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ABSTRACT	

Barnhart,	Theodore	Basile	(Ph.D.,	Geography)	

The	Response	of	Streamflow	and	Evapotranspiration	to	Changes	in	Snowmelt	Across	the	

Western	United	States	

Dissertation	directed	by	Associate	Professor	Noah	P.	Molotch	

	

Mountain	regions	disproportionately	produce	streamflow	for	downstream	

ecosystems	and	communities.	In	the	western	United	States	this	snowmelt	derived	water	is	

valued	in	the	trillions	of	dollars.	Given	the	high	value	of	snowmelt-derived	water,	

understanding	how	streamflow	production	and	vegetation	water	use	from	mountain	

regions	may	change	is	of	critical	importance.	Snowmelt	rate,	timing,	and	amount	are	

forecast	to	change	under	future	climate,	potentially	altering	streamflow	and	

evapotranspiration	patterns.	This	dissertation	investigates	the	relationship	between	

snowmelt	rate,	timing,	and	amount	and	runoff	or	streamflow	at	the	plot	and	regional	scales	

across	the	western	United	States.	Additionally,	the	effects	of	future	land	cover,	

precipitation,	and	air	temperature	changes	on	streamflow	from	a	headwaters	catchment	

are	investigated.	

	 At	the	plot	scale,	observations	and	hydrologic	modeling	were	used	to	investigate	

how	changes	in	snowmelt	rate,	timing,	and	amount	affect	snowmelt	season	runoff	

production	and	subsurface	water	storage	in	Colorado	(CO)	and	California	(CA).	The	

snowmelt	modeling	experiment	was	designed	to	eliminate	the	observed	multicollinearity	

between	snowmelt	rate,	timing,	and	amount.	Results	indicate	that	runoff	was	most	
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sensitive	to	snowmelt	timing	and	rate	at	CO	and	CA,	respectively	(sensitivity	=-0.31	vs.	0.22	

and	sensitivity	=	-0.31	vs.	0.67	for	snowmelt	timing	vs.	rate,	respectively).	Snowmelt	season	

changes	in	subsurface	storage	were	most	sensitive	to	snowmelt	timing	at	both	CO	and	CA	

(sensitivity	=	-0.24	vs.	0.18	and	sensitivity	=-0.474	vs.	0.466	for	snowmelt	timing	vs.	rate,	

respectively).	

	 At	the	watershed	scale,	the	Landscape	Disturbance	and	Succession	(LANDIS)	land	

cover	evolution	model	was	used	in	conjunction	with	the	Regional	Hydro-Ecologic	

Simulation	System	(RHESSys)	to	investigate	how	changes	in	climate	and	land	cover	may	

alter	streamflow	from	2000	to	2100	in	a	catchment	on	the	Colorado	Front	Range.	As	forest	

cover	in	the	catchment	increased,	counter	intuitively,	the	simulated	streamflow	also	

increased	by	29-44%	by	2100	driven	by	reductions	in	wind-scour	of	snow	out	of	the	

catchment	and	decreases	in	evapotranspiration.	These	changes	in	streamflow	were	

partially	attributed	to	land	cover	change	but	also	to	air	temperature	driven	changes	in	

snowmelt	timing.	

	 At	the	regional	scale,	a	long-term	hydrometeorology	data	set	was	used	to	elucidate	a	

possible	mechanism	linking	snowmelt	rate	to	streamflow	production.	An	ensemble	of	

Budyko	streamflow	anomalies	(BSA),	a	measure	of	streamflow	production,	at	~20,000	

Variable	Infiltration	Capacity	model	grid	cells	was	computed.	BSA	was	correlated	with	

simulated	baseflow	efficiency	(r2=0.64)	and	snowmelt	rate	(r2=0.42).	A	strong	correlation	

between	snowmelt	rate	and	baseflow	efficiency	(r2=0.73)	links	these	relationships	and	

supports	a	possible	streamflow	generation	mechanism	wherein	greater	snowmelt	rates	

increase	subsurface	flow	and	streamflow	production.	
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Chapter	1: Introduction	
1.1	Context	for	the	Dissertation	

Globally,	mountainous	areas	contribute	disproportionally	to	streamflow,	often	in	the	form	

of	snowmelt	[Barnett	et	al.,	2005;	Viviroli	et	al.,	2007].	Streamflow	from	mountain	regions	

represents	the	majority	of	global	renewable	freshwater	[Vörösmarty	et	al.,	2005].	This	

snowmelt-derived	streamflow	provides	a	necessary	resource	to	one-sixth	of	the	global	

population	[Barnett	et	al.,	2005].	In	addition	to	their	water	resources,	mountain	regions,	

especially	in	the	Western	United	States,	serve	as	carbon	sinks	[Schimel	et	al.,	2002].	Given	

the	ecosystem	services	that	mountain	regions	supply	to	downstream	communities,	

understanding	how	streamflow	will	change	from	these	regions	in	the	future	is	important	as	

mountain	systems	are	bellwethers	for	environmental	change	[Williams	et	al.,	2011].	

	 In	the	western	United	States,	60	million	people	rely	on	snowmelt	for	drinking	water,	

agricultural,	industrial,	and	recreational	uses	[Bales	et	al.,	2006].	The	mountain	snowpack	

provides	natural	storage	of	winter	precipitation	for	spring	and	summer,	when	water	

demand	is	greatest	[Mote	et	al.,	2005].	Thus,	winter	snowpack	acts	to	synchronize	water	

availability	and	water	demand.	Climate	change	is	shifting	the	timing	of	spring	snowmelt	

and	streamflow	earlier	in	the	year	[Cayan	et	al.,	2001;	Stewart	et	al.,	2005].	This	has	

implications	for	the	amount	and	intensity	of	streamflow	and	could	reduce	the	margin	of	

acceptable	error	in	reservoir	management	[Stewart	et	al.,	2004].	The	western	United	States	

may	experience	a	2-7	oC	temperature	increase	by	2100	[IPCC,	2014],	which	could	

profoundly	alter	snowpack	magnitude,	snowmelt	timing,	and	snowmelt	rate	in	
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mountainous	regions	[Musselman	et	al.,	2017].	Additionally,	climate	warming	driven	shifts	

in	land	cover	have	the	potential	to	decrease	streamflow	due	to	tree-line	expansion	at	high	

elevations	[Goulden	and	Bales,	2014]	and	shrub	conversion	at	lower	elevations	[Bart	et	al.,	

2016;	Rother	and	Veblen,	2016].	These	trends	necessitate	the	study	of	how	climate	

warming	induced	changes	in	snow	hydrology	and	land	cover	will	cascade	to	changes	in	

forest	water	use	(evapotranspiration,	ET)	and	streamflow	(Q).	Furthermore,	non-

stationarity	in	hydrologic	systems,	induced	by	climate	warming,	necessitates	improved	

process	understanding	through	the	use	of	both	observational	studies	and	process	based	

hydrologic	modeling	to	inform	both	water	resources	and	land	management	decisions	[Milly	

et	al.,	2008].	

	 Many	studies	have	shown	that	the	onset	of	spring	is	occurring	earlier	in	the	year	

[Cayan	et	al.,	2001;	Stewart	et	al.,	2005]	and	that	these	changes	can	be	attributed	to	

warming	in	the	winter	and	spring	[Stewart	et	al.,	2005].	Similarly,	the	proportion	of	

precipitation	that	falls	as	snow	is	in	decline	across	the	western	United	States	and	this	

decline	is	attributable	to	increases	in	storm	minimum	temperatures	during	the	winter	

months	[Knowles	et	al.,	2006].	These	trends	suggest	that	mountain	snowpacks	with	

temperatures	close	to	freezing	will	be	most	sensitive	to	warming	[Knowles	et	al.,	2006;	

Nolin	and	Daly,	2006];	however,	trends	in	snow	water	equivalent	from	Colorado	and	the	

intermountain	western	United	States	suggest	that	cold,	continental	snowpacks	are	melting	

earlier	due	to	warmer	air	temperatures	as	well	[Clow,	2010;	Harpold	et	al.,	2012].		

	 Across	the	western	United	States	there	are	consistent	patterns	linking	peak	snow	

water	equivalent	(SWE)	to	snowmelt	rate	and	timing.	Trujillo	and	Molotch	[2014]	show	

that,	generally,	a	deep	snowpack	persists	later	into	the	spring	and	melts	more	rapidly	than	
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a	shallow	snowpack,	which	melts	earlier	and	more	slowly.	These	differences	are	due	to	

increased	solar	radiation	driven	snowmelt	later	in	spring.	When	a	shallow	snowpack	ripens	

early	in	the	spring	there	is	not	as	much	available	energy	to	drive	melt,	which	then	results	in	

slower	snowmelt	[Trujillo	and	Molotch,	2014;	Musselman	et	al.,	2017].	This	is	because	there	

is	less	radiative	forcing	earlier	in	the	year	when	the	sun	is	low	in	the	sky	[Trujillo	and	

Molotch,	2014].	When	these	patterns	are	considered	with	the	body	of	evidence	describing	

earlier	snowmelt	and	spring	snowmelt	driven	streamflow,	it	suggests	a	close	linkage	

between	snowmelt	rate	and	streamflow;	however,	the	mechanism	linking	snowmelt	to	

streamflow	remains	elusive.	

1.1.1	Problem	Statement	

As	climate	warming	decreases	the	mountain	snowpack,	the	importance	of	

understanding	the	linkage	between	snowmelt	and	runoff	production	increases.	The	aim	of	

this	dissertation	is	to	broadly	investigate	how	changes	in	snowmelt	are	reflected	in	changes	

in	streamflow	and	evapotranspiration	at	point,	watershed,	and	regional	scales.	This	line	of	

questioning	is	complicated	by	inter-site	heterogeneity,	future	changes	in	land	cover,	and	

regional	differences	in	snowpack	regimes.	Each	of	these	components	is	addressed	by	the	

following	science	questions:	I)	What	is	the	relative	influence	of	snowmelt	rate,	timing,	and	

amount	on	runoff	generation?	II)	How	do	changes	in	snowmelt	and	land	cover	affect	

streamflow	in	a	snow-dominated	headwaters	catchment?	And	III),	what	are	the	regional	

differences	in	snowmelt	rate	-	streamflow	production	relationships	across	the	western	

United	States?	Throughout	this	dissertation,	runoff	will	be	used	to	describe	water	produced	

from	small	landscape	elements	such	as	modeling	patches	or	grid	cells	less	than	1	km2	while	
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streamflow	will	be	used	to	describe	water	produced	from	larger,	integrating	landscape	

elements	such	as	catchments	and	land	surface	model	grid	cells	greater	than	1	km2.	

1.1.2	Research	Objectives	and	Design	

Science	questions	I-III	listed	above	will	be	addressed	via	three	tasks	moving	from	

the	smallest	analysis	scale	(I)	to	the	largest	(III).	Task	1,	investigates	the	roles	of	snowmelt	

rate,	timing,	and	amount	across	two	mountainous	locations	in	the	western	United	States	

using	observations	and	a	hydrologic	modeling	experiment	designed	to	separate	the	

multicollinearity	of	snowmelt	rate,	timing,	and	amount.	Task	2,	investigates	the	effects	of	

changes	in	land	cover	and	climate	warming	on	streamflow	production	at	a	snow-

dominated	watershed	on	the	Colorado	Front	Range.	Task	3,	investigates	snowmelt	controls	

on	streamflow	production	at	the	regional	scale	across	the	western	United	States.	

Question	I:	What	is	the	relative	influence	of	snowmelt	rate,	timing,	and	amount	on	

runoff	generation?	

Snowmelt	rate	has	been	linked	to	streamflow	production	across	the	mountainous	

regions	of	the	western	United	States	[Barnhart	et	al.,	2016].	This	relationship	was	

determined	using	a	hydrologic	modeling	data	set	spanning	the	continental	United	States;	

however,	in	natural	systems,	snowmelt	rate,	timing,	and	amount	are	interrelated	[Trujillo	

and	Molotch,	2014]	making	it	difficult	to	statistically	assess	the	influence	of	these	

components	of	snowmelt	on	snowmelt	season	runoff	production.	This	portion	of	the	

dissertation	seeks	to	disentangle	the	relationship	between	runoff	and	snowmelt	rate,	

timing,	and	amount	at	two	forested,	snow-dominated	sites	in	the	western	United	States.	I	

address	this	question	by	building	one-dimensional	Regional	Hydro-Ecologic	Simulation	
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System	(RHESSys)	[Tague	and	Band,	2004]	model	simulations	for	each	site,	forcing	and	

calibrating	each	model	using	observational	data,	and	applying	a	synthetic	snowmelt	

experiment	to	each	site.		

The	synthetic	snowmelt	experiments	used	snowmelt	scenarios	designed	for	each	

site	based	on	snow	pillow	observations	of	snowmelt	rate,	timing,	and	amount.	Constant	

probability	distributions	of	snowmelt	rate,	timing,	and	amount	were	developed	for	each	

site	and	used	to	construct	10,000	snowmelt	scenarios	with	no	internal	multicollinearity.	

These	scenarios	were	used	as	input	for	the	calibrated,	one-dimensional	implementations	of	

RHESSys.	Using	snowmelt	amount	for	normalization,	simulation	output	was	analyzed	to	

understand	the	influence	of	snowmelt	rate	and	timing	on	snowmelt	season	runoff	

production	as	well	as	the	snowmelt	season	change	in	subsurface	storage,	as	this	quantity	is	

important	for	sustaining	late-season	streamflow	and	vegetation	productivity.	

Question	II:	How	do	changes	in	snowmelt	and	land	cover	affect	streamflow	in	a	snow-

dominated	headwaters	catchment?	

	 Colorado	is	expected	to	experience	an	annual	average	2.5-5	°C	increase	in	air	

temperature	by	2050	and	potentially	a	slight	increase	in	precipitation,	although	the	

anticipated	change	in	precipitation	is	more	poorly	constrained	[Lukas	et	al.,	2014].	These	

forecasted	changes	in	air	temperature	and	precipitation	will	impact	the	proportion	of	

precipitation	falling	as	snow,	snowpack	accumulation,	and	snowmelt	across	the	region	

[Rasmussen	et	al.,	2011].	Additionally,	the	pattern	of	vegetation	cover	in	the	region	may	

also	change	in	response	to	more	mild	temperatures	and	changes	in	precipitation	[Harsch	et	

al.,	2009].	In	this	portion	of	the	dissertation	I	investigate	how	changes	in	snowmelt,	driven	



	 6	

by	warmer	air	temperatures	and	altered	precipitation,	interact	with	simulated	futures	of	

land	cover	for	a	headwater	catchment	on	the	Colorado	Front	Range	that	spans	the	alpine	–	

subalpine	transition.	

To	carry	out	this	investigation,	I	created	a	RHESSys	[Tague	and	Band,	2004]	model	

simulation	for	Como	Creek,	a	5.0	km2	headwaters	catchment	on	the	Colorado	Front	Range,	

and	calibrated	the	simulation	using	streamflow	observations.	Land	cover	futures	were	

generated	from	the	LANdscape	DIsturbance	and	Succession	(LANDIS-II)	model	[Scheller	

and	Mladenoff,	2004]	every	decade	from	calendar	year	1990	through	2100	using	two	

forcing	tracks.	Both	forcing	tracks	include	a	4	°C/century	increase	in	air	temperature	with	

one	track	experiencing	a	15%	increase	in	precipitation	by	2100	and	the	other	track	

experiencing	a	15%	decrease	in	precipitation	by	2100.	The	first	ten	years	of	the	LANDIS-II	

simulation	are	considered	model	spin	up	and	as	such	year	2000	is	considered	as	control	for	

this	experiment.	As	LANDIS-II	is	a	stochastic	model,	three	iterations	of	the	model	were	

used	for	each	forcing	track.	Land	cover	and	biomass	from	the	LANDIS-II	simulations	were	

converted	into	maps	of	land	cover	type	and	leaf	area	index	for	ingestion	into	the	RHESSys	

model.	

Regional	Hydro-Ecologic	Simulation	System	instances	were	run	using	a	gridded	

meteorology	forcing	data	set	for	water	year	1991	through	water	year	2012	with	air	

temperature	and	precipitation	inputs	matched	to	the	perturbations	used	to	generate	the	

LANIDS-II	land	cover	futures.	The	first	two	water	years	of	each	hydrologic	model	

simulation	were	omitted	to	allow	model	stores	to	spin-up.	These	simulations	were	used	as	

part	of	a	larger	model	experiment	with	simulations	where	only	air	temperature	and	
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precipitation	were	altered	to	separate	changes	in	streamflow	due	to	land	cover	change	

from	streamflow	changes	due	to	increased	air	temperature	and	precipitation	change.	

Question	III:	what	are	the	regional	differences	in	snowmelt	rate	-	streamflow	

production	relationships	across	the	western	United	States?	

Across	the	western	United	States,	much	of	the	streamflow	used	for	irrigation,	

municipal	use,	ecological	flows,	and	recreation	is	sourced	from	snowmelt	[Bales	et	al.,	

2006].	Understanding	controls	on	streamflow	production	at	broad	spatial	scales	is	

important	as	this	may	identify	broad	hydrologic	relationships	as	well	as	differential	

sensitivities	in	streamflow	production	to	environmental	change	at	spatial	scales	relevant	to	

land	management.	Recent	work	has	shown	a	relationship	between	the	proportion	of	

precipitation	falling	as	snow	versus	rain	and	climate	corrected	streamflow	production	

across	the	United	States	[Berghuijs	et	al.,	2014];	however,	this	relationship	lacks	an	

explanatory	mechanism.	In	this	portion	of	the	dissertation	I	seek	to	elucidate	a	mechanistic	

control	between	snowmelt	and	streamflow	production	in	the	mountainous	ecoregions	of	

the	western	United	States	[Commission	for	Environmental	Cooperation,	2006].	

To	investigate	the	relationship	between	snowmelt	and	streamflow	I	used	a	Variable	

Infiltration	Capacity	[Liang	et	al.,	1994]	model-based	hydrometeorology	modeling	data	set	

[Livneh	et	al.,	2015]	subset	to	the	ten	mountainous	ecoregions	of	the	western	United	States	

that	produce	much	of	the	streamflow	for	the	region.	These	data	were	used	to	compute	an	

ensemble	of	Budyko	style	streamflow	anomalies	for	the	domain	[Zhou	et	al.,	2015],	which	

represent	the	propensity	of	each	grid	cell	to	over	or	under	produce	streamflow	within	an	

available	water	and	energy	framework	[Budyko,	1974].	I	then	developed	relationships	
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between	simulated	snowmelt	rate	and	the	streamflow	anomaly	ensemble	across	the	entire	

domain	and	for	each	of	the	component	ecoregions	within	the	domain.	I	also	optimized	the	

Zhang	et	al.	[2001]	Budyko-style	equation	for	each	ecoregion	and	compared	the	y-axis	

asymptotes	of	the	optimized	equations	to	the	mean	snowmelt	rates	of	each	ecoregion	to	

confirm,	via	a	different	pathway,	the	linkage	between	snowmelt	rate	and	streamflow	

production	across	the	domain.	

1.2	Summary	

Via	the	three	tasks	outlined	above,	this	dissertation	advances	the	understanding	of	

how	changes	in	snowmelt	and	land	cover	may	alter	water	availability	in	the	western	United	

States.	A	variety	of	observations	and	numerical	simulations	are	used	to	accomplish	the	

three	tasks	and	the	scope	of	each	science	question	increases	in	scale	from	the	plot-	to	the	

regional-scale.	At	the	plot-scale,	understanding	how	changes	in	snowmelt	rate,	timing,	and	

amount	influence	runoff	production	will	help	water	managers	anticipate	how	runoff	may	

change	in	the	future	in	response	to	localized	changes	in	snowmelt.	At	the	watershed-scale,	

this	work	aims	to	understand	how	air	temperature,	precipitation,	and	land	cover	change	

alter	streamflow	production	in	a	snow-dominated	headwaters	catchment	using	a	land	

cover	evolution	model	and	a	hydrologic	model.	This	approach	gives	an	estimate	of	how	

future	land	cover	and	climatology	may	change	streamflow	from	snow-dominated	

catchments	that	span	the	alpine-subalpine	transition.	Finally,	at	the	regional-scale	the	

relationship	between	snowmelt	rate	and	climate-corrected	streamflow	production	is	

elucidated	using	a	long-term	hydrometeorology	data	set.	Although	distinct,	these	three	

distinct	investigations	advance	our	understanding	of	the	linkage	between	snowmelt	and	
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water	availability	in	a	region	dependent	on	snowmelt	for	agricultural,	human,	and	ecologic	

uses.	
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Chapter	2: The	Influence	of	Snowmelt	Rate	and	Timing	
on	Runoff	Generation1	

Abstract	

The	mountain	snowpack,	a	critical	water	resource	for	one-sixth	of	the	global	

population,	is	expected	to	decline,	melt	earlier,	and	melt	more	slowly	as	the	climate	warms.	

Previous	work	has	shown	that	lower	snowmelt	rates	are	associated	with	decreases	in	

runoff	production.	Conversely,	others	have	shown	that	earlier	snowmelt	may	increase	

runoff	production	because	vegetation	water	use	is	lower	in	early	versus	late	spring.	The	

relative	importance	of	these	factors	with	regard	to	runoff	production	is	inherently	linked	to	

site-specific	conditions	such	as	plant	available	water	storage	and	vegetation	phenology.	In	

order	to	disentangle	the	effects	of	snowmelt	rate	and	timing	on	runoff	production,	we	

conduct	a	hydrologic	modeling	experiment	at	sites	in	Colorado	(CO)	and	California	(CA)	

designed	to	eliminate	the	observed	multicollinearity	between	snowmelt	rate	and	timing.	

We	tested	the	sensitivity	of	snowmelt	season	runoff	production	(R)	and	changes	in	

subsurface	storage	(ΔS)	to	snowmelt	rate	and	timing	using	multiple	linear	regressions.	

Model	results	confirm	that	R	is	governed	by	the	competing	influence	of	snowmelt	rate	and	

timing.	At	CO,	R	and	ΔS	were	most	sensitive	to	snowmelt	timing	versus	snowmelt	rate	(β=-

0.31	vs.	0.22	and	β=	-0.24	vs.	0.18,	respectively).	At	CA,	R	was	most	sensitive	to	snowmelt	

rate	versus	snowmelt	timing	(β=0.67	vs.	-0.31)	and	ΔS	was	most	sensitive	to	snowmelt	

timing	versus	snowmelt	rate	(β=-0.474	vs.	0.466).	Results	suggest	that	future	changes	in	R	
																																																								

1	Manuscript	for	publication	with	coauthors	C.L.	Tague	and	N.P.	Molotch	
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will	be	disproportionate	to	decreases	in	snowpack	volumes	due	to	the	influences	of	

snowmelt	rate	and	timing.	

2.1	Introduction	

	 Mountainous	regions	are	responsible	for	approximately	32%	of	the	global	

freshwater	discharge	[Meybeck	et	al.,	2001]	and	within	that,	snow-dominated	regions	

provide	water	for	one-sixth	of	the	global	population	[Barnett	et	al.,	2005].	Snowpack	

changes	associated	with	climate	warming	have	been	valued	in	the	trillions	of	dollars	

globally	[Sturm	et	al.,	2017],	indicating	the	importance	of	understanding	how	changes	in	

snowpack	will	cascade	into	changes	in	runoff	production.	In	the	western	United	States	

alone,	approximately	70%	of	runoff	is	derived	from	snowmelt	[Sturm	et	al.,	2017].	Given	

the	social,	ecological,	and	economic	value	of	mountain-derived	water	it	is	imperative	to	

understand	how	changes	in	snowmelt	will	manifest	as	changes	in	runoff.		

Changes	in	the	timing	and	magnitude	of	snowmelt	have	been	inferred	using	

streamflow	timing	as	a	proxy	for	snowmelt	[Stewart	et	al.,	2004;	Stewart,	2009].	A	decrease	

in	snowfall	fraction	across	the	western	United	States	has	also	been	documented	and	

attributed	to	increases	in	minimum	storm	temperature	[Knowles	et	al.,	2006].	Shifts	in	

observed	peak	snow	water	equivalent	(SWE)	and	timing	of	snowmelt	have	also	been	

observed	across	the	western	United	States	[Clow,	2010;	Harpold	et	al.,	2012].	There	is	wide	

agreement	across	observational	and	modeling	studies	showing	decreases	in	peak	SWE	and	

earlier	snowmelt	over	the	past	three	to	four	decades	[Mote	et	al.,	2005;	Clow,	2010;	Harpold	

et	al.,	2012].	First	principles	suggest	that	runoff	volumes	will	scale	with	precipitation	and	

snowpack	magnitude.	Questions	remain,	however,	as	to	how	changes	in	snowmelt	
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magnitude,	rate,	and	timing	are	translated	into	changes	in	runoff	volumes.	Earlier	

snowmelt	timing	or	faster	rates,	for	example,	may	also	change	the	partitioning	of	snowmelt	

between	runoff	and	evapotranspiration.	

	 Analysis	of	SWE	observations	across	the	western	United	States	have	revealed	

interrelationships	between	peak	SWE,	snowmelt	timing,	and	snowmelt	rate	[Trujillo	and	

Molotch,	2014].	For	a	given	region	or	site,	a	large	snowpack	will	tend	to	melt	later	and	more	

quickly	while	a	small	snowpack	will	tend	to	melt	earlier	and	more	slowly	[Trujillo	and	

Molotch,	2014].	Recent	modeling	work	in	the	Western	United	States	confirms	that	

snowmelt	rates	will	decline	in	the	future	as	snowmelt	shifts	earlier	[Musselman	et	al.,	

2017].	Furthermore,	previous	work	suggests	the	importance	of	snowmelt	rate	to	runoff	

production	and	provides	a	possible	subsurface	mechanism	through	which	this	linkage	

occurs	[Barnhart	et	al.,	2016].		

The	multicollinearity	between	snowmelt	rate,	timing,	and	amount	make	it	difficult	

to	separate	out	the	relative	sensitivities	of	runoff	production	to	these	factors	[Trujillo	and	

Molotch,	2014].	Shallow	snowpacks	tend	to	melt	earlier	in	the	year	and	therefore	melt	

more	slowly	because	solar	irradiance	is	lower	earlier	in	the	year.	Barnhart	et	al.	[2016]	

illustrated	that	this	reduction	in	snowmelt	rate	reduces	runoff	production	because	slower	

melt	results	in	less	sub-surface	runoff	production.	Complicating	this	behavior	is	the	fact	

that	energy	availability	for	driving	evapotranspiration	is	also	reduced	earlier	in	the	year.	

Hence,	on	the	one	hand,	earlier	and	slower	snowmelt	acts	to	reduce	streamflow	while	at	

the	same	time	earlier	snowmelt	and	reduced	available	energy	acts	to	reduce	

evapotranspiration	(ET).	We	can	then	think	of	snowmelt	driven	runoff	production	as	the	

residual	of	two	competing	rates,	the	input	of	water	into	the	system,	i.e.	the	snowmelt	rate,	
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and	atmospheric	demand,	i.e.	ET.	When	snowmelt	rates	are	relatively	high,	the	rate	of	input	

(i.e.	snowmelt)	is	increasingly	greater	than	the	rate	of	output	(i.e.	ET),	resulting	in	greater	

soil	moisture	and	greater	sub-surface	drainage.	Snowmelt	timing	is	critical	to	this	behavior	

because	evapotranspiration	rates	increase	into	the	late	spring	[Moore	et	al.,	2008].	

Additionally,	snowmelt	amount	is	also	important	because	streamflow	generation	will	not	

occur	until	the	soil	water	deficit	is	overcome	[Chauvin	et	al.,	2011].		

Previous	work	has	shown	the	importance	of	subsurface	pathways	in	generating	

runoff	from	snow-dominated	locations	across	the	western	United	States.	Results	from	end	

member	mixing	analyses	from	the	Sierra	Nevada	and	the	Southern	Rocky	Mountains	

indicates	the	importance	of	subsurface	water	in	streamflow	[Liu	et	al.,	2004;	2008;	2012].	

Observational	and	numerical	modeling	work	from	the	Sierra	Nevada	also	indicate	that	

snowmelt	is	effective	at	entering	the	subsurface	as	snowmelt	rates	rarely	exceed	bedrock	

permeability,	suggesting	that	subsurface	and	groundwater	flow	pathways	are	critical	for	

snowmelt	driven	runoff	production	[Flint	et	al.,	2008].	Indeed,	detailed	observations	from	

an	instrumented	hill	slope	in	northern	New	Mexico	show	that	lateral	subsurface	flow	

dominated	runoff	production	from	snowmelt	events	[Wilcox	et	al.,	1997].	Changes	in	

snowmelt	rate	have	been	linked	to	changes	in	streamflow	production	via	the	subsurface	

[Barnhart	et	al.,	2016]	necessitating	further	work	understanding	how	changes	in	snowmelt	

rate	and	timing	will	influence	not	only	runoff	production,	but	also	subsurface	water	stores	

for	late	season	streamflow	and	vegetation	water	use.		

