AN IMPLEMENTATION OF SHARED MEMORY

FOR UNIX WITH REAL-TIME SYNCHRONIZATION
by

Paul K. Harter, Jr. and Gregory R. Bollendonk

CU~-CS-310-85 September, 1985

University of Colorado, Department of Computer Science,
Boulder, Colorado.

An Implementation of Shared Memory for Unix
with
Real-Time Synchronization

Paul K. Harter, Jr.
Gregory R. Bollendonk

1. Introduction

The Distributed Computing Support system (DCS) [Harter 85b] is designed
to provide both high-level language and operating systems support for the pro-
grammer building parallel, distributed applications. The above reference
specifies the DCS user interface and describes the design of the DCS system. In
particular, it discusses the abstraction of a distributed shared variable, and the
required kernel support for shared memory. This paper describes the kernel
implementation of shared memory upon which distributed shared memory rests.

Although the actual design and coding of the shared memory extension
was done in the context of the DCS system, it had its beginnings as a class pro-
ject for an advanced course in operating systems in the Fall Semester 1984.
The purpose of the course was to provide students the opportunity to make a
detailed study of the implementation of a "real’ operating system, Unix. The
term project for the course was to specify a useful extension to Unix and to sug-
gest a possible implementation. One of the groups suggested the addition of
shared memory. Their project provided the initial framework for our final

- design and implementation.

During the Spring Semester 1985, the Distributed Computing Support sys-
tem was conceived and designed. Much of the low-level design and implementa-
tion of DCS was carried out as the class project for a graduate seminar in net-
working and distributed computing being taught by the first author.

The DCS system was to support distributed computations via asynchro-
nous remote procedure calls and distributed shared variables. Distributed
shared variables were to allow multiple processes, cooperating in a given compu-
tation, to share "global" variables, with access to these variables to be indepen-
dent of process location. Sharing by processes executing on separate nodes
would have to be be based on a message protocol. While processes executing on
the same node could use the same protocols, it was clear that they would be
able to share these variables directly at much lower cost through shared
memory. Thus the design of DCS provided the impetus for extending the origi-
nal shared memory proposal and carrying through with its implementation.

The implementation was originally conceived for a DEC VAX 11/780 run-
ning Unix 4.2BSD and first brought up under SUN Unix version 1.3 running on
SUN workstations. We have recently added our shared memory implementation
to the newest version of the operating system (SUN Unix version 2.0) with only
minor modification. In fact, the installation took less than one man-day.

The remainder of this report is organized as follows. Section 2 discusses
the background of interprocess communication (IPC) in Unix and the require-
ments introduced by the DCS system. Section 3 describes the shared memory
facility provided by our extension, while Section 4 discusses the kernel imple-
mentation. Section 5 discusses performance issues, and Section 6 summarizes
our results and conclusions.

2. Background

The original design of Unix [Ritchie 74, Ritchie 78] contained very little
support for communication between processes. There was no shared memory,
no general message facility, and no general mechanism for interprocess syn-
chronization. There were two IPC channels available, pipes and signals.

A pipe provides a one-way, FIFO, byte stream between a pair of related
processes accessed via the standard Unix I/O calls. Processes are delayed upon
trying to read from an empty pipe or write to a full one. The advantage to
pipes is that they are well tailored to a type of processing very common to Unix
systems. Signals provide a simple form of software interrupt facility. A signal
is sent from one process to another and typically results in the asynchronous
invocation of a handler routine in the receiving process. Signals are useful for
fairly simple, pre-arranged synchronization between processes.

The greatest disadvantage to the two mechanisms described above is their
lack of generality. In particular, both are limited to use between related
processes. For pipes, this relation is kinship via fork’s from the same parent,
while for signals it is determined by association with the same terminal. This
precludes, for example, the dynamic creation of pipes between existing processes
desiring to communicate. In the case of signals, the number and meanings of
signals are fixed and determined by the system, and a signals can carry no
information. Thus, a signal may not even carry the identity of the sender,
which places a very strict limit on flexibility.

Arbitrary process pairs may communicate via the file system by opening
the same file, but this has two drawbacks. First, speed is limited by the file
system speed, even for small messages, and second, without a general synchroni-
zation mechanism, coordination of access to the shared file is difficult. Some
Unix programs use the existence or non-existence of a known file to simulate a
binary semaphore, but this is clearly sub-optimal.

2.1. IPC in Berkeley Unix 4.2

Later versions of Unix have contained extensions to allow more general
forms of IPC. ATT extended Unix to allow for shared memory segments, first
in a non-paged and then in a paged environment. In addition to shared
memory segments, ATT Unix has semaphores and message queues. All three
are implemented as Unix objects similar to files and subject to standard Unix
protection checking on access. While our implementation is completely indepen-
dent of the file system, it has some features in common with ATT’s System V.

The berkeley unix group took a different approach and added a com-
pletely general IPC facility, which included support for networking and inter-
networking. This system provides a new abstraction called a socket, which is a
port for sending and receiving messages. Sockets are handled within a program
much as file descriptors have been. In fact, the standard system read and
write calls work transparently on some classes of sockets. Differentiating sock-
ets and file descriptors are network addresses and additional system calls to
associate addresses with sockets (binding) and to associate sockets in different
processes with each other (connection establishment). As an alternative to the
(semi-permanent) association of two sockets implied by a connection, individual
messages may be addressed to specific destinations. A last and important dis-
tinction between files an sockets is that sockets are not sharable objects and
thus have no need for sets of permissions such as files have. Any process can
use its socket to send a message to any address.

