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 Abstract 

Koh, Kyu Han (Ph.D., Computer Science & Cognitive Science) 

Computational Thinking Pattern Analysis: A Phenomenological Approach to Compute 
Computational Thinking 

Thesis directed by Professor Alexander Repenning 

 

Since the 1990s there have been multiple efforts to fix the broken pipeline at the 

K-12 level in computer science education, and most of those efforts have focused on the 

student motivational factor. The results of many studies in computer science education 

indicate that student motivation in computer science has been successfully increased by 

those efforts (Perrone et al., 1995; Walter et al., 2007; Kelleher et al., 2005; Kelleher et 

al., 2007; Maloney et al., 2008; Resnick et al., 2009), but most of them have failed to 

address educational benefits of these efforts. I believe that this biased tendency of CS 

education research has been caused by the lack of an adequate instrument to measure 

students’ achieved skills with learning objectives at the semantic level. In other words, 

the right assessment instrument should be able to assess not only student learning skills 

but also achieved learning objectives: what kinds of knowledge students have learned 

through their activities in the class. Student learning skills may be measured with existing 

tools such as grading rubrics, but they are extremely time consuming and have a limited 

functionality to provide necessary educational feedback such as student learning 

progression.   

I developed a learning data analysis tool to measure student-learning skills and 

represent students’ learning achievements at the semantic level through 

phenomenological analysis in real-time. This concept uses a LSA (Landauer, 2003) 
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inspired technique, multiple high dimensional cosine calculations to analyze semantic 

meanings of the pre-defined subject/phenomena in a given. Theoretically, this idea can be 

applied to several different domains such as natural language processing and visual end 

user programming. Therefore, this idea can be employed to build a learning assessment 

tool for computer science (CS) and/or computational thinking (CT) education where 

visual programming is widely adopted.  

As a semantic assessment tool for CS/CT learning, I propose a method, 

Computational Thinking Pattern Analysis (CTPA) in which nine canonical computational 

thinking patterns (Koh et al., 2010) work as pre-defined phenomena within a 

programmed artifact’s context. The CTPA measures students’ learning of skills (how 

well they have learned a skill) and students’ learning of objectives (how well they have 

learned certain objectives) at the semantic level through phenomenological analysis from 

student-programmed artifacts in real-time. The outcomes of CTPA can be used to provide 

valid and useful educational feedback to educators and learners in CS/CT education such 

as measuring and tracking student learning outcomes. 

Semantic assessment in CS/CT education would be able to provide better 

individual feedback and faster learning assessment to students and teachers by measuring 

student skills and challenges and analyzing learning objectives at the semantic level. This 

kind of feedback can be used to determine when and how teachers can expand students’ 

learning capability in accordance with the theories of the Zone of Proximal Development 

and Flow (Basawapatna et al., 2013). A validated CTPA will contribute to the study of 

learning theory, professional development, and educational data mining by providing 
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empirical data in order to refine the current conceptual framework of educational 

systems. 

This research suggests a method that can assess students’ learning skills, provide 

effective learning guidelines, and compute students’ learning outcomes. This type of 

method, which cannot be found widely, can be used to create real cyberlearning systems 

that help large numbers of teachers and students to learn computational thinking. 
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Chapter 1. Introduction 

Since the early 1990’s there have been multiple efforts to use end-user visual 

programming with video game creation in an effort to teach programming. Examples of 

these visual programming tools include AgentSheets, Alice, and Scratch (Perrone et al., 

1995; Repenning et al., 2000; Kelleher et al., 2005; Kelleher et al., 2007; Maloney et al., 

2008; Resnick et al., 2009). The inherent appeal of video games to students gives 

teachers an entertaining way to introduce the otherwise technical practice of 

programming (Sturtevant et al., 2008; Squire et al., 2003). These tools have multiple 

advantages over conventional programming languages such as C++ or Java (Peppet et al., 

2007). For instance, to create a simple game, complete with graphics, in C++ or Java can 

take weeks or even months of learning. In contrast, according to my research, 

AgentSheets allows students with no prior programming experience to create their first 

game in five hours, in numerous classes at different levels ranging from middle school to 

graduate school (Basawapatna et al., 2010). As I observed, end-user visual programming 

with video game creation allows the students to make a program/game in a simpler 

fashion, and it gives a motivational benefit to the students (Basawapatna et al., 2010). 

From this observation, we can derive two different benefits from end-user programming 

approach in computer science education: educational benefits and motivational benefits.  

Those two benefits were a focus of much computer science education research in the 

1990s. 

Besides the motivational and the educational benefits of end-user programming, 

Web 2.0 technologies help the end-users enjoy the benefits of web collaboration and 
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social creativity. For example, Scratch has a website in which the end-users can share 

their game/project ideas and actual game/project codes, feedback, etc. Thanks to this 

advantage of Web 2.0, Scratch users are able to update, modify, and recreate video 

games, story-telling animations and/or science simulations based on other people’s 

projects. The Scratch website has been able to collect around 615,700 Scratch projects 

ranging from video games to science simulations (Monroy-Hernández, 2009). This 

webpage is a great exhibition displaying open-ended projects without spatial and 

temporal limitations. Additionally, several Scratch projects have been designed, 

programmed and posted as the results of web-based collaboration by multiple users 

without geographical limitations (Monroy-Hernández, 2009). Also, through the Behavior 

Exchange (Repenning et al., 1997), Scratch users can easily build up their own projects 

based on the projects they downloaded from the Scratch website, which has brought a 

significant increase in project submissions (Monroy-Hernández, 2009). Thus, we can say 

Web 2.0 has brought two new features, web collaboration and social creativity, to the 

end-user programming in computer science education.  

It is still difficult to measure the educational benefit of end-user programming that 

end-users can get from the Scratch website. There are some educational benefits from the 

collaborative learning by sharing students’ projects and remixing them (Monroy-

Hernández, 2009; Davis et al., 2013), but still there is a need to quantify educational 

benefits from the projects themselves.  

As I stated above, we have invested enough efforts to increase students’ 

motivation in programming education, but we do not have any tool or infrastructure to 

support visual programming learning that would show the tangible educational benefits to 
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the end-users. The tangible educational benefits could be articulated with the items 

below.  

• A semantic assessment tool of the games or simulations that students created.  

• A learning progress indicator that can show how the students’ knowledge has 

evolved.  

• A tutoring system/ learning aid tool where the students can get feedback/help 

on site.  

Considering those benefits, we might need to think about perspectives on learning 

environments (Bransford et al., 1999). Bransford et al. describe four elements of learning 

environments (see Figure 1). These perspectives can be applied to a cyberlearning 

infrastructure to build up an effective learning space. Unfortunately, the current end-user 

programming infrastructure or learning environment cannot support those elements fully. 

For example, there should be two different assessment tools: one for formative 

assessment and one for summative assessment. However, it is rare to see those tools or 

even any embedded tool on any end-user programming infrastructure. Currently, the 

knowledge-centered perspective (Bransford et al., 1999), which aims to bring the 

occurrence of knowledge transfer (Argotea et al., 2000), can only be partially supported 

by collaborative learning tools/infrastructures.  

Bransford et al. argue that technologies need to work as a scaffold to extend 

students’ learning knowledge and help students acquire more advanced problem solving 

skills. This statement is rooted in Vygotsky’s Zone of Proximal Development (ZPD) 

which describes the difference between what a learner can do without help and what he 
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or she can do with help (Vgotsky, 1978). Even though it is important that a cyberlearning 

infrastructure should be able to foster the knowledge of programming that provides 

scaffolds for students to explore new ideas, learn things, and expand their current ZPD to 

a new ZPD, any current technology being used on end-user programming learning 

infrastructure is not fully ready for this job. Currently, students are expected to learn 

Computational Thinking skills through programming progressively more complex games. 

Students would be able to move their ZPD to the next new ZPD more rapidly and 

effectively if there were learning aid tools that could act as scaffolding on the site. 

 

Figure 1: Four Elements of Learning Environments (Bransford et al., 1999) 

To address the previously mentioned problems, automated assessment tools and 

learning aid tools should be included in the current computer science education research 

with end-user programming. Data visualization (Naps et al., 2002) can support two 

perspectives, Knowledge-Centered and Assessment-Centered learning environments 
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(Bransford et al., 1999), by showing the knowledge and skills the students have gained 

and how successfully they have accomplished their learning goals. Learning aid tools 

could work as scaffolds to let the students move up to the next learning level with 

moderate help, and learning aid tools with diagnostic teaching could support the Learner-

Centered aspect of the learning environment.  

1.1. Research Objectives and Research Questions 

Based on my field observation, I believe that there are several challenges to 

fulfilling these requirements and to supporting teachers’ needs. I have devised my 

research objectives based on these challenges. My research objectives are to create the 

following:   

• A self-assessment of a desired learning goal – With the current technology, 

it is difficult for the students to assess how successfully they have 

accomplished the target-learning objective inside and outside of class. For 

example, how can students tell what they have learned and how successfully 

they have achieved it when he/she has finished making a Frogger game? If the 

students fail to finish a complete version of Frogger, then how can they figure 

out what they have missed to complete the game? Using Web 2.0 technology 

(e.g. Scratch) allows the students to collaborate, inspire each other, and get 

some educational benefits from collaborative learning, but there is also a low 

chance of comparing each other’s artifacts in the current educational setting.  

• A skill progress indicator – Within the current K-12 curricula it is not easy 

to lead a class that accommodates individual students’ skill progression. 
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Generally, K-12 classes are designed based on the average students in the 

class. Consequently, the advanced students may be bored and the non-

advanced students frustrated. To solve this issue, we need to provide a self-

guiding tool to the students so that the students can decide whether they are 

ready to go on to their next learning goal or if they need to stay to complete 

the current learning objective. This is related to a self-assessment tool. The 

students need a tool that can indicate how successfully they fulfilled the 

requirement of the learning object by comparing their artifacts and the tutorial 

artifact. The students need to know how they have progressed in their 

programming knowledge over time by creating a game or a simulation. This 

learning-progress indicator can work with the two above tools to give the next 

learning objective to the students.    

In this dissertation, I propose a method, Computational Thinking Pattern Analysis 

(CTPA), to analyze, compute and interpret a visual language-programmed artifact in 

computational thinking. The CTPA analyzes and visualizes the semantic meaning and 

computational thinking patterns of the submitted games in a cyberlearning infrastructure. 

The Latent Semantic Analysis technique, as applied to CTPA, analyzes the implemented 

computational thinking patterns (CTP) in a given game. CTPA compares a specific 

game/simulation with nine pre-defined canonical computational thinking patterns using 

an LSA inspired technique: user control, generation, absorption, collision, transportation, 

push, pull, diffusion, and hill climbing. Those nine patterns are the most common and 

popular patterns for building video games and science simulations. To perform CTPA, a 

given AgentSheets project should be converted and expressed as a vector. The interpreted 
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AgentSheets project vectors are computed with high dimensional cosine calculations to 

show the AgentSheets project’s semantic meanings.   

As I stated in the previous paragraph, my research objective is proposing a 

method to assess students’ programmed artifacts and visualize their learning in 

computational thinking. To determine whether I have achieve the research objective of 

my dissertation, I devised two research questions as below: 

• Research Question 2: Is CTPA effective as a skill progress indicator to 

predict students’ future learning performance? 

• Research Question 1:Is CTPA effective in interpreting the computational 

thinking knowledge a student has learned through making a 

game/simulation? 

Those research questions are answered in Chapter 6, Research Validation.  

1.2. Dissertation Outlines 

Chapter 2 introduces the conceptual framework of this dissertation, including 

material previously published in (Basawapatna et al., 2013). Chapter 3 presents research 

literature in the areas of computational thinking, end-user programming, and assessment, 

including material reproduced from (Koh et al., 2010; Ioannidou et al., 2011; 

Basawapatna et al., 2011). Chapter 4 illustrates the Scalable Game Design Arcade and the 

Computational Thinking Pattern Analysis, which are the main research products from my 

dissertation research, including material reproduced from (Koh et al., 2010; Basawapatna 

et al., 2010; Ioannidou et al., 2011). Chapter 5 evaluates the result of Computational 

Thinking Pattern Analysis validity evaluation, including material adapted from (Koh et 
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al., 2014). Chapter 6 presents the capabilities of Computational Thinking Pattern 

Analysis, including material reproduced from (Bennett et al., 2013; Koh et al., 2014). 

Chapter 7 discusses the findings from the validity studies that evaluated Computational 

Thinking Pattern Analysis as an automated assessment tool for computer science 

education. Lastly, Chapter 8 concludes the dissertation by presenting a summary of the 

current Computational Thinking Pattern Analysis’s research contribution and possible 

future research.  
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Chapter 2. Conceptual Framework 

There are several methods and instruments that are used to assess student 

motivation in computer science education. Class observations, student interviews, and 

surveys are good examples of motivation assessment instruments. However, it is hard to 

find any tool or infrastructure to support Computer Science (CS) and Computational 

Thinking (CT) (Wing, 2009) education that would assess students’ learning of skills and 

students’ learning of objectives at the semantic level. Many existing attempts have been 

limited in nature to skill investigations mostly at the syntactic level (Les et al., 2008; 

Lewis 2010) or the functional level. At the syntactic level, student skills are assessed by 

the number of code lines, the number of certain functions, or the number of warnings and 

errors (Lewis, 2010). At the functional level, student skills can be measured using a 

functionality checklist. These existing attempts are extremely difficult and time-

consuming because visual and textual languages may not match up very well. Also, 

usually, students do not get any individual feedback to know what kinds of knowledge 

they have actually learned through making visual programmed artifacts with most visual 

end-user programming tools. 