In	this	work	we	use	a	hydrologic	model	to	infer	how	changes	in	snowmelt	rate	and	

timing	influence	the	storage	and	unsaturated	and	saturated	flow	of	water	within	the	soil	

column	with	the	final	goal	of	assessing	the	influence	of	these	factors	on	runoff	generation	at	
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the	plot	scale	and	ultimately	streamflow.	The	interrelation	of	snowmelt	timing,	rate,	and	

amount	as	well	as	the	competing	snowmelt	and	evaporative	fluxes	on	the	moisture	state	of	

the	soil	column	make	it	difficult	to	identify	how	sensitive	runoff	production	is	to	changes	in	

the	snowpack.	To	address	this	knowledge	gap	we	use	observations	and	a	hydrologic	

modeling	experiment	to	investigate	the	sensitivity	of	runoff	generation	to	changes	in	

snowmelt	rate	and	timing.	We	describe	the	sites	selected	in	Section	2.2,	the	observational	

analysis	and	hydrologic	model	experiment	design	in	Section	2.3,	present	observed	patterns	

of	snowmelt	and	runoff	generation	and	model	experiment	results	in	Section	2.4,	and	

discuss	our	findings	in	Section	2.5.	

2.2	Study	Areas	

Two	sites	within	the	United	States	National	Science	Foundation	funded	Critical	Zone	

Observatory	Network	were	selected	for	this	work	to	capture	a	range	of	climatic	conditions	

within	the	western	United	States.	The	Niwot	Ridge	US-NR1	AmeriFflux	site	is	located	in	the	

Southern	Rocky	Mountain	ecoregion	[Commission	for	Environmental	Cooperation,	2006]	

and	is	situated	in	a	subalpine	forest	at	3,050	m	asl	on	the	eastern	side	of	the	Colorado	Front	

Range	to	the	west	of	Boulder,	Colorado	(Figure	2.1a).	The	Providence	Creek	site	is	located	

within	the	Sierra	Nevada	ecoregion	at	1,950	m	a.s.l.	on	the	western	slope	of	the	Sierra	

Nevada	mountain	range	(Figure	2.1b)	in	California.	These	two	sites	will	be	referred	to	as	

CO	and	CA,	respectively.	

Collocated	at	each	site	is	an	eddy	covariance	tower,	to	measure	evapotranspiration	

(ET),	a	snow	pillow,	to	measure	SWE,	and	a	meteorological	station,	to	measure	air	

temperature	and	precipitation	(P,	Figure	2.1).	These	data	were	used	both	for	observational	
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analysis	of	snowmelt	controls	on	hydrologic	partitioning	of	precipitation	between	ET	and	

runoff,	hydrologic	model	calibration,	and	snowmelt	scenario	design.	

	

Figure	2.1:	Aerial	photography,	topography,	and	instrumentation	for	the	CO	(a)	and	CA	(b)	
sites	with	their	locations	within	the	United	States	indicated	by	the	inset	map.	Snowmelt	
experiment	simulations	were	built	for	the	eddy	covariance	(E.C.)	tower	locations	at	each	
site.	

The	two	sites	span	a	range	of	precipitation	(Figure	2.2)	and	snowpack	climatologies.	

At	CO,	the	precipitation	seasonality	is	largely	flat	with	slightly	larger	peaks	during	the	

winter	months	and	during	the	summer	monsoon	(Figure	2.2a).	Mean	annual	temperature	

at	CO	was	3.5	°C	from	2010	to	2012	[Cowie	et	al.,	2017].	The	precipitation	pattern	at	CA	is	

indicative	of	a	Mediterranean	climate,	with	most	of	the	precipitation	falling	in	the	fall	and	

winter	and	a	distinctive	summer	dry	period	(Figure	2.2b)	[Goulden	and	Bales,	2014].	The	

mean	annual	temperature	at	CA	was	8.6	°C	from	2004	to	2007	[Hunsaker	et	al.,	2012].	
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Figure	2.2:	Weekly	mean	precipitation	at	CO	(a)	and	CA	(b).	Precipitation	was	averaged	
over	the	period	of	1952	–	2012	for	CO	and	2007	–	2014	for	CA.		

In	addition	to	the	inter-site	differences	due	to	precipitation	timing	and	snowpack	

accumulation,	both	sites	have	different	geologic	settings	and	legacies,	which	shape	the	

parent	material	and	soil	characteristics	of	each	site.	The	CO	site	is	underlain	by	granitic	and	

siliceous	metamorphic	rock	[Bilodeau	et	al.,	1987]	with	a	glacial	moraine	covering	the	

bedrock	[Gable	and	Madole,	1976].	At	CA,	the	soils	are	derived	from	crystalline	intrusive	

rocks	with	compositions	ranging	from	granite	to	diorite	[Bales	et	al.,	2011].	Both	sites	have	

vegetation	dominated	by	mixed	conifer	forests	[Huxman	et	al.,	2003;	Bales	et	al.,	2011]	with	

key	differences	in	soil	parent	material	and	snowpack	climatology.	This	allows	for	a	unique	

comparison	of	runoff	generation	across	two	locations	representative	of	forested	sites	that	

develop	a	seasonal	snowpack.	

2.3	Methods	

We	conducted	two	sets	of	analyses	to	address	how	changes	in	snowmelt	rate,	timing,	and	

amount	influence	runoff	production:	(1)	analysis	of	snowmelt,	precipitation,	and	

evapotranspiration	observations	and	(2)	a	hydrologic	modeling	experiment	using	the	
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Regional	Hydro-Ecologic	Simulation	System	(RHESSys)	[Tague	and	Band,	2004].	From	the	

observational	data	we	extracted	a	metric	of	runoff	production,	water	year	discharge	

normalized	by	water	year	precipitation	(Q/P),	as	well	as	the	snowmelt	rate,	timing,	and	

amount	for	each	water	year	that	records	were	available	for	each	site.	We	then	computed	

how	sensitive	Q/P	was	to	snowmelt	rate,	timing,	and	amount	using	water	years	with	high	

and	low	peak	SWE	in	the	period	of	record	for	each	site.	Snowmelt	rate,	timing	and	amount	

were	distilled	from	observed	niveographs	(Figure	2.3a)	via	translation	into	a	triangle	that	

defines	key	points	in	the	snow	accumulation	and	melt	period	[Trujillo	and	Molotch,	

2014](Figure	2.3b).	In	Figure	2.3b,	snowpack	accumulation	begins	at	A	and	builds	to	peak	

SWE	at	B	where	the	position	of	B	along	the	y-axis	denotes	the	magnitude	of	peak	SWE	and	

the	position	of	B	along	the	x-axis	denotes	the	timing	of	peak	SWE	as	well	as	the	timing	of	

snowmelt	onset.	The	absolute	value	of	the	slope	between	B	and	C	in	Figure	2.3b	is	the	mean	

snowmelt	rate	for	a	water	year	or	site	where	C	is	the	last	day	of	snowmelt	at	the	site.	The	

range	of	the	observed	annual	snowpack	features	can	be	shown	by	drawing	a	polygon	

around	the	ABC	triangle	where	the	upper	edge	of	the	polygon	denotes	the	largest	peak	SWE	

amount	and	latest	snowmelt	timing	while	the	lower	edge	of	the	polygon	denotes	the	

smallest	peak	SWE	amount	and	earliest	snowmelt	timing	recorded	at	the	site	(Figure	2.3b).	
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Figure	2.3:	(a)	Niveograph	traces	from	the	CO	snow	pillow	from	water	years	1982	–	2014	
and	(b)	simplified	niveograph	distilled	from	(a)	showing	the	variability	in	the	snowpack	
averaged	over	one	water	year	(grey	shaded	region),	the	mean	niveograph	(white	trace),	
and	the	decomposition	of	the	niveograph	into	its	components	following	Trujillo	and	
Molotch	[2014].	A	denotes	the	beginning	of	the	accumulation	season,	the	position	of	B	
along	the	y-axis	denotes	the	magnitude	of	peak	SWE,	the	position	of	B	along	the	x-axis	
denotes	the	timing	of	peak	SWE	and	the	timing	of	snowmelt,	and	C	denotes	when	the	
snowpack	has	fully	melted	out.	The	absolute	value	of	the	slope	between	B	and	C	denotes	
the	mean	snowmelt	rate	for	the	site	or	water	year.	Data	used	for	this	figure	are	available	at	
https://wcc.sc.egov.usda.gov/nwcc/site?sitenum=663.	

As	each	site	has	only	limited	availability	of	overlapping	observational	information,	

we	extend	the	available	observations	by	applying	snowmelt-modeling	scenarios	generated	

from	continuous	uniform	probability	distributions	of	snowmelt	rate,	timing,	and	amount.	

The	use	of	uniform	distributions	allows	the	generation	of	snowmelt	scenarios	that	cover	a	

wide	snowmelt	rate,	timing,	and	amount	parameter	space	where	any	combination	of	these	

parameters	are	equally	likely.	This	allows	us	to	separate	the	multicollinearity	between	

snowmelt	rate,	timing,	and	amount	in	our	experimental	design.	For	the	hydrologic	

modeling	experiment,	we	pass	each	snowmelt	scenario	for	each	site	to	the	corresponding	

hydrologic	model	for	each	site	and	extract	a	metric	of	snowmelt	season	runoff	production	

(R)	and	use	multiple	linear	regressions	to	assess	the	response	of	R	to	changes	in	snowmelt	
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rate	and	timing.	Additionally,	we	investigate	the	snowmelt	season	change	in	storage	(ΔS)	

for	each	scenario	and	use	multiple	linear	regression	to	assess	the	sensitivity	of	ΔS	to	

changes	in	snowmelt	rate	and	timing.	We	repeat	these	experiments	for	a	range	of	plant	

available	water	storage	capacities.	

2.3.1	Observational	Analysis	

For	each	water	year	(October	1	–	September	30),	the	SWE,	ET,	and	P	records	(Table	2.1)	

were	analyzed	to	extract	the	average	snowmelt	rate,	peak	SWE,	and	timing	of	peak	SWE	as	

well	as	the	one-dimensional	runoff	ratio	for	each	site.	Snowmelt	rate	was	calculated	as	the	

mean	of	the	snowmelt	season	melt	events,	between	the	date	of	peak	SWE	and	the	date	of	

melt	out.	Peak	SWE	was	calculated	as	the	peak	in	recorded	SWE	for	each	water	year	

(vertical	position	of	B	in	Figure	2.3b)	and	the	timing	of	peak	SWE	(horizontal	position	of	B	

in	Figure	2.3b)	was	the	date	for	which	peak	SWE	occurred.	The	runoff	ratio	was	computed	

for	each	water	year	at	both	sites	assuming	the	simple	water	balance	

𝑄 = 𝑃 − 𝐸𝑇 + 𝛥𝑆		 	 	 	 	 	 (2.1)	

We	assume	that	ΔS	is	zero	in	Equation	2.1	to	allow	a	runoff	ratio	to	be	computed	from	a	

eddy	covariance	tower	location	on	an	annual	basis.	This	assumes	that	there	is	no	carryover	

storage	at	the	site	because	carryover	storage	is	often	small	relative	to	other	annual	fluxes	

[Sivapalan	et	al.,	2011].	The	runoff	ratio	was	derived	from	(2.1)	by	dividing	both	sides	of	

the	expression	by	P.	

!
!
= 1− !"

!
	 	 	 	 	 	 (2.2)	

This	allows	a	metric	of	hydrologic	partitioning	and	runoff	generation	to	be	computed	at	the	

plot	scale	for	sites	where	there	are	measurements	of	ET,	but	not	discharge;	however,	
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because	we	neglect	ΔS,	Q/P	will	be	overestimated	and	should	be	treated	as	long-term	

potential	runoff.	We	computed	the	sensitivity	of	Q/P	for	each	site	to	a	unit	change	in	

snowmelt	rate,	snowmelt	timing,	and	snowmelt	amount	using	the	low	and	high	snow	years	

from	the	observed	record	at	each	site.	Q/P,	snowmelt	rate	(smr),	snowmelt	timing	(smt),	

and	snowmelt	amount	(sma)	were	first	standardized	to	allow	their	comparison	using	

𝑠𝑚!,! =
!!!!!!!
!"!,!"

	 	 	 	 	 	 (2.3)	

𝑠𝑚!,! =
!!!!!!!
!"!,!"

	 	 	 	 	 	 (2.4)	

𝑠𝑚!,! =
!!!!!!!
!"!,!"

	 	 	 	 	 	 (2.5)	

where	s	denotes	the	standardized	variable,	 	denotes	the	mean	of	the	original	variable,	and	

sd	denotes	the	standard	deviation	of	the	variable.	The	sensitivity	of	Q/P	to	unit	changes	in	

smr,	smt,	and	sma	was	then	computed	as	

!!!
!"#!,!

=
!
!!!"!

!!!!"#
!"!,!,!!"!!!"!,!,!"#

	 	 	 	 	 (2.6)	

!!!
!"#!,!

=
!
!!!"!

!!!!"#
!"!,!,!!"!!!"!,!,!"#

	 	 	 	 	 (2.7)	

!!!
!"#!,!

=
!
!!!"!

!!!!"#
!"!,!,!!"!!!"!,!,!"#

	 	 	 	 	 (2.8)	

where	high	and	low	refer	to	water	years	with	high	and	low	snowpacks.
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2.3.2	Hydrologic	Model	Setup	and	Calibration	

	 Hydrologic	model	simulations	were	carried	out	using	one-dimension	RHESSys	

models	[Tague	and	Band,	2004]	constructed	for	each	of	the	two	sites.	We	apply	RHESSys	in	

two	distinct	ways	to	accomplish	the	hydrologic	modeling	experiment.	First	we	implement	

the	full	RHESSys	model	at	each	site	in	one	dimension	(e.g	computing	vertical	hydrologic	

fluxes	for	a	single	model	element)	in	order	to	calibrate	drainage	and	storage	parameters	

and	to	assess	model	performance.	Second	we	replace	the	internally	generated	RHESSys	

snowmelt	input	time	series	with	manufactured	time	series	to	explore	the	impact	of	

different	snow	melt	scenarios	on	runoff	production.	We	describe	these	below.		

RHESSys	simulates	hydrologic	processes	at	an	hourly	to	daily	time	step	including	

snow	accumulation	and	melt	(although	here	we	replace	these	with	manufactured	time	

series),	soil	water	dynamics,	interception	of	precipitation,	evaporation,	and	transpiration.	

RHESSys	models	water	storage	and	fluxes	between	vegetation	canopy	layers,	litter,	rooting	

zone	storage,	and	unsaturated	store,	and	a	shallow	subsurface	saturated	zone.	In	some	

cases,	RHESSys	also	includes	a	deeper	ground	water	store	that	accounts	for	bypass	flow	

within	permeable	bedrock	modeled	as	a	linear	reservoir.	Additionally,	RHESSys	simulates	

biogeochemical	cycling	and	accounts	for	meteorological	and	nutrient	limitations	on	plant	

carbon	and	water	cycling	[Tague	and	Band,	2004].	Because	RHESSys	separately	accounts	

for	surface,	plant	accessible	water	and	other	subsurface	water	stores,	as	well	as	

interactions	between	radiation,	atmospheric	and	plant	physiological	controls	on	ET	at	a	

daily	time	step,	it	provides	a	useful,	but	relatively	simple,	approach	for	designing	a	multi-



	

	 23	

factorial	experiment	to	compare	the	impact	of	variations	in	the	timing,	intensity,	and	

duration	of	water	delivery	during	the	snowmelt	period.	

	 RHESSys	has	been	used	to	simulate	the	hydrology	of	watersheds	in	the	Oregon	

Cascades	[Tague	and	Grant,	2009;	Tague	et	al.,	2013],	the	California	Sierra	Nevada	

mountains	[Tague	et	al.,	2007;	Jefferson	et	al.,	2008;	Tague	and	Peng,	2013;	Son,	2015;	Bart	

et	al.,	2016],	and	in	the	Jemez	Mountains	of	New	Mexico	[Grant	et	al.,	2013],	including	

analysis	of	streamflow,	evapotranspiration,	and	forest	productivity	sensitivity	to	climate	

change	[Christensen	et	al.,	2008;	Tague	et	al.,	2009;	Grant	et	al.,	2013;	Tague	and	Peng,	

2013].	RHESSys	has	also	been	used	successfully	in	the	Colorado	Rockies	where	blowing	

snow	and	steep	elevation	and	temperature	gradients	complicate	modeling	efforts	

[Hartman	et	al.,	1999].		

	 For	each	site,	one-dimensional	RHESSys	simulations	were	constructed	using	

published	elevation	data	sets	[Anderson	et	al.,	2012;	Guo	and	Bales,	2012].	Leaf	area	index	

(LAI)	in	the	model	was	parameterized	based	on	published	LAI	values	for	each	site	[Huxman	

et	al.,	2003;	Bart	et	al.,	2016].	Soil	textural	properties	were	extracted	from	the	Web	Soil	

Survey	[Soil	Survey	Staff,	2016]	and	converted	to	the	range	of	model	parameters	for	

saturated	hydrologic	conductivity,	pore	size	index,	and	air	entry	pressure	based	on	

Dingman	[2002].	These	ranges	informed	the	physically	realistic	parameter	space	use	for	

calibration	of	each	site.		

	 Although	for	model	experiments,	we	will	replace	RHESsys	snowmelt	estimates	with	

our	scenario	values,	for	calibration	of	water	storage	parameters,	we	need	estimates	of	

actual	snowmelt	to	drive	the	model.	Prior	to	hydrologic	model	parameter	calibration,	the	

snowpack	parameters	for	each	site	were	calibrated	against	observed	SWE	using	Monte	
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Carlo	sampling.	Model	parameters	calibrated	in	this	step	were	minimum	rainfall	

temperature,	maximum	snowfall	temperature,	air	temperature	melt	coefficient,	and	

maximum	snowpack	energy	deficit.	The	later	two	parameters	dictate	the	sensitivity	of	

snowmelt	to	air	temperature	and	the	maximum	energy	deficit	(i.e.	cold	content)	of	the	

snowpack	in	RHESSys.	Nash-Sutcliffe	efficiency	(NSE)	was	used	as	the	objective	function	

for	this	calibration	phase	[Nash	and	Sutcliffe,	1970].		

RHESSys	model	parameters	for	soil	water	bypass	to	groundwater,	groundwater	release,	

soil	air	entry	pressure,	soil	pore	size	index,	rooting	depth,	saturated	hydraulic	conductivity,	

and	the	decay	of	saturated	hydraulic	conductivity	with	soil	depth	were	optimized	using	the	

shuffled	complex	evolution	algorithm	[Duan	et	al.,	1994]	with	the	goal	of	matching	monthly	

observed	and	modeled	ET	at	each	site.	NSE	was	used	as	the	objective	function	for	the	

model	optimization.	

2.3.3	Hydrologic	Model	Experiment	Snowmelt	Scenario	Design	

For	each	site,	we	construct	10,000	snowmelt	scenarios	based	on	snow	pillow	observations	

of	snowmelt	rate,	timing,	and	amount.	These	scenarios	are	then	run	across	a	15-member	

ensemble	of	PAWS	parameterizations	for	each	site.	For	this	work,	RHESSys	was	altered	to	

accept	a	snowmelt	input	bypassing	its	internal	snowmelt	model	for	the	purposes	of	this	

model	experiment.	This	experimental	design	removes	the	multicollinearity	between	

snowmelt	rate,	timing,	and	amount	to	explore	the	influence	of	snowmelt	rate	and	timing	on	

runoff	generation.	Through	the	ensemble	of	subsurface	parameterizations	we	also	explore	

how	sensitive	our	analysis	is	to	uncertainty	in	the	subsurface	parameterization	(PAWS	

values)	and	actual	spatial	heterogeneity	in	these	parameters.	
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	 To	generate	the	snowmelt	scenarios,	we	first	built	uniform	probability	distributions	

of	smr,	smt,	and	sma	based	on	the	mean	values	and	twice	the	standard	deviation	of	these	

quantities	from	snow	pillow	observations	at	each	site	(Figure	2.4a,b).	Scenarios	were	then	

generated	for	each	site	by	drawing	10,000	sets	of	snowmelt	rate	(smr),	timing	(smt),	and	

amount	(smt)	values	from	the	uniform	probability	distributions	for	each	of	these	three	

variables	constructed	for	each	site	(Figure	2.4c,d).	These	values	were	then	used	to	generate	

a	time	series	of	snowmelt	values	for	each	scenario	that	were	passed	to	the	RHESSys	

simulations	for	each	site.	Daily	snowmelt	rates	generated	for	each	site	based	on	a	linear	

relationship	between	day	of	water	year	and	snow	pillow	observed	snowmelt	events	at	each	

site	allowing	the	daily	snowmelt	to	increase	through	the	melt	season	(Figure	2.5).	These	

values	were	then	scaled	so	that	the	melt	season	average	snowmelt	rate	for	each	scenario	

matched	the	value	drawn	from	the	uniform	probability	distribution	of	snowmelt	rate	(e.g.	

the	absolute	value	of	the	ablation	season	slope	between	B	and	C	in	Figure	2.3b).	This	

technique,	while	more	complicated,	allowed	daily	snowmelt	rates	to	increase	through	the	

ablation	season,	as	they	tend	to	do	in	natural	systems,	while	also	maintaining	a	mean-

scenario	snowmelt	rate	that	is	consistent	with	the	prescribed	rate	for	the	scenario.	

Additionally,	during	simulated	snowmelt,	precipitation	was	set	to	zero	to	reduce	

experiment	complexity.	While	precipitation	during	the	snowmelt	season	does	occur	with	

significant	frequency,	the	objectives	of	the	work	presented	here	is	to	explore	snowmelt	

dynamics	explicitly	and	hence	this	simplification	is	necessary.	The	snowmelt	scenarios	

were	all	prescribed	over	the	same	meteorological	forcing	data	(i.e.	minimum,	average,	and	

maximum	air	temperature,	and	precipitation)	for	the	RHESSys	model	over	one	water	year	
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with	the	modification	of	precipitation	during	the	snowmelt	season	to	reflect	daily	

snowmelt	inputs	samples	described	above.		

	

	

Figure	2.4:	Snowpack	triangles	(gray)	for	(a)	CO	and	(b)	CA	showing	the	mean	(red)	and	
the	10%	and	90%	percentiles	(blue)for	each	site	and	snowmelt	experiment	polygons	
representing	the	ranges	of	snowmelt	rate,	timing,	and	amount	covered	by	the	snowmelt	
scenarios	for	(c)	CO	and	(d)	CA.	The	shaded	region	in	each	panel	shows	the	range	of	
combinations	of	snowmelt	rate,	timing,	and	amount	used	for	each	site	based	on	snow	
pillow	observations.	Data	used	for	(a)	were	from	water	years	1982-2014	and	data	used	for	
(b)	were	from	water	years	2011-2015.	
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Figure	2.5:	Linear	relationships	between	the	timing	of	daily	snowmelt	events	and	the	rate	
of	daily	snowmelt	events	at	CO	(a)	and	CA	(b).	These	relationships	were	used	to	
parameterize	the	seasonal	increase	in	snowmelt	rate	through	each	snowmelt	scenario	at	
each	site.	The	time	periods	of	the	data	used	in	(a)	and	(b)	are	the	same	as	in	Figure	2.4.	

As	the	soil	parameterization	within	the	hydrologic	modeling	framework	we	use	may	

influence	runoff	sensitivity	analyses	[Tague	and	Peng,	2013],	we	explore	the	effects	of	

uncertainty	in	plant	available	water	storage	(PAWS)	on	the	model	experiment	results	as	

this	may	influence	how	snowmelt	is	partitioned	between	runoff	and	evaporative	fluxes	

[Brooks	et	al.,	2015].	To	examine	the	sensitivity	of	the	runoff-snowmelt	relationship	to	the	

sub-surface	water	storage	parameterization	of	RHESSys,	we	conduct	our	model	experiment	

using	an	ensemble	of	sub-surface	parameterizations.	The	ensemble	of	15	PAWS	

parameterizations	was	generated	by	multiplying	the	optimized	rooting	depth	from	each	

site	by	values	ranging	from	0.01	to	60	and	PAWS	was	computed	following	Appendix	A.	

Prior	to	running	the	snowmelt	experiments	for	each	site	and	subsurface	parameterization,	

the	hydrologic	model	was	initialized	using	an	average	water	year	for	each	site	repeated	for	

ten	years	to	allow	the	modeled	hydrologic	stores	to	stabilize	under	each	of	the	different	

subsurface	parameterizations.	
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2.3.4	Hydrologic	Model	Experiment	Analysis	

	 Similarly	to	Equation	2.2,	each	snowmelt	scenario	simulation	output	was	analyzed	

to	extract	the	snowmelt	period	runoff	ratio	as:		

R = 1−  !!!"
!"!

	 	 	 	 	 	 (2.9)	

Where	R	is	snowmelt	season	the	runoff	ratio,	ETsm	is	the	total	modeled	evapotranspiration	

during	the	snowmelt	period	(between	B	and	C	in	Figure	2.3b),	and	sma	is	the	snowmelt	

amount	for	the	snowmelt	experiment,	which	is	equivalent	to	peak	SWE.	R	was	used	as	the	

dependent	variable	in	multiple	regression	analysis	to	investigate	how	sensitive	snowmelt	

season	runoff	production	is	to	changes	in	snowmelt	rate	and	snowmelt	timing	with	the	

form	

R = 𝛽! + 𝛽!𝑠𝑚! + 𝛽!𝑠𝑚!	 	 	 	 	 (2.10)	

where	Ŕ	are	the	predicted	R	values,	𝛽! is	the	intercept	of	the	model,	𝛽!	is	the	coefficient	for	

smr,	snowmelt	rate,	and	𝛽!	is	the	coefficient	for	smt,	snowmelt	timing.	Snowmelt	rate	(smr)	

and	smt	here	are	taken	from	the	parameters	used	to	construct	each	snowmelt	experiment	

(Section	2.3.3).		Snowmelt	amount	(sma),	i.e.	peak	SWE,	was	not	used	as	an	independent	

variable	because	it	would	fall	on	both	sides	of	the	multiple	regression	equation.	

Additionally,	because	first	principles	suggest	that	R	increases	with	increased	SWE,	we	

focused	our	analysis	on	snowmelt	rate	and	timing.	Multiple	regression	analysis	was	carried	

out	using	StatsModels	[Perktold	et	al.,	2016].	The	dependent	and	independent	variables	in	

the	multiple	regression	analysis	were	standardized	to	allow	comparison	of	the	model	

coefficients	for	snowmelt	rate	and	snowmelt	timing	using	Equation	2.3.	
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For	the	experiment	analysis,	we	use	a	simple	water	balance	to	compute	the	

snowmelt	season	change	in	subsurface	storage	(𝛥𝑆)	and	assume	that	this	store	will	be	used	

as	either	runoff,	via	drainage	to	the	stream	as	subsurface	flow	later	in	the	season	or	at	

longer	time	scales	[Liu	et	al.,	2004],	or	evapotranspiration.		We	computed	𝛥𝑆	as	

𝛥𝑆 = 𝑆𝑊𝐸!"#$ − 𝑄!" − 𝐸𝑇!"	 	 	 	 	 (2.11)	

Where	Qsm	is	the	total	simulated	snowmelt	season	discharge.	Positive	values	of	𝛥𝑆	indicate	

that	snowmelt	remains	in	the	subsurface	while	negative	values	of	𝛥𝑆	indicate	that	

streamflow	and	evapotranspiration	during	the	snowmelt	season	have	decreased	

subsurface	storage	and	that	no	additional	snowmelt	water	remains	in	the	subsurface.	We	

evaluated	the	sensitivity	of	𝛥𝑆	to	snowmelt	rate	and	snowmelt	timing	using	regression	

analysis	in	the	following	form	

ΔS = 𝛽! + 𝛽!𝑠𝑚! + 𝛽!𝑠𝑚!	 	 	 	 	 (2.12)	

where	𝛥𝑆	are	the	predicted	𝛥𝑆	values.	The	independent	variables	were	standardized	in	the	

same	way	as	in	Equation	2.8.	The	multiple	regression	analysis	of	both	R	and	𝛥𝑆	was	carried	

out	for	all	15	soil	water	storage	(PAWS)	parameter	sets	for	each	site.	