2.2. DCS Requirements

With the ever increasing availability of powerful workstations, there has
been a rapid increase in the number of computing environments made up of
personal workstations connected via a local area network. Since each worksta-
tion is dedicated to an individual who is likely to spend most of his time typing
(eg. word processing, program editing), the workstations will be grossly under-
utilized most of the time. The DCS system is an attempt to harness this
surplus power to do useful computing.

The concurrent availability of a number of under-utilized workstations
opens up many new possibilities if the physical parallelism inherent in separate
CPU’s can be exploited. Due to the relative high cost of communication
between machines [Popek 81, Peterson 79] when compared to memory access
and instruction execution, use of a local area network for distributed parallel
computation must be restricted to algorithms whose demand for cycles greatly
exceed their need for interprocess communication. Schnabel [Schnabel 85] is
investigating a class of numerical algorithms that appear ideally suited for this
environment.

As mentioned in the Introduction, the Distributed Computing Support
(DCS) system supplies language support for distributed computing via a collec-
tion of systems routines. The user abstractions provided by DCS are the

asynchronous remote procedure call and distributed shared variable. While
these are described in detail elsewhere [Harter 85b], a brief description will be
given here to motivate the implementation of shared memory.

An asynchronous remote procedure call is like a normal procedure call in
that input and output arguments are passed and returned. It may or may not
actually execute remotely, so the programmer may make no assumptions as to
the execution site, although we plan to investigate the feasibility of allowing
some programmer input on location in the future. The difference is that rather
than the normal procedure call synchronization, wherein the caller is suspended
during execution of the procedure, in the asynchronous call the caller continues
to execute. The caller may then either merely continue to compute or make
more asynchronous calls. Resynchronization of the caller and the callee occurs
at the callers discretion, when he may request that he be suspended pending
completion of outstanding calls.

In the case of the synchronous procedure call, the called procedure may
access global data declared in some surrounding scope. The utility of this type
of access prompted us to attempt to provide a similar type of access in the
asynchronous case. The programmers view of a distributed shared variable is
that of a variable that may be read, written, or updated atomically with
respect to other processes, where an update has the form:

var := user_function (var, arg),

with the constraint that aerg may not contain a direct reference to another
shared variable. Thus, although the programmer must be aware of the fact
that the variable may change between subsequent reads by a single process, the
variable is always in a consistent state, independent of size or the locations of
sharing processes.

The user of the DCS abstractions need not be concerned with networks,
addresses, ports (or sockets), or the extra system interfaces for sending and
receiving messages. However their implementation placed a number of require-
ments on its host systems. First, it required a general message passing facility
to allow for the distribution of processes, arguments and results, and for the
sharing of data in a distributed environment. All of our machines currently run
Berkeley Unix 4.2 and the IPC implementation there could meet our needs for
message passing in the network.

The implementation of distributed shared variables posed additional prob-
lems. The distributed shared variables associated with a computation must be
equally accessible to all processes of that computation independent of their phy-
sical site of execution. This desire for equal, efficient access excluded excluded
an implementation where processes obtained and assigned values by sending
messages to a special storage or caretaker node. Thus, a copy of each variable
is kept at each node. Further, the various copies of a shared variable must be
kept consistent across nodes. This is ensured in DCS by a collection of manager

processes (Distributed Shared Memory Processes, DSMP’s), one on each node.
The DSMP’s on the various nodes communicate update information to each
other and guarantee adherence to the update discipline specified for each vari-
able. Thus, the DSMP must also be able to access the shared data.

Again, our desire for efficiency caused us to reject a solution, where the
DSMP "owned" the copy of the shared data on each node and responded to
requests by the various processes on that node. Particularly in the case of mul-
tiple concurrent computations or multiple processes of a single computation on
one node, the DSMP could present a performance bottleneck to in the system.
Thus, to avoid the cost of sending messages within a node and the bottleneck
effect of having one process do so much work, it is necessary for processes to be
able to access the same set of memory locations. This feature was not available
in Berkeley Unix, so we decided to add it.

Finally, there are synchronization requirements. The design of the DCS
interface requires that any access to variables must be atomic. That is, it must
be possible to read or write a variable atomically. There is no problem with
this in communication between nodes to keep variables up to date, since the
update protocols have been designed to send and install entire variables at
once. A more difficult problem arises within a node, where the DSMP and one
or more user processes all share a single copy of a shared variable. Since these
variables may be larger than the width of the memory data path, atomic access
is not guaranteed by instruction atomicity for reads and writes, let alone
updates. This is an instance of the standard mutual exclusion problem. In our
case, however, there are real-time constraints imposed by the role of the DSMP,
who must maintain many variables simultaneously.

In adding shared memory to Unix, we could also add semaphores [Dijkstra
68a) or some other mechanism for mutual exclusion, but the standard semantics
of semaphores is inadequate. Since the DSMP must acquire exclusive access to
install changes from other nodes in the system, it would have to do a P on a
semaphore that could be held by a user process. Since the user process may fail
or terminate while holding the semaphore, the DSMP would be stuck forever.
Even barring the error case, a user process could hold the semaphore over a
page fault or disk read. Since the DSMP may be serving many processes and
many shared variables, this wasted time could lead to significant performance
degradation. This led us to the design of a semaphore that could be used in the
face of performance constraints. The semaphores we included (see Section 3
and the Appendix) provide a timeout period so that a P operation will return
after the semaphore has been decremented or the timeout period has passed.
The timeout can be specified as having zero (for polling), infinite or some finite
length.

