Iterative Design
of a
Voice Dialog Design Environment

Tamara Sumner, Susan Davies, Andreas C. Lemke
and Peter G. Polson

CU-CS-546-91 September 1991

%University of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE

Iterative Design
ofa
Voice Dialog Design Environment

Tamara Sumner, Susan Davies, Andreas C. Lemke
and Peter G. Polson

CU-CS-546-91 September 1991

Department of Computer Science
University of Colorado at Boulder
Campus Box 430

Boulder, Colorado 80309-0430 USA

(303) 492-1218
email: ralex@boulder.colorado.edu

ITERATIVE DESIGN OF A VOICE DIALOG DESIGN
ENVIRONMENT

Tamara Sumner, Susan Davies, Andreas C. Lemke*, and Peter G. Polson

Institute of Cognitive Science
University of Colorado
Boulder, CO 80309-0430
sumner@cs.colorado.edu
303-492-8136

*GMD-IPSI
Darmstadt, Germany

ABSTRACT

Iterative prototyping and participatory design methods were
successfully applied to the development of a voice dialog
design environment. The project demonstrated that choosing
the right high-level substrate to build on and having the
right participatory context can speed up and simplify the
iterative process. Rather than choosing a general purpose
tool, a task analysis combined with previous research were
used to select a substrate that was well-matched to the needs
of the project. Unique aspects of the substrate are
highlighted and specific factors contributing to the project’s
success are discussed.

KEYWORDS: Participatory design, iterative design, voice
interfaces, visual programming, construction kits, design
simulation, design, design environments.

INTRODUCTION

In this project, we successfully applied iterative prototyping -

and participatory design to the design of a complex system
— a voice dialog design environment. The success case for
this project is really a story about how we got "this far this
fast.” In less than four months, a mixed team of
professional voice dialog designers and academic researchers
from computer science and cognitive psychology were able
to design and build a substantial core design environment.
There were several unique aspects of our approach that
contributed to the project’s success. These include selection
of the right high-level system substrate on which to build
our design environment and creation of a participatory
context conducive to iterative design methods.

In early 1991, we began a research project to explore issues
surrounding the design of computer systems to facilitate
computer usage by non-programmers. This project is part of
a collaborative research effort between the University of
Colorado (CU) and US West's Advanced Technologies
Division. A key aspectof this early phase was the

identification of projects within US West which would
provide a real-world context within which we could explore
theoretical issues surrounding system design. Two voice
dialog design groups within US West got together and
presented a compelling case as to why the voice dialog
domain would be an excellent framework for pursuing our
research. One group specialized in the design of large-scale,
innovative voice dialog applications. The other group,
composed of voice dialog account executives, specialized in
small-scale customized voice information systems.

Outline of Paper

In this paper we begin by describing the voice dialog
domain and some design representations used by expert
application designers. Next, we discuss how a preliminary
task analysis and our previous research expericnce guided the
selection of a high-level substrate to base our system on.
The core of our paper is a discussion of issues that emerged
during our iterative design process and how we addressed
these issues in our design environment. We conclude with
some lessons to build on and directions for future research.
It should be noted that design and development of the voice
dialog design environment is still in progress. We do not
claim to have the final solution — more implementation
and testing is needed before we can make such a claim.

THE VOICE DIALOG DOMAIN

Voice dialog applications are a relatively new design
domain. Typical applications include voice mail systems,
voice information systems, and touch-tone telephones as
interfaces to hardware. Historically, voice dialog
applications have been small in scale, with most
applications offering only a handfu!l of features; e.g.
providing three options to hear a selection of recorded
information. However, in the last few years, voice dialog
applications have mushroomed in size. It is not unusual 0
have voice mail systems with 50 page instruction manuals,
hundreds of features, and a two year development cycle.
Industry deregulation combined with advances in hardware
have triggered a rapid spread of voice dialog technology into
new application areas. Thus, key challenges facing designers
are large increases in complexity and rapid innovation
within the application domain.