A student learning assessment tool at the semantic level can provide tangible 

educational benefits to students and teachers. This assessment tool would consist of 

• A semantic meaning illustrator that interprets what kind of knowledge a 

student has learned through making a game/simulation  

• A learning progress indicator that can show how the student’s knowledge 

has evolved  
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• A tutoring system/ learning aid tool that can give students feedback/help 

on site.  

The student’s learning of skills and the student’s encounter of challenge levels are 

measured by a student’s Zones of Proximal Flow (ZPF) as illustrated in Figure 2.  The 

Zones of Proximal Flow (Basawapatna et al., 2013) is a combined theory of 

Csíkszentmihályi’s Flow (Csikszentmihalyi, 1990) and Vygotsky’s Zone of Proximal 

Development (ZPD) conceptualization (Vygotsky, 1978). Flow was proposed by Mihaly 

Csikszentmihalyi (Csikszentmihalyi, 1990), which means a completely motivated and 

engaged state by measuring student skills and challenges. 

To support the theory of the Zones of Proximal Flow in Figure 2, a Computational 

Thinking (CT) learning course module, which was designed by the Scalable Game 

Design research team at University of Colorado at Boulder, is structured along a 

difficulty-oriented organizational pipeline. In other words, the second game in the 

curriculum is more difficult than the first, and the third game increases in difficulty from 

the second. The course difficulty continuum also deliberately builds on the acquired 

knowledge and skills from previously learned games. In the theory of the Zones of 

Proximal Flow, the students would be able to expand their Flow zone to the next Flow 

zone via their Zone of Proximal Development with scaffolding learning aid tools on site. 

This learning aid tool should be able to evaluate and quantify student learning outcomes 

and challenges by using formative and summative approaches (Bennett et al., 2011).  

This Zones of Proximal Flow framework could provide balanced CT curricula for 

teachers to develop students’ CT learning by moving along predictable trajectories 
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toward more advanced game design or STEM simulation building challenges. This CT 

learning requires the right assessment tool to support its efficacy.  

 

Figure 2. Zones of Proximal Flow: CT curriculum that balances CT challenges with CT skills (Basawapatna et al., 

2013).  

To measure the efficacy of this approach, student learning is evaluated by 

employing a tool called Computational Thinking Pattern Analysis (CTPA) (Koh et al., 

2010). Every game and simulation produced by students—more than 10,000 over the last 

4 years— is not only collected in the Scalable Game Design Arcade (Koh et al., 2010; 

Koh et al., 2013), but is also analyzed with respect to CT thinking skills expressed by 

students. CTPA is not looking for constructs such as IF and LOOP statements at the 

programming level but, instead, is looking for more general object interactions such as 
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collisions and diffusion at a phenomenalistic (Michotte, 1963) level through the use of 

Latent Semantic Analysis (Landauer, 2003) inspired methods to find code patterns. These 

phenomenalistic patterns, Computational Thinking Patterns (Ioannidou et al., 2011; 

Basawapatna et al., 2011), can be understood as a subset of universal CT skills that are 

relevant to game design as well as to other applications including the creation of science 

simulations.  
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Chapter 3. Related Research  

3.1. Computational Thinking 

Computational Thinking (Wing, 2009) is not a clearly defined term, but there 

have been many researchers trying to conceptualize it or at least utilize it. Following 

Jeannette Wing, who popularized this idea in computer science education research, 

Computational Thinking is “a way of solving problems, designing systems, and 

understanding human behavior that draws on concepts fundamental to computer science” 

(Wing, 2009). She made an example of a DNA code sequence to show how computer 

science techniques could be applied to other disciplines (Wing, 2009). However, this is 

only one interpretation of Computational Thinking.  

The National Research Council report on computational thinking outlines five 

different computational thinking categories (National Research Council, 2010):  

1. A Range Of Concepts, Applications, Tools, And Skill Sets 

In this category, computational thinking is defined as a way to solve problems, 

design systems, and understand human behaviors. Also, computational thinking can 

expand knowledge and be applied to multiple knowledge domains by analyzing the 

current problems.  

2. Language and the Importance of Programming 

In the second category, people believe that computational thinking becomes a 

fundamental intellectual skill just as reading, writing, speaking, and arithmetic. Just as we 

use our human language, English, to express our thought, programming is the language to 
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express computational thinking. In other words, as we write a novel or poem with 

English, programming is writing, and computational thinking is literacy.  

3. The Automation of Abstractions 

In the third category, computational thinking is close to physics and mathematics, 

but automation makes computational thinking unique. Like physics and mathematics, 

computational thinking uses abstraction to represent and explain complexity, but this 

abstraction and explanation come with automation for computational thinking.  

4. A Cognitive Tool 

In the fourth category, it is believed that computational thinking does not require 

formal education to acquire; many people are learning on their own and learning from 

each other. Computational thinking in this category is considered as a tool for problem 

solving.  

5. Contexts Without Programming a Computer 

In the last category, some researchers argue that computational thinking does not 

need to be associated with computers or programming to be learned. Moreover, they say 

that computational thinking can be found in many non-IT contexts. Journalism classes 

could be a good example. Students learn how to write a good article with the circular 

process: write, edit, send, and re-write it. If you can notice that this process looks similar 

to a software development model, then it would not be hard to find computational 

thinking there.  

Two of those categories conflict with each other: Computational Literacy and 

Context Without Programming. The first category mainly focuses on programming. It 



Page | 15 

 

says that programming is a fundamental intellectual skill just like reading, speaking and 

writing. However, the second category argues that computational thinking doesn't need to 

be associated with programming, and computational thinking can be and should be taught 

without using programming or a computer.  

These two disparate categories present a conflict, but we can derive some 

common themes from all five categories.  

• Computational thinking is not about using specific programs or 

programming languages.  

• Computational thinking is not computer science, but part of it.  

• Computational thinking was the outcome of a natural evolution in our 

understanding of computer science.  

In addition, the fundamental arguments of all five ideas seem to suggest that 

computational thinking is a way to express a perception of certain domains or knowledge. 

This might be connected to a certain idea, which is called phenomenalism (Michotte, 

1963).  

So I believe that the common idea from the five different categories in the NRC 

report is "Representation", which can be applied to any given domain. For example,  

• Representation of the given situation => Computational Literacy 

• Representation of the problem => Abstract 

• Representation of the answer => Problem Solving 

The below diagram depicts how different concepts of computational thinking in 

the NRC report overlap each other or share each other’s concepts.  
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Figure 3. Relationships between the five Computational Thinking categories in the NRC report 

3.2. Computational Thinking Patterns 

Computational Thinking (CT) is a buzzword in computer science education 

nowadays, but its description, function and objective in computer programming for 

educational purposes are still vague. The concept of Computational Thinking Patterns 

(CTP) was developed as a subset of CT. Computational thinking patterns or agent 

interactions are commonly observed in other programming contexts and other disciplines 

(i.e. science and mathematics) (Ioannidou et al., 2011; Basawapatna et al., 2011). For 

example, the Generation CTP represents one agent creating another agent (e.g., wolf 
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generating offspring in an ecosystem). In this way, each CTP represents one complete 

phenomenon or behavioral concept in a game or science simulation design. 

Examples/Descriptions of common computational thinking patterns: 

• Absorption: An agent programmed to absorb erases a given agent when 

the given agent moves into a given range. Usually this is done in 

conjunction with generation to simulate an ongoing action like traffic 

movement, or a turtle swimming up stream. 

• Collision: When a collision occurs in a game or simulation, it represents a 

situation where two agents physically run into each other. One of the 

agents is programmed to show the collision visually, perhaps as an 

explosion. Then one (or both) of the agents erases itself.  A good example 

in Space Invaders is when a missile collides with an alien ship; both 

agents explode and erase themselves as a result of the collision. 

• Generation: An agent programmed to generate must create an ongoing 

flow of another agent when a specific area near the original agent is 

empty. A good example of this is the creation of a flow of cars emerging 

from a tunnel. The tunnel would be the generating agent.  

• Transportation: the Transportation pattern is unique and crucial for 

creating games. This pattern represents the situation that one agent carries 

another agent as it moves. For example, a dropship in StarCraft can carry 

marines, or a turtle in Frogger can carry a frog on it. This pattern happens 

when one agent is stacked over another agent and the stacked agent is 

carried with the bottom agent as the bottom moves. 
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• Push: the Push pattern is the pattern we see in the game of Sokoban. A 

player in Sokoban is supposed to push boxes to cover targets. As the 

player pushes the box in Sokoban, the box moves in the direction (up, 

down, right or left) it is pushed. The box in Sokoban should move only if 

it is pushed toward a regular ground tile or a target spot. Therefore, if an 

agent that is supposed to be moved is blocked by other agents in the 

direction of the push then neither the agent being pushed nor the pusher 

agent should move.  

• Pull: This pattern is the opposite pattern of push. An agent can pull 

another adjunct agent or any number of agents serially connected to the 

puller. For example, you can imagine that a locomotive pulls a large 

number of railroad cars. In this situation one agent, the pulling agent, can 

pull one or more agents that are connected to itself.  

• Diffusion: You can diffuse a certain value of an agent through neighboring 

agents with a diffusion pattern. For example, a torch agent can diffuse the 

value of heat through neighboring floor tile agents. The closest eight 

neighboring floor tile agents to the torch agent will have the highest value 

of heat, and tile agents that are further away from the torch agent will have 

a lower heat value.  

• Hill Climbing: Hill climbing is a searching algorithm in computer science. 

A hill-climbing agent will look at neighboring values and move toward the 

one with the largest value. Hill climbing can be found in the game of Sims 

or Pacman. In the game of Pacman, Ghosts chase Pacman by following the 
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highest value of Pacman’s scent that is diffused throughout the level. This 

is depicted in Figure 4. As with the torch above, the floor tiles around 

where Pacman is currently has the greatest scent value. Therefore, Ghosts 

hunt Pacman using the hill climbing technique by following the greatest 

value of Pacman’s diffused scent. 

 

Figure 4. Ghosts use hill climbing on Pacman's diffused scent (pictured around Pacman) to track down Pacman  

 

Games Computational Thinking Pattern 

Frogger Cursor Control, Generation, Absorption, Collision, Transportation 

Sokoban Cursor Control, Push, Pull 

Centipede Cursor Control, Generation, Absorption, Push, Pull 

Space Invaders Cursor Control, Generation, Absorption, Collision, Choreography 

Sims Diffusion, Hill Climbing 

Table 1: Computational Thinking Patterns in Curriculum Games 
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3.3. Social Creativity through End-User Programming 

Several end-user programming tools have attempted to foster creative learning 

through programming games and STEM simulations since the early 1990s (Basawapatna 

et al., 2014; Koh et al., 2014). All end-user programming tools have shown the current 

possibility and the future potential of end-user programming software as an alternative 

way to teach computer science and programming concepts to K-12 students. The end-

user programming tools have shared a common approach: creating simulations and 

games to teach and learn programming and computer science concepts, including 

problem-solving skills. This approach has been successful. As new abilities to collaborate 

through social interactions are blended into software engineering, it is important to 

integrate those abilities into computer science education in which end-user programming 

is used.  

At this point, visual programming tools including AgentSheets (Repenning et al., 

1997) and Scratch (Resnick et al., 2009) could be a stepping-stone for bringing end-user 

programming to social networks. Research papers on Scratch and AgentSheets have 

shown how successful those tools have been in promoting web sharing, teaching 

collaboration skills and fostering creativity in young children (Maloney et al., 2008; Koh 

et al., 2010). Particularly, more than 20,000 students in public schools have registered 

and used AgentSheets and AgentCubes with the Scalable Game Design Arcade (Koh et 

al., 2010) to create educational and non-educational simulations and games since the 

Scalable Game Design Arcade release in 2010. From 2010 to 2013, the Scalable Game 

Design Arcade collected more than 30,000 AgentSheets and AgentCubes projects. 
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Thanks to the ability to share AgentSheets and AgentCubes projects on the web, 

AgentSheets and AgentCubes users are able to inspire other people and be inspired by 

them (Koh et al., 2010). In other words, AgentSheets and AgentCubes users are able to 

learn programming concepts or algorithms and take actual codes from other people’s 

work to make their own games. For AgentSheets programming, this activity is called 

“Behavior Exchange” (Repenning et al., 2007), and Scratch researchers define this ability 

as “Remixing” (Monroy-Hernández, 2009).  

 

Figure 5 Scratch Website 

Remixing is one of the key factors that makes the Scratch website active and 

special. Around 30% of all Scratch projects are remixed projects, which means one third 

of Scratch users did not need to build their projects from scratch (Monroy-Hernández, 
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2009). They simply needed to add something to an existing project to create their 

projects.  

One of the other key factors that keeps the Scratch website active is a section 

called “Galleries” for Scratch version 1.4 or “Studios” for Scratch version 2.0 in which 

users are able to take full advantage of the nature of remixing. Galleries and Studios are 

the place where users can see on-line collaboration happen regardless of spatial, cultural 

and age differences. Users make clusters of projects and connect them to create a single 

game or simulation. Users who do not know each other collaborate, share feedback and 

communicate with peers to accomplish mutual goals. However, this activity is not always 

successful in producing a meaningful artifact; because of the character of online 

collaboration, some projects cannot be finished and are abandoned. Nevertheless, this 

gallery shows that online collaboration can overcome the obstacles of time and spatial 

limitation that we experience in off-line collaboration.  