2.4	Results	

2.4.1	Observed	Relationships	

CO	and	CA	had	mean	±	standard	deviation	Q/P	values	of	0.16±0.16	and	0.54±0.16,	

respectively	from	water	years	2004-2014	and	2011-2015.	CA	had	a	Q/P	range	between	

observed	low	and	high	snow	years	of	0.38,	while	CO	had	a	range	of	0.14	(Table	2.2).	These	

ranges	of	Q/P	values	were	converted	to	sensitivities	of	Q/P	to	unit	changes	in	standardized	



	

	 30	

snowmelt	rate,	timing,	and	amount	to	allow	inter-comparison	of	the	sensitivities	using	

Equations	2.6-8	(Table	2.3).	

Table	2.2:	Observed	R/P	for	high	and	low	snow	years	at	CO	and	CA.	Season	average	
snowmelt	rate	as	well	as	snowmelt	amount	and	snowmelt	timing	are	also	given.	DOWY	is	
an	abbreviation	for	day	of	water	year.	

Site	
Water	
Year	

Snowmelt	Rate	
[mm/day]	

Snowmelt	
Amount	
[mm]	

Snowmelt	
Timing	
[DOWY]	 Q/P	

CO	 2012	 3.82	 279	 156 0.11	
CO	 2011	 19.64	 432	 234 0.25	
CA	 2015	 1.86	 76	 78 0.40	
CA	 2011	 16.22	 1135	 177 0.78	

	

Runoff	production	was	most	sensitive	to	a	change	in	snowmelt	amount	at	both	sites	

(Table	2.3).	At	CO,	runoff	production	was	similarly	sensitive	to	snowmelt	rate	and	

snowmelt	timing	with	computed	sensitivities	of	0.04	for	both	(Table	2.3).	At	CA,	runoff	

production	was	more	sensitive	to	changes	in	snowmelt	timing	(0.07)	than	to	snowmelt	rate	

(0.06,	Table	2.3).	The	signs	of	all	the	sensitivities	computed	were	positive	across	both	sites	

and	all	metrics	of	snowmelt.	Given	that	the	energy	available	for	transpiration	increases	

with	late	snowmelt,	we	would	expect	that	the	sensitivity	of	Q/P	to	snowmelt	timing	would	

be	negative	with	later	snowmelt	leading	to	less	runoff	generation;	however,	this	is	not	

shown	by	these	data	due	to	the	multicollinearity	between	snowmelt	rate,	timing,	and	

amount	present	in	this	observational	data	set	[Trujillo	and	Molotch,	2014].	
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Table	2.3:	Change	in	Q/P	to	a	unit	change	in	snowmelt	rate,	timing,	and	amount	for	CO	and	
CA.	Snowmelt	rate,	timing,	and	amount	values	were	standardized	using	Equation	2.3	to	
allow	comparison	of	sensitivity	values.	

Site	
ΔQ/P	/	ΔSnowmelt	

Rate	
ΔQ/P	/	ΔSnowmelt	

Amount	 ΔQ/P	/	ΔSnowmelt	Timing	
CO	 0.04	 0.06	 0.04	
CA	 0.06	 0.06	 0.07	

	

Additionally,	the	observational	sensitivities	presented	in	Table	2.3	fit	with	first	

principles	in	that	Q/P	is	most	sensitive	to	snowmelt	amount	at	CO	and	CA.	Generally,	we	

would	expect	that	Q/P	would	increase	with	increased	precipitation	(i.e.	snowmelt	amount)	

[Chauvin	et	al.,	2011;	Luce	et	al.,	2013].	The	lack	of	different	Q/P	sensitivities	to	snowmelt	

timing	and	snowmelt	rate	at	CO	indicates	the	difficulty	in	comparing	different	descriptors	

of	snowmelt	with	runoff	production	from	observations	alone	due	to	the	multicollinearity	

between	snowmelt	rate,	timing,	and	amount	[Trujillo	and	Molotch,	2014].	Given	the	short	

data	records	available	at	both	of	these	sites,	statistical	separation	of	the	effects	of	snowmelt	

rate	and	timing	on	runoff	production	is	difficult	to	assess.	Furthermore,	the	period	of	

record	of	the	observations	used,	not	just	the	number	of	observations,	may	influence	these	

results.	The	hydrologic	modeling	experiment	presented	herein	addresses	these	

shortcomings	by	varying	snowmelt	rate,	timing,	and	amount	using	uniform	probability	

distributions	to	eliminate	the	multicollinearity	between	these	factors.	

2.4.2	Hydrologic	Model	Calibration	

	 Calibration	of	soil	and	groundwater	parameters	at	both	sites	yielded	simulations	

that	estimated	the	general	seasonal	patterns	of	observed	ET	on	a	monthly	basis	(Figure	2.6,	

Table	2.4).	At	CO,	the	model	achieved	a	monthly	ET	NSE	of	0.32,	overestimating	peak	ET	
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and	underestimating	winter	ET.	At	CA,	simulated	ET	overestimated	some	peak	ET	events	

and	overestimated	winter	ET	with	a	monthly	NSE	of	0.29.	There	is	likely	to	be	differences	

between	modeled	and	observed	ET	associated	with	spatial	variation	within	the	tower	fetch	

as	well	as	differences	associated	with	uncertainty	in	meterologic	forcing	data	and	snow	

parameters.	Given	this,	we	argue	that	model-observation	correspondence	is	acceptable	

given	the	goal	of	using	the	model	to	show	how	manufactured	snowmelt	drivers	influence	

runoff.	

	

Figure	2.6:	Evapotranspiration	observations	(black	lines)	and	simulated	fluxes	(green	
lines)	for	CO	(a)	and	CA	(b).	Vertical	axes	in	(a)	and	(b)	are	the	same.	
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Table	2.4:	Calibration	parameters	and	statistics	for	CO	and	CA.	Abbreviations	are	as	
follows:	decay	of	saturated	hydrologic	conductivity	with	depth	(m),	saturated	hydrologic	
conductivity	(ksat),	pore	size	index	(po),	soil	air	entry	pressure	(pa),	proportion	of	
precipitation	routed	to	groundwater	store	(gw1)	and	proportion	of	ground	water	store	
released	as	streamflow	(gw2),	and	Nash-Sutcliffe	efficiency	(NSE).	

Site:	 CO	 CA	
m	[1/m	H2O]	 13.39	 0.04	
ksat	[m/day]	 338.84	 213.63	

soil	depth	[m]	 4.38	 4.11	
rooting	depth	[m]	 0.38	 1.11	

po	[1]	 2.27	 2.6	
pa	[m	H2O]	 0.05	 0.85	

gw1	[%]	 0.21	 0.12	
gw2	[%]	 0.6	 0.37	

minimum	rain	temperature	[degC]	 -1.657	 3.07	
maximum	snow	temperature	[degC]	 3.007	 3.37	

snowmelt	temperature	coefficient	[m	H2O/degC]	 0.0967	 0.0003	
maximum	snowpack	energy	deficit	[degC/day]	 -52.72	 -160.2	

NSE	 0.32	 0.29	

2.4.3	Snowmelt	Modeling	Experiment	

	 We	first	explore	the	snowmelt	experiment	output	at	each	site	by	comparing	and	

contrasting	the	ET	time	series	at	three	different	snowmelt	rate	bins:	slow	(lowest	10%,	

Figure	2.7a),	medium	(middle	10%,	Figure	2.7b),	and	fast	(highest	10%,	Figure	2.7c)	taken	

from	the	middle	10%	of	the	snowmelt	amount	values	present	in	the	scenarios	for	each	site,	

e.g.	between	the	45th	and	55th	snowmelt	amount	percentiles.	To	show	how	snowmelt	rate	

interacts	with	snowmelt	timing,	we	present	time	series	depicting	the	difference	between	

ET	from	the	latest	and	earliest	snowmelt	scenarios	within	each	snowmelt	bin	for	each	day	

since	the	start	of	snowmelt.	There	was	a	clear	transition	during	the	snowmelt	season	at	CO	

in	all	three	panels	of	Figure	2.7	where	the	site	transitioned	from	having	greater	ET	with	

late	season	snowmelt	to	slightly	greater	ET	for	early	season	snowmelt.	This	effect	only	
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occurs	at	CO,	which	may	indicate	that	continental	snowpacks	are	more	sensitive	to	changes	

in	snowmelt	timing.	At	CA,	late	season	ET	was	always	greater	than	early	season	ET	(Figure	

2.7a,b,c)	suggesting	that	the	timing	of	water	delivery	with	respect	to	energy	availability	is	

critical	for	forest	water	use.	At	CO	and	CA,	it	was	clear	that	later	snowmelt	results	in	

greater	hydrologic	partitioning	to	the	atmosphere	(ET)	under	a	range	of	snowmelt	rate	

conditions	(Table	2.5).	The	influence	of	snowmelt	rate	on	ET	was	also	more	difficult	to	

examine	from	these	time	series	(Figure	2.7)	and	will	be	investigated	below.	

	

Figure	2.7:	Example	time	series	from	the	hydrologic	modeling	experiment	showing	the	
difference	between	early	and	late	snowmelt	timing	evapotranspiration	for	scenarios	with	
slow	snowmelt	(a),	medium	snowmelt	(b),	and	fast	snowmelt	(c).	Time	series	are	drawn	
from	scenarios	controlled	for	snowmelt	amount	to	illustrate	the	effects	of	changes	in	
snowmelt	timing	and	rate	on	hydrologic	partitioning.	

Table	2.5:	Snowmelt	season	ET	totals	from	the	scenarios	presented	in	Figure	2.7.	

	
CO	 CA	

Snowmelt	
Timing	

Early	
Snowmelt	
[mm]	

Late	
Snowmelt	
[mm]	

Early	
Snowmelt	
[mm]	

Late	
Snowmelt	
[mm]	

Slow	 35	 90	 88	 242	
Medium	 16	 92	 27	 105	
Fast	 10	 87	 12	 67	
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We	interrogate	how	simulated	R	was	influenced	by	changes	in	snowmelt	rate	and	

timing	by	mapping	the	R	values	to	the	snowmelt	rate	and	timing	values	for	each	scenario	

and	each	site	(Figure	2.8).	Mapping	R	in	this	way	allows	gradients	in	the	R	surface	with	

respect	to	both	snowmelt	rate	and	snowmelt	timing	to	be	identified.	Snowmelt	season	

runoff	generation	at	CO	and	CA	was	greatest	in	the	upper	left	and	least	in	the	lower	right	

corners	of	the	plot	(Figure	2.8a,b).	At	CO,	the	downward	curve	of	the	R	surface	with	

lessening	snowmelt	rates	and	later	snowmelt	timing	suggests	that	R	is	similarly	sensitive	to	

both	factors	with	slower	snowmelt	and	later	snowmelt	timing	generating	less	R	(Figure	

2.8a).	At	CA,	the	R	surface	decreases	most	notably	with	slower	snowmelt	and	only	slightly	

with	later	snowmelt	timing	suggesting	that	R	is	most	sensitive	to	snowmelt	rate	at	this	site	

(Figure	2.8b).	We	note	that	these	are	qualitative	descriptors	of	the	R	behavior	at	each	site	

and	that	the	gradients	presented	in	Figure	2.8	are	partially	dictated	by	the	range	of	

snowmelt	rate	and	timing	considered	for	each	site.	

The	mean	snowmelt	rate	and	timing	for	each	site	(from	water	years	1981-2015	and	

2008-2014	for	CO	and	CA,	respectively)	are	plotted	as	stars	on	the	response	surfaces	in	

Figure	2.8	and	allow	projection	of	R	at	each	site	under	future	changes	in	snowmelt	rate	and	

timing.	For	example,	we	expect	future	snowmelt	to	be	slower	[Musselman	et	al.,	2017]	and	

to	occur	earlier	in	the	year	[Harpold	et	al.,	2012],	resulting	in	a	translation	of	mean	

snowmelt	timing	and	rate	to	the	lower	left	in	Figure	2.8;	however,	the	relative	changes	in	

snowmelt	rate	and	timing	will	dictate	the	exact	direction	and	length	of	the	translation	and	

the	response	of	a	site.	At	CO	and	CA,	this	would	generally	result	in	a	decrease	in	R.	
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Figure	2.8:	Simulated	runoff	production	(R)	mapped	across	the	experimental	ranges	of	
snowmelt	timing	and	snowmelt	rate	for	CO	(a)	and	CA	(b).	Observed	average	snowmelt	
rate	and	snowmelt	timing	for	each	site	are	indicated	by	the	star	in	each	plot.	

Multiple	regression	coefficients	from	the	best	parameter	set	for	each	site	from	the	

snowmelt	scenario	experiment	show	that	snowmelt	rate	was	more	important	for	CA	

snowmelt	season	runoff	production	while	snowmelt	timing	was	more	important	for	runoff	

production	at	CO.	CO	had	a	snowmelt	rate	coefficient	of	0.22,	while	CA	had	a	coefficient	of	

0.67	(Figure	2.9).	Both	sites	had	a	snowmelt	timing	coefficient	of	-0.31	(Figure	2.9).	The	

multiple	regression	models	for	CO	and	CA	had	r2	values	of	0.68	and	0.61,	respectively	

(p<0.001).	At	CO	and	CA,	the	difference	in	the	sign	of	the	regression	coefficients	for	

snowmelt	rate	and	snowmelt	timing	illustrates	the	competition	between	snowmelt	timing	
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and	snowmelt	rate	in	snowmelt	season	runoff	production	with	later	snowmelt	timing	

resulting	in	less	runoff	and	more	rapid	snowmelt	resulting	in	more	runoff.	

	

Figure	2.9:	Comparison	of	snowmelt	experiment	multiple	regression	coefficients	between	
CO	and	CA.	All	relationships	were	significant	with	p<0.001.	

Multiple	regression	results	across	the	range	of	PAWS	values	for	each	site	show	the	

sensitivities	of	the	snowmelt	season	runoff	multiple	regression	coefficients	to	different	soil	

storage	conditions	(Figure	2.10).	At	CO	and	CA	the	snowmelt	rate	coefficient	increased	with	

increasing	PAWS	while	the	snowmelt	timing	coefficient	decreased	with	increasing	PAWS	

(Figure	2.10).	This	shows	that,	as	PAWS	increases,	the	sensitivity	of	R	to	both	snowmelt	

rate	and	snowmelt	timing	increases	and	underscores	the	importance	of	soil	water	storage	

capacity	in	mediating	the	partitioning	of	snowmelt	between	R	and	ET.	
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Figure	2.10:	Snowmelt	rate	(top	row)	and	snowmelt	timing	(bottom	row)	coefficients	
across	a	range	of	PAWS	values	for	CO	(a)	and	CA	(b).	All	relationships	are	significant	with	
p<	0.001.	

2.4.4	Changes	in	Snowmelt	Season	Subsurface	Storage	

To	investigate	changes	in	snowmelt	season	subsurface	storage	we	analyzed	

snowmelt	season	water	balance	closure,	ΔS,	during	the	snowmelt	experiment	simulations	

for	each	site.	At	CO	and	CA,	ΔS	decreased	with	later	and	slower	snowmelt	similar	to	the	R	

response	(Figure	2.11).	The	decrease	in	ΔS	at	CO	appears	to	be	uniform	along	the	snowmelt	
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rate	and	snowmelt	timing	axes	suggesting	that	the	sensitivity	of	ΔS	to	changes	in	snowmelt	

rate	and	timing	was	similar	(Figure	2.11a).	At	CA,	the	ΔS	surface	declines	more	noticeably	

with	respect	to	snowmelt	rate	than	with	respect	to	snowmelt	timing	(Figure	2.11b).	As	

with	Figure	2.8,	the	stars	shown	in	Figure	2.11	represent	the	mean	snowmelt	rate	and	

timing	for	each	site.	As	snowmelt	rates	become	slower	and	snowmelt	timing	(i.e.	the	timing	

of	the	start	of	snowmelt)	moves	earlier	in	the	year	the	location	of	each	star	will	move	down	

and	to	the	left	transitioning	both	sites	to	a	regime	with	a	smaller	ΔS	and	therefore	less	

subsurface	water	to	sustain	late	season	streamflow	and	vegetation	productivity.	

	

Figure	2.11:	Simulated	ΔS	mapped	to	different	snowmelt	rate	and	timing	scenarios	at	(a)	
CO	and	(b)	CA.	

At	CO,	multiple	regression	analysis	showed	that	ΔS	was	most	sensitive	to	changes	in	

snowmelt	timing	with	a	negative	snowmelt	timing	coefficient	suggesting	that	as	snowmelt	

occurs	earlier	in	the	year	ΔS	will	increase	(Figure	2.12).	At	CA,	ΔS	was	most	sensitive	to	a	
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change	in	snowmelt	timing;	however,	the	coefficient	for	snowmelt	was	similar	in	

magnitude	suggesting	that	changes	in	snowmelt	rate	and	timing	have	similar	effects,	albeit	

with	opposite	signs,	on	snowmelt	season	subsurface	storage	(Figure	2.12).	Similar	to	

Figure	2.9,	the	coefficients	for	snowmelt	rate	and	snowmelt	timing	in	Figure	2.12	partially	

balance	where	losses	in	ΔS	due	to	slower	snowmelt	are	partially	offset	by	gains	in	ΔS	due	to	

earlier	snowmelt	timing.	

	

Figure	2.12:	Snowmelt	season	ΔS	multiple	regression	coefficient	values	and	r2.	All	
relationships	are	significant	with	p	<	0.001.	

2.5	Discussion	

Air	temperature	warming	simulations	across	the	western	United	States	suggest	that	

peak	SWE	will	be	reduced	in	the	future	and	that	snowmelt	will	occur	earlier	and	more	

slowly	[Musselman	et	al.,	2017].	The	interaction	of	these	changes	in	snowmelt	then	

suggests	that	runoff	will	not	decrease	proportionally	to	decreases	in	peak	SWE	but	with	

additional	decreases	attributed	slower	snowmelt	[Barnhart	et	al.,	2016].	Work	presented	

herein	suggests	that,	depending	on	site-specific	conditions,	runoff	gained	from	earlier	

snowmelt	timing	may	not	be	great	enough	to	offset	the	runoff	loss	due	to	slower	snowmelt	
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(Figure	2.9).	Previous	work	has	focused	on	identifying	changes	in	snowmelt	timing	and	

amount	[Clow,	2010;	Harpold	et	al.,	2012]	and	changes	in	streamflow	amount	and	timing	

[Stewart	et	al.,	2004;	Rood	et	al.,	2005];	however,	we	focus	on	distinguishing	the	respective	

effects	of	changes	in	snowmelt	rate	and	snowmelt	timing	on	runoff	production.	At	both	

sites	we	show	that	when	the	multicollinearity	between	snowmelt	rate	and	timing	is	

experimentally	removed,	that	runoff	increases	due	to	earlier	snowmelt	timing	have	the	

potential	to	be	offset	by	runoff	decrease	due	to	slower	snowmelt	(Figure	2.9).	

	 Trends	towards	earlier	snowmelt	timing	have	been	clearly	identified	in	the	Rocky	

Mountains	[Clow,	2010;	Harpold	et	al.,	2012]	and	in	the	Sierra	Nevada	[Stewart	et	al.,	2005].	

Furthermore,	recent	findings	indicate	that	snowmelt	rate	will	decrease	in	the	future	across	

the	western	United	States	[Musselman	et	al.,	2017].	Our	findings,	when	coupled	to	

documented	trends	in	earlier	snowmelt	and	slower	snowmelt,	suggest	that	individual	site	

or	basin	runoff	production	sensitivity	to	changes	in	snowmelt	rate	and	timing	will	dictate	

the	degree	to	which	increased	runoff	production	from	earlier	snowmelt	may	counteract	

decreased	runoff	production	due	to	slower	snowmelt.	At	CO,	more	runoff	is	generated	due	

to	earlier	snowmelt	than	is	lost	to	slower	snowmelt	(Figure	2.9).	At	CA,	more	runoff	is	lost	

due	to	slower	snowmelt	than	is	gained	due	to	earlier	snowmelt	timing	(Figure	2.9).	Work	

from	the	Northern	Rocky	Mountains	and	the	northwestern	United	States	shows	decreases	

in	streamflow	volumes	across	the	historic	measurement	record	[Rood	et	al.,	2005]	

suggesting	that	the	net	effect	of	earlier	snowmelt	timing	and	slower	snowmelt	will	be	

decreasing	runoff	production	[Barnhart	et	al.,	2016];	however,	part	of	this	decrease	in	

streamflow	may	be	due	to	increased	ET	from	elevated	vapor	pressure	deficits	under	

warmer	conditions.	
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Recent,	regional-scale	work	from	across	the	western	United	States	has	highlighted	

snowmelt	rate	as	a	driver	of	runoff	production	using	a	gridded	hydrometeorology	data	set	

and	a	Budyko-style	analysis	[Barnhart	et	al.,	2016].	The	work	presented	herein	is	

congruent	with	Barnhart	et	al.	[2016]	in	that	it	reinforces	the	importance	of	snowmelt	rate	

on	runoff	production.	We	cannot	evaluate	our	snowmelt	timing	results	against	Barnhart	et	

al.	[2016];	however,	because	they	did	not	test	the	influence	of	snowmelt	timing	on	runoff	

production.	Our	findings	indicate	that	changes	in	both	snowmelt	rate	and	timing	influence	

snowmelt	season	subsurface	storage	changes	(ΔS),	which	is	important	for	late	season	

streamflow	and	vegetation	water	use.	The	relationships	we	found	for	CO	and	CA	between	

snowmelt	rate	and	timing	and	ΔS	fit	with	the	proposed	mechanism	within	Barnhart	et	al.	

[2016]	where	rapid	snowmelt	saturates	the	root	zone,	driving	runoff	production	via	a	

pathway	isolated	from	atmospheric	demand.	Our	work	also	highlights	that	early	snowmelt	

may	also	be	able	to	drive	increases	in	ΔS	when	snowmelt	occurs	before	high	vegetation	

water	use	(Figure	2.12).	Furthermore,	the	importance	of	snowmelt	timing	(Figure	2.9)	

further	supports	the	findings	of	Jeton	et	al.	[1996]	where	runoff	production	is	dependent	

on	the	timing	of	water	delivery	and	vegetation	water	use.		

Additionally,	the	work	presented	herein	fits	well	with	work	evaluating	watershed-

scale	response	to	increased	air	temperature.	In	the	Sierra	Nevada,	a	hydrologic	modeling	

study	investigated	the	effect	of	a	3	°C	increase	in	air	temperature	on	watershed-scale	

hydrologic	fluxes	[Tague	and	Peng,	2013].	Similar	to	the	work	presented	herein,	the	3	°C	

increase	in	air	temperature	resulted	in	earlier	and	slower	snowmelt	and	a	slight	decrease	(-

3%)	in	streamflow,	although	interannual	variability	caused	streamflow	to	vary	from	-30%	

to	20%	under	the	warming	scenario	[Tague	and	Peng,	2013].	This	fits	with	our	analysis	in	
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that	the	competing	influence	of	slower	snowmelt	rates,	which	decrease	runoff,	and	earlier	

snowmelt,	which	increases	runoff,	may	partially	cancel	resulting	in	a	small	net	effect.		

Pervious	work	reporting	the	sensitivity	of	ET	to	changes	in	subsurface	storage	in	the	

Colorado	Rockies,	Oregon	Cascades,	and	California	Sierra	Nevada	[Garcia	and	Tague,	2015]	

shows	that	the	sensitivity	of	annual	ET	to	changes	in	subsurface	storage	decreases	at	0.265	

m	and	0.195	m	of	PAWS	for	the	Colorado	Rockies	and	the	California	Sierra	Nevada,	

respectively.	Similar	to	Garcia	and	Tague	[2015],	we	found	the	regression	coefficients	for	

Equation	9	at	CO	and	to	be	sensitive	to	changes	in	PAWS	(Figure	2.10)	across	a	range	of	

PAWS	values.	The	influence	of	subsurface	storage	on	the	sensitivity	of	a	site	to	changes	in	

snowmelt	rate	and	timing	underscores	the	need	to	characterize	the	subsurface	of	runoff	

producing	areas	to	better	understand	how	runoff	will	change	in	the	future.	Examples	of	this	

have	been	carried	out	along	geophysical	transects	within	many	of	the	United	States,	

National	Science	Foundation,	Critical	Zone	Observatories	[Holbrook	et	al.,	2014;	St	Clair	et	

al.,	2015];	however,	further	work	and	long-term	hydrologic	and	meteorologic	observations	

are	needed	to	translate	geophysical	measurements	into	catchment-scale	subsurface	

properties	and	perceptual	models	of	critical	zone	hydrologic	function.			

It	is	also	possible	to	compare	the	observational	and	simulated	results	from	the	work	

presented	herein.	Observations	at	CO	showed	similar	Q/P	sensitivity	to	both	snowmelt	rate	

and	timing	while	the	hydrologic	modeling	experiment	indicates	that	R	at	CO	is	more	

sensitive	to	changes	in	snowmelt	timing	than	to	changes	in	snowmelt	rate	(Figure	2.9).	At	

CA,	observations	showed	that	Q/P	was	more	sensitive	to	snowmelt	timing	than	snowmelt	

rate	while	simulation	results	indicated	that	R	is	more	sensitive	to	snowmelt	rate	than	

timing	(Figure	2.9).	There	is	a	sign	mismatch	in	this	comparison	though,	which	is	likely	the	
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result	of	the	multicollinearity	within	the	snowmelt	rate,	amount,	and	timing	data	set	used	

for	the	observational	analysis	[Trujillo	and	Molotch,	2014]	or	because	the	observational	

analysis	only	covers	a	small	subset	of	potential	snowmelt	rate	and	timing	conditions	at	

each	site.	Furthermore,	the	observational	analysis	is	conducted	using	annual	values	while	

the	snowmelt	simulation	experiment	only	considers	the	snowmelt	period.	The	differences	

between	the	observational	and	simulated	results	underscores	the	new	knowledge	gained	

by	the	exercise	of	removing	the	multicollinearity	between	snowmelt	rate,	timing,	and	

amount	and	examining	each	component’s	influence	on	runoff	generation.	This	work	also	

highlights	the	need	for	long-term	hydrologic	measurements,	as	we	were	unable	to	

statistically	separate	the	influence	of	snowmelt	rate	and	timing	on	runoff	generation	from	

observation	data	due	to	the	period	of	record	at	the	study	sites.	

2.6	Conclusion	

The	impact	of	changing	snowmelt	rate,	timing,	and	amount	on	snowmelt	season	

runoff	production	is	difficult	to	evaluate	given	the	multicollinearity	between	these	three	

components	of	snowmelt.	We	provide	the	first	observation	and	modeling	experiment	

aimed	at	disentangling	the	multicollinearity	among	snowmelt	rate,	timing,	and	amount.	

This	work	also	investigated	how	sensitive	changes	in	snowmelt	season	subsurface	storage	

were	to	changes	in	snowmelt	rate	and	timing.	This	type	of	work	is	essential	as	previous	

work	has	highlighted	how	snowmelt	rate	may	change	in	the	future	and	how	this	may	

impact	regional	streamflow	production;	however,	there	are	also	associated	changes	in	

snowmelt	timing	and	amount,	which	may	impact	runoff	generation.	
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Observations	of	runoff	production	and	snowmelt	suggest	that	runoff	production	was	

most	sensitive	to	and	increased	with	snowmelt	amount	at	CO	and	CA	(Table	2.3).	

Hydrologic	modeling	experiment	results	show	that	snowmelt	season	runoff	production	

was	most	sensitive	to	snowmelt	timing	with	later	snowmelt	leading	to	less	runoff	

production	at	CO	(Figure	2.9).	At	CA,	runoff	production	was	most	sensitive	to	snowmelt	

rate	with	more	rapid	snowmelt	leading	to	greater	runoff	production	(Figure	2.9).	We	also	

showed	the	importance	of	snowmelt	timing	and	snowmelt	rate	to	the	change	in	snowmelt	

season	subsurface	storage	(Figure	2.12).	In	this	regard,	the	change	in	snowmelt	season	

subsurface	storage	at	CO	and	CA	was	most	sensitive	to	changes	in	snowmelt	timing.	

Additionally,	we	found	that	the	sensitivity	of	runoff	production	to	changes	in	snowmelt	rate	

and	timing	increased	with	greater	plant	available	water	storage	at	both	sites.	