Design Representations

No standard design representations are used by most voice
dialog designers. A common representation is the
traditional written specification. Some designers, in an
attempt to deal with increasing complexity, have moved to
graphical representations similar to flow charts. Both voice
dialog groups participating in this project were using
graphical representations. While these representations were
similar on the surface, there were many important
differences. We chose to focus on the approach being used
by the large-scale application design group.

The large-scale application designer's primary design
representation is a flow chart-like "structure chart”. As
illustrated in Figure 1, rectangles are used to represent voice
menus, messages, prompts, and system actions. The
example shown begins with a menu to create a mail list for
a hypothetical voice mail application. The menu contains
options for creating, editing, and deleting mailing lists.
Diamonds are used to represent decision junctions. These
states are linked by arrows. Arrows indicate paths that are
taken once an action has been executed. Arrows and
decision junctions control the pattern of flow throughout
the design.

The large-scale application designer also used two additional
design representations to augment the structure chart: a state
description table and a phrasal database. The state
- description table is stored as records in a database — one
record per structure chart rectangle (state). Each state's
“record contains its inputs, outputs, prompts or messages,
and atomic phrase identifiers. To conserve storage space,
atomic phrase elements are recorded and recombined on-the-
fly into the application's prompts and message. A phrasal

database stores these atomic phrase elements and maps each
phrase to an identifier.

Design Tools

Currently many designers use generic applications such as
MacDraw and general-purpose databases as the primary
design tools. The graphic structure chart is constructed and
maintained in MacDraw. The state table representation and
the phrasal database are constructed and maintained in a
database. Much of the large-scale application designer’s time
is spent maintaining consistency between these multiple
design representations.

The Medium Gap

The design process of voice dialog applications is further
complicated by the "medium gap” between the visually-
based design representations and the audio-based end product.
Halstead-Nussloch [5] identifies many important differences
between screen-based and phone-based interfaces. Screen-
based interfaces display information on the screen for a
duration that is under user control. In phone-based
interfaces, information is presented auditorally as spoken
messages and signals and must therefore be processed
serially with no memory aids whatsoever. Short term
memory limitations are an important design consideration.
It is difficult for the designer working with a visually-
oriented, long duration, design representation to mentally
bridge this medium gap and envision the auditory, serial,
short-term memory-constrained end product.

The Difficulty of Volce Dlalog Design
The following aspects combine to make voice dialog
application design difficult:

MAL LST Y

L=

Your st nuToee 1 X The recarded namy 3
1 Crewe P
2 Ex [7 | Poese make ancie P for ket xa in <plary —> &

- o the nurmbar. Racord recording>
? £ . 2 name lor the kst ot thed

i

beag and press pound.

kIYoA’m

Isn.;uw l Lint xx, chat narms poo o
L o dwiete, han (E> » ITOW aser
1 Ecit tia bt P> { prees pound. A Narr added
2Hae tu Eremr >®
3 Renarrw et »(p pound 1o qull .
e yeoe Do <Lt
T
o
Erter b rasrOnr Lest numoer o, et # Accag ‘_‘—""I
> l 0 deiste l"@"{duddﬂ: * Cancet »- Done? State Table
GOTO nen Lt dmime M1
&1 200rcona canceded
INPUTS OUTPUTS
L1.3 1> R1
9 PW# 2->A1
wrtored rat in R1.* 3>

Figure 1. Structure Chart and State Table

* Voice dialog design is a relatively new domain with no
standard design representations. Rapid innovation
within the domain forces design representations to
continually evolve,

« Designs are large and complex, containing many
highly interconnected design elements.

» The domain suffers from a "medium gap" between the
visually-oriented design representations and the
auditory end-product. Current tools do not help the
designer to bridge this gap.

THE VOICE DIALOG DESIGN ENVIRONMENT
The voice dialog design environment, as it stands today, is a
sophisticated construction-kit approach that integrates
functionality previously distributed between MacDraw and
database applications. It provides an on-screen gallery of
voice dialog design units, such as menus and prompts, and a
work area for design construction and simulation. At any
time, the behavior of the design can be simulated. Design
simulation consists of a visual trace of the execution path
combined with an audio presentation of all prompts and
messages encountered. Thus, simulation helps the designer
to bridge the medium gap between the visual representation
and the audio artifact. The design of a voice mail system
constructed in this environment is illustrated in Figure 2.
Further details on specific features will unfold as our
iterative process is described.