Just as Remixing is one of the key factors for Scratch, Behavior Exchange has had 

a substantial role in increasing/fostering creativity within the implementation structure of 

the SGD project (Basawapatna et al., 2009; Koh et al., 2010).  

The Scalable Game Design Arcade does not have a function corresponding to the 

Galleries or Studios in Scratch, and it is certainly not unique in its function as a creative 

resource. However, the integral part it plays within the SGD project structure, coupled 

with the flexibility of AgentSheets programming, certainly provides the students with a 

unique experience that appears to foster creativity (Bennett et al., 2011).  

In addition, CyberMod, a massive online collaboration tool, was released in 2012 

for AgentSheets and AgentCubes programmers (Repenning et al., 2013). CyberMod will 
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be integrated into the next generation of the Scalable Game Design Arcade.  CyberMod is 

a novel and effective method to replace current end-user programming systems. Every 

programming activity in CyberMod is a synchronized action. Similar to the Google Drive 

products, anyone can edit and save AgentCubes projects while other people are working 

on the same project. The nature of CyberMod would break the constraints of current 

online collaboration systems and bring synchronous web collaboration. Scratch does not 

have this functionality yet. Scratch users create one artifact through collaboration, but 

whole transactions cannot be done simultaneously.   

 

Figure 6 An example project of CyberMod 

3.4. Assessment in Visual End-User Programming 

Related research, such as Lewis (Lewis, 2010), compares two visual language 

programs (Scratch and Logo) for student game authoring. For this example, much of this 

research protocol centers on motivational questions to determine if there was any 

difference between each of the two software programs. Only knowledge of individual 

programming pieces, apart from the larger context of the program, were used to compare 
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the two programs. Studies such as Lewis’s research that evaluate on a purely syntactic 

level might show knowledge of individual concepts but do not evaluate the student’s 

ability to use that knowledge within multiple contexts. Syntactic evaluations are not 

useful for detecting high-level computational thinking knowledge or learning transfer. A 

semantic evaluation tool could be very useful for more accurately indicating the transfer 

of learned knowledge in this respect. 

One way to compare and profile code on more of a semantic level, as an 

alternative to just counting program primitives such as loops, is to look for higher level 

patterns that could be indicative of the meaning of a program. A similar approach called 

Latent Semantic Analysis (LSA) is used to find semantic information in natural 

languages by comparing text (Landauer, 2003). Computer languages, including visual 

languages, can be subjected to the same idea. Just like natural languages, computer 

languages are based on the notion of statements consisting of grammatical structure. On 

one hand, computer languages should be simpler to deal with as their syntactic rules tend 

to be less irregular. In the LSA, stemming is a fundamental problem which is not relevant 

to computer language because verb conjugations are non-existent. Functions and 

primitives of computer languages are comparatively simple. 



Page | 25 

 

Chapter 4. Computational Thinking Pattern 

Analysis 

For my dissertation research, I’ve created several research tools including 

Computational Thinking Pattern Analysis (CTPA), the world’s first automated real time 

programming assessment tool through phenomenology, and Scalable Game Design 

Arcade (SGDA), a cyberlearning infrastructure where middle school to grad school 

students share their own game and simulation projects. SGDA has collected more than 

10,000 educational game/simulation projects from 7,000 students.  CTPA and SGDA are 

designed to substantiate the theory of the Zones of Proximal Flow wherein the Zone of 

Proximal Development lies between the regions of Flow and anxiety. 

4.1. Scalable Game Design (SGD) Project 

The SGD project was funded by the National Science Foundation (NSF) to 

improve computer science interest in middle schools. The goal of SGD is to use visual 

language programming software (AgentSheets) to introduce a more positive image of 

computer science through required game design courses. For this purpose, SGD 

researchers recruited middle school teachers from several Colorado school districts. After 

recruitment, participant teachers were taught the AgentSheets software during a 2-week 

long course at the University of Colorado, Boulder. During the following semesters they 

taught at least two class sections of the Scalable Game Design curriculum in their own 

classrooms. The games are taught in a sequence/progression of learning difficulty, with 

students using their individually acquired knowledge from previous games to build the 

new games (Koh et al., 2010).  
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SGD participant middle school students submit individually created games and/or 

simulations at the end of each class unit. Usually students learn one game in each class 

module. After uploading, each submission is evaluated and displayed in comparison to 

the tutorial standard with the Computational Thinking Pattern Analysis (CTPA) graphic 

tool (Koh et al., 2010).  

4.2. Scalable Game Design Arcade (SGDA) 

In support of the Scalable Game Design project, I designed and operated a 

cyberlearning infrastructure, Scalable Game Design Arcade (SGDA). The Scalable Game 

Design Arcade (SGDA) is an educational online infrastructure that facilitates a more 

user-friendly homework submission format for the Educational Game Programming class 

(Basawapatna et al., 2010; Koh et al., 2010; Bennett et al., 2011). Through the SGDA, 

students can play classmates’ games and download game programming. They are also 

able to directly submit their games to SGDA, rate other students’ games, and in share 

feedback on each other’s work. Without any time lag, students can benefit from each 

other’s game ideas before and after the submission deadline. Also, SGDA works as an 

online repository for collecting games/simulations that are created by middle school and 

high school students from participating schools.  

The SGDA consists of three parts: a main page, an assignment gallery, and an 

individual page.  

• The assignments gallery (Figure 7) shows multiple submitted 

games/simulations that are submitted by participant school students in one 

unit class. This assignment gallery contains a table with meta- information 
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for each game including the game title, screen dump, author name, game 

summary/playing instructions, and submission time. The screen dump and 

instructions give the potential player a preview of how the game looks, 

making game selection easy. The column for the game author’s name is a 

direct link to their individual page.  

• The main page (Figure 8) displays  recently submitted games, the most 

downloaded games, and the most played games.  

• The individual page (Figure 9) displays  a screenshot of a submitted 

game/simulation, the Computational Thinking Pattern Analysis (CTPA) 

graph (Koh et al., 2010), links for playing and downloading 

games/simulations, and a similarity score between a given 

game/simulation and four tutorial games. Any user who accesses SGDA 

can play, download, and/or rate a game without a time lag after the 

submission is made (Koh et al., 2010; Ioannidou et al., 2011). 
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Figure 7: The Assignment Gallery of SGDA 
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Figure 8: The Main Page of SGDA 
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Figure 9: The Individual Page of SGDA. Individual page illustrates the screenshot of the game (upper left), Run 

and Download button (upper right), the game’s similarity score compared to four tutorial games (middle right), 

a similarity score matrix showing games programmed  similarly to the submitted game, and the CTPA graph 

(bottom right & left). 
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4.3. Computational Thinking Pattern Analysis 

Computational Thinking Pattern Analysis (CTPA) is designed to evaluate the 

semantic meaning of the games/simulations submitted to the Scalable Game Design 

Arcade. The Latent Semantic Analysis (Landauer, 2003) inspired technique as applied to 

CTPA analyzes the implemented computational thinking patterns (CTP) in a given game. 

CTPA compares a specific game/simulation with nine pre-defined canonical 

computational thinking patterns using a LSA inspired technique. The patterns are: user 

control, generation, absorption, collision, transportation, push, pull, diffusion, and hill 

climbing. These particular nine patterns are the most common patterns used in the 

construction of video games and science simulations (Koh et al., 2010; Basawapatna et 

al., 2011). In the future I could include more CT patterns in CTPA, but to date my 

research has focused on these nine, as shown in Figure 10.  

 

Figure 10: Computational Thinking Pattern Analysis using Multiple High Dimensional Cosine Calculation 
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Using the LSA-inspired technique denoted as  in Figure 10, a game submitted 

to the Scalable Game Design Arcade gets compared to nine canonical Computational 

Thinking Patterns. A CTPA graph showing the similarity values for each pattern is 

produced, as shown in Figure 11.  

 

Figure 11: Computational Thinking Pattern Analysis Graph obtained by CTPA 

Computational Thinking Patterns are high-level programming concepts, and each 

pattern requires multiple rules and/or programming primitives to be implemented.  

To perform CTPA, a given AgentSheets project is converted and expressed as a vector. 

The interpreted AgentSheets project vectors are calculated with the equation below to 

show vector semantic meaning (Koh et al., 2010; Bennett et al., 2013).  
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Equation 1: Computational Thinking Pattern Analysis Equation 

In this equation, u and v respectively represent a given game/simulation and one 

canonical computational thinking pattern. Also, n is the vector size of a game/simulation 

or CT pattern, and m is the number of computational thinking patterns that are applied to 

CTPA (currently 9). The calculated result of CTPA through CTPA (1) to CTPA (m) can 

thus be represented as an m dimension vector.  

4.4. Computational Thinking Pattern Analysis Graph 

The Computational Thinking Pattern Analysis (CTPA) graph visualizes the 

semantic meaning and computational thinking patterns of the submitted games within 

SGDA, which were calculated through CTPA. The computational thinking patterns 

implemented in each given game are depicted through graphic analysis (Figure 12).  

This research implementation used regular class curriculum and was assessed 

using official game tutorials provided by the Scalable Game Design project researchers 

and educators. The CTPA Graph automatically overlaps a tutorial graph (brown in Figure 

12) with a graph of a submitted game (green in Figure 12) only if an official tutorial of 

that game was pre-loaded. If the uploaded game is a free submission, which does not 

have an official and/or unofficial tutorial, then only the submitted game analysis is 

displayed. Each CT pattern axis is aligned by its implementation difficulty level and its 
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significance to the relationship between adjacent axes. For example, Generation, 

Absorption, and Collision usually happen in sequence or are highly relevant to each 

other. 

This graphic analysis can work as a self-assessment tool and/or a learning path 

indicator through a semantic comparison of the submitted project to that specific 

submission’s tutorial standard. In the absence of a comparative tutorial, standardized 

information can be programmed into the graphic analysis tool to serve as an appropriate 

comparison.  

 

Figure 12: A CTPA Graph from an Example Frogger Game 
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4.5. The Sensitivity of CTPA 

Variances in implementation of computational thinking patterns will result in 

differences in CTPA. For example, the existence of transport action makes a small or 

even a big difference for certain CTPA types (See Appendix B). Programming 

components (conditions and actions) such as See, Move, and Make can affect CTPA if 

they are constructors of computational thinking patterns such as Generation, Push and 

Pull. If those programming components are key constructors of computational thinking 

patterns, then their influences are greater than other non-key constructors’ influences.  A 

key constructor means a dominant programming component of a computational thinking 

pattern such as Make action for Pull or Push pattern.  

 

Figure 13 CTPA results of an AgentSheets Project programmed with non-computational thinking pattern 

constructors only. It results in a value of 0 for all CT patterns.   
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On the other hand, programming components that are not constructors of a pre-

defined computational thinking pattern do not cause any change in CTPA. For example, 

if one makes a project with Hear condition and Text action only, (neither of which is a 

constructor of any computational thinking pattern), then the CTPA results in a value of 0 

for all computational thinking patterns (Figure 13). In other words, the CTPA is not 

changed/affected by a small or a big change in non-computational thinking pattern 

constructors.  

4.5.1. CTPA similarity vs. Code similarity 

Usually, CTPA similarity and programming similarity are highly correlated. 

However, even if two projects appear similar from a CTPA point of view, those two 

projects might be dissimilar from a programming point of view. For instance, if one made 

a Frogger project and named it Frogger A, added non-computational thinking pattern 

constructors to Frogger A and then saved it under the name Frogger B, Frogger A and 

Frogger B are identical from a CTPA point of view since the CTPA is not affected by any 

non-computational thinking pattern constructors for its analysis.  However, they are 

different from a programming point of view.  

Figure 14 illustrates all Frogger games from Aspen Creek K-8 School between 

2011 and 2012. One data point indicates one student-made Frogger game. Figure 14 

displays the CTPA divergence distribution (Koh et al., 2011; Bennett et al., 2013), and 

lower values indicate higher CTPA similarity to the official Frogger tutorial. All data in 

Figure 14 were obtained with the CTPA Divergence equation in Equation 2 (Koh et al., 

2011; Bennett et al., 2013).  
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4.5.2. Programming Divergence Calculation 

Figure 12 depicts a student-submitted game in comparison to the standard SGD 

online tutorial (Bennett et al., 2013). In Figure 12, the difference or space between the 

tutorial (green) and the submitted artifact (brown) visually displays the divergence of a 

student’s Frogger game from the tutorial “norm.” Since each axis on the CTPA graph 

represents one element in a vector, the CTPA graph represents a nine-element vector, 

where each element represents a CT programming pattern that could be chosen by the 

student as part of his/her programming solution. Thus the divergence of a student-created 

artifact from the tutorial “norm” can be calculated as the difference between two nine-

element vectors, one from the tutorial and the other from the submitted artifact. The 

Divergence Score is calculated from the difference of the two nine-element vectors. The 

equation of the Divergence Calculation is depicted below. 

 

Equation 2: Divergence in Programming Equation that calculates the differences from the norm (tutorial) 

In this equation, u and v represent a tutorial and a given game respectively, and n 

represents the number of computational thinking patterns. Presently, nine computational 

thinking patterns are used in the Scalable Game Design project curriculum.  
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For example in Figure 12, the student-submitted game and the tutorial can be 

represented as nine dimensional vectors, respectively: (0.525, 0.557, 0.432, 0.641, 0, 

0.687, 0.721, 0, 0.197) and (0.373, 0.499, 0.679, 0.623, 0.096, 0.455, 0.51, 0, 0.106). The 

difference of those two vectors is (0.152, 0.058, -0.247, 0.018, -0.096, 0.232, 0.211, 0, 

0.091). The normalized (divided by the value of rooted n) length value of that vector is 

0.15, and this is the value of the divergence score of the given game.  