This	work	shows	that	snowmelt	season	runoff	losses	due	to	slower	snowmelt	may	

be	partially	offset	by	runoff	gains	from	earlier	snowmelt.	Given	climate	driven	decreases	in	

snowpack	volumes,	earlier	snowmelt	timing,	and	decreases	in	snowmelt	rate,	this	work	

suggests	that	individual	site	runoff	production	behavior	will	depend	on	the	relative	

sensitivity	of	runoff	at	the	site	to	changes	in	snowmelt	rate	and	timing	and	the	plant	

available	water	storage	of	the	site.	This	work	highlights	the	importance	of	not	just	

snowmelt	rate,	but	also	that	of	snowmelt	timing	with	regard	to	hydrologic	sensitivity	to	

climate	change.	Future	work	constraining	the	interaction	between	earlier	water	availability	

in	mountainous	systems	and	vegetation	water	use	via	long-term	observations	is	needed	to	

fully	understand	how	snowmelt	driven	runoff	production	may	change	in	the	future.	Our	

results	show	impacts	for	site	scale	runoff	production,	additional	work	scaling	results	to	

larger	watersheds	with	a	range	of	snow	melt	dynamics	is	needed.	We	also	note	that	the	
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potential	declines	in	water	availability	for	plants,	how	this	may	impact	plant	health	and	

drought	sensitivity	is	another	avenue	for	future	work.
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Chapter	3: Future	Land	Cover	and	Climate	Drive	
Decreases	in	Snow	Scour	and	Transpiration,	Increasing	

Streamflow1	
Abstract	

Understanding	how	land-cover	change	will	impact	water	resources	in	snow-dominated	

regions	is	of	critical	importance	as	these	locations	produce	a	disproportionate	amount	of	

runoff	relative	to	their	land	area.	We	used	the	Landscape	Disturbance	and	Succession	

model	in	conjunction	with	a	spatially	explicit,	physics-based,	watershed	process	model,	the	

Regional	Hydro-Ecologic	Simulation	System,	to	simulate	land-cover	change	and	its	impact	

on	the	water	balance	in	a	5.0	km2	headwater	catchment	that	spans	the	alpine-subalpine	

transition	on	the	Colorado	Front	Range.	We	simulated	two	potential	futures	both	with	

greater	air	temperature	(+4	°C/century)	and	more	precipitation	(+15%/century;	MP)	or	

less	precipitation	(-15%/century;	LP)	from	2000	-	2100.	Forest	cover	in	the	catchment	

increased	from	72%	in	2000	to	84%	and	83%	in	2050	and	to	95%	and	92%	in	2100	for	MP	

and	LP,	respectively.	Surprisingly,	increases	in	forest	cover	led	to	mean	increases	in	annual	

streamflow	production	of	12	and	2	mm	for	MP	and	LP	(respectively)	in	2050	with	an	

annual	control	streamflow	of	208	mm.	In	2100,	mean	streamflow	production	increased	by	

91	and	61	mm	for	MP	and	LP.	This	result	counters	previous	work	as	runoff	production	

increased	with	forested	area,	highlighting	the	need	to	better	understand	the	impacts	of	

forest	expansion	on	the	spatial	pattern	of	snow	scour	and	catchment	effective	precipitation.	

																																																								

1	Manuscript for publication with coauthors J. Vukomanovic, P. Bourgeron, and N.P. Molotch.	



	

	 48	

Identifying	the	hydrologic	response	of	mountainous	areas	to	climate	warming	induced	land	

cover	change	is	of	critical	importance	due	to	the	potential	water	resources	impacts	in	

downstream	regions.	

3.1	Introduction	

Land	cover	change	may	influence	the	streamflow	production	of	headwater	catchments	as	

increased	air	temperature	and	precipitation	changes	allow	tree	line	migration	and	

increases	in	forested	area	[Harsch	et	al.,	2009;	Goulden	and	Bales,	2014].	Mountain	and	

forested	areas	produce	fresh	water	for	two-thirds	of	the	global	population	[Vörösmarty	et	

al.,	2005]	and	produce	disproportional	amounts	of	streamflow	relative	to	their	land	area	

[Viviroli	et	al.,	2007].	Additionally,	these	mountain	areas	are	important	regions	for	carbon	

sequestration	[Schimel	et	al.,	2002].	In	the	western	United	States,	snowmelt	is	the	primary	

source	of	water	providing	for	agricultural	and	municipal	uses	as	well	as	for	ground	water	

recharge	[Bales	et	al.,	2006].		

Across	the	western	United	States,	the	timing	of	the	spring	snowmelt	pulse	has	been	

observed	moving	earlier	in	the	year	by	up	to	one	month	during	the	1948	–	2002	study	

period	[Stewart	et	al.,	2005].	This	is	accompanied	by	widespread	decreases	in	the	

proportion	of	precipitation	falling	as	snow	in	the	region	[Knowles	et	al.,	2006],	earlier	

snowmelt,	and	decreased	peak	snow	water	equivalent	(SWE)	[Clow,	2010;	Harpold	et	al.,	

2012].	In	addition	to	these	observed	trends	in	the	mountain	snowpack,	simulations	of	

snowpack	across	the	western	United	States	suggest	widespread	declines	in	peak	snowpack	

volumes	[Hamlet	et	al.,	2005;	Mote	et	al.,	2005],	which	are	critical		as	a	natural	fresh	water	

reservoir	to	provide	for	summer	and	fall	streamflow	and	vegetation	water	use.	In	addition	
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to	declines	in	snowpack	volumes,	future	snowmelt	rates	are	expected	to	decline	

[Musselman	et	al.,	2017]	as	the	timing	of	snowmelt	occurs	earlier	in	the	spring	when	there	

is	less	solar	radiation	to	drive	snowmelt	[Trujillo	and	Molotch,	2014].	These	changes	in	

snowmelt	rate	alone	are	associated	with	decreased	streamflow	production	across	the	

region	with	streamflow	production	in	the	Southern	Rocky	Mountains	and	Middle	Rocky	

Mountains;	the	headwaters	of	the	Colorado,	Snake,	and	Green	Rivers;	having	been	

identified	as	particularly	sensitive	to	changes	in	snowmelt	rate	[Barnhart	et	al.,	2016].	

Coupled	with	these	changes	in	the	mountain	snowpack	are	changes	in	land	cover	

driven	by	disturbances,	such	as	fire	and	insect	infestation,	seed	dispersion,	and	forest	

succession.	However,	the	response	of	streamflow	to	changes	in	land	cover	is	variable.	

Disturbance	oriented	studies	indicate	a	range	of	streamflow	responses	including	increased	

streamflow	[Buma	and	Livneh,	2015;	2017],	streamflow	insensitivity	[Biederman	et	al.,	

2015],	and	potential	streamflow	decreases	[Bart	et	al.,	2016].	A	previous	coupled	land	

cover	and	climate	change	study	found	that	streamflow	decreased	in	the	future	as	leaf	area	

index	and	rooting	depth	increased	[Öztürk	et	al.,	2013];	additionally,	they	found	that	

streamflow	decreased	the	most	compared	to	the	baseline	simulation	as	forested	area	in	the	

basin	increased.	

Previous	climate	change	motivated	hydrologic	modeling	work	from	a	snow-

dominated	catchment	has	shown	that	as	air	temperature	increases,	streamflow	decreases	

and	occurs	earlier	in	the	year	[Tague	and	Peng,	2013].	The	increase	in	available	energy	

under	climate	warming	has	been	shown	to	decrease	streamflow	more	than	the	phase	

change	in	precipitation	from	snow	to	rain,	although	in	fully	coupled	simulations,	these	two	

changes	would	be	concurrent	[Foster	et	al.,	2016].	These	decreases	in	streamflow	under	
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warmer	future	conditions	are	often	accompanied	by	increased	evapotranspiration,	which	

may	be	mediated	by	greater	plant	water	use	efficiency	as	the	atmospheric	concentration	of	

CO2	increases	[Tague	et	al.,	2009].	Conversely,	tree	physiology	literature	suggests	that	

warming	induced	increases	in	the	vapor	pressure	deficit	will	lead	to	decreases	in	plant	

transpiration	and	productivity	in	the	summer	because	of	stomatal	closure	and	that	

transpiration	may	decrease	or	be	compensated	by	increases	in	soil	evaporation	[Goldstein	

et	al.,	2000;	Huxman	et	al.,	2003;	Tague	and	Peng,	2013].	

In	mountainous	environments	with	steep	air	temperature	and	precipitation	

environmental	gradients,	understanding	the	impact	of	land	cover	change	on	hydrology	is	

further	complicated	by	snow-vegetation	interactions	wherein	new	vegetation	elements	

may	decrease	wind	driven	snow	scour	and	increase	snow	depths	in	landscape	positions	

with	previously	short	and	sparse	vegetation	[Liston	et	al.,	2002].	Previous	work	on	the	

spatial	variability	of	SWE	in	mountain	environments	has	focused	on	the	interaction	

between	wind	and	terrain	elements	[Winstral	et	al.,	2002;	Erickson	et	al.,	2005].	Much	of	

the	work	on	blowing	snow	and	vegetation	interactions	is	from	Arctic	environments	(e.g.	

Liston	et	al.,	[2002]	and	may	not	be	applicable	to	mountain	environments.	There	is	also	

considerable	uncertainty	in	tree	line	expansion	around	the	globe	with	some	sites	

experiencing	tree	line	expansion	to	higher	elevations	and	others	tree	line	retreat	to	lower	

elevations	[Harsch	et	al.,	2009].	

	 Given	the	uncertainty	in	the	impact	of	land	cover	on	streamflow,	

evapotranspiration,	and	snow	scour	and	deposition	in	the	western	United	States,	we	ask	

how	streamflow	and	evaporative	fluxes	from	a	Rocky	Mountain	headwater	catchment	may	

change	under	future	climate	and	land	cover.	To	address	this	question,	we	inserted	future	
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land	cover	scenarios	from	a	land	cover	evolution	model	into	a	spatially	explicit	hydrologic	

model	to	run	simulations	from	the	year	2000	to	year	2100	with	increases	in	air	

temperature	and	changes	to	annual	precipitation.	Specifically,	we	address	how	streamflow	

and	evapotranspiration	will	change	under	these	conditions	and	whether	these	changes	are	

due	to	the	future	land	cover,	air	temperature,	precipitation,	or	a	combination	of	these	

factors.	We	describe	the	catchment,	land	cover	evolution	model,	hydrologic	model,	and	

experimental	setup	in	Section	3.2.	Results	and	discussion	of	the	land	cover	evolution	model	

output,	hydrologic	model	calibration,	and	experiment	results	are	included	in	Sections	3.3	

and	3.4,	respectively.		

3.2	Methods	

To	investigate	how	streamflow	from	a	headwaters	catchment	may	change	in	response	to	

future	changes	in	land	cover	we	used	the	Regional	Hydro-Ecologic	Simulation	System	

(RHESSys),	a	physics-based,	spatially	explicit	hydrologic	model,	with	land	cover	futures	

generated	from	the	LANdscape	DIsturbance	and	Succession	(LANDIS-II)	model,	a	stochastic	

forest	land	cover	evolution	model.	We	include	land	cover	futures	generated	every	decade	

from	the	year	2000	to	year	2100	from	two	future	climate	scenarios:	both	with	increased	air	

temperature	(+4	°C/century),	one	with	increased	precipitation	(+15%,	more	precipitation,	

MP),	and	one	with	deceased	precipitation	(-15%,	less	precipitation,	LP).	The	temperature	

change	was	chosen	given	the	central	tendency	of	the	regional	future	climate	projections	for	

the	western	United	States	[van	Oldenborgh	et	al.,	2013].	Similarly,	the	precipitation	change	

was	chosen	to	bracket	the	variability	in	future	precipitation	change	for	the	region	as	future	

precipitation	change	is	less	certain	[van	Oldenborgh	et	al.,	2013].		
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A	22-year	meteorology	record	spanning	from	1990	to	2012	from	an	adjacent	

weather	station	was	perturbed	as	described	above	and	used	to	drive	RHESSys	simulations	

with	LANDIS-II	land	cover	for	years	2000	and	every	decade	thereafter	representing	future	

land	cover	conditions	from	2010	through	2100.	In	addition,	hydrologic	model	simulations	

were	conducted	with	current	land	cover	and	perturbations	only	to	air	temperature,	

precipitation,	and	air	temperature	and	precipitation	combined,	without	the	future	land	

cover	scenarios.	Hydrologic	model	runs	used	for	this	experiment	are	presented	in	greater	

detail	below.	This	experimental	design	allows	the	isolation	of	streamflow	changes	from	

land	cover	change	and	from	increased	air	temperature	and	from	increased	or	decreased	

precipitation.	Simulations	used	in	this	modeling	experiment	are	named	descriptively	to	

allow	identification	of	the	combination	of	land	cover,	precipitation,	and	air	temperature	

used.	Land	cover	was	denoted	either	as	current	land	cover	(CLC)	or	future	land	cover	

(FLC).	Air	temperature	was	denoted	as	either	current	air	temperature	(CT)	or	future	

temperature	(FT).	Precipitation	was	denoted	as	either	current	precipitation	(CP),	more	

precipitation	(MP),	or	less	precipitation	(LP).	In	addition,	when	appropriate,	the	simulation	

year	is	appended	to	the	name.	For	example,	a	simulation	named	FLC_FT_LP	2080	would	be	

a	simulation	with	future	land	cover,	future	air	temperature,	and	less	future	precipitation	

for	the	land	cover	future	2080.	

3.2.1	Site	Description	

Como	Creek	is	a	5.0	km2	headwater	catchment	on	the	Colorado	Front	Range	(Figure	

3.1)	that	spans	the	alpine-subalpine	transition	with	approximately	the	upper	third	of	the	

catchment	consisting	of	alpine	tundra	and	the	lower	two-thirds	of	the	catchment	consisting	
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of	subalpine	forest	[Knowles	et	al.,	2015].	Como	Creek	spans	an	elevation	range	from	2900	

–	3560	m	above	sea	level	(m	a.s.l.).	Of	the	annual	precipitation	that	falls	in	the	catchment,	

63-75%	of	it	falls	as	snow	[Williams	et	al.,	2011]	with,	on	average,	21%	of	the	snow	that	

falls	in	the	alpine	portion	of	the	basin	sublimating	via	blowing	snow	processes	[Knowles	et	

al.,	2015].	A	stream	gauge	at	the	outlet	of	the	catchment	recorded	discharge	for	water	years	

(Oct.	1	–	Sept.	30)	2004	–	2012.	Meteorology	observations	are	available	for	calendar	years	

1991	–	2012	from	a	station	just	outside	the	catchment	boundary	[Jennings	et	al.,	2017]	

(Figure	3.1).	Additionally,	observations	of	snow	water	equivalent,	used	to	correct	cold-

season	precipitation	gauge	over	and	under	catch,	are	available	for	water	years	1979-2017	

(Figure	3.1).	

	

Figure	3.1:	Map	of	the	Como	Creek	catchment	and	locator	map	with	the	locations	of	
instrumentation	used.	

The	alpine	portion	of	the	basin	is	largely	comprised	of	dry-meadow	vegetation	

assemblages	[Darrouzet-Nardi	et	al.,	2011]	while	the	subalpine	portion	is	a	second	growth	

mixed-conifer	forest	approximately	120	years	old	[Huxman	et	al.,	2003].	Tree	species	
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present	include	Picea	engelmannii	(Engelmann	spruce),	Pinus	contorta	(lodgepole	pine),	

and	Abies	lasiocarpa	(subalpine	fir)	[Huxman	et	al.,	2003].	The	bedrock	of	the	catchment	is	

granitic	and	siliceous	metamorphic	rock	[Bilodeau	et	al.,	1987]	with	a	glacial	moraine	

covering	the	bedrock	[Gable	and	Madole,	1976],	particularly	near	the	outlet	and	along	the	

lower,	southern	edge	of	the	catchment	(Figure	3.1).	

3.2.2	LANDIS-II	Land	Cover	Simulations	

The	LANdscape	DIsturbance	and	Succession	II	(LANDIS-II)	model	simulates	regional-scale	

forest	landscape	disturbance,	e.g.	insect	infestation	and	forest	fires,	forest	succession,	and	

seed	dispersal	[Scheller	et	al.,	2007].	LANDIS-II	is	able	to	simulate	forest	composition,	stand	

age	classification,	aboveground	biomass,	and	forested	area	expansion	and	contraction	via	

forestation	and	disturbance,	respectively.	These	capabilities	make	LANDIS-II	a	suitable	

model	to	provide	future	land	cover	scenarios	for	Como	Creek.	Previously,	LANDISS-II	has	

been	used	to	study	how	the	potential	habitat	ranges	for	eastern	United	States	tree	species	

under	future	climate	scenarios	[Iverson	et	al.,	2008],	the	impacts	of	microrefugia	on	future	

tree	species	ranges	[Serra-Diaz	et	al.,	2015],	climate	and	fire	effects	on	forest	carbon	

dynamics	[Loudermilk	et	al.,	2013],	and	large-scale	shifts	in	tree	species	ranges	[Morin	et	

al.,	2008].		

	 For	this	study,	LANDIS-II	was	run	on	a	50	m	grid	with	the	simulation	domain	

covering	Boulder	County.	The	simulation	time	period	ran	from	1990	–	2100	at	a	ten-year	

time	step	with	the	initial	ten	years	of	simulation	considered	model	spin	up.	As	LANDIS-II	

simulates	forest	disturbance	and	seed	dispersal	stochastically,	three	LANDIS-II	simulations	

were	used	for	each	future	climate	pathway	(FT	with	MP	and	LP).	The	future	climate	
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scenarios	used	both	increased	air	temperature	linearly	increased	from	0	to	4	°C	by	year	

2100	(FT)	and	either	a	15%	increase	(MP)	or	a	15%	decrease	(LP)	in	precipitation	by	year	

2100	applied	incrementally.	For	each	hydrologic	model	simulation,	perturbations	to	both	

air	temperature	and	precipitation	(Table	3.2)	were	applied	uniformly	to	the	daily	data	

spanning	1990	–	2012	used	to	conduct	each	simulation.	The	LANDIS-II	above	ground	

biomass	extension	[Scheller	and	Mladenoff,	2004]	was	used	for	the	land	cover	simulations	

to	allow	the	transfer	of	LANDIS-II	future	land	cover	patterns	to	RHESSys.	As	LANDIS-II	

outputs	are	spatially	explicit,	LANDIS-II	output	for	every	decade	of	the	experiment	(2000-

2100)	were	re-gridded	to	the	30	m	cell	size	used	in	RHESSys	and	converted	to	maps	of	land	

cover	type	and	leaf	area	index	(LAI)	using	a	budget	for	aboveground	plant	biomass	

𝑏 = 𝑏!"#$ + 𝑏!"#$	 	 	 	 	 (3.1)	

where	b	is	the	total	biomass,	bleaf	is	the	leaf	biomass,	and	bstem	is	the	stem	biomass.	We	take	

r,	the	ratio	of	leaf	to	stem	biomass	to	be		

𝑟 = !!"#$
!!"#$

	 	 	 	 	 	 (3.2)	

Equation	3.2	can	be	rearranged	to	solve	for	bstem	such	that	

𝑏!"#$ = !!"#$
!
	 	 	 	 	 	 (3.3)	

Substituting	(3.3)	into	(3.1)	and	solving	for	bleaf	gives		

𝑏!"#$ =  !"
!!!

		 	 	 	 	 	 (3.4)	

Leaf	biomass	(bleaf)	was	then	converted	to	LAI	using	the	specific	leaf	area	(SLA)	such	that	

𝐿𝐴𝐼 = 𝑏!"#$ ∗ 𝑆𝐿𝐴		 	 	 	 	 (3.5)	

The	leaf-stem	ratio	(r)	and	SLA	are	specified	from	the	default	RHESSys	parameter	file	for	

evergreen	conifer	trees	and	are	0.0141	and	9	m2/kg,	respectively.	
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3.2.3	RHESSys	Hydrologic	Modeling	

The	Regional	Hydro-Ecologic	Simulation	System	(RHESSys)	is	a	physics-based,	spatially	

explicit	hydrologic	model	that	simulates	the	accumulation	and	melt	of	snow,	plant	

transpiration,	lateral	redistribution	of	water	to	adjacent	model	elements,	and	

biogeochemical	cycling	[Tague	and	Band,	2004].	Additionally,	RHESSys	simulates	

subsurface	water	in	three	distinct	zones	covering	the	rooting	zone,	an	unsaturated	zone,	

and	a	shallow	saturated	zone.	This	allows	RHESSys	to	adequately	account	for	water	in	the	

subsurface	that	is	available	for	vegetation	use	and	drainage.	RHESSys	also	contains	a	linear	

ground	water	reservoir,	wherein	the	flux	of	groundwater	to	the	stream	increase	linearly	as	

ground	water	storage	increases,	to	simulate	deep	ground	water	contributions	to	

streamflow.	RHESSys	has	been	used	to	simulate	the	impacts	of	climate	warming	on	

watershed	function	[Jefferson	et	al.,	2008;	Tague	and	Peng,	2013;	Godsey	et	al.,	2014],	the	

hydrologic	impacts	of	land	cover	change	[Bart	et	al.,	2016;	Saksa	et	al.,	2017],	and	the	role	

of	groundwater	in	mitigating	streamflow	response	to	a	warmer	climate	[Tague	and	Grant,	

2009].	RHESSys	has	also	been	used	to	simulate	the	mountain	snowpack	in	a	high-elevation,	

mountain	environment	with	steep	gradients	in	temperature,	precipitation,	and	wind	

redistribution	[Hartman	et	al.,	1999].	These	attributes	indicate	that	RHESSys	is	well	suited	

to	explore	the	impacts	of	land	cover	and	climate	change	in	Como	Creek	particularly	due	to	

the	spatially	explicit	representation	of	vegetation	types	and	properties.	

RHESSys	Input	and	Simulation	Construction	

In	this	subsection	we	describe	the	input	data	sets	used	to	construct	the	RHESSys	model	

used	for	this	experiment,	the	forcing	meteorology,	addition	of	a	loss	to	groundwater	term,	
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and	model	parameter	optimization.	As	Como	Creek	is	situated	at	high	elevation	and	close	to	

the	continental	divide,	precipitation	inputs	are	difficult	to	measure	because	of	blowing	

snow	[Knowles	et	al.,	2015]	and	the	spatial	pattern	of	snow	water	equivalent	in	the	area	is	

not	uniform	[Jepsen	et	al.,	2012].	Since	simulated	streamflow	is	sensitive	to	precipitation	

inputs,	we	describe	a	hybrid	method	to	distribute	cold-season	precipitation	based	on	

remote	sensing	and	energy	balance	modeling	based	estimates	of	the	spatial	pattern	of	

snow	water	equivalent.	Additionally,	because	of	wind	scour	driven	relationships	between	

vegetation	and	snow	depth	[Liston	et	al.,	2002;	Blanken,	2009]	we	develop	an	empirical	

relationship	between	vegetation,	elevation,	and	solid	precipitation	scaling	weights	to	allow	

the	formation	of	snow	drifts	and	changes	in	snow	scour	under	future	land	cover	conditions.	

Additionally,	we	investigate	the	need	for	a	loss	to	groundwater	term	in	RHESSys	to	better	

capture	the	physical	processes	present	in	Como	Creek.	

Simulation	Construction	

	 A	RHESSys	simulation	was	built	for	the	Como	Creek	catchment	using	the	1	m	LiDAR	

derived	digital	elevation	model	(DEM)	from	the	Boulder	Creek	Critical	Zone	Observatory	

[Anderson	et	al.,	2012]	aggregated	to	a	30	m	spatial	resolution	by	taking	the	mean	of	all	the	

1	m	cells	falling	within	each	30	m	cell.	Vegetation	was	parameterized	using	LiDAR	derived	

estimates	of	leaf	area	index	(LAI)	for	the	Boulder	Creek	Critical	Zone	Observatory	based	on	

the	methodology	developed	by	Richardson	et	al.	[2009].	As	the	LiDAR	derived	LAI	does	not	

resolve	LAI	in	the	alpine	portion	of	the	basin,	we	assigned	grid	cells	in	the	alpine	portion	of	

the	basin	an	LAI	of	0.5	m2/m2	[Blanken	et	al.,	2009].	
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Meteorology	Forcing	Data	

	 The	RHESSys	simulations	for	this	work	were	forced	using	inputs	of	minimum	

temperature	(Tmin),	maximum	temperature	(Tmax),	and	precipitation	(P)	at	a	daily	time	

step	over	water	years	1990-2012	from	the	adjacent	C1	meteorological	station	[Jennings	et	

al.,	2017]	at	3048	m	a.s.l.	(Figure	3.1)	distributed	to	a	60	m	cell	size	grid	over	the	catchment	

area.	Tmin,	Tmax,	and	P	from	the	meteorological	station	were	distributed	based	on	the	

difference	in	elevation	between	the	C1	station	and	the	mean	elevation	of	each	grid	cell	

following	Livneh	et	al.	[2014]	using	monthly	air	temperature	and	precipitation	lapse	rates	

from	Bigler	et	al.	[2007].	

Warm-season	(May	through	October)	precipitation	was	distributed	as	described	

above;	however,	cold-season	precipitation,	which	is	highly	prone	to	wind	redistribution,	

was	distributed	using	a	map	of	cold-season	precipitation	scaling	weights	(Pw)	computed	

from	a	climatology	of	reconstructed	estimates	of	peak	snow	water	equivalent	(RSWE)	from	

1996-2007	[Jepsen	et	al.,	2012]	following	Livneh	et	al.	[2014]	where	the	RSWE	climatology	

grid	was	divided	by	the	value	of	the	RSWE	grid	cell	corresponding	to	the	C1	meteorological	

station	to	produce	a	grid	of	effective	cold-season	precipitation	weights.	Prior	to	

distribution,	cold-season	C1	precipitation	data	were	corrected	for	under-	and	over-catch	

against	nearby	snow	pillow	observations	(Figure	3.1)	following	Meromy	et	al.	[2015].	

As	the	LANIDS-II	simulations	showed	land	cover	change	in	the	alpine	portion	of	

Como	Creek,	we	investigated	the	relationship	between	snow	drifts	and	vegetation	at	tree	

line	in	Como	Creek.	The	alpine	portion	of	Como	Creek	experiences	mean	cold	season	wind	

speeds	of	13	m/s	[Knowles	et	al.,	2015],	which	serve	to	transport	snow	and	redeposit	it	in	

accordance	with	terrain	and	vegetation	elements	[Winstral	et	al.,	2002;	Erickson	et	al.,	
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2005;	Harpold	et	al.,	2014].	To	honor	the	interaction	of	snow	redistribution	and	vegetation	

in	the	tree	line	region	of	Como	Creek	(3274	–	3507	m	a.s.l.),	we	developed	a	relationship	

between	Pw,	LAI,	and	elevation	to	alter	the	spatial	pattern	of	cold-season	precipitation	

weights	used	for	the	RHESSys	precipitation	forcing	as	land	cover	in	the	catchment	evolves	

in	accordance	with	the	LANDIS-II	output.	This	allows	catchment	effective	precipitation,	

defined	here	as	both	direct	precipitation	to	the	basin	and	land	cover	induced	changes	in	

snow	scour	and	accumulation,	to	evolve	through	time	with	land	cover.		We	use	the	same	

elevation	data	set	used	to	build	the	RHESSys	simulation	and	Landsat	derived	LAI	[White	et	

al.,	1997]	resampled	to	a	60	m	grid	cell	size	to	match	the	Jepsen	et	al.	[2012]	derived	cold-

season	precipitation	weights	(Figure	3.2).	We	chose	to	use	Landsat	derived	LAI	rather	than	

the	LiDAR	derived	LAI	previously	used	because	the	Landsat	derived	LAI	better	captures	the	

spatial	pattern	of	vegetation	at	tree	line.	This	relationship	is	used	to	determine	the	cold-

season	precipitation	weights	for	each	ensemble	member	for	treed	areas	above	3274	m	

a.s.l.,	the	lowest	elevation	of	the	diffuse	krumholtz	tree	line	in	the	catchment	as	determined	

by	air	photo	analysis.		
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Figure	3.2:	Relationship	between	cold	season	precipitation	weight	(Pw),	leaf	area	index	
(LAI),	and	elevation	(DEM).	

Loss	to	Ground	Water	

	 We	evaluated	short-	and	long-term	changes	in	subsurface	water	storage	in	Como	

Creek	to	investigate	the	potential	for	water	loss	to	ground	water	from	the	catchment	given	

its	perched	landscape	position	and	southeastern	boundary	in	a	glacial	moraine.	Como	

Creek	exhibits	an	unusual	change	in	storage	(ΔS)	pattern	where,	over	the	course	of	five	

water	years,	only	positive	changes	in	storage	were	found	for	the	catchment	as	a	whole	

(Figure	3.3a)	[Knowles	et	al.,	2015].	Knowles	et	al.	[2015]	assumed	a	simple	water	balance	

and	computed	ΔS	as	

	𝛥𝑆 = 𝑃 − (𝑄 + 𝐸𝑇 + 𝐵𝑆)	 	 	 	 	 	 (3.6)	

Where	P	is	precipitation,	Q	is	streamflow,	ET	is	evapotranspiration,	and	BS	is	blowing	

snow.	We	expand	upon	the	work	of	Knowles	et	al.	[2015]	by	including	the	precipitation	
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estimates	for	Como	Creek	used	in	this	study,	described	above,	as	well	as	by	including	

estimates	of	ΔS	computed	with	and	without	the	blowing	snow	estimates	from	Knowles	et	

al.	[2015]	as	these	are	highly	uncertain	(Figure	3.3a).	Despite	the	precipitation	estimate	

used	and	the	presence	or	absence	of	sublimation	from	blowing	snow,	ΔS	for	Como	Creek	is	

positive	for	water	years	2008-2012	(Figure	3.3a).	This	is	despite	a	consistent	deficit	in	the	

cumulative	precipitation	anomaly	for	the	catchment	during	that	time	period	(Figure	3.3b).	