OUR DESIGN PROCESS
Previous sections have described the voice dialog domain
and have introduced our voice dialog design environment.

This section describes how we made the transition from -

current tools and practices to our resulting system. First, we
discuss how current practices, future use visions, and our
past research guided our selection of a substrate system to
build on. Second, we discuss how the initial system was
based on the structure chart representation. Finally, we
describe how our selected substrate enhanced the iterative
process by allowing us to quickly implement and evaluate
new idcas.

Determining The Substrate

Our first step was a preliminary task analysis that would
enable us to choose the appropriate substrate on which to
build. Selection of this substrate proved to be a critical
component of our early success. This section discusses
how current issues in voice dialog design and our previous
research in the area of design environments constrained our
choices. Thus, instead of selecting a general purpose
prototyping system, we selected a substrate closely aligned
with our purposes and one that could accommodate rapid
design iterations. Often, new distinctions could be
designed, implemented, and tested within a week.

The Construction Problern. The voice dialog designers made
it clear during interviews that they suffered from a
construction problem:

« Current design tools had no domain semantics. Every
aspect of the design had to be constructed from scratch
out of rectangles, arcs, and text.

« It was difficult to modify and reuse parts of desxgns.

* No single tool met the demands of the domain.
Different applications were used to construct and
maintain each of the different design representations.
Designers spend much effort maintaining consistency
between these representations.

Our previous work in design environments [3] advocated a
construction kit approach. A construction kit provides a
gallery of domain-specific building blocks (design units) and
a work area for constructing the design via direct
manipulation. Such an environment has directly built into
it operations and abstractions central to the given
application domain. Specifically, we envisioned providing
voice dialog abstractions such as prompt and menu design
units and voice dialog operations such as establishing a
flow direction between design units. .

The Need For Simulation. The voice dialog designers also
made it clear that an important feature of the future
environment was design simulation. First, they envisioned
simulation as a useful design debugging tool. Debugging
current representations was difficult due to the medium gap
between the paper design representation and the audio
artifact. While some problems could be uncovered by
tedious examination of the paper design representations,
many problems did not appear until the prototype was
available. Specifically, many errors resulted when
recombining atomic phrases to generate prompts and
messages. Proper inflection is essential for making a
message intelligible. A phrase recorded in a rising inflection
will be inappropriate when reused in a flatly inflected
statement.

Second, simulation would allow designers to adopt an
efficient iterative design methodology. Currently,
implementing a prototype is an expensive and time-
consuming process. While the product team is willing to
build as many prototypes as necessary to get the design
“right,” oftentimes this process adversely affects schedules
and budgets. By providing direct simulation of the design
representation, the environment eliminates the need for a
separate, time-consuming prototyping phase. The
representation is the prototype — at all phases of the
design, a working prototype is available at no extra cost.

Thirdly, simulation would be an important tool for
communicating the design to the customer by allowing
them to directly experience future use [1,2].

Agentsheets : The Right Substrate

We examined a varicty of possible substrates and chose
Agentsheets, an environment for building visual
programming systems [6].

The Agentsheets system was designed to be a high-level
substrate for building visual programming systems. It has

£ Gallery: US-West

e Yak

AAw

Rad Exit
‘Mail > System!

3 : Section: ‘Section:
Dot s, W SR ATT———
‘Send :
Mail
Scction!
wLclton

A

3

[X TN NN
—
¥
L

=,
g
b

saasas

Tveane

sasvaa

S

;

Em|

3 ———
:TEXT' 3Mail ;III
: : C iList 2 EEE
,...t.'—...-—::..:] Mnnt Brom A 822

veww

anuwm

nRww
3

(3

40 4
»
P

ug
-
3
-3
=
B
2
[T k:

I"

AR R LN NN
Faananas

AT
Delete Mail List

&
The Gallery contains voice dialog design units used in design construction. The remaining three windows are all design
work areas. The Voice Mail System work area captures high level relationships between major application
components. Double-clicking on the Mail List section design unit causes its constituents to be displayed in a seperate
work arca (the Mail List window). Within the Mail List window, double-clicking on the Delete Mail list design unit
displays its constituents in the Delete Mail List work area. The Mail List work area and its Create, Edit, and Delete
nested work arcas together describe the same level of functionality depicted in the structure chart shown in Figure 1.
Simulation of a work area (and its nested work areas) is initiated by doubleclicking on any start or continue design unit.