3. Supplied Features

In this section we describe the interface and features included in our
implementation as motivated in the previous section. The Unix manual pages
for the new system routines are contained in the Appendix. First we describe
the interface for attaching to and using shared segments, and then the declara-
tion and use of semaphores.

3.1. Shared Segments

Our implementation provides shared memory segments that are mapped
indistinguishably into the memory space of processes. Ordinary reading and
writing of variables in shared memory occur in the same way as access to vari-
ables in private data space, i.e. there are no special access functions or system
overhead involved. Shared segments may exist anywhere within the address
space of a process and the number of shared segments that may be accessed by
a process at one time is limited only by system table space. Our implementa-
tion currently enforces a system-wide limit of 20 segments of up to 20 pages
existing concurrently, however these limits may be changed simply by modifying
manifest constants and recompiling the affected modules. The only restriction
on the location of shared segments is that they begin on page boundaries and
occupy an integral number of pages. Our implementation of shared data seg-
ments requires two new system calls, vshare, and vrlse. These new calls allow
the user process to create, attach, and detach itself from shared segments
within the system. : :

3.1.1. Creation and Rendezvous

In order to share memory among a set of processes, one of the processes
must "create" a shared segment by declaring a piece of its address space shar-
able. This is done by informing the system that it wishes to share a segment of
its address space via a call to the routine vshare giving the start address and
size of the space to share, and a null segment identifier seg_id. The kernel
returns a unique (within the machine) identifier which is used to refer to the
shared segment in the future.

Other processes in the set may then attach to the segment just created
via the same system call. A process wishing to attach to a shared segment must
do so by obtaining the seg_id for the segment and "trading in" a piece of its
address space for a previously declared shared segment. Thus, prior to sharing
memory there must be some initial communication between the sharing
processes to exchange the seg_id, for example via a pre-arranged socket port
name or file name. Having obtained the seg_id, the segment is mapped via a
call to vshare giving the seg_1d of the shared segment and start address and
size of the address space to be traded. When this call returns, both processes
have the shared segment mapped into their address spaces, though possibly at
different logical addresses.

While attached to a shared segment, a process may neither fork a new
copy of itself, nor may it exec a new text image. Although it would be possible
to design and implement a reasonable semantics for the result of a fork, it was
not required for our purposes. Since the kernel code implementing the fork
operation is rather complex with interfaces throughout the system, we chose not
to support it. The exec call is also complicated, but in this case it is hard to
imagine integrating the semantics of exec with those of shared memory. An
exec system call overwrites the address space of the calling process with the
text and data segments of the program being exec’ed, expanding the address
space if necessary. This causes several problems. First, since the address space
of the process is likely to change shape across the exec, it may well be that the
shared segment would be overwritten by the code of the new program. This is
not likely to be the desired effect, and avoiding it would require the programmer
to worry about object code sizes and other details. Second, since all data space
of the process calling exec is reinitialized, the process would not be able to
"remember" where the shared segment began. Thus, it seems that there isn’t a
clearly correct way to implement this feature at all. Finally, if the effect of a
fork or an exec in the presence of shared memory is desired, it can be obtained
by releasing the segment, making the call, and reattaching to the segment
afterwards.

A process attached to a shared segment may detach itself from that seg-
ment explicitly by calling the routine vrlse giving the seg_id of the segment it
wishes to detach. On the other hand, a process may be detached implicitly.
When a process terminates, it is detached from all shared segments to which it
is attached before the system goes through the standard termination processing.

In either case, when a process is detached from a shared segment, there
are two possibilities. If the process being detached is the only process attached
to the shared segment, then the segment becomes unsharable and the calling
process continues with the data in the segment unchanged. On the other hand,
if there are several processes attached to the shared segment at the time of the
call, then the system replaces the shared segment in the calling process with
new zero-filled pages.

3.1.2. Ownership

Shared segments are shared equally, i.e. there is no "owner" of a shared
segment. Although the shared segment is initially part of the private address
space of the process that first declares it sharable, that process has no special
rights to the segment afterward. A process may attach to the shared segment
by knowing its size and seg_id. Though this is no protection from malicious
processes, the likelyhood of guessing both correctly by accident is small. Thus,
there are no privilege classes or special access rights for the segment that must
be checked prior to granting aceess to the requested segment.

The process that "creates" the segment may very well not be the last one
to access it, and the lifetime of a shared segment is not limited by the lifetime
of the creator. Processes may come and go, but the segment remains sharable
until every process that attached the segment has either released it explicitly or
terminated.

3.2. Semaphores

Our implementation of semaphores is a natural extension to our shared
data segments, and semaphores are intended to coordinate access to the shared
objects contained in these segments. A shared data segment may have a
number of semaphores, each associated with a particular offset within the seg-
ment. Note: The semaphores are associated with offsets in segments, not
located in the segments, so a user process may only access a semaphore via the
kernel operations supplied. Thus, while use of semaphores to coordinate access
is not required, they can not be overwritten by accident.

Semaphores provide an efficient resource control mechanism for a user
process to synchronize access with any other process, with minimal kernel over-
head. Our implementation of semaphores requires three new system calls: get-
sem, Psem, and Vsem, for the creation and use of semaphores. Again, the
number of semaphores is limited only by system table space, which is easily
modified.