This	suggests	that	ΔS	during	this	time	period	should	be	less	than	zero	and	that	the	

catchment	loses	water	to	the	ground	water	system.	
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Figure	3.3:	Estimates	of	Como	Creek	catchment	change	in	storage	(a).	Abbreviations	are	as	
follows;	Knowles	et	al.	[2015]	estimates	of	precipitation	and	catchment	ET	including	
blowing	snow	(KP_BSET),	Knowles	et	al.	[2015]	estimates	of	precipitation	and	measured	
catchment	ET	(KP_MET),	distributed	precipitation	from	this	study	and	Knowles	et	al.	
[2015]	estimates	of	catchment	ET	including	blowing	snow	(DP_BSET)	and	distributed	
precipitation	from	this	study	and	Knowles	et	al.	[2015]	measured		catchment	ET	(DP_MET).	
Cumulative	precipitation	anomaly	for	water	years	1991-2013	(b)	with	the	region	that	
corresponds	to	the	water	years	shown	in	(a)	highlighted	in	grey.	

To	account	for	this	loss	to	the	regional	ground	water	system,	we	added	a	second,	

non-linear	reservoir	to	RHESSys	that	proportionally	computes	a	daily	flux	of	water	leaving	

the	catchment	based	on	daily	streamflow.	We	model	the	response	curve	of	this	reservoir	as	

a	power	law	such	that	

𝑙 = 𝑎𝑠! + 𝑐	 	 	 	 	 	 (3.7)	

where	l	is	the	proportion	of	streamflow	lost	from	the	catchment,	s	is	the	percent	of	

maximum	streamflow,	and	a,	b,	and	c	are	fitting	parameters	controlling	the	shape	of	the	

loss	to	groundwater	function.	The	form	of	(3.7)	is	such	that	as	s	increases,	l	increases	non-

linearly,	which	reflects	the	physical	processes	occurring	where	loss	to	groundwater	from	

the	catchment	increases	when	a	greater	portion	of	the	basin	is	saturated	and	head	

gradients	in	the	subsurface	are	greater,	driving	greater	transmission	of	water	through	the	
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subsurface.	Similar,	non-linear	baseflow	reservoirs	are	common	in	hydrologic	modeling	to	

represent	these	processes	and	have	been	used	in	other	models	[Franchini	and	Pacciani,	

1991;	Liang	et	al.,	1994].	

3.2.3.1.4	RHESSys	Model	Parameter	Optimization	

	 The	parameters	for	the	RHESSys	simulation	were	optimized	by	maximizing	the	

Nash-Sutcliffe	efficiency	(NSE)	[Nash	and	Sutcliffe,	1970]	between	simulated	and	observed	

streamflow	over	a	model	training	period.	We	chose	the	Shuffled	Complex	Evolution	

algorithm	[Duan	et	al.,	1992]	to	find	an	optimum	parameter	set	for	the	training	period	

(water	years	2005-2007).	Model	parameters	varied	during	the	optimization	procedure	and	

optimal	values	are	shown	in	Table	3.1.		 	
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Table	3.1:	Parameter	ranges	and	optimal	values.	

Parameter	 Minimum	 Maximum	 Optimal	 Unit	
Loss	to	the	groundwater	

reservoir	 0.000	 1.000	 0.22	 %	

Proportion	of	groundwater	
reservoir	to	streamflow	 0.000	 1.000	 0.87	 %	

Soil	depth	 0.001	 50.000	 24.39	 m	
Decay	of	saturated	hydraulic	

conductivity	with	depth	 0.004	 12.000	 0.72	 1/m	

Saturated	hydraulic	
conductivity	at	the	surface	 0.003	 1800.000	 542.33	 m/day	

Conifer	rooting	depth	 0.100	 15.000	 2.73	 m	
Tundra	rooting	depth	 0.010	 4.000	 3.77	 m	

Soil	pore	air	entry	pressure	 0.000	 218.000	 67.52	 m	of	water	
Pore	size	index	 0.000	 1.000	 0.58	 unitless	

Minimum	rain	temperature	 -4.000	 0.000	 -3.50	 °C	
Maximum	snow	temperature	 0.000	 4.000	 3.68	 °C	

Snowmelt	temperature	
coefficient	 0.000	 0.600	 0.54	 m	of	water	/	

°C	
Maximum	snowpack	energy	

deficit	 -600.000	 -0.001	 -74.39	 °C	days	

Watershed	loss	curve	scaling	
parameter	 0.001	 15.000	 10.20	 unitless	

Watershed	loss	curve	shape	
parameter	 0.001	 25.000	 21.23	 unitless	

Watershed	loss	curve	
intercept	parameter	 0.001	 1.000	 0.56	 unitless	

NSE	 -10.85	 0.73	 0.73	 unitless	

3.2.4	Modeling	Experiment	Design	

To	address	how	coupled	land	cover	and	climate	change,	including	both	air	

temperature	and	precipitation	change,	will	impact	streamflow	we	first	simulate	a	control	

period	using	six	LANDIS-II	simulations	for	year	2000	with	precipitation	and	air	

temperature	forcings	unperturbed	at	current	levels	(Table	3.2a).	All	simulations	are	run	

over	a	period	of	22	years	from	water	year	1991	through	water	year	2012	(October	1,	1990	



	

	 65	

–	September	30,	2012)	to	capture	a	range	of	interannual	variability;	however,	we	omitted	

the	first	two	years	of	each	hydrologic	model	simulation	to	allow	model	stores	to	spin-up.	To	

test	the	influence	of	coupled	land	cover,	increased	air	temperature,	more	precipitation	

(Table	3.2b),	and	less	precipitation	(Table	3.2c)	we	used	LANDIS-II	land	cover	futures	in	

RHESSys	for	every	decade	from	2010	through	2100	with	forcings	perturbed	to	match	the	

forcings	used	within	the	LANDIS-II	simulations.	To	test	the	influence	of	increasing	

precipitation	without	land	cover	and	air	temperature	change	on	ensembles	at	years	2050	

and	2100	with	current	land	cover	(Table	3.2d)	we	used	year	2000	land	cover	and	more	and	

less	precipitation	changes	at	2050	and	2100.	To	test	the	influence	of	decreasing	

precipitation	without	land	cover	and	air	temperature	change	we	run	ensembles	at	years	

2050	and	2100	with	current	land	cover	(Table	3.2e).	To	test	the	influence	of	increasing	air	

temperature	without	land	cover	and	precipitation	change	we	run	ensembles	at	years	2050	

and	2100	with	current	land	cover	(Table	3.2f).	Additionally,	we	mirror	the	coupled	land	

cover	change	and	air	temperature	and	precipitation	forcing	perturbations	(Table	3.2b,c)	

with	ensembles	with	current	land	cover	and	the	same	air	temperature	and	precipitation	

perturbations	to	assess	the	influence	of	land	cover	change	independent	of	changes	to	the	

meteorological	forcing	data	(Table	3.2g,h).		
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Table	3.2:	Combinations	of	land	cover	future,	simulation	year,	air	temperature	
perturbation,	precipitation	perturbation,	and	number	of	ensemble	members.	Abbreviations	
are	as	follows:	pseudo	global	warming	(PGW),	more	precipitation	(MP),	less	precipitation	
(LP),	current	land	cover	(CLC),	current	precipitation	(CP),	future	land	cover	(FLC),	current	
temperature	(CT),	current	precipitation	(CP),	and	future	temperature	(FT).	

Land	Cover	Future	
Simulation	

Year	 ΔT	[°C]	 ΔP	[%]	
Ensemble	
Members	

a.	Control	-	current	land	cover,	no	climate	warming,	no	precipitation	change	
(CLC_CP_CT)	

Current	(2000)	 2000	 0	 0	 6	
b.	Coupled	land	cover	change,	climate	warming,	and	more	precipitation	

(FLC_MP_FT)	
PGW_MP	2050	 2050	 2	 7.5	 3	
PGW_MP	2100	 2100	 4	 15	 3	
c.	Coupled	land	cover	change,	climate	warming,	and	less	precipitation		

(FLC_LP_FT)	
PGW_LP	2050	 2050	 2	 -7.5	 3	
PGW_LP	2100	 2100	 4	 -15	 3	

d.	Current	land	cover,	no	climate	warming,	and	more	precipitation	
(CLC_MP_CT)	

Current	(2000)	 2050	 0	 7.5	 6	
Current	(2000)	 2100	 0	 15	 6	

e.	Current	land	cover,	no	climate	warming,	and	less	precipitation	
(CLC_LP_CT)	

Current	(2000)	 2050	 0	 -7.5	 6	
Current	(2000)	 2100	 0	 -15	 6	
f.	Current	land	cover,	climate	warming,	and	no	precipitation	change	

(CLC_CP_FT)	
Current	(2000)	 2050	 2	 0	 6	
Current	(2000)	 2100	 4	 0	 6	

g.	Current	land	cover,	climate	warming,	and	more	precipitation	
(CLC_MP_FT)	

Current	(2000)	 2050	 2	 7.5	 6	
Current	(2000)	 2100	 4	 15	 6	

h.	Current	land	cover,	climate	warming,	and	less	precipitation	
(CLC_LP_FT)	

Current	(2000)	 2050	 2	 -7.5	 6	
Current	(2000)	 2100	 4	 -15	 6	
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3.3	Results	 	

3.3.1	Model	Calibration	

The	Shuffled	Complex	Evolution	model	parameter	optimization	process	achieved	a	training	

period	NSE	of	0.73	between	simulated	streamflow	and	observed	streamflow	(Figure	3.4).	

The	optimal	parameter	set	correctly	identifies	the	timing	of	peak	streamflow;	however,	the	

magnitude	of	simulated	streamflow	is	less	than	observations.	Additionally,	simulated	

baseflow	is	greater	than	observed;	however,	because	late	summer,	fall	and	winter	baseflow	

is	so	small	in	magnitude,	these	values	are	difficult	to	simulate	because	even	a	small	

deviation	from	observations	results	in	poor	objective	function	metrics.	

	

Figure	3.4:	Observed	and	simulated	streamflow	in	the	form	of	specific	discharge	from	the	
optimization	training	period.	The	optimal	model	parameter	set	is	shown	in	green	with	the	
top	twenty	simulations	shown	as	gray	shading	around	the	optimal	parameter	set.		

3.3.2	Changes	in	Catchment	Land	Cover	

Both	future	land	cover	LANDIS-II	simulations	with	more	and	less	precipitation	by	2100	

(MP	and	LP,	respectively)	show	increases	in	watershed	forested	area	(Figure	3.5a).	Forest	

expansion	was	greater	under	the	more	precipitation	scenarios	and	forest	cover	was	more	
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variable	under	the	less	precipitation	scenarios	with	disturbance	leading	to	decreases	in	

forested	area	in	one	iteration	of	the	model	during	2090.	By	2100,	both	the	MP	and	LP	

scenarios	are	distinctly	different	with	no	overlap	between	the	simulations;	however,	up	

until	2090	there	is	considerable	overlap	between	the	two	types	of	land	cover	simulations	

with	at	least	one	simulation	from	the	MP	scenarios	having	less	forest	cover	than	the	

simulation	from	the	LP	scenarios	with	the	most	forest	cover.	Mean	forest	biomass	and	

catchment	LAI	also	both	increases	under	both	the	LP	and	MP	scenarios;	however,	these	

increases	are	not	as	proportionally	great	at	the	increase	in	forested	area,	suggesting	that	

the	new	forest	growth	is	of	relatively	small	trees	(Figure	3.5	b	and	c).	

	

Figure	3.5:	LANDIS-II	simulated	land	cover	change	in	the	Como	Creek	catchment.	(a)	Mean	
forested	area	under	future	land	cover	(FLC)	conditions	with,	both	less	precipitation	(LP)	
and	more	precipitation	(MP),	and	future	temperature	(FT)	are	show	with	solid	lines	with	
minimum	and	maximum	catchment	forested	area	shown	with	dashed	lines.	(b)	Catchment	
mean	forest	biomass	and	(c)	catchment	mean	LAI	are	also	shown	using	the	same	
symbology	as	(a).		

3.3.3	Coupled	Land	Cover,	Precipitation,	and	Air	Temperature	Changes	

In	the	Como	Creek	basin,	as	forest	cover	expands	under	both	MP	and	LP	land	cover	change	

scenarios,	catchment	effective	precipitation	changes	as	well	(Figure	3.6).	Annual	effective	

precipitation	decreases	by	158	mm	and	62	mm	(-18%,	-7%)	by	2050	and	increases	by	307	



	

	 69	

mm	and	714	mm	(36%,	83%)	by	2100	for	LP	and	MP	scenarios,	respectively	(Table	3.3,	

Figure	3.6).	The	increase	in	catchment	effective	precipitation	is	primarily	due	to	decreases	

in	snow	scour	as	the	previously	alpine	portion	of	the	basin	is	converted	to	forest-type	

vegetation	(Figure	3.5a).	This	is	shown	in	the	gradual	increase	in	mean	peak	SWE	from	

2060	to	2100	under	both	MP	and	LP	as	the	land	cover	change	driven	decrease	in	snow	

scour	becomes	greater	than	peak	SWE	losses	due	to	warming	air	temperature	from	2000-

2060	(Figure	3.7).	By	2100,	SWE	has	increased	by	an	average	3%	(39	mm)	for	MP	and	

decreased	by	only	14%	(-159	mm)	for	LP	compared	to	decreases	of	20%	(-227	mm)	and	

24%	(-275	mm)	by	2060	in	the	MP	and	LP	scenarios,	respectively.	

	

Figure	3.6:	Mean	daily	effective	precipitation	in	response	to	land	cover	change.	Shaded	
regions	reflect	the	range	of	land	cover	change	ensemble	members.	
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Figure	3.7:	Mean	peak	SWE	under	future	land	cover,	precipitation,	and	temperature.	
Shaded	regions	reflect	the	range	of	land	cover	change	ensemble	members.	

In	the	Como	Creek	basin,	as	forest	cover	expands	under	both	MP	and	LP	land	cover	

change	scenarios,	the	runoff	ratio	of	the	basin	increases	through	year	2040	to	0.13	(18%)	

for	MP	and	year	2060	to	0.13	(18%)	for	LP	(Figure	3.8).	Following	2040,	the	MP	runoff	

ratio	declines	until	2090	with	an	increase	in	Q/P	occurring	in	year	2100	to	0.12	(9%).	For	

LP,	Q/P	declines	until	2080	and	then	increases	to	0.13	(18%)	by	2100;	however,	there	is	

considerable	variability	in	the	LP	runoff	ratio	after	2080	due	to	greater	variability	in	forest	

cover	in	the	less	precipitation	land	cover	scenarios	(Figure	3.5).	Although	Q/P	in	the	LP	

scenarios	has	increased	more	by	2100	compared	to	the	MP	scenarios,	the	volume	of	mean	

streamflow	under	the	LP	scenarios	increased	by	2	and	61	mm	by	2050	and	2100,	

respectively,	while	mean	streamflow	increased	by	12	and	91	mm	by	2050	and	2100,	

respectively,	under	the	MP	scenarios.	The	above	results	indicate	that,	although	the	runoff	

ratio	was	greater	for	LP	at	2100,	absolute	streamflow	was	greater	for	MP.	
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Figure	3.8:	Como	Creek	runoff	ratios	under	future	land	cover	conditions	including	
scenarios	with	more	or	less	precipitation.	Shaded	regions	reflect	the	range	of	land	cover	
change	ensemble	members.	

	 The	mean	monthly	time	series	of	streamflow	(Figure	3.9a)	shows	increases	in	April,	

May,	and	June	indicating	progressively	earlier	snowmelt	with	the	2100	simulation	

generating	earlier	snowmelt	than	the	2050	simulation	under	both	MP	and	LP	scenarios.	

The	increase	in	spring	streamflow	is	offset	by	decreases	in	July	and	August	streamflow.	In	

both	the	2050	and	2100	simulations,	peak	streamflow	occurs	approximately	one	month	

earlier	with	higher	magnitude	streamflow	occurring	during	the	2100	simulation	compared	

to	the	2050	simulation	(Figure	3.9a).	There	was	also	increased	streamflow	during	

November,	December,	and	January,	which	were	more	pronounced	during	the	2100	

simulation	indicating	that	a	threshold	may	have	been	crossed	by	this	time	where	much	of	

the	early	season	precipitation	is	now	falling	as	rain	instead	of	snow.	While	streamflow	

shows	changes	in	both	the	fall	and	spring,	ET	under	the	2050	and	2100	simulations	shows	

only	slight	increases	over	the	control	simulations	until	March	(Figure	3.9b).	Both	the	2050	

and	2100	simulations	show	increased	ET	in	March,	April,	and	May	(21%,	35%,	and	54%	

and	36%,	77%,	and	92%	for	2050	and	2100,	respectively);	however,	after	May	the	two	

simulations	show	decreased	ET	compared	to	the	control	until	September.	During	this	
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period	of	decreased	ET	the	2050	simulation	showed	smaller	decreases	in	ET	than	the	2100	

simulation	(Figure	3.9b).	

	

Figure	3.9:	(a)	Mean	monthly	streamflow	and	(b)	evapotranspiration	under	future	land	
cover	(FLC),	both	more	and	less	precipitation	(MP,	LP),	and	future	temperature	(FT)	
conditions.	

	 For	2050	streamflow,	the	greatest	positive	changes	occur	in	the	early	spring	(27	and	

14	mm	in	May	and	June)	and	are	offset	by	similar	negative	changes	during	the	summer	(-36	

and	10	mm	in	July	and	August,	Figure	3.10a).	By	2100	there	are	also	positive	streamflow	

changes	in	the	fall	and	early	winter	(16	and	21	mm	in	November	and	December)	in	

addition	to	greater	increases	in	the	spring	(18,	40,	and	22	mm	in	April,	May,	and	June)	and	

only	slightly	greater	decreases	in	summer	streamflow	compared	to	2050	(-47	and	12	mm	

in	July	and	August,	Figure	3.10a).	The	annual	changes	in	streamflow	compared	to	control	

for	the	2050	and	2100	simulations	are	reported	above.	Monthly	changes	in	ET	(Figure	
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3.10b)	show	persistent	increases	from	November	to	March	when	the	increase	in	ET	

becomes	greater.	The	change	in	ET	becomes	negative	in	June	and	persists	through	

September	for	both	the	2050	and	2100	simulations;	however	the	changes	in	2100	ET	were	

more	pronounced,	both	positive	and	negative,	than	the	changes	in	2050	ET.	On	an	annual	

basis,	mean	ET	decreased	9	(-1%)	and	8	mm	(-1%)	for	the	MP	and	LP	scenarios,	

respectively	for	2050	and	decreased	5	(-1%)	and	10	mm	(-1%)	for	the	MP	and	LP	

scenarios,	respectively	for	2100.		

	

Figure	3.10:	Monthly	change	in	(a)	streamflow	and	(b)	evapotranspiration	under	future	
climate	and	land	cover	conditions	compared	to	year	2000	land	cover	and	climate.	

3.3.4	Current	Land	Cover	with	Precipitation	Changes	

When	only	precipitation	changes	were	applied	to	year	2000	land	cover	(Table	3.2)	there	

was	little	effect	on	annual	streamflow	under	both	MP	and	LP	scenarios.	The	MP	scenarios	
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averaged	3	mm	(1%)	and	6	mm	(3%)	increases	in	streamflow	at	2050	and	2100,	

respectively.	The	LP	scenarios	averaged	5	mm	(-2%)	and	10	mm	(-5%)	decreases	in	

streamflow	at	2050	and	2100,	respectively.	These	changes	in	streamflow	were	

complimented	by	changes	in	ET	where	the	MP	scenarios	averaged	a	4	mm	(1%)	and	8	mm	

(1%)	increase	in	ET	while	the	LP	scenarios	average	ET	decreased	by	4	mm	(0%)	and	8	mm	

(-1%)	for	2050	and	2100,	respectively.		

3.3.5	Current	Land	Cover	with	Air	Temperature	Changes	

When	only	air	temperature	perturbations	are	applied	to	the	year	2000	land	cover	(Table	

3.2),	streamflow	timing	shifts	progressively	earlier	by	one	month	in	2050	and	by	one	to	

two	months	by	2100	(Figure	3.11).	While	spring	streamflow	increased	by	152	–	431%	in	

March,	April,	and	May	with	these	temperature	perturbations,	there	was	also	an	increase	in	

late	fall	and	winter	streamflow	(95%,	318%,	and	470%	in	November,	December,	and	

January)	indicating	that	precipitation	that	falls	during	this	period	is	falling	as	rain	instead	

of	snow	and	contributing	to	streamflow	instead	of	being	stored	through	the	winter	months.	

Increased	spring	streamflow	was	offset	by	decreases	in	summer	streamflow	during	July	

and	August	(-43%	in	both	months).	On	an	annual	basis,	these	air	temperature	changes	

translate	to	a	1	mm	(1%)	and	33	mm	(16%)	increases	in	mean	streamflow	by	2050	and	

2100,	respectively.	Evapotranspiration	increased	108	mm	(13%)	and	231	mm	(27%)	by	

2050	and	2100,	respectively.	These	values	are	balanced	by	decreases	in	loss	to	the	regional	

groundwater	system	of	79	mm	(-9%)	and	184	mm	(-20%).		
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Figure	3.11:	Mean	monthly	(a)	streamflow	and	(b)	evapotranspiration	(b)	from	air	
temperature	only	perturbations.	

3.3.6	Current	Land	Cover,	Future	Precipitation,	and	Future	Temperature	

Simulations	with	current	land	cover,	either	MP	or	LP,	and	future	air	temperature	show	the	

net	effect	of	these	perturbations	to	Como	Creek	without	the	coupled	land	cover	change	

produce	changes	in	streamflow	of	7	and	46	mm	for	MP	and	-4	and	16	mm	for	LP	at	2050	

and	2100,	respectively.	Similarly	to	the	simulations	with	only	increased	air	temperature,	

streamflow	occurred	one	month	earlier	at	2050	and	two	months	earlier	at	2100	(Figure	

3.12a).	Peak	streamflow	between	LP	and	MP	was	very	similar	at	2050,	while	the	MP	

scenario	at	2100	increased	peak	streamflow	above	control.	There	were	also	increases	in	

late	fall	and	early	winter	streamflow,	most	notably	under	the	MP	2100	scenario	similar	to	

the	increased	air	temperature	only	scenario	(Figure	3.12a).		
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	 At	2050	and	2100,	ET	increased	by	114	mm	and	244	mm	for	MP	and	103	mm	and	

217	mm	for	LP.	Indicating	that	increased	air	temperature	at	this	site	leads	to	increased	ET.	

These	increases	in	ET	are	widespread	from	October	through	March,	with	progressively	

larger	increases	in	early	spring	ET	under	in	the	2050	and	2100	scenarios	for	both	MP	and	

LP	(Figure	3.12b).	ET	returns	to	near	control	levels	in	July,	potentially	indicating	a	more	

moisture-limited	state	during	and	after	this	time	period	until	fall	precipitation	can	

replenish	soil	moisture	stores	(Figure	3.12b).	

	

Figure	3.12:	Comparison	of	(a)	monthly	streamflow	and	(b)	evapotranspiration	from	
simulations	with	current	land	cover,	future	precipitation,	and	future	air	temperature	to	
control	simulations.		
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3.3.7	Comparison	of	Scenarios	

Comparing	results	across	all	of	the	simulations	within	this	experiment	illustrates	which	

changes	in	streamflow,	ET,	and	loss	to	groundwater	were	due	to	land	cover	change,	air	

temperature	increases,	and	changes	in	precipitation	(Table	3.3).	The	largest	changes	

observed	from	the	simulation	were	to	losses	to	groundwater	from	Como	Creek,	which	were	

greatest	under	the	2100	FLC_MP_FT	scenario	(633	mm).	Much	of	this	change	was	due	to	

land	cover	change	as	the	CLC_MP_FT	scenario	registered	only	an	18	mm	increase	in	loss	to	

groundwater	by	2100.	The	greatest	changes	in	streamflow	occurred	at	2100	in	the	future	

land	cover	and	temperature	MP	and	LP	scenarios	with	61	mm	and	91	mm	of	streamflow	

increase,	respectively	(Table	3.3).	This	is	in	contrast	to	16	mm	and	46	mm	increases	under	

the	CLC_LP_FT	and	CLC_MP_FT	scenarios,	respectively	(Table	3.3).	This	indicates	that	land	

cover	change	is	responsible	for	a	45	mm	(22%)	increase	in	streamflow	under	both	LP	and	

MP	scenarios.	This	is	a	greater	increase	in	streamflow	attributable	to	land	cover	change	

than	under	the	precipitation	change	only	simulations	(CLC_LP_CT	and	CLC_MP_CT,	Table	

3.3)	due	to	the	land	cover	change	induced	decrease	in	snow	scour	(Figure	3.2),	resulting	in	

increased	effective	precipitation	(Figure	3.6).	By	2100,	however,	this	45	mm	increase	in	

streamflow	is	similar	in	magnitude	to	the	33	mm	increase	in	streamflow	from	the	increased	

air	temperature	only	simulation	(CLC_CP_FT)	suggesting	that	air	temperature	driven	shifts	

to	earlier	snowmelt	timing	have	similar	impact	on	streamflow	production	by	creating	a	

temporal	mismatch	between	water	availability	and	vegetation	water	demand	in	this	

catchment	as	land	cover	change	driven	increases	in	effective	precipitation.		

	 Evapotranspiration	changes	were	greatest	from	simulations	with	current	land	

cover,	MP	and	LP,	and	future	temperature	(Table	3.3).	These	simulations	showed	ET	
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increases	from	103-114	mm	at	2050	and	from	217-244	mm	at	2100	compared	to	decreases	

in	ET	of	9	and	8	mm	for	MP	and	LP	at	2050	and	5	and	10	mm	at	2100	for	the	future	land	

cover	simulations	(Table	3.3).	This	suggests	that	land	cover	change	alters	not	only	the	

streamflow	response	of	Como	Creek	but	also	the	ET	response.	The	water	remaining	from	

the	decreases	in	ET	by	2100	is	partitioned	between	streamflow	increases	(61-91	mm)	and	

increases	in	the	water	lost	to	groundwater	(301-633	mm,	Table	3.3).	These	results	suggest	

that,	under	future	conditions,	that	Front	Range	headwater	catchments	may	produce	

substantially	more	water	for	downstream	use	via	both	streamflow	and	additions	to	

groundwater.	

3.4	Discussion	

3.4.1	Coupled	Land	Cover,	Precipitation,	and	Air	Temperature	Changes	

Simulations	that	included	future	land	cover	scenarios,	changes	in	precipitation,	and	

increased	air	temperature	produced	counterintuitive	results	in	that,	for	MP	scenarios,	Q/P	

increased	from	0.11	to	0.12	and,	for	LP	scenarios,	increased	from	0.11	to	0.13	from	year	

2000	to	year	2100.		In	absolute	terms,	this	increase	in	proportional	streamflow	translates	

to	an	increase	in	streamflow	from	209	mm	in	year	2000	to	300	mm	and	270	mm	for	MP	

and	LP	scenarios,	respectively,	in	year	2100.	This	increase	in	streamflow	was	driven	by	

forest	expansion	in	the	catchment,	which	decreased	snow	scour	(Figure	3.2)	and	resulted	

in	catchment	effective	precipitation	increases	of	714	mm	and	307	mm	by	2100	for	the	MP	

and	LP	scenarios,	respectively	(Figure	3.6,	Table	3.3).	With	1,830	mm	of	average	annual	

precipitation	in	the	catchment	at	year	2000,	the	increase	in	effective	precipitation	by	2100	
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is	nearly	a	50%	increase	in	annual	precipitation.	The	integrated	effect	of	increasing	

effective	precipitation	due	to	increasing	forested	area	produces	this	unusual	streamflow	

response,	contrary	to	previous	work	that	suggested	streamflow	would	decrease	with	

increased	catchment	forested	area	[Öztürk	et	al.,	2013].	We	examine	the	streamflow	and	

evapotranspiration	underpinnings	of	this	response	below.	Other	workers	have	shown	that	

forest	area	is	expanding	in	the	study	area	using	air	photo	analysis	[Gulick,	2016]	and	that	

forest	biomass	is	increasing	from	analysis	of	permanent	plots	[Chai,	2017].	