Figure 2. The Voice Dialog Design Environment.

an extensible and well-documented core of object-oriented
classes to build on. Additionally, there was a large number
of existing applications from widely varying domains that
had already been built using the system, e.g, a river basin
modelling system, a children’s storybook tool, and a front-
end to a power station’s expert system [6]. Besides proving
the utility of the system, these applications provided
invaluable implementation examples from which to learn.

Agentsheets supported design by construction. The
Agentsheets system consists of “agents” and a work area,
called an agentsheet, for programming with agents. An
agent is simply a graphical depiction (bitmap), an internal
state, and an associated behavioral component. In our
environment, each design unit is an agent. Figure 3
illustrates how the prompt design unit is an agent.
Programming or construction with agents is achieved by
arranging agents in the work area.

Depiction Internal State Behavioral Component
prompt= - when activated
"To create a mailing "
PR, . { speak english
: i list, press 1. (prompY) }
P> To Edit a mailing
: 2 list, press 2.
st To delete a mailing
list, press 3."

Figure 3. A prompt design unit. Each design unit is an
agent and has a depiction, an internal state, and a behavioral
component,

The Agentsheets system is a visual programming
environment. In our system, constructing the design
representation is a form of visual programming. Design
simulation is simply a matter of executing this visual
program. By its very nature, Agentsheets supported our
simulation requirements.

Finally, Agentsheets ran on the Apple Macintosh, which is
the same platform as the designer’s current tools.
Prototypes are most effective when users are in control of
their use for extended periods of time within the work
context {1]. We felt that leaving working versions of the
prototype with the voice dialog designers throughout the
project was essential to our iterative design process. This
goal would only be achievable if our prototype was on a
platform that was readily available to the voice dialog
designers.

Determining the Initlal Design Environment

We needed to determine a functional set of design units and
what initial design representations the environment's work
area should support. We began by studying in detail current
design representations. This direction was motivated by the
“Scandinavian approach” claim that design should be based
on the traditions or prior work experience of the system’s
users [1,2]. However, this approach was complicated by the
lack of standard representations within the domain. While
many designers used a somewhat similar graphic structure

chart, the design units within these charts differed in their
graphic depictions and in the distinctions they represented.

We initially concentrated on the representations used by the
large-scale application designer. Rapid innovation within
the domain and rapid increases in application complexity
were forcing him to evolve his representations to meet the
demands of each new application design. His
representations were more detailed and more internally
consistent than the representations used by the account
executives. The consistency made it easier to determine a
core set of units while the detail lent itself to supporting
simulation requirements. In a short series of meetings, the
designer taught us the basics of his representational scheme.
To enhance and verify our understanding, we also reverse-
engineered existing applications into the appropriate design
representations. Through this process, we determined a core
set of design units our environment should provide and we
decided the work area should reflect the left-to-right temporal
ordering and connective arrows found in the structure chart.

The Iteratlve Process

During the last four months, the environment has gone
through roughly twenty iterations. Some of these iterations
concentrated on refining existing design units or adding new
design units. In this section, we will highlight only the
major shifts in our perspective as a result of this iterative
process. Although we used a variety of participation
techniques, such as video prototyping, interviewing, and
paper mock-ups, a key factor in our success was our ability
to rapidly prototype the resulting ideas and further explore
them in active use situations. Furthermore, we hope to
show iterative design is not a slow and tedious process.
With the proper tools, a project can go through many
informative iterations in a relatively short time period.

Changing The Design Representation. Subsequent meetings
with the large-scale application designer made it clear that a
large problem with the current structure chart was the sheer
quantity of connective arrows. The resulting visual overload
hindered both design construction and communication. The
designer claimed that most customers and other non-
technical product team members were so daunted by the
complexity of the representation that only a few even tried
to understand it. Furthermore, the designer rarely added the
necessary arcs to describe error and time-out handling. Just
describing normal operation flow created enough visual
complexity that he didn’t want to compound the problem by
adding this additional information.