3.2.1. Creation and Use

Since semaphores are associated with offsets within shared segments, a
user process must be attached to a sharable segment in order to create or use a
semaphore. A semaphore is created via a call to the kernel routine getsem,
specifying a shared segment, an offset, and an initial value. The system returns
a unique (within the machine) identifier sem_id (semaphore identifier), which is
used to refer to the semaphore in the future. Subsequent calls to getsem speci-
fying the same segment and offset location will return the same sem_id and
have no effect on the semaphore value. Thus, two processes sharing a segment
need not agree in advance on which is to create semaphores. If two processes
attempt to create and then decrement the same semaphore simultaneously, then
one process will create it successfully and exactly one process will successfully
complete the P operation (assuming an initial value of 1). There are no
guarantees as to the identity of either.

Once a process has the sem_id for an associated semaphore, it can operate
on the semaphore with the new system calls Psem and Vsem, P and V respec-
tively, although the semantics of our calls do not exactly match those of in their
pure forms. First, in order to facilitate the use of semaphores for resource
counting (number of shared buffer slots etc.), we have implemented the so-called
PV-chunk operations [Vantilborgh 72] to reduce the likelihood of deadlock.
Thus, a semaphore may be incremented or decremented by an integer value

specified as a parameter to the system call.

As mentioned in Section 2.2 on the requirements imposed by the DCS sys-
tem, it must be possible to guarantee sychronization and mutual exclusion in a
real-time environment. This implies that the standard semantics for the P
operation is inadequate to our purposes, since it implies possible arbitrary delay
of the caller. Therefore, our Psem system call allows the user process to
specify the amount of time it wishes to wait while trying to decrement the value
of the semaphore. A return code indicates that the semaphore was successfully
decremented (0) or that the call timed out (-1).

Thus, a process calling the kernel routine Psem specifies not only the
semaphore (sem_id) but a decrement value (decr) and timeout value (time) as
well, and the semantics is:

Psem(sem_id,decr,time) = suspend caller until (sem_id > decr || time elapsed)
Then atomically execute:
If (sem_id > decr) {
sem_id —= decr; return (0) }
else return(-1)

There are two special case values for the timeout interval. A value of 0
specifies that Psem is to return immediately, even if the decrement cannot be
performed. A value of -1 specifies that the call is not to return unless the sema-
phore is successfully decremented. Thus, the call Psem(sem_id, 1, -1) has the
same semantics as Dijkstra’s P(sem_id) operation.

The Vsem system call requires a sem_id and a semaphore increment
value. If the semaphore value is incremented enough to allow one or more wait-
ing processes to proceed, then waiting processes are awakened in FIFO order.
It is possible for a process waiting in a Psem operation with a high decrement
value to be overtaken by a process with a low decrement value in the case
where the Vsem increment was not great enough to satisfy the affected process.

Once created, a semaphore remains in existence as long as the segment
with which it is associated exists. When the shared segment has been vrlse’d
by all processes attached to it, the segment becomes unsharable and all sema-
phores associated with the segment are deleted from the system.

The five new system calls described above (vshare, vrlse, getsem, Psem,
and Vsem) provide a general, efficient mechanism for data sharing and syn-
chronization among any number of unrelated processes. Data access is indistin-
guishable from normal (private) access and no copying of information is
required. The implementation of Psem and Vsem operations results in a syn-
chronization mechanism involving very little kernel overhead, especially when
compared to the use of "lock files." The efficiency of these operations will be
further discussed in Section 5.

4. Implementation

The facilities introduced above have been implemented on the SUN works-
tation under the Sun Micro Systems version of Unix (for our purposes, a port of
Berkeley Unix 4.2). The basic kernel environment for SUN Unix virtual memory
includes a set of page tables for each process and a global, circularly linked list
of page frame descriptors to implement a variation of the "clock" algorithm for
memory management [Babaoglu 81]. Each page frame descriptor references the
user page table entry for the page it contains. In addition, the SUN workstation
has a separate memory mapping module, which translates the addresses gen-
erated by the CPU. The page tables of the currently executing process must be
loaded from main memory into the memory map unit for translation to take
place.

Our approach to shared memory was to implement the simplest scheme
consistent with reasonable performance. Two processes sharing a segment have
identical page table entries for the ranges of addresses corresponding to the
shared segment. Semaphores exist only in the kernel, and may be referenced
only in the Psem and Vsem calls via the sem_id’s returned from the getsem
system call.

Although the user interface for shared segments does not include the
notion of a distinguished "owner process" for a shared segment, it is necessary
to make such a distinction at the implementation level. Thus, in the following,
we will assume that each shared segment has a current owner and zero or more
subordinates. The owner is the process that first calls vshare to make make a
portion of its address space sharable a subordinate is any process that subse-
quently attaches to the segment. The (physical) page frames containing the
(virtual) pages that are made sharable by the call will contain the shared seg-
ment throughout its existence. These frames are initially allocated to the owner
process before it calls vshare, and continue to be allocated to that process
afterwards. The reason is that the page frame descriptors for any allocated
pages in the system must contain a reference to a user page table, and it
seemed simplest to leave them allocated to the owner. Thus, the owner is the
only process that has "physical memory" allocated for the shared segment. If
the owner releases the segment, then ownership transfers to one of the subordi-
nates (if any), and the frame descriptors are modified to point to its page
tables.

