture supports the model of message multicast, where modules
interested in being informed about particular messages register their interest with a message dis-
patcher. Because it is loosely coupled, our architecture allows us to explicitly separate algorithm
policy modules. For instance, in our garbage collection example, we separate the storage allocation
policy from the storage reclamation policy, resulting in explicit interfaces between these modules

and flexibility in the implementation and evaluation of both.

19

The garbage collection example illustrates how the simulation system will allow us to compare
the performance of a variety of related algorithms, in this case traditional storage reclamation
techniques, such as mark-and-sweep collection, copying collection, and reference counting. We will
be able to perform algorithm evaluations similar to those of Butler, who used analytic models of
algorithms and behavior, but to achieve results that go well beyond her worst-case studies.

Because this work is preliminary, there are many unfinished parts. Our immediate goal is to
implement a prototype of the simulation architecture. Because implementations of general-purpose
message-multicast systems already exist and are publically available (e.g., the Msg component of
Field [12]), our hope is to use some of these components in the initial implementation. To drive
the prototype, we will implement a synthetic database benchmark and gain experience both with
the simulation architecture and the application interface.

Based on this prototype, we see the research proceeding in two main directions. The most
important direction is to investigate the performance of different storage management algorithms.
Initially, we intend to study algorithms for storage reclamation like those described in this paper.
Because this system is quite flexible, we expect that other storage management algorithms, such
as object clustering or caching algorithms, will be relatively easy to investigate as well.

Second, we will collect actual traces from existing persistent object systems. We expect the
behaviors of actual systems to be significantly different from those of benchmark programs. Col-
lecting and doing evaluations based on such data will lead to storage management algorithms that
are effective in actual practice.

In conclusion, we believe that trace-driven simulation as a tool for algorithm evaluation has
been and will continue to be very effective in many problem domains. We have outlined the design
of a loosely-coupled architecture to implement trace-driven simulations in the domain of persistent
object storage management. While we propose to use this architecture in a specific domain, the

framework described is quite general and can be useful beyond this application.

References

[1] Henry G. Baker, Jr. List processing in real time on a serial computer. Communications of the ACM,
21(4):280-294, April 1978.

[2] Margaret H. Butler. Storage reclamation in object-oriented database systems. In Proceedings of the
ACM SIGMOD International Conference on the Management of Data, pages 410-423, San Francisco,
CA, 1987.

20

[3]

[9]
[10]

[11]

R. G. G. Cattell. The Benchmark Handbook for Database and Transaction Processing Systems, chapter 6,
pages 247-281. Morgan Kaufmann Publishers, Inc, San Mateo, CA, 1991.

George E. Collins. A method for overlapping and erasure of lists. Communications of the ACM,
2(12):655-657, December 1960.

Robert Courts. Improving locality of reference in a garbage-collecting memory management system.
Communications of the ACM, 31(9):1128-1138, September 1988.

David J. DeWitt, David Mater, Philippe Futtersack, and Fernando Velez. A study of three alterna-
tive workstation-server architectures for object oriented database systems. In Proceedings of the 16th
International Conference on Very Large Data Bases, pages 107-121, Brisbane, Australia, August 1990.

Tim Hickey and Jacques Cohen. Performance analysis of on-the-fly garbage collection. Communications
of the ACM, 27(11):1143-1154, November 1984.

Scott E. Hudson and Roger King. Cactis: A self-adaptive, concurrent implementation of an object-
oriented database management system. ACM Transactions on Database Systems, 14(3):291-321,
September 1989.

R. L. Mattson, J. Gecsei, D. Slutz, and I. L. Traiger. Evaluation techniques for storage hierarchies.
IBM Systems Journal, 9(2):78-117, 1970.

John McCarthy. Recursive functions of symbolic expressions and their computations by machine, part
I. Communications of the ACM, 3(4):184-195, April 1960.

David A. Moon. Garbage collection in a large Lisp system. In Conference Record of the 1984 ACM
Sympostum on LISP and Functional Programming, pages 235-246, Austin, Texas, August 1984.

Steven P. Reiss. Connecting tools using message passing in the Field environment. IEEE Software,
pages 57-66, July 1990.

Alan J. Smith. Cache memories. ACM Computing Surveys, 14(3):473-530, September 1982.

David Ungar. Generation scavenging: A non-disruptive high performance storage reclamation algorithm.
In SIGSOFT/SIGPLAN Practical Programming Environments Conference, pages 157-167, April 1984.

David Ungar and Frank Jackson. An adaptive tenuring policy for generation scavengers. ACM Trans-
actions on Programming Languages and Systems, 14(1):1-27, January 1992.

Philip L. Wadler. Analysis of an algorithm for real time garbage collection. Communications of the
ACM, 19(9):491-500, September 1976.

Paul R. Wilson, Michael S. Lam, and Thomas G. Moher. Caching considerations for generation garbage
collection. In Proceedings of the 1992 ACM Conference on LISP and Functional Programming, pages
32-42, San Francisco, CA, June 1992. ACM.

Benjamin Zorn. Comparative Performance Evaluation of Garbage Collection Algorithms. PhD the-
sis, University of California at Berkeley, Berkeley, CA, November 1989. Also appears as tech report
UCB/CSD 89/544.

Benjamin Zorn. Comparing mark-and-sweep and stop-and-copy garbage collection. In Proceedings of
the 1990 ACM Conference on LISP and Functional Programming, pages 87-98, Nice, France, June 1990.

Benjamin Zorn. The effect of garbage collection on cache performance. Technical Report CU-CS-528-91,
Department of Computer Science, University of Colorado, Boulder, Boulder, CO, May 1991.

Benjamin Zorn and Dirk Grunwald. Evaluating models of memory allocation. Technical Report CU-
CS-603-92, Department of Computer Science, University of Colorado, Boulder, Boulder, CO, July 1992.

21