We envisioned two methods to help alleviate the arc
problem. First, the environment could provide ways to
selectively view or hide subsets of arcs. Or, more radically,
the environment could eliminate the need for some or all of
these arcs.

We took advantage of a unique aspect of the Agentsheets
environment to create a new design representation with
fewer arcs. In this environment, every work area has an
underlying grid structure similar to the rows and columns

found in sprcadsheet applications. We used this grid
structure to define a spatially-oriented design language that
can be used to determine the placement of and relationship
between design units. Figure 4 shows an example of our
design unit placement rules. Our language is very simple
and is a straightforward extension of the structure chart
concept:

 The Horizontal Rule: Design units placed physically
adjacent to each other within a row are executed from
left-to-right.

» The Vertical Rule: Design units placed physically
adjacent to each other within a column describe the set
of options or choices at that point in time in the
execution sequence.

* The Arrow Rule: Arrows override all previous rules
and define an execution ordering.

We quickly integrated these rules into the environment and
showed the result to the voice dialog designers. Generally,
the language was favorably received. The large-scale
application designer liked it because, as he noted, it was a
“simple hydraulic model” — like water, everything flowed
to the right and down (Figure 2). The account executives
liked using the grid structure to guide design unit placement
but they wanted to rotate the model’s orientation 90°, that
is, sequences should be defined vertically and choices
horizontally. Some of the account executives were already
using placements similar to the vertical rule to describe
choice points with more than two options.

Providing Levels of Abstraction. Reducing the quantity of
arcs eliminated some of the visual complexity of the design
representation. However, designs were still large, complex,
and error-prone, since the representations described all
necessary low-level operations in a flat structure space. The
size and low-level nature of the representations also made it
difficult to discern high-level application objectives from
the representation.

To address the problems cited above, we decided to build

into our environment an abstraction mechanism that would
satisfy two objectives. First, it must help designers to
control design complexity by structuring the design space
into hierarchical layers of abstractions. Second, using the
mechanism, a designer should be able to construct each
layer such that the layer’s high-level objectives are
discernable by any viewer with less than ten minutes of
effort.

Our abstraction mechanism was built using the hyperagent
facility provided in Agentsheets. A hyperagent is an agent
that represents a nested worksheet. Each hyperagent has a
graphic depiction. In Figure 2, all agents shown in the
Voice Mail System window are hyperagents. Double-
clicking on a hyperagent’s depiction opens its associated
worksheet. Thus, double-clicking on the Mail List Section
hyperagent opens the worksheet where all mail list
operations are defined. Double-clicking on the Delete Mail
List hyperagent opens another nested worksheet where the
delete operation is defined. During design simulation, the
flow of control passes through each nested worksheet and
automatically returns to the calling worksheet. The Mail
List window is the abstracted representation for the same
operations illustrated in the structure chart in Figure 1.

Subsequent evaluation of this abstraction mechanism met
with mixed results. The large-scale application designer
saw the potential benefits of such a mechanism but noted
that it required him to think about his design problems in a
new way. In use situations, it became apparent that our
current implementation wasn't helping him to overcome the
learning curve associated with the new feature. The
environment required the designer to use hyperagents in a
premeditated fashion. They were chosen from the gallery and
placed in the worksheet like all other design units. In one
telling incident, when the design was getting large, the
designer stated “Now I want to go back and select these
clusters and make them into hyperagents but I can’t.” The
account executives were skeptical about the new
mechanism. Their designs were small and they liked having
a flat structure with everything visible all the time. They

LEFT

Horizontal rule: Units placed

IECJ=—= nesign Unit Placement Rules
3 :S¢cond: Tirst
iPromptiee——Promjpt:

§Immyt§

are executed left-to-right.

L

.
Snanm————

P MIDDLE
BEEP; : Vertical rule: Adjacency within a
AT ‘SIS column describes options
iThard ¢ available during execution.

RIGHT

ORI

Arrow rule: Arrows override all

previous rules and define
execution ordering.