We added two data structures to the kernel, a segment descriptor table
(sd_map) and a semaphore descriptor list (sem_list). The user values seg_id
and sem_id are indices into sd_map and sem_list respectively. Each sd_map
entry contains the size and start address of the shared segment in the owner’s
address space, a pointer to the owner’s process table entry, a list of processes
sharing that segment, and finally the start index to a list of the semaphores
associated with that segment (sem_list). Each sem_list entry contains the index
of the next in the list, the associated offset within its segment, the semaphore’s

-10-

current value and the first index in a list of processes waiting on that sema-
phore (wait_list), and a pointer back to the sd_map entry describing the seg-
ment with which the semaphore is associated. The wait_list is a simple linked
list of delayed Psem operations, each indicating the delayed process and the
value by which it desires to decrement the semaphore.

When vshare is called, it first screens the input parameter values for
legality. 1If the seg_id parameter is "0", a new sd_map entry is created
corresponding to the segment described by the call parameters, the calling pro-
cess is marked unswappable, and the involved pages and page frames are locked
in memory. If the seg_id parameter is non-0, then the size in the sd_map entry
corresponding to the passed seg_id is compared to the passed size. If the sizes
match, then the callers pages are returned to the system and the page table
entries from the segment’s owner are copied into the caller’s page table.

Our decision to lock shared segments into memory can be traced to a
number of factors. First, me desired that our extension have minimal impact on
existing kernel routines and data structures to make it easy to add to other ver-
sions of the system in the future. Further, considering the complexity involved
when compared to the actual performance gains, the positive return on our
effort would have been minimal. If shared segments were not locked in memory,
it would be necessary to modify the paging mechanism to keep page tables in
several processes consistent when a page is paged out. Reference or modified
bits would have to be copied from the process making the reference to the
owner process (this information is referenced from the frame descriptor). These
modifications would require another data structure in the kernel and one or
more new flelds in the kernel’s process table. A mechanism similar to that
currently used for shared text segments would have to be used, with the added
complication that shared text segments may reside at different addresses in
different processes. '

The decision to lock shared pages and make their processes unswappable
does not incur great performance penalties. First, processes are swapped in
their entirety relatively infrequently in normal system execution, so making a
process sharing memory unswappable does not involve a large cost. Second,
shared memory segments involve pages being referenced by several processes,
which are referenced comparatively frequently. By the nature of the clock pag-
ing algorithm used in the kernel, these frequently referenced pages would prob-
ably remain in core anyway. Thus, locking them in memory is unlikely to
change their core residence patterns. To insure that this is the case, limits are
set on the total number of pages that may be involved in shared segments and
hence locked into core.

The vrlse call takes as its parameter the seg_id of a shared segment to
which the caller is attached. After verifying that this is the case, one of three
actions is taken. If the caller is a subordinate for the segment, then the callers
page tables are modified so as not to refer to the shared segment and are

-11-

marked "fill on demand." This means that pages will be allocated to the pro-
cess as those addresses are accessed. If the caller is the owner and there are
existing subordinates, then the page frame descriptors are modified to point to
the page tables of one of the subordinates, who thus becomes the new owner.
The caller then gets "fill on demand" page table entries to replace the ones that
referred to the shared segment. Finally, if the caller is the last process
attached to the segment, the sd_map entry is deleted and the pages of the seg-
ment are unlocked from core. In all cases, if the process has just released its
last shared segment, it is made swapable again.

When a process calls getsem with a seg_id, offset and initial value, it is
first verified that the process is attached to the segment in question, that the
offset is legal, and that the initial value is non-negative. If so, if there is not
already a semaphore declared for that location, a new sem_list entry is allo-
cated and initialized, and appended to the sem_list for the segment whose
seg_id was passed. If the semaphore already exists, then its sem_list entry is
located but not re-initialized. In both cases, the index (sem_id) of the entry is
returned to the caller.

Psem first checks to see whether the caller is actually attached to the
segment associated with the sem_id passed and whether the decrement value is
positive. If so, it checks the value of the semaphore to determine whether a
decrement is possible, i.e. whether the result would be non-negative. If so, the
value is decremented and O is returned to indicate success. If not, the handling
depends on the timeout value passed. If zero, the call returns immediately with
-1 to indicate failure to decrement. If the value is -1, then a wait_list entry is
allocated and appended to the current wait_list. Then the process calls the
kernel sleep routine from within Psem using the address of the wait_list entry,
and specifying a priority (PZERO) to prevent having to handle signals. Finally,
for any positive time value, the caller allocates the wait_list entry as above, but
before going to sleep, calls the kernel timeout routine saying that it is to be
awakened in any case if the timeout period is exceeded. Then, when the pro-
cess is awakened, it must determine whether it was awakened due to a timeout
or as the result of a Vsem call. In the former case, Psem returns with an error
code indicating a timeout has occurred. In the latter case, the routine
untimeout will be called to cancel the previous request for a wakeup, and the
call will return successfully after decrementing the semaphore.

Last, the Vsem call also checks for legality exactly as does the Psem rou-
tine. It then increments the value of the semaphore and scans the wait_list
from front to back looking for processes who can now safely decrement the
semaphore. For each such process, the address of the wait_list entry is passed
to the kernel wakeup routine which makes the process executable again.
When it has a chance to run, it will decrement the semaphore and return from
the Psem call. A call to Vsem with legal parameters always returns success-
fully and never causes the caller to be delayed.