3.4.2	Changes	in	Streamflow	

Streamflow	increases	by	2100	were	driven	by	two	periods	of	increased	monthly	

streamflow	(Figure	3.10a).	The	first	of	these	periods	spans	November	through	January	and	

was	present	in	both	the	MP	and	LP	scenarios,	respectively,	but	not	to	a	great	extent	in	the	

2050	simulations.	This	suggests	that	shoulder	season	precipitation	that	fell	as	snow	in	

2000	and	2050	fell	as	rain	in	the	2100	simulations.	The	temperature	threshold	between	

which	precipitation	falls	as	snow	and	rain	in	these	early,	cold-season	storms	is	crossed	

between	2050	and	2100.	In	both	2050	and	2100	there	was	no	corresponding	increase	in	ET	

during	this	first	period	of	increased	streamflow.	Therefore,	much	of	the	precipitation	that	

fell	as	rain	during	this	period	in	2100	was	converted	to	streamflow.	This	conversion	of	

shoulder-season	precipitation	from	snow	to	rain	is	also	likely	happening	during	the	spring	

transition;	however,	it	is	more	difficult	to	see	its	direct	impacts	on	the	hydrograph	because	

of	concurrent	snowmelt.	

The	second	period	of	increased	streamflow	occurred	from	April	to	June	in	2050	and	

from	May	to	June	in	2100	(Figure	3.10a).	This	period	of	increased	streamflow	is	similar	to	
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the	shift	in	springtime	streamflow	from	the	simulations	in	which	only	air	temperature	was	

increased	(Figure	3.10a).		Therefore,	the	timing	of	this	second	period	of	increased	

streamflow	in	the	combined	land	cover	and	climate	change	simulations	may	be	attributed	

to	the	increases	in	air	temperature.	This	is	because	by	2100,	snowmelt	is	occurring	before	

the	vegetation	in	the	catchment	is	able	to	utilize	the	water,	potentially	due	to	phenologic	

limitations.	The	magnitude	of	streamflow	during	this	period,	however,	may	be	attributed	to	

the	land	cover	driven	increases	in	effective	precipitation	in	both	the	MP	and	LP	scenarios	

(Figure	3.5).	

3.4.3	Changes	in	Evapotranspiration	

As	future	land	cover	increases	in	both	the	MP	and	LP	scenarios	through	time,	paradoxically,	

the	overall	ET	declines	by	2100	(Figure	3.13).	Previous	work	suggests	that	ET	is	expected	

to	increase	with	forest	cover	[Goulden	and	Bales,	2014];	however,	results	from	this	site	

suggest	the	opposite.	In	the	MP	scenarios,	ET	was	initially	less	than	control	and	then	

became	greater	than	control	for	2020	and	2030	before	becoming	less	than	the	control	

again	through	2100	(Figure	3.13a).	Similarly,	for	the	LP	scenarios,	ET	was	initially	greater	

than	control	through	2040	before	becoming	less	than	control	through	2100	(Figure	3.13b).	

This	change	in	ET	was	driven	by	changes	in	transpiration,	which	mirrored	the	overall	ET	

response	and	showed	a	net	decline	by	2100	for	both	scenarios.	Evaporation	from	soil,	litter,	

and	intercepted	precipitation	steadily	increased	through	time	with	greater	increases	by	

2100	under	MP	compared	to	LP	(Figure	3.13).	Snow	sublimation	decreased	through	time	

under	both	scenarios	with	little	difference	between	MP	and	LP	likely	due	to	the	air	

temperature	driven	contraction	of	the	snow	season	by	2100.	The	net	effect	of	these	
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increases	in	evaporation	and	decreases	in	transpiration	less	ET	by	2100,	which	allows	for	

proportional	and	absolute	increases	in	streamflow	by	2100	(Figure	3.8).	

	

Figure	3.13:	Annual	differences	in	vapor	fluxes	compared	to	control	(year	2000)	under	
future	land	cover	with	(a)	more	and	(b)	less	precipitation	and	future	temperature	
scenarios.	Vertical	axes	in	(a)	and	(b)	are	the	same.	

	 Changes	in	the	seasonal	cycles	of	transpiration	and	evaporation	(Figure	3.14)	show	

how	these	two	fluxes	have	been	altered	compared	to	the	control	scenario	under	future	land	

cover	and	climate	change	scenarios.	Similar	to	streamflow,	transpiration	occurs	

progressively	earlier	in	the	year	under	the	2050	and	2100	simulations	with	a	decrease	in	

transpiration	following	the	spring	transition	(Figure	3.14a).	The	decrease	in	summer	

transpiration	is	in	agreement	with	Huxman	et	al.	[2003]	where	the	warmer	temperatures	

late	in	the	summer	do	not	drive	additional	transpiration,	but	instead	drive	increased	

evaporation	during	this	time	period	in	both	the	2050	and	2100	simulations	(Figure	3.14b).	

There	is	also	increased	evaporation	during	the	late	fall	and	winter	due	to	increased	

atmospheric	demand	for	water	as	air	temperature	rises	by	2050	and	2100	(Figure	3.14b).		
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Figure	3.14:	Monthly	differences	in	(a)	transpiration	and	(b)	evaporation	from	the	control	
simulations.		

3.4.4	Implications	

In	high,	mountainous,	and	windy	catchments	the	interaction	between	land	cover	change,	

reduced	snow	scour,	and	increases	in	catchment	effective	precipitation	produces	an	

increase	in	streamflow,	a	counter	intuitive	result.	Average	winter	wind	speeds	above	tree	

line	near	the	site	are	often	greater	than	13	m/s	[Blanken	et	al.,	2009]	which	redistributes	

solid	precipitation	[Knowles	et	al.,	2015]	into	seasonally	recurring	patterns	on	the	

landscape	[Winstral	et	al.,	2002;	Erickson	et	al.,	2005].	Both	Erickson	et	al.	[2005]	and	

Winstral	et	al.	[2002]	focused	their	studies	on	the	Green	Lakes	Valley	catchment,	which	is	

adjacent	to	and	greater	in	elevation	than	Como	Creek,	but	with	very	little	vegetation;	as	

such,	they	did	not	consider	how	vegetation	elements	could	also	act	to	trap	snow.	As	forest	
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cover	expands	into	the	windy,	upper	portion	of	Como	Creek,	the	effective	precipitation	in	

the	basin	increased	from	1830	mm	in	2000	to	2544	and	2137	mm	for	MP	and	LP	scenarios,	

respectively	by	2100.	In	regions	where	the	snowpack	may	be	insensitive	to	a	4	°C	increase	

in	air	temperature,	the	interaction	between	greater	effective	precipitation	due	to	more	

roughness	elements	high	in	the	catchment	and	steep	environmental	gradients	may	produce	

unexpected	results.	We	note,	however,	that	we	also	see	an	increase	in	streamflow	

associated	with	a	snow	to	rain	transition	during	this	time	period,	suggesting	that	the	

snowpack	is	not	entirely	insensitive	to	a	4	°C	air	temperature	increase.		

	 The	alpine	portion	of	Como	Creek,	with	its	present	land	cover	[Knowles	et	al.,	2015]	

is	at	the	boundary	between	energy	and	water	limited	states	with	energy	limitation	

occurring	in	wet	years	and	water	limitation	occurring	in	dry	years.	As	shown	herein,	

increases	in	forest	cover	may	reduce	wind	scour	of	snow	from	the	basin	(Figure	3.2)	and	

therefore	increase	effective	precipitation	(Figure	3.6,	Table	3.3).	Given	these	increases	in	

effective	precipitation	in	the	alpine	portion	of	the	basin	energy	limitation	may	persist	or	

become	more	frequent	due	to	increased	water	availability,	increasing	proportional	

streamflow	for	the	catchment.		

	 The	change	in	timing	of	streamflow	under	future	climate	and	land	cover	conditions	

in	concert	with	the	decreased	evapotranspiration	by	2100	suggests	that	the	change	in	

timing	of	water	delivery	is	impacting	late-season	water	availability	for	vegetation	(Figure	

3.13).	This	pattern	fits	in	part	with	Jeton	et	al.	[1996]	where	increased	streamflow	was	

associated	with	earlier	water	availability	because	vegetation	may	not	be	able	to	utilize	so	

much	water	early	in	the	season	due	to	phenological	limitations.	The	increase	in	streamflow	

by	2100	observed	in	Como	Creek	may	be	partially	attributable	to	this	process	as	we	
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observed	a	5	and	10	mm	decrease	in	ET	by	2100	under	MP	and	LP	scenarios,	respectively,	

and	an	increase	in	streamflow	(Table	3.3).	The	mismatch	between	water	availability	and	

vegetation	water	use	may	also	impact	plant	carbon	uptake	during	the	critical	snowmelt	

period	[Winchell	et	al.,	2016],	leading	to	diminished	forest	health	and	susceptibility	to	

disturbance	in	the	future.	Additionally,	while	these	results	may	indicate	greater	streamflow	

in	the	future,	the	impact	of	earlier	streamflow	timing	may	pose	challenges	for	reservoir	

management	as	we	show	streamflow	increasing	during	both	the	fall	and	spring	seasons.	

3.5	Conclusion	

We	investigated	how	future	land	cover,	precipitation,	and	temperature	changes	influenced	

streamflow	and	evapotranspiration	in	a	headwater	catchment	along	the	Colorado	Front	

Range	in	the	Southern	Rocky	Mountains	from	year	2000	(control)	to	2100.	We	utilize	two	

future	land	cover	scenarios	from	the	Landscape	Disturbance	and	Succession	(LANDIS-II)	

model.		One	scenario	estimates	future	land	cover	changes	based	on	a	15%	increase	in	

precipitation	and	a	4	°C	increase	in	air	temperature	by	2100.		The	other	scenario	is	based	

on	a	15%	decrease	in	precipitation	and	a	4	°C	increase	in	air	temperature.	The	future	land	

cover	estimates	and	climate	scenarios	were	used	to	perturb	historical	hydrological	

simulations	using	the	Regional	Hydro-Ecologic	Simulation	System	(RHESSys),	a	spatially	

explicit	hydrologic	model.		

Under	both	the	more	and	less	precipitation	land	cover	scenarios,	the	forested	

portion	of	the	basin	increased	from	72%	to	nearly	95%.	This	caused	an	increase	in	effective	

precipitation	from	1,830	mm	in	2000	to	2,544	mm	and	2,137	mm	for	more	and	less	

precipitation	scenarios	due	to	the	interaction	between	blowing	solid	precipitation	and	new	
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vegetation	roughness	elements	high	in	the	catchment,	which	decrease	wind	scour	of	snow	

from	the	basin.	During	the	experiment,	streamflow	increased	from	209	mm	in	2000	to	300	

and	270	mm	by	2100	for	the	more	and	less	precipitation	scenarios,	reflecting	the	increase	

in	precipitation	and	a	decrease	in	evapotranspiration	due	to	a	mismatch	between	water	

availability	and	vegetation	water	use.	We	found	that	increased	air	temperature	drove	

changes	in	streamflow	timing	and	that	these	elevated	air	temperature	levels	also	drove	a	

phase	change	in	fall	and	early	winter	precipitation	from	snow	to	rain	that	is	partially	

responsible	for	increased	streamflow	in	the	catchment	by	2100	as	there	was	no	

evapotranspiration	response	to	this	new	period	of	water	availability.	

Hydrologic	model	simulations	using	current	land	cover	and	only	elevated	air	

temperature	indicated	a	10.2	mm	decrease	in	streamflow	by	2050	and	a	21.8	mm	increase	

in	streamflow	by	2100	suggesting	that	greater	vegetation	water	use	is	possible	up	to	2050	

and	then	the	temporal	mismatch	between	water	availability	and	vegetation	water	becomes	

too	great	by	2100,	resulting	in	increased	streamflow.	This	suggests	that	the	streamflow	

response	from	the	land	cover	change	simulations	is	due	to	both	increased	effective	

precipitation	in	the	catchment	and	a	mismatch	between	water	availability	and	vegetation	

water	demand.	

	 This	work	highlights	the	need	to	understand	snow-vegetation	interactions	in	the	

future	as	land	cover	change	in	areas	with	previously	sparse	vegetation	may	have	counter	

intuitive	hydrologic	implications	as	described	above.	This	may	be	accomplished	by	more	

nuanced	land	cover	evolution	simulations,	which	not	only	simulate	biomass,	but	also	

vegetation	height.	Furthermore,	these	simulations	should	account	for	wind-driven	snow	

vegetation	interactions	implicitly	as	these	will	influence	water	availability	at	tree	line,	
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which	may	in	turn	influence	seedling	survival,	vegetation	productivity,	and	susceptibility	to	

disturbance	in	this	hydrologically	critical	portion	of	high-elevation	headwaters	catchments.	

We	also	did	not	consider	how	future	land	cover	may	change	the	spatial	pattern	of	energy	

and	water	limitations	in	a	catchment	or	how	land	cover	and	future	climate	may	impact	the	

overall	productivity	of	a	catchment.	Understanding	how	these	aspects	of	catchment	

function	respond	to	changes	in	land	cover	and	climate	will	enhance	our	knowledge	of	how	

biologic-hydrologic	systems	will	respond	to	future	conditions.	
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Chapter	4: Snowmelt	Rate	Dictates	Streamflow1	
Abstract	

Declining	mountain	snowpack	and	earlier	snowmelt	across	the	western	United	States	has	

implications	for	downstream	communities.	We	present	a	possible	mechanism	linking	

snowmelt	rate	and	streamflow	generation	using	a	gridded	implementation	of	the	Budyko	

framework.	We	computed	an	ensemble	of	Budyko	streamflow	anomalies	(BSA)	using	

Variable	Infiltration	Capacity	model-simulated	evapotranspiration,	potential	

evapotranspiration,	and	estimated	precipitation	at	1/16°	resolution	from	1950-2013.	BSA	

was	correlated	with	simulated	baseflow	efficiency	(r2=0.64)	and	simulated	snowmelt	rate	

(r2=0.42).	The	strong	correlation	between	snowmelt	rate	and	baseflow	efficiency	(r2=0.73)	

links	these	relationships	and	supports	a	possible	streamflow	generation	mechanism	

wherein	greater	snowmelt	rates	increase	subsurface	flow.	Rapid	snowmelt	may	thus	bring	

the	soil	to	field	capacity,	facilitating	below-root-zone	percolation,	streamflow,	and	a	

positive	BSA.	Previous	works	have	shown	that	future	increases	in	regional	air	temperature	

may	lead	to	earlier,	slower	snowmelt,	and	hence,	decreased	streamflow	production	via	the	

mechanism	proposed	by	this	work.	

																																																								

1	Published	as:	Barnhart,	T.	B.,	N.	P.	Molotch,	B.	Livneh,	A.	A.	Harpold,	J.	F.	Knowles,	and	D.	
Schneider	(2016),	Snowmelt	rate	dictates	streamflow,	Geophysical	Research	Letters,	43(15),	
8006–8016,	doi:10.1002/2016GL069690.	Reproduced	here	with	the	permission	of	John	
Wiley	and	Sons:	License	Number	4271020375886.	
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4.1	Introduction	

Mountain	snowpack	and	snowmelt-derived	streamflow	are	a	critical	water	resource	for	

approximately	one-sixth	of	the	global	population	[Barnett	et	al.,	2005].	However,	trends	in	

observed	peak	snow	water	equivalent	(SWE)	and	the	timing	of	spring	snowmelt	indicate	

that	the	western	United	States	(U.S.)	mountain	snowpack	is	declining	and	that	snowmelt	

onset	is	occurring	earlier	in	the	year	[Clow,	2010;	Harpold	et	al.,	2012].	Correspondingly,	

trends	in	streamflow	records	show	that	snowmelt-driven	streamflow	is	also	occurring	

earlier	in	the	year	both	in	the	western	U.S.	and	globally	[Cayan,	1996;	Stewart	et	al.,	2004;	

2005;	Stewart,	2009].	These	trends	suggest	that	snowpack	accumulation	and	melt	

dynamics	are	responding	to	higher	near-surface	air	temperatures	and	changes	in	

precipitation	magnitude	and	phase	driven	by	regional	climate	change	[Knowles	et	al.,	2006;	

Luce	et	al.,	2014].	As	climate	change	violates	the	critical	stationarity	assumption	for	

statistical	water	supply	forecast	models	[Milly	et	al.,	2008],	a	process-based	understanding	

of	the	snowmelt-streamflow	relationship,	and	how	this	relationship	varies	regionally,	is	

needed	to	better	predict	water	availability.	

	 In	addition	to	changing	precipitation	type,	climate	warming	also	shifts	the	timing	of	

snowmelt	earlier	in	spring	[Hamlet	et	al.,	2005].	Previous	work	suggests	that	earlier	

snowmelt	may	alter	streamflow	production	through	two	opposing	mechanisms:	(i)	Earlier	

snowmelt,	due	to	a	warmer	atmosphere,	partitions	a	greater	proportion	of	snowmelt	to	

evapotranspiration	(ET)	than	streamflow	because	of	atmospheric	warming-induced	

increased	vapor	pressure	deficit	(VPD)	[e.g.	Bosson	et	al.,	2012].	Conversely,	(ii)	early	

snowmelt	disrupts	the	synchrony	between	water	availability	and	vegetation	water	demand	
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and	results	in	greater	streamflow	because	water	delivery	occurs	when	vegetation	is	less	

active	[Jeton	et	al.,	1996].	Recent	results	by	Trujillo	and	Molotch	[2014],	which	showed	that	

earlier	snowmelt	is	associated	with	slower	snowmelt,	lead	us	to	a	third	hypothesis	(iii)	in	

which	slower	snowmelt	decreases	streamflow	generation.	This	hypothesis	is	rooted	in	the	

soil	water	balance	whereby	snowmelt	rates	in	excess	of	evapotranspiration	rates	may	

increase	infiltration	in	excess	of	field	capacity,	leading	to	greater	sub-surface	drainage.	In	

this	way,	snowmelt	rate	may	control	the	relative	hydrological	partitioning	of	snowmelt	

between	ET	and	streamflow	production.	Rapid	snowmelt	may	thus	drive	subsurface	flow	

below	the	root	zone	and/or	result	in	melt	rates	that	exceed	infiltration	rates,	leading	to	

overland	flow;	both	mechanisms	could	generate	high	Budyko	streamflow	anomalies	(BSA)	

and	lead	to	proportionally	greater	streamflow.	Furthermore,	Hypothesis	iii	is	consistent	

with	previous	work	highlighting	the	coupling	between	snowmelt	timing	and	peak	soil	

moisture	[Harpold	and	Molotch,	2015]	and	the	distribution	and	magnitude	of	soil	water	for	

facilitating	subsurface	flow	from	variable	snowmelt	rates	[Wilcox	et	al.,	1997;	Liu	et	al.,	

2004;	McNamara	et	al.,	2005;	Flint	et	al.,	2008;	Liu	et	al.,	2008;	Jencso	et	al.,	2009;	Graham	

et	al.,	2010;	Chauvin	et	al.,	2011;	Liu	et	al.,	2012;	Harpold	and	Molotch,	2015].		

In	this	study,	we	test	the	validity	of	hypothesis	iii	and	propose	a	potential	

mechanism	to	explain	this	behavior.	We	do	not	attempt	to	test	hypotheses	i	or	ii	in	this	

study.	We	specifically	investigate	the	relationship	between	snowmelt	rate	and	streamflow	

production	by	testing	to	what	degree	(a)	snowmelt	rate	explains	Budyko-based	streamflow	

production	(BSA),	(b)	whether	there	exists	a	clear	mechanism	linking	snowmelt	rate	to	

streamflow	production,	and	(c)	if	regional	heterogeneity	in	the	snowmelt	rate-streamflow	

production	relationship	is	present	across	the	western	U.S.	
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4.2	Data	and	Domain	

To	compare	the	relationship	between	snowmelt	rate	and	Budyko-based	streamflow	

production,	we	used	a	gridded	hydrometeorological	data	set	[Livneh	et	al.,	2015]	

containing	consistent	daily	meteorological	forcings	and	simulated	Variable	Infiltration	

Capacity	(VIC)	model	states	and	fluxes	at	1/16°	(~6	km)	resolution	from	1950-2013	[Liang	

et	al.,	1994].	Daily	forcing	and	simulated	variables	included	station-derived	precipitation	

(P),	minimum	and	maximum	air	temperature,	simulated	evapotranspiration	(ETVIC),	

potential	evapotranspiration	(PET),	streamflow	(Q),	baseflow	(Qbf),	and	SWE.	Daily	values	

of	PET	in	VIC	are	calculated	using	the	Penman-Monteith	equation	[Shuttleworth,	1993].	

Baseflow	is	defined	in	VIC	as	water	that	passes	through	the	soil	column	and	is	thus	

analogous	to	shallow	subsurface	flow.	Runoff	in	VIC	is	defined	as	water	that	travels	over	

the	land	surface	and	in	the	near-surface	soil.	Discharge	(Q)	is	the	sum	of	runoff	and	

baseflow.	

		 The	VIC	model	has	previously	been	applied	to	simulate	the	mountain	snowpack	in	

many	studies	[Hamlet	and	Lettenmaier,	1999;	Hamlet	and	Huppert,	2002;	Mote	et	al.,	2005;	

Elsner	et	al.,	2010;	Vano	and	Lettenmaier,	2012;	Vano	et	al.,	2015],	and	the	snow	model	

within	VIC	has	been	validated	against	observations	[Andreadis	et	al.,	2009]	and	compared	

against	other	land	surface	models	[Feng	et	al.,	2008;	Chen	et	al.,	2014].	A	full	iterative	

energy	balance	option	was	selected	for	VIC,	while	an	explicit	frozen	soil	option	was	not	

selected,	to	ensure	a	conservative	estimate	of	spring	runoff	magnitude	and	rate,	

acknowledging	that	overestimating	frozen	soil	effects	could	overstate	linkages	between	

snowmelt	and	streamflow.	Frozen	soils	are	also	rare	in	snow-covered,	mountainous	
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locations	because	the	snow	acts	to	insulate	the	ground	from	below	freezing	air	

temperatures.	The	Livneh	et	al.	[2015]	dataset	used	for	this	study	utilized	the	same	VIC	

version	number	and	parameterization	as	Livneh	et	al.	[2013],	which	was	validated	against	

streamflow	observations	for	the	major	river	basins	of	the	conterminous	U.S.	We	conduct	

our	own	VIC	validation	in	the	Section	4.3.4.		

We	masked	the	Livneh	et	al.	[2015]	data	set	to	our	domain	of	interest,	which	was	a	

composite	of	the	major	mountainous	Level	III	ecoregions	[Commission	for	Environmental	

Cooperation,	2006]	of	the	western	U.S.	(Figure	4.1),	and	contained	19,983	simulation	grid	

cells.	The	specific	ecoregions	included	the	Cascades,	Eastern	Cascades	Slopes	and	Foothills,	

North	Cascades,	Sierra	Nevada,	Wasatch	and	Uinta	Mountains,	Idaho	Batholith,	Northern	

Rockies,	Canadian	Rockies,	Southern	Rockies,	and	Middle	Rockies.	We	selected	this	domain	

because	all	these	regions	have	appreciable	snow	accumulation	and	generate	runoff	for	

downstream	communities	[Bales	et	al.,	2006].	Unless	otherwise	stated,	analyses	are	

reported	for	the	entire	domain	as	a	whole.	
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Figure	4.1:	The	simulation	domain	covers	the	mountainous	ecoregions	of	the	western	
United	States.	Included	ecoregions	are	(1)	North	Cascades,	(2)	Cascades,	(3)	Eastern	
Cascades	Slopes	and	Foothills,	(4)	Sierra	Nevada,	(5)	Wasatch	and	Uinta	Mountains,	(6)	
Southern	Rockies,	(7)	Middle	Rockies,	(8)	Idaho	Batholith,	(9)	Northern	Rockies,	and	(10)	
Canadian	Rockies.	

4.3	Methods	

To	test	hypothesis	iii,	we	evaluated	the	correlation	between	VIC-modeled	snowmelt	rate	

and	VIC-modeled	BSA	values	for	all	grid	cells	within	the	domain	(Figure	4.1).	We	then	

masked	the	domain	into	its	component	ecoregions	and	evaluated	the	inter-regional	

sensitivity	of	streamflow	production	to	snowmelt	rate.	This	represents	an	evaluation	of	

streamflow	production	anomalies	(Figure	B.1a)	that	is	analogous	to	the	approach	of	

Berghuijs	et	al.	[2014]	who	used	the	Budyko	[1974]	relationship,	which	relates	long-term	

ET/P	to	long-term	PET/P.	However,	several	works	have	argued	that	the	use	of	universal	

Budyko-type	functional	relationships	may	not	be	appropriate	over	different	climatic	

regions	[Choudhury,	1999;	Zhang	et	al.,	2001;	Zhou	et	al.,	2015].	Hence,	for	our	ecoregion-

specific	analysis,	we	also	fit	Zhang	et	al.	[2001]	Budyko-type	equations	for	each	ecoregion	
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and	extracted	the	y-axis	asymptote	from	these	fitted	Budyko-type	relationships	as	a	metric	

of	the	minimum	hydrologic	partitioning	of	precipitation	to	streamflow	for	each	ecoregion	

(Figure	B.1b).	Additionally,	we	examined	the	regional	variation	in	the	BSA-snowmelt	rate	

relationship.	This	approach	allowed	us	to	test	the	influence	of	snowmelt	rate	on	Budyko	

streamflow	production	across	the	entire	domain	as	well	as	within	specific	regions,	using	

both	the	fitted	Budyko-type	equation	and	an	ensemble	of	Budyko	equations.	

4.3.1	Snowmelt	rate		

We	calculated	the	long-term	average	snowmelt	rate	(Smj)	as:	

     𝑆𝑚! =
∑!"#!!,!

!!
      (4.1) 

	where	j	is	the	grid	cell,	t	is	the	simulation	day	(summed	from	January	1,	1950	to	December	

31,	2013),	𝛥𝑆𝑊𝐸!,! = 𝑆𝑊𝐸!,! − 𝑆𝑊𝐸!,!!!,	and	Dj	is	the	number	of	days	where	𝛥𝑆𝑊𝐸!,! < 0.	

Positive	𝛥𝑆𝑊𝐸!,!	values	represent	accumulation	events	and	were	forced	to	zero	when	

calculating	Smj.	During	the	melt	season	we	assumed	that	latent	heat	fluxes	would	be	

preferentially	partitioned	to	melt	rather	than	sublimation	when	the	snowpack	was	

isothermal	[Hood	et	al.,	1999]	due	to	the	order-of-magnitude	difference	between	the	latent	

heats	of	fusion	and	sublimation	of	water	(334	kJ	kg-1	and	2834	kJ	kg-1,	respectively).	We	

also	assumed	negligible	wind	redistribution	of	snow	across	1/16°	grid	cells	[Tabler,	2003].	

4.3.2	The	Budyko	Framework	

Budyko	[1974]	provides	a	framework	to	compare	streamflow	and	evaporative	partitioning	

of	different	watersheds	for	a	given	amount	of	available	energy	and	precipitation.	This	is	

accomplished	by	plotting	a	basin’s	long-term	average	aridity	index	(PET/P)	on	the	
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horizontal	axis	versus	the	long-term	evaporative	index	(ET/P)	on	the	vertical	axis	(Figure	

B.1a).	We	used	an	ensemble	of	the	nine	Budyko-type	equations	from	Table	4.1	in	Zhou	et	al.	

[2015],	four	of	which	incorporate	fitting	parameters	[Mezentsev,	1955;	Fu,	1981;	

Choudhury,	1999;	Zhang	et	al.,	2001;	2004;	Yang	et	al.,	2008;	Zhou	et	al.,	2015]	and	five	of	

which	do	not	[Schreiber,	1904;	Ol'Dekop,	1911;	Turc,	1955;	Pike,	1964;	Budyko,	1974;	Sharif	

et	al.,	2007].	This	type	of	analysis	has	been	applied	in	numerous	studies	as	an	

organizational	framework	within	which	to	compare	catchments	[e.g.	Wagener	et	al.,	2007;	

Berghuijs	et	al.,	2014;	Troch	et	al.,	2015],	to	look	at	streamflow	production	across	

catchments	[e.g.	Donohue	et	al.,	2011],	and	to	assess	catchment-scale	energy	versus	

moisture	limitation	[e.g.	Jones	et	al.,	2012;	Creed	et	al.,	2014;	Knowles	et	al.,	2015].	