When a student-submitted game is exactly the same as the tutorial, there is no 

difference between those graphs. For example, the submitted game and the tutorial can be 

represented as following vectors, (0.373, 0.499, 0.679, 0.623, 0.096, 0.455, 0.51, 0, 

0.106) and (0.373, 0.499, 0.679, 0.623, 0.096, 0.455, 0.51, 0, 0.106). The difference of 

those two vectors, of course, is (0, 0, 0, 0, 0, 0, 0, 0, 0). The value of 0 represents no 

difference between a given game and the tutorial, so the game’s programming is 

functionally identical.  

Therefore, it is possible to compare CTPA similarity and programming similarity 

with examples. I chose four Frogger games and colored them in the graph to explain the 

relationships between CTPA divergence and programming difference (Table 2). Table 2 

shows the four games’ CTPA divergences and programming differences to the tutorial 

(lower value means higher similarity to the tutorial).  



Page | 39 

 

 

Figure 14: CTPA Divergence in terms of Computational Thinking Pattern. X-axis represents the submission 

sequence based on time. Y-axis represents the CTPA divergence value. 

 Color  

in the Graph 

Number  

of Agents 

Number  

of Conditions 

Number of  

Actions 

Divergence  

from the tutorial 
Game 1 Yellow 12 30 25 0.392 
Game 2 Green 12 42 44 0.39 
Game 3 Purple 10 16 36 0.487 
Game 4 Black 22 37 104 0.595 

Table 2 Four Games' CTPA and Programming Information 

As Table 2 depicts, Game 1 and Game 2 are more similar to the tutorial, and 

Game 3 and Game 4 are more different from the tutorial. Game 1 and 2 are programmed 
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in a similar manner, but Game 2 has more programming components. For example, the 

Frog agent in Game 1 is programmed as illustrated in Figure 15 (5 rules), and the Frog 

agent in Game 2 has the exact same programming components as Game 1 but adds more 

programming components as shown in Figure 16 (7 additional rules). More precisely 

Game 1 fails to implement the Absorption pattern for drowning and Game 2 has more 

cursor control options. This variance results in a small difference in CTP divergence and 

programming difference. 

 

Figure 15 Frog Agent in Game 1 
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Figure 16 Additional programming of Frog Agent in Game 2 
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There are some differences between Game 1 and 2, but they are programmed in a 

similar way. Figure 17 illustrates comparisons of CTPA graphs for Game 1 and Game 2. 

I have argued that if there is a big divergence between a given game and a 

tutorial, the given game is either incomplete or more advanced than the tutorial. Games 3 

and 4 are examples of both situations. Game 3 has missing agents (Log and Turtle agents 

or equivalent). The CTPA graphs of Game 1 and Game 3 are compared in Figure 18. On 

the other hand, Game 4 has more agents than the other 3 games and extra features such as 

a cheating buster (Frogger cannot bypass the river).The CTPA graphs of Game 1 and 

Game 4 are compared in Figure 19.  

Even though they are programmed differently, Game 3 and Game 4 look similar 

from the CTPA point of view, in Figure 20. The value of the CTPA divergence between 

them is 0.18, and the value of the programming difference between them is 0.14. In the 

CTPA divergence calculation, games with missing features and games with extra features 

seem to be assessed similarly. However, there is a noticeable CTPA graph difference 

between incomplete games and advanced games (Bennett et al., 2013). An advanced 

game has a tutorial-like graph shape in a smaller size (Figure 19), but an incomplete 

game has the same size graph as the tutorial graph but in a different shape (Figure 18).  

This phenomenon occurs because the score for each vector of the CTPA graph represents 

how much a certain computational thinking pattern is employed in a given game. So, if a 

game has features, which are not in the CTPA graph structure, the CTPA graph will not 

analyze those features. Therefore, the remaining computational thinking patterns would 

be a smaller portion of the CTPA graph. Consequently, undetected features will lower the 
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CTPA process score of those computational thinking patterns. As a result, the CTPA 

graph for that game will be smaller than a game that employs only the computational 

thinking patterns within the CTPA graph structure. 

In conclusion, the CTPA is affected by programming difference only if the 

difference comes from computational thinking pattern constructors. Programming 

difference in non-computational thinking pattern constructors cannot affect CTPA results. 

High similarity in CTPA divergence cannot guarantee high similarity in programming, 

but generally they are highly correlated.  

 

Figure 17 CTPA graph comparison of Game 1 (Green) and Game 2 (Brown) 
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Figure 18 CTPA graph comparison of Game 1 (Green) and Game 3 (Brown) 

 

Figure 19 CTPA graph comparison of Game 1 (Green) and Game 4 (Brown) 
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Figure 20 CTPA graph comparison of Game 3 (Green) and Game 4 (Brown) 
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Chapter 5. Research Validation 

Since the early stage of CTPA development, the CTPA has been validated 

formally and informally with traditional Computer-Automated Scoring (CAS) system 

validation approaches and other educational validation approaches under the two IRB 

permissions that were previously approved (0808.21 and 11-0379). 

CTPA can be considered as not only a CAS system but also a program 

phenomenological analysis tool. So the CTPA should be validated using several different 

validation approaches. For the following validation studies, teachers from the project’s 

participating schools, students and researchers from University of Colorado at Boulder 

were recruited.  

My validation studies followed the CAS system validation approaches that Yang 

et al. classified as follows (Yang et al., 2002).  

• Approaches focusing on relationships among scores generated by different 

scorers 

• Approaches focusing on scoring processes 

I added one additional category to the above CAS system validation approaches: 

• Approaches focusing on predictive validity 

5.1. Computational Thinking Skill Progression 

While the semantic information from individual games/simulations is only a piece 

of student learning development, it could provide a measurement for a student’s entire 

skill progress. Representing semantic meaning in measureable units to visually 
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demonstrate student learning trends can benefit students and teachers directly. This 

approach could also indicate possible curriculum failings at a fundamental level. 

The value of each axis on the CTPA Graph represents the proportion of 

implemented knowledge for a given computational thinking pattern within a 

game/simulation. The sum or average of these values is interpreted as the student’s skill 

in designing the game/simulation, much as an average GPA from several classes is 

understood to represent a student’s overall learning. That is, the nine computational 

thinking patterns are target-learning categories. A sample game accompanies each 

tutorial, and I created a target score for each CT pattern in each game by running the 

sample game through CTPA. Thus, the CTPA Graph illustrates how well students meet 

the target-learning goal in each assignment or group of assignments. Within the CTPA, a 

one-time assignment analysis is referred to as a Demonstrated Skill Score. Learning that 

takes place over time through several assignments is referred to as a Comprehensive Skill 

Score. Both Demonstrated and Comprehensive Skill Scores are calculated from the 

length (norm) of a vector of the nine computational thinking patterns reduced to one 

dimension (unit).  

The Demonstrated and Comprehensive Skill Scores are calculated using the 

following equations. 

 

Equation 3. Demonstrated Skill Score 
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Equation 4. Comprehensive Skill Score 

In these equations, P is a computational thinking pattern, n is the number of 

computational thinking patterns on the CTPA Graph, and m is the number of submitted 

assignments. Those equations are derived from the formula for the length of a vector.  

As an example, the learning skill scores of two consecutive game submissions 

from one student (Sokoban and Pacman) are shown in the table below (Table 3). The 

bold and italic styled values are the maximum computational thinking pattern values that 

the student has received through two game submissions. Those maximum values are used 

to calculate the student’s second game’s comprehensive skill score (Pacman).  

Computational Thinking 

Pattern 

CTP value from 1st game 

Submission (Sokoban) 

CTP value from 2nd game 

Submission (Pacman) 

Cursor Control 0.52 0.47 

Generation 0.35 0.36 

Absorption 0.48 0.55 

Collision 0.56 0.70 

Transportation 0.64 0.50 

Push 0.82 0.60 
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Pull 0.75 0.60 

Diffusion 0.16 0.18 

Hill Climbing 0.43 0.36 

Demonstrated Skill Score 0.56 0.50 

Comprehensive Skill Score 0.56 0.58 

Table 3: Example of Learning Skill Score Calculation 

The Demonstrated Skill Score shows a student’s programming skill as of when 

the game was submitted, while the Comprehensive Skill Score shows a student’s progress 

in skill acquisition over time. Each Skill Score is the normalized size of the value on each 

axis of the CTPA Graph. For the Comprehensive Skill Score calculation, I make the 

following assumption to track students’ skill progression: if there is a skill that a student 

has learned and demonstrated accurately at least once, then that skill is available for the 

student to use for the entire duration of the course even if it is not used again. In other 

words, a maximum value of any given game represents its creator’s (student) best 

achieved level in CT pattern implementation. Consequently the maximum value is 

selected in this equation.  

5.2. ASSESSMENT VALIDATION 

To gauge the value of CTPA as a Computational Thinking assessment tool, I 

conducted the early stages of concurrent validity and predictive validity evaluation using 

data from CU undergraduate and graduate students who took an Educational Game 

Design class in 2012 and 2013. For concurrent validity I compared 39 students’ grades 

(19 students for the 2012 class and 20 students for the 2013 class) with CTPA-measured 
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skills for four basic games: Frogger, Sokoban, Centipede, and the Sims. To assess 

predictive validity I computed students’ comprehensive skill scores based on the four 

basic games and compared them to the demonstrated skill scores of their final projects.   

5.2.1. 2012 Class Concurrent Validity Results 

For the 2012 class (19 students), I hired two graders for this research who were 

asked to provide grades based on the official grading rubric for each game. I also used 

CTPA to calculate a demonstrated skill score for each game. 

The human grades and the demonstrated skill scores are not normally distributed. 

Instead, they are skewed negatively. Therefore, I calculated the Spearman rank 

correlation coefficient to measure the statistical dependence between the CTPA-measured 

skills of students and the grades that they actually received.  

Game Spearman Rank Correlation Coefficients 

Frogger 

 

0.246 (Spearman Correlation Coefficient) 
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Sokoban 

 

0.705 (Spearman Correlation Coefficient) 

 

Centipede 

 

0.535(Spearman Correlation Coefficient) 
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Sims 

 

0.821 (Spearman Correlation Coefficient) 

 

Table 4 Four Basic Games and Spearman Rank Correlation Charts for the 2012 Class 

5.2.2. Demonstrated Skill for Individual Games 

As Table 4 shows, the Spearman rank correlation coefficients for three of the four 

basic games are high enough to demonstrate a correlation between human graded scores 

and CTPA-measured skills. These results indicate that CTPA is capable of measuring 

students’ skills, and its measured results connect well with the human grades.  

Although the originality and the design of the game were part of human grading, 

CTPA measures only programming skills. So for the tied scores, the person who received 

a higher grade in programming is ranked higher than the person who got a higher grade in 

originality and design. For example, there are two students who received 100 points 

where student A received 90 points for basic programming and 10 points for advanced 

design and student B received 80 points for basic programming and 20 points for 

advanced design. In this case, student A is ranked higher than student B. If students 

received exactly the same scores for basic and advanced programming, then they are 
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ranked based on their programming completeness (i.e., avoiding undeclared 

variables/methods or unnecessary programming components).  

5.2.3. Comprehensive Skill Across Several Games 

I also calculated students’ comprehensive skill scores to reflect the correlation 

between the average student grades and CTPA-measured skill scores when students 

finished making all four basic games. 

 

Figure 21 2012 Class Spearman Rank Correlation Chart 

The Spearman rank correlation coefficient value between students’ grades and 

their CTPA-measured skill scores is 0.415 (Figure 21). This number indicates a moderate 

level of positive correlation between students’ grades and their CTPA-measured skill 

scores. Due to the small sample size, I verified its significance with critical values for the 

Spearman rank correlation coefficient. The critical value for N=19 with a significance 

level of 0.05 is 0.391, which is lower than the calculated correlation coefficient, 0.415. 
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This calculation indicates that there is a greater than 95% chance of the correlation being 

truly significant. This result offers another positive indication of the CTPA’s validity as a 

programming assessment tool, suggesting that it would be usable in a real classroom 

situation.  

5.2.4. Inter-Rater Agreement 

To check the inter-rater agreement between the two graders, I converted the 

original 1 to 100 scale scores to letter grades from A to F. In a 1 to 100 scale, there are 

100 options for grades, and it was difficult to get high inter-rater agreement percentages 

since there were so many scores that are close but not exactly the same (i.e. 93 vs. 95). I 

converted the scores above 90 to A, the scores above 80 to B, the scores above 70 to C, 

the scores above 60 to D, and the scores below 60 to F.  

The inter-rater agreement percentage between the two graders was 95% on 

average for the four basic game grades. 

5.2.5. 2013 Class Concurrent Validity Results 

For the 2013 class (20 students), I hired one of the two graders who graded the 

2012 class. The same rubric was provided for grading consistency. As for the 2012 class, 

the students’ comprehensive skill scores were calculated as the basis for determining the 

correlation between average student grades and CTPA-measured skill scores when 

students finished making four basic games. 