-192-

Four other kernel modules were modified to allow for shared memory. The
modules for fork (kern_fork.c) and exec (kern_exec.c) were modified to test
whether the caller is attached to shared memory and disallow the call if it is.
The module handling process termination (kern_exit.c) was modified to test the
terminating process for the existence of shared memory and to vrlse any shared
segments. Finally, the system initialization routine (init_main.c) was modified
to cause initialization of the shared memory data structures.

5. Performance

Shared memory provides a large speed improvement over the use of sock-
ets for sharing of information among processes on the same machine. In this
section, we give the results of some timing measurements made with our imple-
mentation.

First, the system calls to implement synchronized communication in
shared segment are relatively efficient. The following table shows the times and
number of instructions involved in a null system call, i.e. a system call with no
kernel code executed beyond that for context switches, and our synchronization
calls. These tests were run on an otherwise unloaded SUN 120 workstation.
The parenthesized values in the instructions column give instruction counts nor-
malized to the null system call.

Call Time for 10,000 Time for 1 ~ # of Instructions
null 3.5 sec 350 usec 292 (0 -> base)
Vsem 4.1 sec 410 usec 342 (50)

Psem 4.3 sec 430 usec 358 (66)
getsem 5.5 sec 550 usec 458 (166)

As can be seen from the above results, the Psem and Vsem calls are very fast.
Most of the cost is in the checking of parameters (eg. verifying the existence of
the semaphore and that the caller is attached to the segment with which it is
associated), and the timeout and untimeout routines in the kernel, which are
used for our implementation. The getsem call, which is executed only once for
each semaphore, is somewhat more expensive, but still on the order of half the
cost of the two context switches necessary to execute any system call.

Far more interesting than a simple listing of times for system calls is the
data on a comparison of shared memory with sockets as a means of transferring
data between processes. We set up two pairs of processes, one pair communi-
cating via shared memory, the other via UNIX sockets. Each pair involved a
reader process and a writer process. The writer was to transfer a series of
blocks of various sizes to the reader process. Each size was transferred 100
times and the resulting times were then normalized to one transfer.

The shared memory implementation was essentially a one slot version of
the well-known bounded buffer problem. The two processes had the following

-13-

outlines

Writer: loop 100 Reader: loop 100
fill buffer P(full)
V(full) read buffer
P(empty) V(empty)
end end

Buffer sizes ranged from 128 bytes to 8192 bytes

Similar code was set up for the two processes communicating via sockets.

Writer: loop 100 Reader: loop 100
fill buffer recv(buffer)
send(buffer) read buffer
recv(ACK) send(ACK)
end end

Buffer sizes ranged from 128 bytes to a maximum of 2048 bytes.
We have no data for stream sockets with buffers longer than
2048, as the implementation would not permit us to send longer buffers.

Below is a comparison of asynchronous block data communication transfer
times between two processes using stream sockets versus shared memory with
semaphores. Each read or write data transfer must wait for an acknowledge
from the previous read or write operation.

Buffer Size Stream Socket Shared Memory
(bytes) (milliseconds) (milliseconds)
128 19.5 3.3
256 24.6 3.6
512 38.0 3.8
1024 62.8 4.6
1536 93.2 5.5
2048 107.0 6.4
4096 no data 9.4
8192 no data 17.2

For this test, we used a simple data transfer, because it seemed the most
straightforward and involved the fewest assumptions about program usage pat-
terns. As a result, the timings are as favorable as possible to the socket imple-
mentation. One could easily imagine providing a pseudo-shared memory facility
based on sockets, with one process acting as a memory server. This server pro-
cess would handle all access to shared data. Thus, for a simple update, it
would be necessary for a process to request and receive data, process it and
create a new value, and finally send it back, all via sockets. For this case, the
times above for sockets would essentially double. The shared memory

-14-

implementation would be somewhat faster than above, since the update would
involve a single Psem, a single Vsem, and the transfer of only enough data to
make the update.

6. Conclusion

We have implemented shared memory in a version of Unix running on a
SUN work station within the context of a general facility for distributed pro-
gramming. The facility includes shared memory segments for data sharing and
semaphores for synchronization. The semaphore implementation includes a
time-out facility to make it useful for coordinating access to shared objects in
an environment with real-time performance constraints. The implementation
involved minimal change to the existing kernel and resulted in data sharing far
more efficient and general than previously available under Unix.

7. Acknowledgements

We owe a debt of gratitude to many people for this work, Dennis Heim-
bigner taught the advanced systems course in which it began, and added his
insight to the design of the semaphore facility. Bob Gray, Keith Cowley, and
Grant Rose were part of the initial project group, and Mike Schweitzer contri-
buted to the final implementation done primarily by the second author.
Finally, the presentation was much improved by Jon Shultis and Evi Nemeth
who waded through earlier versions.

References
[Babaoglu 81] O. Babaoglu, W. Joy.
Converting a Swap-Based System to do Paging in an Archi-
tecture Lacking Page-Referenced Bits.
Proceedings of the FEighth Symposium on Operating
Systems Principles, (Asilomar, 1981), published as
Operating Systems Review 15 (5):78-86, (December 1981).
[Dijkstra 68a] E. W. Dijkstra.

Cooperating Sequential Processes.
In Programming Languages, (F. Genuys, Editor), Academ-
ic Press, New York, 1968.