Accordingly,	we	used	each	Budyko-type	equation	from	Zhou	et	al.	[2015]	to	derive	a	

theoretical	ET/P,	which	we	then	compared	to	VIC-modeled	ET/P	in	order	to	determine	if	a	

given	grid	cell	was	more	or	less	efficient	at	generating	streamflow	than	predicted	by	the	

Budyko-type	equation.	To	relate	ET/P	to	streamflow	efficiency	(Q/P),	we	used	the	long-

term	water	balance	for	each	grid	cell,	which	assumes	no	long-term	changes	in	storage:	

     𝑄 = 𝑃 − 𝐸𝑇       (4.2) 

and	Q/P	is	specifically	related	to	ET/P	by:	

	 	 !
!
= 1− !"

! 			 	 	 	 	 	 (4.3)	

Similar	to	Berghuijs	et	al.	[2014],	we	calculated	the	Budyko-predicted	streamflow	efficiency	

(QBudyko/P)	for	each	grid	cell	using	the	long-term,	simulated	PET/P	of	each	grid	cell	by	

substituting	the	Budyko-type	equation	into	Equation	4.3	such	that:		

	 	 	 	 !!"#$%&
!

= 1− 𝑓(!"#
!
)		 	 	 	 	 (4.4)	
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where	f(PET/P)	is	one	of	the	nine	Budyko-type	equations	from	Zhou	et	al.	[2015].	

Therefore,	a	grid	cell	with	an	evaporative	index	approaching	unity	partitions	very	little	

water	to	streamflow,	while	a	grid	cell	with	an	evaporative	index	approaching	zero	

partitions	most	water	to	streamflow.	Simulated	streamflow	efficiency	(QVIC/P)	was	

computed	as:	 	

	 	 	 	 	 !!"#
!
= 1−  !"!"#

!
	 	 	 	 	 (4.5)	

Finally,	we	computed	BSA	(i.e.	a	streamflow	production	metric)	for	each	grid	cell	as:	

    𝐵𝑆𝐴 = !!"#$
!

= !!"#
!
− !!"#$%&

!
     (4.6) 

Grid	cells	that	plotted	below	the	Budyko-type	curve	(Figure	B.1a)	had	positive	BSA	values	

(Equation	4.6),	indicating	that	these	grid	cells	produced	more	streamflow	than	expected	

from	the	Budyko-type	equation.	Conversely,	grid	cells	that	plotted	above	the	curve	(Figure	

B.1a)	had	negative	BSA	values,	indicating	that	these	grid	cells	produced	less	streamflow	

than	expected	from	the	Budyko-type	equation.	For	example,	if	a	location	with	a	positive	

BSA	transitioned	to	a	negative	BSA,	then	this	would	represent	a	reduction	in	streamflow	

efficiency,	which	could	have	important	implications	for	water	availability	at	that	location.		

	 This	approach	yielded	an	ensemble	of	nine	BSA	estimates.	For	clarity,	we	present	

the	mean	BSA	for	each	grid	cell	and	the	mean	statistical	relationships	between	mean	BSA	

and	snowmelt	rate,	baseflow	efficiency	(Qbf/P),	and	snowfall	fraction	as	determined	by	

linear	regression.	We	present	statistics	for	each	BSA	and	independent	variable	combination	

in	Appendix	B.	
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4.3.3	Regional	Analysis	

For	our	regional	analysis,	we	evaluated	the	correlation	of	VIC-derived	snowmelt	

rate	and	the	BSA	ensemble	for	each	ecoregion.	Similar	to	the	Budyko	Framework	Section,	

we	present	mean	relationships	and	report	statistics	for	all	relationships	in	Appendix	B.	In	

addition,	we	correlated	the	evaporative	index	asymptote	of	the	Zhang	et	al.	[2001]	Budyko-

type	curve,	a	metric	of	the	minimum	hydrologic	partitioning	to	streamflow	for	each	

ecoregion	(Figure	B.1b),	with	mean	ecoregion	snowmelt	rate.	These	two	comparisons	are	

complementary	and	represent	two	different	ways	of	using	the	Budyko	framework	to	

evaluate	hydrologic	controls	on	streamflow	generation.	To	derive	asymptotes	for	each	

ecoregion,	we	fit	the	Zhang	et	al.	[2001]	Budyko-type	equation	for	each	ecoregion.	We	then	

extracted	the	fitted	Budyko-type	equation	evaporative	index	(y-axis)	asymptote	(Figure	

B.1b).	We	also	calculated	the	mean	snowmelt	rate	for	each	ecoregion	by	taking	the	mean	of	

the	Smj	values	for	all	VIC	grid	cells	within	each	ecoregion.		

4.3.4	Model	Validation	

The	Livneh	et	al.	[2015]	dataset	was	validated	against	observational	streamflow	and	three	

gridded	precipitation	data	sets:	Daymet	[Thornton	et	al.,	1997],	Maurer	[Maurer	et	al.,	

2002],	and	the	North	American	Land	Data	Assimilation	System	(NLDAS)	[Xia	et	al.,	2012]	

for	671	catchments	[Newman	et	al.,	2015].	Three	precipitation	datasets	were	used	given	

the	inherent	uncertainty	in	precipitation	estimates	over	mountainous	terrain.	We	then	

computed	the	long-term	streamflow	coefficient	(Q/P)	for	each	catchment	using	VIC-

simulated	Q	and	P	estimated	from	Livneh	et	al.	[2015]	cropped	to	the	extent	of	each	

catchment.	These	VIC-derived	streamflow	coefficients	were	then	compared	to	streamflow	
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coefficients	generated	using	the	observed	streamflow	and	the	three	gridded	precipitation	

datasets.	The	resulting	VIC-simulated	streamflow	coefficients	compared	favorably	against	

the	streamflow	coefficients	derived	using	the	observational	data	sets	provided	in	Newman	

et	al.	[2015]	with	regression	slopes	ranging	from	0.83	to	0.96	(p	values	<	0.001,	r2	values	>	

0.93,	Figure	B.2).	This	demonstrates	that	the	long-term	average	precipitation	partitioning	

between	ET	and	Q	of	the	Livneh	et	al.	[2015]	data	set	was	reasonable.	

4.4	Results	

4.4.1	Snowmelt	Rate	Controls	Hydrologic	Partitioning	

In	general,	the	VIC-simulated	aridity	and	evaporative	indices	followed	the	mean	Budyko	

curve	(Figure	4.2a).	However,	a	substantial	portion	of	the	domain	fell	below	the	curve,	

especially	grid	cells	with	low	aridity	indices;	statistics	for	each	Budyko-type	equation	are	

presented	in	Table	B.1.	The	average	ensemble	mean	BSA	±	one	standard	deviation	for	the	

entire	domain	was	0.04±0.1	(statistically	different	from	zero,	t-test	p<0.001),	indicating	

that	the	domain	slightly	over-produced	streamflow	for	a	given	amount	of	precipitation	and	

available	energy	relative	to	the	mean	Budyko	curve.	The	domain	included	grid	cells	that	

both	under-	and	over-produced	streamflow	with	fifth	and	ninety-fifth	percentile	mean	BSA	

values	of	0.04	and	0.20,	respectively	(Figure	4.2b).	This	indicates	that,	while	the	mean	was	

relatively	close	to	zero,	there	was	significant	variability	in	streamflow	production	with	5%	

of	the	domain	under-producing	streamflow	and	5%	of	the	domain	over-producing	

streamflow	by	20%	or	more	relative	to	the	mean	Budyko	curve	(Figure	4.2b).	
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Figure	4.2:	(a)	Simulation	grid	cells	
(grey	dots)	plotted	in	Budyko	space	
and	the	mean	Budyko	curve	(black	
line).	The	ensemble	of	Budyko-type	
equations	is	shown	as	blue	lines.	
(b)	Relationship	between	snowmelt	
rate	and	mean	BSA	(black	line).	The	
same	relationship	for	each	Budyko-
type	equation	is	shown	using	blue	
lines.	(c)	Relationship	between	
snowmelt	rate	and	baseflow	
efficiency	(Qbf/P).	(d)	Relationship	
between	baseflow	efficiency	and	
mean	BSA	(black	line).	The	same	
relationship	for	each	Budyko-type	
equation	is	shown	using	blue	lines.	
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The	mean	snowmelt	rate	across	the	domain	was	4.4±3.2	mm	d-1	and	the	fifth	and	

ninety-fifth	percentile	snowmelt	rates	were	1.0	and	10.7	mm	d-1,	respectively.	Snowmelt	

rate	significantly	explained	the	variance	in	mean	BSA	(r2=0.42,	p<0.001,	Figure	4.2b),	

which	demonstrates	that	grid	cells	with	more	rapid	snowmelt	often	produced	more	

streamflow	than	expected	from	the	mean	Budyko	curve.	Statistical	data	for	the	BSA-

snowmelt	rate	relationship,	for	each	Budyko-type	equation,	are	given	in	Table	B.2.	We	note	

that	snowmelt	rate	was	a	poor	predictor	of	mean	BSA	at	snowmelt	rates	below	2.5	mm	d-1	

and	that	mean	BSA	was	distinctly	positive	at	snowmelt	rates	above	12.5	mm	d-1	(Figure	

4.2b).	

A	more	complex	linear	regression	for	the	mean	BSA-snowmelt	rate	relationship	

(y=0.01x+0.06ln(x)-0.07;	Figure	4.2b)	yielded	a	slightly	better	fit	(r2	of	0.47	compared	to	

0.42),	but	we	chose	to	use	the	simple	linear	regression	for	further	analysis	because	the	

slope	of	this	linear	regression	is	easily	interpreted	as	a	metric	of	the	sensitivity	of	mean	

BSA	to	a	change	in	snowmelt	rate.	Differences	in	the	sensitivity	of	mean	BSA	to	a	change	in	

snowmelt	rate	between	ecoregions	are	presented	in	Section	4.4.2.		

We	also	found	a	strong	relationship	between	snowmelt	rate	and	VIC-derived	

baseflow	efficiency	(r2=0.73,	p<0.001,	Figure	4.2c),	linking	snowmelt	rate	to	subsurface	

flow	production	in	VIC.	Additionally,	we	found	a	linear	relationship	between	baseflow	

efficiency	and	mean	BSA	(r2=0.64,	p<0.001,	figure	4.2d).	Together,	these	relationships	

suggest	that	rapid	snowmelt	results	in	greater	baseflow	efficiency,	which	ultimately	

produces	higher	BSA	values	(Figure	4.2b-d).	Statistics	for	the	BSA-baseflow	efficiency	

relationship	for	each	Budyko-type	equation	are	given	in	Table	B.3.	
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4.4.2	Regional	Sensitivity	to	Changes	in	Snowmelt	Rate	

The	slope	of	the	mean	BSA-snowmelt	relationship	for	each	ecoregion	shows	the	

sensitivity	of	streamflow	production	in	each	ecoregion	to	a	unit	change	in	snowmelt	rate	

(Figure	4.3a).	Slopes	for	each	ecoregion	ranged	from	0.047	in	the	Northern	Rockies	to	

0.007	in	the	Southern	Rockies.	Although	all	relationships	in	Figure	4.3a	were	significant	

with	p<0.001,	the	amount	of	variance	explained	by	each	relationship	varied	from	74%	to	

9%	for	the	Cascades	and	Northern	Rockies,	respectively.	In	total,	eight	of	ten	ecoregion	

snowmelt	rate-mean	BSA	relationships	had	r2>0.3.	Statistical	data	for	each	snowmelt-BSA	

relationship	and	ecoregion	are	reported	in	Table	B.4.	 	
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Figure	4.3:	(a)	Regressions	between	snowmelt	rate	and	mean	BSA	for	each	ecoregion.	Index	
numbers	for	each	ecoregion	(right)	are	the	same	as	in	Figure	4.1.	All	regressions	are	
significant	(p<0.001).	Regression	lines	extend	to	the	range	of	the	data.	(b)	Zhang	et	al.	
[2001]	Buydko-type	equations	fitted	to	each	ecoregion	with	inset	highlighting	variability	in	
the	asymptotes.	(c)	Relationship	between	ecoregion	asymptotes	and	mean	ecoregion	
snowmelt	rate.	All	panels	use	the	same	color	scheme.		 	
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Fitted	Zhang	et	al.	[2001]	Budyko-type	equations	for	each	ecoregion	exhibited	a	

wide	range	of	curve	asymptotes,	whereby	minimum	partitioning	to	streamflow	varied	from	

3%	to	30%	of	precipitation	(i.e.	asymptotes	ranged	from	0.97	to	0.70;	Figure	4.3b,	Table	

B.5).	The	mean	ecoregion	snowmelt	rate	values	for	the	minimum	and	maximum	

asymptotes	are	2.47	and	8.18	mm	d-1,	respectively	(Table	B.5).	The	variability	in	fitted	

Zhang	et	al.	[2001]	asymptotes	is	well	explained	by	mean	ecoregion	snowmelt	rate	

(r2=0.87,	p<0.001,	Figure	4.3c).	

4.5	Discussion	

4.5.1	Snowmelt	Rate	Controls	Hydrologic	Partitioning	

This	work	demonstrates	that,	across	the	western	U.S.,	areas	with	more-rapid	snowmelt	

over-produced	streamflow	relative	to	Budyko-type	model	expectations	(Figure	4.2b).	We	

showed	that	grid	cells	with	rapid	snowmelt	also	have	high	baseflow	efficiency,	which	

strongly	correlated	with	mean	BSA	(Figure	4.2b-d).	This	pattern	fits	with	our	hypothesis	

(iii)	wherein	rapid	snowmelt	is	linked	to	high	BSA	values.	This	pattern	also	suggests	a	

potential	snowmelt	rate-driven	streamflow	generation	mechanism,	whereby	rapid	

snowmelt	delivers	water	to	the	soil	column,	bringing	it	above	field	capacity,	inducing	

percolation	below	the	root	zone,	and	contributing	to	excess	soil	water.	Excess	soil	water	

then	leads	to	increased	subsurface	flow,	which	results	in	elevated	BSA	values.	In	contrast,	

when	this	relationship	is	inverted,	slower	snowmelt	corresponds	to	lower,	even	negative,	

BSA	values,	suggesting	a	decrease	in	proportional	streamflow	production	and	greater	

partitioning	to	evapotranspiration.		
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We	note	that,	especially	in	more	rain-dominated	locations,	field	capacity	may	be	

reached	in	autumn	prior	to	the	development	of	a	snowpack	thereby	complicating	the	

proposed	mechanism.	The	snowmelt	rate-excess	soil	water	mechanism	described	above	is	

also	invalid	when	the	snowmelt	rate	is	greater	than	the	infiltration	capacity	of	the	soil,	

although	this	scenario	is	unlikely	in	the	absence	of	bedrock	or	frozen	soil	[Wilcox	et	al.,	

1997].	The	strong	relationship	between	baseflow	efficiency	and	mean	BSA	suggests	that	

infiltration	excess	overland	flow,	i.e.	runoff	in	VIC,	is	not	driving	high	BSA	values.	

	 The	analysis	presented	here	shows	that	rapid	snowmelt	promotes	greater	

streamflow	anomalies	by	driving	greater	baseflow,	which	is	consistent	with	previous	

snowmelt-driven	streamflow	analyses.	Previous	studies	have	identified	lateral	subsurface	

flow	as	a	major	contributor	to	streamflow	in	snowmelt-dominated	catchments	using	direct	

measurements	[Wilcox	et	al.,	1997;	McNamara	et	al.,	2005;	Graham	et	al.,	2010;	Chauvin	et	

al.,	2011].	Other	studies	have	used	hydrograph	separation	to	infer	the	contribution	of	

lateral	subsurface	flow	to	streamflow	[Liu	et	al.,	2004;	2008;	2012].	In	line	with	our	

potential	mechanism	of	streamflow	anomaly	generation,	Flint	et	al.	[2008]	showed	that	

rapid	snowmelt	rates	greater	than	1.6	cm	d-1	are	capable	of	exceeding	bedrock	

permeability	and	inducing	lateral	subsurface	flow	in	the	Sierra	Nevada,	California.	Given	

the	consistency	with	previous	work,	the	snowmelt-streamflow	mechanism	presented	here	

may	represent	a	broadly	applicable	theory	for	snowmelt-driven	streamflow	production	

across	the	western	U.S.	wherein	snowmelt	in	excess	of	evapotranspiration	brings	the	soil	

column	to	field	capacity	and	drives	subsurface	flow.		

Snowmelt	has	been	shown	to	play	an	important	role	in	low	summer	streamflow	

[Godsey	et	al.,	2014].	Projections	of	climate	warming	for	snow-dominated	locations	suggest	
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summertime	streamflow	will	decrease	by	about	30%	due	to	earlier	snowmelt	and	the	

subsequent	drawdown	of	shallow	ground	water	[Huntington	and	Niswonger,	2012].	Our	

study	establishes	a	novel	mechanistic	link	between	snowmelt	rate,	excess	soil	water,	and	

BSA	to	reinforce	the	importance	of	snowmelt	for	streamflow	production	via	the	subsurface.		

Work	comparing	snowmelt	rates	observed	at	snowpack	telemetry	sites	across	the	

western	U.S.	showed	that	earlier	melt	occurred	at	a	slower	melt	rate	because	there	was	less	

solar	radiation	to	drive	snowmelt	earlier	in	the	year	[Trujillo	and	Molotch,	2014].	

Additionally,	Trujillo	and	Molotch	[2014]	found	that,	within	ecoregions	of	the	western	U.S.,	

sites	that	experienced	greater	SWE	accumulations	tended	to	peak	later	in	the	year	and	that	

these	sites	also	experience	later,	more	rapid	snowmelt.	Due	to	these	interrelationships,	

snowmelt	rate	thus	represents	an	integrating	metric	of	snowpack	amount	and	melt	timing.	

Furthermore,	for	a	given	soil	type,	runoff	production	due	to	rainfall	versus	snowfall	inputs	

is	dictated	by	the	balance	between	the	rate	of	water	delivery	–	i.e.	rainfall	and	snowmelt	-	

and	the	rate	of	evaporative	losses	to	the	atmosphere.	Our	analyses,	when	combined	with	

previously	identified	negative	trends	in	mountain	snowpack	and	melt	rates,	suggest	that	

earlier,	slower	snowmelt	may	reduce	percolation	below	the	root	zone	resulting	in	

proportionally	less	streamflow.		

4.5.2	Regional	Sensitivity	to	Changes	in	Snowmelt	Rate	

The	relationship	between	the	Zhang	et	al.	[2001]	asymptotes	and	the	mean	ecoregion	

snowmelt	rates	(Figure	4.3c)	suggests	that	minimum	hydrologic	partitioning	to	streamflow	

is	controlled	by	snowmelt	rate.	This	corroborates	the	idea	that	snowmelt	rate	controls	

streamflow	production	via	a	secondary	analysis.	When	individual	ecoregion	BSA-snowmelt	
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relationships	were	examined	for	the	entire	study	domain	(Figure	4.3a),	all	of	the	regression	

slopes	were	positive	and	89	of	90	relationships	had	slopes	significantly	different	from	zero	

(p<0.05),	indicating	that	decreased	snowmelt	rate	led	to	an	overall	decrease	in	BSA	

throughout	the	domain.		

A	wide	range	of	sensitivities	of	mean	BSA	to	changes	in	snowmelt	rate	were	

observed	across	the	domain	(Section	4.4.3,	Figure	4.3a).	The	significant	range	of	explained	

variance	by	the	mean	BSA-snowmelt	relationship	for	each	ecoregion	(9-72%)	also	suggests	

that	the	BSA-snowmelt	relationship	may	be	dominant	in	some	regions,	while	streamflow	

production	in	other	locations	may	be	due	to	other	mechanisms.	Additionally,	the	observed	

range	of	sensitivities	and	explained	variance	(Figure	4.3a)	may	be	due	to	variable	

meteorological	controls	on	snowmelt	rate	and	streamflow	production,	e.g.	rain	during	the	

snowmelt	season	and	throughout	the	snow	free	portions	of	the	year.	Alternatively,	these	

ranges	could	also	be	the	result	of	differences	in	either	soil	properties	and	depth	[Flint	et	al.,	

2008],	elevation,	and/or	vegetation	as	represented	by	the	parameterization	of	the	Livneh	

et	al.	[2015]	data	set.		

The	combination	of	the	asymptote-snowmelt	relationship	(Figure	4.3b-c)	and	

ecoregion-specific	mean	BSA-snowmelt	relationships	(Figure	4.3a)	shows	an	interesting	

pattern	in	snowmelt	rate	and	streamflow	production	across	the	western	U.S.	Namely,	

ecoregions	that	had	higher	BSA	sensitivities	to	snowmelt	rate	in	Figure	4.3a	also	had	lower	

average	snowmelt	rates	and	high	asymptotes	in	Figure	4.3c.	This	may	be	because	these	

ecoregions	were	more	continental	with	generally	shallower	snowpacks	that	melted	more	

slowly	than	maritime	regions	with	deeper	snowpacks	and	more	rapid	mean	snowmelt	

rates	[Trujillo	and	Molotch,	2014].	For	example,	the	same	change	in	snowmelt	rate	for	a	site	
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that	generally	experienced	slow	snowmelt	(e.g.	the	Southern	Rockies)	was	proportionally	

larger	than	for	a	site	that	generally	experienced	rapid	snowmelt	(e.g.	the	North	Cascades),	

and	the	subsequent	effect	on	streamflow	production	was	then	proportionally	larger	for	the	

slow	snowmelt	region	than	for	the	rapid	snowmelt	region.		

4.5.3	Snowmelt	rate	and	snowfall	fraction	

Berghuijs	et	al.	[2014]	attributed	differences	in	BSA	values	to	differences	in	snowfall	

fraction	(r2=0.303,	p<0.001)	across	420	Model	Parameter	Estimation	Experiment	(MOPEX)	

catchments.	We	also	found	a	positive	correlation	between	snowfall	fraction	(as	computed	

in	Appendix	B)	and	mean	BSA	(r2=0.3,	p<0.001,	Figure	B.3	and	Table	B.6).	Earlier	work,	

however,	demonstrated	that	sites	with	greater	snowfall	fractions	tend	to	have	greater	peak	

SWE	[Serreze	et	al.,	1999],	and	that	these	sites	melt	later	and	more	rapidly	than	sites	with	

less	peak	SWE	[Trujillo	and	Molotch,	2014].	We	thus	propose	that	the	relationship	between	

snowfall	fraction	and	BSA,	found	by	Berghuijs	et	al.	[2014],	may	be	due	to	the	collinearity	

between	snowfall	fraction	and	snowmelt	rate	(r2=0.31,	p<0.001,	Figure	B.4).	This	

relationship	was	robust	with	rain-snow	temperature	thresholds	for	Equation	B.2	ranging	

from	-2	to	2	°C	(p<0.001,	r2=0.20	and	0.40,	respectively).	In	this	context,	snowmelt	rate,	as	

shown	here,	provides	an	explanatory	mechanism	for	future	analyses	of	streamflow	

sensitivity	to	snowmelt	dynamics.	Conversely,	snowfall	fraction,	itself,	is	not	a	streamflow	

generating	metric.	Furthermore,	the	data	used	for	this	study	includes	landscapes	with	

significantly	greater	snowfall	fractions	than	those	within	the	MOPEX	data	set	used	by	

Berghuijs	et	al.	[2014],	and,	therefore,	may	provide	a	more	comprehensive	analysis.	
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4.6	Conclusion	

Shifts	toward	earlier,	slower	snowmelt	from	regional	warming	have	broad	hydrologic	

implications	in	the	western	United	States	and	globally.	This	work	represents	a	unique,	grid-

cell-by-grid-cell,	application	of	the	Budyko	framework	to	the	western	United	States,	which	

is	accompanied	by	detailed	regional	inter-comparison	using	fitted	Budyko-type	equations.	

We	tested	the	hypothesis	that	snowmelt	rate	controls	Budyko	streamflow	anomaly	and	

thus	hydrologic	partitioning	of	snowmelt	between	evapotranspiration	and	streamflow	

production.	The	results	suggested	that:	(1)	snowmelt	rate	was	strongly	correlated	with	

mean	Budyko	streamflow	anomaly	across	the	western	United	States	(r2=0.42,	p<0.001),	(2)	

locations	with	high	snowmelt	rates	had	greater	baseflow	efficiency	(r2=0.73,	p<0.001),	(3)	

locations	with	high	baseflow	efficiency	corresponded	to	greater	mean	Budyko	streamflow	

anomalies	(r2=0.64,	p<0.001),	and	that	(4)	the	variance	in	minimum	ecoregion	streamflow	

production	(i.e.	Zhang	et	al.	[2001]	asymptotes)	was	well	explained	by	mean	ecoregion	

snowmelt	rate	(r2=0.87,	p<0.001).	These	results	imply	that	hydrologic	partitioning	across	

the	western	United	States	may	be	broadly	controlled	by	snowmelt	rate	and	that	snowmelt	

rate-driven	soil	water	excess	may	be	responsible	for	both	observed	and	modeled	positive	

Budyko	streamflow	anomalies.	At	smaller	scales,	western	United	States	ecoregions	

exhibited	a	wide	range	of	mean	Budyko	streamflow	anomaly-snowmelt	rate	sensitivities	

highlighting	the	potential	modulating	influence	of	meteorology	and	soil	properties.	This	

study	provides	a	means	to	relate	future	changes	in	snowpack	to	streamflow	dynamics	

across	the	western	United	States	and	elsewhere,	towards	the	goal	of	constraining	the	

expected	streamflow	response	to	climate	change.	Future	efforts	should	concentrate	on	
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correctly	predicting	changes	in	snowmelt	rate	from	warming	as	well	as	understanding	the	

regional	differences	in	the	Budyko	streamflow	anomaly-snowmelt	rate	relationship.



	

	 110	

Chapter	5: Conclusion	
5.1	Review	of	Findings	

Understanding	how	changes	in	snowmelt	rate,	timing,	and	amount	will	alter	runoff	and	

streamflow	production	at	multiple	scales	is	important	as	snow-dominated,	mountainous	

regions	provide	a	disproportionate	amount	of	streamflow	to	downstream	regions	

compared	to	their	land	area	[Viviroli	et	al.,	2007].	To	investigate	these	relationships,	this	

dissertation	considered	the	snowmelt-streamflow	relationship	at	three	different	scales:	1)	

the	plot	scale	was	addressed	via	an	observation-based	hydrologic	modeling	experiment	

designed	to	remove	the	collinearity	between	snowmelt	rate,	timing,	and	amount	in	

observational	data	sets	and	to	assess	the	sensitivity	of	snowmelt	season	runoff	production	

and	subsurface	storage	to	changes	in	these	snowmelt	factors	at	two	sites	in	the	Western	

United	States.	2)	The	watershed	scale	was	addressed	via	a	hydrologic	modeling	experiment	

designed	to	investigate	the	sensitivity	of	streamflow	and	evapotranspiration	to	land	cover	

and	climate	change	driven	alterations	to	snowmelt	in	a	headwater	catchment	on	the	

Colorado	Front	Range.	3)	The	regional	scale	was	addressed	by	leveraging	a	long-term	

simulated	hydrometeorologic	data	set	to	explore	the	linkage	between	snowmelt	rate	and	

climate	corrected	streamflow	production	in	ten,	mountainous	ecoregions	in	the	Western	

United	States.		

These	three	portions	of	the	work	presented	herein	address	the	same	fundamental	

question;	how	will	changes	in	snowmelt	alter	water	availability,	be	it	runoff	from	a	hillslope	

or	plot,	an	integrating	catchment,	or	a	water	producing	region?	These	scales	also	span	a	
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gradient	in	the	knowledge	areas	they	represent.	At	the	smallest	scale,	the	plot,	the	

theoretical	nature	of	the	snowmelt-runoff	relationship	was	explored	using	synthetic	

snowmelt	scenarios.	Although	many	of	the	combinations	of	snowmelt	rate,	timing,	and	

amount	used	for	this	portion	of	the	dissertation	are	unlikely	to	occur	in	nature,	using	them	

in	a	hydrologic	modeling	experiment	allows	new	information	on	the	relative	impacts	of	

changes	in	snowmelt	rate	and	timing	on	runoff	production	at	two	different	sites	in	the	

western	United	States.	At	these	two	sites	in	Colorado	(CO)	and	California	(CA),	

observations	of	runoff	production	and	snowmelt	suggest	that	runoff	production	was	most	

sensitive	to,	and	increased	with	snowmelt	amount	at	CO	and	CA.	However,	hydrologic	

modeling	experiment	results	show	that	snowmelt	season	runoff	production	was	most	

sensitive	to	snowmelt	timing	with	later	snowmelt	leading	to	less	runoff	production	at	CO	

(β=-0.31	vs.	0.22	for	snowmelt	timing	vs.	rate,	respectively).	At	CA,	runoff	production	was	

most	sensitive	to	snowmelt	rate	with	more	rapid	snowmelt	leading	to	greater	runoff	

production	(β=	-0.31	vs.	0.67	for	snowmelt	timing	vs.	rate,	respectively).	We	also	showed	

the	importance	of	snowmelt	timing	and	snowmelt	rate	to	the	change	in	snowmelt	season	

subsurface	storage	at	both	CO	and	CA	(β=	-0.24	vs.	0.18	and	β=-0.474	vs.	0.466	for	

snowmelt	timing	vs.	rate,	respectively).	In	this	regard,	snowmelt	season	subsurface	storage	

at	CO	and	CA	was	most	sensitive	to	changes	in	snowmelt	timing.	Additionally,	we	found	

that	the	sensitivity	of	runoff	production	to	changes	in	snowmelt	rate	and	timing	increased	

with	greater	plant	available	water	storage	at	both	sites.	