The Spearman rank correlation coefficient value between students’ grades and 

their CTPA-measured skills is 0.476 (Figure 22). This number indicates a moderate level 

of positive correlation between students’ grades and their CTPA-measured skill scores. 
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Due to the small sample size, I again verified its significance with critical values for the 

Spearman rank correlation coefficient. The critical value for N=20 with a significance 

level of 0.025 is 0.447, which is lower than the calculated correlation coefficient, 0.476. 

This calculation indicates that there is a greater than 97.5% chance of the correlation 

being truly significant. This result illustrates the reliability of CTPA-measured skill 

scores over two consecutive classes.  

 

Figure 22 2013 Class Spearman Rank Correlation Chart 

5.2.6. Predictive Validity Results 

I then performed a predictive validity test to confirm CTPA’s validity as a 

programming assessment tool. In contrast to the four basic games, the final project was 

graded based on originality, educational facts, engagement, and student presentation 
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skills rather than programming skills. Thus, for predictive validity, it was not adequate to 

compare CTPA-measured student skills and student grades.  

However, it is possible to use a pure programming comparison to predict 

students’ future achievements based on their previous skills.  In other words, if a student 

has shown high achievement through previous assignments, then s/he is expected to show 

high achievement in the final project, too. I therefore computed student CTPA-measured 

skills to show their correlation between pre-final projects and the final project. As Figure 

23 illustrates, those who showed better performance through pre-final assignments tended 

to show better performance in the final project also. For the 2012 class, the Pearson 

correlation coefficient value between pre-final projects and the final project is 0.676, and 

there is a 99.5% chance of this correlation being truly significant. For a better correlation 

calculation, I excluded two students who missed more than three assignments and one 

student who didn’t submit his final project.  

This high correlation between Skill scores from pre-final projects and the final 

project implies that CTPA is able to predict a student’s future learning performance and 

skill trajectory. This capability of CTPA can be applied to build a cyberlearning 

infrastructure including automated tutoring systems.  
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Figure 23. Predictive Validity Evaluation from 2012 Class 

5.2.7. Summary of Concurrent and Predictive Validation 

Evaluation 

In this initial foray into CTPA validation, I found satisfactorily strong positive 

correlations between scores given by human graders and students’ comprehensive skill 

scores calculated by CTPA, giving me confidence about proceeding with further 

validation activities. Several factors suggest that the correlations described here are lower 

than those I might expect to find during additional validation, including the small size of 

the samples. The current human grader scoring rubric includes both programming skill 

items, which are closely related to the characteristics examined through CTPA, and other, 

less related items. For example, the graders checked for the presence of expected 

computational thinking pattern implementation, and also looked for what users should 

experience while the game is played. Therefore, human graders are evaluating game 
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design skill along with programming skill. A revised rubric with greater emphasis on 

programming would be expected to lead to higher correlations, but it might be a better 

idea to change or update the current CTPA to better match what human graders do than 

vice versa. See the next section on face/construct validity.  

5.3. Face and Construct Validity Evaluations 

Converting CTPA into a holistic score is not the only way to validate CTPA. 

CTPA can be validated with approaches focusing on scoring processes. For example, 

when a game of Frogger is graded, a grader will look at the functionalities of Frogger: 

Frogger can be moved with key controls (cursor control), a tunnel creates cars or trucks 

(generation), etc. Thus, CTPA also should be able to check the functionalities of 

computational thinking patterns as a human scorer does. To do so, each canonical pattern 

of CTPA should be matched to the basic requirement of a human grader’s or a student’s 

perception.  

I conducted face and construct validity evaluations of CTPA with Scalable Game 

Design project researchers and teachers along with graders who have graded an 

Educational Game Design class where AgentSheets or AgentCubes programming were 

taught. All participants were able to detect a certain pattern from AgentSheets or 

AgentCubes programming codes.  

5.3.1. Evaluation with Programming Codes 

All participants were asked to describe which pattern they could detect by 

examining AgentSheets programming codes for nine cases: Cursor Control, Generation, 

Absorption, Collision, Transportation, Push, Pull, Diffusion, and Hill Climbing. For 
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example, participants were asked whether they could see a Cursor Control pattern by 

examining the following AgentSheets programming codes (Figure 24 and 25). For each 

pattern, two programming questions were asked, except the Diffusion pattern, for which 

3 programming questions were asked. For example, the two programming questions for 

the Cursor Control pattern are illustrated in Figures 24 and 25, depicting the correct 

method and the incorrect method respectively. A complete questionnaire with 18 

questions (two per pattern) can be found in Appendix C.  

“Using the following AgentSheets programming codes, can you detect the Cursor 

Control pattern?” 

 

Figure 24: Cursor Control Programming (Correct Method) 

“Using the following AgentSheets programming codes, can you detect the Cursor 

Control pattern?” 

 

Figure 25: Cursor Control Programming (Incorrect Method) 
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CTPA shows the same graph (Figure 26) for those two above programming codes 

because CTPA cannot detect where the condition and action components lie. 

 

Figure 26: CTPA Graph of Cursor Control Pattern 

The CTPA graph in Figure 26 shows some false positive values of the Push 

pattern, which originate from the Key (Keyboard) condition components in the Cursor 

Control pattern. This occurs because the Key condition is used in the implementation of 

both the Push and the Cursor Control patterns. 

5.3.2. Evaluation Results 

There were in total ten participants in this evaluation: five participants from the 

SGD research team, three SGD project teachers, and two SGD class graders. Only the 
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first question for each pattern shows the correct method to implement a given pattern, and 

the second or the third question shows an incorrect method to program the given pattern 

with the same programming (condition and action) components as in the correct method. 

So the CTPA graphs of the correct method and the incorrect method are identical to each 

other. The CTPA graph for each pattern can be found in Appendix A.  

The participants’ responses are recorded in the following table to compare human 

recognition and CTPA recognition of the given pattern. CTPA detected a given CT 

pattern in both correct and incorrect methods because both programming codes are 

identical as far as CTPA is concerned. All participants were able to detect a given pattern 

in the correct method implementation, but there were notable differences among several 

incorrect method implementations.   

All participants responded yes for the Cursor Control, Generation, Absorption, 

Collision, Transportation, Diffusion, and Hill Climbing patterns in the correct 

implementation, but two participants responded no for the Push and Pull patterns in the 

correct implementation and answered yes for those two patterns in the incorrect 

implementation. Those participants are the SGD teachers including one participant in the 

“I don’t know” category.  

The interesting result was found in the questions with the incorrect methods. I 

could categorize the rationale behind the participants’ judgment into two categories: one 

is judgments based on conditions and the other is judgments based on actions. Two SGD 

project teachers, two SGD researchers, and two graders perceived a given pattern based 

on conditions, and one SGD project teacher and three SGD researchers recognized a 

given pattern based on actions. In other words, the participants who answered no for the 
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given pattern in the incorrect method justified their responses with the disconnect 

between conditions and actions, and the participants who replied yes explained their 

responses with the existence of specific actions. For example, for the Generation pattern, 

most justifications for the “No” response indicated the disconnection between the See and 

Chance conditions and the New action while others for the “Yes” response classified the 

New action as a valid Generation pattern. I quoted two justifications from the “Yes” 

response and the “No” response for the Generation pattern in the incorrect method.  

Yes. I would still call this generation, although not a well done 
generation. An agent is still visibly GENERATED here. 

Technically, the action will look like generate visually, but it 
seems unlikely that the code expresses the user’s intent. A new agent 

will be created if there is no gray agent to the right AND the 50% 
chance happens to be false. To me, this set of rules does not express the 

generation pattern. 

Interestingly, experienced participants in the SGD project tend to follow the 

action-based judgment. There are four participants who followed the action-based 

judgment for the CT pattern recognition, and all of them have at least four years 

experience in the SGD research.  

Computational 

Thinking 
Pattern 

Survey 
Question 

Number 

CTPA 

Humans (10 people) 

Yes No 
I don’t know/ 
I’m not sure 

Cursor Control 
1 (Correct Method) Yes 10 0 0 

2 Yes 1 9 0 

Generation 
3 (Correct Method) Yes 10 0 0 

4 Yes 4 6 0 

Absorption 5 (Correct Method) Yes 10 0 0 
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6 Yes 5 5 0 

Collision 
7 (Correct Method) Yes 10 0 0 

8 Yes 3 7 0 

Transportation 
9 (Correct Method) Yes 10 0 0 

10 Yes 0 10 0 

Push 
11 (Correct Method) Yes 9 0 1 

12 Yes 1 7 2 

Pull 
13 (Correct Method) Yes 7 2 1 

14 Yes 4 5 1 

Diffusion 

15 (Correct Method) Yes 10 0 0 

16 Yes 0 8 2 

17 No 0 8 2 

Hill Climbing 
18 (Correct Method) Yes 10 0 0 

19 Yes 0 10 0 
Table 5: Evaluation Results 

Also, this evaluation could be used to assess the quality of the SGD teacher 

training. For example, two SGD teachers were not able to explain their responses to the 

incorrect Diffusion implementations (Questions 16 and 17). They were confused by the 

wrong equations for the Diffusion pattern, and they didn’t understand what the diffusion 

equation which is shown in the correct method expresses.  This result could indicate that 

the SGD teacher training should be revised to help teachers understand the logic and the 

algorithms behind programming implementations.   

In conclusion, even though CTPA didn’t fail to detect the existence of a given CT 

pattern in which human participants were able to recognize the CT pattern, the CTPA 

cannot differentiate the correct method and the incorrect method to implement a given 

pattern if same programming components are used in both methods. This is one of the 

limitations of the current CTPA method, and this limitation can be found in other vector 
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space model approaches that the CTPA is inspired by. Additionally, this evaluation result 

possibly indicates the need for refining the current canonical computational thinking 

patterns. More than 30% of participants responded yes to the incorrect implementation 

for four CT patterns, and those participants are the most experienced ones among the ten 

participants. This means that the current canonical computational thinking patterns do not 

earn complete human expert agreements for certain CT patterns.  

5.3.3. Evaluation with Proportional Programming 

The proportion of each computational thinking pattern in a given AgentSheets or 

AgentCubes project is used to draw the CTPA graph. The pattern with the highest value 

on the CTPA graph is the most dominant pattern in a particular AgentSheets or 

AgentCubes project. To validate its proportional illustration, I designed an experiment to 

compare human perception of the pattern proportions in a specific game programmed 

using AgentSheets.  

For example, a CTPA graph of a Frogger game shows Cursor Control, 

Generation, Absorption, Collision, Transportation, Push, Pull, and Hill Climbing patterns. 

Among those eight patterns, Push, Pull, and Hill Climbing patterns are false positive 

patterns. Those false positive values occur because there are several commonly used 

condition and action components in the Generation, Absorption, Collision, 

Transportation, Push, Pull, and Hill Climbing patterns. For example, the Move condition 

component is used in the Cursor Control, Push, Pull, and Hill Climbing pattern 

implementations.  
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Besides the false positive patterns, I asked participants to rank the proportion of 

each pattern in a game of Frogger as the below paragraphs. The complete survey 

questionnaire for this evaluation can be found in Appendix D.  

“Please open and play the sample Frogger project, which is under the Projects 

folder of AgentSheets. Please list the Computational Thinking Patterns in a proportional 

rank in the Frogger programming using your understanding of Computational Thinking 

Patterns. The sample Frogger uses Cursor Control, Generation, Absorption, Collision, 

and Transportation patterns. (i.e. 1. Transportation 2. Cursor Control 3. Generation 4. 

Absorption 5. Collision. A smaller number means a higher proportion in programming)” 

The participants ranked Cursor Control, Generation, Absorption, Collision, and 

Transportation in a proportional rank using their understanding of Computational 

Thinking Patterns. 

Following the CTPA graph of our tutorial Frogger game in Figure 27, Absorption 

is the most dominant pattern, and Collision, Generation, Cursor Control, and 

Transportation follow. In programming, the Absorption pattern (Figure 28) is a subset of 

the Collision pattern (Figure 29) so their proportions are highly correlated; the value of 

the Absorption pattern is always higher than the value of the Collision pattern. However, 

it was unclear whether or not human evaluators were able to recognize patterns’ subset 

relation, total independence, or exclusivity to each other.  
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Figure 27: A CTPA graph of a game of Frogger 

 

Figure 28 An example of Absorption pattern programming 

 

Figure 29 An example of Collision pattern programming 
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5.3.4. Evaluation Results with Proportional Programming 

This evaluation was designed to compare people’s perception of the 

Computational Thinking Patterns and CTPA’s Computational Thinking Pattern detection 

in a given game. I asked the participants not to access the codes of the games but to play 

the games to respond the survey questions.  

The evaluation result illustrates that the CT pattern detection by CTPA and human 

perception of CT patterns in a given game are not highly correlated, and the individual 

responses between participants are not highly correlated either. Nevertheless, there is one 

pattern per game with high or low ranking agreement among participants: the 

Transportation pattern of Frogger, the Pull pattern of Sokoban, and the Choreography 

pattern of Space Invaders. Besides the Transportation pattern, the CT pattern detection of 

CTPA corresponds to the participants’ responses.  

Game CT Patterns ranked by CTPA CT Patterns ranked by Participants 

Frogger 

1. Absorption 1. Generation 

2. Collision 2. Collision 

3. Generation 3. Absorption 

4. Cursor Control 4. Cursor Control 

5. Transportation 5. Transportation 

Sokoban 

1. Pull 1. Push 

2. Push 2. Cursor Control 

3. Cursor Control 3. Pull 

Space Invaders 

1. Choreography 1. Choreography 

2. Absorption 2. Collision 

3. Collision 3. Generation 

4. Cursor Control 4. Absorption 

5. Generation 5. Cursor Control 
Table 6 Evaluation Results 
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The game of Space Invaders has five Computational Thinking Patterns, and the 

Choreography pattern, one of those five CT patterns, is not covered by the current CTPA. 