-15-

[Harter 85b]

[Peterson 79]

[Popek 81]

[Ritchie 74]

[Ritchie 78]

[Schnabel 85]

[Vantilborgh 72]

P. K. Harter, Jr., P. Maybee.

DCS: A System for Distributed Computing Support.
University of Colorado, Computer Science TR #CU-CS-
309-85

J. L. Peterson.
Notes on a workshop on distributed computing.
Operating Systems Review 13 (3):18-27, (July 1979).

G. Popek, B. Walker, J. Chow, D. Edwards, C. Kline, G.
Rudisin, G. Thiel.

LOCUS: A Network Transparent, High Reliability, Distri-
buted System.

Proceedings of the FEighth Symposium on Operating
Systems Principles, (Asilomar, 1981), published as
Operating Systems Review 15 (5):169-177, (December
1981).

D. M. Ritchie, K. Thompson.
The UNIX Time Sharing System.
Communications of the ACM 17 (7):365-375, (July 1974).

D. M. Ritchie

The UNIX Time Sharing System: A Retrospective.

The Bell System Technical Journal 57 (6,Part 2):1947-
1970, (July-August 1978).

R. B. Schnabel.

Parallel Computing in Optimization.

Proceedings of the NATO Advanced Study Institute on
Computational Mathematical Programming, (Klaus
Schittkowski, Editor), Springer-Verlag, 1985.

Also Available as University of Colorado Technical Report
CU-CS-282-84.

H. Vantilborgh, A. Van Lamsweerde.

On an Extension of Dijkstra’s Semaphroe Primitives.
Information Processing Letters, Volume 1, (1972), pp 54-
79.

-16-

Appendix

The following pages contain the Unix manual pages for our shared
memory system calls.

-17-

VSHARE (Pyramid OSx Operating System VSHARE(2)
NAME
vshare — create sharable data segment, or attach process to previously created sharable data
segment.
SYNOPSIS

status = vshare(&seg_id, size, addr)
int seg_id, size, status
char *addr

DESCRIPTION
Vshare will make a data segment within the calling process globally sharable to any other pro-
cess within the system, or replace a segment from the calling process with a segment made shar-
able by a previous call (by another process). Prior to a wshare call, the process must contain a
segment that is equal in size to the desired global shared data segment. Size must have granu-
larity of NBPG (number of bytes per page), and addr must be on a page boundary. Vshare has
two types of operations:

ERRORS

To create a sharable segment, the process provides seg_td=0, a valid size, and a pointer
to the data segment that is to be shared, addr. This segment must be within the calling
process’ data space prior to the vshare call. Upon successful return, seg_id will contain
the unique segment identifier of the created segment. This segment identifier may be
used by other processes to attach to the segment. If the call was unsuccessful, then seg_zd
will be meaningless and errno will contain an error return value.

To attach to a previously created sharable data segment, the process must provide the
unique segment identifier to the shared data space, seg.id, and the size of shared data
segment, size. The identifier must be obtained from the original creator of the sequence
(see above). The attaching process must also provide the virtual address addr of an
equivalent data segment that is within its address space. This data segment will be
released to the free memory pool, and the corresponding page table entries will be
changed to point at the desired shared data segment. If the return value is 0, then the
segment was successfully attached, otherwise it failed. Failure can be due to an invalid
combination of seg_id, size, and addr.

vshare has a zero return value unless there has been an error, in which case the global value
errno will be set as follows.

[ESRCH] If seg_id not found (trying to attach to existing segment)
[ENOMEM] If the shared data table is full
[EINVAL] Bad size granularity, addr not in data space, or exceeds maximum size

[EALREADY] If process is already attached to specified segment

EXAMPLE
seg_id = 0; /* create new sharable segment */
size = 4096; /* must have page granularity */
addr = x[0}; /% must have page boundary */
status = vshare(&seg_id, size, addr);

SEE ALSO
vrlse(2), getsem(2), Psem(2), Vsem(2)

AUTHOR

Greg Bollendonk, Grant Rose, Michael Schweitzer, Paul Harter

7th Edition

VSHARE(2) Pyramid OSx Operating System VSHARE(2)

DIAGNOSTICS
When wshare returns a non-zero value, the global variable errno contains one of the above error
codes.

BUGS
maximum segment size depends on size of maximum memory.

7th Edition 9

VRLSE(2) Pyramid OSx Operating System VRLSE(2)

NAME
vrise — release a virtual shared data segment

SYNOPSIS
status = vrlse(seg_id)
int seg_id, status

DESCRIPTION
Vrlse causes the shared data segment previously allocated to a process to be released. The seg-
ment is identified by seg_id.

If the calling process is the last process referencing the segment, then it is removed from the sys-
tem, any semaphores declared within the segment are removed, and the calling process keeps
the segment. If other processes are still attached to the segment, then the released segment is
replaced by zero-filled pages in the address space of the calling process. The page table entries
of the current process (u.u_procp) are unmapped from the shared segment, and the process is
removed from the shared data map structure in the kernel.
ERRORS

Vrlse has a zero return value unless there has been an error, in which case the global value
errno will be set as follows.

[EINVAL] If seg_id is out of range
[ESRCH] If seg_id is invalid for this process
EXAMPLE
seg_id = 22; /+ segment identifier returned from wvshare %/
status = vrlse(seg_id);
SEE ALSO
vshare(2), getsem(2), Psem(2), Vsem(2)
AUTHOR
Greg Bollendonk, Grant Rose, Michael Schweitzer, Paul Harter
DIAGNOSTICS
The global variable, errno, will be set if vrlse has a non-zero return code.
BUGS
None.