This	work	shows	that	snowmelt	season	runoff	losses	due	to	slower	snowmelt	may	

be	partially	offset	by	runoff	gains	from	earlier	snowmelt.	Given	climate	driven	decreases	in	

snowpack	volumes,	earlier	snowmelt	timing,	and	decreases	in	snowmelt	rate,	this	work	
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suggests	that	individual	site	runoff	production	behavior	will	depend	on	the	relative	

sensitivity	of	runoff	at	the	site	to	changes	in	snowmelt	rate	and	timing	and	the	plant	

available	water	storage	of	the	site.	This	work	highlights	the	importance	of	not	just	

snowmelt	rate,	but	also	that	of	snowmelt	timing	with	regard	to	hydrologic	sensitivity	to	

climate	change.	Future	work	constraining	the	interaction	between	earlier	water	availability	

in	mountainous	systems	and	vegetation	water	use	are	needed	to	fully	understand	how	

snowmelt	driven	runoff	production	may	change	in	the	future.	

At	the	catchment	scale,	more	relevant	to	land	management,	the	integrated	effect	of	

future	land	cover	change	and	climate	on	streamflow	was	explored	from	year	2000	to	2100.	

Under	both	the	more	and	less	precipitation	land	cover	change	scenarios,	the	forested	

portion	of	the	basin	increased	from	72%	to	nearly	95%.	This	caused	an	increase	in	effective	

precipitation	from	1,830	mm	in	2000	to	2,544	and	2,137	mm	for	more	and	less	

precipitation	scenarios	(respectively)	due	to	the	interaction	between	blowing	solid	

precipitation	and	new	vegetation	roughness	elements	high	in	the	catchment,	which	trap	

snow.	During	the	experiment,	streamflow	increased	from	209	mm	in	the	year	2000	to	300	

and	270	mm	by	2100	for	the	more	and	less	precipitation	scenarios,	respectively,	reflecting	

the	increase	in	precipitation	and	a	decrease	in	evapotranspiration	due	to	a	mismatch	

between	water	availability	and	vegetation	water	use.	We	found	that	increased	air	

temperature	drove	changes	in	streamflow	timing	and	that	these	elevated	air	temperature	

levels	also	drove	a	phase	change	in	fall	and	early	winter	precipitation	that	is	partially	

responsible	for	increased	streamflow	in	the	catchment	by	2100	as	there	was	no	

evapotranspiration	response	to	this	new	period	of	water	availability.	
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Hydrologic	model	simulations	using	current	land	cover	and	only	elevated	air	

temperature	indicated	a	10.2	mm	decrease	in	streamflow	by	2050	and	a	21.8	mm	increase	

in	streamflow	by	2100	suggesting	that	greater	vegetation	water	use	is	possible	up	to	2050	

and	then	the	temporal	mismatch	between	water	availability	and	vegetation	water	becomes	

too	great	by	2100,	resulting	in	increased	streamflow.	This	suggests	that	the	streamflow	

response	from	the	land	cover	change	simulations	is	due	to	both	increased	effective	

precipitation	in	the	catchment	and	a	mismatch	between	water	availability	and	vegetation	

demand.	

	 This	work	highlights	the	need	to	understand	snow-vegetation	interactions	in	the	

future	as	land	cover	change	in	areas	with	previously	sparse	vegetation	may	have	counter	

intuitive	hydrologic	implications	as	described	above.	This	may	be	accomplished	by	more	

nuanced	land	cover	evolution	simulations,	which	not	only	simulate	biomass,	but	also	

vegetation	height.	Furthermore,	these	land	cover	evolution	simulations	should	account	for	

wind-driven	snow-vegetation	interactions	implicitly	as	these	will	influence	water	

availability	at	tree	line,	which	may	in	turn	influence	seedling	survival,	vegetation	

productivity,	and	susceptibility	to	disturbance	in	this	hydrologically	critical	portion	of	high-

elevation	headwater	catchments.	We	also	did	not	consider	how	future	land	cover	may	

change	the	spatial	pattern	of	energy	and	water	limitations	in	a	catchment	or	how	land	

cover	and	future	climate	may	impact	the	overall	productivity	of	a	catchment.	

Understanding	how	these	aspects	of	catchment	function	respond	to	changes	in	land	cover	

and	climate	will	enhance	our	knowledge	of	how	coupled	biologic-hydrologic	systems	will	

respond	to	future	conditions.	
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At	the	regional	scale,	applicable	to	understanding	large-scale	shifts	in	streamflow	

production	in	response	to	changing	snowmelt,	climate	corrected	streamflow	anomalies	

were	correlated	to	long-term	snowmelt	rate.	This	work	represents	a	unique,	grid-cell-by-

grid-cell,	application	of	the	Budyko	framework	to	the	western	United	States,	which	is	

accompanied	by	detailed	regional	inter-comparison	using	fitted	Budyko-type	equations.	

We	tested	the	hypothesis	that	snowmelt	rate	controls	Budyko	streamflow	anomaly	and	

thus	hydrologic	partitioning	of	snowmelt	between	evapotranspiration	and	streamflow	

production.	The	results	suggested	that:	(1)	snowmelt	rate	was	strongly	correlated	with	

mean	Budyko	streamflow	anomaly	across	the	western	United	States	(r2=0.42,	p<0.001),	(2)	

locations	with	high	snowmelt	rates	had	greater	baseflow	efficiency	(r2=0.73,	p<0.001),	(3)	

locations	with	high	baseflow	efficiency	corresponded	to	greater	mean	Budyko	streamflow	

anomalies	(r2=0.64,	p<0.001),	and	that	(4)	the	variance	in	minimum	ecoregion	streamflow	

production	was	well	explained	by	mean	ecoregion	snowmelt	rate	(r2=0.87,	p<0.001).	These	

results	imply	that	hydrologic	partitioning	across	the	western	United	States	may	be	broadly	

controlled	by	snowmelt	rate	and	that	snowmelt	rate-driven	soil	water	excess	may	be	

responsible	for	both	observed	and	modeled	positive	Budyko	streamflow	anomalies.	At	

smaller	scales,	western	United	States	ecoregions	exhibited	a	wide	range	of	mean	Budyko	

streamflow	anomaly-snowmelt	rate	sensitivities	highlighting	the	potential	modulating	

influence	of	meteorology	and	soil	properties.	This	study	provides	a	means	to	relate	future	

changes	in	snowpack	to	streamflow	dynamics	across	the	western	United	States	and	

elsewhere,	towards	the	goal	of	constraining	the	expected	streamflow	response	to	climate	

change.	Future	efforts	should	concentrate	on	correctly	predicting	changes	in	snowmelt	rate	
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from	warming	as	well	as	understanding	the	regional	differences	in	the	Budyko	streamflow	

anomaly-snowmelt	rate	relationship.	

Via	investigation	at	these	three	spatial	scales,	this	dissertation	has	found	new	

relationships	between	snowmelt	rate	and	timing	and	runoff	production,	at	the	plot	scale,	

future	land	cover	and	climate	and	streamflow,	at	the	catchment	scale,	and	snowmelt	rate	

and	streamflow	production,	at	the	regional	scale.	Generally,	the	results	presented	indicate	

that	as	snowmelt	rate	declines	so	will	streamflow	and	runoff	production;	however,	

snowmelt	timing	and	land	cover	change	may	mediate	snowmelt	rate	driven	declines	in	

streamflow	and	runoff.	In	both	Colorado	and	California,	earlier	snowmelt	timing	led	to	

increased	snowmelt	season	runoff	at	the	plot	scale;	however,	at	the	catchment	scale	earlier	

snowmelt	driven	increases	in	streamflow	also	led	to	decreased	streamflow	in	the	late	

summer	and	decreased	evapotranspiration.	It	should	also	be	noted	that	the	catchment-

scale	portion	of	this	dissertation	occurred	in	an	area	spanning	the	alpine-subalpine	

vegetation	transition	where	high	winds	and	blowing	snow	influence	the	amount	of	effective	

precipitation	in	the	catchment.	This	led	to	counter	intuitive	results	when	investigating	the	

effect	of	future	land	cover	on	streamflow,	and	may	indicate	that	results	from	this	location	

are	not	widely	transferable.	The	increase	in	streamflow	and	runoff	driven	by	earlier	

snowmelt	timing;	however,	brings	up	additional	questions	about	the	implication	of	this	

work	on	vegetation	productivity	and	long-term	forest	susceptibility	to	disturbance	not	

addressed	by	this	work.	
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5.2	Avenues	for	Future	Work	

The	work	presented	provides	for	several	areas	of	future	work	at	the	three	scales	

considered.	In	Chapter	2,	we	found	that	earlier	snowmelt	tended	to	increase	snowmelt	

season	runoff.	Work	has	been	done	to	constrain	how	snowmelt	rate	will	change	in	the	

future	[Musselman	et	al.,	2017];	however,	we	know	of	no	work	constraining	how	snowmelt	

timing	will	shift	in	the	future.	Providing	this	additional	information	would	allow	for	better	

constraint	on	the	runoff	response	to	changing	snowmelt	rate	and	timing.	Additionally,	at	

the	plot	scale,	the	synthetic	snowmelt	scenarios	were	run	in	an	uncoupled	fashion,	

changing	only	the	snowmelt	rate,	timing,	and	amount,	not	the	underlying	forcings	to	the	

simulation.	It	would	also	be	interesting	to	conduct	another	experiment	using	a	coupled	

simulation,	varying	precipitation	and	air	temperature	to	generate	a	range	of	snowmelt	

scenarios.	Some	control	in	the	scenario	design	may	be	sacrificed	by	this	approach,	but	it	

may	provide	another	view	into	the	effect	of	snowmelt	rate,	timing,	and	amount	on	runoff.		

	 At	the	catchment	scale,	we	have	uncovered	the	critical	role	that	land	cover	change	

plays	on	effective	precipitation	in	an	area	that	is	influenced	by	snow	scour	and	deposition	

via	wind.	These	physics	are	not	in	the	Landscape	Disturbance	and	Succession	model	

(LANDIS-II)	and	could	feed	back	on	plant	succession	and	disturbance	risk.	Making	this	type	

of	addition	to	LANDIS-II	could	improve	future	land	cover	projections.	Furthermore,	better	

constraining	vegetation	and	snow	redistribution	interactions	could	improve	estimates	of	

how	effective	precipitation	will	change	and	influence	streamflow	production	in	the	future.	

Furthermore,	it	would	be	interesting	to	explore	future	land	cover	change	at	other	

elevations	in	the	Boulder	Creek	Critical	Zone	observatory	and	other	Critical	Zone	
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Observatories	as	catchments	not	at	the	alpine-subalpine	transition	may	show	different	

sensitivities	to	land	cover	change.	

	 At	the	regional	scale,	we	showed	that	different	regions	have	different	streamflow	

production	sensitivities	to	unit	changes	in	snowmelt	rate;	however,	we	could	not	find	a	

unifying	explanation	as	to	what	controlled	these	differential	sensitivities	between	regions.	

Further	analysis	into	other	explanatory	variables	such	as	ecoregion	hypsometry	or	soil	

parameterization	may	elucidate	why	some	regions	are	more	sensitive	to	a	unit	change	in	

snowmelt	rate.	Furthermore,	the	domain	wide	analysis	could	be	expanded	to	include	

random	forest	analysis	to	assess	the	importance	of	different	factors	such	as	land	cover,	

elevation,	and	snowmelt	rate,	timing,	and	amount	or	the	Budyko	streamflow	anomaly	to	

provide	a	hierarchical	view	of	factors	contributing	to	streamflow	generation	at	a	broad	

spatial	scale.	Similarly,	clustering	analysis	could	be	used	with	the	underlying	

hydrometeorologic	used	for	Chapter	4	to	assess	which	portions	of	the	western	United	

States	behave	in	hydrologically	similar	ways,	especially	with	regard	to	their	snowmelt	and	

streamflow	production.
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Appendix	A:	Chapter	2	Supporting	Information	

A.1	Calculation	of	Plant	Available	Water	Storage	

For	each	of	the	fifteen	plant	available	water	storage	(PAWS)	ensemble	members,	PAWS	

was	computed	as	follows.	PAWS	was	computed	for	each	parameter	set	by	first	computing	

the	soil	column	porosity	as	

𝜙!" =  𝜙!𝑒
!!!"
!!!"

!  	 	 	 	 (A.1)	

where	𝜙!" 	is	the	soil	column	porosity	integrated	from	the	surface	to	the	bottom	of	the	root	

zone,	zrd	is	the	depth	of	the	root	zone,	𝜙!	is	the	porosity	at	the	surface,	and	p	is	the	decay	of	

𝜙!	with	depth	[Tague	and	Band,	2004].	Soil	water	content	at	the	wilting	point,	𝜃!",	was	

computed	as	

𝜃!" =  𝜙!"
!!"
!"#

!
!	 	 	 	 	 (A.2)	

where	𝜓!" 	is	the	air	entry	pressure,	150	is	the	pressure	head	in	meters,	and	b	is	the	pore	

size	index	[Dingman,	2002].	Soil	water	content	at	field	capacity, 𝜃!" ,	was	computed	as		

𝜃!" =  𝜙!"
!!"
!.!

!
!	 	 	 	 	 (A.3)	

	where	3.4	is	the	pressure	head	in	meters	[Dingman,	2002].	PAWS,	𝜃!"#$,	was	then	

computed	as	

𝜃!"#$ =  𝜃!" − 𝜃!"		 	 	 	 	 (A.4)	
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Appendix	B:	Chapter	4	Supporting	Information1	

B.1	Introduction		

In	this	document,	we	provide	expanded	tables	and	figures	documenting	relationships	

summarized	in	the	article	text. 

B.2	Snow	Fall	Fraction	Calculation	

We	computed	long-term	snowfall	fraction	(Sfj)	for	each	grid	cell	such	that:		

	 	 	 	 	 𝑆𝑓! =
∑!!"!!"
∑!!!

	 	 	 	 	 	 (B.1)	

where	Cjt	is	the	proportion	of	the	day’s	precipitation	that	falls	as	snow.	Similar	to	Hamlet	et	

al.	[2005],	𝐶!"	is	determined	as:	

																			𝐶!" = 1	 	 	 	 					𝑇𝑚𝑎𝑥!" < 0 °C	

	𝐶!" = 0		 	 	 	 𝑇𝑚𝑖𝑛!" > 0	°C		 	 (B.2)	

                   𝐶!" =
!!!"#!!"

!"#!!"!!"#!!"
       𝑇𝑚𝑎𝑥!" ≥ 0 °C ≥ 𝑇𝑚𝑖𝑛    

  
where 0 °C is the threshold between liquid and solid precipitation for pure water, Tmax is daily 

maximum temperature and Tmin is daily minimum temperature. We chose 0 °C because it is the 

melting point of pure water. We recognize that this threshold varies around 0 °C and, as a result, 
																																																								

1	Published	as:	Barnhart,	T.	B.,	N.	P.	Molotch,	B.	Livneh,	A.	A.	Harpold,	J.	F.	Knowles,	and	D.	
Schneider	(2016),	Snowmelt	rate	dictates	streamflow,	Geophysical	Research	Letters,	43(15),	
8006–8016,	doi:10.1002/2016GL069690.	Reproduced	here	with	the	permission	of	John	
Wiley	and	Sons:	License	Number	4271020375886.	
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we computed snowfall fractions across a range of threshold temperature from -2 to 2 °C to assess 

if our results are sensitive to the threshold temperature selected.

 

Figure	B.1:	a)	Conceptual	diagram	showing	the	hypothetical	relationship	between	aridity	
and	evaporative	indices	with	a	Budyko-type	curve	fit	to	the	data.	Points	that	lie	below	the	
curve	(black	line)	have	positive	BSA	values	(e.g.	vertical	blue	line)	and	over-produce	
streamflow	relative	to	the	Budyko-type	equation.	Points	that	plot	above	the	curve	have	
negative	BSA	values	(e.g.	vertical	red	line)	and	under-produce	streamflow	relative	to	the	
Budyko-type	equation.	b)	Conceptual	diagram	illustrating	the	evaporative	index	(y-axis)	
asymptotes	from	Zhang	et	al.	[2001]	fitted	Budyko-type	equations	for	three	hypothetical	
regions	(colored	arrows).	
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Figure	B.2:	Regressions	of	streamflow	efficiencies	from	observed	Q	and	the	three	gridded	
precipitation	products	from	Newman	et	al.	[2015]	versus	VIC	simulated	streamflow	
efficiencies	from	the	Livneh	et	al.	[2015]	hydrometeorological	data	set	used	for	this	study.	
The	same	x-axis	is	used	for	each	independent	variable	shown	in	the	legend.	

	

	

Figure	B.3:	Regressions	of	mean	BSA	and	snowfall	fraction.	
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Figure	B.4:	Collinearity	of	snowfall	fraction	and	snowmelt	rate.	
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Table	B.1:	Statistical	data	and	fitting	parameters,	if	applicable,	for	the	ensemble	of	nine	
Budyko-type	equations. 

Equation	 r2	 RMSE	 Fitting	Parameter	
Schreiber,	1904	 0.8	 0.1	 -	
Ol'Dekop,	1911	 0.47	 0.17	 -	

Turc,	1955;	Pike,	1964	 0.65	 0.13	 -	
Budyko,	1974	 0.68	 0.13	 -	

Mezentsev,	1955;	Choudhury,	
1999;	Yang	et	al.,	2008	 0.78	 0.11	 1.46	

Fu,	1981;	Zhang	et	al.,	2004	 0.78	 0.11	 2.17	
Zhang	et	al.,	2001	 0.8	 0.1	 0.56	
Sharif	et	al.,	2007	 0.65	 0.14	 -	
Zhou	et	al.,	2015	 0.7	 0.13	 1.59	

	 	 	 	
	

Table	B.2:	BSA	–	snowmelt	rate	relationship	statistics	for	each	Budyko-type	equation.	

Equation	 Slope	 Intercept	 p	 r2	
Schreiber,	1904	 0.015	 -0.029	 <0.001	 0.27	
Ol'Dekop,	1911	 0.021	 0.035	 <0.001	 0.36	

Turc,	1955;	Pike,	1964	 0.019	 0.002	 <0.001	 0.35	
Budyko,	1974	 0.018	 0.002	 <0.001	 0.32	

Mezentsev,	1955;	Choudhury,	
1999;	Yang	et	al.,	2008	 0.022	 -0.09	 <0.001	 0.44	

Fu,	1981;	Zhang	et	al.,	2004	 0.023	 -0.091	 <0.001	 0.45	
Zhang	et	al.,	2001	 0.021	 -0.087	 <0.001	 0.4	
Sharif	et	al.,	2007	 0.032	 -0.109	 <0.001	 0.62	
Zhou	et	al.,	2015	 0.03	 -0.146	 <0.001	 0.59	
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Table	B.3:	BSA	–	baseflow	efficiency	relationship	statistics	for	each	Budyko-type	equation.	

Equation	 Slope	 Intercept	 p	 r2	
Schreiber,	1904	 0.422	 -0.049	 <0.001	 0.45	
Ol'Dekop,	1911	 0.553	 0.01	 <0.001	 0.57	

Turc,	1955;	Pike,	1964	 0.517	 -0.021	 <0.001	 0.57	
Budyko,	1974	 0.482	 -0.02	 <0.001	 0.52	

Mezentsev,	1955;	Choudhury,	
1999;	Yang	et	al.,	2008	 0.578	 -0.112	 <0.001	 0.66	

Fu,	1981;	Zhang	et	al.,	2004	 0.585	 -0.114	 <0.001	 0.67	
Zhang	et	al.,	2001	 0.538	 -0.109	 <0.001	 0.62	
Sharif	et	al.,	2007	 0.803	 -0.133	 <0.001	 0.84	
Zhou	et	al.,	2015	 0.758	 -0.17	 <0.001	 0.82	
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Table	B.4:	BSA	–	snowmelt	rate	relationship	statistics	for	each	equation	and	ecoregion.	
Ecoregion	codes	are	the	same	as	in	Figure	4.1.	

Equation	 Ecoregion	
Code	

r2	 p	 Intercept	 Slope	

Budyko,	1974	

1	 0.042	 <0.001	 0.119	 0.004	
2	 0.657	 <0.001	 -0.093	 0.02	
3	 0.086	 <0.001	 0.055	 0.011	
4	 0.407	 <0.001	 0.1	 0.016	
5	 0.326	 <0.001	 -0.025	 0.023	
6	 0.531	 <0.001	 -0.083	 0.041	
7	 0.447	 <0.001	 -0.046	 0.034	
8	 0.459	 <0.001	 -0.043	 0.028	
9	 0.009	 <0.001	 0.098	 0.003	
10	 0.418	 <0.001	 0.037	 0.015	

Fu,	1981;	Zhang	et	al.,	2004	

1	 0.237	 <0.001	 0.04	 0.008	
2	 0.759	 <0.001	 -0.132	 0.021	
3	 0.136	 <0.001	 -0.037	 0.014	
4	 0.508	 <0.001	 0.011	 0.019	
5	 0.327	 <0.001	 -0.111	 0.025	
6	 0.556	 <0.001	 -0.174	 0.045	
7	 0.49	 <0.001	 -0.136	 0.038	
8	 0.526	 <0.001	 -0.141	 0.032	
9	 0.067	 <0.001	 0.001	 0.007	
10	 0.553	 <0.001	 -0.056	 0.02	

Mezentsev,	1955;	Choudhury,	
1999;	Yang	et	al.,	2008	

1	 0.243	 <0.001	 0.04	 0.008	
2	 0.764	 <0.001	 -0.132	 0.021	
3	 0.119	 <0.001	 -0.032	 0.013	
4	 0.512	 <0.001	 0.011	 0.019	
5	 0.29	 <0.001	 -0.105	 0.023	
6	 0.536	 <0.001	 -0.17	 0.043	
7	 0.475	 <0.001	 -0.133	 0.037	
8	 0.519	 <0.001	 -0.142	 0.032	
9	 0.063	 <0.001	 0.001	 0.007	
10	 0.561	 <0.001	 -0.06	 0.021	
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Table	B.4	continued.	

Equation	 Ecoregion	
Code	

r2	 p	 Intercept	 Slope	

Ol'Dekop,	1911	

1	 0.017	 <0.001	 0.166	 0.003	
2	 0.553	 <0.001	 -0.045	 0.019	
3	 0.218	 <0.001	 0.063	 0.018	
4	 0.413	 <0.001	 0.142	 0.019	
5	 0.547	 <0.001	 -0.024	 0.036	
6	 0.656	 <0.001	 -0.075	 0.053	
7	 0.557	 <0.001	 -0.025	 0.042	
8	 0.533	 <0.001	 -0.006	 0.031	
9	 0.045	 <0.001	 0.138	 0.005	
10	 0.336	 <0.001	 0.111	 0.013	

Schreiber,	1904	

1	 0.079	 <0.001	 0.075	 0.005	
2	 0.733	 <0.001	 -0.136	 0.021	
3	 0.011	 <0.001	 0.046	 0.004	
4	 0.377	 <0.001	 0.06	 0.014	
5	 0.099	 <0.001	 -0.027	 0.012	
6	 0.37	 <0.001	 -0.092	 0.031	
7	 0.323	 <0.001	 -0.067	 0.027	
8	 0.387	 <0.001	 -0.08	 0.025	
9	 0	 0.472	 0.059	 0	
10	 0.479	 <0.001	 -0.032	 0.017	

Sharif	et	al.,	2007	

1	 0.569	 <0.001	 0.059	 0.015	
2	 0.808	 <0.001	 -0.049	 0.022	
3	 0.329	 <0.001	 -0.069	 0.024	
4	 0.582	 <0.001	 0.006	 0.027	
5	 0.501	 <0.001	 -0.143	 0.037	
6	 0.668	 <0.001	 -0.203	 0.058	
7	 0.614	 <0.001	 -0.156	 0.049	
8	 0.644	 <0.001	 -0.163	 0.042	
9	 0.309	 <0.001	 -0.016	 0.017	
10	 0.663	 <0.001	 -0.048	 0.029	
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Table	B.4	continued.	

Equation	 Ecoregion	
Code	

r2	 p	 Intercept	 Slope	

Turc,	1955;	Pike,	1964	

1	 0.049	 <0.001	 0.125	 0.004	
2	 0.648	 <0.001	 -0.081	 0.02	
3	 0.134	 <0.001	 0.047	 0.013	
4	 0.418	 <0.001	 0.104	 0.017	
5	 0.416	 <0.001	 -0.035	 0.028	
6	 0.584	 <0.001	 -0.091	 0.046	
7	 0.491	 <0.001	 -0.049	 0.037	
8	 0.488	 <0.001	 -0.04	 0.029	
9	 0.02	 <0.001	 0.101	 0.004	
10	 0.415	 <0.001	 0.049	 0.015	

Zhang	et	al.,	2001	

1	 0.218	 <0.001	 0.036	 0.008	
2	 0.767	 <0.001	 -0.144	 0.021	
3	 0.075	 <0.001	 -0.023	 0.01	
4	 0.492	 <0.001	 0.011	 0.018	
5	 0.213	 <0.001	 -0.094	 0.019	
6	 0.484	 <0.001	 -0.161	 0.04	
7	 0.43	 <0.001	 -0.128	 0.034	
8	 0.486	 <0.001	 -0.139	 0.03	
9	 0.036	 <0.001	 0.002	 0.005	
10	 0.552	 <0.001	 -0.068	 0.02	

Zhou	et	al.,	2015	

1	 0.56	 <0.001	 0.013	 0.014	
2	 0.812	 <0.001	 -0.104	 0.022	
3	 0.268	 <0.001	 -0.099	 0.021	
4	 0.582	 <0.001	 -0.035	 0.026	
5	 0.425	 <0.001	 -0.171	 0.033	
6	 0.63	 <0.001	 -0.234	 0.054	
7	 0.579	 <0.001	 -0.19	 0.046	
8	 0.62	 <0.001	 -0.202	 0.04	
9	 0.251	 <0.001	 -0.056	 0.015	
10	 0.657	 <0.001	 -0.098	 0.028	
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Table	B.5:	Ecoregion	mean	snowmelt	rates	and	Zhang	et	al.	[2001]	fitted	Budyko-type	
curve	asymptotes.	Ecoregion	codes	are	the	same	as	in	Figure	4.1.	

Ecoregion	Code	 Fitting	
Parameter	(w)	

Asymptote	 Mean	Snowmelt	
Rate	[mm/d]	

1	 -0.03	 0.74	 9.07	
2	 0.3	 0.76	 8.18	
3	 0.48	 0.91	 3.58	
4	 0.07	 0.86	 5.48	
5	 0.87	 0.97	 2.85	
6	 1.06	 0.97	 2.47	
7	 0.76	 0.96	 2.89	
8	 0.38	 0.89	 5.93	
9	 0.38	 0.9	 5.57	
10	 0.13	 0.7	 7.47	

	

Table	B.6:	Snowfall	fraction	–	BSA	relationship	statistics	for	each	Budyko-type	equation.	

Equation	 Slope	 Intercept	 p	 r2	
Schreiber,	1904	 0.244	 -0.064	 <0.001	 0.219	
Ol'Dekop,	1911	 0.361	 -0.027	 <0.001	 0.357	

Turc,	1955;	Pike,	1964	 0.321	 -0.048	 <0.001	 0.317	
Budyko,	1974	 0.299	 -0.046	 <0.001	 0.294	

Mezentsev,	1955;	Choudhury,	
1999;	Yang	et	al.,	2008	 0.31	 -0.122	 <0.001	 0.278	

Fu,	1981;	Zhang	et	al.,	2004	 0.317	 -0.125	 <0.001	 0.287	
Zhang	et	al.,	2001	 0.289	 -0.118	 <0.001	 0.258	
Sharif	et	al.,	2007	 0.39	 -0.13	 <0.001	 0.29	
Zhou	et	al.,	2015	 0.366	 -0.166	 <0.001	 0.279	

	