So for the evaluation of Space Invaders, I compared participants’ responses with a 13 

dimensional version of CTPA which has four more Computational Thinking Patterns 

than the current CTPA, including the Choreography pattern. The 13 dimensional CTPA 

graphs with four standard games can be found in Appendix E.  

As I mentioned in the previous chapter, the Absorption pattern is a subset of the 

Collision pattern, so the Absorption pattern happens whenever the Collision pattern 

happens. Thus, the Absorption pattern should be ranked higher than the Collision pattern. 

However, in the evaluation result, nine participants ranked the Collision pattern higher 

than the Absorption pattern. One participant who ranked the Absorption pattern higher 

than the Collision pattern was informed about the subset relation between the Absorption 

pattern and the Collision pattern before she took this evaluation.   

In conclusion, the Computational Thinking Pattern representation of CTPA does 

not show a high correlation with human perceptions of the Computational Thinking 

Patterns, but from this evaluation, at least I can conclude that CTPA is better than human 

perception at identifying CT patterns’ subset relations.   
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Chapter 6. Applications of Computational 

Thinking Pattern Analysis 

All AgentSheets and AgentCubes projects collected through SGDA were 

analyzed by CTPA. The analyzed results of CTPA have shown promise in providing 

educational feedback in the areas of learning transfer (Koh et al., 2010), learning 

trajectory (Bennett et al., 2011), and programming divergence (Koh et al., 2011; Bennett 

et al., 2013). 

6.1. Early Indicator of Transfer 

Bransford et al. (Bransford et al., 1999) describe knowledge transfer as the most 

common method for human beings to learn the necessary components of life. Transfer is 

defined as the ability to extend or use what has been learned in one context into a new 

context or to solve a new problem. Knowledge transfer can be aided by using multiple 

contexts (the more diverse settings, the better) to demonstrate new concepts to students. 

The new knowledge can then be retained by the student in a more abstract form. When 

new types of future situations occur, this knowledge can then be accessed by the student. 

Students are not normally able to transfer purely conceptual information to real world 

situations without help (Bransford et al., 1999; Vgotsky 1978). Linking any concept to a 

single setting or context can also cause difficulty with transferring knowledge to new 

situations. So, although transfer is our preferred mode of learning and retaining new 

information, transfer cannot be assumed in any given context. Previous knowledge that 

students build upon can also enhance or deter the effort to assimilate new information. 
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Consequently, the ability to detect possible knowledge transfer could benefit researchers 

in many disciplinary areas  (Koh et al., 2010). 

Since learning and knowledge from the field of Computer Science in general can 

potentially be integrated and used productively in many other disciplines, promoting the 

transfer of computer science knowledge into these areas could substantially enhance 

learning and research within the computer science field. If there were a tool which could 

detect the potential transfer of computer science knowledge to other disciplines, the tool 

would tend to increase the breadth and validity of computer science research, and 

contribute to the growth of the field. Graphs generated by CTPA could potentially 

demonstrate the existence of knowledge transfer, not just within related computer science 

fields, but also across disciplinary lines.  

The CTPA was first developed as a means to offer feedback to students uploading 

their games to the Scalable Game Design Arcade (SGDA). The SGDA served as a 

submission format for the CU Boulder educational game design course using 

AgentSheets. During the semester, students are exposed to simple computational thinking 

patterns; as the class progresses they are introduced to more complex and diverse 

computational thinking patterns. Towards the end of the class, students are given open-

ended assignments. For these assignments students are encouraged to build on their initial 

knowledge from the class in order to create their games. For the final project, students 

often choose to create simulations that depict some natural phenomena. Semantically 

analyzing a given student’s games from the beginning of the semester as compared to 

their final project (especially a science simulation), could offer an opportunity to discover 

potential knowledge transfer.  
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For instance, a chaos theory simulation created by one student (Figure 34) with 

the accompanying CTPA graph (Figure 35) shows how he mixed and combined 

computational thinking patterns that he had learned and used when previously 

programming Sokoban (Figure 30) and Sims (Figure 32). The CTPA graph (Figure 35) of 

his science simulation is very similar to the combined CTPA graphs of Sokoban and Sims 

(Figure 36).  Consequently, for this student, the CTPA graphs indicate that knowledge 

transfer has occurred. 

 

Figure 30 A Screenshot of Sokoban 
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Figure 31 A CTPA Graph of Sokoban 

 

Figure 32 A Screenshot of Sims 
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Figure 33 A CTPA Graph of Sims 

 

Figure 34 A Screenshot of Chaos Theory Simulation 
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Figure 35 A CTPA Graph of Chaos Theory Simulation 

 

 

Figure 36 Comparison of CTPA Graphs: Depicts the Sims-Sokoban combination 
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6.1.1. Summary of Assessing Student Products Using the CTPA  

For the last decade, several visual programming languages have provided easy 

ways for young children to learn programming concepts and skills. Many of these visual 

languages successfully motivate students. However, visual language research has not 

focused on what kind of knowledge students have actually learned from creating these 

games. The CTPA provides an initial way to assess specific knowledge accumulated by 

students within a given class. 

As I have observed, the ability to detect computational thinking patterns is 

important for school teachers and students using visual languages for education. The 

CTPA provides us with an initial means to answer the question “Now that the student can 

program Space Invaders, can the student program a science simulation?” Furthermore, 

the CTPA has the ability to enable Human Centric Computing as teachers can get 

immediate feedback on their student’s progress.      

Analyzing computational thinking patterns in multiple combinations could 

improve our ability to assess the depth and breadth of students’ knowledge. The semantic 

nature of the CTPA graph allows us to evaluate and visualize a program’s actual 

underlying meaning. A syntactic evaluation of a student’s learning (Lewis, 2010) only 

shows the student’s knowledge in a very limited context. Moreover, the implementation 

of a given student’s previously learned computational thinking patterns in a scientific 

context gives us a clearer picture of how the student transferred new knowledge to a new 

situation, demonstrating through the CTPA graph comparison that knowledge transfer 

exists.  
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Although in most learning scenarios, knowledge transfer is often assumed, this 

transfer cannot be guaranteed to have actually taken place. The graph generated by CTPA 

is a better tool for evaluating knowledge transfer because the graph represents the CTP 

combinations as an observable and definable outcome. The ability to detect knowledge 

transfer through the CTPA graph, over the duration of a semester course, is a positive 

first step towards measuring transfer in other areas, and possibly other forms of learning.  

6.2. Learning Skill Assessment  

While the semantic information from individual games/simulations is only a piece 

of student learning development, the semantic analysis of individually created games or 

simulations could provide a measurement for a student’s entire skill progress. 

Representing semantic meaning in measureable units to visually demonstrate student-

learning trends, and to represent the students’ knowledge and skill, can benefit students 

and teachers directly. This approach could also indicate possible curriculum failings at a 

fundamental level. 

A learning skill score (Bennett et al., 2011; Koh et al., 2014), which I described in 

the previous chapter, can be used to track an individual student’s learning progression or 

the entire class’s learning progression. For this project, I explored two entire classes’ 

learning progressions (one middle school class and one college class) as computed with 

CTPA. Teachers need to know how students are accomplishing individual assignments, 

how students’ learning progresses over an entire class year or semester, and how the class 

as a whole is learning. The Demonstrated Skill Score shows a student’s programming 

skill score as of when the game was submitted, while the Comprehensive Skill Score 

shows a student’s progressed learning over time. Each Skill Score is a normalized 
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maximum vector length of the value on each axis of the CTPA Graph over the entire 

class section for easy use as a grading tool or learning progress indicator tool. Through 

this vector normalization, CTPA information in nine dimensions is represented in one 

dimension for easy human understanding and cognition, similar to taking an average 

score from multiple quiz scores.  

To track a student’s learning progression, analyzing the individual student created 

artifacts (demonstrated skill score) does not appear to be effective. The below 

demonstrated skill score graphs (Figure 37 and 38) show that students’ demonstrated skill 

scores are not highly related over time. This result is not unique for AgentSheets and the 

Scalable Game Design project. A recent study using Scratch shows similar results 

(Scaffidi et al., 2010). Each specific game/simulation requires different sets of 

programming skills, and the use of a specific programming skill is not necessarily 

increased over time for the implementation of different learning target projects. This is 

especially true when students have choices for building their own projects. This tendency 

becomes more obvious as students use their personal skill set more frequently. Figure 38 

shows the average demonstrated skill scores in a college class, when students were asked 

to build any game/simulation with their programming preferences. The last game shows 

the lowest demonstrated skill score, but this does not mean that the students’ skills 

decreased. Students chose the most practiced strategies and skills to build their final 

projects so they didn’t need to include other unnecessary CT patterns. Moreover, each CT 

pattern has a different difficulty level of implementation, so a lower demonstrated skill 

score or a smaller proportion of CT patterns in a project does not necessarily mean a 

decrease in student programming skills. 
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Figure 37 1st to 3rd Games in A Middle School and in A College Class 
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Figure 38 5 Gamelet Madness Projects in A College Class 

6.2.1. Findings: Middle School Vs. College Student Comparison 

I tested 268 AgentSheets games and simulations from 30 college students and 73 

games from 33 middle school students. From these AgentSheets projects, I calculated the 

average learning skill scores of each game/simulation and computed learning 

progressions using comprehensive skill score for each game/simulation for the entire 

class in one academic semester. Figure 39 shows these learning progressions and the 

comparison between them. 



Page | 80 

 

 

Figure 39 Skill Progression Comparison between College and Middle School Students with Comprehensive Skill 

Scores 

Students from the middle school (MS) class units (usually 2-4 weeks long) and 

the semester-long college class increased their knowledge and understanding of 

programming and game design. These improvements are reflected in their calculated 

learning skill scores over time. Both MS and college students are expected to learn each 

new game’s computational thinking patterns. Therefore, learning skill scores tend to 

increase with newly learned games. Students’ learning skill score progressions are 

illustrated in Figure 39.  

Figure 39 shows all classes gradually increasing their learning skill scores over 

time by making games. The high increases in the college students’ learning skill scores 
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between Centipede and Sims can be explained by the higher-level complexity required to 

create the Sims game.  Both Sims and Pacman required two main computational thinking 

patterns, diffusion and hill climbing. These patterns are two of the most difficult of the 

nine computational thinking patterns that must be learned to successfully complete these 

assignments. In contrast, college class learning skill scores barely increase between 

Sokoban and Centipede. Sokoban and Centipede share the same computational thinking 

patterns, which explains why students’ learning progression appears steady. The college 

students were required to learn all nine computational thinking patterns as they 

progressed from Frogger to The Sims, and then used their previously learned skills to 

design their own unique games. Since no new skills were required, previously learned 

skills were simply practiced for retention.  

As Figure 39 illustrates, the two classes overlap through time. Learning skill 

scores are quite different for each class. For example, the game of Frogger as created by 

college students had a learning skill score value of 0.59, while the same game created by 

middle students had a value of 0.52. This gap between their learning skill scores can be 

explained by the completeness of the different Frogger implementations. College students 

completed Frogger entirely, but more than half of the middle school students failed to 

upload a complete Frogger game (i.e. missing transportation or some other patterns). The 

same completeness factor holds for the uploaded Sokoban, Pacman and Space Invaders 

games.  

Nevertheless, middle school students reached the entry level learning skills of the 

college class. After their second game submission the learning skill score of the middle 

school students reached 0.6; the college class entry-level score was 0.59.  
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6.2.2. Summary of Assessing Student Products Using the CTPA 

I believe that knowledge acquisition or transfer of educational content over time 

has been shown through Computational Thinking Pattern Analysis within the Scalable 

Game Design class curriculum. These skill progressions also revealed some interesting 

differences between middle school students and the college class.  

For instance, the time the middle school students used to move from one game to 

the next was over three times as long as that for the college students (Figure 39).  Since 

the game learning progressions and sequence between the groups are very similar, the 

learning timeframe would appear to be a significant difference between the two groups. 

However, the game curriculum imparted enough programming skill and comprehension 

to allow the middle school students to complete their design submission goal at a similar 

level as the college students despite substantial differences in educational level and age—

the middle school students simply took longer. The point is not that it takes middle school 

students longer to accomplish the design of a similar video game as college students, but 

that it is possible to track students’ skill progressions over time with demonstrated and 

comprehensive skill scores using CTPA. This comparison begins to shed some important 

light on previous assumptions about the value and scope of enjoyable visual language 

curriculum lessons, especially in areas linked to computer science education. Using the 

previously mentioned Flow model (Csikszentmihalyi, 1990), I could hypothesize that this 

game design curriculum appears to balance the enjoyment factor with an increasing skill 

level, thereby promoting increased learning across widely spaced ages and grades. 

Facilitating Flow in middle schools could therefore help increase positive attitudes 

towards computer science and programming in middle school students. 
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In addition, CTPA’s ability to compute learning progressions by measuring 

computational thinking pattern knowledge acquisition over time is a substantial step 

forward in showing the worth of game/simulation-programming courses and their 

associated visual language.   