Figure 4. Decsign Unit Placement Rules.

adjacent to each other within a row

found the distribution of the design into separate windows
confusing. However, they did see some benefits in the reuse
potential of these design pieces.

Supporting Reuse of Aggregate Design Units. There were
several issues that arose in the previous iteration. First, we
needed a mechanism to support post-hoc creation of
hyperagents. Designer’s should be able to turn a cluster of
design units into a hyperagent at any time. Second,
hyperagents or design unit clusters should be able to be
saved back into the design unit gallery for later reuse.
Thirdly, designer’s should be able to place either the
hyperagent or its constituent design units into the
worksheet. Satisfying these requirements would allow the
large-scale application designer to benefit from the
hyperagent’s abstraction mechanism and would allow the
account executives to benefit from reuse.

We are extending the Agentsheets system to support
cutting, copying, and pasting of design unit aggregates. We
are also integrating management of design unit aggregates
into the hyperagent concept. Once an aggregate or
hyperagent has been cut or copied, it can be pasted into a
worksheet or back into the design unit gallery. When an
aggregate is pasted into the gallery, the designer will be
asked to specify its name and graphic depiction. At this
point, the aggregate is turned into a hyperagent and its name
and depiction are its representation in the gallery. An
additional menu command will be provided that expands a
selected hyperagent into its constituent parts in situ. Thus,
aggregates can be turned into hyperagents and vice versa.
These modifications are currently being carried out and will
be evaluated shortly.

LESSONS TO BUILD ON

Our success case for this project is that we got “this far this
fast” in a domain that was both complex and innovative.
Gould, Boies, and Lewis [4] noted that many development
organizations don’t practice iterative design methods because
they are perceived as being too difficult and time-
consuming. We have demonstrated in this project that this
* is not necessarily the case. By picking the right high-level
. substrate to build on and by having the right participatory
context, we were able to easily iterate through many design
changes in a relatively short time. In this section, we will
highlight specific factors that contributed to our success.

The Right Participatory Context. As claimed by the
Scandinavian design approach [1,2], we benefited from
active end-user participation and from having the right kind
of participants. Specifically, three factors contributed to the
speed with which we were able to proceed.

First, participating end-users have enough organizational
status that they are in control of their choice of tools and
they are able to make the decision to commit time to the
project. Also, a real problem exists that needs to be solved.
Shortening product development time and saving money are
big motivational factors in any organization.

Second, the project’s most influential user participant is a
voice dialog design expert. His domain expertise drives our
design process. He is continually pushing existing tools and
practices to their limits, and thus he has specific ideas based
on practical experience about what works, what doesn’t, and
where existing tools fail in the face of complexity. Relying
heavily on his expertise, we were able to choose an
appropriate substrate and build the initial system in less
than one month.

Finally, cooperative design sessions are frequent, short, and
focused. The voice dialog designers are extremely busy
people, working hard to get products “out-the-door” while
participating in this project. For us, getting together once a
week for no more than one hour is optimal. Our job as
system designers is to provide “objects-to-reflect-with” to
add focus to each of these sessions. These objects are
created to highlight specific design issues. Through
explorations of these objects, all project participants are
able to build a shared understanding of design issues and
future directions. Most often, we reflect using the system
prototype. We also used video prototyping to explore
alternative interfaces to construction, such as a forms view
for voice menu specification, and interfaces to a future
catalog component containing previous designs and design
templates. We used paper mock-ups to explore how to best
capture voice dialog design knowledge in the environment.

The Right Substrate To Build On. Choosing the
Agentsheets environment was a critical factor in our success
to date. While many writers have advocated the need for
prototyping tools [1,2,4], no one has really addressed the
issue of how to pick the best tool for the task at hand. In
this section, we will highlight important criteria to consider
when choosing a substrate.

First, we chose a substrate that ran on the same
computational platform as existing tools — the Apple
Macintosh. This helped us in two ways. First, systems
were readily available to participating designers. Taking the
latest prototype iteration to a cooperative design session
was easy; we just copied a few files onto a diskette and
loaded these files onto the designer’s system. Second, we
bypassed interaction learning curve problems. As long as
we kept within the Macintosh user interface guidelines,
designers were able to quickly adapt to new functionality
since they were already familiar with such interaction
techniques.