7th Edition 1

GETSEM(2) Pyramid OSx Operating System GETSEM(2)

NAME
getsem — create a semaphore for a shared memory location

SYNOPSIS
sem_id = getsem{seg_id, oflset, vinit)
int seg_id, offset, vinit, sem_id

DESCRIPTION
Getsem creates a semaphore associated with a given shared memory location referenced by the
seg_td, offset pair and returns the unique identifier associated with it by getsem. The identifier
sem_td must be used for all subsequent Psem and Vsem calls. The initial value vinit, is the ini-
tialized value of the semaphore. A call to getsem can have two results:

Getsem creates a new semaphore for the given seg_id, offset pair, assigns an initial value
vinit, to it, and returns the identifier sem_1d.

Getsem is called with the same seg_id, offset pair used in a previous call to create a
semaphore. In this case getsem returns the sem_id associated with that semaphore and
ignores the initial value passed.

The semaphore will be deleted when the segment whose seg_id was passed to create the sema-
phore is deleted. This will occur when the last process attached to the segment performs a vrise
on that segment.

ERRORS
Getsem will return a positive integer sem_id unless there has been an error, in which case the

global value errno will be set as follows.

[ESRCH] If seg_id is not currently in the system
[EBADF] If seg_id has invalid range
[ENOMEM] If kernel semaphore free-list is empty
[EFAULT] If offset is not in seg_id
[EINVAL)] If vinit < 0
EXAMPLE
seg_id = 5; /* segment identifier returned from wshare %/
offset = 320;
vinit = 1;
sem_id = getsem(seg_id, offset, vinit);
SEE ALSO
Psem(2), Vsem(2), vshare(2), vrlse(2)
AUTHOR
Greg Bollendonk, Grant Rose, Michael Schweitzer, Paul Harter
DIAGNOSTICS

The global variable, errno, will be set if getsem has a zero or negative return code.

BUGS
None.

7th Edition 1

PSEM(2) Pyramid OSx Operating System PSEM(

[

)

NAME
Psem — atomically decrement the value of a semaphore
SYNOPSIS

status = Psem(sem_id, value, tov)
int sem_id, value, tov, status

DESCRIPTION
Psem tries to decrement the value of semaphore sem_id by value. Sem_id is the unique sema-
phore identifier returned from geisem and value is a positive integer. Psem has the following
results:
If the semaphore has a value greater than or equal to walue, then then semaphore is
decremented by value and Psem returns immediately with a return value of zero.

If the semaphore has a value less than walue, then the calling process is suspended for a
maximum time-out period of tov. The time-out value is tov/hz seconds. Suspended
processes are put on a FIFO queue for that semaphore. The value of tov has three possi-
ble ranges:

(1) equal to -1, causing *wait-forever’,

(2) equal to 0, causing immediate return,

(3) or a positive integer, wait until time-out has expired.
If the value of the semaphore is raised high enough to decrement it by wvalue, prior to the
end of the time-out period, then Psem returns with a return value of zero.

Otherwise, Psem will return a non-zero value if it fails to decrement the value of the
semaphore within the specified time-out period.

ERRORS
Psem has a zero return value unless there has been an error, in which case the global value
errno will be set as follows.

[ETIMEDOUT] If it fails to decrement semaphore sem_id, within time-out period, tov.
[EBUSY] If the semaphore could not be decremented when tov = 0.

[EINVAL] If value <= 0. ‘

[ENOMEM] If the kernel free-list for waiting processes is empty.

[EFAULT] If sem_id is invalid

EXAMPLE
sem_id = 622; /* semaphore identifier returned from getsem %/
value = 1;
tov = 100;
status = Psem(sem_id, value, tov);
SEE ALSO
getsem(2), Vsem(2), vshare(2), vrlse(2)
AUTHOR ‘
Greg Bollendonk, Grant Rose, Michael Schweitzer, Paul Harter
DIAGNOSTICS
The global variable, errno, will be set if Psem has a non-zero return code.
BUGS

Deadlock detection is not implemented.

7th Edition 1

VSEM(2) Pyramid OSx Operating System VSEM(2)

NAME
Vsem — atomically increment the value of a semaphore

SYNOPSIS
status = Vsem(sem_id, value)
int sem_id, value, status

DESCRIPTION
Vsem increments the value of a semaphore specified by sem_id, where sem_id is the unique
semaphore identifier returned from getsem. If the call is successful, the semaphore will be incre-
mented by value. If processes are currently suspended waiting to decrement this semaphore, zero
or more may be allowed to proceed based on their decrement values.

ERRORS
Vsem has a zero return value unless there has been an error, in which case the global value
errno will be set as follows.

[EFAULT] If sem_id is invalid
[EINVAL] If value <=0
EXAMPLE
sem_id = 6B; /* semaphore identifier returned from getsem %/
value = 1
status = Vsem(sem_id, value);
SEE ALSO
getsem(2), Psem(2), vshare(2), vrlse(2)
AUTHOR
Greg Bollendonk, Grant Rose, Michael Schweitzer, Paul Harter
DIAGNOSTICS
The global variable, errno, will be set if Vsem has a non-zero return code.

BUGS
Deadlock detection is not implemented.

7th Edition 1