6.3. Divergence in Programming 

Divergence in programming could be assessed through the evaluation of the 

differing approaches each student employed within the specified design parameters. In 

other words, when faced with a difficult challenge for agent behavior design, each 

student defined that programming challenge in a way that specified an accurate 

programming solution (Bennett et al., 2013). From this I devised the divergence 

calculation which was introduced in the chapter 5.1 to demonstrate student-programming 

creativity as a divergence calculation from the “norm,” or the SGD online tutorial 

standard (Bennett et al., 2013). The difference between a student’s game and the tutorial 

can be detected by visual inspection using the CTPA graphs. Through this divergence 

calculation, this difference can be mathematically calculated.  

6.3.1. Three Class Conditions 

Sheryle (pseudonym), the teacher selected for this study, taught three unique class 

conditions. Initially she taught the project class based on the SGD online tutorial. 

Subsequently, she designed her own tutorial for her regular in-class students and then 

transferred her tutorial adaptation to an online version of the project class. This offered a 

rare opportunity to compare three unique class conditions without having to consider 

teacher influence as a random variable. In all three classes, which were taught by one 
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teacher, Sheryle, the uploaded student games were noticeably divergent from the SGD 

tutorial “norm.”  

Common factors identified from all three class conditions taught by Sheryle are as 

follows: 

• Sheryle is the teacher of record for all classes 

• She alone helps the students complete their games  

• She followed the project curriculum content parameters  

• Frogger is the first project game taught to all classes 

• Frogger is the only uploaded game analyzed 

6.3.2. Findings 

For this investigation I chose three unique class conditions that were taught by a 

single teacher. This allowed us to keep the experimental focus on the divergence 

calculation using Equation 2 as an indication of creativity, as opposed to teacher 

influence. Findings show a marked difference between the three class conditions in 

regards to programming divergence, as represented in Figure 40.  
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Figure 40 Scattered Divergence Calculation Graph 

The graph in Figure 40, the X-axis represents time by order of submissions. The 

Y-axis represents the Divergence Score. Each dot means an individual submission. 296 

Frogger games are displayed. 

6.3.3. Divergence Calculation Graph 

Figure 40 uses the divergence calculation (Bennett et al., 2013) to depict the 

collected data of all Frogger games during academic years 2010-2011 from Sheryle’s 

three class conditions. Each individual student-submitted game is placed on the graph 

according to the calculated divergence in programming. The three distinguishable 

clusters accurately represent the three distinct class conditions. The left cluster (blue) 

displays a sparser more scattered pattern than the middle (purple) and right (red) clusters. 

This graph represents 296 Frogger games. 
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For the 2010 In-Class condition, the students' Frogger games were highly 

divergent from each other, but the game plots started to converge at the beginning of the 

2011 classes. Coincidentally, the first game submission of the 2011 classes occurred 

when Sheryle started to use her own tutorial in place of the official SGD online tutorial. It 

appears that although her teaching style was unchanged, her presentation of the material 

had evolved in some fashion. 

I also calculated the class standard deviation, as well as the class divergence 

average. Those are displayed in Table 6 (below). The “2010 In-class” condition (blue in 

Figure 40) with the widest pattern spread also shows the largest standard deviation within 

the class, and the “2011 Online class” (red in Figure 40) with the narrowest spread has 

the smallest standard deviation within the class. This means that the games in the “2010 

In-class” condition are more divergent from each other than the games in “2011 Online” 

class condition.  

Divergence Score Standard Deviation Average 

In Class 2010 0.074 0.135 

In Class 2011 0.057 0.186 

Online Class 2011 0.011 0.314 

Table 7: Divergence Calculation Score in Each Class 

I conjecture that not only is the revised tutorial a significant factor in the 

represented divergence between class conditions, but that the in-class/online condition 
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comparison is a significant factor in the divergence calculation for at least two class 

conditions. 

 

6.3.4. Summary of Assessing Student Products Using the CTPA  

I have developed a mathematical measure of divergence for game programming 

that calculates the difference of each programming sequence of a submitted game from 

the game tutorial “norm.” The main difference between my measurement of divergence 

and the traditional creativity measurement methods is the use of a mathematical 

calculation in place of the subjective appraisal by a trained rater. The “norm” for 

divergence tests is usually a predetermined standard solution, similar to the SGD online 

tutorial. Since the SGD tutorial is commonly used by most project teachers, it is the 

“norm” for the SGD curriculum or standard by which the teachers judge or grade their 

students’ work.  

Although the same teacher conducted the three class conditions discussed here, 

operationally eliminating teacher influence as a mitigating variable in the divergence 

calculation, I recognize that a teacher rarely teaches multiple classes that are exactly the 

same. However, I believe that I have documented compelling support for the initial 

validation of the divergence calculation as a measurement of programming divergence. 

Examination of the Scattered Divergence Calculation graph (Figure 40) reveals three 

obviously separate and distinct clusters that represent these three class conditions 

mentioned in Table 6. Significantly, figure 40 shows each of the three separate class-

learning conditions generating a unique divergence pattern. Since each of the separate 
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conditions is unique, this first validity test shows that divergence analysis can identify 

uniqueness in student game programming environments. 

These divergence calculations are supported by other data sources, such as the 

teacher’s unsolicited comments about her students’ creativity and my observations of 

student enthusiasm and creativity in physical classroom settings (Bennett et al., 2011; 

Bennett et al., 2013). As a fail-safe, I also manually inspected the programming code 

supporting the divergence calculation within a random sample of uploaded games. 

6.4. ONline Assessment of Computational Thinking (ONACT) 

ONACT is an embedded, formative, real-time graphical assessment tool that 

quickly gives teachers insight into student mastery of computational thinking constructs 

as they create games and simulations. ONACT provides teachers with a useful 

representation of class and individual progress, allowing them to make effective 

instructional decisions. The ONACT system breaks down all collectable student project 

information and records it in the ONACT database. ONACT analyzes the student project 

information stored in this database through Computational Thinking Pattern Analysis in 

real time. This analysis extracts semantic meaning out of the code by interpreting which 

Computational Thinking Patterns have been implemented by students. The analyzed data 

are illustrated through three different levels of visualization: Computational Thinking 

Pattern Analysis Graph (Koh et al., 2010), Assessment Dashboard (Figure 41), and 

Computational Thinking Pattern Analysis Forensics (Figure 43).  

The Assessment Dashboard indicates to teachers where students are in their 

programming tasks. The dashboard visualizes the programming progression for each 
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student in the class through CTPA (Koh et al., 2010; Bennett et al., 2011; Bennett et al., 

2013). In Figure 41, green indicates students who are completing the program correctly, 

orange indicates students who may need some help with their program, and red indicates 

students who are in significant need of scaffolding. The Dashboard clearly shows 

students who might be in trouble. By selecting a specific student in the Dashboard, a 

teacher is directed to an individual game submission page (Figure 42) where the teacher 

can see in-depth representations of that student’s progression in their Computational 

Thinking Pattern Analysis Graph (Koh et al., 2010; Bennett et al., 2011; Bennett et al., 

2013) and Computational Thinking Pattern Analysis Forensics (Figure 43). The 

Computational Thinking Pattern Analysis Forensics graph can be reached by clicking the 

Computational Thinking Pattern Analysis Graph in the individual game submission page 

(left bottom in Figure 42).  

The Computational Thinking Pattern Analysis Forensics graph explains how a 

student has progressed in his/her computational thinking pattern implementations by 

programming with AgentSheets. Each dot in the CTPA Forensics graph indicates a value 

of a certain computational thinking pattern in each step when any single condition or 

action is added to the AgentSheets project. If a student has followed the tutorial or the 

teacher’s instruction, then the student’s CTPA Forensics graph will be same as the CTPA 

Forensics graph of the tutorial or the teacher’s project.  



Page | 90 

 

 

Figure 41 Example of ONACT Assessment Dashboard showing every student’s performance in a given 

classroom. 
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Figure 42 Individual Game Submission Page of Scalable Game Design Arcade 
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Figure 43 The Computational Thinking Pattern Analysis Forensics graph 

6.4.1. Summary of Assessing Student Performance Using 

ONACT 

Semantic analysis of computational thinking in visual programming learning 

promises better individual feedback and faster learning assessment to students and 

teachers. Additionally, this kind of feedback can be used to determine when and how 

teachers can expand students’ learning capability in accordance with two theories: First, 

the Zone of Proximal Development proposed by Lev Vygotsky (Vygotsky, 1978), which 

describes the difference between what a learner can do without help and what he or she 

can do with help; and secondly, Flow proposed by Mihaly Csikszentmihalyi 

(Csikszentmihalyi, 1990), which means a completely motivated and engaged state that is 

derived by measuring student skills and challenges. A validated CTPA will contribute to 

the study of learning theory, professional development, and educational data mining by 

providing empirical data in order to make it possible to refine the current conceptual 

framework of educational systems. 
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The CTPA can measure educational benefits of visual programming learning that 

we couldn’t quantify before. Each visual programming artifact can be computed and 

measured semantically in terms of computational thinking. So far I have explored CTPA 

primarily with AgentSheets and AgentCubes. However, it could be applied to other visual 

programming language artifacts and/or other research domains. When CTPA is applied to 

other visual programming languages or other research domains, this research would 

suggest a valuable and effective method that can assess students’ learning performance, 

provide effective learning guidelines, and compute students’ learning outcomes. This can 

be used to create real cyberlearning systems that help large numbers of teachers and 

students learn computational thinking. 
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Chapter 7. Discussion 

The Computational Thinking Pattern Analysis has shown many promising results 

in providing valuable educational feedback, but also several limitations with its current 

approach. I discuss three limitations of the current CTPA that I found during my PhD 

study in this chapter.  

First, the identified Computational Thinking Patterns in the current CTPA are 

limited. Currently, the CTPA covers only nine CT patterns. Those nine patterns are the 

most popular CT patterns in game and science simulation designs (Koh et al., 2010; 

Basawapatna et al., 2011), and they are the first patterns that students and teachers will 

learn during the SGD curriculum. However, through the SGD research, we have 

identified additional CT patterns in game and simulation designs, and the current CTPA 

cannot detect those new CT patterns. Also, the current CTPA cannot detect possible new 

CT patterns if they are constructed with non-identified CTPA constructors. This is the 

challenge that the current CTPA should overcome.  

Second, there is a limitation which comes from the false positives and the false 

negatives. This limitation can explain the outliers in Chapter 6.2. For example, there are 

two outliers (the red and green data points) in the below graph (Figure 44). The red data 

point, Game 1, is ranked third in the human grading score rank and nineteenth in the 

Demonstrated Skill Score rank while the green data point, Game 2, is fourteenth in the 

human grading score rank and third in the Demonstrated Skill Score rank.  
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Figure 44 Frogger Submissions in the 2012 class 

Both games are similar to each other in their game play, but they are different 

from each other in game design and programming. Figures 45 and 46 show the design 

layouts of two games, and Figures 47 and 48 depict the behavior programming of the car 

agent in Game 1 and the truck agent in Game 2. The car and the truck agents play the 

same role in this game of Frogger.  

In Figure 45, Game 1 does not have any generator or absorber for the car, the 

turtle, and the log agents, but they are generated and absorbed at the edges of the game 

layout. The correct methods of the Generation and the Absorption patterns create the 

Generator and Absorber agents and use the See condition for the two CT patterns, but 

Game 1 uses the Stack condition which is not a CTPA constructor of the current CTPA. 
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This non-CTPA constructor usage decreased the Generation and the Absorption patterns’ 

CTPA values, and it lowered Game 1’s Demonstrated Skill Score value. This limitation is 

called a false negative, which indicates that the CTPA cannot detect the existing CT 

pattern or lower the CTPA value of the existing CT pattern in a given game or 

simulation. In contrast, a false positive means that the CTPA shows a CTPA value of a 

non-existing CT pattern due to the use of CTPA constructors in other CT pattern 

implementations in a given game or simulation. The values of the Push and the Pull 

patterns in a CTPA graph of Frogger games are examples of the false positives (See 

Appendix B).  

Unlike Game 1, Game 2 followed the correct methods for its Generation and 

Absorption pattern implementations. Except for its poorly designed game layout, Game 2 

is very similar to the SGD Frogger tutorial. However, a game similar to the tutorial does 

not guarantee a good score when a grader grades it. So Game 2 is ranked high in the 

Demonstrated Skill Score rank, but it is ranked low in the human grading score rank.  
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Figure 45 Frogger Design Layout of Game 1 

 

Figure 46 Frogger Design Layout of Game 2 
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Figure 47 Behavior Programming of Game 1 

 

Figure 48 Behavior Programming of Game 2 

Third, the CTPA cannot detect the difference between the correct method and the 

incorrect method in the CT pattern implementation with the same CTPA constructors. 

This limitation is covered in Chapter 6. 3.  
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Chapter 8. Conclusion 

Many previous attempts in CT learning assessment have been limited in nature to 

skill investigations mostly at the syntactic level (Koh et al., 2010; Lewis 2010). At the 

syntactic level, these attempts are extremely difficult because visual and textual 

languages may not match up very well. Also, students usually do not get any individual 

feedback to know what kinds of knowledge they have actually learned through making 

programmed artifacts. 

The CTPA suggests a new notion of learning assessment in computer science and 

computational thinking education. Teachers can assess student-learning performance at 

an individual level, a whole class level, and even a school level. Teachers will be able to 

know which students struggled to follow a class lesson and which students moved ahead. 

Students will get direct and instant feedback from CTPA to understand what they have 

learned through making games and simulations and how their learning skills have 

evolved over time.  