Second, rather than choosing a general-purpose prototyping
tool, we constrained our choice of substrate to one that was
designed to solve a particular class of problem elegantly [6].
The class of problem Agentsheets was designed for was
well-matched to the voice dialog domain and the
functionality envisioned in the future system. Specifically,
Agentsheets supported the creation of high-level domain-
specific building blocks, design by construction,
simulation, and spatial reasoning based on its grid structure.
The voice dialog design environment took advantage of all
these intrinsic features. Much complex functionality

required little implementation effort on our part. A
prototype was built to assist the expert voice dialog
designer in evaluating the environment’s potential. This
prototype was built in a few minutes and consisted of one
new bitmapped icon and about a dozen lines of code. In
Bodker, Greenbaum, and Kyung [1], two projects are
described. In the first, iterative prototyping is facilitated
because Hypercard is well-matched to the needs of the future
patient record application. In the second project, prototyping
is less successful due to the inflexibility of the ORACLE
system and its inappropriateness for what they needed to
model. We conclude that iterative design would benefit from
a wide range of prototyping tools where each tool is
optimized for a particular class of problem. Projects should
select the appropriate tool based on the application domain
and envisioned future use.

Thirdly, we benefitted from the following general properties
of Agentsheet:
* Due to the nature of its object-oriented architecture, it
is extremely modifiable and extensible.
* It provides a rich set of classes to build on.
« It provides a variety of sample applications to learn
from.
* It addresses not only user-interface issues but
underlying system functionality as well.

FUTURE DIRECTIONS

Our future research will focus on two themes — how can
the design environment further promote building better
artifacts and how can the environment enhance design
communication within a product team. In the voice dialog
domain, there exists a plethora of user interface design
standards. In many cases, these standards conflict on basic
design issues such as whether or not voice menus items
should be mnemonic. Designers must be fluent in all
standards since the customer chooses which one to follow.
We are beginning to investigating how to incorporate this
often conflicting design knowledge into our environment.

Our current efforts have mainly focused on supporting the
designer in isolation. However, a large part of the designer’s
jobris communicating the design to the entire product team.
We will investigate these communication needs and how

best to accommodate them through the generation of
alternative design perspectives tailored to intended audiences
and the task at hand. We believe these tailored perspectives
will facilitate communication between product team
members with differing objectives and backgrounds, e.g,.
marketing, testing groups, and customers.

ACKNOWLEDGEMENTS

Special thanks go to Mike King and Alex Repenning —
without them, this project would not exist. Terry Roberts
and the Audiotex group provided much valuable voice dialog
and video prototyping expertise. We also thank John
Rieman, Gerry Stahl, Scott Henninger, Gerhard Fischer, and
Clayton Lewis for their comments on this paper. This
research was funded by a grant from US West Advanced
Technologies.

BIBLIOGRAPHY

1. Bodker, S., Greenbaum, J. and Kyung M. Setting the
Stage for Design as Action, in Design at Work:
Cooperative Design of Computer Systems. Lawrence
Erlbaum Associates Hillsdale, New Jersey 1991.

2. Ehn, P. Work-Oriented Design of Computer Artifacts,
Arbetslivscentrum, Stockholm, 1989 (Second Edition).

3. Fischer, G. and Lemke, A. Construction Kits and
Design Environments: Steps Toward Human Problem-
Domain Communication Human-Computer Interaction
3,3 (1988) 179-222.

4. Gould, J.D., Boies, S.J., and Lewis, C. Making
Usable, Useful, Productivity-Enhancing Computer
Applications, CACM, 34, 1 (Jan. 1991)

5. Halstead-Nussloch, R. The Design of Phone-Based
Interfaces for Consumers. In Proc. CHI'89 Human
Factors in Computing Systems (Austin, April 30-May
4, 1989) ACM Press, pp. 347-352.

6. Repénning.A. Creating User Interfaces with
Agentsheets. To appear in ACM/IEEE Proceedings of
SAC 91 (Kansas City, March ,1991).