Semantic analysis of computational thinking in visual programming learning 

promises better individual feedback and faster learning assessment to students and 

teachers. Additionally, this kind of feedback can be used to determine when and how 

teachers can expand students’ learning capability in accordance with the theory of the 

Zones of Proximal Flow (Basawapatna et al., 2013). A validated CTPA will contribute to 

the study of learning theory, professional development, and educational data mining by 

providing empirical data in order to make it possible to refine the current conceptual 

framework of educational systems. 
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Despite certain limitations of the current CTPA, the validation results with 

concurrent and predictive validities for the CTPA are promising, though further 

exploration with a larger data set is warranted. Beyond demonstrating that CTPA and 

human grader performance are well correlated when assessing foundational games, I 

showed the predictive value of this analysis tool for assessing students’ skill in designing 

their own games. I anticipate that it will be possible to use the CTPA in the future to 

provide trustworthy educational feedback, especially given the consistency of the 

findings using data from two consecutive years.  

The CTPA can measure educational benefits of visual programming learning that 

we couldn’t quantify before. Each visual programming artifact can be computed and 

measured semantically in terms of computational thinking. So far I have explored the 

CTPA with primarily AgentSheets and AgentCubes. However, it could be applied to 

other visual programming language artifacts and/or other research domains. When the 

CTPA is applied to other visual programming languages or other research domains, this 

research will potentially suggest a valuable and effective method that can assess students’ 

learning performance, provide effective learning guidelines, and compute students’ 

learning outcomes. This can be used to create real cyberlearning systems that help large 

numbers of teachers and students learn computational thinking. 
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Appendix A. CTPA Graphs for each CT patterns 

 

Figure 49 Cursor Control Pattern 

 

Figure 50 Generation Pattern 
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Figure 51 Absorption Pattern 

 

Figure 52 Collision Pattern 
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Figure 53 Transportation Pattern 

 

Figure 54 Push Pattern 
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Figure 55 Pull Pattern 

 

Figure 56 Diffusion Pattern 
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Figure 57 Hill Climbing Pattern 
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Appendix B. CTPA Evolution Chart 

Over the last 3 years, the CTPA has been updated using expert agreement, which 

is one form of validation of CAS systems. When I first designed the CTPA graph in 

2009, the graphs were like the below charts.  

 Prototype CTPA Graph 

Frogger 

 

Sokoban 

 

Space Invaders 
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After AgentSheets 3.0 was released, I redesigned the CTPA matched to 

AgnetSheets version 3.0, and I proposed four different CTPA types. Currently, Spatial 

CTPA is used to analyze all AgentSheets and AgentCubes projects. For a certain CTPA 

type, small changes in programming can bring small changes in CTPA, but for other 

CTPA types it can result in big changes in CTPA.  
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Table 8 Four Standard Games and  Four Different CTPAs 

• Projected CTPA overcomes the lower indication problem of less dominant 

patterns in a given game/simulation. Basically, this boosts low indications 

of less dominant patterns. 

• Cons: The projected CTPA basically boosts the indication values, so the 

false positive values are increased too. 

• Spatial CTPA is designed to eliminate false positives of hill climbing and 

diffusion using the “adding one more bit” approach. False positives of 

diffusion and hill climbing are dramatically improved. There is 0 value of 

false positive on diffusion, and small values of false positive on hill 

climbing still are identified because they are considered movement actions 

like cursor movement. 

• Cons: Like the original CTPA, the low indication problem from less 

dominant patterns still remains.  

• Projected Spatial CTPA is a combination of the projected CTPA and the 

spatial CTPA. 

  



Page | B-114 

 

Frogger 

Category Computational Thinking Pattern Graph Comment 

Original CTP 

 

This original CTP graph 

illustrates all implemented CT 

patterns in the sense of their 

proportion in game 

implementation. So more 

dominant patterns in the given 

game show higher indications 

than less dominant patterns on 

the CTP graph. i.e) 

Transportation is a pattern of 

Frogger, but the proportion is 

small (only one action). So it 

has a very low indication. 
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Projected CTP 

 

To overcome the lower 

indication of less dominant 

patterns, a different type of high 

dimensional cosine calculation 

is applied to draw this Projected 

CTP. In the projected CTP, the 

high dimensional cosine 

calculation is performed with 

only relevant conditions and 

actions between CT patterns 

and a given game. 

Consequently, it boosts low 

indications of less dominant 

patterns. 

Spatial CTP 

 

The Spatial CTP is designed to 

eliminate false positives of hill 

climbing and diffusion. This 

approach does not do much 

here.  
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Projected 

Spatial CTP 

 

The Projected Spatial CTP is a 

combination of the projected 

CTP and the spatial CTP.  

Table 9 Frogger with Four CTPAs 
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Space Invaders 

Category Computational Thinking Pattern 

Graph 

Comment 

Original CTP 

 

After upgrading the CTP graph 

to match AS 3.0, the shape of 

the CTP graph is a bit different 

from what we’ve seen before, 

but still the same mechanism.  

False positives on Hill 

Climbing and Diffusion are 

shown.  

Projected CTP 

 

The projected CTP basically 

boosts the indication values, so 

the false positive values are 

increased too.  
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Spatial CTP 

 

Adding one more bit. To 

eliminate false positives from 

diffusion and hill climbing, 

special code is added to 

determine spatial reference. 

There is 0 value of false 

positive on diffusion, and small 

values of false positive on hill 

climbing still are identified 

because it is considered as a 

movement action like cursor 

movement. 

Projected 

Spatial CTP 

 

The Projected Spatial CTP is a 

combination of the projected 

CTP and the spatial CTP.  

Table 10 Space Invaders with Four CTPAs 
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Sims 

Category Computational Thinking Pattern 

Graph 

Comment 

Original CTP 

 

In complete Sims games, hill 

climbing is a dominant pattern 

(all AI moving agents), and 

diffusion is a less dominant 

pattern (only a tile or a 

background agent). Push and 

Pull patterns show because 

Make and Move actions are 

used a lot in this Sims.  

Projected CTP 

 

The projected CTP basically 

boosts the indication values, so 

the false positive values are 

increased too.  
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Spatial CTP 

 

When calculating high 

dimensional cosine with spatial 

code, it eliminates all set 

actions that are not used to 

diffuse values. Consequently, 

diffusion becomes a less 

dominant pattern than before.  

Projected 

Spatial CTP 

 

The Projected Spatial CTP is a 

combination of the projected 

CTP and the spatial CTP.  

Table 11 Sims with Four CTPAs 
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Sokoban (Tutorial Version) 

Category Computational Thinking Pattern 

Graph 

Comment 

Original CTP 

 

After upgrading the CTP graph 

to match AS 3.0, the shape of 

the CTP graph is a bit different 

from what we’ve seen before, 

but still the same mechanism.  

False positives on Hill 

Climbing and Diffusion are 

shown.  

Projected CTP 

 

The projected CTP basically 

boosts the indication values, so 

the false positive values are 

increased too.  
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Spatial CTP 

 

Adding one more bit. To 

eliminate false positives from 

diffusion and hill climbing, 

special code is added to 

determine spatial reference. 

There is 0 value of false 

positive on diffusion, and small 

values of false positive on hill 

climbing still are identified 

because it is considered as a 

movement action like cursor 

movement. 

Projected 

Spatial CTP 

 

The Projected Spatial CTP is a 

combination of the projected 

CTP and the spatial CTP. Still it 

shows some false positive on 

Generation because of many see 

conditions.  

Table 12 Tutorial Sokoban with Four CTPAs 
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Sokoban (Example Version in AS) 

Category Computational Thinking Pattern 

Graph 

Comment 

Original CTP 

 

After upgrading the CTP graph 

to match AS 3.0, the shape of 

the CTP graph is a bit different 

from what we’ve seen before, 

but still the same mechanism.  

False positives on Hill 

Climbing and Diffusion are 

shown. 

Projected CTP 

 

The projected CTP basically 

boosts the indication values, so 

the false positive values are 

increased too.  
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Spatial CTP 

 

Adding one more bit. To 

eliminate false positives from 

diffusion and hill climbing, 

special code is added to 

determine spatial reference. 

There is 0 value of false 

positive on diffusion, and small 

values of false positive on hill 

climbing still are identified 

because it is considered as a 

movement action like cursor 

movement. 

Projected 

Spatial CTP 

 

The Projected Spatial CTP is a 

combination of the projected 

CTP and the spatial CTP.  

Table 13 Example Sokoban with Four CTPAs 
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Appendix C. Face and Construct Validity Survey 

Questionnaire  

1. Using the following AgentSheets programming codes, can you detect the 

Cursor Control pattern? Please justify your answer. 

 

2. Using the following AgentSheets programming codes, can you detect the 

Cursor Control pattern? Please justify your answer.  

 

3. Using the following AgentSheets programming codes, can you detect the 

Generation pattern? Please justify your answer. 
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4. Using the following AgentSheets programming codes, can you detect the 

Generation pattern? Please justify your answer. 

 

5. Using the following AgentSheets programming codes, can you detect the 

Absorption pattern? Please justify your answer. 

 

6. Using the following AgentSheets programming codes, can you detect the 

Absorption pattern? Please justify your answer. 

 

7. Using the following AgentSheets programming codes, can you detect the 

Collision pattern? Please justify your answer. 
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8. Using the following AgentSheets programming codes, can you detect the 

Collision pattern? Please justify your answer. 

 

9. Using the following AgentSheets programming codes, can you detect the 

Transportation pattern? Please justify your answer. 

 

10. Using the following AgentSheets programming codes, can you detect the 

Transportation pattern? Please justify your answer. 
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11. Using the following AgentSheets programming codes, can you detect the Push 

pattern? Please justify your answer. The Push pattern requires two adjacent agents’ 

interaction so there are two programming behaviors from two agents in this question.  
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Figure 58: Programming Behavior in Agent 1 
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Figure 59 Programming Behavior in Agent 2 
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12. Using the following AgentSheets programming codes, can you detect the Push 

pattern? Please justify your answer. The Push pattern requires two adjacent agents’ 

interaction so there are two programming behaviors from two agents in this question. 

 

Figure 60 Programing Behavior in Agent 1 
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Figure 61 Programming Behavior in Agent 2 
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13. Using the following AgentSheets programming codes, can you detect the Pull 

pattern? Please justify your answer. The Pull pattern requires two adjacent agents’ 

interaction so there are two programming behaviors from two agents in this question. 

 

Figure 62 Programing Behavior in Agent 1 
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Figure 63 Programing Behavior in Agent 2 
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14. Using the following AgentSheets programming codes, can you detect the Pull 

pattern? Please justify your answer. The Pull pattern requires two adjacent agents’ 

interaction so there are two programming behaviors from two agents in this question. 

 

Figure 64 Programing Behavior in Agent 1 
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Figure 65 Programing Behavior in Agent 2 
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15. Using the following AgentSheets programming codes, can you detect the 

Diffusion pattern? Please justify your answer. The equation in the box is 0.25 * 

(f[left]+f[right] + f[up] + f[down]).  

 

16. Using the following AgentSheets programming codes, can you detect the 

Diffusion pattern? Please justify your answer. The equation in the box is 0.25* (100 + [x] 

+ [y]) 

 

17. Using the following AgentSheets programming codes, can you detect the 

Diffusion pattern? Please justify your answer. The equation in the box is 0.25* (100 + x + 

y) 
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17. Using the following AgentSheets programming codes, can you detect the Hill 

Climbing pattern? Please justify your answer. 
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18. Using the following AgentSheets programming codes, can you detect the Hill 

Climbing pattern? Please justify your answer. 
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Appendix D. Face Validity with Proportions Survey 

Questionnaire  

1. Please open and play the sample Frogger project, which is under the Projects 
folder of AgentSheets. Please list the Computational Thinking Patterns in a 
proportional rank in the Frogger programming using your understanding of 
Computational Thinking Pattern. The sample Frogger uses Cursor Control, 
Generation, Absorption, Collision, and Transportation patterns. (i.e. 1. 
Transportation 2. Cursor Control 3. Generation 4. Absorption 5. Collision. A 
smaller number means a higher proportion in programming) 
 

 

 

2. Please open and play the sample Sokoban project, which is under the Projects 
folder of AgentSheets. Please list the Computational Thinking Patterns in a 
proportional rank in the Sokoban programming using your understanding of 
Computational Thinking Pattern. The sample Sokoban uses Cursor Control, Push, 
and Pull patterns. (i.e. 1. Cursor Control 2. Push 3. Pull.  A smaller number means 
a higher proportion in programming) 
 

 

 

3. Please open and play the sample Space Invaders project, which is under the 
Projects folder of AgentSheets. Please list the Computational Thinking Patterns in 
a proportional rank in the Space Invaders programming using your understanding 
of Computational Thinking Pattern. The sample Space Invaders uses Cursor 
Control, Generation, Absorption, Collision, and Choreography patterns. (i.e. 1. 
Choreography 2. Cursor Control 3. Generation 4. Absorption 5. Collision a 
smaller number means a higher proportion in programming) 
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Appendix E. Four Standard Games with 13 

dimensional CTPA 

 

Figure 66 Frogger with 13 dimensional CTPA 
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Figure 67 Example Sokoban with 13 dimensional CTPA 

 

Figure 68 Tutorial Sokoban with 13 dimensional CTPA 
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Figure 69 Space Invaders with 13 dimensional CTPA 

 

Figure 70 Sims with 13 dimensional CTPA 


